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Abstract 

 
Thesis topic focuses on Machine Learning from the software point of view, 
nowadays one of the research route for the management of large databases. 
Machine Learning is already widely present in our daily lives and we can find it, 
for example, both in the anti-spam filter of electronic mail, and in facial 
recognition of cameras, in the automatic corrector of smartphones, or in weather 
forecasts, etc. 
 
The aim of the thesis is to review algorithms written in Python language for 
models robust to adversarial attacks and try to apply to them fast training 
techniques to improve computational time. 
The word “fast training” refers to a code able to reach the skill to distinguish and 
divide a large database's data in a reasonable time according to the learning rules 
given by the programmer. The main criticality of fast training consists in being 
able to find a quite fast algorithm but as well accurate: too much accuracy may 
require learning times that are too long to be acceptable, while a high convergence 
speed could lead to wrong results or even worse, do not converge, but diverge. 
Instead “adversarial training” means a code that can be robust against data 
modified on purpose that can not be distinguished by a human, but can have very 
negative effects on a Deep Neural Network (DNN) model, for example an attack 
can modify some pixels of an image without any real difference for a human eye 
but completely misclassified by the DNN model. 
 
The first steps were to study the basic concepts of the Machine Learning, then 
going on to compose simple codes in Matlab, where the fluidity allows a faster 
learning, to finally review and write more complex algorithms in Python, which 
language flexibility allows various options on them. 
The main libraries used in python for Machine Learning are TensorFlow 
(provided by Google) and Pytorch (provided by Facebook). In this thesis there is a 
focus on TensorFlow that allows to concentrate on the problem using a very high 
level language that optimizes the computational effort of the machine. 
The principal model used for this purpose is the DNN, that is a virtual 
representation and simplification of human brain. This model works cyclically: 
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this means that it is trained on a Training dataset of images and then tested on a 
Validation dataset. Due to computational limits and to the huge dimensions of the 
datasets, it can take from a few hours to several days to perform a training session, 
therefore the goal of this thesis is to speed up the training time. 
 
The general method to improve the performances of the training is the fine tuning 
of hyperparameters, like as: learning rate, momentum, weight decay, batch size, 
etc. Learning rate is the most important hyperparameter and by modifying its 
shape and value during the training we can obtain a robust model to adversarial 
attack up to 2 times faster than normal training. The tests were performed on 2 
different datasets (CIFAR10, CIFAR100) and with various shapes to obtain the 
best results with a “trial and error” approach. 
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1 – Machine learning 

1.1 What is machine learning 

Machine learning [1] [2] [3] is a branch of artificial intelligence present in our 

daily life and which increasingly integrates with the technological systems we use 

nowadays. The use of machine learning can be seen in weather forecast, in email 

spam filter, in cameras facial recognition, in smartphones automatic corrector, 

etc. 

Machine learning is based on mathematical algorithms implemented through 

software that allow a code to self-adapt to data allowing the subdivision or 

recognition of the aforementioned data. 

The main purpose of machine learning is to manage the large quantities of data 

that are produced by large companies every day, in order to manage information 

faster and efficiently.  

Machine learning can be applied to the most varied types of data. During this 

thesis we will mainly consider images, therefore codes able to recognize and 

classify images. 

Machine learning is divided into two main sections: 

• Unsupervised learning 

• Supervised learning 

 

 

1.2 Unsupervised learning 

We talk about unsupervised learning (Figure 1) when a model is not previously 

trained on a dataset and therefore tries to automatically recognize and divide new 

data that it has never seen before. Obviously, the model will already know the type 

of data it will receive, but the classification of the latter depends on the model 

itself. For example, you can use this approach when you want to divide the sound 

of an audio recording from the background noise or you want to divide the various 

voices present. In general it is not a widely used method, as it is less effective than 
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supervised learning, but in cases where there isn’t previous data it can help in the 

classification of new input. 

 

 

 

1.3 Supervised learning 

The term supervised learning (Figure 2) refers to the machine learning model 

mainly used, that is, based on the previous history of the data. In practice, in the 

case of supervised learning, a code is trained on an already existing dataset 

collected in a database, every single data item of the aforementioned database is 

correctly labelled. When the code is trained all labels are shown correct, at the end 

of the training the code is tested on a new dataset and its accuracy is calculated 

with the number of labels it can correctly predict. 

 

Supervised learning can generate two types of results: 

• Regression 

• Classification 

 

 

1.3.1 Regression  

In the case of regression supervised learning the system output will be continuous, 

for example in the case of weather forecasts between the extreme cases of "good 

weather" and "bad weather" there can be all values intermediate where the 

Figure 1 – Unsupervised learning division 
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weather is partially cloudy with more or less sun. Regression is the trend of a 

curve that is plotted based on previous data, in order to predict the future. For 

example, if you analyze house prices on the basis of their size, you can make a 

price forecast for a new house whose size is known and you want to obtain an 

economic value in order to sell it. In carrying out this thesis we will focus mainly 

on the classification case. 

 

 

 

1.3.2 Classification  

In a model created for classification, as the term itself says, the goal is to divide 

the data into classes. The most classic case is the binary subdivision: 0 and 1 that 

is to attribute to each data the label True or False. An example applicable to 

healthcare is the classification of tumors into benign and malignant. Using a 

supervised machine learning model for the classification you can show CAT 

images to the model, which will produce an output with 0 or 1 to indicate 

benignity or malignancy of the tumor. In the event that it is necessary to classify a 

greater number of data, such as in the case of the MNIST database, which contains 

60 thousand images of handwritten digits from 0 to 9, it is possible to perform a 

mathematical trick to associate an intermediate value between 0 and 1 for each 

label and the one with the highest value becomes the label to be associated with 

that specific data. 

 

 

Figure 2 – Supervised learning classification 
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1.4 Cost function 

The cost function (Figure 3) is the equation that defines the error of the prediction 

from the correct label, that is actually how far it is from the minimum point. The 

cost function can be defined with different mathematical formulas, it depends on 

the type of algorithm you want to use. The purpose of machine learning is to try to 

minimize the cost function, that is, the more the error approaches zero, the more 

the model can correctly predict the data to be classified. If the cost function is 

three-dimensional, it means that you have to reach the valleys, the so-called 

minimum, to have the least possible error. If the cost function is not as simple as a 

hyperbolic paraboloid then the function will have several local minimum points 

and only one global minimum point. Often the difficulty is to build models capable 

of "jumping" out of a local minimum to try to go towards a deeper minimum. 

When training is performed on large datasets, the training trend is asymptotic: 

100% accuracy can only be achieved indefinitely, therefore training is often 

interrupted after a number of cycles that are considered reasonable to achieve a 

acceptable accuracy. 

  

  

1.5 Gradient descent 

Gradient descent is one of the main techniques that allows you to find the 

minimum of the cost function. Its role is to proceed with each iteration towards an 

area with a negative slope, therefore it exploits the derivative that allows each time 

Figure 3 – 3-dimensional cost function 
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to find the angular coefficient of the function for each point. If the cost function 

has a number of variables higher than 2 then instead of the derivative the partial 

derivatives are calculated in order to obtain the gradient, hence the name gradient 

descent. Here is a typical gradient descent equation: 

 

𝜃𝐽 = 𝜃𝐽 − 𝛼 ∙
𝜕

𝜕𝜃𝐽
𝐽(𝜃) 

 

The parameter “α” is the learning rate, that is the speed of the gradient descent, 

but we’ll talk more about it in Chapter 1.7.1. 

 

 

1.5.1 Batch gradient descent (BGD)  

BGD (Figure 4) is mainly used for small datasets because at each step all the data 

are used to calculate the gradient descent and therefore slows down the training a 

lot. In the case of large datasets, mini-batch gradient descents are used, that is, a 

BGD calculated on a smallest portion of the dataset. 

