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Abstract

Communication between computing systems and storage device units, generally
called Hard Drives, is one of the most important interfaces for in the IT world,
and guaranteeing it’s security has high priority. The main protocol in use today
is known as the ”ATA standard” and the focus of our work during this intership
is to test its resilience through Fuzzing, an automated software testing technique
that consists in providing unexpected, invalid, random data as input to the target
system, and monitor its behaviour in search for anomalies such as bugs, crashes or
potential security flaws.

In our work we propose different types of Fuzzing schemes, mainly based on
a client-server architecture using the Fuzzing framwork ”Boofuzz” together with
software developed by us. The systems we aim to target are not only phyisical hard
disks but also virtual hard drives, tested under different virtualization softwares
such as QEMU, VirtualBox and VMWare.

This work is the continuation of what has been started during a previous
semester project, developed by the students Mirabella Angelo and Sanislav Se-
bastian (author of this work) and supervised by Balzarotti Davide (also supervisor
for this internship). Even though during the semester project some results were
achieved, their understanding was not clear. In this internship we try to explore
more these outcomes and to continue developing the designed methodologies.
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Chapter 1

Introduction

The main idea behind our work is the intention of testing the resilience and secu-
rity of the Hard Drive communication protocols in use today. This seems to be
a novelty in literature, since we were unable to find any other similar works. An-
other motivation for this work comes from the importance that the interface with
the storage devices has. It fulfills a role that is present and fundamental in any
computing system and has been in use for almost half a century. The security of
these type of interfaces is of extreme importance and securing it through extensive
testing is a must.

This internship is aiming at continuing the work done during the semester
project developed by the students Mirabella Angelo and Sanislav Sebastian (author
of this work) and supervised by Balzarotti Davide (also supervisor for this intern-
ship). The main objective is to test the resilience of the ATA standard to fuzzing
techniques and try to find bugs or vulnerabilities. During the semester project, we
developed a first version of a fuzzing system that we used to perform testing of real
and virtual hard drives.

The most accessible way of sending ATA commands that we found during the
semester project, was by using the SCSI protocol, and in particular one specific
SCSI command named ”ATA PASS THROUGH”. Practically, we are encapsulat-
ing an ATA command inside a SCSI command that will get processed and trans-
ported as a SCSI command until it gets to the bridge component, in charge of
translating the command to an ATA command. This was necessary because the
SATA devices are seen, by the Linux kernel, as SCSI devices and, in order to com-
municate with them from the user level, it is mandatory to use the SCSI protocol.
For this reason in our work we don’t only study the ATA protocol, but also the
SCSI standard.

During the semester project we discovered different anomalous behaviours, both
from the physical and from the virtual Hard Drives. Regarding the physical Hard
Drives, first of all we found out that connecting it to the PC through a SATA to
USB adaptor was not a resilient method, since it happened very often that after
sending a few fuzzed commands it would lose connection. This did not happen
when connected directly to the motherboard through a SATA cable. Moreover
we were able to change the size of one SSD device, bringing it down from 250GB
to 2.4GB. This looked like a permanent change since the new memory size was
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1 – Introduction

detected the same by many different PCs. Regarding the virtual Hard Drives, the
main anomaly that we found was the fact that, after fuzzing for different amounts
of time, the file-system of the virtual machine would become read-only causing the
Fuzzer to crash. The reasons behind this behaviour were still unclear.

Our objective for this internship was to continue the development of the tech-
niques used during the semester project and to investigate more the results ob-
tained, trying to give more explanations and to understand if there are potential
security flaws that could be lurking under the observed anomalies.
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Chapter 2

Background

2.1 Hard drive communication standards

Establishing communication with Storage devices has been one of the main and
oldest challenges for designers of computing systems. Even though, in the recent
history, the industry of Hard Drive Standards has gone through a chaotic and
tumultuous evolution, its culmination in the present age can be summarized by
two main defined and standardized protocols: the ATA (Advanced Technology
Attachment) protocol and the SCSI (Small Computer System Interface) protocol.
The main difference between these two standards is that ATA was first designed as
a protocol whose purpose was to enable communication with hard disk drives only,
while SCSI was designed as capable of controlling different device types, like mass
storage devices, tape drives, removable optical media drives (CD, DVD, Blu-Ray...),
scanners and many others.

The variants of these protocols that are in use today are the serial versions,
respectively SATA (Serial-ATA) and SAS (Serial Attached SCSI). While SATA
drives are mainly used for multipurpose, big scale production for the general public,
SAS drives are faster and more reliable, but much more expensive, reason for which
they tend to be used for Enterprise Computing such as banking transactions and E-
commerce, where high speed and high availability are crucial and essential features.

It is important to note that, even though SATA and SAS are two different proto-
cols defined by two different technologies, they are similar under some aspects. For
example, they share the same drive connectors, and they are electrically compati-
ble. Thanks to this, the ATA standard was later extended to provide compatibility
with a broader range of devices by carrying SCSI commands and responses through
the ATA interface, defining this way the ATAPI (ATA Packet Interface) protocol,
mainly used to allow communication with removable optical media drives, like CD-
ROMs and DVD-ROMs.

There is also a certain level of interoperability between the serial variants of
the two standards in use today. In figure 2.1 we can observe the main difference
between a SAS connector and a SATA connector, in particular the fact that the
power supply is separated from the data connector in the SATA drive, while they
are unified in the SAS drive. Because of this reason, and because SATA connector
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2 – Background

signals are a subset of SAS signals, it is possible to connect a SATA drive to a
SAS adapter, but SAS drives will not operate on a SATA adapter. Their different
design purpose is indeed to prevent any chance of plugging them in incorrectly. In
other words, we can state that a SAS controller is capable of ”talking” both to SAS
and SATA devices, while a SATA-only controller is not able to communicate with
a SAS drive.

Figure 2.1: Difference between SATA and SAS drive connectors

2.1.1 The ATA protocol

The structure of the ATA protocol can be summarized by a multiple layer model,
where each layer has a specific task, operates on the data received by the layer above
and passes the processed information to the layer underneath. More specifically it
is divided in four layers: physical layer, link layer, transport layer and application
layer.

The physical layer specifies the means of transmitting raw bits through the
electrical channel. It defines the connectors and cabling used to carry data and
signaling information. In particular it defines ”out of band” (OOB) signals, which
are low-speed signal patterns recognized by the physical layer, that do not appear
in normal data streams. They are made of defined amounts of idle time followed
by repeated sequences (bursts) of a dword primitive (called ALIGN). The only
difference between the OOB signals is the length of the idle time between bursts of
ALIGNs. When the SATA device is powered on, the communication is established
through OOB signaling followed by the speed negotiations. These are done by
having the target device send ALIGN primitives at the fastest supported rate; if
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2 – Background

Figure 2.2: Visual representation of the division in layers of the SATA protocol.

the host doens’t reply with ALIGNs then it does not support this speed, so the
device steps down to the next lower speed and tries again, until a reply is received.

The link layer has the main task to scramble and descramble data and control
words from and to the physical layer and to converts data from the transport layer
into structures called ”frames”. It manages the encoding process, which is based
on a 8b/10b encoding scheme. This means that all 32 bits of data are encoded to
40 bits of transmission, mainly to provide a sufficient amount of transition density
(guarantees the presence of transitions, 0-1 or 1-0, even when the bytes to be
transmitted are 0x00 or 0xff) and to facilitate the detection of transmission errors.
The link layer is indeed in charge of building and checking the CRC (an error
detecting code) of the transmitted frames. The general structure of a frame is
shown in figure 2.3. We can see that the data received from the transport layer
(payload) and the CRC are enclosed between two SATA primitives: SOF (start
of frame) and EOF (end of frame). This primitives have the fundamental role of
delimiting the frame.

The transport layer is responsible for the management of data strctures called
Frame Information Structures, or FIS. Mainly its task is to build the FIS with the
data received from the application layer, initiate the transmission request and pass
it to the link layer together with the content of the FIS, receive the transmission
status from the link layer and communicate it to the application layer. The FIS
content varies based on the operation to be executed. In figure 2.4 an example of a
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Figure 2.3: Model of the packages transported by SATA Link Layer.

Host to Device FIS is shown. We can observe that it is compsed of different fields,
the majority of which are device registers whose values are set by the application
layer. Other fields are mostly configuration flags that communicate transmission
details to the target device. Apart from the Host to Device FIS there are seven
more types of FIS defined by the standard.

Figure 2.4: Layout of a Host-to-Device type of Frame Information Structure man-
aged by the SATA Transport Layer.

At last we have the application layer. This is the most important layer for the
purposes of our fuzzing scheme. The ACS (Ata Command Set) is defined at this
layer: this is the collection of commands defined by the T13 association that makes
it possible for applications to communicate and use the SATA drive functionalities.
Every few years this document is revised and renewed, in order to be able to keep
up with the technological evolution. At the moment of this writing, the most recent
revision is the ACS-8. The commands defined change between revisions, with the
possibility of having new commands introduced in the set, or some already existing
commands become obsolete or retired.

2.1.2 ATA Application Layer

Before illustrating the ATA commands structure it is necessary to understand the
way the data addressing mechanism worked in the past and today. To address
data on a spinning disk device it is required to correctly position the mechanical
components. In order to access a specific data block, the host needed to specify
the cylinder, head and sector position (CHS), that, when written into the device
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registers, would move the mechanical components to the specified position. CHS
were in reality a logical mapping, allowing large capacity drives to be supported and
giving the drive the possibility of performing its own defective sector management.
This addressing scheme was the one used by the Original ATA command sets.
The evolution of CHS addressing is called Logical Block Addressing (LBA) and it
virtualizes the physical geometry of the device by providing a simple method to
access fixed sized blocks of data (512 bytes, 4k bytes, etc.). More specifically all
data blocks are mapped to a contiguous LBA range, where LBA 0 corresponds to
the first block, LBA 1 corresponds to the second block, and so on. In this way only
the device knows the CHS corresponding to a specific LBA and is able to translate
it, making it significantly easier for the host to address a specific block.

