
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Reconfigurable Spiking Neural Network
architecture on FPGA

Supervisors

Prof. Guido MASERA

Prof. Maurizio MARTINA

Candidate

Dino SANTORO

April 2020

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Neural Networks background and accelerators 3
2.1 Deep Neural Networks . 3

2.1.1 LeNet . 4
2.1.2 AlexNet . 5
2.1.3 VGG . 6
2.1.4 GoogLeNet . 7
2.1.5 ResNet . 8
2.1.6 Comparison . 9

2.2 DNN accelerators . 10
2.2.1 DianNao . 10
2.2.2 TPU . 11

2.3 Spiking Neural Networks: the third generation of NNs 12
2.3.1 Neurons . 14
2.3.2 Coding of signals . 14

2.4 Accelerators . 15
2.4.1 SpiNNaker . 15
2.4.2 TrueNorth . 16
2.4.3 Loihi . 17
2.4.4 Comparison . 18

3 ZEDBoard: The chosen FPGA 19
3.1 Overall illustration of ZEDBoard 19
3.2 Why use FPGA and don’t create an ASIC? 21
3.3 Vivado . 21

v

4 Design of the SNN accelerator architecture 25
4.1 Algorithm . 26

4.1.1 Convolutional layer . 26
4.1.2 Pooling layer . 40
4.1.3 Fully-connected layer . 48

4.2 Architecture . 53
4.2.1 Input Memory . 54
4.2.2 Weights Memory . 55
4.2.3 Output Memory . 56
4.2.4 States Memory . 57
4.2.5 Sampler . 59
4.2.6 Comparator . 59
4.2.7 Parallel Adders . 59
4.2.8 Countroller . 61
4.2.9 Interface . 62
4.2.10 User file . 63

5 Testing the accelerator 65
5.1 Convolutional layer testing . 65
5.2 Pooling layer testing . 71
5.3 Fully-Connected layer testing . 73

6 Results 75
6.1 Speed . 75
6.2 Power . 76
6.3 Area . 77
6.4 Performance . 80

7 Conclusion 81

A Code 83

Bibliography 87

vi

List of Tables

2.1 Comparison Neural Network . 9
2.2 Comparison SNN accelerators . 18

6.1 Utilization Table . 77

vii

List of Figures

2.1 LeNet5 . 4
2.2 AlexNet . 5
2.3 VGG16 . 6
2.4 Inception layer . 7
2.5 Shortcuts in ResNet . 8
2.6 DianNiao Architecture . 10
2.7 TPU Architecture . 11
2.8 SNN . 13
2.9 SpiNNaker PCB . 15
2.10 TrueNorth layout . 16
2.11 Loihi Microarchitecture . 17

3.1 ZEDBoard . 20
3.2 Vivado inteface . 21
3.3 IP Catalog . 22
3.4 Adder IP . 23
3.5 Memory IP . 23

4.1 Convolutional Pseudocode . 26
4.2 Convolution Algorithm . 28
4.3 Changing Input Channel . 29
4.4 Changing Column . 30
4.5 Changing Row . 31
4.6 End of filter . 32
4.7 Leak and store . 32
4.8 Transfer Function ReLU . 33
4.9 Change Series of Filters . 35
4.10 Right Shift of filter position . 36
4.11 Down Shift of filter position . 37
4.12 Positions of image . 39
4.13 Positions in memory . 39

viii

4.14 Pooling Pseudocode . 40
4.15 Pooling Algorithm . 42
4.16 Changing Input Channel . 43
4.17 Add of Leak and storing . 44
4.18 Change Input Channels . 45
4.19 Application of horizontal stride . 47
4.20 Initial idea for Fully Connected Algorithm 48
4.21 Fully Connected Algorithm . 49
4.22 Fully-connected Pseudocode . 51
4.23 Fully Connected Algorithm . 52
4.24 Simplified Architecture . 53
4.25 Input Memory . 54
4.26 Weights Memory . 55
4.27 Output Memory . 56
4.28 States Memory . 57
4.29 Parallel Adders . 59
4.30 Max pooling approximation . 60
4.31 Countroller main process . 62

5.1 Zoomed Simulation for check AddressHor 67
5.2 Simulation for check Address . 67
5.3 Simulation for check jumps in Address 67
5.4 Filters for test . 68
5.5 Simulation for Adders . 69
5.6 Simulation for Adders with positive overflow 69
5.7 Simulation for Adders with negative overflow 69
5.8 Leak and store . 70
5.9 Simulation of Countroller in Pooling layer 71
5.10 Simulation of adders and storing in Pooling layer 72
5.11 Simulation of adders and storing in Pooling layer with zoom 72
5.12 Simulation of normal addressing in Fully-Connected layer 73
5.13 Simulation of addressing in Fully-Connected layer with empty row . 73
5.14 Addition in Fully-Connected layer 74
5.15 Leak and store in Fully-Connected layer 74

6.1 Critical paths . 75
6.2 Power breakdown . 76
6.3 Power hierarchy . 77
6.4 Place and route . 78
6.5 Place and route with connections 79

ix

Chapter 1

Introduction

Recently, we are witnessing to a rapid spread of the NNs in many fields thanks
to their ability to reproduce and model nonlinear processes. Mainly driven by
recent advances in computer vision, a fast improvement of the ANNs ensures the
development of a more efficient artificial intelligence processing, which leads to the
reduction of power consumption and latency time.

Nowadays, Deep Neural Networks (DNNs) have reached extremely high values
of accuracy, over 90-95 % in complex image classification tasks, even surpassing
human capabilities. The DNNs are ANNs with more than one hidden layer and are
used to perform complex classification. A large number of neurons and a sufficient
depth lead to a higher classification accuracy, compared to a smaller and shallower
network on the same task. This high accuracy had a not negligible cost in terms of
area and power consumption. Even considering only the DNN inference processing,
each neuron executes a multiplication and a sum for each clock cycle, if we do not
consider design optimizations, such as a possible pipeline. To clarify, the inference
process consists in applying a trained neural network model and using a uses it
to infer a result. This continuous flow of data and the huge amount of neurons
bring the circuit to consume a huge amount of power that could be managed only
by big server. There is, therefore, a need to improve this aspect to allow the
implementation of an efficient artificial intelligence at the edge, where the hardware
resources are limited. Practically, for example, complex neural networks must be
deployed efficiently on cars or smartphones.
To improve the trade-off between speed and power several specialized accelerators
have been proposed that work on GPU or more recently the Google TPU. They
improve for sure the performance of the computations but highlights also that
a radical change in the type of NN is necessary to bridge the gap between the
power consumed by the DNN accelerators and the power consumed by the human
brain. From this perspective, Spiking Neural Networks (SNNs) represent a signif-
icant step forward compared to the standard DNNs. This new type of network

1

Introduction

forces us to redefine the hardware and the software in order to adapt them to the
new requirements. This innovative network models the exact behaviour of our
brain where each neural node receives and eventually transmits spikes that will
stimulate the synapses connected and this information will be propagated to the
following layer. It is so easy to understand that, in contrast to the DNNs, the
SNNs are event-driven so they compute data only when this event, in SNN a spike,
arrives. Another big advantage of the SNNs, not easy to catch at first sight is
the modification of operations. The SNN, as already mentioned, are very near to
represent a real human brain and this is possible thanks to the very detailed neuron
models. One drawback of the SNN is that to communicate with the environment it
is necessary to have a particular interface because the external world had continued
value and do not send pulses. All these aspects will be better described in the next
chapter. After an overview of the most recent state-of-the-art about the NNs and
accelerators, the following chapter illustrates the reasons and limitations in the
use of an FPGA for building an SNN accelerator. There will be described also
the main hardware features and the software environment that help to create an
efficient accelerator. In the subsequent chapter will be described the architecture
developed and the algorithm implemented to execute the main layers type in SNN.
This layers are convolutional, pooling and fully-connected, each of them with their
tailored algorithms. The last two chapters will show all the testing steps executed
to be sure that everything works correctly and in the right moment and also the
results obtained with some future development.

2

Chapter 2

Neural Networks
background and accelerators

2.1 Deep Neural Networks
In the current state, it is possible to witness to a huge variety of NNs that are
originally developed for DNNs. Starting from 1998 the number of layers and
neurons is increased to improve accuracy.

3

Neural Networks background and accelerators

2.1.1 LeNet
This NN [1] was proposed in 1998 but we had to wait for 2010 to implement it.
This happened because it required too much computation capability for that period.
It is a CNN network with two convolutional layers followed by a pooling layer
each. After these steps are present two fully connected layers. This network is also
illustrated in figure 2.1

Figure 2.1: LeNet5

4

2.1 – Deep Neural Networks

2.1.2 AlexNet
This network was proposed in ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) [2]. In fact, in 2012 by Alex Krizhevesky and others won the ImageNet
challenge for visual object recognition with this architecture shown in figure 2.2.
It is composed of only one more layer than the LeNet but the number of neurons
increases dramatically. Looking, for example, the number of neurons in the fully
connected layers that passing from about one hundred to few thousands. In this
network, it is possible to find different innovations. First of all, it uses a ReLU
activation function instead to the usual sigmoid or tanh suffer less the vanishing
problem so the learning is faster. The ReLU has a drawback, the variables could
assume too much higher values. For this reason, a new type of layer, in addition
to the most common ones, was introduced. This new layer is called LRN (Local
Response Normalization) and its job is to normalize a local and restricted area.
Doing this it is possible to obtain a lateral inhibition and a consequent increase
of the contrast between the excited neuron and the surrounding ones. All this
novelties bring AlexNet to reaches an accuracy of 84.7%.

