
POLITECNICO DI TORINO

Department of Electronic and Telecommunications
Master of Science in Electronic engineering

Master’s Thesis

Scalability and Virtualization
enhancement in Spiking Neural

Hardware based on PSOC

Advisors:
Prof. Maurizio Martina
Prof. Jordi Madrenas Boadas
Prof. Mireya Zapata Rodriguez

Candidate:
Roberto Gattuso

Academic year 2019/20

Abstract

This thesis work is focussed on the scalability and virtualization enhancement of
HEENS architecture, which is a spiking neural hardware emulator. All blocks are
described in VHDL, simulated to check their behaviour and finally the whole system
is synthesized and implemented on a PSOC, in order to verify time constraints and
area occupied.

In particular, all the improvements made concern the processing element array,
which represents spiking neurons that have to be emulated. Each processing element
consists of an ALU, a register file, a virtualization register, a LFSR and memory
blocks containing synaptic parameters and membrane potential values.

Finally the architecture has a new spike distribution structure, making the sys-
tem more scalable, and virtualization is introduced, in order to extend the array
without requiring more resources, thus saving space on the board. Exploiting at
most the available area, it has been possible to simulate a 13x13 array with problem-
free timings.

I

Acknowledgments

This thesis work would never have existed without the support of many people who
have been present during this beautiful journey abroad. First of all, I have to thank
Prof. Jordi Madrenas for having accepted me as a graduate student while I was still
in Italy and for being present during these months, guiding this work, always ready
to help me to find a solution to every problem, and Mireya Zapata, always available
to collaborate despite the difficulties of distance, giving an huge support for FPGA
test. I also want to thank Prof. Maurizio Martina, my advisor in Italy, who has had
to monitor my work and despite the distance has always wanted to receive updates
and give advice about them. I do not forget all the important people who have
been close to me during these months, giving me help each in its own way: Martina,
Francesca, Vittoria, Salvo; my quiet flatmates of Barcelona, Lorenza and Elisa, and
those of Turin, Antonio and Totò; all the Erasmus friends met during this journey;
the laboratory guys, Josep Angel, Diana, Josep Maria. I can not mention everyone,
but thank you all for being part of my life.

Last but not least, I dedicate this work to my family, without whose moral
support, their trust in me and their efforts, I would never have arrived where I am
now. Thanks for existing.

II

Abbreviations

AER Address Event Representation
ALU Arithmetic and Logic Unit
BRAM Block Random Access Memory
EPSP Excitatory Post-Synaptic Potential
HEENS Hardware Emulator of Evolved Neural System
IF Integrate and Fire
IPh Initialization Phase
IPSP Inhibitory Post-Synaptic Potential
ISA Instruction Set Architecture
IZ Izhikevich
LFSR Linear-Feedback Shift Register
LIF Leaky Integrate and Fire
LIFO Last In First Out
LSB Less Significant Bit
LUT Lookup Table
ND Neural processing Device
MC Master Chip
MSB Most Significant Bit
PE Processing Element
PSP Post-Synaptic Potential
SIMD Single Instruction Multiple Data
SNAVA Spiking Neural-Networks Architecture for Versatile Applications
SNN Spiking Neural Network
VHDL Very High speed integrated circuits Hardware Description Language

III

Table of contents

Abstract I

Acknowledgments II

Abbreviations III

1 Introduction 1

2 State of Art 3
2.1 Biological neurons network . 3
2.2 Spiking Neuron Networks . 5

2.2.1 Leaky Integrate-and-Fire model 6
2.2.2 Izhikevich’s neuron model . 7
2.2.3 Synaptic plasticity and STDP 7
2.2.4 Polychronization . 8
2.2.5 Computational power of neurons and networks 9

2.3 SNN Architectures . 10

3 Architecture Review 12
3.1 HEENS architecture . 12
3.2 Processing Element array . 16
3.3 IF Assembly Code . 19

4 Pipelining and Extension of the Multiprocessor Array 22
4.1 Spike pipeline . 22
4.2 Array Extension . 27
4.3 Synthesis and Implementation . 33

5 Virtualization 39
5.1 IF Assembly Code supporting virtualization 39

5.1.1 Memory Interface . 41
5.2 Virtualization Design . 44

IV

5.2.1 Simulations . 47
5.3 Synthesis and Implementation . 50

6 Conclusions and future development 54

A Instruction Set 56

B Assembler Code 58
B.1 IF . 58
B.2 IF VIRT . 61

C Netlist 65
C.1 netlist ringosc5x5.txt . 65
C.2 netlist ringosc10x10.txt . 65
C.3 netlist snake10x10.txt . 66
C.4 netlist BPF VIRT.txt . 69

D VHDL listing 70
D.1 PE.vhd . 70
D.2 PE row.vhd . 83
D.3 PE array.vhd . 88

Bibliography 93

V

List of figures

2.1 Neuron models based on the dot product computation [1]. 4
2.2 A model of spiking neuron: EPSP (red curve) or IPSP; they are all

added (blue line) [1]. 4
2.3 Structure of a neuron network. 5
2.4 The Integrate-and-Fire electrical model. 6
2.5 Various shapes of STDP windows with LTP in blue and LTD in red

for excitatory connections (windows 1 to 3). Standard Hebbian rule
(window 4) with brown LTP and green LTD are usually applied to
inhibitory connections [1]. 8

3.1 HEENS architecture consisting of a Master Chip (MC) and Neural
processing devices (NDs) connected in a ring [2]. 13

3.2 HEENS processing stages[2]. 14
3.3 Block diagram of HEENS multiprocessor architecture[3]. 15
3.4 Processing Element block diagram [4]. 18
3.5 Simulation of the three neuron’s membrane potentials trend as a func-

tion of time done with QuestaSim software. 20

4.1 Previous multiprocessor array and PE block diagrams [4]. 23
4.2 Block diagram of the new pipelined architecture of the multiprocessor

array. REG corresponds to the spike out register. 24
4.3 Simulation with QuestaSim of a spiking PE (orange line). 26
4.4 Block diagram of 5x5 ring oscillator network. 28
4.5 Simulation of 5x5 array using a ring oscillator configuration done with

QuestaSim software. Row n.0 is in orange. 29
4.6 Simulation of 10x10 array using a ring oscillator configuration done

with QuestaSim software. Row n.0 is in orange. 29
4.7 Simulation of 9x7 array using a ring oscillator configuration done with

QuestaSim software. Row n.0 is in orange. 30
4.8 Simulation of 16x16 array using a ring oscillator configuration done

with QuestaSim software. Row n.0 is in orange. 30
4.9 Block diagram of 10x10 ”snake path” network. 31

VI

4.10 Simulation of 10x10 array using a ”snake path” configuration done
with QuestaSim software. Row n.0 is in orange. 32

4.11 Xilinx Zynq-7000 SoC ZC706. 33
4.12 Floorplanning of a 10x10 array done with Vivado software. 34
4.13 Area utilization of the whole architecture with 10x10 multiprocessor

array done with Vivado software. 35
4.14 Power report of 10x10 array done with Vivado software. 35
4.15 Clock summary provided by Vivado software. 36
4.16 Timing report of the architecture implementing a 10x10 multiproces-

sor array without pipeline stages [4]. 37
4.17 Schematic of the critical path provided by Vivado software. 37
4.18 Device view of the critical path provided by Vivado software. 38

5.1 Flowchart of IF Assembly Code supporting virtualization. 40
5.2 SNRAM mapping. 41
5.3 Local memory decoding. 42
5.4 Local memory mapping. 43
5.5 Block diagram of HEENS processing element supporting virtualization. 45
5.6 Focus on PE blocks that manage distribution phase and support vir-

tualization. 46
5.7 Block diagram of 4x4 ”band pass filter path” network, including a

”ring oscillator” path between virtual layers of PE[0;0]. Red and
grey arrows indicate respectively synapses with a positive or negative
weights. 47

5.8 Simulation, done with Questasim software, of a ring oscillator be-
tween virtual layers of PE[0;0]. 48

5.9 Simulation, done with Questasim software, of all control signals in-
volved into virtualization. 48

5.10 Simulation, done with Questasim software, of the distribution of two
spikes coming from different virtual layers. 49

5.11 Area utilization of the architecture supporting virtualization with
12x12 multiprocessor array done with Vivado software. 50

5.12 Floorplanning of a 12x12 array supporting virtualization done with
Vivado software. 51

5.13 Area utilization of the architecture supporting virtualization with
13x13 multiprocessor array done with Vivado software. 52

5.14 Floorplanning of a 13x13 array supporting virtualization done with
Vivado software. 53

VII

List of tables

3.1 Control values of the Register Bank. 17
3.2 Membrane potential key values. 19

4.1 Netlist format. 27
4.2 Report timing summary provided by Vivado software. 36

5.1 New netlist format supporting virtualization. 44
5.2 Report timing summary of a 12x12 array supporting virtualization

provided by Vivado software. 51
5.3 Report timing summary of a 13x13 array supporting virtualization

provided by Vivado software. 53

VIII

Chapter 1

Introduction

The study of human brain has been the subject of multiple investigations in order
to understand how it works and being able to imitate its behaviour.
Reverse engineering, that generally is the process by which a man-made object is
de-constructed to reveal its designs, architecture, or to extract knowledge from the
object, applied to reproducing human intelligence, has led to a revolution of science
in several fields with a wide range of applications such as speech recognition, robotics,
devices smart, navigation, vision, etc. [5]. The growing interest in having efficient
platforms that exhibit massive parallelism, energy efficiency, scalability with efficient
connectivity and plasticity [1] has made nowadays simulation of complex biological
neural systems a trending research area; moreover neuroscientists consider it an
important tool in understanding the structure and dynamics of the human brain
[6]. Since human brain holds all these characteristics, therefore its unparalleled
performance has encouraged many engineers to develop bio-inspired simulators that
mimic part of the human brain functionality. There are various approaches related
to this field that concentrate their efforts in reaching a trade-off between realism,
scalability, speed, flexibility etc.