 

 

1.5.2 Stochastic gradient descent (SGD)  

The SGD (Figure 5) function is to randomly search for an optimal path towards 

the minimum zone, this allows you to avoid calculating the gradient descent for 

Figure 4 – Batch gradient descent  
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the whole database at each iteration, since it is a computationally expensive 

operation. So it is a technique used mainly for large datasets that does not clearly 

follow the path of descent to the shortest minimum, but takes longer to find the 

minimum, this is compensated by the fact that the iteration number to produce 

the SGD is much lower than a normal gradient descent. 

 

  

1.6 Normal equation 

Normal equation is an alternative to the gradient descent that does not use the 

learning rate hyperparameter, does not need iterations, but simply uses matrices, 

as large as the features, that is, the system inputs. This method, however, is not 

often used because, despite it is more immediate for small datasets, it is not at all 

manageable on large amounts of data. In particular it is not easily adjustable and 

although it does not need many cycles, it still needs to calculate the inverse of 

some matrices, an algebraic operation often not recommended that can lead to 

singularities. 

  

𝜃 = (𝑥𝑇 ∙ 𝑥)−1 ∙ 𝑥𝑇𝑦 

 

 

 

 

Figure 5 – Stochastic gradient descent 
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1.7 Hyperparameters 

With hyperparameters [4] we mean all those parameters that directly influence a 

training, during the course of this thesis we will mainly consider the following 

hyperparameters: 

• Learning rate 

• Momentum 

• Batch size 

• Weight decay 

• Epochs 

 

 

1.7.1 Learning rate 

The learning rate “α” (Figure 6) is the most important hyperparameter, since it 

controls the speed of the gradient descent in the minimum of the cost function. It 

appears in the gradient descent formula regardless of the cost function and its 

derivative, it is the angular coefficient of descent and can be varied during the 

training. The higher the value of the learning rate, the faster the gradient descends 

along the slopes, but if the value is too high, there is a risk of not going down to 

the minimum and diverging. To find the maximum value of the learning rate that 

can be used for a certain model and a given dataset, it is advisable to launch a test 

as a first training where the learning rate varies exponentially from very small 

values to very large values going through various orders of magnitude in order to 

find the optimal order of magnitude. Further on we will show you how to find the 

correct learning rate. In most trainings, the value of the learning rate starts to 

drop towards the end of the training in order to go deeper into the local minimum 

in which you are. 

  

Figure 6 – Normal learning rate 
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1.7.2 Momentum 

The momentum is a hyperparameter that is added to control other parameters 

during the training, therefore their weight in speeding up the training in order to 

quickly reach convergence. For example, the weight of the gradient descent can 

vary during the various iterations. It is not necessary to have momentum during a 

training, but it allows you to quickly check the weight of the equations within the 

code throughout the training period without having to intervene directly on the 

code for changes. 

 

 

1.7.3 Batch size 

The batch size [5] is a parameter used especially in large datasets because often 

the computational capacity of the computers does not allow to manage all the 

available data at the same time and therefore the training is iterated slowly over a 

dataset at a time, this set is the batch size. For example, if the dataset contains 

50000 images and the batch size is set to 100, it means that for every single cycle 

500 iterations will be performed, each with 100 different images of the dataset, so 

that for each cycle all the images are analyzed once each, but in blocks of 100 at a 

time. Often the batch size is set to a power of 2 because the calculators have an 

available memory calculated as a multiple of 2, obviously the larger the batch size 

the better the training, because the number of images compared at each iteration 

will be greater, but at the same time the training will become increasingly slow. A 

value for the batch size between 100 and 1000 is often more than acceptable as a 

compromise between total training time and quality of the result. The batch is one 

of the factors that directly affects the duration of the training. 

 

 

1.7.4 Weight decay 

The weight decay represents the speed with which the weight of some variables 

decays during the training process, specifically the weight of the coefficients of the 

variables is decided which are gradually less important than the constant term of 

the cost function. This weight loss is due to the fact that not all variables have the 

same importance within the cost function and some are more influential than 

others. A trivial, but easy-to-understand example can be: to determine if a patient 

has a certain type of tumor or not, all the input data are analyzed, for example: 

age, weight, gender, previous diseases, alcohol dependence / smoke, etc. , but not 

all these variables have the same importance for the tumor examined, certainly 

the hair color is almost not influential at all and therefore it is not even considered 

for evaluation purposes. This simple example is an application of the weight decay 
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based on the variables involved. During this thesis the weight decay has been kept 

fixed for all the training so as not to influence the other hyperparameters, but 

nothing prevents it from being modified during the training to try to obtain better 

results. 

 

 

1.7.5 Epochs 

Epochs [5] are probably the easiest hyperparameter to understand, i.e. they 

represent the total number of training cycles. During each epochs all data are 

analyzed at least once and all processes are performed. Each epoch is identical to 

the previous one, unless other hyperparameters are configured in such a way as to 

vary gradually with the passing of the epochs. Theoretically, if all the other 

hyperparameters are set correctly, then for an infinite number of epochs an 

accuracy of 100% on the data can be achieved, i.e. the learning curve is asymptotic 

and tends to infinity. Epochs, together with batch size, are one of the factors that 

directly influence the duration of the training. The training always lasts a finite 

and whole number of epochs and this is the equation for calculating cycles in 1 

epoch: 

 

1 𝑒𝑝𝑜𝑐ℎ =  
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
 

 

 

1.8 Datasets 

To work in the field of machine learning, it is necessary to have databases on 

which to perform the training. There are several ready to use, the main ones used 

during this thesis are: 

• CIFAR10 

• CIFAR100 

• MNIST 

• ImageNet 

 

Each dataset is divided into 2 different sets: 

• Training set: used to train the model in image recognition and to test its 

accuracy. 

• Validation / test set: used as an external dataset to test the model on 

images never seen and therefore to verify that the model has not "become 

accustomed" only to the training set, but that it can also work on unknown 

data. Generally the accuracy is less than that obtained with the training set. 
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The number of data in a test set is generally equal to or less than the 

training set, so that much of the data is used for training. 

 

 

1.8.1 MNIST 

The MNIST [6] is a dataset consisting of 60 thousand images, divided into: 

• 50 thousand images for training 

• 10 thousand images for validation / test 

The images are divided equally into 10 classes depicting the digits 0 to 9 written 

by hand (Figure 7) and therefore the goal of this dataset is to train models capable 

of recognizing and interpreting handwritten numbers. The images have a 28x28 

pixels format in black and white. Part of this dataset was mainly used in the first 

part of this thesis.  

 

 

1.8.2 CIFAR10 

The CIFAR10 [7] is also similar to the MNIST, but instead of using classes 

depicting handwritten digits, it has 10 classes depicting various things, including: 

airplanes, cars, dogs, cats, etc. (Figure 8) Each image is exclusive to the others, 

that is, a single image cannot represent two or more classes simultaneously. The 

size of each image is 32x32 pixels in color. 

 

Figure 7 – An example of the MNIST dataset [6] 
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1.8.3 CIFAR100 

The CIFAR100 [7] is a dataset similar to the CIFAR10 composed of 60 thousand 

images, equally distributed to the cifar10, but instead of 10 classes there are 100 

different classes and therefore consequently it is more complicated to be able to 

obtain a good result during the training. 

 

 

 

1.8.4 ImageNet 

It is one of the largest existing datasets [8] [9], it contains more than 1 million 

images, with various formats and divided into 1000 classes. This dataset is often 

used for the final validation of a model, but requires considerable hardware 

resources. During this thesis it has often been considered as a reference dataset, 

but never really used for the computational limits due to the computer in use. 

 

 

1.9 Linear regression 

Linear regression (Figure 9) is one of the simplest methods for approaching the 

world of machine learning and consists in dividing data, that is, drawing a line 

that can identify the delimitation area between the various groups. 