Figure 2.2: AlexNet

5

Neural Networks background and accelerators

2.1.3 VGG
This NN was the runner up of the ILSVRC of 2014 and its acronym means Visual
Geometry Group[3]. It has three different versions but all the three present a
depth higher than the AlexNet one. The versions have respectively 11, 16 and 19
layers that makes it clear a criticality, that is that to improve accuracy the number
of layers must increase. The goal of this NN and also of the subsequent was to
obviously improve the accuracy but reduce also the number of parameters speeding
about the training phase. The solution found is to fix to 3x3 the dimensions of
filters (or kernels). The AlexNet presents different dimensions for the filters in
convolutional layers that go from 3x3 to 11x11. VGG instead use only 3x3 filters
because each dimension can be substituted by a multiple use of 3x3 filter. The
architecture is shown in figure 2.3 and it presents the same pattern replicated more
times. This pattern is composed of two or three convolutional layers followed by a
max-pooling layer. At the end of this NN are present three fully connected layers
and the usual soft-max layer for the classification. The accuracy of this network is
equal to 92.3% with an increase of about 10% with respect to AlexNet.

Figure 2.3: VGG16

6

2.1 – Deep Neural Networks

2.1.4 GoogLeNet
Also, this NN was developed for the ILSVRC of 2014 and it won[4]. This network
uses a different approach to reduce the parameters. The different dimensions of
filters is important because the features can vary their size so in this NN the
dimension of filter are not fixed. It presents different layers called Inception layers,
shown in figure 2.4. They are a mix of convolutional layers with different dimension
of filter and also convolutional layers. After this parallel computations, all the
results are merged thanks to a filter concatenation. GoogLeNet is composed even of
twenty-two layers but has half of weights and one-tenth of the Multiply-Accumulate
operation with respect to VGG-16.

Figure 2.4: Inception layer

7

Neural Networks background and accelerators

2.1.5 ResNet
This NN [5] was proposed in 2015 at the ILSVRC and present different version
with numbers of layers that goes from 34 to even 1202 but the most popular is the
version with forty-nine convolutional layers and one fully-connected layer called
ResNet50. The main feature of this NN that distinguishes it from the previous
ones is that are present some shortcuts between layers. These shortcuts are shown
in figure 2.5. When in an ultra-deep NN the derivative goes to the initial layers to
correct the weights its value become too much little. This implies that the learning
of the NN will stop. This is the vanishing gradient problem that was partially
solved by ReLU before.

Figure 2.5: Shortcuts in ResNet

8

2.1 – Deep Neural Networks

2.1.6 Comparison

LeNet-5
(1998-2010)

AlexNet
(2012)

VGG-16
(2014)

GoogLeNet
(2014)

ResNet-50
(2015)

Accuracy (Top-5) - 84.7% 92.3 93.3 94.7
Inpu size 28x28 227x227 224x224 224x224 224x224

Number of Conv Layers 2 5 16 21 49
Filter Size 5 3,5,11 3 1,3,5,7 1,3,7

Number of Feature Maps 6,16 3-256 3-512 3-1024 3-1024
Number of FC layers 2 3 3 1 1

Total Weights 431k 61M 138M 7M 25.5M
Total MAC operations 2.3M 724M 15.5B 1.43B 3.9B

Table 2.1: Comparison Neural Network

For table 2.1 is possible to understand several things describe before. First of all,
the accuracy that had an huge improvement in 2010-2012 years and a saturation
around the 92-95% for the basic version of these networks. All these NN are used
for image classification except LeNet and this could be understood looking the
input size that are 224x224. A clear data is the increase of the layers especially of
type convolutional. It is possible to notice that the weights and MAC operations
are more with respect to AlexNet but this is due to the increasing of accuracy.
Because the fixed filter size reduce the weights with equal accuracy. The difference
between GoogLeNet and VGG-16 is in terms of parameters and operation is wide
in favour of the first one.

9

Neural Networks background and accelerators

2.2 DNN accelerators

2.2.1 DianNao
The DianNao represents the first accelerator of a series developed during the years.
It is composed of the following components:

• Neural functional unit (NFU). It performs the MAC operations and nonlinear
function.

• Three different buffers that are used respectively for input neurons, output
neurons, and weights.

• A control processor to manage the operations and the transfer of data.

The following architectures of the series can reduce power or execute multiple ML
algorithms in parallel.

Figure 2.6: DianNiao Architecture

10

2.2 – DNN accelerators

2.2.2 TPU

Figure 2.7: TPU Architecture

The first version of TPU was released by Google in 2017 to execute the inference.
In next evolution of it are introduced systolic array and unit able to process vectors
(useful for CapsNet).

11

Neural Networks background and accelerators

2.3 Spiking Neural Networks: the third genera-
tion of NNs

The SNNs represent an important and maybe irreversible breakthrough in the field
of Machine Learning. They are developed to achieve two different goals.
First, to reduce the power consumption in the NNs. In fact, the increase in the
number of layers and the consequent increase of operations in NNs have increased
the power used to execute them. The power has two big collateral effects.

• More power means more energy necessary from the power supply, therefore
the NN could not be a simple supplied by a power-cell. This means that no
portable device could use an optimal NN.

• More power means more heat so it is necessary to remove it to not destroy
the integrated circuit or anyway slowdown it. Often, for this operation, it
is not enough a simple heat sink but is fundamental to have a controlled
temperature, like for the server.

The second goal is to understand better the natural neural network in order to
cure several mental disease or understand the emotions creating, therefore, "robot
with feelings".
The SNNs can mimic the human brain adding the concept of time to operations.
In our brain, the propagation of a signal (spike) happens only when the membrane
potential reaches a specific value (threshold). An SNN saves a lot of power with
respect to a DNN for two main reasons. The first one is that the SNN is event-
driven. This means that all the operations are triggered by a spike coming from the
external or a previous layer. This reduce dramatically the number of operations.
The second reason of power reduction is due to the different type of operation. In
a DNN the output of a neurons is calculated as described in equation 2.1

output =
Ø

#neurons

inputi ∗ weighti + bias (2.1)

In an SNN, the inputs are codified as binary spikes so can assume value equal
to "1" or to "0". This implies that the multiplication, the most costly operation in
the previous equation, is not necessary. This characteristic acts in all the aspects
of an integrated circuit. The removal of multiplication reduces the complexity and
consequently clock period and the area but reduce also the dynamic power used.
In summary, it possible to say that in SNN are executed only additions and the
number of times that these additions are executed is much less with respect to
DNN.

12

2.3 – Spiking Neural Networks: the third generation of NNs

neuron

integrates
dendritic curent

and generate

neuron

time

Vth
membrane potential

spikes

spikes

spikerates
of output
neurons

are computed
and output

is predicted
class

spikes travel to
the post-synaptic

neuron

spikes

time

pixels intensities set

time

neurons inputs
(A)

(B)

(C)

(D)

Figure 2.8: SNN

It is possible to see in figure 2.8 that the procedure in an SNN could be divided
into four phases.

1. Each pixel intensity is used to set the input neurons. Details in 2.3.2. Each
input neuron represents a specific pixel.

2. The spikes travel to the post-synaptic neurons propagating the information
through the network.

3. Each neuron has a membrane potential that integrates during the time, using
a specific equation, the dendritic current. Detail of equations are described
in 2.3.1. When this membrane reaches the threshold potential a spike is
generated by the neuron. This spike will be propagated like in the previous
phase.

4. At the end, the output class is predicted looking the spike rates of the output
neurons. The logic winner-takes-it-all is applied so the winner class is the one
with high spike rate.

13

Neural Networks background and accelerators

2.3.1 Neurons
To mimic in the best way the human brain several kinds of research are done also
to model the neuron itself. The most common models are three.

• The first one is the Izhikevich model [6]. It is a very detailed equation, to
compute the voltage of neurons and if a spike is emitted, and it is used if the
goal is to obtain a high value of accuracy of the SNN.

• The second one is the Integrate and Fire model. This one uses a very simple
equation 2.2 to evaluate the state and the emission of a spike.

V (t) = Vr + 1
C

Ú t

to
I(s)ds (2.2)

The output is calculated doing a sum between all value connected to emitting
neurons. This one is used in case of high speed SNN without high accuracy
necessity.

• The third one is the Leaky-Integrate and Fire and is a natural trade-off
between the two previous models. It is easy to implement like the second one
but implement also a subtraction that models the losses, or better the leaking
of the neurons.
This last one will be implemented as the default model in the accelerator but,
with an easy modification, the accelerator can use the second model.

2.3.2 Coding of signals
In SNN the signal are codified in a spike train but exist several types of coding.
Usually, the input signal will be converted into a series of impulse depending on
the intensity of the signal (audio or video). It is necessary, therefore, to define
a time-period or time-window. The latter is defined in terms of numbers of step
time. Increasing the number of step time in the time window the conversion is
more accurate. This accuracy has like the collateral effect the slowdown of the
network drawback. Each new step time added means that, to obtain the result
from the network, it is necessary to execute the whole network one time more. This
conversion process of the input can be avoided if instead to use a standard camera,
the image acquisition is done by a DVS camera. In a DVS camera, or event camera,
each pixel reports changes in brightness independently from the others.

14

2.4 – Accelerators

2.4 Accelerators
Several accelerators have been developed to implement SNNs with dimensions.
Some of the most popular are listed and described below

2.4.1 SpiNNaker

Figure 2.9: SpiNNaker PCB

15

Neural Networks background and accelerators

It can manage up to a million of neurons. The innovative aspect of this
accelerator is the efficient communication. It is optimized to send a large number
of message with "reduced" bit parallelism. Each node communicate with the others
with messages of 72 bits. It can handle different type of neuron models, including
the ones cited before in 2.3.1. It does not use a global memory but instead, the
cores ARM-9 memory can access to small local memory. The circuit board shown
in figure 2.9 incorporates 48 SpiNNaker packages with a total of 864 ARM968
processor.