From these assumptions, several neural network models were born over the years,
such as Spiking Neuron Networks (SNNs), that belong to the 3rd generation of neu-
ral networks. This thesis project starts from the HEENS (”Hardware Emulator of
Evolvable Neural Systems”) architecture, that has been developed by the formerly
Advanced Hardware Architecture group of the Department of Electronics Engineer-
ing of Universitat Politècnica de Catalunya (UPC); currently the architecture is kept
on by new Integrated Smart Sensors and Health Technologies (ISSET) group.

Digital hardware is designed for simulating SNN. This work, in particular, is
focussed on the hardware part of the HEENS processing element array, making im-
provements in terms of scalability, operation speed and resource occupancy. The
first goal consists in trying to increase the array without violating time constraints:
pipeline stages are introduced with the purpose to allow the system to support a

1

1 – Introduction

greater number of neurons while preserving the operation speed. Another goal is
to support the virtualization of PE up to seven neurons in addition of the main
layer: this means that, without introducing new PEs, it is possible to emulate them,
increasing the number of neurons to be simulated without using new hardware re-
sources.
Moreover, the architecture is synthesized and implemented on the Xilinx Zynq-7000
SoC ZC706 board, which is an MPSoC device chosen to enhance the system config-
urability and monitoring, since it integrates both processor and FPGA architectures
into a single device. The array size is extended as much as possible to test if time
constraints are violated when the area occupancy on the board is close to 100%, so
verifying if the introduced pipeline stages have reduced the critical path enough to
preserve the correct behaviour of the system.

2

Chapter 2

State of Art

The human brain study has been the subject of multiple investigations in order to
understand how it works and being able to imitate its behaviour. The state of art
investigation is of priority importance to understand firstly which are nowadays the
most important models that describe a biological neural network and then which
are the most significant architectures able to emulate it.

Therefore, this chapter is an introduction step into spiking neural networks world,
which belongs to the last generation of neural networks: basic biological notions
will be introduced, followed by a description of the most relevant neural models,
concluding with a reference to the different variants of implementations that modern
architectures adopt.

2.1 Biological neurons network

A biological neural system consists of millions of highly integrated neurons with
multiple dynamic functions operating in coordination with each other.

The original work of McCulloch & Pitts in 1943 proposed a neural network model
based on simplified “binary” neurons, where a single neuron is represented by a state
that can be either active or not active, and at each neural computation step the state
of of the neuron under examination is determined by calculating the weighted sum
of the states of all the afferent neurons [1].

y =
∑
i

xiwi y =

{
1 if xiwi > θ

0 if xiwi ≤ θ
(2.1)

Connections between neurons are mapped from neuron Ni to neuron Nj) and
each of them has specific a weight (wij). If the weighted sum of the states xi of all the
neurons Ni connected to a neuron Nj exceeds the characteristic threshold θ of Nj,
the state of Nj is set to active, otherwise it is not. This first model, called ”threshold

3

2 – State of Art

neuron”, is the simplest one and it was replaced by more realistic models based on
linear or non-linear threshold functions (respectively ”saturation” and ”sigmoidal”
neuron) as shown in fig.2.1.

Figure 2.1. Neuron models based on the dot product computation [1].

Separately, neurobiological research has greatly progressed and, regarding the
study of cognitive processing, individual spikes time is intended as the means of
communication and neural computation. The current consent agrees that cognitive
processes are most likely based on the activation of transient assemblies of neurons
although the underlying mechanisms are not yet understood well [1].

Figure 2.2. A model of spiking neuron: EPSP (red curve) or IPSP; they are all
added (blue line) [1].

Fig.2.2 shows a model of spiking neuron: in the left picture each pre-synaptic
spike generates an excitatory post-synaptic potential (EPSP) or an inhibitory post-
synaptic potential (IPSP) in case of negative weight. A post-synaptic neuron Nj

fires a spike whenever the weighted sum of incoming EPSPs generated by its pre-
synaptic neurons reaches a given threshold ν. Instead the right graphic shows how
the membrane potential of Nj varies through time, under the action of four incoming
spikes. Entering into detail, fig.2.3 shows an example of a basic neuron network.
Most biological neurons rely on pulses as an important part of information transmis-
sion from one neuron to another one and in a rough and non-exhaustive outline, a

4

2 – State of Art

neuron can generate an action potential (the spike) at the soma, the cell body of the
neuron. Then, this brief electric pulse (with 1 or 2ms of duration) travels through
the neuron’s axon arriving to the receiving end of target neurons, the dendrites.
In the final part of the axon, synapses connect one neuron to another one, and
at the arrival of each individual spike, the synapses may release neurotransmitters
along the synaptic cleft. These neurotransmitters are taken up by the neuron at the
receiving end, modifying the state of that post-synaptic neuron, in particular the
membrane potential. The transient impact a spike has on the neuron’s membrane
potential is generally referred to as the post-synaptic potential (PSP), and it can
either inhibit the future firing (IPSP) or excite the neuron, making it more likely
to fire (EPSP). Depending on the neuron, and the specific type of connection, a
PSP may directly influence the membrane potential for anywhere between tens of
microseconds and hundreds of milliseconds [1].

Figure 2.3. Structure of a neuron network.

2.2 Spiking Neuron Networks

Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neu-
ral networks. They derive their strength and interest from an accurate modelling of
synaptic interactions between neurons, taking into account the time of spike firing
[1]. One example of such coding that easily compares to traditional neural coding, is
temporal coding, a straightforward method for translating a vector of real numbers
into a spike train. The basic idea is biologically well-founded: the more intensive
the input is, the earlier the spike transmission will be. Hence a network of spiking
neurons can be designed with n input neurons Ni whose firing times are determined
through some external mechanism. The network is fed by successive n-dimensional
input analog patterns x = (x1,...,xn) that are inside a bounded interval Tin and

5

2 – State of Art

translated into spike trains through successive temporal windows. In each time win-
dow, a pattern x is temporally coded by one spike emission of neuron Ni at time ti
= Tin - xi, for all i. This temporal coding, with other assumptions, shows that any
traditional neural network can be emulated by an SNN. [1]
The first difficult task is to define the model of spiking neurons and synaptic plastic-
ity, as there exist numerous variants already. A spiking neuron model accounts for
the impact of impinging action potentials (spikes) on the targeted neuron in terms
of the internal state of the neuron, as well as how this state relates to the spikes the
neuron fires.

2.2.1 Leaky Integrate-and-Fire model

Leaky Integrate-and-Fire (LIF) is a neuron model much more computationally tractable
that other ones, as the Hodgkin-Huxley from which it derived from.

Figure 2.4. The Integrate-and-Fire electrical model.

Fig.2.4 represents this simple model, where ν is the threshold voltage that has
to be overcome to generate a spike. This simplification has to be able to approxi-
mate the real behaviour shown in fig.2.2.Compared to the Hodgkin-Huxley model,
the most important simplification in the LIF neuron implies that the shape of the
action potentials is neglected and every spike is considered as a uniform event de-
fined only by the time of its appearance. It can be modelled as a RC circuit and
a comparator. The neuron receives a train of impulses coming from pre-synaptic
neurons, represented as an input current I(n) charging the capacitor. The mathe-
matical model of the membrane potential u(t) in the LIF is described by a single

6

2 – State of Art

first-order linear differential equation [1]:

C
d

dt

(
u(t)

)
= − 1

R
· (u(t)− urest) + I(t) (2.2)

τm
d

dt

(
u(t)

)
= (urest − u(t)) +RI(t) (2.3)

where τm = RC is taken as the time constant of the neuron membrane, modelling
the voltage leakage. Additionally, the firing time tf of the neuron is defined by a
threshold crossing equation u(tf) = θ, under the condition u(tf) > 0. Immediately
after tf , the potential is reset to a given value urest called resting potential.

2.2.2 Izhikevich’s neuron model

In the class of spiking neurons defined by differential equations, the two-dimensional
Izhikevich (IZ) neuron model is a good compromise between biophysical plausibility
and computational cost [1]. It is defined by the coupled equations:

d

dt

(
u(t)

)
= 0.04u(t)2+5u(t)+140−w(t)+I(t)

d

dt

(
w(t)

)
= a(bu(t)−w(t)) (2.4)

with after-spike resetting: if u ≤ θ then u← c and w ← w+d. This neuron model is
capable to reproducing many different firing behaviours that can occur in biological
spiking neurons.

2.2.3 Synaptic plasticity and STDP

In all the neurons models, most of the parameters are constant values and spe-
cific to each neuron. The exception are synaptic connections that are the basis of
adaptation and learning. Synaptic plasticity refers to the adjustments and even for-
mation or removal of synapses between neurons in the brain [1]. From the biological
point, it is possible to summarize changes of synaptic weights in two types: those
with effects lasting several hours are referred as Long Term Potentiation (LTP) or
Long Term Depression (LTD), if the weight values are gotten stronger or weaker;
instead, those weight changes in the second or minute time scale are denoted as
Short Term Potentiation (STP) and Short Term Depression (STD). One important
finding that is receiving increasing attention is Spike-Timing Dependent Plasticity
(STDP), which is a form of synaptic plasticity sensitive to the precise timing of spike
firing relative to impinging pre-synaptic spike times. A basic computational rule has
come out: a maximal increase of synaptic weight occurs on a connection when the
pre-synaptic neuron fires a short time before the post-synaptic one, whereas a late

7

2 – State of Art

pre-synaptic spike, just after the post-synaptic firing, leads to decrease the weight
[1]. If both pre and post spikes are too temporally distant, the weight remains un-
changed. For computational purposes, STDP is most commonly modelled in SNNs
using temporal windows for controlling the weight LTP and LTD that are derived
from neurobiological experiments. Different shapes of STDP windows have been
used in recent literature: They are smooth versions of the shapes represented by
polygons in fig.2.5.