In the original ATA implementations the translation between LBA and CHS
was only performed on a 28-bit LBA. This implied that, with a block size of 512
bytes, the maximum addressable drive capacity was 128GB. To solve this problem,
ACS-6 introduced the extended 48-bit sector addressing mehanism, creating also a
new set of commands that would support this new addressing feature. Today, in the
ACS-8, there are several commands with the ”EXT” label that are able to address
48-bit LBA, bringing the theoretical addressable capacity up to 144 petabytes.

Figure 2.5: Fourth layer of the ATA architecture, representation of the registers
that compose an ATA command.

The way the application layer SATA commands interact with the hard drive is
by setting the values of its internal registers, called ATA or shadow registers, of the
SATA device. As shown in figure 2.5, there are mainly seven registers with different
functionalities. Generally, the functionality of each register depends on the ATA
command to be executed. However, for the majority of cases the purpose of these
registers can be summarized as:

• Features (Error): This register has different functionalities that depend
on the command to be executed. Its standard size is 8-bit but on 48-bit

7



2 – Background

commands it becomes a 16-bit register. After the completion of the command,
this register contains the Error data, where each bit of the register has a
specific meaning.

• Sector Count: This register indicates the number of blocks to read/write
by the ATA command. Its size is 8-bit for the 28-bit commands and 16-bit
for the 48-bit.

• LBA Low/Sector Number: This register was previously known as ”Sector
Number” because it used to indicate the sector of the disk. It represents now
the low part of the LBA and its size is 8-bit for the 28-bit commands and
16-it for the 48-bit commands.

• LBA Mid/Cylinder Low: This register was previously known as ”Cylinder
Low” because it used to indicate the low part of the cylinder of the disk. It
represents now the low part of the LBA and its size is 8-bit for the 28-bit
commands and 16-it for the 48-bit commands.

• LBA High/Cylinder High: This register was previously known as ”Cylin-
der High” because it used to indicate the high part of the cylinder of the disk.
It represents now the low part of the LBA and its size is 8-bit for the 28-bit
commands and 16-it for the 48-bit commands.

• Device/Head: Before the serial version of the ATA protocol, this register
had the important task of indicating which one of the two devices on the
ATA bus was the target of the command. Furthermore, the four LSB of the
register were used as the four MSB bits of the LBA address. However, with
the introduction of SATA and with ATA-8, this functionalities have become
obsolete, and many of the bits composing this register are reserved or obsolete.
Its size is 8-bit with both 28-bit commands and 48-bit commands.

• Command (Status): This register contains the code of the ATA command
to be executed, as specified in the ACS. It is a 8-bit register for both 28-bit
commands and 48-bit commands. This is the first value checked by the device
and depending on its value, the content of the other registers are interpreted
accordingly. After the completion of the command, this register contains the
Status data, and each of its bits describes the current status of the device.

2.1.3 ATA IDENTIFY command

One command that deserves more insight is the ATA IDENTIFY (or ATA IDEN-
TIFY DEVICE) command. The host can, thanks to this command, request to
receive parameter information from the device. Generally, in the ACS, there are
commands that can be implemented or not by a device, depending on the manufac-
turer preferences. However, the ATA IDENTIFY command must be implemented
on every ATA hard drive. This command OpCode is 0xEC and it needs to be
placed in the Command register of the Device. The value of the other registers is
N/A (Not Applicable).
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The identification data returned by this command is arranged in a 256 words
(512 bytes) structure whose composition is illustrated in the ACS description of the
ATA IDENTIFY command. For our purposes, three of the fields in this structure
are particularily relevant. These are the Serial Number, found in the words 10-19
and made of 20 ASCII characters, the Firmware Revision, found in the words 23-26
and made of 8 ASCII characters, and the Model Number, found in the words 27-46
and made of 40 ASCII characters. The usage of this data for our purposes will be
illustrated in later chapters. These three pieces of information uniquely identify
any real hard drive device.

2.1.4 The SCSI protocol

The SCSI protocol defines commands in a similar way to the ATA protocol. These
can be found in the SCSI Command Reference Manual. The main structure that
constitutes a SCSI command is called Command Descriptor Block (CDB). To issue
a command to a SCSI device it is necessary to send this structure, containing proper
values, which can be accompanied by additional information in the data buffer.

Sense data is the mechanism used by the SCSI protocol to provide feedback
information after a command has been executed. In practice, it is a structure, called
sense buffer, containing multiple fields that provide different type of information.
Particularly, the first field of the sense buffer is the response code that can assume
different values, depending on the type of sense data returned. For the descriptor
format sense data the values can be 0x72 or 0x73, while for the fixed format sense
data the values can be 0x70 or 0x71. Depending on the format, the whole sense
buffer changes the structure of its fields. The three additional fields are useful for
our purposes:

• Sense Key: This is a 4-bit field that can have up to 16 values. Each one
of these values indicate generic information describing an error or exception
condition.

• Additional Sense Code (ASC): The ASC field provides further informa-
tion related to the error or exception condition that is reported in the Sense
Key field. When no further information is provied by the device, this field
shall be set to zero.

• Additional Sense Code Qualifier (ASCQ): The ASCQ field provides
further information to the one provided by the ASC field. It is the last
level of hierarchy of information and it shall be set to zero when no further
information is provided.

The Linux driver that allows to send SCSI commands is called ”SCSI Generic
Driver” (sg) and it is the most accessible way for a host to communicate with a
hard drive. Table 2.1 illustrates the sg io structure, the main structure of the driver.
Some of these fields are set by the host before issuing the command, while others
are set by the device upon command completion.

Below is the description of the fields of the structure that are significant to the
purposes of our work:
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2 – Background

Byte/Byte 0 1 2 3 4 5 6 7
0 interface id dxfer direction
1 cmd len mx sb len iovec count dxfer len
2 dxferp cmdp
3 sbp timeout
4 flags pack id
5 usr ptr status masked status msg status sb len wr
6 host status driver status resid
7 duration info

Table 2.1: SCSI Generic Structure (sg io)

• dxfer direction: This field indicates the direction of the data transfer as-
sociated with the command. It can assume five values: none, to the device,
from the device, to and from the device, unknown. It cannot be uninitialized
or initialized to zero.

• cmdp: This field contains the pointer to the CDB structure of the SCSI
command to be executed.

• cmd len: Contains the length in bytes of the SCSI command that cmdp
points to.

• sbp: This is the pointer to the Sense Buffer where the sense data will be
written by the device.

• mx sb len: The maximum size in bytes that can be written in the array
pointed by sbp.

• sb len wr: The actual number of bytes that have been written in the array
pointed by sbp.

• dxferp: For commands that require data transfer, this field points to the
user memory where the data will be transferred to or from.

• dxfer len: This field indicates the lenght of memory pointed by dxferp.

2.1.5 ATA Pass Through

Even though the SCSI protocol is not directly correlated with the objectives of
our work, it granted us a simple and accessible solution for the non trivial task of
sending ATA commands from a Linux host. For practical purposes, the SATA disks
under Linux use the SCSI subsystem as interface, which means that a SATA device
is recognized as a SCSI device. To be able to communicate with it it is possible to
use a particular SCSI command called ATA Pass Through. This is implemented
by a translation bridge mechanism that extract the encapsulated ATA command
transported through the SCSI protocol.

There are two versions of ATA Pass Through: 12 byte and 16 byte. These
correspond to the two types of available ATA command: 28-bit and 48-bit. Table
2.2 illustrates the structure of the two SCSI CDBs where it is possible to see that,
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Byte Description
0 OpCode (0xA1)
1 Setup Byte 1
2 Setup Byte 2
3 Features
4 Sector Count
5 LBA Low
6 LBA Mid
7 LBA High
8 Device
9 Command
10 Reserved
11 Control

Byte Description
0 OpCode (0x85)
1 Setup Byte 1
2 Setup Byte 1
3 Features (15:8)
4 Features (7:0)
5 Sector Count (15:8)
6 Sector Count (7:0)
7 LBA Low (15:8)
8 LBA Low (7:0)
9 LBA Mid (15:8)
10 LBA Mid (7:0)
11 LBA High (15:8)
12 LBA High (7:0)
13 Device
14 Command
15 Control

Table 2.2: ATA Pass Through CDB 12 byte version (to the left) and 16 byte version
(to the right)

from bytes 3 to 9, for the 12 byte CDB, and from bytes 3 to 14, for the 16 byte
CDB, the content corresponds to the ATA registers, as they are defined in the ACS.

The OpCode field has the purpose of indicating which SCSI command is con-
tained in the CDB. Its value is 0xA1 for the ATA Pass Through 12 byte CDB and
0x85 for the ATA Pass Through 16 byte CDB. The last byte of both structures,
the Control byte, is very poorly documented by the T10 documentation and has
always been assigned value 0 in all our tests. Setup Bytes 1 and 2 carry informa-
tion about the command to be exectued, that is used by the translation mechanism.

