
POLITECNICO DI TORINO

Tesi di Laurea Magistrale

DAUIN
Corso di Laurea Magistrale in Mechatronic Engineering

Fast Adversarial Training for Deep Neural Networks

Nikfam Farzad

Relatore: Prof. Martina Maurizio
Correlatore: Prof. Shafique Muhammad
Tutore: Dott. Marchisio Alberto

Marzo 2020

Index

III

Index

Abstract .. VII

Part I - General Introduction ... 1

1 – Machine learning ... 3

1.1 What is machine learning ... 3

1.2 Unsupervised learning.. 3
1.3 Supervised learning .. 4

1.3.1 Regression ... 4
1.3.2 Classification .. 5

1.4 Cost function ... 6

1.5 Gradient descent ... 6
1.5.1 Batch gradient descent (BGD).. 7
1.5.2 Stochastic gradient descent (SGD) .. 7

1.6 Normal equation ...8
1.7 Hyperparameters .. 9

1.7.1 Learning rate ... 9

1.7.2 Momentum ... 10
1.7.3 Batch size .. 10
1.7.4 Weight decay .. 10
1.7.5 Epochs ..11

1.8 Datasets ..11
1.8.1 MNIST ... 12

1.8.2 CIFAR10 ... 12
1.8.3 CIFAR100 ... 13
1.8.4 ImageNet .. 13

1.9 Linear regression .. 13
1.10 Logistic regression .. 15
1.11 Neural network .. 16

1.11.1 Convolutional neural network (CNN) .. 18
1.12 Problems and resolutions ... 19

Index

IV

1.12.1 Features scaling ... 19
1.12.2 Mean normalization .. 20
1.12.3 Learning rate problems ... 20

1.12.3.1 Learning rate finder.. 21
1.12.4 Training problems .. 21

1.12.4.1 Underfitting .. 23

1.12.4.2 Overfitting .. 23
1.12.5 Random initialization ... 24

2 – Python & TensorFlow ... 25

2.1 Programming languages ... 25
2.2 MATLAB ... 25
2.3 Python ... 26

2.3.1 Self parameter .. 27
2.4 TensorFlow .. 28

2.4.1 TensorFlow functions ... 28

2.4.1.1 Piecewise constant ... 29
2.4.1.2 Exponential decay.. 29
2.4.1.3 Polynomial decay .. 30

2.4.2 TensorBoard .. 31
2.5 PyTorch ... 31
2.6 Keras ... 32

Part II - Research Field .. 33

3 – Adversarial training ... 35

3.1 Why do we need adversarial training? ... 35
3.2 Adversarial examples ... 35
3.3 Adversarial attacks ... 36

3.3.1 White-box attacks ... 38
3.3.2 Black-box attacks ... 39

3.4 Training against adversarial attacks .. 39
3.4.1 Data augmentation ... 39
3.4.2 Defensive distillation ... 39
3.4.3 Second model control .. 39

3.5 Adversarial libraries .. 40
3.6 Free Adversarial Training (FAT) ... 41

4 – Fast training .. 45

4.1 Why fast? ... 45
4.1.1 Fast training techniques ... 45

4.2 1 Cycle policy ..46

4.2.1 1 Cycle – Learning rate...46
4.2.2 1 Cycle – Momentum ... 47
4.2.3 1 Cycle – Other hyperparameters... 48

Index

V

4.3 Cyclical policy ...49
4.3.1 Cycle length ..49
4.3.2 Cycle boundary values .. 50

4.4 Warm restarts ... 51
4.5 Other implementations .. 52

5 – Fast adversarial training .. 53

5.1 Super model .. 53
5.2 FAT results .. 53
5.3 Hyperparameters tested ... 55

5.3.1 Learning rate’s shapes summary ... 56
5.3.2 Momentum’s shapes summary ... 57

5.4 Simulations ... 57
5.4.1 Natural images results ... 59
5.4.2 Adversarial images results... 62

5.5 Conclusion .. 63

5.5.1 Future works ... 63

Bibliography .. 65

Abstract

VII

Abstract

Thesis topic focuses on Machine Learning from the software point of view,
nowadays one of the research route for the management of large databases.
Machine Learning is already widely present in our daily lives and we can find it,
for example, both in the anti-spam filter of electronic mail, and in facial
recognition of cameras, in the automatic corrector of smartphones, or in weather
forecasts, etc.

The aim of the thesis is to review algorithms written in Python language for
models robust to adversarial attacks and try to apply to them fast training
techniques to improve computational time.
The word “fast training” refers to a code able to reach the skill to distinguish and
divide a large database's data in a reasonable time according to the learning rules
given by the programmer. The main criticality of fast training consists in being
able to find a quite fast algorithm but as well accurate: too much accuracy may
require learning times that are too long to be acceptable, while a high convergence
speed could lead to wrong results or even worse, do not converge, but diverge.
Instead “adversarial training” means a code that can be robust against data
modified on purpose that can not be distinguished by a human, but can have very
negative effects on a Deep Neural Network (DNN) model, for example an attack
can modify some pixels of an image without any real difference for a human eye
but completely misclassified by the DNN model.

The first steps were to study the basic concepts of the Machine Learning, then
going on to compose simple codes in Matlab, where the fluidity allows a faster
learning, to finally review and write more complex algorithms in Python, which
language flexibility allows various options on them.
The main libraries used in python for Machine Learning are TensorFlow
(provided by Google) and Pytorch (provided by Facebook). In this thesis there is a
focus on TensorFlow that allows to concentrate on the problem using a very high
level language that optimizes the computational effort of the machine.
The principal model used for this purpose is the DNN, that is a virtual
representation and simplification of human brain. This model works cyclically:

Abstract

VIII

this means that it is trained on a Training dataset of images and then tested on a
Validation dataset. Due to computational limits and to the huge dimensions of the
datasets, it can take from a few hours to several days to perform a training session,
therefore the goal of this thesis is to speed up the training time.

The general method to improve the performances of the training is the fine tuning
of hyperparameters, like as: learning rate, momentum, weight decay, batch size,
etc. Learning rate is the most important hyperparameter and by modifying its
shape and value during the training we can obtain a robust model to adversarial
attack up to 2 times faster than normal training. The tests were performed on 2
different datasets (CIFAR10, CIFAR100) and with various shapes to obtain the
best results with a “trial and error” approach.

Part I

-

General Introduction

1 – Machine Learning

3

1 – Machine learning

1.1 What is machine learning

Machine learning [1] [2] [3] is a branch of artificial intelligence present in our

daily life and which increasingly integrates with the technological systems we use

nowadays. The use of machine learning can be seen in weather forecast, in email

spam filter, in cameras facial recognition, in smartphones automatic corrector,

etc.

Machine learning is based on mathematical algorithms implemented through

software that allow a code to self-adapt to data allowing the subdivision or

recognition of the aforementioned data.

The main purpose of machine learning is to manage the large quantities of data

that are produced by large companies every day, in order to manage information

faster and efficiently.

Machine learning can be applied to the most varied types of data. During this

thesis we will mainly consider images, therefore codes able to recognize and

classify images.

Machine learning is divided into two main sections:

• Unsupervised learning

• Supervised learning

1.2 Unsupervised learning

We talk about unsupervised learning (Figure 1) when a model is not previously

trained on a dataset and therefore tries to automatically recognize and divide new

data that it has never seen before. Obviously, the model will already know the type

of data it will receive, but the classification of the latter depends on the model

itself. For example, you can use this approach when you want to divide the sound

of an audio recording from the background noise or you want to divide the various

voices present. In general it is not a widely used method, as it is less effective than

1 – Machine Learning

4

supervised learning, but in cases where there isn’t previous data it can help in the

classification of new input.

1.3 Supervised learning

The term supervised learning (Figure 2) refers to the machine learning model

mainly used, that is, based on the previous history of the data. In practice, in the

case of supervised learning, a code is trained on an already existing dataset

collected in a database, every single data item of the aforementioned database is

correctly labelled. When the code is trained all labels are shown correct, at the end

of the training the code is tested on a new dataset and its accuracy is calculated

with the number of labels it can correctly predict.

Supervised learning can generate two types of results:

• Regression

• Classification

1.3.1 Regression

In the case of regression supervised learning the system output will be continuous,

for example in the case of weather forecasts between the extreme cases of "good

weather" and "bad weather" there can be all values intermediate where the

Figure 1 – Unsupervised learning division

1 – Machine Learning

5

weather is partially cloudy with more or less sun. Regression is the trend of a

curve that is plotted based on previous data, in order to predict the future. For

example, if you analyze house prices on the basis of their size, you can make a

price forecast for a new house whose size is known and you want to obtain an

economic value in order to sell it. In carrying out this thesis we will focus mainly

on the classification case.

1.3.2 Classification

In a model created for classification, as the term itself says, the goal is to divide

the data into classes. The most classic case is the binary subdivision: 0 and 1 that

is to attribute to each data the label True or False. An example applicable to

healthcare is the classification of tumors into benign and malignant. Using a

supervised machine learning model for the classification you can show CAT

images to the model, which will produce an output with 0 or 1 to indicate

benignity or malignancy of the tumor. In the event that it is necessary to classify a

greater number of data, such as in the case of the MNIST database, which contains

60 thousand images of handwritten digits from 0 to 9, it is possible to perform a

mathematical trick to associate an intermediate value between 0 and 1 for each

label and the one with the highest value becomes the label to be associated with

that specific data.