Figure 8 – An example of the CIFAR10 dataset [7] 
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It falls into the category of supervised regression learning and its constitutive 

function can always be simplified to a polynomial sum, where all the various 

inputs appear. The simplest form is: 

  

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cost function in this case consist in the statistical variance, that is, an average 

of the square of the distance between the expected value (y) and the value 

obtained from training (h). 

  

𝐽(𝜃) =
1

2𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
𝑚

𝑖=1

 

 

The gradient descent is obtained simply by updating the past gradient from time 

to time with the new gradient of the cost function damped with the learning rate 

hyperparameter. 

  

𝜃𝐽 = 𝜃𝐽 − 𝛼 ∙
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) ∙ 𝑥𝐽

(𝑖)
     𝑤𝑖𝑡ℎ     𝑥0

(𝑖)
= 1

𝑚

𝑖=1

 

Figure 9 – Linear regression 
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1.10 Logistic regression 

Logistic regression falls into the category of supervised learning, but unlike the 

name, it is a model for classification. The term logistic refers to the type of 

function that allows you to switch from the continuous domain to the discrete one 

in order to obtain the classification, this function is also called Sigmoid (Figure 

10).  

𝑔(𝑧) =
1

1 + 𝑒−𝑧
 

 

 

  

As we can see, the sigmoid function classifies all inputs as output 0 or 1, rounding 

to the nearest integer. 

 

 

Figure 10 – Sigmoid function 

Figure 11 – Logistic regression 
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In the specific case of logistic regression (Figure 11), the constitutive function that 

exploits the sigmoid function can be written as: 

  

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥) =
1

1 + 𝑒−𝜃𝑇𝑥
     →      0 ≤ ℎ𝜃(𝑥) ≤ 1 

  

The cost function deriving from this function exploits the logarithms to be able to 

dampen the effects of the exponential basis of the sigmoid function and therefore 

turns out to be different from the cost function of the linear regression. 

  

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖) ∙ 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) ∙ 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))]

𝑚

𝑖=1

 

 

The equation for calculating the gradient descent is similar to that of linear 

regression, but obviously it will have a different constitutive equation inside. 

  

𝜃𝐽 = 𝜃𝐽 − 𝛼 ∙ ∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) ∙ 𝑥𝐽
(𝑖)

𝑚

𝑖=1

 

 

 

1.11 Neural network 

A model based on a neural network [10] as the name implies takes inspiration 

from the complexity of our brain. These types of models are among those that 

manage to obtain the best results and it is believed that by developing variants 

increasingly similar to the natural conformation of the human brain, the results of 

accuracy during training can also be improved. Neural networks are based 

precisely on the concept of networks (Figure 12) where each node is connected to 

many other nodes through links. 

 

Figure 12 – Network with nodes and links 
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In this specific case the nodes are divided into layers (Figure 13), and the more 

layers there are, the more complex the neural network becomes. 

 

 

 

 

A neural network is defined as deep (DNN) [11] [12] [13] [14] [15] when in 

addition to the input and output layers there are more than 1 hidden or transition 

layers (Figure 14). 

 

  

 

Figure 13 – Neural network with one hidden layer 

Figure 14 – Deep neural network with more than one hidden layers 
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The neural network remains in the category of supervised classification learning 

and allows to classify various categories, based on the number of nodes of the 

output layer, so if for example we are working on the CIFAR10 dataset which 

classifies 10 different objects then our deep neural network will have 10 nodes in 

the last layer, the output layer, and each node will correspond to a class. The input 

nodes, on the other hand, correspond to all the input parameters, while the nodes 

of the central layers do not have a real physical meaning and can be in variable 

numbers. Since the neural network is a model for classification, also in this case 

the sigmoid function is exploited and the resulting constitutive function is: 

 

𝐽(𝜃) = −
1

𝑚
∑ ∑ [𝑦𝑘

(𝑖)
∙ 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖)))

𝑘
+ (1 − 𝑦𝑘

(𝑖)
) ∙ 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))

𝑘
]

𝑘

𝑘=1

𝑚

𝑖=1

+
𝜆

2𝑚
∑ ∑ ∑ (𝜃𝑗

(𝑙)
)

2
𝑆𝑙+1

𝑗=1

𝑆𝑙

𝑖=1

𝐿−1

𝑙=1

 

 

In order not to make the treatment too heavy, other technical details on neural 

networks will not be added, but for a more detailed study, the publications 

mentioned at the end of the thesis can be consulted [10] [11] [12] [13] [14] [15]. 

Through various researches, it has been noticed that by increasing the number of 

hidden layers too much, we reach a point where the accuracy of the model does 

not grow, but on the contrary begins to decrease, therefore various variations to 

the classic DNN have been invented, including the CNN (convolutional neural 

network). 

 

 

1.11.1 Convolutional neural network (CNN)  

This type of neural network was created by taking inspiration from the animal 

visual cortex (Figure 15). The basic idea of a CNN lies in dividing the images into 

areas and extracting from each of them the most important features for evaluation 

purposes. CNNs are mainly used for the recognition of images and natural 

language. There are different CNNs model [16], among which the most important 

are: 

• AlexNet 

• VGG 

• LeNet 

• GoogLeNet 

• ResNet 
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In some CNN variants, like ResNet (residual neural network) [17] [18] [19], not all 

the nodes of each layer are connected to the nodes of the next layer and not all the 

layers are taken into consideration at each cycle, this is because it has been 

noticed that even the neurons of the human brain do not have a perfection in the 

connections, but being a product of nature, they have many gaps and variations 

(Figure 16). 

 

 

1.12 Problems and resolutions 

There can be various types of errors during a machine learning process, we will 

see some of these and their resolutions in this paragraph. 

 

 

1.12.1 Features scaling 

The features are all the input parameters on which the training is based, but these 

variables do not always have values with similar orders of magnitude and this can 

often lead to computational problems when operations between use very large 

values and very small. To overcome this problem, feature scaling is used, that is, 

all parameters are rescaled on the same interval, as for example [0,1], so that each 

parameter, despite having different meanings, can be readable by the machine 

Figure 16 – Close up on ResNet model [18] 

Figure 15 – Scheme of convolutional neural network 
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with the same computational effort. In order to obtain this rescaling, the formula 

used is: 

  

𝑥𝑛𝑒𝑤 =
𝑥

𝑁𝑥
°

     𝑤𝑖𝑡ℎ     𝑁𝑥
° = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 

𝑒. 𝑔. : 𝑖𝑓 0 ≤ 𝑥 ≤ 2000 → 𝑁𝑥
° = 2000 

 

 

1.12.2 Mean normalization 

Mean normalization is an operation that is often carried out in parallel with the 

feature scaling in order to obtain not only values within a certain range, but also 

with a certain average value, therefore if for example the interval is [-1, 1] then the 

average value will be around 0. 

  

𝑥𝑛𝑒𝑤 = 𝑥 − 𝑥𝑚𝑒𝑎𝑛     𝑤𝑖𝑡ℎ     𝑥𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥 

𝑒. 𝑔. : 𝑖𝑓 0 ≤ 𝑥 ≤ 2000 → 𝑥𝑚𝑒𝑎𝑛 = 1000 

 

These feature scaling and mean normalization operations must be carried out for 

each individual feature taken into consideration before the start of the training 

process. 

 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑒𝑎𝑛

𝑁𝑥
°

 

 

 

1.12.3 Learning rate problems 

The learning rate, as already specified in the paragraph dedicated to it, is the most 

important hyperparameter and consequently it is the one on which more attention 

must be paid. 

Figure 17 – Left: small learning rate; Right: large learning rate 
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With values that are too small (Figure 17 - left), there is a risk of not continuing 

forward during the training, remaining in a stall area or otherwise proceeding so 

slowly as to make the training useless. On the contrary, with too large values 

(Figure 17 - right) there is the risk of not being able to enter the minimum of the 

function in order to increase the accuracy and in the case of extreme values it is 

even possible to go to divergence and therefore bring the accuracy to values close 

to 0. 