Byte/Bit 7 6 5 4 3 2 1 0
1 Multiple Count Protocol Reserved
2 Off Line CK Cond Reserved T Dir Byt Blok T Length

Table 2.3: Setup Bytes 1 and 2

• Protocol: It represents the type of operation that the command requires to
execute. Examples are: Non-data, PIO Data-In, DMA, etc., up to 16 different
options.

• Byt Blok: Indicates whether T Length specifies the number of bytes to
transfer or the number of blocks to transfer (0-bytes, 1-blocks).

• CK Cond: If set it requests the translation bridge to return the ATA register
information in the sense data, even if no error or exception occurs. In this
case the Sense Key will contain value 0.
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• T Dir: Specifies the direction of the data transfer. If 0 the transfer is from
host to device, if 1 it is from device to host. Its content is ignored if T Length
is 0. If T Dir and Protocol fields carry conflicting values, then an ILLEGAL
REQUEST value will be returned in the Sense Buffer.

• T Length: Used to communicate to the translation bridge the transfer legth.
In particular 0 corresponds to no data transfer, 1 indicates that the transfer
length is specified in the Features field of the CDB, 2 indicates that the
transfer length is specified in the Sector Count field of the CDB.

2.2 Virtualization

The term Virtualization refers to the process of running a virtual instance of a
computer system in a layer abstracted from the actual hardware. In other words
virtualization software allows the user to run multiple operating systems using only
one physical computer. More generally, virtualization may refer to any instance of
one IT resource hosting several other IT resources, including programs, databases,
users, or networks. Commonly, the physical machine is called ”host” system, while
the virtual environments are called ”guest” systems. An ideally perfect virtualiza-
tion technique would make it impossible for any operating system to distinguish
between an underlying real or a virtual environment. Today’s technologies are
getting increasingly closer to this level of isolation.

Although virtualization technology can be traced back to the 1960s, until the
early 2000s it has not been widely adopted. Technologies that allowed virtual-
ization (such as hypervisors) were created decades ago to provide simultaneous
access to computers conducting batch processing for multiple users. This was a
popular business computing style that consisted in performing routine tasks very
quickly in one large group instead of individually. However, other approaches to
the ”many users/one machine” problem have gained popularity over the next few
decades, while virtualization has not. One of those alternatives was time-sharing,
which separated users within operating systems, leading to the birth of UNIX, that
eventually gave way to Linux. In the meanwhile, virtualization remained a niche
technology, adopted only in small scale.

Skip forward to the nineties, most businesses were equipped with physical
servers and software components from a single vendor, that generally did not al-
low older, existing applications to run on hardware from another vendor. When
businesses upgraded their equipment with cheaper and more convenient servers,
operating systems and applications from a variety of vendors, they were obliged
to run underused physical hardware, since each server was only able to run one
vendor-specific task. This created a strong appeal for the virtualization techniques,
which were able to provide two main benefits. Firstly, it was now possible to par-
tition the servers and run legacy applications on different operating systems types
and versions. Secondly, the server hardware could now be used more efficiently,
helping reducing the cost of purchase, set up, cooling and maintenance. Virtualiza-
tion made it harder for vendors to ”lock” their customers into utilizing only their
products and became the foundation of cloud computing.
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The main component behind virtualization technologies is called hypervisor.
This software is responsible for the separation between the physical resources and
the virtual environments. They can either be installed on top of an operating system
(usually the case for private, personal computer users) or directly onto hardware
(very common for server environments), which is the technique mainly used by
enterprises.

Figure 2.6: Graphical representation of the role of a hypervisor in the virtualization
mechanism.

The job of a hypervisor is to partition phyiscal resources in such a way that
fulfills the needs of the virtual environments. Users can run computations and per-
form tasks in the virtual environment, usually called virtual machine. Effectively,
a virtual machine is nothing else than a single data file, and as such it can be
moved, copied and reused with no drawbacks. While running a virtual machine,
it is possible that the user issues an instruction whose requirements exceed the
current amount of resources allocated from the phyisical environment. In this case
the hypervisor communicates with the physical system and requests the additional
resources.

As any resource in a virtual machine, the hard drives are also virtualized. There
are several types of disk image formats that are used by different virtualization
softwares. The most common ones are QCOW2 (QEMU copy-on-write), VDI (Vir-
tualBox Disk Image) and VHD (Virtual Hard Disk). All of them have different
perks and features and are generally connected to one specific virtualization soft-
ware. They can be contained in a single file or multiple files, and they can have a
fixed size (entirely allocated when created) or a dynamic size (that increases when
the virtual machine is used).

One convenient feature of virtual environments is the possibility of taking snap-
shots. A snapshot allows the user to save the exact state of a virtual machine at a
given point, that can be restored at a later time, after changes have been applied
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to the virtual machine. Generally snapshots are taken in an offline state, which
means that the virtual machine has to be powered off in order to save a snapshot.
However, some virtualization software offer the possibility of taking live snapshots,
saving this way the entire state of the machine (RAM, etc.) and not only the
current disk state.

Today, there are many different virtualization software solutions, designed in
different ways by different parties. The three main implementations that we used
in our work are QEMU, VirtualBox and VMWare.

2.2.1 QEMU

QEMU (Quick EMUlator) is one of the oldest solutions for virtualization. It is
open-source and completely free. It was born as a system emulator, capable of
running Operating Systems and programs that were made for one specific machine
(for example an ARM board) on a different physical machine (for example a PC). In
later years, thanks to a Linux kernel module called Kernel-based Virtual Machine
(KVM), it became able to execute guest code directly on the host CPU. This allows
it to obtain significantly better performances, making it possible to achieve near
native speed.

Many APIs have been created to aid with the usage of this virtualizer, that was
originally born as a command line tool equipped with a vast amount of options and
modes of usage. Main examples of softwares like these are libvirt and vagrant that,
even though are not specifically designed for QEMU since they are also capable
of facilitate the usage of other virtualization softwares as well (like VirtualBox or
VMWare), they provide options that help take advantage of all the options offered
by QEMU.

It is possible to take snapshots of a QEMU virtual machine, however taking and
managing live snapshots can be troublesome and complicated, reason for which it
is not advised to use QEMU for necessities like this. Offline snapshots are very
efficient and easily scriptable.

2.2.2 VirtualBox

VirtualBox is another free and open-source virtualization tool, owned and developed
by Oracle, capable of performing x86 virtualization. Differently from QEMU, this
solution is much more user friendly, and is generally the solution preferred by
mass consumers that are approaching the virtualization world. It is possible to
install it on almost all Operating Systems and it is equipped with a very intuitive
graphical user interface. VirtualBox is capable of running both as a hardware based
virtualization tool, when hardware assisting solutions exist for the host machine,
or as a software based virtualization tool, simply taking advantage of the operating
system user space.

There are also command line solutions for managing VirtualBox (the main one
is called ”vboxmanage”) that allows scripting and automazing virtual machines
creation and usage. Snapshot in VirtualBox are extremely accessible and easy to
use, both the live version or the offline version.
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2.2.3 VMWare

Differently from the previously described virtualization solutions, VMWare is a
commercial solution, implying that the source code is not available, and in order to
be able to use all the functionalities it is necessary to purchase a license. There is
however a free version that includes basic functionalities that are sufficient for our
purposes. In particular it is possible to create one or multiple virtual machines and
to attach multiple virtual hard drives. Snapshots however are not included in the
basic version of the software, making it harder to reproduce the same experiments.
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Chapter 3

The fuzzing system

3.1 Client-Server fuzzing model

Generally, in a fuzzing system, there are two main roles that come into play: gen-
erate the fuzzing data and performing the actual fuzzing. The model we used to
implement this system is a Client-Server model. The Client takes the role of the
data generator: its purpose is to create random bytes and send them to the Server,
which will be listening on a specified port. The Server’s task is to properly build the
data structures where the bytes received from the Client will be encapsulated. The
Server sends these structures to the target Hard Drive, then collects the feedback
data it returns. It also has other features, like logging the commands before sending
them, logging the results after the commands have been executed and checking for
any unexpected behaviour in the fuzzing target.

Figure 3.1: Graphical depiction of the Fuzzing model. 1) Generate the fuzzed
bytes; 2) Log the command; 3) Issue the command; 4) Wait for execution and fetch
results; 5) Log the results;

16



3 – The fuzzing system

One of the main benefits of having this kind of structure becomes evident when
dealing with Virtual Environments. By separating the command generating com-
ponent from the command executing component we have the possibility of splitting
the tasks between the Host machine and the Guest machine. It is indeed possible to
have the Client component running outside the Virtual Machine, while the Server
component runs inside it, with no major changes in the way the model functions.
Another perk of this model is the capability of modifying one component at a time,
without the need to change the other component.

The implementation of the Client was done by using a third party fuzzing frame-
work called ”Boofuzz”, while the Server was coded in two main versions, whose
features will be highlighted in the following paragraphs, using the Python and C
programming languages. We will mainly refer, for the rest of this document, to the
Client as the ”Generator” and to the Server as the ”Fuzzer”.

3.2 The fuzzing data Generator: Boofuzz

Boofuzz is a fuzzing framework written in python 2.7 with a big variety of features.
For instance it is capable of recording test data, detect failures, restart the target
process and more. However, in our specific case, many of these features cannot
be taken advantage of, since what we are trying to fuzz are not processes but
communication interfaces with hard drives. Consequently, we used it mainly for
data generation, printing of fuzzing information and, in some cases, for logging
purposes.

Figure 3.2: Example of the Boofuzz command line interface.