Figure 2 – Supervised learning classification

1 – Machine Learning

6

1.4 Cost function

The cost function (Figure 3) is the equation that defines the error of the prediction

from the correct label, that is actually how far it is from the minimum point. The

cost function can be defined with different mathematical formulas, it depends on

the type of algorithm you want to use. The purpose of machine learning is to try to

minimize the cost function, that is, the more the error approaches zero, the more

the model can correctly predict the data to be classified. If the cost function is

three-dimensional, it means that you have to reach the valleys, the so-called

minimum, to have the least possible error. If the cost function is not as simple as a

hyperbolic paraboloid then the function will have several local minimum points

and only one global minimum point. Often the difficulty is to build models capable

of "jumping" out of a local minimum to try to go towards a deeper minimum.

When training is performed on large datasets, the training trend is asymptotic:

100% accuracy can only be achieved indefinitely, therefore training is often

interrupted after a number of cycles that are considered reasonable to achieve a

acceptable accuracy.

1.5 Gradient descent

Gradient descent is one of the main techniques that allows you to find the

minimum of the cost function. Its role is to proceed with each iteration towards an

area with a negative slope, therefore it exploits the derivative that allows each time

Figure 3 – 3-dimensional cost function

1 – Machine Learning

7

to find the angular coefficient of the function for each point. If the cost function

has a number of variables higher than 2 then instead of the derivative the partial

derivatives are calculated in order to obtain the gradient, hence the name gradient

descent. Here is a typical gradient descent equation:

𝜃𝐽 = 𝜃𝐽 − 𝛼 ∙
𝜕

𝜕𝜃𝐽
𝐽(𝜃)

The parameter “α” is the learning rate, that is the speed of the gradient descent,

but we’ll talk more about it in Chapter 1.7.1.

1.5.1 Batch gradient descent (BGD)

BGD (Figure 4) is mainly used for small datasets because at each step all the data

are used to calculate the gradient descent and therefore slows down the training a

lot. In the case of large datasets, mini-batch gradient descents are used, that is, a

BGD calculated on a smallest portion of the dataset.

1.5.2 Stochastic gradient descent (SGD)

The SGD (Figure 5) function is to randomly search for an optimal path towards

the minimum zone, this allows you to avoid calculating the gradient descent for

Figure 4 – Batch gradient descent

1 – Machine Learning

8

the whole database at each iteration, since it is a computationally expensive

operation. So it is a technique used mainly for large datasets that does not clearly

follow the path of descent to the shortest minimum, but takes longer to find the

minimum, this is compensated by the fact that the iteration number to produce

the SGD is much lower than a normal gradient descent.

1.6 Normal equation

Normal equation is an alternative to the gradient descent that does not use the

learning rate hyperparameter, does not need iterations, but simply uses matrices,

as large as the features, that is, the system inputs. This method, however, is not

often used because, despite it is more immediate for small datasets, it is not at all

manageable on large amounts of data. In particular it is not easily adjustable and

although it does not need many cycles, it still needs to calculate the inverse of

some matrices, an algebraic operation often not recommended that can lead to

singularities.

𝜃 = (𝑥𝑇 ∙ 𝑥)−1 ∙ 𝑥𝑇𝑦

Figure 5 – Stochastic gradient descent

1 – Machine Learning

9

1.7 Hyperparameters

With hyperparameters [4] we mean all those parameters that directly influence a

training, during the course of this thesis we will mainly consider the following

hyperparameters:

• Learning rate

• Momentum

• Batch size

• Weight decay

• Epochs

1.7.1 Learning rate

The learning rate “α” (Figure 6) is the most important hyperparameter, since it

controls the speed of the gradient descent in the minimum of the cost function. It

appears in the gradient descent formula regardless of the cost function and its

derivative, it is the angular coefficient of descent and can be varied during the

training. The higher the value of the learning rate, the faster the gradient descends

along the slopes, but if the value is too high, there is a risk of not going down to

the minimum and diverging. To find the maximum value of the learning rate that

can be used for a certain model and a given dataset, it is advisable to launch a test

as a first training where the learning rate varies exponentially from very small

values to very large values going through various orders of magnitude in order to

find the optimal order of magnitude. Further on we will show you how to find the

correct learning rate. In most trainings, the value of the learning rate starts to

drop towards the end of the training in order to go deeper into the local minimum

in which you are.

Figure 6 – Normal learning rate

1 – Machine Learning

10

1.7.2 Momentum

The momentum is a hyperparameter that is added to control other parameters

during the training, therefore their weight in speeding up the training in order to

quickly reach convergence. For example, the weight of the gradient descent can

vary during the various iterations. It is not necessary to have momentum during a

training, but it allows you to quickly check the weight of the equations within the

code throughout the training period without having to intervene directly on the

code for changes.

1.7.3 Batch size

The batch size [5] is a parameter used especially in large datasets because often

the computational capacity of the computers does not allow to manage all the

available data at the same time and therefore the training is iterated slowly over a

dataset at a time, this set is the batch size. For example, if the dataset contains

50000 images and the batch size is set to 100, it means that for every single cycle

500 iterations will be performed, each with 100 different images of the dataset, so

that for each cycle all the images are analyzed once each, but in blocks of 100 at a

time. Often the batch size is set to a power of 2 because the calculators have an

available memory calculated as a multiple of 2, obviously the larger the batch size

the better the training, because the number of images compared at each iteration

will be greater, but at the same time the training will become increasingly slow. A

value for the batch size between 100 and 1000 is often more than acceptable as a

compromise between total training time and quality of the result. The batch is one

of the factors that directly affects the duration of the training.

1.7.4 Weight decay

The weight decay represents the speed with which the weight of some variables

decays during the training process, specifically the weight of the coefficients of the

variables is decided which are gradually less important than the constant term of

the cost function. This weight loss is due to the fact that not all variables have the

same importance within the cost function and some are more influential than

others. A trivial, but easy-to-understand example can be: to determine if a patient

has a certain type of tumor or not, all the input data are analyzed, for example:

age, weight, gender, previous diseases, alcohol dependence / smoke, etc. , but not

all these variables have the same importance for the tumor examined, certainly

the hair color is almost not influential at all and therefore it is not even considered

for evaluation purposes. This simple example is an application of the weight decay

1 – Machine Learning

11

based on the variables involved. During this thesis the weight decay has been kept

fixed for all the training so as not to influence the other hyperparameters, but

nothing prevents it from being modified during the training to try to obtain better

results.

1.7.5 Epochs

Epochs [5] are probably the easiest hyperparameter to understand, i.e. they

represent the total number of training cycles. During each epochs all data are

analyzed at least once and all processes are performed. Each epoch is identical to

the previous one, unless other hyperparameters are configured in such a way as to

vary gradually with the passing of the epochs. Theoretically, if all the other

hyperparameters are set correctly, then for an infinite number of epochs an

accuracy of 100% on the data can be achieved, i.e. the learning curve is asymptotic

and tends to infinity. Epochs, together with batch size, are one of the factors that

directly influence the duration of the training. The training always lasts a finite

and whole number of epochs and this is the equation for calculating cycles in 1

epoch:

1 𝑒𝑝𝑜𝑐ℎ =
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

1.8 Datasets

To work in the field of machine learning, it is necessary to have databases on

which to perform the training. There are several ready to use, the main ones used

during this thesis are:

• CIFAR10

• CIFAR100

• MNIST

• ImageNet

Each dataset is divided into 2 different sets:

• Training set: used to train the model in image recognition and to test its

accuracy.

• Validation / test set: used as an external dataset to test the model on

images never seen and therefore to verify that the model has not "become

accustomed" only to the training set, but that it can also work on unknown

data. Generally the accuracy is less than that obtained with the training set.

1 – Machine Learning

12

The number of data in a test set is generally equal to or less than the

training set, so that much of the data is used for training.

1.8.1 MNIST

The MNIST [6] is a dataset consisting of 60 thousand images, divided into:

• 50 thousand images for training

• 10 thousand images for validation / test

The images are divided equally into 10 classes depicting the digits 0 to 9 written

by hand (Figure 7) and therefore the goal of this dataset is to train models capable

of recognizing and interpreting handwritten numbers. The images have a 28x28

pixels format in black and white. Part of this dataset was mainly used in the first

part of this thesis.

1.8.2 CIFAR10

The CIFAR10 [7] is also similar to the MNIST, but instead of using classes

depicting handwritten digits, it has 10 classes depicting various things, including:

airplanes, cars, dogs, cats, etc. (Figure 8) Each image is exclusive to the others,

that is, a single image cannot represent two or more classes simultaneously. The

size of each image is 32x32 pixels in color.

Figure 7 – An example of the MNIST dataset [6]

1 – Machine Learning

13

1.8.3 CIFAR100

The CIFAR100 [7] is a dataset similar to the CIFAR10 composed of 60 thousand

images, equally distributed to the cifar10, but instead of 10 classes there are 100

different classes and therefore consequently it is more complicated to be able to

obtain a good result during the training.

1.8.4 ImageNet

It is one of the largest existing datasets [8] [9], it contains more than 1 million

images, with various formats and divided into 1000 classes. This dataset is often

used for the final validation of a model, but requires considerable hardware

resources. During this thesis it has often been considered as a reference dataset,

but never really used for the computational limits due to the computer in use.

1.9 Linear regression

Linear regression (Figure 9) is one of the simplest methods for approaching the

world of machine learning and consists in dividing data, that is, drawing a line

that can identify the delimitation area between the various groups.