Figure 2.5. Various shapes of STDP windows with LTP in blue and LTD in red
for excitatory connections (windows 1 to 3). Standard Hebbian rule (window 4)
with brown LTP and green LTD are usually applied to inhibitory connections [1].

X − axis is the spike timing, which is the difference ∆t = tpost − tpre of firing
times between the pre and post synaptic neurons. The synaptic change ∆W on
Y − axis operates on the weight update. For excitatory synapses, the weight wij

is increased when the pre-synaptic spike is supposed to have a causal influence on
the post-synaptic spike, i.e. when ∆t > 0 and close to zero (pictures 1-3 in fig.2.5)
and decreased otherwise [1]. For inhibitory synaptic connections, it is common to
use a standard Hebbian rule, just strengthening the weight when the pre and post
synaptic spikes occur close in time, regardless of the sign of time difference tpost−tpre.

2.2.4 Polychronization

Nowadays, a growing empirical evidence is that neurons can generate spike-timing
patterns with millisecond temporal precision: patterns can be found in the firing
sequences of single neurons or in the relative timing of spikes of multiple neurons
forming a functional neuronal group [7].
Indeed, if two or more neurons have a common post-synaptic target and fire syn-
chronously, then their spikes arrive to the target at the same time, thereby evoking
potent post-synaptic responses. Considering axonal conduction delays are negligi-
ble or equal, if neurons fire asynchronously, their spikes arrive to the post-synaptic
target at different times evoking possibly only weak or no response.

Nevertheless, depending on the type and location of the neurons, axonal con-
duction delays could be relevant: for this reason, Polychronization takes into ac-
count this aspect. Since the firings of neurons are not synchronous, but time-locked

8

2 – State of Art

to each other, it is possible to refer to such groups as polychronous, where poly
(πoλυς) means many and chronous(χρoνoς) stands for time or clock in Greek. More-
over, Polychrony should be distinguished from asynchrony, since the latter does not
imply reproducible time-locking pattern, but usually describes noisy random non-
synchronous events.
Finally, whenever the neurons do fire with the spike-timing pattern determined by
the connectivity and delays, the group is activated and the corresponding neurons
polychronize.

2.2.5 Computational power of neurons and networks

Information processing in spiking neuron networks is based on the precise timing of
spike emissions (pulse coding) rather than the average numbers of spikes in a given
time window (rate coding) [1].
In particular, SNNs add a new dimension, the temporal axis, to the representation
capacity and to the processing abilities of neural networks. It is possible to describe
different approaches to establish the computational power and the complexity of
SNNs thinking on how to exploit these properties. In 1997, Maass [1] proposed to
classify neural networks models as follows:

• 1st generation: Networks based on McCulloch & Pitts’ neurons as computa-
tional units, i.e. threshold gates, with only digital outputs.

• 2nd generation: Networks based on computational units that apply an activa-
tion function with a continuous set of possible output values, such as sigmoid
or polynomial or exponential functions (e.g. MLP, RBF networks). The real-
valued outputs of such networks can be interpreted as firing rates of natural
neurons.

• 3rd generation: Networks which employ spiking neurons as computational
units, taking into account the precise firing times of neurons for information
coding.

This thesis work is based on the hardware design of the HEENS architecture,
that emulates neural networks models belonging to the 3rd generation.

9

2 – State of Art

2.3 SNN Architectures

Nowadays, simulation of complex biological neural systems is a trending research
area. Many implementation of SNN models are adopted, each one with its spe-
cific advantages and disadvantages; it is possible to report some of these different
approaches.

Analog implementations exploit transistor’s sub-threshold range operations to
create compact and high-speed processing neural simulators: BrainScaleS is one of
the most prominent projects in full custom analog design to simulate exponential
integrate-and-fire neurons. These implementations offer extremely low area and
energy consumption for very large-scale networks. [8] However, they are difficult to
program and to scale, and they have high manufacturing costs and they require time
to be designed and to be tuned. Therefore, the full custom analog implementations
could be useful for those applications where the behaviour of the SNN is very well
defined and characterized [6].

In contrast to analog-based solutions, most digital implementations are less ex-
pensive and more flexible. Currently many of them use general-purpose multipro-
cessors, Graphical Processing Units (GPUs) or FPGAs. These digital architectures
offer wide range of flexibility and reconfigurability to process large scale SNN models
at high speed [6].
One of the recently highlighted multiprocessor-based SNN simulators is TrueNorth,
which implements LIF neurons with high number of synapses without plasticity
[9]. SpiNNaker is another well-known multiprocessor-based SNN simulator: its pro-
grammable feature allows SpiNNaker to support different SNN models at the cost
of highly complex processing cores [10].
GPU cards can provide a powerful solution when highly parallel computing is re-
quired, so several advanced GPU-based simulators have been proposed during the
last ten years: one of them is NEST (Neural Simulation Tool) that supports several
neural and synaptic models. Its low degree of biophysical detail has been a critical
issue [11].
FPGA-based SNN simulation has been proposed and implemented in several works
[6]. Zamarreno-Ramos proposed a scalable–reconfigurable neuromorphic Address
Event Representation (AER) configured as 2D mesh. They claim that the proposed
architecture is capable of managing spike traffic using routing approaches in a single
or multiple FPGAs. The architecture simulates simple IF neurons to perform the
convolution operation that is used in image processing (character recognition), but
neurons do not involve plasticity [12].

A recent innovation in the field of SNN is Loihi, a neuromorphic chip fabricated
in Intel’s 14-nm process, having a total of 130,000 artificial neurons and 130 million
synapses. It integrates a wide range of novel features for state-of-the-art modelling of
SNN in silicon: hierarchical connectivity, dendritic compartments, synaptic delays,

10

2 – State of Art

and, most importantly, programmable synaptic learning rules [13]. The chip is
implemented as a many-core mesh, each of which houses a learning engine that can
support a variety of machine learning models.

The FPGA digital implementations trade off model flexible and high speed pro-
cessing. Instead, the GPU and general purpose multiprocessor approaches seem to
have the flexibility to implement several SNN models and the scalability to imple-
ment fairly large-scale networks. The problem is that all these implementations rely
on a general purpose Instruction Set Architecture (ISA) and on chip communica-
tion to simulate SNN: evidently, there would be some performance loss and power
consumption because of certain functionalities that are useless for SNN simulation.
Finally, Spiking Neural Networks for Versatile Applications (SNAVA) is an example
of special purpose architecture that could not have this kind of performance loss
and power consumption: it is the predecessor of HEENS, the architecture which
this thesis work is focussed on and whose features are described in chapter 3. The
ISA of SNAVA has been tailored to SNN simulation to get the best out of the uti-
lized hardware. SNAVA is a scalable and programmable parallel architecture that
supports real-time, large-scale, multi-model SNN computation[6]. This parallel ar-
chitecture is implemented in modern FPGAs devices to provide high performance
execution and flexibility to support large-scale SNN models. Flexibility is defined
in terms of programmability, which allows easy synapse and neuron implementa-
tion. This has been achieved by using a special-purpose Processing Elements for
computing SNNs, and analyzing and customizing the instruction set according to
the processing needs to achieve maximum performance with minimum resources.
Its architecture is mainly composed of an array of SIMD (Single Instruction Mul-
tiple Data) units, a single control unit and a number of communication units that
support software to configure and monitor the system in real time (1 ms time step
simulation). In addition, SNAVA is scalable architecture and has the flexibility to
be implemented into several chips forming a system in any topology of user’s choice.

11

Chapter 3

Architecture Review

This project starts from the HEENS (Hardware Emulator of Evolvable Neural Sys-
tems) architecture, that has been developed by the Advanced Hardware Architecture
group of the Department of Electronics Engineering of Universitat Politècnica de
Catalunya (UPC). This architecture is an evolution of a previous one, called SNAVA
(”Spiking Neural-Networks Architecture for Versatile”)[6], and it works with a more
efficient Processing Element array in terms of functionality and resource occupancy.
HEENS is more versatile and it allows to load and run via software different models
of neurons and change their synaptic interconnection dynamically without resynthe-
sizing the project. Moreover, the versatility of this architecture allows to easily resize
the array (number of PE and all the necessary connections for proper operation)
using only two parameters: the number of rows and columns.

The work of this thesis project is focussed on the hardware part of the PE
array, in particular on the improvement of the architecture in terms of scalability,
frequency and resource occupancy, trying to increase the size of array by acting on
these aspects. In this chapter there is explained the starting point of this thesis
work, focussing in particular on the PE array design.

3.1 HEENS architecture

HEENS is an architecture designed for multi-FPGA implementations for SNN em-
ulation in real time, which has been designed to support evolution network with
a high degree of configurability, with a spike communication scheme called AER
(”Address Event Representation”), that can be hierarchically extended. It allows
several chips to be interconnected in a ring topology (Fig. 3.1) in a Master/Slave
and point-to-point hybrid communication scheme. Chip Master (MC) takes control
of the network to configure the ring and the neuronal application in all the nodes
and it controls the dynamic on-line reconfiguration of each node[14].

12

3 – Architecture Review

Figure 3.1. HEENS architecture consisting of a Master Chip (MC) and Neural
processing devices (NDs) connected in a ring [2].

HEENS bases its processing sequence by emulating the biological behavior of
neurons, for which it divides its processing into three phases of operation (as shown
in Fig. 3.2)[14]:

• Initialization Phase (IPh): the ring that makes up the multi-chip platform is
configured, so it is required to identify each node (ID) and the ring size.

• Execution Phase (EPh): this phase has biological correspondence with the
soma. Here the neuronal algorithm is processed by calculating and updating
the state variables. Each neuron uses individual parameters for its processing.
The start and end of this phase is marked by an internal control signal called
eo exec.

• Distribution Phase (DPh): it manages the propagation of neurotransmitters
through the synapses. Spikes obtained in the EPh are propagated and deliv-
ered to the destination neurons located in the same or in different NDs.