The Boofuzz framework is designed to work within a client-server architecture,
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with the fuzzing data generator taking the role of the client. In our model, when
launched, Boofuzz will try to connect to the server, which is the fuzzer designated
to send the generated bytes to the target hard drive. For each one of the multiple,
consecutive generated bytes, the generator client creates a new connection with the
fuzzer, and closes it after the command is sent.

3.3 The Fuzzer

As mentioned previously, the main task that the Fuzzer component of the system
has to execute is taking the bytes transmitted by the Generator and sending them
to the target Hard Drive. This is achievable through the usage of a particular
system call, the ioctl() system call, which is nothing more than an interface that
allows to execute device specific input/output operations. In our case, the specific
device we want to access is the target Hard Drive, usually mapped in Linux under
the path /dev/sd?, where the ”?” indicates one letter in alphabetical order (a, b, c,
etc.), depending on the number of hard drives connected to the machine at a given
time. For each Hard Drive, the partitions contained in it are also mapped under a
similar path. For instance, if we consider the /dev/sda drive, each of its partitions
will be mapped under /dev/sdaN, where ”N” is an increasing number representing
the partition.

In order to issue an ATA command, incapsulated in a SCSI command, the
ioctl() system call requires three paramteres. The first parameter is the file pointer
to the device we want to communicate with, that will be mapped under a specific
/dev/sd? path. The second argument is a request code that depends on the
type of device you are trying to interact with. In our specific case this request
code is defined in the scsi/sg.h kernel source code, under the name SG IO, and it
corresponds to the hexadecimal value 0x2285. By passing this value to the system
call, we communicate to the kernel our intention of communicating with a SCSI
drive, since, as mentioned previously, in Linux both SCSI and SATA drives are seen
by the kernel as SCSI devices. The third parameter required by the ioctl() system
call is a generic untyped pointer to a memory location. In this location the kernel
expects to receive data in a certain format, that depends on the type of request
passed in the second argument. In our specific case, it expects to find the pointer
to the beginning of the area of memory containing the SCSI Generic Structure,
which, in turn, will contain the pointer to the ATA Pass Through structure. This
is the main and most important task that the Fuzzer has to execute, to properly
build and load the received bytes in the ATA Pass Through and the SCSI Generic
Structure, to then call the ioctl() system call which will execute the transmitted
command.

The second task executed by the Fuzzer part of the system is the monitoring and
collection of the data returned by the device. As mentioned previously, after the
issue of each ATA Pass Through command, feedback data containing information
about the outcome of the command execution is returned in the SCSI Sense Buffer.
The Fuzzer, first of all, check the return status of the ioctl() function, to ensure that
the command execution has been transmitted properly. Then it checks the byte 0
of the sense buffer and, depending on its content, it identifies the right location in
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the structure that will allow it to find the Sense Key value, the ASC value and the
ASCQ value.

After few experiments with the fuzzing system, we introduced another check to
be performed by the Fuzzer: a liveness check. It would often happen, mainly with
real Hard Drives, that after sending fuzzed commands, the device would either get
into an anomalous state, or it would be disconnected from the machine by the kernel.
To recognize when these events happened, we introduced what we called a ”liveness”
check, which simply consists in sending an ATA IDENTIFY command after the
device executes a fuzzed command, and checking that the contents of the identify
data returned are the expected ones (meaning the ones that the device would return
in a normal state). The downside of this approach is the mild slowdown introduced
by the execution of this extra command after every fuzzed command. However,
in most cases, this was not relevant since the time required by the IDENTIFY
command to be exectued is several orders of magnitude smaller than the time
required by other commands, expecially the ones inducing a timeout.

Logging is another crucial feature we needed to implement in our fuzzing system.
The most trivial way of doing so would have been by using the logging mechanism
provided by the Boofuzz framework. Unfortunately this option would have been
insufficient, since the only data Boofuzz is capable of logging, are the fuzzing bytes
created by the Generator. This required us to implement the logging mechanism
in the Fuzzer component. The way it works is by, first of all, logging the command
bytes prior to sending the command, then logging both the sense data returned by
the device and the outcome of the liveness check. The timestamp is also recorded
together with the other data.

One curious peculiarity of the interaction with the Hard Drives is present in
the ATA IDENTIFY command. The 512 byte structure containing the device
information and returned by this command appears to be byteswapped, even on
little-endian architectures. By analyzing the code of other open-source disk utilities
it seems that they also take this problem in consideration and advise to byteswap
the returned data before utilizing it, on all platform, not just big-endian ones. We
couldn’t find any specific reason fro which this happens, but our Fuzzer programs
had all to keep this problem in consideration.

3.3.1 The Python Fuzzer

The first version of the fuzzer, whose development begun during the semester
project, uses Python 2.7 as programming language. This is mainly due to the ease
of use of the language and to the fact that Boofuzz, the backbone of our Genera-
tor component, is a Python framework, which makes it straightforward to use the
same language also for the Fuzzer. Python also provides an easily implementable
interface with the C libraries, in particular to the ioctl() system call, essential for
sending commands to the hard drive.

The way we designed this component was by splitting it into two modules that
we called fuzzer.py and ata.py :
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Module ata.py

Its task is to mainly deal with the communication between the Fuzzer and the Hard
Drive. It receives the ATA Pass Through structure, filled with the fuzzed bytes by
the fuzzer.py module, it builds the SCSI Generic Structure and properly initializes
its fields with appropriate values, then it makes the call to the ioctl() function. It
is also appointed to collect the returned data, and to forward it to the fuzzer.py
module. Some extra features implemented by this module are the ability to execute
few different ATA commands for testing purposes, for example the ATA IDENTIFY
command, or the READ/WRITE PIO commands. It is also the module in charge
of taking care of byteswapping the identify data.

Module fuzzer.py

Main module designed to be the bridge between the Generator component and the
ata.py module. It receives the fuzzed bytes, encapsulates them into the ATA Pass
Through structure then forwards it. It is also the module in charge of printing and
logging results, as well as providing several different fuzzing modalities that can be
selected when launching the program from command line:

− Fuzzing with identify check (-f): Standard fuzzing mode that sends the fuzzed
bytes received from the Generator to the Hard Drive then performs a liveness
check after each command.

− Fuzzing without identify check (-fn): Very similar to the previous mode, ex-
cept for the fact that the liveness check is not performed anymore. This
brings a slight improvement in performance, since there are less commands
to be executed, and also performs less log operations.

− Offline fuzzing with identify check (-fo): This mode doesn’t use the Generator
component anymore as it takes the input bytes from a file passed on the com-
mand line. This mode is useful when anomalous behaviour happened with a
certain batch of commands and we want to replicate them. Few modifications
are required to the log files for them to be made compatible input files for
this mode.

− Offline fuzzing without identify check (-fon): Similar to the previous mode
without the liveness check.

− Execute an ATA IDENTIFY command (-id): This mode is for testing pur-
poses. It executes an ATA IDENTIFY command and prints the Serial num-
ber, Firmware revision and Model number contained in the data returned by
the Disk.

− Execute an ATA READ PIO command (-r): This mode is for testing pur-
poses. It executes an ATA READ PIO command and prints its content. The
LBA number of the sector to be read must be provided.

20



3 – The fuzzing system

− Execute an ATA WRITE PIO command (-w): This mode is for testing pur-
poses. It executes an ATA WRITE PIO command and prints its content.
The LBA number of the sector to be written must be provided.

At start, the way the Fuzzer operated was by simply opening a connection
with the Generator, receiving the fuzzed data and sending it to the Hard Drive,
then closing the connection and opening a new one for the next command. In
the general case this method has no evident flaws since the Generator waits until
one connection is closed before opening a new one. However, in the particular
case in which we are dealing with a Virtual Environment and we need to have the
Generator component outside the Virtual Machine, while the Fuzzer component
is inside, problems may arise mainly because the Generator and the Fuzzer are
not synchronized anymore, because they are not communicating directly anymore,
but through the Virtual Machine port forwarding mechanism. This means that
the Generator will keep generating data, while the Fuzzer may be much slower to
process these commands. This situation could quickly bring to the saturation of
the buffer between the Virtual Machine and the Host Machine. To deal with this
problem we implemented a queue of commands inside the Fuzzer. In particular
we created a second thread whose task is to collect the commands sent by the
Generator and insert them into a queue. The main thread, will then fetch them
from the queue in a FIFO (first-in first-out) manner. This method has been working
reliably in all the experiments performed, as the number of commands present in
the queue at the same time never reaches levels that could be troublesome to deal
with.

Another peculiarity of the Python Fuzzer that is worth mentioning is the fact
that it is only capable of executing 12 bytes ATA Pass Through commands, with
the first three bytes (the bridge setup bytes) fixed to values that are appropriate
for a READ PIO command. Moreover, this Fuzzer is only capable of sending CDBs
that are entirely randomly generated by the Generator component, including the
OPCode of the command to be executed. This means that this fuzzer does not
only fuzz ATA commands that are defined by the T13 ACS document, but it fuzzes
all the possible 256 values contained in the OPCode byte of the CDB.

3.3.2 The C Fuzzer

As it will be illustrated later in the document, the fuzzing method described pre-
viously, that was implemented by the Python Fuzzer, had a certain degree of
rigidity to it. This first Fuzzer was only able to send 12-byte versions of the
ATA Pass Through command, while neglecting completely all the 48-bit ATA com-
mands that require a 16-byte ATA Pass Through structure. In addition, the way
the Python Fuzzer builds the ATA Pass Through structure is by mantaining the
first three bytes fixed to the same values, whichever is the command that it exe-
cutes. This caused many uncertainties due to the fact that it was not clear whether
whether the commands would actually reach the SATA drive or they would just get
discarded by the translation bridge, since the setup bytes are not appropriate to
the command we are trying to execute. In other words it was not easily determined
whether we were fuzzing the SCSI to ATA translation bridge or the actual ATA
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device, as intended. Due to these factors, we decided to design a slightly different
Fuzzer, that would be able to fuzz both the 28-bit and the 48-bit ATA commands,
and that would be able to modify the setup bytes in accordance to the command
that is to be executed. To be able to this, we had to limit the set of fuzzed OpCodes
to only those that are actually defined by the ACS.