Figure 8 – An example of the CIFAR10 dataset [7]

1 – Machine Learning

14

It falls into the category of supervised regression learning and its constitutive

function can always be simplified to a polynomial sum, where all the various

inputs appear. The simplest form is:

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥

The cost function in this case consist in the statistical variance, that is, an average

of the square of the distance between the expected value (y) and the value

obtained from training (h).

𝐽(𝜃) =
1

2𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
𝑚

𝑖=1

The gradient descent is obtained simply by updating the past gradient from time

to time with the new gradient of the cost function damped with the learning rate

hyperparameter.

𝜃𝐽 = 𝜃𝐽 − 𝛼 ∙
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) ∙ 𝑥𝐽

(𝑖)
 𝑤𝑖𝑡ℎ 𝑥0

(𝑖)
= 1

𝑚

𝑖=1

Figure 9 – Linear regression

1 – Machine Learning

15

1.10 Logistic regression

Logistic regression falls into the category of supervised learning, but unlike the

name, it is a model for classification. The term logistic refers to the type of

function that allows you to switch from the continuous domain to the discrete one

in order to obtain the classification, this function is also called Sigmoid (Figure

10).

𝑔(𝑧) =
1

1 + 𝑒−𝑧

As we can see, the sigmoid function classifies all inputs as output 0 or 1, rounding

to the nearest integer.

Figure 10 – Sigmoid function

Figure 11 – Logistic regression

1 – Machine Learning

16

In the specific case of logistic regression (Figure 11), the constitutive function that

exploits the sigmoid function can be written as:

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥) =
1

1 + 𝑒−𝜃𝑇𝑥
 → 0 ≤ ℎ𝜃(𝑥) ≤ 1

The cost function deriving from this function exploits the logarithms to be able to

dampen the effects of the exponential basis of the sigmoid function and therefore

turns out to be different from the cost function of the linear regression.

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖) ∙ 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) ∙ 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))]

𝑚

𝑖=1

The equation for calculating the gradient descent is similar to that of linear

regression, but obviously it will have a different constitutive equation inside.

𝜃𝐽 = 𝜃𝐽 − 𝛼 ∙ ∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) ∙ 𝑥𝐽
(𝑖)

𝑚

𝑖=1

1.11 Neural network

A model based on a neural network [10] as the name implies takes inspiration

from the complexity of our brain. These types of models are among those that

manage to obtain the best results and it is believed that by developing variants

increasingly similar to the natural conformation of the human brain, the results of

accuracy during training can also be improved. Neural networks are based

precisely on the concept of networks (Figure 12) where each node is connected to

many other nodes through links.

Figure 12 – Network with nodes and links

1 – Machine Learning

17

In this specific case the nodes are divided into layers (Figure 13), and the more

layers there are, the more complex the neural network becomes.

A neural network is defined as deep (DNN) [11] [12] [13] [14] [15] when in

addition to the input and output layers there are more than 1 hidden or transition

layers (Figure 14).

Figure 13 – Neural network with one hidden layer

Figure 14 – Deep neural network with more than one hidden layers

1 – Machine Learning

18

The neural network remains in the category of supervised classification learning

and allows to classify various categories, based on the number of nodes of the

output layer, so if for example we are working on the CIFAR10 dataset which

classifies 10 different objects then our deep neural network will have 10 nodes in

the last layer, the output layer, and each node will correspond to a class. The input

nodes, on the other hand, correspond to all the input parameters, while the nodes

of the central layers do not have a real physical meaning and can be in variable

numbers. Since the neural network is a model for classification, also in this case

the sigmoid function is exploited and the resulting constitutive function is:

𝐽(𝜃) = −
1

𝑚
∑ ∑ [𝑦𝑘

(𝑖)
∙ 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖)))

𝑘
+ (1 − 𝑦𝑘

(𝑖)
) ∙ 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))

𝑘
]

𝑘

𝑘=1

𝑚

𝑖=1

+
𝜆

2𝑚
∑ ∑ ∑ (𝜃𝑗

(𝑙)
)

2
𝑆𝑙+1

𝑗=1

𝑆𝑙

𝑖=1

𝐿−1

𝑙=1

In order not to make the treatment too heavy, other technical details on neural

networks will not be added, but for a more detailed study, the publications

mentioned at the end of the thesis can be consulted [10] [11] [12] [13] [14] [15].

Through various researches, it has been noticed that by increasing the number of

hidden layers too much, we reach a point where the accuracy of the model does

not grow, but on the contrary begins to decrease, therefore various variations to

the classic DNN have been invented, including the CNN (convolutional neural

network).

1.11.1 Convolutional neural network (CNN)

This type of neural network was created by taking inspiration from the animal

visual cortex (Figure 15). The basic idea of a CNN lies in dividing the images into

areas and extracting from each of them the most important features for evaluation

purposes. CNNs are mainly used for the recognition of images and natural

language. There are different CNNs model [16], among which the most important

are:

• AlexNet

• VGG

• LeNet

• GoogLeNet

• ResNet

1 – Machine Learning

19

In some CNN variants, like ResNet (residual neural network) [17] [18] [19], not all

the nodes of each layer are connected to the nodes of the next layer and not all the

layers are taken into consideration at each cycle, this is because it has been

noticed that even the neurons of the human brain do not have a perfection in the

connections, but being a product of nature, they have many gaps and variations

(Figure 16).

1.12 Problems and resolutions

There can be various types of errors during a machine learning process, we will

see some of these and their resolutions in this paragraph.

1.12.1 Features scaling

The features are all the input parameters on which the training is based, but these

variables do not always have values with similar orders of magnitude and this can

often lead to computational problems when operations between use very large

values and very small. To overcome this problem, feature scaling is used, that is,

all parameters are rescaled on the same interval, as for example [0,1], so that each

parameter, despite having different meanings, can be readable by the machine

Figure 16 – Close up on ResNet model [18]

Figure 15 – Scheme of convolutional neural network

1 – Machine Learning

20

with the same computational effort. In order to obtain this rescaling, the formula

used is:

𝑥𝑛𝑒𝑤 =
𝑥

𝑁𝑥
°

 𝑤𝑖𝑡ℎ 𝑁𝑥
° = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥

𝑒. 𝑔. : 𝑖𝑓 0 ≤ 𝑥 ≤ 2000 → 𝑁𝑥
° = 2000

1.12.2 Mean normalization

Mean normalization is an operation that is often carried out in parallel with the

feature scaling in order to obtain not only values within a certain range, but also

with a certain average value, therefore if for example the interval is [-1, 1] then the

average value will be around 0.

𝑥𝑛𝑒𝑤 = 𝑥 − 𝑥𝑚𝑒𝑎𝑛 𝑤𝑖𝑡ℎ 𝑥𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥

𝑒. 𝑔. : 𝑖𝑓 0 ≤ 𝑥 ≤ 2000 → 𝑥𝑚𝑒𝑎𝑛 = 1000

These feature scaling and mean normalization operations must be carried out for

each individual feature taken into consideration before the start of the training

process.

𝑥𝑛𝑒𝑤 =
𝑥 − 𝑥𝑚𝑒𝑎𝑛

𝑁𝑥
°

1.12.3 Learning rate problems

The learning rate, as already specified in the paragraph dedicated to it, is the most

important hyperparameter and consequently it is the one on which more attention

must be paid.

Figure 17 – Left: small learning rate; Right: large learning rate

1 – Machine Learning

21

With values that are too small (Figure 17 - left), there is a risk of not continuing

forward during the training, remaining in a stall area or otherwise proceeding so

slowly as to make the training useless. On the contrary, with too large values

(Figure 17 - right) there is the risk of not being able to enter the minimum of the

function in order to increase the accuracy and in the case of extreme values it is

even possible to go to divergence and therefore bring the accuracy to values close

to 0.

1.12.3.1 Learning rate finder

In order to find the correct value of the learning rate, there are various dedicated

libraries for different programming languages, but the simplest method is to do a

fairly long training, about 50 to 100 thousand epochs, during which the learning

rate changes exponentially from very small values to very large values, the best

choice is to try to vary the learning rate by at least 10 orders of magnitude

throughout the training. Theoretically, if all the various parameters have been

normalized then often the learning rate will be a value between 0.001 and 10, for

this reason it is better to fully cover this range during the training. Once the test

training is finished then it will be enough to take a look at the accuracy and error

graph to find the maximum recommended learning rate.

As can be seen in Figure 18 for very small values of the learning rate, accuracy and

error practically do not vary, however from a certain point onwards the error

decreases up to a minimum and then goes up and diverges. This shows us that the

actually useful learning rates are those included in the area of descent of the error,

that is, from the initial plateau to the minimum point, beyond which the

divergence begins. It is advisable to use a maximum learning rate value of about

one order of magnitude lower than that found for the minimum point of the error,

so as to be far enough from the divergence zone. So the learning should vary in the

range between the start of the slope in the error up to an order of magnitude

before the minimum point.

1.12.4 Training problems

During the training there may be problems related to the dataset in use and how

the data are analyzed, consequently the training could lead to a model too adapted

to the data on which it was trained or on the contrary too poorly adapted. These

problems fall mainly into two categories:

• underfitting

• overfitting

1 – Machine Learning

22

Figure 18 – Learning rate finder

1 – Machine Learning

23

1.12.4.1 Underfitting

Underfitting (Figure 19) denotes a problem of high bias, that is, the error is too

high and the model has not trained enough or is not suitable for a certain type of

dataset, generally in the underfitting phase whether you test the model on training

set that on the validation set in both cases the error will be high. To overcome this

problem, it is often enough to increase the number of features by trying to make

the model more precise and also increasing the training time so that the model has

the time necessary to acquire the information.