 

 

1.12.3.1 Learning rate finder 

In order to find the correct value of the learning rate, there are various dedicated 

libraries for different programming languages, but the simplest method is to do a 

fairly long training, about 50 to 100 thousand epochs, during which the learning 

rate changes exponentially from very small values to very large values, the best 

choice is to try to vary the learning rate by at least 10 orders of magnitude 

throughout the training. Theoretically, if all the various parameters have been 

normalized then often the learning rate will be a value between 0.001 and 10, for 

this reason it is better to fully cover this range during the training. Once the test 

training is finished then it will be enough to take a look at the accuracy and error 

graph to find the maximum recommended learning rate. 

As can be seen in Figure 18 for very small values of the learning rate, accuracy and 

error practically do not vary, however from a certain point onwards the error 

decreases up to a minimum and then goes up and diverges. This shows us that the 

actually useful learning rates are those included in the area of descent of the error, 

that is, from the initial plateau to the minimum point, beyond which the 

divergence begins. It is advisable to use a maximum learning rate value of about 

one order of magnitude lower than that found for the minimum point of the error, 

so as to be far enough from the divergence zone. So the learning should vary in the 

range between the start of the slope in the error up to an order of magnitude 

before the minimum point. 

 

 

1.12.4 Training problems 

During the training there may be problems related to the dataset in use and how 

the data are analyzed, consequently the training could lead to a model too adapted 

to the data on which it was trained or on the contrary too poorly adapted. These 

problems fall mainly into two categories: 

• underfitting 

• overfitting 
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Figure 18 – Learning rate finder 
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1.12.4.1 Underfitting 

Underfitting (Figure 19) denotes a problem of high bias, that is, the error is too 

high and the model has not trained enough or is not suitable for a certain type of 

dataset, generally in the underfitting phase whether you test the model on training 

set that on the validation set in both cases the error will be high. To overcome this 

problem, it is often enough to increase the number of features by trying to make 

the model more precise and also increasing the training time so that the model has 

the time necessary to acquire the information. 

 

 

1.12.4.2 Overfitting 

When overfitting (Figure 19) occurs it means that there is a high variance 

problem, that is, the model has adapted specifically to the dataset on which it has 

trained, but would not be able to obtain the same results with a dataset never seen 

before. This error is typical and can be seen when for long periods of training the 

error for the training set continues to decrease, while that for the test set reaches 

an asymptotic level below which it does not drop or in any case decreases less 

quickly than the training set. If up to a few epochs before, the accuracy which in 

percentage divided the training set from the validation set was almost constant 

now instead tends to increase denoting a model too accustomed to the training 

set. To avoid this problem it is often enough to decrease the number of epochs, if 

excessive, or in most cases it is necessary to decrease the number of constraints 

and features in order to leave more margin of error to the model. For DNN models 

we can use dropout layers, which, for each epoch, will randomly remove certain 

features by setting them to zero and consequently the overfitting problem is 

solved. 

In general, for underfitting and overfitting problems, it is possible to act on 

hyperparameters or features with regularization factors in order to create a 

reliable and robust model. 

  

 

Figure 19 – Underfitting and overfitting 



1  –  Machine Learning 
 

 
 

24  

1.12.5 Random initialization 

Often in machine learning it is necessary to have initial values for the variables 

with which to start and they are generally set to zero, but this choice is not always 

correct, since, especially in complex searches like these, it is better not to have 

initial symmetries in the model that they could lead the model to suddenly diverge 

or not to move at all from the initial null values. As an example, it can be thought 

that placing a ball on the top of a pointed pyramid is perfect and symmetrical, but 

given the unstable equilibrium, a small disturbance is enough to bring the model 

to complete ruin. Conversely, if the ball is placed on the bottom of a narrow and 

high basin, the ball can hardly go up the walls even in the presence of strong 

perturbations. So to avoid cases of singularities often the initial variables are 

placed random, this entails different results for each launch of the same training, 

but from a statistical point of view the variations are minimal and considering the 

average there will be acceptable and verified results. 
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2 – Python & TensorFlow 

2.1 Programming languages 

To be able to enter the world of machine learning it is necessary to use the 

programming languages. There are several, but those that are most useful for this 

purpose are those that allow efficient matrix calculation, since machine learning is 

mainly based on the management of large matrices. High-level languages are 

therefore more useful and most of the work is left to the interpreter. During this 

thesis two languages have been used mainly, that is: 

• MATLAB 

• Python 

Each programming language has its own optimized libraries for mathematical 

calculation, but dedicated machine learning libraries have been developed which 

have often been released for various languages and therefore we will treat them as 

independent libraries: 

• TensorFlow 

• PyTorch 

• Keras 

 

 

2.2 MATLAB 

MATLAB [20] is a programming language optimized for matrix calculation and 

for the representation of plots. Given the size of the dataset to be managed, 

writing in MATLAB improves code’s formatting and understanding. Below there is 

an example of how normal equation (Chapter 1.6) can be calculated with 

MATLAB: 

 

y = [1 2;3 4]; 
x = [5 6;7 8]; 
theta = inv(x' * x) * x' * y 



2  –  Python & TensorFlow 
 

 
 

26  

Output: 

 

theta = 
 
    5.0000    4.0000 
   -4.0000   -3.0000 
 

To perform the same operation in a language like C, it would have taken many 

more lines of code and this explains why MATLAB is so useful in this field. 

However, as it is not an open-source language, it does not have many libraries 

optimized for machine learning and therefore for more in-depth studies, it is 

necessary to turn to the Python language. 

 

 

2.3 Python 

Python [21] [22] is a high-level programming language developed by Guido van 

Rossum in the 90s, it is object-oriented and open-source. It can be used for 

various functions: writing an application, sending an email, sending notifications 

through a Telegram bot, etc. It has been continuously improved and expanded, 

but since version 2.7 there has been a division that led to the creation of version 

3.x. Currently only version 3.x is constantly updated and in many parts no longer 

compatible with version 2.7. 

Being open-source it is one of the most used languages in the world, also in the 

scientific field [2] [1] for which there are various dedicated libraries, such as: 

• Numpy - for matrix calculation and generic mathematical functions, it 

creates arrays to identify matrices 

• Scipy - for mathematical analysis 

• Matplotlib - for plotting graphs 

• Pandas - for data analysis 

• Scikit - for machine learning 

 

Since Python is not optimized for matrix calculation as MATLAB, is not as 

immediate as the latter, but thanks to the aforementioned libraries it can manage 

the matrices. Here is the normal equation (Chapter 1.6) calculated with Python: 

 

import numpy as np 
 
y = np.array([[1,2],[3,4]]) 
x = np.array([[5,6],[7,8]]) 
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x_tra = np.transpose(x) 
x_inv = np.linalg.inv(x_tra @ x) 
 
theta = x_inv @ x_tra @ y 
 

Output: 

 

theta = 
array([[ 5.,  4.], 
       [-4., -3.]]) 
 

 

2.3.1 Self parameter 

The "self" parameter [23] in Python represents the instance of the class and allows 

to recall the attributes and methods of the class in question. Here is an example to 

better explain its function: 

 

class example(object): 
     
    def __init__(self,sun): 
        self.sun=sun 
        print(sun+2) 
        print(self.sun+10) 
         
    def cloud(self): 
        self.rain=5*5+100 
        self.rainbow=self.rain+1 
        print(self.rain+self.sun) 
 
x=5 
example(x) 
print('-------------') 
 
y=example(-6) 
print('=============') 
y.cloud() 
print('+++++++++++++') 
print(y.rain)       
 

 

 

 



2  –  Python & TensorFlow 
 

 
 

28  

Output: 

 

7 
15 
------------- 
-4 
4 
============= 
119 
+++++++++++++ 
125 
 

Trough “self” parameter, as you can see, it is easier to perform calculations with 

variables. 