While the first intention was to just extend and modify the way the Python
Fuzzer worked, some other factors came into play that skewed our plan towards
using the C language instead of Python. First of all, the C language brings some
intrinsic advantages and disadvantes: due to its low-level nature, it is much faster
than Python, which takes significant computing time for the interpretation process.
C code is, however, more difficult to write and mantain, and it requires extra
attention in some particular cases, for example when dealing with dynamically
allocated memory.

To understand the main reason that led to the choice of this programming lan-
guage, we are now going to introduce the disk utility tool named hdparm. This is an
open source command line program for Linux that allows the user to interact with
an ATA hard drive by granting the possibility to view and change disk hardware
parameters and to test performance. The way its code is implemented is by having
few ”handler” functions that are called with different parameters, depending on
the ATA command the user is willing to execute. This paradigm is remarkably
close to what we need to implement in our Fuzzer: a way of changing the setup
bytes in the ATA Pass Through structure, depending on the ATA command we
are trying to execute. For this reason we decided to reuse these snippets of code
from hdparm, and to modify them to fit our purposes. We implemented the ATA
commands individually, by testing their behaviour and the feedback data returned
by the disk, reaching a total of 45 implemented commands (table 3.1).

One difference with the Python Fuzzer is that the C Fuzzer does not implement
the multi-threaded queue of commands. This is mainly due to the fact that we
did not have the necessity to use this Fuzzer in a Virtual Machine, while keeping
the Generator outside, and consequently that feature was not required. A similar
case can be made in regards to the offline fuzzing, another feature that has been
omitted for lack of necessity.

The operating modes of this Fuzzer, with the corresponding command line flag,
are listed below:

− Fuzzing without identify check (-f): Standard fuzzing mode that sends the
fuzzed bytes received from the Generator to the Hard Drive. No liveness
check executed.

− Fuzzing with identify check (-fid): Identical to the previous mode, with the
liveness check included.

− Fuzz with only ATA SMART command (-smart): This fuzzing mode keeps
the OpCode of each sent command fixed and equal to the ATA SMART com-
mand. This is because this specific command has multiple subcommands,
that depend on the value of the features field in the CDB. All these subcom-
mands constitute an interesting fuzzing surface, which is the purpose of this
mode.
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COMMAND CODE COMMAND NAME
0x03 CFA REQ EXT ERROR CODE
0x06 DSM
0x08 DEVICE RESET
0x10 RECAL
0x20 READ PIO
0x24 READ PIO EXT
0x25 READ DMA EXT
0x27 READ NATIVE MAX EXT
0x29 READ MULTIPLE EXT
0x30 WRITE PIO
0x34 WRITE PIO EXT
0x35 WRITE DMA EXT
0x39 WRITE MULTIPLE EXT
0x3d WRITE DMA FUA EXT
0x3f READ LOG EXT
0x40 READ VERIFY
0x41 READ VERIFY ONCE
0x42 READ VERIFY EXT
0x44 ZERO EXT
0x57 READ LOG DMA EXT
0x5b TRUSTED NON DATA
0x5c TRUSTED RECEIVE
0x5d TRUSTED RECEIVE DMA
0x5e TRUSTED SEND
0x60 READ FPDMA
0x61 WRITE FPDMA
0x70 SEEK
0x87 CFA TRANSLATE SECTOR
0x90 DIAGNOSE
0x98 CHECKPOWERMODE2
0xa0 PACKET
0xa1 PIDENTIFY
0xb0 SMART
0xb8 CFA ACCESS METADATA STORAGE
0xc0 ERASE SECTORS
0xc6 SET MULTIPLE
0xc8 READ DMA
0xca WRITE DMA
0xe7 FLUSHCACHE
0xe8 WRITE BUFFER
0xea FLUSHCACHE EXT
0xec IDENTIFY
0xef SETFEATURES
0xf0 IBM SENSE CONDITION
0xf8 READ NATIVE MAX

Table 3.1: List of the 45 ATA commands implemented by the C Fuzzer
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− Fuzz with only ATA SETFEATURES command (-feat): Similar mode to the
previous one. In this case the fixed command is the ATA SETFEATURES
command, which is also composed of multiple subcommands.
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Chapter 4

Fuzzing Virtual and Real Hard
Drives

4.1 Qemu experiments

4.1.1 Command Tracing Mechanism

As previously explained, our fuzzing model was based on sending ATA commands
through the SCSI translation mechanism. One of the downsides of this model was
the uncertainty of how many of the fuzzed ATA commands we issued (including
the ones with non-existing ATA command code) were actually able to reach the
ATA device, main target of our system, and how many were stopped by the SCSI
translation layer. In order to obtain more information about this issue, we took
advantage of one of the many utilities made available by the QEMU configuration
options: the tracing mechanism. This is a tool that allows the user to keep track
of many different types of variables in the virtualization system. For our purposes,
the virtual machine variables we were interested in were the ones corresponding to
each ATA command sent by our fuzzing system.

To enable this option, it is enough to toggle some specific configuration variables
during the compilation process of QEMU. At this point the Command Code of every
ATA command that is executed inside the virtual machine will be logged by QEMU
into a file. To be able to analyze these logs and extract the desired information it
was enough to write a script in python whose main function was to count, rank and
print the ATA commands. To test the correct operability of the tracing mechanism
we tried to simply monitor a normal running virtual machine (no fuzzing involed).
In figure 4.1 it is possible to see the output example of a Ubuntu 18.04 machine
running for ten minutes.

Thanks to this new tool, we were able to test all the 256 possible ATA Command
Codes and observe whether they were tracked or not by this mechanism. The results
are displayed in table 4.1. All the other Command Codes that are not displayed
in the table were processed and detected regularly by the virtual machine. It is
also possible to see that even though some commands were detected as passed, it
took the system an abnormal amount of time to process them (generally between
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Statistics for tracefile trace.cmds

Total number of commands: 20515

Occurrences Command Code/Name

12923 (0xc8) READ DMA

3183 (0x20) READ SECTOR(S)

3075 (0xca) WRITE DMA

829 (0xa0) PACKET

313 (0xe7) FLUSH CACHE

136 (0x25) READ DMA EXT

16 (0x35) WRITE DMA EXT

13 (0xec) IDENTIFY DEVICE

11 (0xa1) IDENTIFY PACKET DEVICE

9 (0xb0) SMART (command family, see docs)

3 (0xe5) CHECK POWER MODE

2 (0xef) SET FEATURES

1 (0xe0) STANDBY IMMEDIATE

1 (0x30) WRITE SECTOR(S) / WRITE SECTOR(S) WITHOUT RETRIES

Figure 4.1: Occurrences of ATA commands in a regular Virtual Machine

30 seconds and 2 minutes). This is probably due to the fact that they toggled some
timeout mechanism either in the SCSI translation bridge or in the ATA device. The
commands that did not pass were simply not detected by the tracing mechanism
and returned Sense Data that indicated an error in the SCSI CDB (”Illegal Request
- Invalid field in CDB”). Thanks to these tests we concluded that there is a high
probability that command codes that are not defined by the ATA standard should
be capable of reaching the ATA device.

PASSED/NOT PASSED COMMAND CODE COMMAND NAME
Not Passed 0x22 READ LONG
Not Passed 0x23 READ LONG WITHOUT RETRIES

Passed (Slow) 0x30 WRITE SECTOR(S) (WITHOUT RETRIES)
Passed (Slow) 0x31 UNKNOWN (OBSOLETE COMMAND)

Not Passed 0x32 WRITE LONG
Not Passed 0x33 WRITE LONG WITHOUT RETRIES

Passed (Slow) 0x34 WRITE SECTOR(S) EXT
Passed (Slow) 0x39 WRITE MULTIPLE EXT
Passed (Slow) 0x3c CFA WRITE VERIFY / WRITE VERIFY

Not Passed 0x5c TRUSTED RECEIVE
Not Passed 0x5d TRUSTED RECEIVE DMA
Not Passed 0x5e TRUSTED SEND
Not Passed 0x5f TRUSTED SEND DMA

Passed (Slow) 0xc5 WRITE MULTIPLE
Passed (Slow) 0xe6 SLEEP

Table 4.1: Traced ATA commands

4.1.2 Code Coverage

Another technique we used to evaluate the efficiency of our fuzzing system was
measuring the QEMU source code coverage while issuing fuzzed commands. Code
coverage is a measurement of how many lines and brances of code are executed
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when running a program. This was again possible thanks to the options provided
by QEMU, where, in order to enable coverage monitoring, it is enough to toggle
few configuration variables in the compilation process. It is possible to view the
coverage extract both in a graphical version, in HTML format, and in a text-based
version. In the graphical version, the information provided are the percentage
and number of code lines executed for each source file, percentage and number of
branches executed for each source file, and the total percentage and line coverage
for all the monitored files. In the text-based version all the previously mentioned
information are available, plus the number of each line that has not been executed,
allowing for a more in-depth analysis.