2.4.2 TrueNorth

Figure 2.10: TrueNorth layout

The layout of the TrueNorth is shown in figure 2.10. It is composed of a grid 64x64
cores each one presents a scheduler, an SRAM, a router, a block of neurons and
a control. It can simulation a million of neurons exactly like SpiNNaker and 256
million synapses. It consumes 100 mW for classification tasks. It has a parallelism
equal to 4096 cores and actuate time-division multiplexing in order to reduce area.
It handles only LIF neurons. Data parallelism are 9-bit signed weights for neurons.
The time window can vary in a range that goes from 1 to 15 time-steps.

16

2.4 – Accelerators

2.4.3 Loihi
It was developed from Intel in 2018 using a 14 nm technology. It supports about
130 thousands of neurons and 130 million synapses. It consents the adaptation of
the threshold. This accelerators supports the variable resolution for synapses going
from 1 to 9 bits. In figure 2.11 is reported the microarchitecture of the cores.

Figure 2.11: Loihi Microarchitecture

17

Neural Networks background and accelerators

2.4.4 Comparison

SpiNNaker TrueNorth Loihi
Max Number of Neurons 1B 1M 130k
Number of Synapses 80M 256M 130M
Weights resolution 1-40 9 1-9

Others Features
It consumes few nJ in nominal condition.

Can execute real-time simulation
with 72-bit messages

Consume 26 pJ for each operation.
Can be used only for inference

because the support of learning is absent.

In nominal condition, it consumes 23.6 pJ
and can learn using different types of on-line learning.

Table 2.2: Comparison SNN accelerators

From table 2.2 is possible to notice the main characteristics of these three
accelerators. For example, the max number of neurons that goes from 130k of the
Loihi and could reaches 1 billion in SpiNNaker one. Also the number of synapses
is over around the one hundred millions. The reported number of synapses in
SpiNNaker referenced the example reported in original paper. Another advantage
of SpiNNaker is the high resolution that could be implemented, up to 40 bits,
compared to the 9 bits that the other two can support. In terms of power all the
accelerators have low values but, at least in nominal case reported in paper, the
SpiNNaker is the best one.

18

Chapter 3

ZEDBoard: The chosen
FPGA

3.1 Overall illustration of ZEDBoard
The FPGA is a configurable integrated circuit that represents a perfect trade-off
between the efficiency of hardware and the flexibility of software. It is composed of
a set of virtual logic gates configurable directly by the user. The chosen board is
the ZEDBoard that has on it a System-on-Chip Zynq™-7000 AP SoC XC7Z020-
CLG484-1 which include Dual-core ARM Cortex-A9 MPCore™ with CoreSight™
and XC7Z020 Xilinx SRAM-Based FPGA and a DDR Memory with a capability
of 512 MB. These three parameters were instrumental in the choice of the board
in addition to the high number and type of the peripheral like switches, HDMI
connectors and so on. The main characteristics of the FPGA that ensures a big
and fast accelerator are listed below.

• Programmable Logic Cells = 85000
These are necessary to implement any kind of combinatorial logic function,
with mixing of 6 input Look-Up Tables (53200), and sequential block, with
Flip-Flops (106400).

• Block RAM = 140
They are necessary to create a local cache memories big enough to avoid the
continuous transfer of data to and from the DDR Memory. The total amount
of the internal memory that could be used is equal to 4.9 MB because each
Bram has a capacity of 36 kb.

• DSP Slice = 220
These blocks are optimized to execute addition, subtraction, multiplication

19

ZEDBoard: The chosen FPGA

Figure 3.1: ZEDBoard

or a mix of these operations in a fast way and reducing power consumption
without using LUTs.

• I/O Blocks= 200 These represent the number of input or output pin with
control components (like tristate, diodes,..)to guarantee compatibility between
inside and outside and avoid the high current value go inside the FPGA and
potentially destroying it.

This values will influence the design of the accelerator and the future configura-
tions that will be developed.

20

3.2 – Why use FPGA and don’t create an ASIC?

3.2 Why use FPGA and don’t create an ASIC?
Application Specific Integrated Circuit is created to solve a specific computation
with less power consumption and/or reaching the maximum speed. This solution is
often the best but after having produced it nobody could make any change and for
this reason, an FPGA is used. The goal of this thesis is to define an architecture
that the user could modify in some parameters related to the specific case leaving
everything else intact. The FPGA gives to the future user a high degree of flexibility
but with good efficiency in terms of timing and power consumption and especially
throughput compared to a CPU due to the sequential behaviour of the last one.

3.3 Vivado
Xilinx provides also a software to make easy the realization and integration of the
accelerator in FPGA. The name of the program is Vivado and the version used is
the 2018.3. The interface of the program is shown in figure 3.2.

Figure 3.2: Vivado inteface

21

ZEDBoard: The chosen FPGA

This software is useful in several aspects of the design. It provides in addition
to the text editor, to write hardware code, also an IP Catalog shown in figure 3.3,
where the user can select IPs already optimized by Xilinx.

Figure 3.3: IP Catalog

IP catalog contain several useful IP for any need. It is possible to select between
complex arithmetic units (multiplier, divider, ...) or communication devices like for
ethernet or other IEEE standards. For example, in my architecture will be used
adder and memories with all the needed controls. Adder and one memory can be
seen in figure 3.4 and figure 3.5. From the graphic interface of IP the user can set
the desired configuration in terms of data parallelism and controls like the bypass
signal or the internal pipelining, or for memory the initialization. These IPs are
easy to integrate with the code written by the user.

22

3.3 – Vivado

Figure 3.4: Adder IP

Figure 3.5: Memory IP

23

ZEDBoard: The chosen FPGA

In the figure 3.2 it is possible to see on the left side all section necessary to execute
the digital design flow. It has, therefore, the sections to execute the simulation, the
synthesis, the implementation and the one to generate the bitstream. Vivado has
its own simulator, that will be used in this thesis, in addition to the possibility to
use the common ones like ModelSim. To force synthesis and implementation can
be created file .xdc where all the constraints are listed about timing, area, power
and even I/O.

24

Chapter 4

Design of the SNN
accelerator architecture

The goal of this thesis is to design an efficient architecture for a hardware accelerator
able to compute all the necessary operations in an SNN inference. The developed
circuit can elaborate on how spikes will propagate through the SNN analyzing the
input spikes coming from the external like a specific camera and the current state
of neurons and compute also the new states of neurons. This behaviour must be
ensured regardless of the type of layers that could be, in an SNN like in a DNN,
convolutional, pooling or fully-connected. Another important factor that must
be taken into account is the generalization ability of the hardware accelerators.
Different SNNs require different sizes of the filters and its number can vary from
the usual a power of 2. This accelerator supports potentially any number of filter
and any dimension of filter. Anyway, it is suggested to choose a quantity of filter
equal to a multiple of parallelism to avoid to waste space in memory.
In this chapter will be shown how the algorithm has been developed considering
all the constraints, making it as much generic as possible, and how it is optimized
knowing the features and the limitations of the chosen FPGA.

25

Design of the SNN accelerator architecture

4.1 Algorithm
4.1.1 Convolutional layer
How it works A convolutional layer is used to extract some specific features
from an image, like edges or shapes. It takes its name from the mathematical
operation called convolution. In this layer, it is necessary to define a set of learnable
filters. After the training of these filters, the next step is the inference process
where the convolution is executed between the input area and one of the filters.
From this result is possible to understand if the wanted feature is present or not in
that portion of the input image.

To obtain the next state and the possible spike event of every single neuron in
the convolutional layer, all the inputs that are contained in a specific area must be
analyzed to add specific weights with the current state. This operation requires an
accumulation of value until this area is over. The area is defined by filter dimensions
and the input channels. Pseudocode of convolutional layer is reported in figure 4.1

Figure 4.1: Convolutional Pseudocode

26

4.1 – Algorithm

The flowchart instead is reported in figure 4.2 explain every single step to execute
a whole convolutional layer, or a partial part of it, independently of the dimension
of the filter and the image. To understand better all the passages have been created
also a sequence of images the show graphically the main steps. These images, for
the sake of simplicity but also completeness, consider the following parameters.

• Image Dimensions= 10x10

• Input Channels= 7

• Filter Dimensions = 2x2

• Number of filters = 6

• Parallelism = 4

• Stride(Horizontal and vertical) = 1

In all the images is shown the selected input data, the selected filter values, the
partial sum and the storing in output when it happens.

27

Design of the SNN accelerator architecture

Start

Yes

NoLast Input
Channel?

Change Input
Channel

Last Column
filter?

Change Column

Read Input Value

Sum Weight Value
with Neuron's State

value

Yes

Last Row
filter? Change Row

No

No

Last series
of filters

Change Filters and
return to the first
position of filter

No

Yes

Last Column
Result

No Apply Horizontal
Stride

Yes

Last Column
Result

No Apply Horizontal
Stride

End

Yes

Apply Leak and store
Spike and new state

Yes

Yes NoInput value
is "1"?

Keep same Neuron's
State value

Figure 4.2: Convolution Algorithm
28

4.1 – Algorithm

This first couple of images in figure 4.3 show how the input value selected change
from one input channel to another because the last input channel has not yet
been reached. It is possible to see that the four filters selected (four is due to the
parallelism chosen) will keep the same position, that in this case is (0,0) and the
movement is along the z-axis of the input and imply that the four partial sum
will be incremented by the value of related filter if the new data selected is "1"
otherwise will keep the previous value. If the image analyzed has only one channel
this step will not exist and the algorithm moves to the next directly.

Figure 4.3: Changing Input Channel

29

Design of the SNN accelerator architecture

This second couple of images in figure 4.4 shows the case of last Input channel
selection and the passage to another column. It’s possible to see that not only the
input data will change but also the position of the filter moving to the position
(0,1). This position of filer will remain fixed until all the input channel will be
scanned. The four partial sums will continue to increment by the value of related
filter if the new data selected is "1" otherwise will keep the previous value.

Figure 4.4: Changing Column

30

4.1 – Algorithm

This third couple of images in figure 4.5, instead, shows the case when the
selected data is in the last column filter and also in the last input channel so,
consequently, the next position is in the other row resetting the value of column
and channel. Like in the previous case also the position of filters will change moving
from (0,1) to (1,0). The four partial sums will continue to change or not their
value, following the previous rules, based on input values.