13

3 – Architecture Review

Figure 3.2. HEENS processing stages[2].

The multiprocessor architecture is illustrated in Fig. 3.3 and it corresponds to
a ND of the neural network. This performs the processing of neuronal activity
programmed by the user and it uses a Single Instruction Multiple Data (SIMD)
computation scheme with a single control unit to achieve data level parallelism in
the PE array. In fact, each processing elements disposes local memories, holding the
modelling parameters of each specific neuron: this means each processor has to run
the same set of operations with different local parameters along, allowing the use of
a single programmable control unit. This technique is suitable for the implementa-
tion of neural networks because it reduces area costs and offers high computational
performance, reducing dramatically the resource requirements compared to GPUs
or architectures that makes use of complex general purpose cores.

14

3 – Architecture Review

Figure 3.3. Block diagram of HEENS multiprocessor architecture[3].

The main blocks that comprise it and described below are:

• Communication buses: the address and data buses that allow the flow of infor-
mation to the array are multiplexed between those that transmit configuration
packets and those that deliver execution informations corresponding to the op-
codes dispatched by the Sequencer and spike events delivered by the controller.
Selection of these is given by the internal signal called config that is activated
depending on the phase that is being processed.

• Control Unit (Sequencer and Instruction-RAM): HEENS-MP is a Harvard
type architecture. The instructions are read from a single memory (IRAM).
Each PE has its local data memory (SNRAM) where it stores the synaptic and
neuronal parameters of each neuron. Sequencer enables the distribution signal
en spike after the Execution Phase (EPh), during which it sends instructions
to all processors at the same time and all of them calculate the membrane
potential in function of the input spikes, synapses and initial configuration.
If a neuron spikes, this information is stored in the spike out register, that is
located inside the PE. It has a size equal to the chosen virtualization level.

• AER-SRT Controller: it brings the capability of interconnect more FPGAs in a

15

3 – Architecture Review

synchronous ring topology (SRT) to increase the number of neurons emulated.
Once the algorithm has been processed in the PEs, a row sweep is performed to
obtain the post-synaptic spikes triggered by the neurons when the membrane
voltage has exceeded the threshold voltage. The spikes generated at each
execution cycle are encoded in address events and stored in a FIFO waiting
to be transmitted during the DPh.

• PE array: it is the matrix of PE that composes a Neural processing device.
More details are explained in section 3.2.

This thesis work is focussed on the PE array block.

3.2 Processing Element array

The array shown in Fig. 3.3 is a 2D array of PEs: its size is parametrizable according
to the numbers of rows and columns of the array and the virtual level, which allows
to make a 3D array if the level is higher than 0. Due to the hierarchical and modular
nature of HEENS, the PEs process two types of spikes: local (generated in the same
ND) and global (those coming from others NDs or from the MC).

In Fig. 3.4 the block diagram of PE is shown; the internal components correspond
to an Harvard type architecture and the main units that constitute it are [14]:

• ALU: it supports 16-bit fixed point arithmetic and logical operations. Opcode
is the 6-bit control signal used to choose witch operation ALU has to do. The
Carry (C) and Zero (Z) status flags are accessible to the user.

• Register File (R0-R7): a bank of 8 general purpose 16-bit registers that inter-
acts directly with the ALU through the accumulator register R0. Moreover,
there is also a shadow registers bank (SR0-SR7), whose access is managed by
the Sequencer, used to extend the space of storage of neuronal or synaptic
variables. Through the reg code control signal it is possible to manage data in
inputs (eight 16 bit inputs) in different way. Tab. 3.1 shows the possible
controls of the register file:

16

3 – Architecture Review

Regcode Function

000 Rx <= Data in x
001 reset if EN x is asserted
010 set if EN x is asserted
011 swap with respective shadow register if EN x is asserted
100 SRx <= Rx if the register is enabled
101 Rx <= SRx if the register is enabled

Table 3.1. Control values of the Register Bank.

where Rx and SRx are respectively the register and the shadow register in
position x, EN is an 8-bit control signal that enables each register.

• Synaptic/Neural Memory (SNRAM): it is the data memory in charge of storing
neuronal and synaptic parameters, seeds of LFSR block and any other data of
the neurons processed by the PE in each virtual level.

• Local and Global memories (BRAM): this block is composed by a block of
local memory (where the interconnectivity between local neurons is modelled)
and an associative scheme that allows the decoding of global connections. The
global memory block models the interconnection between neurons of different
NDs: each PE has sG − 1 global synapses processed at the main level (VIRT
= 0) to emulate a hierarchical connection characterized by sparse connectivity
between clusters.

• Virtualization (VIRT): this block emulates more than one neuron per PE per
execution cycle. The virtual level is the parameter that defines n pipelined
virtualization levels plus a main level, which is VIRT = 0. implementing
virtualization is one of the targets of this work.

• Pseudo Random Generator (LFSR): the seed of this 64-bit register is defined by
software with the SEED instruction, and it is stored in the SNRAM memory.
This register allows generating uncorrelated noise for each PE.

• Freeze LIFO: FREEZE instructions are linked to the Carry and Zero flags
and they use a LIFO for their execution, to stack up to eight levels for nested
conditions.

17

3 – Architecture Review

Figure 3.4. Processing Element block diagram [4].

18

3 – Architecture Review

3.3 IF Assembly Code

HEENS architecture is able to emulate the leaky Integrate and Fire (IF) algorithm,
which is one of the most used models for emulation SNN. The idea of this model
consists on computing he membrane potential as a function of the receiver spikes
through the predefined synapses. The assembler code (see Appendix B.1) runs the
IF algorithm: it takes into account specific key values of membrane potential, taken
from different biological studies in literature. These values are shown in the table
3.2:

Membrane Potential Hexadecimal value Potential value [10−5V]

VREST FFFFE4A8 -7000
VTHRES FFFFEA84 -5500
VDEPOL FFFFE0C0 -8000
VACT 00001771 +1000

Table 3.2. Membrane potential key values.

where:

• VREST is the Resting potential, equal to -70 mV;

• VTHRES is the Threshold voltage, equal to -55 mV;

• VDEPOL is the Depolarization voltage, equal to -80 mV;

• VACT is the Action potential, equal to 10 mV.

When the algorithm starts, after random initialization, using the subroutine
LOAD NEURON (Appendix B.1), membrane potential of each PE is stored in
their respective R2 register and the synapse weight into R1. Then, with the MEM-
BRANE DECAY subroutine, the membrane potential decay is calculated using a
time constant τdecay, which is less but close to 1. In fact, storing the current mem-
brane potential in R2 into the accumulator (MOVA R2) and resting potential in R4
(LDALL R4, VREST), the algorithms does the following computation:

V
′

mem = (Vmem − VREST) · τdecay + VREST (3.1)

where V
′
mem is the new membrane potential after decay.

Every time a neuron receives a spike through one of its synapses, its Vmem in-
creases or decreases according to the specific excitatory or inhibitory synapse weight.
For this reason, it is necessary a loop (LOOP tot synapses) in which all synapses

19

3 – Architecture Review

of each neuron are read in order to detect possible incoming spikes. This loop
implements the following calculation to obtain the new membrane potential:

V
′′

mem = V
′

mem +
n−1∑
k=0

sk · wk (3.2)

where n is the total number of synapses, wk is the synapse weight of the k-th synapse
and sk is a value equal to 1 or 0, respectively if a spike impinges that synapse or
not. wk is stored into R1 register and the spike sk into the LSB of the accumulator
(LOADSP). Each time a sum is computed, the accumulator is reset (RST ACC),
the pointer BP of the SNRAM, where all the synaptic, neural and some common
parameters are loaded, is increased and new parameters, that will be used for the
next cycle, are stored inside its respective registers R0 and R1.

Subsequently, after having calculated the new V
′′
mem for each neuron, through the

DETECT SPIKE subroutine the algorithm detects during each execution phase if
the membrane potential of some neurons has exceeded the threshold voltage, thus
producing post-synaptic spikes. This value is stored in R0 (LDALL ACC, VTHRES)
and it is compared with the current membrane potential in R2, doing a subtraction
and checking the Carry Flag of ALU: if it is positive, a spike is generated. In this
way, the IF model behaviour is reproduced. Once the spike is detected, the spiking
neuron has to be discharged, returning to the initial value of its membrane potential
Vmem equal to VREST (LDALL ACC, VREST).

Finally, STORE NEURON subroutine is executed: the SNRAM is uploaded
storing R1 and the final membrane potential (STORESP) and the pointer BP is
increased. Now execution phase ends, spikes are distributed (SPKDIS) and the loop
can start again.

Figure 3.5. Simulation of the three neuron’s membrane potentials trend as a
function of time done with QuestaSim software.

The HEENS architecture has been described in synthesizable VHDL. In Fig.3.5

20

3 – Architecture Review

it is showed the R2 register values of four PEs using the analog format of QuestaSim
software. Each time the membrane potential Vmem of a neuron exceeds the threshold
voltage, a spike is generated and Vmem resets itself, returning to have a value equal
to about the resting potential VREST . Moreover, every time a neuron receives a
stimulus through one of its synapses, Vmem increases and it decays continuously
towards VREST with the τdecay constant.

HEENS architecture allows also to change easily the topology of the model:
interconnections between neurons (i.e. PE) are described using netlist files, as ones
reported in Appendix C and whose explanation is reported in the following chapter,
and stored into associative memories. Moreover, it is possible to set the initial
membrane potential Vmem for each neuron: in this way it is feasible to decide if a
neuron, at the beginning, has a spike and any kind of possible spike paths can be
described.