 

 

2.4 TensorFlow 

TensorFlow [24] [25] is a machine learning library released by Google in 2015. 

Since its release it has become the most used library in association with Python 

language, since they are both open source and TensorFlow allows you to automate 

training very well. TensorFlow is not always intuitive [26], but with many 

fundamental functions for the simplification of the code. 

The logic on which TensorFlow is based are tensors [27], which are 

multidimensional matrices, and as the name suggests is a calculation based on the 

flow of tensors. Despite being used with Python, TensorFlow does not follow its 

logic [28] and bases its calculation on a graph system. When building variables in 

TensorFlow they are not instantly stored in RAM, but they become part of a graph, 

with all the variables and operations to be performed, and only once the run 

command is executed then actually the graph is calculated. 

Even TensorFlow, like PyTorch, can be used with CUDA [29] and therefore use 

the computing power of Nvidia GPUs. The current version of TensorFlow is 2.x, 

but many codes are written with version 1.9 or earlier which differ in part with the 

2.x. 

 

 

2.4.1 TensorFlow functions 

Here are some examples of functions in TensorFlow: 

• Piecewise constant 

• Exponentially decay 

• Polynomial decay 
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2.4.1.1 Piecewise constant 

tf.train.piecewise_constant(x, boundaries, values, name=None) 
 

The function (Figure 20) uses a global variable x and divides the values among 

the various boundaries. An example: 

  

global_step = tf.Variable(0, trainable=False) 
boundaries = [100000, 110000] 
values = [1.0, 0.5, 0.1] 
 
learning_rate = tf.train.piecewise_constant(global_step, 
boundaries, values) 

 

 

2.4.1.2 Exponential decay 

tf.train.exponential_decay(learning_rate, global_step, 
decay_steps, decay_rate, staircase=False, name=None) 
 

This function (Figure 21 - left) calculates the exponential decay [30] according to 

the formula: 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∙ 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒
𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝
𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝𝑠 

 

If staircase is True then global_step / decay_step becomes integer and 

there is a trend ad shown in (Figure 21 - right). 

 

 

 

Figure 20 – An example of piecewise constant trend 
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2.4.1.3 Polynomial decay 

tf.train.polynomial_decay(learning_rate, global_step, decay_steps, 
end_learning_rate=0.0001, power=1.0, cycle=False, name=None) 
 

The polynomial decay (Figure 22 - left) is calculated as follows: 

 

𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝 = 𝑚𝑖𝑛(𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑒𝑝, 𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝) 

𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 − 𝑒𝑛𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) ∙ (1 −
𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝

𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝
)

𝑝𝑜𝑤𝑒𝑟

+ 𝑒𝑛𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 

 

Figure 21 – Left: normal exponential decay; Right: staircase exponential decay 

Figure 22 – Left: normal polynomial decay; Right: cycle polynomial decay 
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If cycle is True (Figure 22 - right) then decay_steps becomes: 

 

𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝𝑠 = 𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝𝑠 ∙ 𝑐𝑒𝑖𝑙 (
𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝

𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝
) 

 

The ceil function returns the smallest integer value greater than the input. 

 

 

2.4.2 TensorBoard 

TensorBoard (Figure 23) is a tool that provides a graphic interface to TensorFlow 

and acts as a valid help tool for: 

• Plotting accuracy and loss 

• Displaying the TensorFlow graph 

• Showing histograms and tensors values that change over time 

• Displaying the data, such as images, texts, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 PyTorch 

It is a library [31] released by Facebook for machine learning. It is more intuitive 

than other libraries in the same field and also allows for ease of use, but having 

been released later than TensorFlow many codes are currently written only for 

TensorFlow, for which more detailed documentation is generally found. For 

Figure 23 – An example of TensorBoard interface 
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managing arrays, PyTorch uses a class called Tensor with which it creates 

multidimensional arrays whose operations can also be performed on CUDA-

capable [29] Nvidia GPU. 

 

2.6 Keras 

Keras is a library [32] for machine learning currently written only in Python 

language. It is mainly used for a rapid realization of DNNs. Compared to other 

libraries it is at a higher level, allowing a higher level of abstraction. During the 

course of this thesis it was initially used to test basic machine learning codes for 

Python. It can be used in conjunction with TensorFlow. 

 

 



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part II 

- 

Research Field 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





3  –  Adversarial Training 
 

 
 

35  

 
 

 

 

 

 

 

 

3 – Adversarial training 

3.1 Why do we need adversarial training? 

Adversarial training [33] [34] [3] [13] is a branch of machine learning that deals 

with creating robust models against adversarial attacks. For years the training has 

only been concerned with looking for models that could achieve ever greater 

accuracy, up to reaching such high standards as to exceed even the human being 

in certain datasets, but as in any field of computer science there can be a malicious 

attack from the outside with the intention of carrying out illegal actions. For 

example, machine learning [35] is used in banking to easily recognize handwritten 

numbers, but if a model is attacked it would lead to incorrect evaluation of the 

numbers with serious consequences. In other cases, facial, voice or fingerprint 

recognition is used to unlock certain services and even in this case an external 

attack can cause damage. To counter these attacks we need robust models with a 

good accuracy. The problem was that the real robustness of these models was not 

known, that is, whether these models were truly able to respond adequately in 

case of random or targeted variations. At the beginning of the 2010s, after various 

researches, this new branch was born which is called adversarial training.  

 

 

3.2 Adversarial examples 

The basic logic is to create imperceptibly modified examples [36] and see if the 

model can recognize them or not. If the examples were modified with a random 

logic then there would be no problems, since the model would fail, but a human 

being would also fail and therefore the problem does not exist, however in the 

event of a malicious attack some examples could be modified in order to mislead a 

classic model, but without any obvious variation for the human eye. As can be 

seen in (Figure 24) the two images (original and modified by attack) are identical 

to the human eye, but every single pixel has been modified according to the plot 

that can be seen in the middle.  
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This means that a model can be attacked very easily without obvious external 

signs, in reality the situation is more complex than it seems because just as two 

identical images to the human eye deceive a model, on the contrary there are 

completely modified images (Figure 25) that the model succeeds to recognize. 

 

 

 

3.3 Adversarial attacks 

A model can learn to recognize images, but in a completely different way from how 

a human being does it, so there are various attack logics. Some attacks are based 

on varying a single pixel (Figure 26) [37], others on some features of the image, 

but the most common case is to calculate the division line that distinguishes one 

class from another.  

Figure 24 – An example of adversarial attack: a macaw is misclassified as a bookcase [36] 

Figure 25 – Some images correctly identified by the machine 
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In a simple example with two classes the decision boundary looks like in the 

Figure 27. A targeted attack would take all the borderline cases, so in the case of 

an image it would take the pixels closest to the edge of the line, and vary them just 

enough to make them cross the line (Figure 28 - left) in order to completely distort 

the classification without actually changing much. All this in a complex image 

creates two identical images, but really different for a model. 

 

Figure 26 – Examples of single pixel attack [37] 

Figure 27 – Decision boundary between two classes 
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In some cases the pixels do not change, but it is the separation line that 

distinguishes the classes that moves (Figure 28 - right) changing the boundary 

between the classes themselves, equally leading to a misclassification. 

 

 

Attacks are mainly divided into 2 categories: 

• White-box 

• Black-box 

 

 

3.3.1 White-box attacks 

This is the easiest type of attack [38] to perform. It is based on the knowledge of 

the internal structure of the model to be attacked (Figure 29), in this way the 

attack is more specific and the damage caused increases. The white-box attack was 

used during this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 – Two ways of fooling a classifier – Left: pixels moving; Right: line moving 

Figure 29 – White-box VS black-box attack [38] 
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3.3.2 Black-box attacks 

A black-box attack [39] means that the attacker does not know the internal 

structure of the model and tries to create a blind attack (Figure 29). Obviously 

these types of attacks are less effective but applicable to multiple models without 

significant variations. In 2017, a challenge was realized [38] based on this type of 

attack to verify the resistance of the model created. 