Figure 4.5: Changing Row

31

Design of the SNN accelerator architecture

This fourth couple of images, in figure 4.6 and figure 4.7, shows the last part of
elaboration to obtain the single neuron’s state and the emission or not of the spike
(in this example we analyze four neurons simultaneously due to the parallelisms).
In the first of two images (fig. 4.6), we could see that it is reached the last value
of input the contribute to the value of first P neurons, where P is the parallelism,
so the partial sums could be sent to output or stored in memory. This would be
correct if the model used does not take into account the leaking voltage and the
partial sum must be modified to include also this contribution. This is shown in
the second figure (fig.4.7) where it is selected only the leak and partial sums and
neither the input nor the filter.

Figure 4.6: End of filter

Figure 4.7: Leak and store

32

4.1 – Algorithm

Before to store the value of the state must be applied the activation function to
understand if a neuron emits a spike or not. The activation function used in this
thesis is called ReLU that stands for Rectified Linear Unit. It is the most used one
in ANN has several advantages.

• The derivative of the ReLU is one. This implies that during the training is
not necessary extra time so ReLU is more faster than the other activation
functions.

• ReLU is not bounded. This implies that it does not suffer from the vanishing
gradient problem.

From the graph below it is possible to see the transfer function. On the x-axis
is present the value computed of the state for the neuron and on the y-axis can
be found the stored value and if a spike is emitted. When the computed state is
negative the stored value will be zero and no spike will be emitted. When the
computed value instead is positive but does not overcome the threshold the stored
state will be equal to the input and also in this situation no emission of a spike. In
the third and last case, the input exceeds the threshold so it means that a spike is
emitted and the new state is equal to zero.

Figure 4.8: Transfer Function ReLU

33

Design of the SNN accelerator architecture

After the storage, the algorithm must go on and the next movement depends on
the series of filter that was selected before this step. At this point, in the example,
we computed the first four filters so the other two must be executed now. The
algorithm, in this case, will restart from the first position where the previous filter
where located but changing the filters selected. This step is shown in figure 4.9. It
is possible to see that are present four remaining filters, and not two as one could
expect but paying special attention only two of them had the black borders. The
colour difference is due to a different type of filters, the black border one is a real
value of a real filter that acts in this layer the grey border one is a "ghost" value of
a "ghost" filter.

Ghost Filters

To avoid restriction for the user in the number of filters in a single layer could
happen that if the number of the filters is not a multiple of the parallelism, like in
our case, the remaining filters are less than the parallelism chosen so it is necessary
to add these "ghost" filters. The "ghost" filters do not act to extract some features
but are all zero. Their contribution in terms of timing is null because are in parallel
with real filters. Also, the contribution in terms of dynamic power is quite null
because they don’t change any bit also when the input bit is "1", indeed, the
partial sum will sum with a zero. It is present the static contribution but can not
be avoided on FPGA. In terms of area, contrary to what one might think, their
contribution is also zero because the width of the memory is fixed so that space is
already present on-chip. Another big advantage of this "ghost" filters is that do not
increase the transfer timing because the ghost values (all zeros) are on the same
word of the values of real filter but instead reduce the control. To avoid incorrect
output writes is not necessary extra control circuitry because the previous values
stored in that position of memory, related to a previous layer, are overwritten with
the zeros of ghost values.
The image in figure 4.9 shows, how explained previously, that the first value of
input selected is the same but the filter selection switch to the other four. In this
adder is not in accumulation mode, because are the first sums, but the partial
results will be the sum between the current states value of the neurons and filter
weights if the input value is equal to "1" otherwise the current state will be kept.
Once that the algorithm changes the selected filters, the rest moves as seen before
which is first moving along the z-axis changing input channels than change column
and row in the right moment arriving at the storage of value. Obviously during
the execution of successive steps until the store, the adder will be in accumulation
mode between partial sums and weights/leak.

34

4.1 – Algorithm

Figure 4.9: Change Series of Filters

35

Design of the SNN accelerator architecture

Once that all filters have been executed and the last values are stored. The first
series of filters can finally move along the x-axis by the horizontal stride. In the
next figure 4.10 is shown this passage where the selected filters are first four and
the input value selected is not the same before but moved by (0,Sh,0), where Sh is
the horizontal stride. In this example Sh=1 so the first input value covered by the
filter is in the figure is (0,1,0).

Figure 4.10: Right Shift of filter position

36

4.1 – Algorithm

It is not hard to imagine the steps that follow the right shift of filter position on
the input image passing through all steps described before. It is not hard also to
imagine that the algorithm will move to the end of the image’s columns ending the
first row of results and at that moment the algorithm will change the row of the
input. This action is illustrated in the following images in figure 4.11.

Figure 4.11: Down Shift of filter position

The algorithm will proceed, executing these steps at the right moment until the
end of the store of the last values.

37

Design of the SNN accelerator architecture

All these passages, done in this way, provides a lot of advantages that are listed
below

• First of all using this procedure the memory word is written only one time
storing the correct state and spike value. In this way is avoided the storage of
any partial sum and move to another word for other neurons forcing then the
update of every time the neurons.
This reduces the commutations inside the memory that as is a huge load so
consequently the dynamic power consumption.

• Another advantage not negligible is that once that a neuron is stored in output
memory could be sent to the external environment. These output values can
be potentially used by another accelerator if present and free increasing the
speed of execution.

• Last advantage is that in this way it’s preserved the spatial location of data
through the layer. The input and output memory have the same order of data.
Data with the same xy position but from different input channels are stored
one after the other. Then the next row contains data of the next column
position. This will be more clear in the figure below where is illustrated
the positioning in the case of an image 3x3 with eight input channels and
parallelism equal to four. The numbers written in the 4.12 represent the
position in memory, not the effective value.
Keep the spatial location equals allow to do not change the value of jump
address for the input memory when layer change. The input address jumps
for example when it is reached the last column filter. Looking, for example,
the case draws below if the filter is 2x2 after the position 15 located in the
fourth row the next value is in position 24 located in the seventh row and
not in the fifth. This case described above represent the situation of the last
column filter and last input channel seen in figure 4.5

38

4.1 – Algorithm

2315 7

31

55

2214 6

30

54

2113 5

29

53

2012 4

28

52

1911 3

27

51

1810 2

26

50

179 1

25

49

1680

3224 40

645648

Figure 4.12: Positions of image

2

14

18

21

13

17

1

2615 100

2

34

38

221

33

37

21

226125 100

1

35

39

23

2010 100

27

230129 1310

20

28

32

36

24

1

15

19

3

2010 100

7

21019 1110

0

8

12

16

4

2

54

58

421

53

57

41

246145 100

1

55

59

43

2010 100

47

250149 1510

40

48

52

56

44

262161

246165 100

163

2010 100

67

270169 1710

60

68

64

Figure 4.13: Positions in memory

39

Design of the SNN accelerator architecture

4.1.2 Pooling layer
How it works The pooling layer is used to reduce the complexity of network.
After a convolutional layer, the number of neurons change reach unmanageable
values so a pool layer group a fixed number of inputs in a single output value. This
operation can be done in two different ways. The first one is the average pooling
where the result is the average of input values. The second one is the max pooling
where the result is the max of input values. Both types generate a loss of information
but ensure a substantial reduction of neurons. The pooling layer, equal to convolu-
tional one, uses a moving filter that select inputs but acts on each channel singularly.

In this layer is present only one filter done by the same constant value for each
position, so the to exploit the parallelism that hardware accelerator could offer,
data extracted from input memory are equal to the parallelism. This operation
is done to improve the speed and don’t waste static power of the unused adders.
Besides, in the case of pooling layer, data from different channels will not be mixed
but must remain separate. Therefore, to keep the same advantages of the previous
type, it is necessary to change the order of some loops. Pseudocode of pooling
layer is reported in figure 4.14

Figure 4.14: Pooling Pseudocode

40

4.1 – Algorithm

Several aspects described before can be understood better from this sequence of
images. Firstly, the number of input values that is equal to the parallelism and the
filter values equal to a constant (the specific values will be defined better in the
architecture section 4.2). The second difference is the moving of the input data
selected. It is possible to notice that first moving are that ones that had the goal
to end as soon as possible the area covered by pooling filter and not go through
the z-axis ad happen in the previous type of layer. The condition for the sums
instead remains equal so if the newly selected input data is "1" the constant will
add to state otherwise the value computed before will be kept.

Also for this case to understand better all the passages have been created also a
sequence of images the show graphically the main steps highlighting data selected
for the sums. These images, for the sake of simplicity but also completeness,
consider the following parameters.

• Image Dimensions= 10x10

• Input Channels= 7

• Filter Dimensions = 2x2

• Number of filters = 1

• Parallelism = 4

• Stride(Horizontal and vertical) = 2

The only difference in parameters is the value of stride equal to 2 to avoid overlapping
in addition to the already cited numbers of filter that in pooling is always one.
In all the images is shown the selected input data, the selected filter values, the
partial sum and the storing in output when it happens.

41

Design of the SNN accelerator architecture

Start

Yes

No
Last Column

Filter?
Change Column

Read Input Value

Sum Weight Value
with Neuron's State

value

Last Row
filter? Change Row

No

Last series
of input

channel?

Change Input
Channel and return to

the first position of
filter

No

Yes

Last Column
Result?

No Apply Horizontal
Stride

Yes

Last Row
Result?

No Apply Vertical
Stride

End

Yes

Apply Leak and store
Spike and new state

Yes

Yes NoInput value
is "1"?

Keep same Neuron's
State value

Figure 4.15: Pooling Algorithm
42

4.1 – Algorithm

Figure 4.16: Changing Input Channel

43

Design of the SNN accelerator architecture

Then in this following figure is possible to see the phase of application of leaking
to neurons and the storing in output memory. This is equal to what had already
been said for the previous type.