1.12.4.2 Overfitting

When overfitting (Figure 19) occurs it means that there is a high variance

problem, that is, the model has adapted specifically to the dataset on which it has

trained, but would not be able to obtain the same results with a dataset never seen

before. This error is typical and can be seen when for long periods of training the

error for the training set continues to decrease, while that for the test set reaches

an asymptotic level below which it does not drop or in any case decreases less

quickly than the training set. If up to a few epochs before, the accuracy which in

percentage divided the training set from the validation set was almost constant

now instead tends to increase denoting a model too accustomed to the training

set. To avoid this problem it is often enough to decrease the number of epochs, if

excessive, or in most cases it is necessary to decrease the number of constraints

and features in order to leave more margin of error to the model. For DNN models

we can use dropout layers, which, for each epoch, will randomly remove certain

features by setting them to zero and consequently the overfitting problem is

solved.

In general, for underfitting and overfitting problems, it is possible to act on

hyperparameters or features with regularization factors in order to create a

reliable and robust model.

Figure 19 – Underfitting and overfitting

1 – Machine Learning

24

1.12.5 Random initialization

Often in machine learning it is necessary to have initial values for the variables

with which to start and they are generally set to zero, but this choice is not always

correct, since, especially in complex searches like these, it is better not to have

initial symmetries in the model that they could lead the model to suddenly diverge

or not to move at all from the initial null values. As an example, it can be thought

that placing a ball on the top of a pointed pyramid is perfect and symmetrical, but

given the unstable equilibrium, a small disturbance is enough to bring the model

to complete ruin. Conversely, if the ball is placed on the bottom of a narrow and

high basin, the ball can hardly go up the walls even in the presence of strong

perturbations. So to avoid cases of singularities often the initial variables are

placed random, this entails different results for each launch of the same training,

but from a statistical point of view the variations are minimal and considering the

average there will be acceptable and verified results.

2 – Python & TensorFlow

25

2 – Python & TensorFlow

2.1 Programming languages

To be able to enter the world of machine learning it is necessary to use the

programming languages. There are several, but those that are most useful for this

purpose are those that allow efficient matrix calculation, since machine learning is

mainly based on the management of large matrices. High-level languages are

therefore more useful and most of the work is left to the interpreter. During this

thesis two languages have been used mainly, that is:

• MATLAB

• Python

Each programming language has its own optimized libraries for mathematical

calculation, but dedicated machine learning libraries have been developed which

have often been released for various languages and therefore we will treat them as

independent libraries:

• TensorFlow

• PyTorch

• Keras

2.2 MATLAB

MATLAB [20] is a programming language optimized for matrix calculation and

for the representation of plots. Given the size of the dataset to be managed,

writing in MATLAB improves code’s formatting and understanding. Below there is

an example of how normal equation (Chapter 1.6) can be calculated with

MATLAB:

y = [1 2;3 4];
x = [5 6;7 8];
theta = inv(x' * x) * x' * y

2 – Python & TensorFlow

26

Output:

theta =

 5.0000 4.0000
 -4.0000 -3.0000

To perform the same operation in a language like C, it would have taken many

more lines of code and this explains why MATLAB is so useful in this field.

However, as it is not an open-source language, it does not have many libraries

optimized for machine learning and therefore for more in-depth studies, it is

necessary to turn to the Python language.

2.3 Python

Python [21] [22] is a high-level programming language developed by Guido van

Rossum in the 90s, it is object-oriented and open-source. It can be used for

various functions: writing an application, sending an email, sending notifications

through a Telegram bot, etc. It has been continuously improved and expanded,

but since version 2.7 there has been a division that led to the creation of version

3.x. Currently only version 3.x is constantly updated and in many parts no longer

compatible with version 2.7.

Being open-source it is one of the most used languages in the world, also in the

scientific field [2] [1] for which there are various dedicated libraries, such as:

• Numpy - for matrix calculation and generic mathematical functions, it

creates arrays to identify matrices

• Scipy - for mathematical analysis

• Matplotlib - for plotting graphs

• Pandas - for data analysis

• Scikit - for machine learning

Since Python is not optimized for matrix calculation as MATLAB, is not as

immediate as the latter, but thanks to the aforementioned libraries it can manage

the matrices. Here is the normal equation (Chapter 1.6) calculated with Python:

import numpy as np

y = np.array([[1,2],[3,4]])
x = np.array([[5,6],[7,8]])

2 – Python & TensorFlow

27

x_tra = np.transpose(x)
x_inv = np.linalg.inv(x_tra @ x)

theta = x_inv @ x_tra @ y

Output:

theta =
array([[5., 4.],
 [-4., -3.]])

2.3.1 Self parameter

The "self" parameter [23] in Python represents the instance of the class and allows

to recall the attributes and methods of the class in question. Here is an example to

better explain its function:

class example(object):

 def __init__(self,sun):
 self.sun=sun
 print(sun+2)
 print(self.sun+10)

 def cloud(self):
 self.rain=5*5+100
 self.rainbow=self.rain+1
 print(self.rain+self.sun)

x=5
example(x)
print('-------------')

y=example(-6)
print('=============')
y.cloud()
print('+++++++++++++')
print(y.rain)

2 – Python & TensorFlow

28

Output:

7
15

-4
4
=============
119
+++++++++++++
125

Trough “self” parameter, as you can see, it is easier to perform calculations with

variables.

2.4 TensorFlow

TensorFlow [24] [25] is a machine learning library released by Google in 2015.

Since its release it has become the most used library in association with Python

language, since they are both open source and TensorFlow allows you to automate

training very well. TensorFlow is not always intuitive [26], but with many

fundamental functions for the simplification of the code.

The logic on which TensorFlow is based are tensors [27], which are

multidimensional matrices, and as the name suggests is a calculation based on the

flow of tensors. Despite being used with Python, TensorFlow does not follow its

logic [28] and bases its calculation on a graph system. When building variables in

TensorFlow they are not instantly stored in RAM, but they become part of a graph,

with all the variables and operations to be performed, and only once the run

command is executed then actually the graph is calculated.

Even TensorFlow, like PyTorch, can be used with CUDA [29] and therefore use

the computing power of Nvidia GPUs. The current version of TensorFlow is 2.x,

but many codes are written with version 1.9 or earlier which differ in part with the

2.x.

2.4.1 TensorFlow functions

Here are some examples of functions in TensorFlow:

• Piecewise constant

• Exponentially decay

• Polynomial decay

2 – Python & TensorFlow

29

2.4.1.1 Piecewise constant

tf.train.piecewise_constant(x, boundaries, values, name=None)

The function (Figure 20) uses a global variable x and divides the values among

the various boundaries. An example:

global_step = tf.Variable(0, trainable=False)
boundaries = [100000, 110000]
values = [1.0, 0.5, 0.1]

learning_rate = tf.train.piecewise_constant(global_step,
boundaries, values)

2.4.1.2 Exponential decay

tf.train.exponential_decay(learning_rate, global_step,
decay_steps, decay_rate, staircase=False, name=None)

This function (Figure 21 - left) calculates the exponential decay [30] according to

the formula:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∙ 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒
𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝
𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝𝑠

If staircase is True then global_step / decay_step becomes integer and

there is a trend ad shown in (Figure 21 - right).

Figure 20 – An example of piecewise constant trend

2 – Python & TensorFlow

30

2.4.1.3 Polynomial decay

tf.train.polynomial_decay(learning_rate, global_step, decay_steps,
end_learning_rate=0.0001, power=1.0, cycle=False, name=None)

The polynomial decay (Figure 22 - left) is calculated as follows:

𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝 = 𝑚𝑖𝑛(𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑒𝑝, 𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝)

𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 − 𝑒𝑛𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) ∙ (1 −
𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝

𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝
)

𝑝𝑜𝑤𝑒𝑟

+ 𝑒𝑛𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒

Figure 21 – Left: normal exponential decay; Right: staircase exponential decay

Figure 22 – Left: normal polynomial decay; Right: cycle polynomial decay

2 – Python & TensorFlow

31

If cycle is True (Figure 22 - right) then decay_steps becomes:

𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝𝑠 = 𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝𝑠 ∙ 𝑐𝑒𝑖𝑙 (
𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑡𝑒𝑝

𝑑𝑒𝑐𝑎𝑦_𝑠𝑡𝑒𝑝
)

The ceil function returns the smallest integer value greater than the input.

2.4.2 TensorBoard

TensorBoard (Figure 23) is a tool that provides a graphic interface to TensorFlow

and acts as a valid help tool for:

• Plotting accuracy and loss

• Displaying the TensorFlow graph

• Showing histograms and tensors values that change over time

• Displaying the data, such as images, texts, etc.

2.5 PyTorch

It is a library [31] released by Facebook for machine learning. It is more intuitive

than other libraries in the same field and also allows for ease of use, but having

been released later than TensorFlow many codes are currently written only for

TensorFlow, for which more detailed documentation is generally found. For

Figure 23 – An example of TensorBoard interface

2 – Python & TensorFlow

32

managing arrays, PyTorch uses a class called Tensor with which it creates

multidimensional arrays whose operations can also be performed on CUDA-

capable [29] Nvidia GPU.