 

 

3.4 Training against adversarial attacks 

Various techniques can be used to create models resistant to enemy attacks: 

• Data augmentation 

• Defensive distillation 

• Second model control 

Once the logic between attack and defence [40] [41] of the models is understood, 

the main problem is to train robust models in reasonable time and not too long 

compared to the classic training algorithms. 

 

 

3.4.1 Data augmentation 

This is the main technique to counter attacks by training models on already 

attacked images [42] and not only on correct images, significantly increasing the 

accuracy against attacks, sometimes from 0% it can also reach an accuracy of 

about 50% [43] [44], but of course this means that the accuracy on normal images 

decreases and often falls below the accuracy level of a human being [45]. 

 

 

3.4.2 Defensive distillation 

This type of defence consists of two phases in which training takes place through a 

process called distillation and prevents the model from adapting too much to the 

data it is examining. This technique has been studied in particular in some papers 

[46] and works very well on some types of specific attacks, but it is not robust for 

all types of attacks. 

 

 

3.4.3 Second model control 

The second model control [47] uses another model that is trained on the main 

neural network and its internal characteristics so that it can predict whether the 
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example analyzed is adversarial or not. In practice, this technique uses an 

"external guard" logic that controls the whole process to verify its effective 

operation. It is a robust technique, but still under study to actually verify its 

effectiveness [48] and complexity. 

 

 

3.5 Adversarial libraries 

To allow the attacks there are various libraries, among which the main ones are: 

• Cleverhans 

• Foolbox 

Both libraries [49] [50] have been tested to create attacks, using both PyTorch and 

TensorFlow. The logic is similar for both, you have to convert the model to the 

specific model of the attack library, choose the parameters and finally decide the 

type of attack. Once the structure is created, the model is attacked and its accuracy 

is tested.  

Below there are the basic steps and results (Figure 30) for the Foolbox [51] library, 

the one mainly used during this thesis. It is a simple example with Python and 

PyTorch [52]. 

  

import foolbox 
import numpy as np 
import torchvision.models as models 
 
# get model in PyTorch 
model = models.resnet18(pretrained=True).eval() 
preprocessing = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 
0.224, 0.225], axis=-3) 
 
# create model in Foolbox 
fmodel = foolbox.models.PyTorchModel(model, bounds=(0, 1), 
num_classes=1000, preprocessing=preprocessing) 
 
# get a batch of images and labels and print the accuracy 
images, labels = foolbox.utils.samples(dataset='imagenet', 
batchsize=16, data_format='channels_first', bounds=(0, 1)) 
print(np.mean(fmodel.forward(images).argmax(axis=-1) == labels)) 
 
# apply the attack 
attack = foolbox.attacks.FGSM(fmodel) 
adversarials = attack(images, labels) 
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print(np.mean(fmodel.forward(adversarials).argmax(axis=-1) == 
labels)) 
 
# print the first image with matplotlib 
[…] 
 

Output: 

 

0.9375 
0.0 
 

 

 

3.6 Free Adversarial Training (FAT) 

During the thesis, various papers [53] [54] were evaluated to verify the state of the 

art in this field and, in the end, Free Adversarial Training (FAT) [55] was chosen 

as the baseline code for the experiments.  

The FAT code is based on a deep neural network (DNN) and the structure is based 

on a residual neural network (ResNet) model. The attacks are generated with a 

projected gradient descent (PGD) [56] logic and the various hyperparameters can 

be decided. There are 2 datasets that can be used: CIFAR10 [7] and CIFAR100 [7]. 

In the first part of the thesis the results of the original paper were replicated and 

afterwards the changes for the improvements were applied. 

The code is made up of various files: 

• free_train.py – the main code that allows you to train your adversarial 

examples 

• free_model.py – the modified ResNet model used by FAT with its 

convolutional layers 

Figure 30 – Adversarial example generated using Foolbox [49] 
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• config.py – a configuration code that allows you to simply change the 

training and attack inputs from the command line 

• cifar10_input.py – the preparation code of the CIFAR10 dataset 

• cifar100_input.py – the preparation code of the CIFAR100 dataset 

• multi_restart_pgd_attack.py – the code that creates adversarial examples 

for both training and evaluation tests 

 

The main FAT algorithm on which its code is based can be seen in (Figure 31) 

 

To better understand the algorithm, here is the list of variables used: 

• X – training samples 

• ε – perturbation bound 

• τ – learning rate 

• θ – learning coefficient 

• δ – actual perturbation 

• Nep – number of epochs 

• B – minibatch 

• g – gradient descent 

• x – single image 

• y – single label 

• m – hop step 

Figure 31 – FAT algorithm [55] 
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The “m” parameter is the heart of this algorithm also called Free-m. The m allows 

to repeat the perturbation several times for each single minibatch in order to 

obtain adversarial examples within the limits set by the parameter “ε”. By keeping 

“m = 1” a normal training is obtained, while increasing “ε” out of proportion would 

cancel the purpose of the research itself because the images would be too altered 

even for the human eye. 
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4 – Fast training 

4.1 Why fast? 

We need a fast training to meet an ever increasing demand for large databases to 

be managed in real time. For example, for the development of self-driving 

machines, a machine learning system is needed for instantly recognizing road 

signs, traffic lights or obstacles and must be able to constantly adapt to changes. 

In the case of websites that manage large databases, such as: Google, YouTube, 

Facebook, etc., machine learning allows you to manage the constant flows of 

incoming data, trying to provide the user with the fastest possible response. Just 

as the world around us goes faster and faster, such as means of transport, machine 

learning must also adapt to ever faster response times. 

Fast training includes all the techniques used in machine learning to speed up 

training times. With current processors, CPUs and GPUs, computation times for 

full training can last from a few hours to several days. 

To increase the speed there are various ways: 

• in some cases specific techniques are used for the type of model considered, 

for example only DNNs [57] [58] [59] or even more specifically only ResNet 

are examined 

• in other cases generic modifications are implemented that are applicable to 

almost all models 

 

 

4.1.1 Fast training techniques 

The specific techniques are different from code to code and therefore each 

research work shows its application. For example, for DNNs there are often 

changes to certain layers [55] [54] , but these techniques have not been covered in 

this thesis. 

On the other hand, generic techniques mainly include the changes to be made to 

hyperparameters and more specifically to the learning rate [60], since variable 
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values can give better results in terms of performance compared to constant 

values. Among the various state-of-the-art fast training methodologies proposed 

in the literature, the most important in this regard were the following: 

• 1 Cycle policy 

• Cyclical policy 

• Warm restarts 

 

 

4.2 1 Cycle policy 

The 1 cycle policy [61] is based on the principle of varying the learning rate and 

other hyperparameters during the training course to obtain fast training. As the 

name implies, the basic idea is to apply a single cycle to this hyperparameters 

throughout the training. High learning rate values with the 1 cycle policy lead to 

the reduction of other regularization values since the 1 cycle policy is a 

regularization in itself. 

 

 

4.2.1 1 Cycle – Learning rate 

After finding the maximum learning rate through the learning rate finder, (Figure 

32) an initial value equal to 1/10 of the maximum is set, after which for about 90% 

of the total training (90% of the total epochs) there will be a complete cycle from 

1/10 of the maximum, up to maximum, to then return to 1/10 of the maximum. In 

the last epochs, equal to about 10% of the total, there will be a rapid drop in the 

learning rate up to a value equal to 1/1000 of the maximum. The logic behind this 

cycle is: 

• start with a fairly high and acceptable learning rate 

• continue to increase it to descend more rapidly into the local minimum or 

to find deeper minimums 

• decrease the learning rate again to enter more deeply into the minimum 

found 

• drastically reduce the learning rate to try to reach the local minimum point 

If the final part of drastic reduction lasted too many epochs, there would be 

overfitting, while if it lasted too little, the accuracy would remain too low. 