Figure 4.17: Add of Leak and storing

44

4.1 – Algorithm

The next step is to change the input channel series and do the pool operation
with these new data. This is illustrated the next figure where the selection shift
along z-axis taking the values of the remaining three channels. Actually, the
channels selected are four but the last one in the figure is grey and it represents
the ghost channel.

Ghost channel

The ghost channels are present when the input channels of the pooling layer are not
multiple of parallelism. This happens naturally when the number of filters of the
convolution layer just before is not a multiple of parallelism, like in the example
used for this section.

Figure 4.18: Change Input Channels

45

Design of the SNN accelerator architecture

When all the input channels were used to compute first pooling filter and the
related values stored it is possible to change the position of filter over the input
image. Consequently, the starting point of the filter is located (0,Sh,0), where Sh is
the horizontal stride, respect to the (0,0,0) used for the initial position of the filter.
This passage is shown in figure 4.19 where, after the storing of the last channel,
the position change applying the stride along the x-axis.
Once stored the last column of the results it is possible to change the row restarting
from the first column and first input channel series. The new row selected depends
on the imposed vertical stride by the user. In this example Sv is equal to two.

From this point, all these passages will be repeated sequentially in the correct
order when the related condition is verified.

All these transitions are done in this order ensure the same advantage obtained
before for convolutional layer.

46

4.1 – Algorithm

Figure 4.19: Application of horizontal stride

47

Design of the SNN accelerator architecture

4.1.3 Fully-connected layer
This layer differently from the two previously described it is not used extract feature
or reduce the complexity but it’s used for classification. This difference falls into
the possible algorithm procedures. The output neurons are not computed thanks
to moving filter but considering all the input neurons and the connection weights
to the single output neuron. The possibilities are two and both had been analyzed
in detail before to choose the final form.

Comparison between possible algorithm

Initial idea The initial idea is to scan all the input neurons and when one emits
a spike the single output neuron taken into account is updated to the new value
obtained by the sum of previous state and the weight connected otherwise the
previous value is kept. The scan will proceed until the end of input neurons and
restart again where the same input neurons will send impulses through the layer
changing the state value of the next output neuron. This is shown in figure 4.20.

Figure 4.20: Initial idea for Fully Connected Algorithm

The light blue circle represent an input neuron that emit a spike. The light blue

48

4.1 – Algorithm

arrows represent the active synapses and the red circle represent the output neuron
considered at that moment. starting with the left side it is possible to understand
that during the scan of input neurons only the light blue synapses will contribute
to the change the state of the specific output neuron so those contributions must
be extracted from memory and added to the state of neuron connected. Obviously,
also the leak value must be included as usual and then the data can be stored. The
right side indicates the next step where the analysis is done for the second output
neuron with the same procedure.

Alternative idea The alternative is to see the layer from the opposite side. So
instead to scan all the inputs for each output neurons it’s possible to update all
the output neurons controlling the single input neurons. This option is shown in
figure 4.21.

Figure 4.21: Fully Connected Algorithm

The legend in figure 4.21 is the same as before so the light blue circle represent
an input neuron that emits a spike. The light blue arrows represent the active
synapses and the red circle represent the output neuron considered at that moment.
The left side shows the computation done by the first spike emitting neuron where
all the synapses connected to it will change the states of all output neurons. After

49

Design of the SNN accelerator architecture

the check of many inactive neurons, it is possible to find another light blue neuron
as shown on the right side. Just like before all the synapses with their own weight
will to influence the output neurons changing the partial state. In this second the
case the leak value is applied at the end of the scan of all the inputs.

50

4.1 – Algorithm

Comparison To a first approximation, in terms of speed, the two algorithms are
the same but they present relevant differences in terms of power consumption and
control complexity. The first idea executes as many times as output neurons all
the input neurons but write only one time the value of output state so we have
a large power consumption on the counter that provides the input address but a
minimum impact on the power in the output memory. The second idea instead
stores all the partial results of output neurons so an increase of commutations in
memory and a decrease of them in counter for input. The second big difference
is the weights control and its influence is not negligible. In fact, the position of
spike emitting neurons is not known in advance so the weights that will be used
are spread all over the memory. This situation is more problematic in the case of
the initial idea because every single weight must be addressed singularly. On the
contrary, using the alternative all the weights that goes to one input neurons to
all the output neurons could be placed one after the other and this is a relevant
advantage because when an input neuron emits the spike all the value of weights
connected can be extracted from the memory with a burst operation that is faster
than an individual addressing. So in light of this information, it has been decided
to adopt the second formulation trying to speed up the execution exploiting the
burst operation.
Pseudocode of fully-connected layer is therefore reported in figure 4.22

Figure 4.22: Fully-connected Pseudocode

In the next figure is shown the flowchart illustrating the selected algorithm. It
contains also the optimization element that are cited just above. In fact, the input
data are stored in a memory with a defined parallelism so the row of the memory
contains several neurons. This is an advantage in the case of adjacent neurons are
inactive. To exploit this, in the algorithm has been included a control when an
entire row contain only inactive neurons it is possible to move the next row and
check this new series of neurons. This allows to reduce time in the scan of the
input neurons and also to avoid useless commutations. When, on the contrary, the
row contains at least one spike the scan of the selected row will start to find all
the "1" that, indicating a spike, will cause the updating of all output neurons. As
already said after the scan of all rows the leak value is applied with a full scan of
the output neurons.

51

Design of the SNN accelerator architecture

Start

Change Column

Read Row
Input Value

Sum to all output
neurons's state the
weights related to

input value

Yes

NoInput value
is "1"?

Empty Row?

No

Yes

Read Colum
Input Value

Last Row?
Yes

Apply Leak to all
output neurons

End

Last Column?

No

Change Row

No

Yes

Figure 4.23: Fully Connected Algorithm

52

4.2 – Architecture

4.2 Architecture
Before to develop a unified architecture has been realized architecture singularly to
better understand all the potential timing problems and how to manage precision
bits. All three layers type present a similar macro architecture but with some
details that could cause troubles. In figure 4.24 is illustrated a simplified version of
the architecture. In this image miss the counters to address the Weights, States and
Output memory. They are omitted because they work as usual counters controlled
by a Finite State Machine and the architecture is more clear.

Input
Memory

States
Memory

Weights
Memory

Output
Memory

Parallel
Adders

Sampler

Comp

Countroller

Leak

Quarter

WeightForMax

A B

Bypass

OutSum

Figure 4.24: Simplified Architecture

Before to describe in details all the block represented I would list all parameters
were used in the hardware description. These parameters are not fixed in general
but are a personal choice to obtain a good trade-off between speed and power
consumption and accuracy on the target FPGA.

• Precision Bit For States= 12

• Precision Bit For Weights= 8

• Parallelism = 16

53

Design of the SNN accelerator architecture

4.2.1 Input Memory
The Input memory contain all the spikes from the input neurons. It has word
length equal to the parallelism because each neuron needs only one bit to keep the
information of emitted or not spike. The number of rows of input memory instead
depend on many neurons the user want to execute in a full cycle of the accelerator.

Figure 4.25: Input Memory

54

4.2 – Architecture

4.2.2 Weights Memory
The weights memory contain all the weights associated to a synapses independently
that these values are related to a moving filter, like in the case of a convolutional
layer, or a pure connection, like in fully connected layer. The word length is equal
to one hundred twenty-eight (parallelism multiplied by Precision Bit for weights).
The number of row of weights memory instead depend on many weights (direct
connection or filters’ value) user want to have in a full cycle of the accelerator.

Figure 4.26: Weights Memory

55

Design of the SNN accelerator architecture

4.2.3 Output Memory

The output memory contains all the spikes computed in the accelerator for each
output neurons. For the sake of simplicity, the dimensions of this memory are the
same as the input memory.

Figure 4.27: Output Memory

56

4.2 – Architecture

4.2.4 States Memory

The states memory contain all the states related to the output neurons. The word
length is equal to one hundred ninety-two (parallelism multiplied by Precision Bit
for weights). The number of row of weights memory is equal to the max output
neurons implementable chosen by the user.

Figure 4.28: States Memory

57

Design of the SNN accelerator architecture

BRAM partition in the FPGA

The dimensions of these four memories must be set carefully, taking into account
several factors.
First of all, the whole amount of the Block RAM available in the FPGA. If the
number of declared BRAM exceed the physical BRAM present on the integrated
circuit, the accelerator is not implementable.
Secondly, the type of neural network that will be executed on the accelerator.
To speed up a convolutional layer is better to increase the number of neurons
(pixels) and so to expand the memories that are related to keeping these data. In
convolutional layer, therefore, is important to have a reduced weights memory and,
on the contrary, bigger memory for input, output and states. This is valid even
more so for the pooling layer where the weights’ memory could be null because
needs only a constant. For a fully-connected layer instead, the input and output
neurons are, looking the most powerful networks, maximum few thousands but
the number of connections (calculated like input multiplied by output neurons)
increases very fast. It is, therefore, necessary to make a deep analysis of the neural
network that will be implemented and find the best trade-off.
In my architecture, the dimensions are set to store 218 weights and 216 neurons in
input and equal in output.

58

4.2 – Architecture

4.2.5 Sampler
This block is a simple register that is used to store all the partial sums to allow a
correct accumulation. Data width of this register in my architecture is equal to
one hundred ninety-two (the result of the multiplication between parallelism and
Bit for precision states).