21

Chapter 4

Pipelining and Extension of the
Multiprocessor Array

In this chapter there are introduced the first improvements of the architecture in
terms of time constraints and area occupancy: designing a new path of the spike
distribution, the goal is to extend the array as much as possible without having
problems of negative slacks. Simulations are done with QuestaSim software, using as
assembler code the one in Appedinx B.1. Regarding the initial membrane potential,
for all the following simulations it is assigned a Vmem initiated at -60 mV (10 mV
above resting potential) to all PE except PE[0;0], which is initiated at -40 mV: in
this way the PE[0;0] will fire, because its values is above VTHRES = -55 mV, and
any neuron having a synaptic connection with it will fire too as consequence, due to
their membrane potential which is slightly below the threshold.

4.1 Spike pipeline

The first goal of this project is to modify the current architecture in order to make
a new version of the multiprocessor array in which the critical path during the
Distribution Phase (DPh) of spikes is reduced.

The previous architecture is shown in Fig. 4.1.

22

4 – Pipelining and Extension of the Multiprocessor Array

(a) Multiprocessor array

(b) Processing element

Figure 4.1. Previous multiprocessor array and PE block diagrams [4].

In this architecture, spike distribution follows a combinational path with pri-
ority: spikes generated by each PE are processed and forwarded to the neighbour

23

4 – Pipelining and Extension of the Multiprocessor Array

processors. Actually, processor in position [0,0] (row 0 and column 0) has the high-
est priority, so if it produces a spike, it will be the first to leave the array and be
resetted. Then, PE in position [0,1], having the second highest priority, continues
to transmit spikes when all the previous ones were clean and so on. This cycle
does not end until the sequencer disables distribution signal en spike. To reduce the
combinational circuit, pipeline register are inserted at the end of each row.

The weak point of this architecture is that, if the size of the array increased, the
critical path would be too long and it could violate timing constraints. Since it is
not optimal to reduce clock frequency, which is set at 125MHz, because the other
parts of the system have not problems, the proposed solution is to introduce pipeline
stages in order to keep constant the clock frequency. The new architecture designed
is shown in Fig. 4.2: the priority scheme is replaced by a simpler architecture,
where several signals involved before in the priority scheme are deleted. Now the
distribution phase is managed shifting spikes that may be present inside PEs.

Figure 4.2. Block diagram of the new pipelined architecture of the multiprocessor
array. REG corresponds to the spike out register.

24

4 – Pipelining and Extension of the Multiprocessor Array

When distribution starts, the highest row is stored in the spike buffer and each
one below it scrolls in the corresponding row above. Spike buffer could contain at
most a number of spikes equal to the column number (i.e. if all the PEs of the highest
row have a spike, the buffer will contain all 1s), so the block requires to transmit
all spikes of the row in question as many clock cycles as the number of PE owning
a spike. To do this, spike buffer checks the position of 1s, then it transmits the first
one detected and it resets that position. To transmit a spike, the PE array block
(see appendix D.3 for the VHDL description) enables the spike valid signal and it
loads col sp and row sp signals, which are the position of the spike to be distributed.
When the buffer has only zeros (which is both the case where no PE has a spike or
all the spikes of the row have been transmitted), the signal next PE row is enabled
and it allows to shift the spike lines. A down-counter, called PE array count with
initial equal to the row number, is used to know which row is loaded into the buffer
and to end the transmission when it reaches the zero.

The propagation of spikes during the distribution phase is done generating all
PE addresses that have a spike. 3 signals are involved to generate the address:

• spike valid : it is a control signal asserted when it is detected a 1 into the
row loaded in the buffer. If there is a spike, that position is resetted and the
address is generated in order to distribute it.

• col sp: it is the column address of the PE that has fired a spike. When
spike valid is asserted, it means that a spike is detected into the buffer. There-
fore, the column address of that spike is loaded in order to transmit it.

• row sp: it is the row address of the PE that has fired a spike. When spike valid
is asserted, this signal is equal to PE array count, that is the down-counter
position taking into account which row is loaded in the buffer and that is
controlled in order to check if there are 1s.

Finally, distribution phase terminates when PE array count ends its count (it
reaches the 0) and all the spikes in row n.0 are transmitted. When these two
conditions happen, the control signal called eo spike is asserted and sent to the
sequencer.

Regarding the architecture of PEs, the spike out register, used to store the pos-
sible spike during the execution phase, is used as pipeline register to store spikes of
the rows below. Spike out has a size equal to the virtualization level, so if there is a
virtualized array, this shift will involve it too. Now each processing element has only
3 signals used to manage the distribution phase (see appendix D.1 for the VHDL
description):

• en spike tx : it is the control signal referred to the next PE row signal in the
PE array block. When a shift of the spikes is required, this signal is asserted

25

4 – Pipelining and Extension of the Multiprocessor Array

and the spike out register is uploaded with the spike of the corresponding PE
present in the row below.

• spike out : it is the spike output signal. When en spike tx is enabled, the spike
of the PE is sent to the PE above using this signal.

• spike in: it is the spike input signal. When en spike tx is enabled, spike out
register is updated with this signal, that is the spike of the PE below.

Figure 4.3. Simulation with QuestaSim of a spiking PE (orange line).

In Fig. 4.3 it is illustrated a simulation of a 4x4 array without virtualization: it
means that VIRT=0, so the only position of spike out register to take into account
is number 0. In particular it is shown the distribution phase of a spiking neuron:
in fact the neuron in position [0,0] contains a spike (orange spike out(0) signal)
and, when en spike is asserted, distribution starts. Next PE row is cycled 4 times
because there are 4 shifts to do, so the counter resets in 4 cycles and it ends the
distribution phase. Spike shifting is well displayed in the other spike out(0) signals,
which correspond to the PE in position [1,0], [2,0] and [3,0]: therefore spike [0,0]
shifts along its column, until reaching the spike buffer, which assumes a value equal
to ”0001” (1 in unsigned format on QuestaSim) at the 4th clock cycle, meaning that
the PE in column 0 has a spike.

In this particular case, only the neuron in position [0,0] is spiking: if there were
other PEs containing a spike, distribution could last longer.

26

4 – Pipelining and Extension of the Multiprocessor Array

4.2 Array Extension

After that the problem related to the potentially too long combinatorial path has
been solved, it is possible to extend the size of the PE array without encountering
problems of set-up time. Simulation done so far are made with an 4x4 array, so the
next goal is to increase the size solving possible bugs that could happen, since the
architecture was tested to work with a 4x4 array.

Once the number of rows and columns is increased, it is important to create
and compile a netlist file that describes interconnections between neurons: actually,
implementing simple paths permits easily to verify the correct behaviour of the ar-
chitecture. In appendix C there are reported the netlists used to do the verifications.
The format used to describe nets is shown in table 4.1.

Source Destination

virtual layer row column row column synapse number synapse weight

Table 4.1. Netlist format.

At this stage, virtualization is not yet implemented, so the virtual layer is always
set to 0 and there is not a virtual layer destination, that has to be implemented when
virtualization will be introduced. In addition to the location (row and column) of the
source neuron, to the location of the destination one and to the synapse number,
that is the specific synapse of the destination neuron that links both ones, it is
possible to decide the synaptic weight. This field of the table is a decimal value that
has to be written into R1 and R2 registers. Considering that weight value has to be
into R1 and R0 and R0 are 16-bit registers, its corresponding binary value has to be
left-shifted of 16 positions. In this way, the 16 less significant bits will be stored into
the accumulator and the 16 MSBs, representing the synapse weight, will be stored
into R0.

It is possible to create any kind of networks, linking one neuron to more than one,
using different synapses. The first approach is to create a ring oscillator network,
as the one shown in Fig. 4.4.

27

4 – Pipelining and Extension of the Multiprocessor Array

Figure 4.4. Block diagram of 5x5 ring oscillator network.

Using a ring oscillator as network is a good choice since there are few inter-
connections, so there are less signal to check and the distance between source and
destination is the minimum one. It is important to configure the membrane po-
tential in such a way that, if a neuron is stimulated by a single spike, it fires. If
this condition is not satisfied, it is impossible to check if the spread of spike is cor-
rect, since if a neuron of the network receives a spike but it has not the sufficient
membrane potential to fire, it will not produce a spike to send to the next neuron.

The first approach is to extend a bit the array to 5x5 PEs, to see if there are
problems increasing the size more than 4x4. To display better the spike evolution,
a signal called spike displ is used instead of spike out : actually, spike out is used
also as pipeline register during the distribution phase, so it displays also the spike
shifting, and it does not make readable the spike evolution. Therefore, spike displ
has only visual utility, but it is not useful for the architecture functioning.
Simulation results are shown in Fig. 4.5. The distribution of spikes works as ex-
pected: pulses move along the first row and then they spread into the last column

28

4 – Pipelining and Extension of the Multiprocessor Array

and so on, closing the circle. It is possible to see that the distribution phase works
well: the shorter impulses represent spike shifting along the respective column.

Figure 4.5. Simulation of 5x5 array using a ring oscillator configuration done with
QuestaSim software. Row n.0 is in orange.

Then, the PE array size is extended to 10x10. In Fig. 4.6 it is shown the
simulation result using a ring oscillator configuration as before.

Figure 4.6. Simulation of 10x10 array using a ring oscillator configuration done
with QuestaSim software. Row n.0 is in orange.

An other test is to check if the system supports an array size with a number of
columns other than the number of rows. In Fig. 4.7 it is shown the simulation of a
9x7 array, which therefore has an odd number of columns and rows.

29

4 – Pipelining and Extension of the Multiprocessor Array

Figure 4.7. Simulation of 9x7 array using a ring oscillator configuration done with
QuestaSim software. Row n.0 is in orange.

Finally, the PE array size is extended to 16x16, that is the possible maximum
size reachable in this project, since the architecture is optimized to support this size
at most . In Fig. 4.8 it is shown the simulation result.

Figure 4.8. Simulation of 16x16 array using a ring oscillator configuration done
with QuestaSim software. Row n.0 is in orange.