An example of code to create the learning rate shape using the TensorFlow 

polynomial decay function: 

 

lr_deeper=train_steps*0.9 
lr_max=0.15 
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lr_1=tf.train.polynomial_decay(-lr_max*1.8, global_step, 
lr_deeper/2, 0.0, 1.0) 
lr_2=tf.train.polynomial_decay(lr_max*1.8, global_step, lr_deeper, 
0.0, 1.0) 
lr_3=tf.train.polynomial_decay(lr_max/1000, train_steps-
global_step-1, train_steps-lr_deeper-1, lr_max/10, 1.0) 
 
learning_rate=lr_1+lr_2+lr_3 
 

Here is the meaning of the variables: 

• lr_max – maximum learning rate found with learning rate finder 

• lr_deeper – the moment when the cycle starts the last piece between 

lr_max/10 and lr_max/1000  

• train_steps – total training time 

• global_step – training steps counter 

• lr_1, lr_2, lr_3 – the 3 parts of the cycle that added together give the 

complete 1 cycle policy shape for the learning rate 

 

 

 

4.2.2 1 Cycle – Momentum 

The 1 cycle policy does not apply only to the learning rate, but also to the 

momentum with an opposite shape. In this way, the regularization carried out on 

the learning rate is not dampened by the momentum, but on the contrary it is 

strengthened.  

There is a maximum recommended momentum value of 0.95, while the minimum 

should be 0.85. In the final part of the training, while the learning rate decreases 

Figure 32 – 1 Cycle policy [61] learning rate 
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rapidly, the momentum remains fixed at the maximum value of 0.95 (Figure 33). 

 

 

 

4.2.3 1 Cycle – Other hyperparameters 

The batch size should be set to the highest possible value to fit in the available 

memory. 

The epochs depend on the accuracy that you want to achieve and therefore it is at 

the discretion of the programmer. 

The weight decay must be tested with various values by running the learning rate 

finder each time, the correct weight decay to choose is the one that allows a higher 

maximum learning rate (Figure 34). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 – 1 Cycle policy [61] momentum 

Figure 34 – In this case the weight decay of 10-4 is chosen because 
it corresponds to a higher maximum learning rate [61] 
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The remaining hyperparameters have to be chosen by running the learning rate 

finder each time, the important thing is that all the hyperparameters are set when 

you start the learning rate finder for the last time and choose the maximum 

learning rate, since training must take place in the same learning rate finder 

conditions. 

 

 

4.3 Cyclical policy 

Cyclical policy [62] is similar to 1 cycle policy, with the difference that the cycle is 

repeated several times, always oscillating between the same maximum and 

minimum values (Figure 35). This policy can be useful if the model has many local 

minimum points and therefore using a cyclical learning rate allows training to 

seek deeper minimums to achieve higher accuracy. 

 

 

 

4.3.1 Cycle length 

The length of each single cycle is calculated as a multiple of an epoch. It is 

recommended to use length values equal to 4 - 20 times an epoch. It has been 

shown that for values within this range the optimal result is obtained. It is 

however advisable to do a training with at least 3 - 5 cycles to obtain an evident 

improvement. Increasing the number of cycles too much would eliminate the 

usefulness of the cycle itself, the training would not have time to adapt to the 

variation of the learning rate. 

 

 

Figure 35 – A triangular cyclical policy [62] 
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4.3.2 Cycle boundary values 

The maximum and minimum values of the cycle must be chosen carefully because 

the success of the training depends on them. In both cases it is necessary to use 

the graph produced by the learning rate finder (Figure 36), which must be run 

before the final training. The maximum learning rate is found exactly as for the 1 

cycle policy, i.e. the minimum point of the loss corresponds to the limit and the 

maximum learning rate must be chosen before this limit. For the minimum, 

instead, you choose a value in the descent zone of the loss, therefore from the 

moment in which the initial plateau ends forward. 

 

In some cases the cycles are repeated with the same length but the maximum 

value decreases to allow you to search deeper in the local minimums, such as the 

decreasing triangular cycles of Figure 37. 

 

Figure 36 – Learning rate boundary on the loss plot for the cyclical policy [62] 

Figure 37 – Cyclical policy with fixed lower boundary 
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4.4 Warm restarts 

The warm restarts [63] [64] are also based on a cyclical policy, but as the term 

itself says, there are sudden restarts from the minimum to the maximum value 

(Figure 38). This phenomenon leads to instantaneously varying the learning rate 

and then start a long descent again, so as to find, as in the cyclical policy case, 

deeper minimums. 

The warm restarts are always performed on the learning rate and can be 

performed with various shapes: 

• linear 

• sinusoidal 

• trapezoidal 

 

 

The warm restarts can have multipliers that make the progress accordion-like 

during the training (Figure 39 - left) or the restarts can be at different values, 

gradually decreasing (Figure 39 - right). 

 

Figure 38 – Sinusoidal warm restarts [63] 

Figure 39 – Left: accordion-like warm restarts [63]; Right: decreasing warm restarts [64] 
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4.5 Other implementations 

By changing the shapes of the hyperparameters or by mixing the techniques 

already mentioned, it is possible to obtain new trends in the learning rate, 

sometimes even more effective than the originals (Figures 40 – 41 – 42). 

 

  

 

 

 

 

 

 

 

 

 

Figure 40 – 1 Cycle truncated Figure 41 – 1 Cycle and half 

Figure 42 – Linear decay warm restarts 
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5 – Fast adversarial training 

5.1 Super model 

The aim of this thesis was to demonstrate that fast training techniques can also be 

applied to adversarial training, obtaining significant improvements in this case 

too. A new generation of DNN models is therefore created, which are both robust 

and fast: the super models. In future the super models will be normal, but we have 

to first demonstrate their feasibility. In order to achieve this, the Free Adversarial 

Training code was used, i.e. a DNN ResNet, with 2 different datasets: CIFAR10 

and CIFAR100. 

 

 

5.2 FAT results 

In order to improve the FAT, it was necessary to first test the code on the 

calculator in use to verify its performance and after checking the results of the 

paper [55] the fast training techniques were tested. Following (Figures 43 - 44) are 

the results obtained with the training of the original FAT code. 

As can be seen in the two graphs, the results are reported for both the CIFAR10 

and the CIFAR100. It was possible to expect that the accuracy of the model 

trained on the CIFAR100 was lower than that of the CIFAR10, since there are 

more images to analyze there is a greater risk of error. In addition to the accuracy 

plot, the loss graph was also reported, in which the disparity between CIFAR10 

and CIFAR100 is noted again. In both cases, the smoothed performance of the 

training was also reported to have a clearer view of the results. 

 

Final accuracy results: 

• CIFAR10 ➔ accuracy: 84.34% 

• CIFAR100 ➔ accuracy: 59.89% 
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Final loss results: 

• CIFAR10 ➔ loss: 0.00562 

• CIFAR100 ➔ loss: 0.01459 

 

 

 

 

 

Figure 43 – Original FAT [55] accuracy on natural images 

Figure 44 – Original FAT [55] loss on natural images 
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5.3 Hyperparameters tested 

The original learning rate was a 3-steps function (Figure 45) with the following 

division: 

• epochs = 0 – 40000 ➔ learning rate = 0.1  

• epochs = 40000 – 60000 ➔ learning rate = 0.01 

• epochs = 60000 – 80000 ➔ learning rate = 0.001 

After using the learning rate finder was found a maximum value equal to: 

• CIFAR10 ➔ maximum learning rate = 0.1 – 0.15 

• CIFAR100 ➔ maximum learning rate = 0.1 – 0.12 

Therefore a maximum learning rate higher than that the original FAT was used in 

the simulations. 