4.2.6 Comparator
This element is not a simple comparator but performs the activation function ReLU
like in figure 4.8.

4.2.7 Parallel Adders

Figure 4.29: Parallel Adders

This block, shown in 4.29, represents, considering my choices, sixteen parallel adders
but this value can easily be increased or reduced. Every single adder can elaborate
sums between signed data with different data-widths. This last parameter must
be set in the IP configuration of the adder present in IP Catalog of Vivado. On
port B of parallel adders is present a multiplexer used to select between The data
coming from the States Memory or the data coming from sampler where are stored
the partial sum. On port A of parallel adders is present a multiplexer that selects
between the value coming from Weights Memory or data coming from the other
multiplexer as appropriate. The inputs of this other multiplexer are three constants
that model respectively the leak of neurons and the two different constant values

59

Design of the SNN accelerator architecture

used for pooling filter. The two different constants are used in case of a 2x2 pooling
filter (the most common in neural network) and for max-pooling respectively.

Max pooling The transfer function of max pooling brings in output the input
with the largest number of spikes during the single period. A single period could
be composed of ten or twenty step time depending on the accuracy required.
Implement this function in hardware means that for each neuron, in input and
output, all the value during the period must be stored. This affirmation is true
also for all the other layers that so must be executed for an entire period and
not for a single step time. This is a problem because the accelerator to reduce
the communication with external memory already need big memories internally,
due to the huge amount of data of a single layer. The approximate solution that
has been adopted for this accelerator is the one explained in paper [7]. In a few
words, instead to analyze all the period we take only data from single step and
if at least one of the input is equal to "1" the output neurons emit a spike. This
approximation produces a greater number of spikes as compared to the correct
number but the complexity of circuit greatly reduce. The behaviour could be seen
in figure 4.30.

Figure 4.30: Max pooling approximation

60

4.2 – Architecture

Bypass Every adder has also a specific bit of bypass that is fundamental for this
accelerator. When the bypass signal is equal to "1" output value of the adder is the
value present on the input B without executing the sum. This just above described
is the case when the input neuron’s value equal to "0". We could say that the
bypass bit is obtained as the NOT of input neuron value. For a correct connection
between the input memory and the bypass port are inserted some multiplex. This
multiplexers controlled by the FSM perform the task to send the correct string
of bit for bypass port. The string, indeed, depends on which layer and which
operation. For example in case of a convolutional layer, where the chosen input is
one by one the bypass bit is equal to that neuron for each adder. On the contrary
in the case of pooling the neurons selected in input are equal to parallelism so each
adder has is own reference bypass bit. In case of application of leaking to neurons,
all the bypass bits are "0" independently on type of layer.

Each adder has a saturation control to avoid overflow and it acts in case of
both positive and negative results.

4.2.8 Countroller

This is a particular entity that I named in this way because it is a mix between
a simple counter and a controller. It acts like a program counter in a CPU. It is
composed of several counters that control the position of filters and position of
the computed value in that exact moment. It implements almost all the functions
described in the flowcharts shown in algorithm section 4.1. The only functions that
will not depend on it are the selection of muxes in input of Parallel Adders and
the Write Enable signal for the memories related to output neurons (states and
output memories). These two jobs are done by the specific FSM. The addressing
of memories different from the Input one is not done by the Countroller but by
simple counters. The process that describes the elaboration of the new row in case
of convolutional and pooling layer is shown of figure4.31. For the fully-connected
layer the change of row is linear so use a normal counter.

61

Design of the SNN accelerator architecture

Figure 4.31: Countroller main process

4.2.9 Interface
At the end of the project was clear that the input and the output pins of this
accelerator would exceed the pin capability provided by the FPGA. So to make

62

4.2 – Architecture

possible the synthesis has been realized an interface where all the input and output
are serialized in frames of 32 bit. This interface will be managed by the processor
or from a DMA (Direct Access Memory) connecting in the right way the DDR and
accelerator.

4.2.10 User file
To simplify the configuration and reconfiguration of the accelerator a file has been
created. In this file, called NeuralNetworkInfo, are present all the parameters
related to the entire network or a specific layer. The user that wants to implement
this accelerator can do it modifying only these parameters reported on file and
adding the layers with related parameters. This file is reported in appendix A

63

64

Chapter 5

Testing the accelerator

In this chapter will be shown some sections of the different simulations to verify the
correct behaviour. A complex architecture with several signals requires an in-depth
analysis and consequently a huge amount of time.

5.1 Convolutional layer testing
The first algorithm that was tested is the convolutional one with several simulations
changing the parameters. For the sake of simplicity, only the extracts of one
simulation are reported for the convolutional part. The parameters chosen for this
simulation are listed below.

• Image Dimensions= 32x32

• Input Channels= 18

• Filter Dimensions = 5x5

• Number of filters = 32

• Stride(Horizontal and vertical) = 1

In the first figure 5.1 we can evaluate the proper functioning of the Countroller.
First of all, the value of Type Layer signal, equal to "0" ensures that we are
simulating a convolutional layer. So, in the upper image, it is possible to notice
that while the yellow signal shows the address of Input Memory last signal in green
select the bit of the word that will be analyzed starting from MSB. At the end of
the row, this count will restart for the other and stop after two iterations. This
happens because the eighteen values of input channels are stored in two rows. So
after the scan of the first sixteen stored in the first row, the other two will be
scanned in the second one. So the control that avoids scanning unnecessarily all

65

Testing the accelerator

the row properly works.
Going to the figure 5.2 we can visualize in more detail the signal in violet, blue and
grey that represent the terminal count respectively the of input channels, column of
filter and row of filter. From that sequence is also possible to understand that the
filter executed is 5x5 indeed the terminal counts are five both for input channels
and for the column of filters. Once that the filter count is stopped in order to
apply the leaking value, the results will be stored. After this operation, the count
will restart. In this case, it will restart from position zero. This happens because
the filters present in this layer are thirty-two and this first cycle execute the first
sixteen (value of parallelism). So after a second sequences where the filters selected
are the second sixteen will be applied the stride.
This could seen in figure 5.3. In fact, at the begin of the image, it is possible to
notice near address 108 in yellow is present address 0. Stride is not applied yet.
At the end of the image, so after the computation of all 32 filter, from address
108 simulation goes to address 2. It is therefore applied the stride. To be clear
simulation jumps to position 2 with stride equal to one because architecture needs
two rows to store the input channel.

66

5.1 – Convolutional layer testing

Figure 5.1: Zoomed Simulation for check AddressHor

Figure 5.2: Simulation for check Address

Figure 5.3: Simulation for check jumps in Address

To do a complete simulation of all single blocks in the architecture have been
defined some filters. These particular values maybe are not useful in practical terms
but could stimulate different aspects of the architecture. In particular, the first and
the last of the filters shown in figure 5.4 are designed to verify the correctness of
the saturation of states and the properly working of the ReLU activation function.
They are stored in Weights Memory in signed integer.

67

Testing the accelerator

-125 -125 -125 -125 -125

-100 -100 -100 -100 -100

-100 -50 -50 -100

2 2 2

2 3 2

2 2 2

3 2 1 2 3 0 1

1

1 1 1 1 1

1

1

125

-125 -125 -125 -125 -125

-100 -100 -100 -100 -100

-100 -100 -100 -100 -100

100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

3 2 1 2 3

3 2 1 2 3

3 2 1 2 3

3 2 1 2 3

125 125 125

125 125 125 125

100

125

125

1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

-50 0

-50 0

-100 -50 -50 -1000

0

0

0

0

0

0

0

0

0

0

-50

-50

00

Figure 5.4: Filters for test

The input values stored in Input Memory are instead random.

68

5.1 – Convolutional layer testing

After this information and with the certainty of the correct addressing, we could
move to check the adders operations.

Figure 5.5: Simulation for Adders

Figure 5.6: Simulation for Adders with positive overflow

Figure 5.7: Simulation for Adders with negative overflow

As we can see in the figure 5.5 the state located in B signal and the filter value
located in A signal are summed if the Bypass signal is "0". When the Bypass is at
"1" the value in B is transferred to the output. It is possible also to notice that the
previous result is reported in B port. It means that the accumulation path works
correctly. The 7d value is the hexadecimal representation of value 125 located in
the first position of the last filter in figure 5.4. The initial value of B instead is
zero because neurons was not updated before. In the figure 5.6 it is possible to
see the case of overflow of the same adder. The addition between 2000(7d0) and
125(7d) bring has result -1971(84d), but the next value of B is correctly the max
value admitted 2047(7ff). This condition but in case of a negative number can be
seen in another adder and is reported in the screenshot in figure 5.7. In fact, the
sum between -125(83) and -2000 (830) bring has result 1971(7b3), but the next
value of B is correctly the most negative value admitted -2048(800).

69

Testing the accelerator

The parts that remain to verify is the addition of the leak to the state value
and the subsequent application of activation function before the store. These can
be understood in the next figure 5.8

Figure 5.8: Leak and store

In fact, it is possible to see that when the end of a series of filters is reached
on all ports A is present a value d0 (-48 in decimal) that, in this simulation, is
used to model the leak. Usually, the leak is a small negative value. The outsignal
present below the adders ports is the concatenation of all the sum results. It is
possible to find 7cf and 7d0 between that long string of numbers. For example,
7cf are the LSBs of the signal. All the sums go in input to the activation function
and is result is on signal InStatesB. InStatesB is connected to the input port of
States Memory. The threshold of the neurons in this simulation is fixed to 400
(1024 in decimal). The ReLU, illustrated in figure 4.8, works correctly. This can
be seen in the differences between outsignal and InStatesB and variation in dinb
(input signal is connected to the input port of Output Memory). For example,
the three least significant digits of outsignal 7cf (value greater than 400) become
000 in InStatesB and the dinb is equal to "1". In this case, the only neuron that
emits a spike is that one computed on that adder. The other neurons’ negative
states become "000" like in the case of the most significant digits of InStatesB. The
positive value below the threshold are instead kept equal of digits 044 that are
transferred directly in InStatesB. The web signal that represents the Write Enable
of port B of both memories and it is at "1" in the exact moment with correct data.

70

5.2 – Pooling layer testing

5.2 Pooling layer testing

For the pooling layer test, the parameters used are itemized below.