Since it is proved that the architecture works with ring oscillator network, the
last test is to verify that it continues to work if the number of nets is increased.
In Fig. 4.9 it is shown the netlist in appendix C.3. The path described, called
”snake” for its shape, contains a lot of interconnections; moreover, distance between

30

4 – Pipelining and Extension of the Multiprocessor Array

source-destination neurons is still the minimum one, so the simulation remains easily
readable.

Figure 4.9. Block diagram of 10x10 ”snake path” network.

In Fig. 4.10 it is illustrate the snake path simulation. Also in this more com-
plicate test, the distribution of spikes works as expected: pulses move along the
first row and that they spread to the second one and so on. Also the distribution
phase has not problems: even if a lot spikes need to be distributed, there are not
time violations, so ti means that it is not necessary to modify the architecture speed
(clock frequency is equal to 125MHz).

31

4 – Pipelining and Extension of the Multiprocessor Array

Figure 4.10. Simulation of 10x10 array using a ”snake path” configuration done
with QuestaSim software. Row n.0 is in orange.

32

4 – Pipelining and Extension of the Multiprocessor Array

4.3 Synthesis and Implementation

After simulating the new spike pipeline, the system has to be tested on a board.
Originally, the system was implemented on a KC705 development board that con-
tains a Xilinx XC7K325T Kintex 7 FPGA. The design has been migrated to an
MPSoC device to enhance the system configurability and monitoring, thus design
synthesis and implementation are done with Vivado software on Xilinx Zynq-7000
SoC ZC706, that is shown in Fig.4.11: the devlopment board contains a SoC FPGA
device, that integrates both processor and FPGA architectures into a single device.
Consequently, it can provide higher integration, lower power, smaller board size
and higher bandwidth communication between the processor and FPGA: in par-
ticular, the Zynq R©-7000 SoC family integrates the software programmability of an
ARM R©-based processor with the hardware programmability of an FPGA.

Figure 4.11. Xilinx Zynq-7000 SoC ZC706.

First step is the synthesis: during this process, Vivado checks the compliance
with all the constrains in function of the board used and other issues related with
time execution latches, which are not detected in the simulation with QuestaSim.
Also the utilization of the FPGA and its resources (Block RAM, Registers, LUTs...)
are computed.

After the synthesis, the implementation has been done: it is a time-consuming
process, especially if the array has high dimension, because the software generates
all the components to be placed on the FPGA, with all the connections, taking into
account the distance between registers and calculating the worst delay to determine

33

4 – Pipelining and Extension of the Multiprocessor Array

if there are time problems.

Figure 4.12. Floorplanning of a 10x10 array done with Vivado software.

In Fig.4.12 it is shown in blue the area occupancy of the 10x10 multiprocessor
array: it is not the maximum possible one, because there is unoccupied space, so it
means that on this board it is possible to go beyond 100 PEs.
Regarding the resource occupancy, in Fig.4.13 it is shown which are the components
of the whole device that use more resources. Rather than logic, BRAMs represent
the bottle neck of HEENS : with a 10x10 multiprocessor array, they fill 60% of
available space, so this means that with this board it is possible to reach an array
size equal to 12x12 or 13x13 in the best case. In these forecasts, the virtualization
implementation is not considered: theoretically, it will not have much effect on area
problems, because the number of PEs will not change and only few control signals
and components (such as counters and registers) are planned to be implemented.

34

4 – Pipelining and Extension of the Multiprocessor Array

Power report, shown in Fig.4.14, also confirms that BRAMs are the most critical
component, due to they are the biggest source of dynamic power consumption. Of
course these figures are just presented as an orientation, since power estimation is
highly dependent on the resource operation.

Figure 4.13. Area utilization of the whole architecture with 10x10 multiprocessor
array done with Vivado software.

Figure 4.14. Power report of 10x10 array done with Vivado software.

Finally, the time report gives informations about time constraints. Fig.4.15

35

4 – Pipelining and Extension of the Multiprocessor Array

shows both clock frequencies adopted: the first one (125 MHz) is the proper clock
used by the architecture; second one (200 MHz) is used, instead, by the AER-SRT
controller.

Figure 4.15. Clock summary provided by Vivado software.

Moreover, table 4.2 shows the slack values obtained during the synthesis. Slack
is defined as the difference between actual or achieved time and the desired time
for a timing path: it determines if the design is properly working at the specified
frequency. Setup Slack is defined as:

SetupSlack = DataRequiredT ime−DataArrivalT ime (4.1)

where ”Data Required Time” is the time taken for the clock to traverse through
clock path and ”Data Arrival Time” is the time required for data to travel through
data path.
A positive setup slack, as the one obtained, means design is working at the specified
frequency and it has some more margin as well. Since speed is not a goal of this
architecture, it is preferred to keep this margin in order to do not have possible
problems in future implementations that could increase the critical path.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 0.190 ns 0.000 ns 0 162938
Hold 0.054 ns 0.000 ns 0 162938

Pulse Width 3.232 ns 0.000 ns 0 55359

Table 4.2. Report timing summary provided by Vivado software.

These time results, that confirm there are not any time violations, testify that
pipeline stages are able to solve timing problems which the system was affected from.
Actually, in Fig.4.16 there is shown the time report of the original architecture,
without pipeline stages.

36

4 – Pipelining and Extension of the Multiprocessor Array

Figure 4.16. Timing report of the architecture implementing a 10x10 multipro-
cessor array without pipeline stages [4].

The architecture has a 10x10 PE array, as the one tested in this chapter, and
the setup slack results, whose worst case is equal to -1.599 ns, demonstrate how
increasing the size of the array the previous structure was not able to guarantee the
right functioning of the architecture.

Finally, regarding the multiprocessor array, it is possible to find out which is
the critical path, or rather the signal passing through the cell (the array) with the
longest path. This signal is shown in Fig.4.17 and it is the config signal, which goes
from AER OneBoard to the Config Register of 6th PE and which has a setup slack
equal 0.190 ns. To calculate which is the longest path, software has to take into
account both combinational logic that signals could cross and the effective distance
on the chip, that is given after the implementation. Therefore, in Fig.4.18 it is
illustrated, as a white arrow, the path of this config signal along the device.

Figure 4.17. Schematic of the critical path provided by Vivado software.

37

4 – Pipelining and Extension of the Multiprocessor Array

Figure 4.18. Device view of the critical path provided by Vivado software.

38

Chapter 5

Virtualization

In this chapter it is reported the implementation of one of this project goals, which
is to support the virtualization of PE up to seven neurons in addition of the main
layer: this means that, without introducing new PEs, it is possible to emulate them,
increasing the number of neurons without using new hardware resources. Eight
virtualization levels are supported, thus for instance, if we have a 10x10 array, this
architecture will be able to emulate up to 800 neurons. Also, each PE supports up to
127 local synapses and 32 global synapses (coming form external multiprocessors).

5.1 IF Assembly Code supporting virtualization

Introducing virtualization support means that the assembly code has to consider also
virtual PEs, therefore the main idea is to repeat and adapt all the steps described
in the original assembly code (see Chapter 3.3), in order to initialize and process
also virtual neurons. The resulting assembly code is reported in Appendix B.2 and
it is illustrated in Fig.5.1.

When the algorithm starts, a virtual operation initialization is done in order
to define the chosen number of virtual layers: with LAYERV instruction the vir-
tual layers value is taken, then with LDALL it is loaded into ACC and finally, using
a special move instruction SPMOV, the value in ACC is loaded into th VIRT register
of the sequencer. Moreover, this instruction resets the current virtual layer register
to be processed to 0. Clearly, the current layer has a range of values going from 0
to virtual layers-1.
Then, after pseudo-random seed initialization, all the steps done in the previous code
(Appendix B.1) are mainly repeated as many times as the number of virtual layers,
with some specific changes. Therefore, a neuron LOOP is called for virtual opera-
tions and it will be repeated virtual layers times. During this loop, LOAD NEURON
and MEMBRANE DECAY subroutines, whose contents are described in Chapter

39

5 – Virtualization

3.3, are executed. Then, the address in the SNRAM is read, where there are all
synaptic parameters for current virtual layer: to point the right memory location,
the address is computed as the sum of the starting address plus the current virtual
layer (READMPV SYN ADDR0). In this way, all the addresses from SYN ADDR0
to SYN ADDR7 will be processed during the loop.
Finally, synaptic loop is executed as many times as the number of synapses assigned
to the current virtual layer; inside this loop, SYNAPSE CALC subroutine calcu-
lates the new membrane potential of the specific processed neuron.
After having checked if a spike is generated (DETECT SPIKE subroutine) and hav-
ing uploaded the SNRAM, storing the final membrane potential (STORESP) and
increasing the pointer BP, with INCV instruction the current virtual layer to be
processed is increased, in order to start again the neuron LOOP for the next virtual
layer.

Once all virtual layers are processed, execution phase ends, spikes are distributed
(SPKDIS) and the execution loop can start again (GOTO EXEC LOOP).

Figure 5.1. Flowchart of IF Assembly Code supporting virtualization.

40

5 – Virtualization

5.1.1 Memory Interface

An important aspect to take into account is how to manage memory in order to
store connectivities, synaptic and neural parameters. Since this work of thesis is
focussed on the improvement ans simulation of the PE array, this description will
not take into account global memories, since they describe connectivities between
processing elements belonging to different boards, which is out of this work scope.

Figure 5.2. SNRAM mapping.