 

  

The momentum values used were two: 

• 1 Cycle ➔ momentum = 0.85 – 0.95 

• Constant ➔ momentum = 0.90 

For the first part of simulations the 1 cycle momentum was used to test the 1 cycle 

policy code [61], but then the momentum was fixed on a constant value of the 

original FAT to get a clearer picture of how all the fast training techniques 

influence the learning rate and therefore the speed with the same momentum. 

 

Based on the other regularisations, the value of the weight decay has been set at 

0.0002. 

The batch size value has been set to 128, due to computational limits of the 

calculator. 

The remaining FAT parameters that are specific to adversarial training have not 

been changed because the aim was not to obtain a more robust model, but a faster 

model with the same robustness. 

Figure 45 – FAT’s 3-steps learning rate [55] 
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5.3.1 Learning rate’s shapes summary 

There is a summary (Figures 46 – 47 – 48 – 49 – 50 – 51 – 52 – 53) of all the 

shapes used during this thesis. 

  

  

  

  

Figure 46 – 3 Steps Figure 47 – Linear Decay 

Figure 48 – Exponential Decay Figure 49 – 1 Cycle 

Figure 50 – 1 Cycle & Half Figure 51 – 1 Cycle Truncated 
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5.3.2 Momentum’s shapes summary 

Here (Figures 54 – 55) are the two types of momentum used. 

 

  

 

5.4 Simulations 

All simulation codes and techniques are summarized in Tables 1 – 2. Here is the 

name’s encoding: 

𝐷_𝐹2_𝐸_𝑀 

• D – Dataset 

• F – Fast training technique 

• 2 – If present it means that also the momentum is 1 Cycle 

• E – Epochs 

• M – Maximum learning rate 

Figure 52 – Warm Restarts Figure 53 – Linear Decay Warm Restarts 

Figure 54 – 1 Cycle Figure 55 – Constant 
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Name Dataset 
Epochs 

(x1000) 

Momentum 

policy 

MAX - min 

Learning 

rate 

MAX 

min 

Learning rate 

policy 

10_FAT_80_0.10 CIFAR10 80 
Constant 

0.90 

0.1 

0.001 
3 Steps 

10_1cyc_80_0.10 CIFAR10 80 
Constant 

0.90 

0.1 

0.0001 
1 Cycle 

10_1cyc2_60_0.10 CIFAR10 60 
1 Cycle 

0.95 – 0.85 

0.1 

0.0001 
1 Cycle 

10_1cyc2_40_0.15 CIFAR10 40 
1 Cycle 

0.95 – 0.85 

0.15 

0.00015 
1 Cycle 

10_1cyc2_40_0.12 CIFAR10 40 
1 Cycle 

0.95 – 0.85 

0.12 

0.00012 
1 Cycle 

10_1tru2_40_0.15 CIFAR10 40 
1 Cycle 

0.95 – 0.85 

0.15 

0.00015 

1 Cycle 

Truncated 

10_lin2_40_0.15 CIFAR10 40 
1 Cycle 

0.95 – 0.85 

0.15 

0.00015 
Linear Decay 

10_1half_50_0.15 CIFAR10 50 
Constant 

0.90 

0.15 

0.00015 
1 Cycle & Half 

10_warm_50_0.15 CIFAR10 50 
Constant 

0.90 

0.15 

0.015 
Warm Restarts 

10_walin_40_0.15 CIFAR10 40 
Constant 

0.90 

0.15 

0.00015 

Linear Decay 

Warm Restarts 

10_exp_45_0.12 CIFAR10 45 
Constant 

0.90 

0.12 

0.00012 

Exponential 

Decay 

10_const_40_0.15 CIFAR10 40 
Constant 

0.90 

0.15 

0.15 
Constant 

10_exp_40_0.15 CIFAR10 40 
Constant 

0.90 

0.15 

0.00015 

Exponential 

Decay 

10_warm_40_0.15 CIFAR10 40 
Constant 

0.90 

0.15 

0.0015 
Warm Restarts 

10_1cyc_40_0.15 CIFAR10 40 
Constant 

0.90 

0.15 

0.00015 
1 Cycle 

 

Table 1 – Summary of CIFAR10 simulations 
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Name Dataset 
Epochs 

(x1000) 

Momentum 

policy 

MAX - min 

Learning 

rate 

MAX 

min 

Learning 

rate policy 

100_FAT_80_0.10 CIFAR100 80 
Constant 

0.90 

0.1 

0.001 
3 Steps 

100_walin_60_0.12 CIFAR100 60 
Constant 

0.90 

0.12 

0.00012 

Linear Decay 

Warm 

Restarts 

100_exp_45_0.12 CIFAR100 45 
Constant 

0.90 

0.12 

0.00012 

Exponential 

Decay 

100_lin_40_0.12 CIFAR100 40 
Constant 

0.90 

0.12 

0.00012 
Linear Decay 

100_1cyc_40_0.12 CIFAR100 40 
Constant 

0.90 

0.12 

0.00012 
1 Cycle 

100_exp_40_0.12 CIFAR100 40 
Constant 

0.90 

0.12 

0.00012 

Exponential 

Decay 

100_warm_40_0.12 CIFAR100 40 
Constant 

0.90 

0.12 

0.0012 

Warm 

Restarts 

100_walin_40_0.12 CIFAR100 40 
Constant 

0.90 

0.12 

0.00012 

Linear Decay 

Warm 

Restarts 

100_const_40_0.12 CIFAR100 40 
Constant 

0.90 

0.12 

0.12 
Constant 

 

Table 2 – Summary of CIFAR100 simulations 

 

 

5.4.1 Natural images results  

The final results obtained with the simulations are summarized in Figures 56 – 57. 

The most important simulations have been represented in Figures 58 – 59 – 60 in 

order to better see the trends compared to the original FAT. 

The simulations were performed with various epochs values to show the 

differences even if the algorithm used is the same. Keep in mind that with the 

calculator used 10000 epochs correspond to about 5 hours of simulation, so for 

example the original FAT lasts about 40 hours of calculation, that is almost 2 days. 

If you can even halve the number of epochs, the time gain is significant. 
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Figure 56 – CIFAR10 accuracy on natural images 

Figure 57 – CIFAR100 accuracy on natural images 
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Figure 58 – CIFAR10 simulations (Part 1) 

Figure 59 – CIFAR10 simulations (Part 2) 
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5.4.2 Adversarial images results  

Figures 61 – 62 are the results obtained from the attacks. Each model suffered a 

PGD-20 attack, which is the same standard attack used against the original FAT. 

Figure 60 – CIFAR100 simulations 

Figure 61 – CIFAR10 accuracy on adversarial images 
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5.5 Conclusion 

As you can see in all the proposed graphs, the worst algorithm is the one with all 

constant hyperparameters, although the learning rate is maximum it cannot go 

deeper into the local minimum found. From these results it can be deduced that 

even the original FAT that has a 3-steps learning rate can be considered an 

optimization, but with more specific techniques the same results can be achieved 

even in half the time. The fine tuning of the hyperparameters is essential and can 

lead to super-convergence not only in normal training, but also for adversarial 

training, without affecting the result and robustness of the model itself. 

The main method used for each simulation was a "trial and error" method with the 

aim of removing the plateau areas of the training, that is, when the accuracy does 

not increase for many epochs, but remains approximately constant. By removing 

the plateau areas, an ever increasing accuracy curve can be guaranteed, thus 

optimizing training times. 

 

 

5.5.1 Future works 

During the course of this thesis, new papers have been published both for attacks 

[65] and for fast adversarial training [66], so these are new starting points for 

Figure 62 – CIFAR100 accuracy on adversarial images 
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research. 

Furthermore other techniques can be developed: 

• Evaluation of the accuracy gradient to avoid plateau areas 

• Partial image analysis 

• Search for wide minimums for more robustness 

All these ideas can be the basis for continuing research in this field. 
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