• Image Dimensions= 28x28

• Input Channels= 32

• Filter Dimensions = 2x2

• Stride(Horizontal and vertical) = 2

In the first screenshot in figure 5.9 it is possible to see how the addressing the
Input Memory. There is no changing value on AddressHor because the mux
downstream the memory should not work. This happens because, differently from
the convolutional layer, all the sixteen bits from Input Memory are used in parallel.
The signal LastFilterSeries assumes the meaning of the end of input channels in
this type of layer. when it is at "1", and the filter finishes, it is applied the stride.

Figure 5.9: Simulation of Countroller in Pooling layer

The screenshot in figure 5.10 shows a frame where the second adder has bypass
always at zero. This situation brings the neuron to overcome the threshold so it
emits the spike. This could be seen looking at the dinb signal where the only spike
presents is the one computed on that specific adder. The other adder reported,
for example, reaches the value of 0ca that is not enough to send spike to the next
layer. Also, in this case, it possible to see the leak value and contemporary the
storing of the spike and next states just after the computation of the partial result
of a specific neuron. In the second screenshot of 5.11 is more zoomed so can be
understood the value that will be stored in states due to the application of ReLU
function and the spikes that are emitted.

71

Testing the accelerator

Figure 5.10: Simulation of adders and storing in Pooling layer

Figure 5.11: Simulation of adders and storing in Pooling layer with zoom

72

5.3 – Fully-Connected layer testing

5.3 Fully-Connected layer testing
For the Fully-Connected layer test, the parameters used are itemized below.

• Input Neurons= 512

• Input Neurons= 256

As already said in the previous chapter, the fully connected layer does not use
the Countroller to execute jumps of the input address because the scan of input
neurons is linear but the signals to speed up the execution must be checked. For
example in figure 5.12 can be seen the situation when the row of Input Memory is
not empty so the scan of it will start from MSB (f on AddressHor) and going on,
after the scan of all output neurons. It is present a neuron that not emit a spike in
the third position (d in AddressHor) so the address after this check will skip to the
next neuron without scan and update the output neurons. In figure 5.13 can be
visualized the case of an empty row and consequently it is possible to observe that
the Address skips to the next, from 3 (row where no neuron emits a spike) to 4.

Figure 5.12: Simulation of normal addressing in Fully-Connected layer

Figure 5.13: Simulation of addressing in Fully-Connected layer with empty row

After the check of addressing, as usual, the next part of the simulation is about
the sums.

73

Testing the accelerator

The adders, in this case, do not use the bypass bit indeed is fixed to "0" and
all the sum result will be stored. There is a delay necessary to avoid conflicts in
States Memory. All of this is shown in figure 5.14. When all the neurons in input
have been analyzed can be finally subtracted the leak from the states and store
the eventual spikes in output. In figure 5.15 can be seen that the web of Output
Memory is at one and store the outputs where in this specific case, due to the
number imposed, all the neurons computed on the last adder emit the spike.

Figure 5.14: Addition in Fully-Connected layer

Figure 5.15: Leak and store in Fully-Connected layer

The same analysis have been done also for simulation post-synthesis and
implementation and everything works correctly. In these last simulation is to hard
to find the specific signal due to the compilation but was used as reference the
name of signals present in the schematic generated by Vivado.

74

Chapter 6

Results

In this chapter are reported the results obtained in terms of speed, area, power
and performance.

6.1 Speed
The critical path of this accelerator go from the Weight Memory to the Sampler
register, as expected, and the total delay is equal to 10.9 ns that include also the
skew. In my design is used a clock period equal to 11 ns. It was interesting to notice
that the computed critical path after the synthesis and after the implementation
shown a difference over to 1 ns. This means that the huge amount of nets in this
circuit reduce the speed of the 10 % with respect to the estimated value in synthesis
phase that was below the 10 ns. In the top ten critical delay, shown in figure 6.1 is
present one (path 10) with a very low logical delay but width an high net delay.
This fact confirms that the huge number of nets increase the length of their paths.

Figure 6.1: Critical paths

75

Results

6.2 Power

The power consumed by this accelerator with interface included is equal to 0.209
W. This value as can be seen in figure 6.2 is equally divided between dynamic and
static power. This is due to two factors. One is the static power contribution from
memory used or the other entity instantiated. The second one is the remaining cells
unused that consume static power. The dynamic power instead is mainly consumed
by the memories followed with margin by signal, so the capacitance of nets, and
from DSP (where are present the 16 adders). To go in detail of the consume in
figure 6.3 it is possible to notice that the most consuming component is the States
Memory with 0.59 W.The idea of store only final results for convolutional and
pooling layer therefore mitigate this result. At second place it is possible to find
the other big memory, Weights Memory, with 0.12 W. It changes several bits when
a new filter value or connection is computed. At third place we find the parallel
adders with 0.16 W.

Figure 6.2: Power breakdown

76

6.3 – Area

Figure 6.3: Power hierarchy

6.3 Area
To better understand the utilization of FPGA is reported the table 6.1.

Site Type Used Available Utilization %
LUT 746 53200 1.4

Slice Registers 314 106400 0.3
RAMB36 82 140 58.57
RAMB18 1 280 0.36
DSPs 16 220 7.27
IO 76 200 38

Table 6.1: Utilization Table

It is clear that can be used even more BRAMs because the utilization is just
below the 59%. I prefer do not instantiate more memories to avoid that the increase
of nets will bring the synthesis to fail. It is possible also to notice that the IO used
that thanks to the introduction of the interface are equal to 76 with an utilization
of 38%. DSPs utilization is equal to about 7% so it means that the parallelism
can be increased. This change must be done taking into account that linearly
increase the word of the memories and a consequent reduction of depth. This is
not a problem in terms of area because it is possible to store the same number
of neurons. This could be, instead, a problem in terms of interface because the
segmentation of word requires more time. The images below show the place and
route executed by Vivado. In the first one (fig. 6.4) are shown in light blue the used
components (memories, LUT, DSPs,...). It is possible to notice the high number
of BRAM used, the more bigger component, and the low utilization of LUT, the
square component. In the second one (fig. 6.5) are shown also the interconnections
between the components in green.

77

Results

Figure 6.4: Place and route

78

6.3 – Area

Figure 6.5: Place and route with connections

79

Results

6.4 Performance
This accelerator, considering the configuration chosen in terms of memories di-
mensions and parallelism can execute several operations without the necessity to
exchange data with the DDR. In fact, after loading data from external, a fully-
connected layer with 218 weights like a layer with 512 input neurons and 512 output
neurons, or maybe with 1024 input and 256 output is executed in a full cycle of
the accelerator. For the convolutional layer is possible for example to compute a
frame 32x32 with 64 input channels and 64 filters. In convolutional and pooling
layer the number of clock periods depend on filter dimension, filter stride and
parallelism. Considering, for example, a parallelism equal to sixteen, filter equal to
5x5 and 64 input channels. With these parameters sixteen output neurons needs
(25+1)*64=1664 clock periods. The plus one is due to the leak that must be added
to the state of the neuron. In a fully connected layer instead, the number of period
of clock necessary depend on the spikes in input and their distribution. In the worst
case (each input neuron emits a spike) is equal to 214 but this case is obviously
unrealistic.

80

Chapter 7

Conclusion

In this thesis have been shown all the potential of implementing an SNN acceleration
of FGPA. All the advantages from the high level of flexibility and reconfigurability
to the good results obtained in terms of speed, power and so on. The next step will
be to make this accelerator well integrated with a complete SoC. Must be therefore
ensured a fast transfer of data between it and the external DDR and eventually to
define a specific control, a sort of DMA, to reduce the efforts of the CPU. This
specific control can be easily placed on FPGA looking the LUT utilization. It
is important to have a good bandwidth between DDR and accelerator because,
otherwise, this bottleneck will reduce the performance of all the SoC.

81

82

Appendix A

Code

NeuralNetworkInfo.vhd
1 l i b r a r y IEEE ;
2 use IEEE .STD_LOGIC_1164 .ALL;
3

4 use IEEE .NUMERIC_STD.ALL;
5

6 package NeuralNetworkInfo i s
7 constant NumberOfLayers : i n t e g e r :=3;
8 constant B i t I n t e r f a c e : i n t e g e r := 32 ;
9 constant P a r a l l e l i s m : i n t e g e r :=16;

10 Constant BitForChannels : i n t e g e r :=2;−−c e i l (l og2 (NRowForValue)) max
value between l a y e r s

11 constant BitForAddressSpike : i n t e g e r := 12 ;−−c e i l (l og2 (
MaxNumberOfColumns))

12 constant BitForCF : i n t e g e r := 3 ;−−c e i l (l og2 (ColumnFilter1))
max value between l a y e r s

13 constant BitForRF : i n t e g e r := 3 ;−−c e i l (l og2 (RowFilter1))
max value between l a y e r s

14 constant BitForCR : i n t e g e r := 5 ;−−c e i l (l og2 (ColumnResult1)) ;
max value between l a y e r s

15 constant BitForRR : i n t e g e r := 5 ;−−c e i l (l og2 (RowResult1)) ;
16 constant BitForLayers : i n t e g e r := 2 ;−−c e i l (l og2 (NumberOfLayers)) ;
17 constant Prec i s ionWeights : i n t e g e r := 8 ;
18 constant P r e c i s i o n S t a t e s : i n t e g e r := 12 ;
19 constant Quart : i n t e g e r :=320;−−va l o r e da d e f i n i r e −−
20 constant Leakage : i n t e g e r :=−48; −−va l o r e da d e f i n i r e −−
21 constant Threshold : i n t e g e r :=1024;−−va l o r e da d e f i n i r e −−
22 constant BitForPar : i n t e g e r :=4;
23 constant BitForWeights : i n t e g e r :=14;−−c e i l (l og2 (RowFilter1 ∗

ColumnFilter1)) ;)) ;
24 Constant TotPrec is ionWeights : i n t e g e r := Prec i s ionWeights ∗

P a r a l l e l i s m ;