Figure 4.2: Example of the graphical representation of the coverage report

With this tool we analyized the behaviour of both our Fuzzers. We focused our
attention mainly on the source code files that were involved with the management
of the ATA/SCSI commands, since these were the ones directly impacted by our
fuzzer. Generally, the results we observed were that the larger part of the lines of
code were covered during the first few hundreds of commands issued. Following,
there would only be a minor increase in coverage, which tended to become smaller
with the increasing number of commands sent. This is plausible since the more
commands we send, the more probable it is for these new commands to execute
lines of code that were already executed previously. However, since the increase
in coverage was considerably small, it is also possible that our fuzzer could spend
a remarkable amount of time sending commands that were not executing any new
code. Nonetheless, we considered this to be acceptable, since, even though the
increase in coverage was negligible, it would have been enough to find a single
specific combination of input bytes that could bring the VM to an erroneous state.
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4.1.3 First set of experiments

One of the results obtained during the semester project was that, after letting the
Python Fuzzer run for a variable amount of time, the virtual machine file-system
was set to read-only, causing the fuzzing system to crash since it became impossible
for it to generate new commands. It is important to note that the virtual hard disk,
target of our fuzzing system, was the main hard disk containing the virtual machine
file-system.

In order to understand more about what was happening we ran several exper-
iments. We extracted a batch of nineteen thousand (19k) ATA commands that
caused, in a previously fuzzed virtual machine, its file-system to become read-only.
By having this batch of commands, it is possible to try to recreate the same condi-
tions by sending these commands to multiple, newly created, virtual machines. We
used Vagrant to help us automize the fuzzing process, by creating a new Vagrant
box containing Ubuntu 18.04 with the Linux Kernel version 5.0.0 and with all the
necessary software, fuzzing system included, already installed. By scripting the cre-
ation and the execution of the virtual machines, we were able to run tests multiple
times in an efficient manner. However, since the results obtained from these tests
were sometimes different from our expectations, we decided to also run some tests
without using Vagrant, to ensure that by using multiple layers of software we were
not bringing changes to the virtual machines configuration.

In particular, these were the different experiments we tried to run:

• First of all, we tried to create two new VMs (without using Vagrant) and fuzz
them with the 19k commands batch. In one of them, the file-system became
read-only, however it happened with a smaller number of commands, before
all the 19k were processed. In the second VM the file-system was never set
to read-only.

• By using Vagrant, we launched four fresh VMs, two of which ran with the 19k
commands batch, one ran with the last 12k commands of the 19k batch and
one ran with the first 10k commands of the 19k batch. All of them finished
sending their sets of commands without the file-system becoming read-only.

• With the help of Vagrant, we tried to launch five newly setup VMs and fuzz
them with 300k new randomly generated commands. After more or less one
day, the file-system of three of them became read-only (after approximately
50k-60k commands), while the file-systems in the other two VMs never be-
came read-only and completed all the 300k commands after approximately
three to four days.

• From the three VMs whose file-system became read-only, we extracted three
new batches of commands and we executed them on three freshly setup VMs.
None of these VMs’s file-system was set to read-only after these batches of
commands.

The results of these experiments brought us to the main conclusion that the
behaviour of the virtual machines to the issued commands were not deterministic.
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It is clear that it is not possible to reliably replicate the reason for which the file-
system is set to read-only. Instead there seems to be a certain degree of randomness.

4.1.4 Investigating the Read-Only problem

In order to understand more about why the file-system would sometimes be set
to read-only, we decided to check the system, kernel and journal logs for error
messages. This was possible to do after the read-only event since there were no
write operations involved in the log reading process. It is displayed in figure 4.3
the output of the kernel log (in Linux, under the path ”/var/log/kern.log”) of one
of the virtual machines in read-only mode. From these messages it is inferable
that some problems occurred in one of the directories inodes, and that the kernel
intervened by setting the file-system to read-only, to avoid any additional damage.
To better comprehend what happened we need to understand how the EXT4 file-
system works under Linux, in particular how directories are managed.

Figure 4.3: Kernel log of a VM with its file-system set to read-only

In Linux, directories are considered files, and as such they have an inode asso-
ciated to them. An inode is a metadata structure that contains information about
a file, and in case of a normal file, it also contains the file data (or pointers to
where the file data is stored). In case of a directory, there is no data to be stored.
What is stored are instead the directory entries. These are nothing else than a list
of mappings between the names of the files contained in the directory and their
inodes.

Offset Size Name Description
0x0 le32 inode Number of the inode that this directory entry points to
0x4 le16 rec len Length of this directory entry
0x6 u8 name len Length of the file name
0x7 u8 file type File type code
0x8 char name[EXT4 NAME LEN] File name

Table 4.2: Structure of an EXT4 directory entry (ext4 dir entry)

By analizing this structure more in depth, it is possible to notice that the first
four fields have always the same size, since they contain numbers represented on a
defined number of bytes. The file name, instead, has a variable length, that can go
up to 255 characters (255 bytes). These structures are normally stored in a linear
array that is contained in the previously mentioned directory data blocks. To make

29



4 – Fuzzing Virtual and Real Hard Drives

these blocks more robust it is necessary to add checksums strcutures. These are
nothing else but phony structures (identical to the ext4 dir entry from a phyisical
point of view) placed at the end of each directory data block.

Offset Size Name Description
0x0 le32 det reserved zero1 Inode number, which must be zero
0x4 le16 det rec len Length of this directory entry, which must be 12
0x6 u8 det reserved zero2 Length of the file name, which must be zero
0x7 u8 det reserved ft File type, which must be 0xDE
0x8 le32 det checksum Directory leaf block checksum

Table 4.3: Structure of a leaf directory entry (ext4 dir entry tail)

This special directory entry is always 12 bytes long. The inode number and
name len fields are set to zero to fool old software into ignoring an apparently
empty directory entry. The checksum is stored in the place of the filename and in
this particular case it has a fixed size of four bytes, since the size of the checksum
value stored in it does not depend on the data.

Going back to our particular case, we decided to investigate the Linux kernel
source code. We found that the ”No space for directory leaf checksum” message
was printed when the checks (figure 4.4) on the fixed values of the first four fields in
the ext4 dir entry tail structure failed. Since they are fixed when the structure is
created and they are not modified in any way by the Kernel code, it was clear that
there must have been some kind of memory corruption that overwrote the values
of the said structure. This could be seen as a normal consequence of our actions.
Since we were fuzzing the virtual hard drive containing the OS file-system, it was
definitely plausible that some random write commands could be issued to write to
random parts of memory, overwriting the checksum directory entry and the fixed
values fields.

However the observed behaviour was not as straightforward as expected. First
of all we need to keep in mind that these tests were run with the Python Fuzzer,
which kept the setup bytes of the ATA Pass Through fixed to values corresponding
to a read operation. Several tests showed that in a real machine it was impossible
to write on disk with such setup bytes in the structure. Moreover, the writes on

333
334 if (t->det_reserved_zero1 ||

335 le16_to_cpu(t->det_rec_len) != sizeof(struct

ext4_dir_entry_tail) ||

336 t->det_reserved_zero2 ||

337 t->det_reserved_ft != EXT4_FT_DIR_CSUM)

338 return NULL;

339
340 return t;

Figure 4.4: Linux kernel code snippet containing the leaf directory entry checks.
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the disk were not consistent: by running tests restoring multiple times the same
initial snapshot and running the exact same batch of commands, the corruption of
the disk did not happen every time in the same manner. Even if the address at
which the disk was overwritten were very similar (when running multiple tests with
the same batch of commands) the amount of memory overwritten was practically
always different both in size. Moreover, the data that was written in the corrupted
sectors also looked pretty arbitrary: at times address values would get printed, some
other times the return data of the ATA IDENTIFY command (which probably
derived from the successive IDENTIFY command that was sent after each fuzzing
command) was printed, in other cases data from other files or directories would
get leaked. This kind of volatile behaviour brought us to the conclusion that there
must be a memory leak involved, since it is the main memory (and not the disk)
whose content tends to change over time.

Figure 4.5: Memory leak in a part of the virtual hard drive.

4.1.5 The ATA SLEEP command

While running the previously mentioned fuzzing experiments we stumbled upon one
particular anomalous behaviour. In some cases, the liveness check (which consists
of the IDENTIFY command after each fuzzing command) would fail, as it did not
return the expected IDENTIFY data it usually returns during normal conditions
(see 2.1.3). Instead, the 512 bytes structure generally contained only null bytes.
At times, however, leaked bytes would be present in this structure. The leaked
data looked very similar to the leaks described in the previous section (corrupted
writes), meaning that sometimes addresses would get leaked. In figure 4.6 it is
possible to observe the raw bytes, in hexadecimal form, contained in the IDENTIFY
command output. By paying particular attention, it is noticeable that these values
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are actually 64-bit addresses that probably belong to the kernel memory space,
since they are high addresses.

Figure 4.6: Raw bytes leaked by the IDENTIFY command output.

To ensure that these values were actually addresses we tried running more
tests, In particular we tried leaking the addresses by activating or deactivating
KASLR. Kernel Address Space Layout Randomization (KASLR) is a security mea-
sure adopted by almost every modern kernel. It is a memory-protection process
that guards against different attacks by randomizing the location where system
executables are loaded into memory. The results of these tests were in line with the
expectations: with KASLR enabled the leaked addresses changed between VM re-
boots while when turned off they would always be the same. This makes us believe
that with high probability those are leaked kernel addresses.