2.6 Keras

Keras is a library [32] for machine learning currently written only in Python

language. It is mainly used for a rapid realization of DNNs. Compared to other

libraries it is at a higher level, allowing a higher level of abstraction. During the

course of this thesis it was initially used to test basic machine learning codes for

Python. It can be used in conjunction with TensorFlow.

Part II

-

Research Field

3 – Adversarial Training

35

3 – Adversarial training

3.1 Why do we need adversarial training?

Adversarial training [33] [34] [3] [13] is a branch of machine learning that deals

with creating robust models against adversarial attacks. For years the training has

only been concerned with looking for models that could achieve ever greater

accuracy, up to reaching such high standards as to exceed even the human being

in certain datasets, but as in any field of computer science there can be a malicious

attack from the outside with the intention of carrying out illegal actions. For

example, machine learning [35] is used in banking to easily recognize handwritten

numbers, but if a model is attacked it would lead to incorrect evaluation of the

numbers with serious consequences. In other cases, facial, voice or fingerprint

recognition is used to unlock certain services and even in this case an external

attack can cause damage. To counter these attacks we need robust models with a

good accuracy. The problem was that the real robustness of these models was not

known, that is, whether these models were truly able to respond adequately in

case of random or targeted variations. At the beginning of the 2010s, after various

researches, this new branch was born which is called adversarial training.

3.2 Adversarial examples

The basic logic is to create imperceptibly modified examples [36] and see if the

model can recognize them or not. If the examples were modified with a random

logic then there would be no problems, since the model would fail, but a human

being would also fail and therefore the problem does not exist, however in the

event of a malicious attack some examples could be modified in order to mislead a

classic model, but without any obvious variation for the human eye. As can be

seen in (Figure 24) the two images (original and modified by attack) are identical

to the human eye, but every single pixel has been modified according to the plot

that can be seen in the middle.

3 – Adversarial Training

36

This means that a model can be attacked very easily without obvious external

signs, in reality the situation is more complex than it seems because just as two

identical images to the human eye deceive a model, on the contrary there are

completely modified images (Figure 25) that the model succeeds to recognize.

3.3 Adversarial attacks

A model can learn to recognize images, but in a completely different way from how

a human being does it, so there are various attack logics. Some attacks are based

on varying a single pixel (Figure 26) [37], others on some features of the image,

but the most common case is to calculate the division line that distinguishes one

class from another.

Figure 24 – An example of adversarial attack: a macaw is misclassified as a bookcase [36]

Figure 25 – Some images correctly identified by the machine

3 – Adversarial Training

37

In a simple example with two classes the decision boundary looks like in the

Figure 27. A targeted attack would take all the borderline cases, so in the case of

an image it would take the pixels closest to the edge of the line, and vary them just

enough to make them cross the line (Figure 28 - left) in order to completely distort

the classification without actually changing much. All this in a complex image

creates two identical images, but really different for a model.

Figure 26 – Examples of single pixel attack [37]

Figure 27 – Decision boundary between two classes

3 – Adversarial Training

38

In some cases the pixels do not change, but it is the separation line that

distinguishes the classes that moves (Figure 28 - right) changing the boundary

between the classes themselves, equally leading to a misclassification.

Attacks are mainly divided into 2 categories:

• White-box

• Black-box

3.3.1 White-box attacks

This is the easiest type of attack [38] to perform. It is based on the knowledge of

the internal structure of the model to be attacked (Figure 29), in this way the

attack is more specific and the damage caused increases. The white-box attack was

used during this thesis.

Figure 28 – Two ways of fooling a classifier – Left: pixels moving; Right: line moving

Figure 29 – White-box VS black-box attack [38]

3 – Adversarial Training

39

3.3.2 Black-box attacks

A black-box attack [39] means that the attacker does not know the internal

structure of the model and tries to create a blind attack (Figure 29). Obviously

these types of attacks are less effective but applicable to multiple models without

significant variations. In 2017, a challenge was realized [38] based on this type of

attack to verify the resistance of the model created.

3.4 Training against adversarial attacks

Various techniques can be used to create models resistant to enemy attacks:

• Data augmentation

• Defensive distillation

• Second model control

Once the logic between attack and defence [40] [41] of the models is understood,

the main problem is to train robust models in reasonable time and not too long

compared to the classic training algorithms.

3.4.1 Data augmentation

This is the main technique to counter attacks by training models on already

attacked images [42] and not only on correct images, significantly increasing the

accuracy against attacks, sometimes from 0% it can also reach an accuracy of

about 50% [43] [44], but of course this means that the accuracy on normal images

decreases and often falls below the accuracy level of a human being [45].

3.4.2 Defensive distillation

This type of defence consists of two phases in which training takes place through a

process called distillation and prevents the model from adapting too much to the

data it is examining. This technique has been studied in particular in some papers

[46] and works very well on some types of specific attacks, but it is not robust for

all types of attacks.

3.4.3 Second model control

The second model control [47] uses another model that is trained on the main

neural network and its internal characteristics so that it can predict whether the

3 – Adversarial Training

40

example analyzed is adversarial or not. In practice, this technique uses an

"external guard" logic that controls the whole process to verify its effective

operation. It is a robust technique, but still under study to actually verify its

effectiveness [48] and complexity.

3.5 Adversarial libraries

To allow the attacks there are various libraries, among which the main ones are:

• Cleverhans

• Foolbox

Both libraries [49] [50] have been tested to create attacks, using both PyTorch and

TensorFlow. The logic is similar for both, you have to convert the model to the

specific model of the attack library, choose the parameters and finally decide the

type of attack. Once the structure is created, the model is attacked and its accuracy

is tested.

Below there are the basic steps and results (Figure 30) for the Foolbox [51] library,

the one mainly used during this thesis. It is a simple example with Python and

PyTorch [52].

import foolbox
import numpy as np
import torchvision.models as models

get model in PyTorch
model = models.resnet18(pretrained=True).eval()
preprocessing = dict(mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225], axis=-3)

create model in Foolbox
fmodel = foolbox.models.PyTorchModel(model, bounds=(0, 1),
num_classes=1000, preprocessing=preprocessing)

get a batch of images and labels and print the accuracy
images, labels = foolbox.utils.samples(dataset='imagenet',
batchsize=16, data_format='channels_first', bounds=(0, 1))
print(np.mean(fmodel.forward(images).argmax(axis=-1) == labels))

apply the attack
attack = foolbox.attacks.FGSM(fmodel)
adversarials = attack(images, labels)

3 – Adversarial Training

41

print(np.mean(fmodel.forward(adversarials).argmax(axis=-1) ==
labels))

print the first image with matplotlib
[…]

Output:

0.9375
0.0

3.6 Free Adversarial Training (FAT)

During the thesis, various papers [53] [54] were evaluated to verify the state of the

art in this field and, in the end, Free Adversarial Training (FAT) [55] was chosen

as the baseline code for the experiments.

The FAT code is based on a deep neural network (DNN) and the structure is based

on a residual neural network (ResNet) model. The attacks are generated with a

projected gradient descent (PGD) [56] logic and the various hyperparameters can

be decided. There are 2 datasets that can be used: CIFAR10 [7] and CIFAR100 [7].

In the first part of the thesis the results of the original paper were replicated and

afterwards the changes for the improvements were applied.

The code is made up of various files:

• free_train.py – the main code that allows you to train your adversarial

examples

• free_model.py – the modified ResNet model used by FAT with its

convolutional layers

Figure 30 – Adversarial example generated using Foolbox [49]

3 – Adversarial Training

42

• config.py – a configuration code that allows you to simply change the

training and attack inputs from the command line

• cifar10_input.py – the preparation code of the CIFAR10 dataset

• cifar100_input.py – the preparation code of the CIFAR100 dataset

• multi_restart_pgd_attack.py – the code that creates adversarial examples

for both training and evaluation tests

The main FAT algorithm on which its code is based can be seen in (Figure 31)

To better understand the algorithm, here is the list of variables used:

• X – training samples

• ε – perturbation bound

• τ – learning rate

• θ – learning coefficient

• δ – actual perturbation

• Nep – number of epochs

• B – minibatch

• g – gradient descent

• x – single image

• y – single label

• m – hop step

Figure 31 – FAT algorithm [55]

3 – Adversarial Training

43

The “m” parameter is the heart of this algorithm also called Free-m. The m allows

to repeat the perturbation several times for each single minibatch in order to

obtain adversarial examples within the limits set by the parameter “ε”. By keeping

“m = 1” a normal training is obtained, while increasing “ε” out of proportion would

cancel the purpose of the research itself because the images would be too altered

even for the human eye.

4 – Fast Training

45

4 – Fast training

4.1 Why fast?

We need a fast training to meet an ever increasing demand for large databases to

be managed in real time. For example, for the development of self-driving

machines, a machine learning system is needed for instantly recognizing road

signs, traffic lights or obstacles and must be able to constantly adapt to changes.

In the case of websites that manage large databases, such as: Google, YouTube,

Facebook, etc., machine learning allows you to manage the constant flows of

incoming data, trying to provide the user with the fastest possible response. Just

as the world around us goes faster and faster, such as means of transport, machine

learning must also adapt to ever faster response times.

Fast training includes all the techniques used in machine learning to speed up

training times. With current processors, CPUs and GPUs, computation times for

full training can last from a few hours to several days.