Each processing element has a SNRAM block, which is 1K word memory, where
a word is composed by 32 bit, containing synaptic data. Fig.5.2 shows how the
SNRAM is mapped.
The memory is divided in a number of blocks equal to VIRT, which is the number
of virtual layers the system is using. Inside each block, there is a number of lines
N equal to the synapses which link the neuron in the virtual layer VIRT to other
neurons in the same board. Each line contains a 32 bit word that could be divided
into two fields: the 16 MSBs are loaded in the R1 register and they contains the
synaptic weight of that specific connection; the 16 LSBs are load into R0, whose
less significant bit is set to 1 of there a firing spike along that connection. The re-
maining bits of R0 can be used, for instance, for extra features, such as adaptation

41

5 – Virtualization

parameters if STDP learning is to be embedded.
Referring to the assembly code in Appendix B.2, that corresponds to a proof-of-
concept 4x4 PE network, each neuron has 16 local synapses and it is proposed to
assign two synapses for each virtual layer. For this reason, SYN ADDR0, the first
address of Synaptic parameters in SNRAM for VIRT =0, is equal to the position 0 of
the SNRAM, SYN ADDR1, the first address of Synaptic parameters in SNRAM for
VIRT =1, is equal to ”00000002” and so on. Moreover, at the bottom of the SNRAM,
neural parameters are stored, referred to the main neuron and the seven ones virtu-
alized. The mapping for these parameters starts from NEU ADDR0 =”000003E3”,
the first address of Neural parameters for V=0, to NEU ADDR7 =”000003EA”, the
first address of Neural parameters for V=7.

When an incoming spike (pre-synaptic spike) comes from a neuron represented
by another virtual layer of the same PE or from another PE, the synaptic weight
stored in the SNRAM is used to compute the new membrane potential. The local
memory is used, instead, to describe the interconnects that neuron owns.

Figure 5.3. Local memory decoding.

Fig.5.3 shows how the local memory is decoded to record if there is an incoming
spike. Actually, the local memory describe the interconnections that the PE has
with all the other ones in the array: in Fig.5.4 it is shown in more detail how it is
mapped.
Also in this case, it is divided in a number of blocks equal to the virtual layers.
Each block contains a number of lines equal to 256, which is the maximum number
of PEs that the array can support (16x16). Inside each line there is stored synapse
number, so the specific synapse linking the neuron in the virtual layer VIRT to one
of the 256 PEs.

42

5 – Virtualization

When a pre-synaptic spike arrives, its address is used to take the synapses number
from the specific line in the local memory, then this value is decoded and used to set
to 1 the corresponding location in the local spike register. Therefore, this register
owns as many 1s as the number of incoming spikes. Then, during execution phase,
local spike register is read to check if there are pre-synaptic spikes: if SPIKEN is
equal to 1, the corresponding synaptic weight is taken from the SNRAM to compute
the new membrane potential.

Figure 5.4. Local memory mapping.

43

5 – Virtualization

5.2 Virtualization Design

In order to allow the architecture to support virtualization, the first change consists
in modifying the netlist format to make interconnections between virtualized PEs.
To perform it, it is necessary to have, in both source and destination address, a field
that includes the virtual layer which the source/destination PE belongs to. The new
netlist is shown in Tab.5.1:

Source Destination Synaptic Data

ChipID vlayer row col ChipID vlayer row col synapse number R1&R0

Table 5.1. New netlist format supporting virtualization.

where

• vlayer stands for the virtual virtual of the specific PE;

• ChipID is the board number in which there is the PE considered;

• synapse number is the number of the one of 16 possible synapses that connects
source PE with the destination one;

• R0 and R1 are the first two registers of the register bank. The value assigned
on the synaptic data field is then split in order to load the 16 MSBs on R1
and the 16 LSBs on R0.

Subsequently, PE (Appendix D.1) and PE array (Appendix D.3) architectures
are modified in order to support virtualization.
The proposed architecture of the PE is shown in Fig.5.5. Now the 8-bit spike out
shift register can be used in all its depth to store informations about virtual lay-
ers spikes: in the previous architecture, in fact, only spike out[0] was used, since
virtualization was not supported.

44

5 – Virtualization

Figure 5.5. Block diagram of HEENS processing element supporting virtualiza-
tion.

Fig.5.6 shows more in detail which are the changes made. As before, when the
signal load sp is asserted (when STOREPS instruction is executed), if the PE in
the main level (VIRT=0) produces a spike, the spike out[0] is set. Now, due to the
system has virtualized PEs producing spikes, a left shift is done every time there is
a STOREPS instruction and then spike out[0] is set to one if a spike is produced.
These shifts are repeated as many times as the virtual layer number, starting with
layer 0 spike storage and proceeding, at most, to layer 7: in this way, at the end, all
the possible spikes are stored along the shift register and the layer 0 spike is stored
at the position of the register equal to the number of virtual layers.

Regarding the distribution phase, it is important to know the exact number
of virtual layers the system is using. To compute it, a counter in the sequencer
is introduced, counting the effective number and transmitting it to PEs with the
vlayers input signal. So, when a spike has to be distributed, as before en spike tx is
asserted and spike out[vlayers] will be transmitted (before spike out[0]).
Actually, due to the spike out left shifting, if there is a number of virtual layers
equal to vlayers, the spike of the main layer is stored in position vlayers, the one of
1st layer in position vlayers-1 and so on. For this reason, vlayers is used as index to
select the correct spike in the shift register. Moreover, a new signal called next virt

45

5 – Virtualization

is introduced: it comes from the PE array and it is asserted each time all the spikes
in the jth virtual layer are distributed, so the system is ready to check and, in case,
distribute the spikes in the (j + 1)th virtual layer. So, when next virt is equal to
one, a left-shift is done and spike out[0] is reset. Proceeding in this way brings two
benefits:

• left shifting every time a spike is distributed permits to have, each time, the
correct next spike to transmit in position spike out[vlayers] ; in this way, the
index is fixed and no down-counting has to be implemented;

• at the end of distribution phase, the register is reset, so it is ready to store
new possible spikes for the next execution phase.

Figure 5.6. Focus on PE blocks that manage distribution phase and support
virtualization.

All the others features introduced in Chapter 4 remain valid, becoming compati-
ble with virtualization. The distribution phase of the jth virtual layer uses the same
propagation through pipeline stages as before: the whole array shifts spikes of that
layer using spike input and spike output signals as before; then, when all the spikes
of jth virtual layer spikes are transmitted, the distribution starts again its routine
for the j + 1th layer.

Finally, in addition to the row and column addresses (row sp and col sp), the
address of the PE distributing a spike has to be completed with virt sp, which is
the field of the PE address informing about its virtual layer. Therefore, in PE array
it is introduced a virtual layer counter that is incremented each time the spike out
register shifts, so when shift sp is asserted.

46

5 – Virtualization

5.2.1 Simulations

In order to verify that the design behaves as expected and check if the new netlist
format describes in the right way paths including virtual layers, a ”band pass filter”
path (Appendix C.4) showed in Fig.5.7 is made up to be simulated. The software
used to simulate is QuestaSim and the assembly code adopted is the one in Appendix
B.2.

Figure 5.7. Block diagram of 4x4 ”band pass filter path” network, including a
”ring oscillator” path between virtual layers of PE[0;0]. Red and grey arrows

indicate respectively synapses with a positive or negative weights.

Therefore, a 4x4 multiprocessor array is simulated, whose processing element
in position [0;0] has all the virtual layer linked between them self, creating a ring
oscillator path. This kind of path is used to easily check if the virtualization works.
To better display all the PEs with their respective virtual layers, spike displ, already

47

5 – Virtualization

adopted in previous simulations, is modified in order to consider virtual layers: now
it is a 3D array containing all the spikes calculated during the execution phase.

In Fig.5.8 it is shown the simulation results of the proposed ring oscillator. All
the four neurons simulated, belonging to the processing element in position [0;0],
receive a spike coming from the previous virtual layer and they fire as well, producing
a post-synaptic spike direct to the next layer.

Figure 5.8. Simulation, done with Questasim software, of a ring oscillator between
virtual layers of PE[0;0].

In particular, the main signals involved to make the architecture compatible for
the virtualization are shown in Fig.5.9. During the distribution phase, when en si
is asserted, next virt is cycled as many times as vlayers count+1 (8) and each time
it is asserted, next PE row is equal to 1 four times, as the number of rows used.

Figure 5.9. Simulation, done with Questasim software, of all control signals
involved into virtualization.

Enlarging the simulation, as shown in Fig.5.10, it is possible to check that the
new address format works. Actually, both PE[0;1] and PE[0;0] have post-synaptic
spike: the first one produces a spike from the virtual layer 0; the second one from
the virtual layer 1. Each time a spike has to be distributed, spike valid is asserted
and row sp, col sp and virt sp are upload.

48

5 – Virtualization

Figure 5.10. Simulation, done with Questasim software, of the distribution of two
spikes coming from different virtual layers.

From simulation results, the introduction of virtualization does not affect the
functioning of the other changes made previously, as pipeline stages and the new
distribution structure. Since this simulation include both virtual and non-virtual
synaptic connections and it shows clearly that interactions between neurons in differ-
ent virtual layers works as expected, it is possible to confirm that the architecture
is supporting virtualization, so it has to be synthesized and implemented on an
FPGA to check if also time constrains remain inviolate and the area occupancy is
not significantly increased.

49

5 – Virtualization

5.3 Synthesis and Implementation

After simulating the new architecture supporting virtualization, the system has to
be tested on a board, using Vivado software, to check how much the new imple-
mentations have impacted on area occupancy and operating time. In order to make
significant comparisons with the previous architecture, the system is again imple-
mented on Xilinx Zynq-7000 SoC ZC706 board. Since in chapter 4.3 it is estimated
a maximum array size equal to 12x12, the first test is done with this dimension.
Firstly, during the synthesis, Vivado computes the utilization of the FPGA and its
resources and all the constrains as a function of the board used. Then, during im-
plementation, the software generates all the components to be placed on the FPGA,
with all the connections, taking into account the distance between registers and
calculating the worst delay to determine if there are time problems.

In Fig.5.11 is it shown the obtained area utilization results: as expected, BRAM
occupancy is 20% bigger than the one using a 10x10 multiprocessor array (see
Fig.4.13). The relevant aspect is that this increase comes from the larger array used
and it is not caused by the virtualization support: actually, the amount of hardware
introduced is independent from the array size and it consists in few control signals
and small blocks, which do not impact a lot on the board occupancy.