One very important detail that was still unknown was whether these addresses
belonged to the virtual machine guest kernel or the physical machine host kernel.
This makes a very big difference because it would constitute a substantial security
flaw in case there would be a leak of the host memory inside the guest Virtual
Machine. In order to test this and determine to which machine the addresses
belonged we decided to create a new Virtual Machine that was running a 32-bit
version operating system. For this purpose we used the Ubuntu 16.04 32-bit version,
since the operating system we were running the tests on, Ubuntu 18.04, does not
have a 32-bit version. By forcing the leaks to manifest on this virtual machine, it
was enough for us to check the length of the leaked addresses. Their length was
indeed of four bytes, implying that these addresses belonged to the guest kernel
inside the virtual machine.

4.1.6 Second set of experiments

After the first set of experiments and the discovery of the memory leaks we decided
to test the virtual machines more. During the first experiments our focus was
mainly on fuzzing all the 256 values of the Command field in the ATA registers.
Even though we had proofs, thanks to the tracing tool, that these command most
likely reached the ATA device, there were still doubts about the actual effectiveness
of this method. In particular the general feeling we had was that we were still
actually fuzzing the SCSI to ATA translation layer, more than the ATA protocol
itself. As mentioned in chapter 3.3.2 we designed a new Fuzzer component that was
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able to fuzz command codes that were actually implemented by the ATA protocol.
Moreover, instead of keeping the setup bytes in the ATA Pass Through structure
fixed, it was capable of changing the bytes to better fit the ATA command to be
issued.

In this case we ran in parallel 16 virtual machines in one host. They were
all setup with one core and 2GB of RAM. This is how we divided the 16 virtual
machines:

• Three virtual machines were fuzzing with the old Python Fuzzer. The main
reason behind this choice was trying to see if there could be possible interac-
tions between virtual machine (which of course would be a very anomalous
behaviour since VMs are designed to be isolated systems)

• Seven virtual machines were fuzzing with the C Fuzzer, without performing
the liveness check. By not executing an ATA IDENTIFY after every com-
mand it was possible issue more commands.

• Four virtual machines were fuzzing with the C Fuzzer, executing the liveness
check after each fuzzing command.

• One virtual machine was only fuzzing the ATA SET FEATURES command.
We decided to isolate this command and fuzz it because of its particular
structure. This command is made of multiple subcommands, that can be
chosen by the value in the Features register. Our intention was to explore all
the possible subcommands.

• One virtual machine was only fuzzing the ATA SMART command. Similar to
SET FEATURES, this is another command made of multiple subcommands.

The general difference with the previous fuzzing mechanism was mainly the fact
that it was possible to send command much faster, since there were considerably
less timeouts involved. This was probably due to the fact that many timeouts are
triggered when executing Command codes that are not expected by the SCSI to
ATA translation mechanism. For this reason, it was possible to fuzz with consid-
erable amounts of commands (millions) in acceptable periods of time (few days).
This brought us to observe a new anomaly.

More precisely, a general RAM flooding problem arised. This is to be expected
when processing huge amounts of data, as millions of commands. There was, how-
ever, a problem when fuzzing with the C fuzzer, with all the 46 ATA commands
that it implemented. In particular, here is what happened when we tried to run
the different tests:

• When fuzzing with the C fuzzer with all 46 commands, after sending an
amount of commands ,generally included between 1 and 1.2 million, the vm
RAM got flooded and the VM slowed down until the Boofuzz or the Fuzzer
process got killed. However, even after both these processes are shut down,
the RAM is not freed. The VM is still extremely slow and, by analizing the
memory status with different tools, it is detected as full, without identifying
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any process that is occupying the memory. By letting different VMs in this
condition run, they all crashed after a couple of days the flooding occurred.

• We tried running the Fuzzer without actually sending the commands, by
commenting the line of code containing the ioctl(). The reason behind this
was to try to isolate the problem and identify it more easily. In particular we
thought that Boofuzz could be causing the flooding problem, so by eliminating
the Fuzzer component from the scheme we would be able to see how the system
would behave. The result was that, after Boofuzz generated 18.6 million
commands, it got killed by the Kernel for its memory usage. However, after
killing it, the RAM got freed and the VM went back to a normal status.

• The VM running the C fuzzer with only the ATA SETFEATURES command
behaved in a similar way to the case with the commented ioctl(). After 18.8
million commands the RAM got flooded and the processes were killed. The
RAM was freed and the VM went back to a normal state.

• Regarding the Python Fuzzer, it runs slower than the C Fuzzer, so it only got
to 7 million commands after 6 days of fuzzing. It didn’t create any issues,
and the felling is that it would also behave like the two previous cases, where
Boofuzz would probably fill the memory up but the VM would be able to
recover and return to a normal state.

Summarizing, the general trend seems to be that Boofuzz floods the RAM
memory when it generates considerable amounts of data. but when no sustantial
fuzzing is happening, the kernel is able to manage it normally: it detects the use
of too much RAM, it kills the process that is using it and returns to a regular
state. However, when paired with the Fuzzer sending real ATA commands in rapid
succession, the memory gets flooded much faster and it doesn’t seems like the Kernel
is able to restore the machine to a normal state, even after killing the processes.
In figure 4.7 it is possible to observe the output of the ”top” command in a VM in
these conditions, after the processes have been killed.

Figure 4.7: Screenshot of the ”top” process running in a flooded VM.
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It is evident that the RAM is almost all used but no active process can be iden-
tified as the responsible. As previously mentioned, all the VMs in these conditions
crash after one or two days.

4.2 VirtualBox experiments

The second virtualization software we tested was VirtualBox. This tool is more
modern than QEMU and its improved usability makes it a more appealing choice
for the general consumer. The advanced functionalities offered by this software
helped us to facilitate the tests we ran. In particular the very intuitive snapshot
interface made it trivial to run several times the same tests in order to understand
more about the very unpredictable behaviour of the memory corruption anomaly.
The online snapshot functionality was what allowed the virtual machine to return
to the exact state every time and produce similar results, without having to reboot
it which, even slightly, changed the internal configuration.

Regarding the results obtained while using this virtualization software, they
were in general very similar to the ones obtained with QEMU. The memory cor-
ruption happened also in VirtualBox virtual machines, as the ATA SLEEP leak.
For the RAM flooding anomaly, it manifested in the same way in the VirtualBox
VMs as it did in the QEMU ones. The only slight difference was related to the
command line interface, known as the ”vboxmanage” tool. Usually this tool is able
to list both all the created VMs and the running VMs. However, after the mem-
ory flood event happened, the tool was not able to list the running VMs anymore,
working as if no machine was running anymore. Although, it was still able to rec-
ognize that the machines were still existing. We were not able to find any plausible
explanation for this event, however it could be correlated to just some internal bug
in the VirtualBox code when dealing with memory flood virtual machines, as we
were not able to extensively test if this behaviour happened only when fuzzing, or
if it happened when the RAM got flooded.

Thanks to VirtualBox, we were able to improve the runnability of tests, which
made us understand better the events that were happening. These details are
described in the next paragraphs.

4.2.1 Experiments on VirtualBox

When changing the virtual environment from QEMU to VirtualBox, two main dif-
ferences in the behaviour of the virtual machines to fuzzing were quickly noticeable:

• After running the fuzzing system for a while, in general some houndreds of
commands but it would change a lot depending on the commands sent, be-
cause of some fuzzed commands that were sent to the virtual hard disk, the
VM would pause with a popup error message about the I/O cache. However
it could be resumed manually without any problems, and it would continue to
operate normally. The same behaviour happened both when using the soft-
ware through the GUI and through the command line interface. The advan-
tage brought in this case by the command line interface was the possibility
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of scripting the unpausing command, in order to automize this behaviour.
Our script works by sending an unpausing request every second to the virtual
machine. In this way there is a good compromise between the computational
overhead caused by this additional running process and the downtime during
which the virtual machine is paused and not able to send fuzzing commands.

• In VirtualBox, the commands are processed much faster than in QEMU,
which is probably due to the way the two different softwares manage the in-
terface with the virtual hard drives. More specifically, we were able to process
the batch of 19k commands in more or less thirty minutes with VirtualBox,
while in QEMU it normally takes a couple of hours. This is mainly due to
the fact that in QEMU there are more timeouts that last for a longer period
of time, while VBox doesn’t seem to have the same problem.

As previously mentioned, VirtualBox’s snapshot facility allowed us to run more
tests on the memory corruption issue. In particular our strategy in this case was
to save, in an online snapshot, the state of a virtual machine right before fuzzing
it, then run the fuzzer until it corrupted the memory, restore the snapshot and try
again. The result was that the file-system would become read-only after a similar
number of commands every time. Here is what happened in the five tests we ran:

1. read-only after 1852 cmds

2. read-only after 1833 cmds

3. read-only after 1870 cmds

4. read-only after 1822 cmds

5. read-only after 1827 cmds

This indicates that there must be a deterministic element that is making the cor-
ruption happen every time. The small difference in number of necessary commands
is probably due to the time it takes the guest kernel to identify the corruption, and
to set the file-system to read-only. Also what we found was that this behaviour was
strictly correlated to the current state of the machine, since by running the same
batch of commands on a different virtual machine, or even on the same virtual
machine but after rebooting it, the memory would not get corrupted with the same
deterministic level.