To increase the speed there are various ways:

• in some cases specific techniques are used for the type of model considered,

for example only DNNs [57] [58] [59] or even more specifically only ResNet

are examined

• in other cases generic modifications are implemented that are applicable to

almost all models

4.1.1 Fast training techniques

The specific techniques are different from code to code and therefore each

research work shows its application. For example, for DNNs there are often

changes to certain layers [55] [54] , but these techniques have not been covered in

this thesis.

On the other hand, generic techniques mainly include the changes to be made to

hyperparameters and more specifically to the learning rate [60], since variable

4 – Fast Training

46

values can give better results in terms of performance compared to constant

values. Among the various state-of-the-art fast training methodologies proposed

in the literature, the most important in this regard were the following:

• 1 Cycle policy

• Cyclical policy

• Warm restarts

4.2 1 Cycle policy

The 1 cycle policy [61] is based on the principle of varying the learning rate and

other hyperparameters during the training course to obtain fast training. As the

name implies, the basic idea is to apply a single cycle to this hyperparameters

throughout the training. High learning rate values with the 1 cycle policy lead to

the reduction of other regularization values since the 1 cycle policy is a

regularization in itself.

4.2.1 1 Cycle – Learning rate

After finding the maximum learning rate through the learning rate finder, (Figure

32) an initial value equal to 1/10 of the maximum is set, after which for about 90%

of the total training (90% of the total epochs) there will be a complete cycle from

1/10 of the maximum, up to maximum, to then return to 1/10 of the maximum. In

the last epochs, equal to about 10% of the total, there will be a rapid drop in the

learning rate up to a value equal to 1/1000 of the maximum. The logic behind this

cycle is:

• start with a fairly high and acceptable learning rate

• continue to increase it to descend more rapidly into the local minimum or

to find deeper minimums

• decrease the learning rate again to enter more deeply into the minimum

found

• drastically reduce the learning rate to try to reach the local minimum point

If the final part of drastic reduction lasted too many epochs, there would be

overfitting, while if it lasted too little, the accuracy would remain too low.

An example of code to create the learning rate shape using the TensorFlow

polynomial decay function:

lr_deeper=train_steps*0.9
lr_max=0.15

4 – Fast Training

47

lr_1=tf.train.polynomial_decay(-lr_max*1.8, global_step,
lr_deeper/2, 0.0, 1.0)
lr_2=tf.train.polynomial_decay(lr_max*1.8, global_step, lr_deeper,
0.0, 1.0)
lr_3=tf.train.polynomial_decay(lr_max/1000, train_steps-
global_step-1, train_steps-lr_deeper-1, lr_max/10, 1.0)

learning_rate=lr_1+lr_2+lr_3

Here is the meaning of the variables:

• lr_max – maximum learning rate found with learning rate finder

• lr_deeper – the moment when the cycle starts the last piece between

lr_max/10 and lr_max/1000

• train_steps – total training time

• global_step – training steps counter

• lr_1, lr_2, lr_3 – the 3 parts of the cycle that added together give the

complete 1 cycle policy shape for the learning rate

4.2.2 1 Cycle – Momentum

The 1 cycle policy does not apply only to the learning rate, but also to the

momentum with an opposite shape. In this way, the regularization carried out on

the learning rate is not dampened by the momentum, but on the contrary it is

strengthened.

There is a maximum recommended momentum value of 0.95, while the minimum

should be 0.85. In the final part of the training, while the learning rate decreases

Figure 32 – 1 Cycle policy [61] learning rate

4 – Fast Training

48

rapidly, the momentum remains fixed at the maximum value of 0.95 (Figure 33).

4.2.3 1 Cycle – Other hyperparameters

The batch size should be set to the highest possible value to fit in the available

memory.

The epochs depend on the accuracy that you want to achieve and therefore it is at

the discretion of the programmer.

The weight decay must be tested with various values by running the learning rate

finder each time, the correct weight decay to choose is the one that allows a higher

maximum learning rate (Figure 34).

Figure 33 – 1 Cycle policy [61] momentum

Figure 34 – In this case the weight decay of 10-4 is chosen because
it corresponds to a higher maximum learning rate [61]

4 – Fast Training

49

The remaining hyperparameters have to be chosen by running the learning rate

finder each time, the important thing is that all the hyperparameters are set when

you start the learning rate finder for the last time and choose the maximum

learning rate, since training must take place in the same learning rate finder

conditions.

4.3 Cyclical policy

Cyclical policy [62] is similar to 1 cycle policy, with the difference that the cycle is

repeated several times, always oscillating between the same maximum and

minimum values (Figure 35). This policy can be useful if the model has many local

minimum points and therefore using a cyclical learning rate allows training to

seek deeper minimums to achieve higher accuracy.

4.3.1 Cycle length

The length of each single cycle is calculated as a multiple of an epoch. It is

recommended to use length values equal to 4 - 20 times an epoch. It has been

shown that for values within this range the optimal result is obtained. It is

however advisable to do a training with at least 3 - 5 cycles to obtain an evident

improvement. Increasing the number of cycles too much would eliminate the

usefulness of the cycle itself, the training would not have time to adapt to the

variation of the learning rate.

Figure 35 – A triangular cyclical policy [62]

4 – Fast Training

50

4.3.2 Cycle boundary values

The maximum and minimum values of the cycle must be chosen carefully because

the success of the training depends on them. In both cases it is necessary to use

the graph produced by the learning rate finder (Figure 36), which must be run

before the final training. The maximum learning rate is found exactly as for the 1

cycle policy, i.e. the minimum point of the loss corresponds to the limit and the

maximum learning rate must be chosen before this limit. For the minimum,

instead, you choose a value in the descent zone of the loss, therefore from the

moment in which the initial plateau ends forward.

In some cases the cycles are repeated with the same length but the maximum

value decreases to allow you to search deeper in the local minimums, such as the

decreasing triangular cycles of Figure 37.

Figure 36 – Learning rate boundary on the loss plot for the cyclical policy [62]

Figure 37 – Cyclical policy with fixed lower boundary

4 – Fast Training

51

4.4 Warm restarts

The warm restarts [63] [64] are also based on a cyclical policy, but as the term

itself says, there are sudden restarts from the minimum to the maximum value

(Figure 38). This phenomenon leads to instantaneously varying the learning rate

and then start a long descent again, so as to find, as in the cyclical policy case,

deeper minimums.

The warm restarts are always performed on the learning rate and can be

performed with various shapes:

• linear

• sinusoidal

• trapezoidal

The warm restarts can have multipliers that make the progress accordion-like

during the training (Figure 39 - left) or the restarts can be at different values,

gradually decreasing (Figure 39 - right).

Figure 38 – Sinusoidal warm restarts [63]

Figure 39 – Left: accordion-like warm restarts [63]; Right: decreasing warm restarts [64]

4 – Fast Training

52

4.5 Other implementations

By changing the shapes of the hyperparameters or by mixing the techniques

already mentioned, it is possible to obtain new trends in the learning rate,

sometimes even more effective than the originals (Figures 40 – 41 – 42).

Figure 40 – 1 Cycle truncated Figure 41 – 1 Cycle and half

Figure 42 – Linear decay warm restarts

5 – Fast Adversarial Training

53

5 – Fast adversarial training

5.1 Super model

The aim of this thesis was to demonstrate that fast training techniques can also be

applied to adversarial training, obtaining significant improvements in this case

too. A new generation of DNN models is therefore created, which are both robust

and fast: the super models. In future the super models will be normal, but we have

to first demonstrate their feasibility. In order to achieve this, the Free Adversarial

Training code was used, i.e. a DNN ResNet, with 2 different datasets: CIFAR10

and CIFAR100.

5.2 FAT results

In order to improve the FAT, it was necessary to first test the code on the

calculator in use to verify its performance and after checking the results of the

paper [55] the fast training techniques were tested. Following (Figures 43 - 44) are

the results obtained with the training of the original FAT code.

As can be seen in the two graphs, the results are reported for both the CIFAR10

and the CIFAR100. It was possible to expect that the accuracy of the model

trained on the CIFAR100 was lower than that of the CIFAR10, since there are

more images to analyze there is a greater risk of error. In addition to the accuracy

plot, the loss graph was also reported, in which the disparity between CIFAR10

and CIFAR100 is noted again. In both cases, the smoothed performance of the

training was also reported to have a clearer view of the results.

Final accuracy results:

• CIFAR10 ➔ accuracy: 84.34%

• CIFAR100 ➔ accuracy: 59.89%

5 – Fast Adversarial Training

54

Final loss results:

• CIFAR10 ➔ loss: 0.00562

• CIFAR100 ➔ loss: 0.01459

Figure 43 – Original FAT [55] accuracy on natural images

Figure 44 – Original FAT [55] loss on natural images

5 – Fast Adversarial Training

55

5.3 Hyperparameters tested

The original learning rate was a 3-steps function (Figure 45) with the following

division:

• epochs = 0 – 40000 ➔ learning rate = 0.1

• epochs = 40000 – 60000 ➔ learning rate = 0.01

• epochs = 60000 – 80000 ➔ learning rate = 0.001

After using the learning rate finder was found a maximum value equal to:

• CIFAR10 ➔ maximum learning rate = 0.1 – 0.15

• CIFAR100 ➔ maximum learning rate = 0.1 – 0.12

Therefore a maximum learning rate higher than that the original FAT was used in

the simulations.