83

Code

25 constant TotPrec i s i onSta t e s : i n t e g e r := P r e c i s i o n S t a t e s ∗ P a r a l l e l i s m ;
26 −−Layer 1−−
27 constant TypeLayer1 : i n t e g e r :=0;
28 constant RowImage1 : i n t e g e r := 32 ;
29 constant ColumnImage1 : i n t e g e r := 32 ;
30 constant NChannelsIn1 : i n t e g e r :=18;−−never (par∗N)+1 with N

d i f f e r e n t from 0 (doesn ’ t work)−−
31 constant NRowForInputValue1 : i n t e g e r := ((NChannelsIn1 −1)/

P a r a l l e l i s m) +1;−−
32 constant ColumnsExtra1 : i n t e g e r := NChannelsIn1 mod P a r a l l e l i s m ;
33 constant NFi l t e r s1 : i n t e g e r :=32 ;−−never 1?
34 constant NRowForResultsValue1 : i n t e g e r := ((NFi l ter s1 −1)/ P a r a l l e l i s m

) +1;−−
35 constant RowFilter1 : i n t e g e r := 5 ;
36 constant ColumnFilter1 : i n t e g e r := 5 ;
37 constant StrideH1 : i n t e g e r := 1 ;
38 constant StrideV1 : i n t e g e r := 1 ;
39 constant DimensionF1 : i n t e g e r := RowFilter1 ∗ ColumnFilter1 ∗

NRowForResultsValue1 ;
40 constant DimensionImageUp1 : i n t e g e r := ((RowImage1) ∗(ColumnImage1))

/2 ;
41 constant DimensionImage1 : i n t e g e r := (RowImage1) ∗(ColumnImage1) ;
42 constant ChangeColumn1 : i n t e g e r := 1 ;−− f o r conv i s f i x e d to 1−−
43 constant ChangeRow1 : i n t e g e r := (NRowForInputValue1 ∗(ColumnImage1))

−(NRowForInputValue1∗ ColumnFilter1) +1;
44 constant NotRightShi f t1 : i n t e g e r := −NRowForInputValue1 ∗(

ColumnImage1) ∗(RowFilter1 −1)−(NRowForInputValue1∗ ColumnFilter1 −2)
−1;

45 constant Sh i f tR ight1 : i n t e g e r := −NRowForInputValue1∗ColumnImage1 ∗(
RowFilter1 −1)−(NRowForInputValue1∗ ColumnFilter1 −2)+(
NRowForInputValue1∗ StrideH1 −1) ;

46 constant ShiftDown1 : i n t e g e r := −NRowForInputValue1∗ColumnImage1 ∗(
RowFilter1 −1−(StrideV1 −1)) +1;

47 constant RowResult1 : i n t e g e r := (RowImage1−RowFilter1) / StrideH1 +1;
48 constant ColumnResult1 : i n t e g e r := (ColumnImage1−ColumnFilter1) /

StrideV1 +1;
49 constant DimensionM1 : i n t e g e r := RowResult1∗ColumnResult1∗

NRowForResultsValue1 ;
50 −−Layer 2−− pool
51 constant TypeLayer2 : i n t e g e r :=1;
52 constant RowImage2 : i n t e g e r := 28 ;
53 constant ColumnImage2 : i n t e g e r := 28 ;
54 constant NChannelsIn2 : i n t e g e r :=1;−−in pool must be f i x e d at one

and the r e a l va lue must be g ived only in NFi l t e r s#−−
55 constant NRowForInputValue2 : i n t e g e r := ((NChannelsIn2 −1)/

P a r a l l e l i s m) +1;−−
56 constant ColumnsExtra2 : i n t e g e r := NChannelsIn2 mod P a r a l l e l i s m ;
57 constant NFi l t e r s2 : i n t e g e r :=32 ;−−must have t h i s va lue to keep the

same order o f row in output , obv iu s ly in r e a l i t y the value i s 1 −−

84

Code

58 constant NRowForResultsValue2 : i n t e g e r := ((NFi l ter s2 −1)/ P a r a l l e l i s m
) +1;−−

59 constant RowFilter2 : i n t e g e r := 2 ;
60 constant ColumnFilter2 : i n t e g e r := 2 ;
61 constant StrideH2 : i n t e g e r := 2 ;
62 constant StrideV2 : i n t e g e r := 2 ;
63 constant DimensionF2 : i n t e g e r := RowFilter2 ∗ ColumnFilter2 ∗

NRowForResultsValue2 ;
64 constant DimensionImageUp2 : i n t e g e r := ((RowImage2) ∗(ColumnImage2))

/2 ;
65 constant DimensionImage2 : i n t e g e r := (RowImage2) ∗(ColumnImage2) ;
66 constant ChangeColumn2 : i n t e g e r := NRowForResultsValue2 ;
67 constant ChangeRow2 : i n t e g e r := (NRowForResultsValue2 ∗(

ColumnImage2))−(NRowForResultsValue2∗ ColumnFilter2)+
NRowForResultsValue2 ;

68 constant NotRightShi f t2 : i n t e g e r := − NRowForResultsValue2 ∗(
ColumnImage2) ∗(RowFilter2 −1)−(NRowForResultsValue2 ∗(
ColumnFilter2 −1)) +1;

69 constant Sh i f tR ight2 : i n t e g e r := − NRowForResultsValue2 ∗(
ColumnImage2) ∗(RowFilter2 −1)−(NRowForResultsValue2 ∗(ColumnFilter2
−1))+(NRowForResultsValue2∗ StrideH2)−(NRowForResultsValue2 −1) ;

70 constant ShiftDown2 : i n t e g e r := − NRowForResultsValue2∗ColumnImage2
∗(RowFilter2 −1)− NRowForResultsValue2 ∗(ColumnImage2−1)−(
NRowForResultsValue2 −1)+(StrideV2 ∗ NRowForResultsValue2∗
ColumnImage2) ;

71 constant RowResult2 : i n t e g e r := (RowImage2 −RowFilter2) / StrideH2 +1;
72 constant ColumnResult2 : i n t e g e r := (ColumnImage2−ColumnFilter2) /

StrideV2 +1;
73 constant DimensionM2 : i n t e g e r := RowResult2∗ColumnResult2∗

NRowForResultsValue2 ;
74 −−l a y e r 3−− f u l l y
75 constant TypeLayer3 : i n t e g e r :=3;
76 constant NeuronsInput3 : i n t e g e r :=512;
77 constant NeuronsOutput3 : i n t e g e r := 256 ;
78 −−constant BitForNeuIn : i n t e g e r :=5;−− c e i l (l og2 (NeuronsInput /

p a r a l l e l i s m));−−
79 constant BitForNeuOut3 : i n t e g e r :=5;−−c e i l (l og2 (NeuronsOutput/

p a r a l l e l i s m));−−
80 −−BitForNeuIn+BitForParBitForNeuOut l e s s or equal to BitForWeights−−
81 constant RemainingBit3 : i n t e g e r :=BitForWeights−BitForNeuOut3−

BitForPar ;
82 constant ThreshVertScan3 : i n t e g e r :=(NeuronsInput3 −1)/ P a r a l l e l i s m +1;
83 constant ThreshWeightsScan3 : i n t e g e r :=(NeuronsOutput3 −1)/ P a r a l l e l i s m

+1;
84

85 end package NeuralNetworkInfo ;

85

86

Bibliography

[1] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
Based Learning Applied to Document Recognition». In: Proceedings of the
IEEE. 1998, pp. 2278–2324 (cit. on p. 4).

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet Classi-
fication with Deep Convolutional Neural Networks». In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105.
url: http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf (cit. on p. 5).

[3] Karen Simonyan and Andrew Zisserman. «Very Deep Convolutional Networks
for Large-Scale Image Recognition». In: CoRR abs/1409.1556 (2014). url:
http://arxiv.org/abs/1409.1556 (cit. on p. 6).

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. «Going Deeper with Convolutions». In: Computer Vision and Pattern
Recognition (CVPR). 2015. url: http://arxiv.org/abs/1409.4842 (cit. on
p. 7).

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: CoRR abs/1512.03385 (2015). arXiv:
1512.03385. url: http://arxiv.org/abs/1512.03385 (cit. on p. 8).

[6] Eugene Izhikevich. «Simple model of Spiking Neurons». In: IEEE transactions
on neural networks / a publication of the IEEE Neural Networks Council 14
(Feb. 2003), pp. 1569–72. doi: 10.1109/TNN.2003.820440 (cit. on p. 14).

[7] S. Guo, L. Wang, B. Chen, and Q. Dou. «An Overhead-Free Max-Pooling
Method for SNN». In: IEEE Embedded Systems Letters 12.1 (2020), pp. 21–24.
issn: 1943-0671. doi: 10.1109/LES.2019.2919244 (cit. on p. 60).

87

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/LES.2019.2919244

	List of Tables
	List of Figures
	Introduction
	Neural Networks background and accelerators
	Deep Neural Networks
	LeNet
	AlexNet
	VGG
	GoogLeNet
	ResNet
	Comparison

	DNN accelerators
	DianNao
	TPU

	Spiking Neural Networks: the third generation of NNs
	Neurons
	Coding of signals

	Accelerators
	SpiNNaker
	TrueNorth
	Loihi
	Comparison

	ZEDBoard: The chosen FPGA
	Overall illustration of ZEDBoard
	Why use FPGA and don't create an ASIC?
	Vivado

	Design of the SNN accelerator architecture
	Algorithm
	Convolutional layer
	Pooling layer
	Fully-connected layer

	Architecture
	Input Memory
	Weights Memory
	Output Memory
	States Memory
	Sampler
	Comparator
	Parallel Adders
	Countroller
	Interface
	User file

	Testing the accelerator
	Convolutional layer testing
	Pooling layer testing
	Fully-Connected layer testing

	Results
	Speed
	Power
	Area
	Performance

	Conclusion
	Code
	Bibliography