In order to dig deeper into why the memory corruption was happening, we tried
to isolate one or few commands that caused this to happen. Our strategy was to
make the corruption happen with a certain batch of commands from 0 to x, restore
the previous snapshot and try running the two half batches of commands of the
previous test, in particular from 0 to x/2 and from x/2 to x. In this way we could
monitor which of the two new sets of commands caused the memory leak, and
repeat the process until possible. This is what is called a dicotomic search, and it
is theoretically the fastest way of isolating the target command without knowing
anything about which one it is.
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What we found was that there was an ATA WRITE DMA EXT command
(0x35 is the command code) in the set of command and it was most likely the
one responsible for the writes on the disk. Even though it did not write anything
when sent individually, it always worked when sent in pair with another command
or bunch of commands. Moreover, we were able to find a correlation between
the LBA written in the registers of the command and the start of the corrupted
memory area. First of all we started running these tests on a different virtual hard
drive, which was empty, in order to avoid corrupting the file-system (and to avoid
restoring the snapshot after every test). This also made it trivial for us to locate the
memory area that was corrupted. We found that after every test, the start of the
corrupted memory area would be the same, even though the amount of memory
written would generally be different. By checking what the LBA written in the
ATA command register were, we found out that it corresponded with the start of
the corrupted area. This means that the leaked write was indeed caused by an
ATA command, even though the setup bytes of the ATA Pass Through CDB were
set to only enable read operations.

Since we were only able to reproduce this behaviour in a virtualized environ-
ment, we can conclude that with high probability there are some bugs present in
the SCSI to ATA translation mechanism. This not only allows operations that are
not permitted to be executed, but it also leaks parts of the guest virtual machine
kernel memory.

4.2.2 Incompatibilities with ATA Pass Through

Aside from the previously mentioned behaviours, VirtualBox revealed also some
kind of incompatibilities problems with the SCSI to ATA translation mechanism.
While running the tests, one thing we stumbled upon was an anomalous output
when sending read/write commands to the virtual disk in VirtualBox. By using the
Python Fuzzer, we tried sending well formed ATA READ PIO and WRITE PIO
commands through an ATA Pass Through CDB. These two commands worked as
intended both on a QEMU virtual machine and on a real Hard Disk. However, in
the case of the READ PIO command, when ran in a VirtualBox virtual machine,
the returned data was most of the time NULL bytes, instead of the real data that
was written on the disk. Sporadically, it also happened that some leaked bytes
would get returned, such as addresses or files’ data. When testing the WRITE PIO
command, nothing would get written on the virtual disk, while the same command
worked normally on QEMU and real hard drive.

To ensure that no bug was present in our code, we also tried running the same
tests with the hdparm utility. This is a widely used and tested tool so its reliability
is far superior to our Fuzzer code. By checking its source code, what we found was
that it was using the same method for sending ATA commands, which was through
the ATA Pass Through mechanism, making it an ideal option for double checking
our findings. The results of these tests were exactly the same as the previous ones,
meaning that no read or write command worked in a VirtualBox VM.

Our conclusions were that VirtualBox did probably not implement some parts of
the SCSI to ATA translation layer, which caused the error Sense data to be returned
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Figure 4.8: Data returned by the ATA READ PIO command using the utility tool
”hdparm”.

when executing a non implemented command. We knew however that some other
parts of the protocol were implemented, since it was, for example, possible to run
an ATA IDENTIFY command through the ATA Pass Through mechanism and
receive the correct data from the virtual hard disk.

4.3 VMWare experiments

In order to better understand the results of the experiments, we decided to run
them in a third virtualization software, in particular VMWare. This is again a
very widespread software solution, even though it is not free. However, because
of VMWare limited funcionalities, we were not able to run extensive testing on
VMWare.

First of all we tried to recreate the memory leak behaviour in the same way we
did in QEMU and VirtualBox. Even though it took a big number of trials to be
able to bring the VM to the ”leaky” state, we were able to recreate the memory leak
in the VMWare environment as well. The results were very similar to QEMU and
VirtualBox, as the leaked memory would be made of addresses, data from files or
other hard to identify bytes. This enforces our belief that the problem is connected
to the linux kernel code, and the way it interacts with virtual machines.
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Instead, we were able to find, by accident, a similar behaviour to the one found
in VirtualBox. When first installing VMWare and creating a virtual machine, the
default type of the virtual bus is set to SCSI instead of SATA. Since at first we were
unaware of this, when we tried to send ATA commands with ATA Pass Through to
the virtual hard drive, we obtained a similar behaviour to the one in VirtualBox. In
particular, by sending read and write operations with hdparm, we would get Sense
data that indicated an error (even though it was a different error than the one in
VirtualBox), and also memory leaks in the returned data, looking the same as the
ones in VirtualBox. Our interpretation of this is that there is no implementation
of an ATA Pass Through command for a SCSI device. This is similar to what we
think was happening in VirtualBox, where probably there is no implementation for
these commands (even though the device is set to ATA in VirtualBox).

4.4 Real Hard Drives

As a continuation of the semester project, we tried to understand more about
physical hard drives as well. In particular we were interested in the reduction
of the size of the SSD device that had undergone extensive fuzzing sessions. As
mentioned in the introduction, this had gone from being a 250GB to 2.4GB in
size, after running the Python fuzzer for several days. By investigating more, we
discovered that one of the ATA commands defined in the ACS, can be used to set
the HPA (Host Protected Area). This is an area of the disk that is not acccessible to
the user and can only be unlocked through specific ATA commands. By using the
same command, we were able to set the dimension of the SSD back to its original
value, indicating that, when executing randomly fuzzed commands on the disk, we
set its size to a smaller number. We concluded that this was a completely normal
behaviour, as no anomaly or bug was found.

4.4.1 Malformed Sectors

While running additional tests on one of the real hard drives we fuzzed, we stumbled
upon an anomalous behaviour in one of them. In particular some of its sectors
were not accessible anymore. Normally, our default way of checking the memory
content of a disk, both virtual and physical, was through the Linux command line
utility named ”dd”. This allows to perform input and output operations on the
content of files and devices. When trying to print the entire content of the SSD
device mentioned above, the command would give an error message when reaching a
certain part of the device. Unfortunately, the error message was not too descriptive,
as the only thing indicated was ”dd: error reading ’/dev/sdc’: Input/output error”.

In order to investigate more, we decided to try to use the ATA Pass Through
way of reading and writing a disk, by using both our program and the hdparm
utility. What we found was that there were some areas of the disk, made by
several sectors, which were not accessible by the ATA Pass Through commands.
However, the sectors at the beginning and at the end of these areas, that were
not accessible by the dd utility, were instead readable by the ATA Pass Through
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commands. They were containing random looking bytes, instead of null bytes as all
the other sectors in the device. We did not spot any recognizable data content, as
for example addresses or file content, so we were not able to relate this behaviour
to the one observed in the virtual machines. Everything returned to normal when
we used the dd utility to write null bytes in those sectors. In this case the tool
did not report any errors and proceeded with no interruptions. Afterwards, it was
possible to normally read these sectors without any problem.

What we can conclude from these behaviours is that probably some fuzzed
commands wrote some data on the disk that caused problem to the reading tools,
like dd or the ATA Pass Through programs. When these bytes were overwritten
with null bytes, everything returned to the standard behaviour.
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Conclusions

We found different anomalous behaviours throguh our testing schemes and tried
to investigate them. First of all we continued the investigation of the memory
corruption problem in the virtual machines, already discovered during the semester
project, and that was causing the file-system to be set to read-only. This anomaly
is most likely due to an incorrect management of the ATA protocol and device by
the virtual environments. The memory corruption cases only happened in virtual
machines, and they never happened with real hard disks, reason for which we think
that the problem is due to the interface between the virtualization software and
the Linux kernel. Another anomalous problem was the unpredictability with which
these events happened, and that made it non trivial to test and recreate. More
specifically, the memory leak did not happen in a reliable way, but it seemed more
as it only happened when the virtual machine was in a particular state. We ran
several tests to try to reliably bring the virtual machines to this state, but no solid
pattern was found.

Even though a memory leak could be an interesting flaw from the point of view
of a security tester, the data leaked in our case seems to belong to the guest kernel
inside the virtual machine. This makes it less interesting from a security point of
view, since in order to execute our fuzzing system, and to cause the memory leak to
happen, we already need administrator permissions. With these kind of permissions
it is already possible to inspect the memory, even if it is kernel memory.

The second anomaly we found related to virtual machines was the RAM flood-
ing problem. In general, any process could allocate as much memory as possible,
ending up using all the available RAM. This is what our Boofuzz component did,
when generating a significant amount of commands. The normal operating system
behaviour should be to eliminate the process that causes the RAM to flood, in
order to restore the operability of the system. This happened in most cases, ex-
cept when fuzzing with our C Fuzzer, which was designed to fuzz only with ATA
commands defined by the ATA standard. In this case the RAM got flooded and
remained allocated even after the processes were killed. This is probably due to an
internal bug linked to the management of the ATA commands, where there may
be present some kind of memory leak. This behaviour was present both on QEMU
and VirtualBox. We were not able to test these conditions on a real machine since
real devices are much slower than virtual devices, making it very hard to reach the
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necessary number of commands for the memory flooding to manifest.

Regarding the real devices, we also performed tests to try to understand more
about the size change in the device. By looking deeper into it we found out that
there was nothing anomalous involved in this. All we did was changing the HPA
(Host Protected Area) of the disk through a specific ATA command. This is an
area of the disk that is hidden from the user, but it is still available. By randomly
fuzzing we probably changed its size in the process. To restore the default size it
was enought to send the same command again.

The general conclusion of our work is that hard drive communication systems
have a good level of reliability, and we can state that, by fuzzing the ATA proto-
col, the probability of finding an important and crucial security flaw is very low.
Different bugs were found, as described in this document, but none of them could
be exploited to facilitate or create security attacks.
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