The momentum values used were two:

• 1 Cycle ➔ momentum = 0.85 – 0.95

• Constant ➔ momentum = 0.90

For the first part of simulations the 1 cycle momentum was used to test the 1 cycle

policy code [61], but then the momentum was fixed on a constant value of the

original FAT to get a clearer picture of how all the fast training techniques

influence the learning rate and therefore the speed with the same momentum.

Based on the other regularisations, the value of the weight decay has been set at

0.0002.

The batch size value has been set to 128, due to computational limits of the

calculator.

The remaining FAT parameters that are specific to adversarial training have not

been changed because the aim was not to obtain a more robust model, but a faster

model with the same robustness.

Figure 45 – FAT’s 3-steps learning rate [55]

5 – Fast Adversarial Training

56

5.3.1 Learning rate’s shapes summary

There is a summary (Figures 46 – 47 – 48 – 49 – 50 – 51 – 52 – 53) of all the

shapes used during this thesis.

Figure 46 – 3 Steps Figure 47 – Linear Decay

Figure 48 – Exponential Decay Figure 49 – 1 Cycle

Figure 50 – 1 Cycle & Half Figure 51 – 1 Cycle Truncated

5 – Fast Adversarial Training

57

5.3.2 Momentum’s shapes summary

Here (Figures 54 – 55) are the two types of momentum used.

5.4 Simulations

All simulation codes and techniques are summarized in Tables 1 – 2. Here is the

name’s encoding:

𝐷_𝐹2_𝐸_𝑀

• D – Dataset

• F – Fast training technique

• 2 – If present it means that also the momentum is 1 Cycle

• E – Epochs

• M – Maximum learning rate

Figure 52 – Warm Restarts Figure 53 – Linear Decay Warm Restarts

Figure 54 – 1 Cycle Figure 55 – Constant

5 – Fast Adversarial Training

58

Name Dataset
Epochs

(x1000)

Momentum

policy

MAX - min

Learning

rate

MAX

min

Learning rate

policy

10_FAT_80_0.10 CIFAR10 80
Constant

0.90

0.1

0.001
3 Steps

10_1cyc_80_0.10 CIFAR10 80
Constant

0.90

0.1

0.0001
1 Cycle

10_1cyc2_60_0.10 CIFAR10 60
1 Cycle

0.95 – 0.85

0.1

0.0001
1 Cycle

10_1cyc2_40_0.15 CIFAR10 40
1 Cycle

0.95 – 0.85

0.15

0.00015
1 Cycle

10_1cyc2_40_0.12 CIFAR10 40
1 Cycle

0.95 – 0.85

0.12

0.00012
1 Cycle

10_1tru2_40_0.15 CIFAR10 40
1 Cycle

0.95 – 0.85

0.15

0.00015

1 Cycle

Truncated

10_lin2_40_0.15 CIFAR10 40
1 Cycle

0.95 – 0.85

0.15

0.00015
Linear Decay

10_1half_50_0.15 CIFAR10 50
Constant

0.90

0.15

0.00015
1 Cycle & Half

10_warm_50_0.15 CIFAR10 50
Constant

0.90

0.15

0.015
Warm Restarts

10_walin_40_0.15 CIFAR10 40
Constant

0.90

0.15

0.00015

Linear Decay

Warm Restarts

10_exp_45_0.12 CIFAR10 45
Constant

0.90

0.12

0.00012

Exponential

Decay

10_const_40_0.15 CIFAR10 40
Constant

0.90

0.15

0.15
Constant

10_exp_40_0.15 CIFAR10 40
Constant

0.90

0.15

0.00015

Exponential

Decay

10_warm_40_0.15 CIFAR10 40
Constant

0.90

0.15

0.0015
Warm Restarts

10_1cyc_40_0.15 CIFAR10 40
Constant

0.90

0.15

0.00015
1 Cycle

Table 1 – Summary of CIFAR10 simulations

5 – Fast Adversarial Training

59

Name Dataset
Epochs

(x1000)

Momentum

policy

MAX - min

Learning

rate

MAX

min

Learning

rate policy

100_FAT_80_0.10 CIFAR100 80
Constant

0.90

0.1

0.001
3 Steps

100_walin_60_0.12 CIFAR100 60
Constant

0.90

0.12

0.00012

Linear Decay

Warm

Restarts

100_exp_45_0.12 CIFAR100 45
Constant

0.90

0.12

0.00012

Exponential

Decay

100_lin_40_0.12 CIFAR100 40
Constant

0.90

0.12

0.00012
Linear Decay

100_1cyc_40_0.12 CIFAR100 40
Constant

0.90

0.12

0.00012
1 Cycle

100_exp_40_0.12 CIFAR100 40
Constant

0.90

0.12

0.00012

Exponential

Decay

100_warm_40_0.12 CIFAR100 40
Constant

0.90

0.12

0.0012

Warm

Restarts

100_walin_40_0.12 CIFAR100 40
Constant

0.90

0.12

0.00012

Linear Decay

Warm

Restarts

100_const_40_0.12 CIFAR100 40
Constant

0.90

0.12

0.12
Constant

Table 2 – Summary of CIFAR100 simulations

5.4.1 Natural images results

The final results obtained with the simulations are summarized in Figures 56 – 57.

The most important simulations have been represented in Figures 58 – 59 – 60 in

order to better see the trends compared to the original FAT.

The simulations were performed with various epochs values to show the

differences even if the algorithm used is the same. Keep in mind that with the

calculator used 10000 epochs correspond to about 5 hours of simulation, so for

example the original FAT lasts about 40 hours of calculation, that is almost 2 days.

If you can even halve the number of epochs, the time gain is significant.

5 – Fast Adversarial Training

60

Figure 56 – CIFAR10 accuracy on natural images

Figure 57 – CIFAR100 accuracy on natural images

5 – Fast Adversarial Training

61

Figure 58 – CIFAR10 simulations (Part 1)

Figure 59 – CIFAR10 simulations (Part 2)

5 – Fast Adversarial Training

62

5.4.2 Adversarial images results

Figures 61 – 62 are the results obtained from the attacks. Each model suffered a

PGD-20 attack, which is the same standard attack used against the original FAT.

Figure 60 – CIFAR100 simulations

Figure 61 – CIFAR10 accuracy on adversarial images

5 – Fast Adversarial Training

63

5.5 Conclusion

As you can see in all the proposed graphs, the worst algorithm is the one with all

constant hyperparameters, although the learning rate is maximum it cannot go

deeper into the local minimum found. From these results it can be deduced that

even the original FAT that has a 3-steps learning rate can be considered an

optimization, but with more specific techniques the same results can be achieved

even in half the time. The fine tuning of the hyperparameters is essential and can

lead to super-convergence not only in normal training, but also for adversarial

training, without affecting the result and robustness of the model itself.

The main method used for each simulation was a "trial and error" method with the

aim of removing the plateau areas of the training, that is, when the accuracy does

not increase for many epochs, but remains approximately constant. By removing

the plateau areas, an ever increasing accuracy curve can be guaranteed, thus

optimizing training times.

5.5.1 Future works

During the course of this thesis, new papers have been published both for attacks

[65] and for fast adversarial training [66], so these are new starting points for

Figure 62 – CIFAR100 accuracy on adversarial images

5 – Fast Adversarial Training

64

research.

Furthermore other techniques can be developed:

• Evaluation of the accuracy gradient to avoid plateau areas

• Partial image analysis

• Search for wide minimums for more robustness

All these ideas can be the basis for continuing research in this field.

Bibliography

65

Bibliography

[1] J. P. Mueller e L. Massaron, Machine Learning for dummies, For Dummies, 2016.

[2] S. Raschka e V. Mirjalili, Python Machine Learning, Packt Publishing, 2017.

[3] G. Toschi, «Il Machine Learning è divertente!,» 2017. [Online]. Available:
https://medium.com/botsupply/il-machine-learning-%C3%A8-divertente-parte-1-
97d4bce99a06.

[4] L. N. Smith, «A disciplined approach to neural network hyper-parameters: Part 1 --
learning rate, batch size, momentum, and weight decay,»
https://arxiv.org/abs/1803.09820, 2018.

[5] J. Brownlee, «Difference Between a Batch and an Epoch in a Neural Network,»
2018. [Online]. Available: https://machinelearningmastery.com/difference-
between-a-batch-and-an-epoch/.

[6] Y. LeCun, C. Cortes e C. J. Burges, «THE MNIST DATABASE,» 1999. [Online].
Available: http://yann.lecun.com/exdb/mnist/.

[7] A. Krizhevsky, V. Nair e G. Hinton, «Cifar Datasets,» 2009. [Online]. Available:
https://www.cs.toronto.edu/~kriz/cifar.html.

[8] F.-F. Li e C. Fellbaum, «ImageNet,» 2009. [Online]. Available: http://www.image-
net.org/.

[9] D. Vasani, «How do pre-trained models work?,» 2019. [Online]. Available:
https://towardsdatascience.com/how-do-pretrained-models-work-11fe2f64eaa2.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow e R.
Fergus, «Intriguing properties of neural networks,»
https://arxiv.org/abs/1312.6199, 2013.

[11] A. Marchisio, M. A. Hanif, S. Rehman, M. Martina e M. Shafique, «A Methodology
for Automatic Selection of Activation Functions to Design Hybrid Deep Neural
Networks,» https://arxiv.org/abs/1811.03980, 2018.

[12] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis, K.
Olukotun, C. Ré e M. Zaharia, «DAWNBench: An End-to-End Deep Learning
Benchmark and Competition».

[13] Y. Guo, C. Zhang, C. Zhang e Y. Chen, «Sparse DNNs with Improved Adversarial
Robustness,» https://arxiv.org/abs/1810.09619, 2018.

[14] A. Katharopoulos e F. Fleuret, «Not All Samples Are Created Equal: Deep Learning
with Importance Sampling,» https://arxiv.org/abs/1803.00942, 2018.

Bibliography

66

[15] J. Xu e S. Sala, «Guida alle architetture di reti profonde,» 2018. [Online]. Available:
https://www.deeplearningitalia.com/guida-alle-architetture-di-reti-profonde/.

[16] A. Anwar, «Difference between AlexNet, VGGNet, ResNet and Inception,» 2019.
[Online]. Available: https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-
resnet-and-inception-7baaaecccc96.

[17] V. Fung, «An Overview of ResNet and its Variants,» 2017. [Online]. Available:
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-
5281e2f56035.

[18] K. He, X. Zhang, S. Ren e J. Sun, «Deep Residual Learning for Image Recognition,»
https://arxiv.org/abs/1512.03385, 2015.

[19] S. Zagoruyko e N. Komodakis, «Wide Residual Networks,»
https://arxiv.org/abs/1605.07146, 2017.

[20] H. Moore e M. Bassetti, Matlab per l'ingegneria, Pearson, 2008.

[21] M. Beri, Python, Apogeo, 2010.

[22] M. Buttu, Python, guida completa, Edizioni Lswr, 2014.

[23] gyanendra371, «Self in Python class,» 2019. [Online]. Available:
https://www.geeksforgeeks.org/self-in-python-class/.

[24] M. Scarpino, TensorFlow for dummies, For Dummies, 2018.

[25] G. B. Team, «TensorFlow,» 2015. [Online]. Available:
https://www.tensorflow.org/.

[26] L. V. Revision, «TensorFlow Installation,» 2018. [Online]. Available:
https://tensorflow-object-detection-api-
tutorial.readthedocs.io/en/latest/install.html#tensorflow-gpu.

[27] A. Sachan, «TensorFlow Model,» 2017. [Online]. Available: https://cv-
tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-
tutorial/.

[28] D. Deutsch, «Debugging TensorFlow,» 2018. [Online]. Available:
https://github.com/Createdd/Writing/blob/master/2018/articles/DebugTFBasics.
md#5-use-the-tensorflow-debugger.

[29] N. Corporation, «CUDA,» 2007. [Online]. Available:
https://developer.nvidia.com/cuda-zone.

[30] A. Salimath, «How to use the Learning Rate Finder in TensorFlow,» 2019. [Online].
Available: https://medium.com/octavian-ai/how-to-use-the-learning-rate-finder-
in-tensorflow-126210de9489.

[31] A. Paszke, S. Gross, S. Chintala e G. Chanan, «PyTorch,» 2016. [Online]. Available:
https://pytorch.org/.

[32] F. Chollet, «Keras,» 2015. [Online]. Available: https://keras.io/.

[33] S. Scardapane, «Breve guida agli adversarial examples nel machine learning,» 2019.
[Online]. Available: https://iaml.it/blog/adversarial-
examples?_waf=1#goodfellow2014.

[34] C. M. Wild, «Know Your Adversary: Understanding Adversarial Examples,» 2018.
[Online]. Available: https://towardsdatascience.com/know-your-adversary-
understanding-adversarial-examples-part-1-2-63af4c2f5830.

[35] A. Kurakin, I. Goodfellow e S. Bengio, «Adversarial examples in the physical
world,» https://arxiv.org/abs/1607.02533, 2016.

Bibliography

67

[36] I. J. Goodfellow, J. Shlens e C. Szegedy, «Explaining and Harnessing Adversarial
Examples,» https://arxiv.org/abs/1412.6572, 2015.

[37] J. Su, D. V. Vargas e S. Kouichi, «One pixel attack for fooling deep neural
networks,» https://arxiv.org/abs/1710.08864, 2017.

[38] A. Madry, A. Makelov, L. Schmidt, D. Tsipras e A. Vladu, «Towards Deep Learning
Models Resistant to Adversarial Attacks,» https://arxiv.org/abs/1706.06083,
2017.

[39] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik e A. Swami, «Practical
Black-Box Attacks against Machine Learning,» https://arxiv.org/abs/1602.02697,
2016.

[40] S. Srisakaokul, Y. Zhang, Z. Zhong, W. Yang, T. Xie e B. Li, «MULDEF: Multi-
model-based Defense Against Adversarial Examples for Neural Networks,»
https://arxiv.org/abs/1809.00065, 2018.

[41] D. Wang, C. Li, S. Wen, S. Nepal e Y. Xiang, «Defending against Adversarial Attack
towards Deep Neural Networks via Collaborative Multi-task Training,»
https://arxiv.org/abs/1803.05123, 2018.

[42] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar e A. Madry, «Adversarially Robust
Generalization Requires More Data,» https://arxiv.org/abs/1804.11285, 2018.

[43] Y. Esfandiari, K. Ebrahimi, A. Balu, N. Elia, U. Vaidya e S. Sarkar, «A Saddle-Point
Dynamical System Approach for Robust Deep Learning,»
https://arxiv.org/abs/1910.08623, 2019.

[44] A. Shafahi, P. Saadatpanah, C. Zhu, A. Ghiasi, C. Studer, D. Jacobs e T. Goldstein,
«Adversarially robust transfer learning,» https://arxiv.org/abs/1905.08232, 2019.

[45] S. Gui, H. Wang, C. Yu, H. Yang, Z. Wang e J. Liu, «Adversarially Trained Model
Compression: When Robustness Meets Efficiency,»
https://arxiv.org/abs/1902.03538, 2019.

[46] N. Papernot, P. McDaniel, X. Wu, S. Jha e A. Swami, «Distillation as a Defense to
Adversarial Perturbations against Deep Neural Networks,»
https://arxiv.org/abs/1511.04508, 2015.

[47] J. H. Metzen, T. Genewein, V. Fischer e B. Bischoff, «On Detecting Adversarial
Perturbations,» https://arxiv.org/abs/1702.04267, 2017.

[48] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi e P. Frossard, «Universal adversarial
perturbations,» https://arxiv.org/abs/1610.08401, 2016.

[49] J. Rauber e W. Brendel, «Foolbox,» 2017. [Online]. Available:
https://foolbox.readthedocs.io/en/stable/index.html#.

[50] I. Goodfellow e N. Papernot, «Cleverhans,» 2016. [Online]. Available:
http://www.cleverhans.io/.

[51] J. Rauber, W. Brendel e M. Bethge, «Foolbox: A Python toolbox to benchmark the
robustness of machine learning models,» https://arxiv.org/abs/1707.04131, 2017.

[52] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik e A. Swami, «The
Limitations of Deep Learning in Adversarial Settings,»
https://arxiv.org/abs/1511.07528, 2015.

[53] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui e M. I. Jordan, «Theoretically
Principled Trade-off between Robustness and Accuracy,»
https://arxiv.org/abs/1901.08573, 2019.

Bibliography

68

[54] D. Zhang, T. Zhang, Y. Lu, Z. Zhu e B. Dong, «You Only Propagate Once:
Accelerating Adversarial Training via Maximal Principle,» 1905.00877, 2019.

[55] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G.
Taylor e T. Goldstein, «Adversarial Training for Free!,»
https://arxiv.org/abs/1904.12843, 2019.

[56] T. Lienart, «Projected gradient descent,» 2018. [Online]. Available:
https://tlienart.github.io/pub/csml/cvxopt/pgd.html.

[57] S. Gugger e J. Howard, «AdamW and Super-convergence is now the fastest way to
train neural nets,» 2018. [Online]. Available:
https://www.fast.ai/2018/07/02/adam-weight-decay/.

[58] L. N. Smith e N. Topin, «Super-Convergence: Very Fast Training of Neural
Networks Using Large Learning Rates,» https://arxiv.org/abs/1708.07120, 2018.

[59] H. Song, S. Kim, M. Kim e J.-G. Lee, «Ada-Boundary: Accelerating the DNN
Training via Adaptive Boundary Batch Selection,»
https://openreview.net/forum?id=SyfXKoRqFQ, 2018.

[60] S. Gugger, «How Do You Find A Good Learning Rate,» 2018. [Online]. Available:
https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html.

[61] S. Gugger, «The 1cycle policy,» 2018. [Online]. Available:
https://sgugger.github.io/the-1cycle-policy.html.

[62] L. N. Smith, «Cyclical Learning Rates for Training Neural Networks,»
https://arxiv.org/abs/1506.01186, 2017.

[63] I. Loshchilov e F. Hutter, «SGDR: Stochastic Gradient Descent with Warm
Restarts,» https://arxiv.org/abs/1608.03983, 2017.

[64] P. Mishra e K. Sarawadekar, «Polynomial Learning Rate Policy with Warm Restart
for Deep Neural Network,» https://ieeexplore.ieee.org/document/8929465, 2019.

[65] D. Goodman, H. Xin, W. Yang, X. Junfeng, Z. Huan e W. Yuesheng, «Advbox: a
toolbox to generate adversarial examples that fool neural networks,»
https://arxiv.org/abs/2001.05574, 2020.

[66] E. Wong, L. Rice e J. Z. Kolter, «Fast is better than free: Revisiting adversarial
training,» https://arxiv.org/abs/2001.03994, 2020.