Figure 5.11. Area utilization of the architecture supporting virtualization with
12x12 multiprocessor array done with Vivado software.

These results confirm that it is still possible to extend the array more, although
it has to be checked if it realizable without having timing violations. In Fig.5.12
it is displayed the floorplanning of the architecture implemented: the black areas
clearly show the unoccupied space on the chip that hypothetically permit to extend

50

5 – Virtualization

the array.

Figure 5.12. Floorplanning of a 12x12 array supporting virtualization done with
Vivado software.

Moreover, the report timing shown in Table 5.2 confirms that the architecture do
not violate time constraints because all slacks are positive, meaning that the 12x12
multiprocessor array works with the correct behaviour.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 0.017 ns 0.000 ns 0 231080
Hold 0.024 ns 0.000 ns 0 231080

Pulse Width 3.232 ns 0.000 ns 0 77032

Table 5.2. Report timing summary of a 12x12 array supporting virtualization
provided by Vivado software.

51

5 – Virtualization

With the purpose to extend the array as much as possible, the architecture is
tested again on the same board with a 13x13 PE array.
In Fig.5.13 it is reported the area utilization provided by Vivado software: this time,
LUT and BRAM exceed the 90% of the available space. These results confirm that,
if there are not time violations, this is the maximum achievable size which can be
implemented on this board.

Figure 5.13. Area utilization of the architecture supporting virtualization with
13x13 multiprocessor array done with Vivado software.

Furthermore, the floorplanning in Fig.5.14 shows the occupancy of the FPGA,
in blue color. Only few small strips near corners and a little area in the centre are
free, which are dedicated to another unused functionality.

52

5 – Virtualization

Figure 5.14. Floorplanning of a 13x13 array supporting virtualization done with
Vivado software.

Finally, timing report in Table 5.3 obtained during the synthesis confirms that
the pipeline stages introduced are able to ensure the proper functioning of the ar-
chitecture, since all slacks are positive. This means that, at the end, it was possible
to achieve a number of PE equal to 1352, thanks to the implementation of virtual
layers.

Type Worst Slack Total Violation Failing Endpoints Total Endpoints

Setup 0.091 ns 0.000 ns 0 271182
Hold 0.034 ns 0.000 ns 0 271182

Pulse Width 3.232 ns 0.000 ns 0 90411

Table 5.3. Report timing summary of a 13x13 array supporting virtualization
provided by Vivado software.

53

Chapter 6

Conclusions and future
development

HEENS is an architecture designed for multi-FPGA implementations for SNN em-
ulation in real time and it represents a proposing system, among the ones that use
a neural network belonging to the 3rd generation, able to guarantee high level of
configurability, scalability and multi-model.

This thesis work has the main goal to enhance system scalability, operation speed
and resource occupancy, improving some weaknesses of the system and to introduce
virtualization, a feature that permits to increase the number of emulated neurons
without impacting the area utilization on the FPGA. Therefore, the architecture is
synthesized and implemented on the Xilinx Zynq-7000 SoC ZC706 board, in order
to test it and to verify if the design works in the proper way.
In particular, pipeline stages are introduced in order to reduced the critical path:
having a pipelined array of PEs, in fact, permits to extend it keeping fixed the op-
erating frequency. Tests on board demonstrate how the system is now capable to
support arrays up to 13x13 without timing violations, thus taking a step forward
compared to before.
Another bottleneck of the architecture was the area occupancy on the FPGA: ex-
tending the array means to introduce new processing elements, each one designed
using a big amount of hardware; therefore the array extension was conditioned also
by these area problems. For this reason, this work proposes, as solution, the in-
troduction of virtualized PEs, which are a replica of the original ones but they do
not require more hardware resources, since they are the same PE with new loaded
synaptic parameters. At the end, it was possible to achieve seven virtualized levels,
plus the main one, and to extend the array up to 13x13, permitting the simulation
of 1352 neurons.

The natural continuation of this thesis work, which is focussed on the hardware
enhancement of the architecture, is the development of a software environment for

54

6 – Conclusions and future development

virtual layer memory mapping. Actually, during this work, the memory interface
has been mapped manually, assigning addresses of the neural and synaptic param-
eters of the SNRAM though the assembly code. Moreover, also the generation of
interconnections could be managed via software: abandoning the netlist format so
far used to make room for a software management that automatically maps the local
and global memories, without going through a netlist text file.

55

Appendix A

Instruction Set

The instruction set, also called ISA (instruction set architecture), provides com-
mands to the processor, to tell what it needs to do. An opcode (operation code) is
associated with each instruction of ISA, to specify the operation to be performed.
There are different categories of opcode, depending on the purpose of the instruction:
arithmetic operations, movements, conditional freeze, flags and others. Instead of
binary code, opcode is identified by a name, which coupling to the function which
it represents, in order to have an higher lever of reconfigurability, since if the bi-
nary value changes, these is nothing to change in the VHDL code. Opcode name is
used to create the programs in Assembler that will be executed by the Processing
Elements. Then, when it is compiled, the name is translated to its corresponding
binary number, composed by 6 bits, and it is sent with other data through the
communication bus.

56

Instruction Opcode Function
0 NOP 000000 No operation
1 LDALL 000001 reg <= DMEM (from sequencer)
2 LLFSR 000010 ACC <= LFSR(15:0)
3 LOADSP 000011 R1 & ACC(15:1) <= BRAM(BP,31:1); ACC(0) <= spike_register(BP(3:0))
4 STOREB 000100 EXT_BUFFER <= ACC
5 STORESP 000101 BRAM(BP) <= R1 & ACC; BP <= BP + 1
6 STOREPS 000110 AER_FIFO <= ACC(0) (post-synaptic Si)
7 RST 000111 reg <= “0000”
8 SET 001000 reg <= “FFFF”
9 SHLN 001001 ACC <= ACC << n, (1 <= n <= 8), (n = number of positions)
10 SHRN 001010 ACC <= ACC >> n, (1 <= n <= 8), (n = number of positions)
11 RTL 001011 ACC <= ACC <<, carry = ACC(msb) Rotate Accumulator Left
12 RTR 001100 ACC <= ACC >>, carry = ACC(lsb) Rotate Accumulator Right
13 INC 001101 ACC <= ACC + 1
14 DEC 001110 ACC <= ACC - 1
15 LOADSN 001111 R1 & ACC <= BRAM(BP)
16 ADD 010000 ACC <= ACC + reg (Saturated addition)
17 SUB 010001 ACC <= ACC – reg (Saturated subtraction)
18 MUL 010010 ACC & R1 <= ACC * reg (Signed product)
19 MULS 010011 ACC <= ACC * reg (Most significant word signed product)
20 AND 010100 ACC <= ACC AND reg
21 OR 010101 ACC <= ACC OR reg
22 INV 010110 ACC <= INV reg
23 XOR 010111 ACC <= ACC XOR reg
24 MOVA 011000 ACC <= reg
25 MOVR 011001 reg <= ACC
26 SWAPS 011010 reg <=> shadow_reg (Swap register)
27 MOVRS 011011 reg <= shadow_reg
28 LOOP 011100 Push LOOP_BUFFER(n-1);Push PC_BUFFER(PC+1)
29 LOOPV 011101 Push LOOP_BUFFER(DMEM-1);Push PC_BUFFER(PC+1)
30 ENDL 011110 If LOOP_BUFFER = 0 then pop LOOP_BUFFER; pop PC_BUFFER; else LOOP_BUFFER <= LOOP_BUFFER – 1; PC <= PC_BUFFER
31 GOSUB 011111 PC <= addr; Push PC_BUFFER(PC+1)
32 RET 100000 PC <= PC_BUFFER
33 FREEZEC 100001 if C=1 then F <= 1; push F_BUFFER(1)
34 FREEZENC 100010 if C=0 then F <= 1; push F_BUFFER(1)
35 FREEZEZ 100011 if Z=1 then F <= 1; push F_BUFFER(1)
36 FREEZENZ 100100 if Z=0 then F <= 1; push F_BUFFER(1)
37 UNFREEZE 100101 F <= pop F_BUFFER
38 HALT 100110 INT<=1;sequencer halted until external input signal INT_ACK=1
39 SETZ 100111 Z <= 1
40 SETC 101000 Sets the carry flags C <= 1
41 CLRZ 101001 Clears the zero flags Z <= 0
42 CLRC 101010 Clears the zero flags C <= 0
43 RANDON 101011 random_en <= 1; LFSR becomes source register for LLFSR
44 SEED 101100 LFSR(63:32) <= LFSR(31:0) <= R1 & ACC
45 RANDOFF 101101 random_en <= 0; LFSR_STEP <=0; LFSR disabled
46 SPKDIS 101110 eo_exec <= 1, Stops the sequencer and stores spikes until input signal cam_en <= 0 (from AER control unit)
47 READMP 101111 DMEM <= BRAM(address)
48 RST_SEQ 110000 Jumps to RESET state
49 - - -
50 LAYERV 110010 VLAYERS <= n; CURR_VLAYER <= 0; defines number of virtual layers (currently 0 <= n <= 7)
51 GOTO 110011 PC <= addr
52 SHLAN 110100 ACC <= ACC << n, (1 <= n <= 8), Arithmetic shift
53 SHRAN 110101 ACC <= ACC >> n, (1 <= n <= 8), Arithmetic shift
54 LOADBP 110110 BP <= DMEM Loads PE BRAM pointer.
55 BITSET 110111 ACC(n) <= 1
56 BITCLR 111000 ACC(n) <= 0
57 SPMOV 111001 Special MOVE. n = 0: VIRT <= ACC;
58 INCV 111010 VLAYER <= VLAYER + 1
59 READMPV 111011 DMEM <= BRAM(address + VLAYER)
60 MOVSR 111100 shadow_reg <= reg

Appendix B

Assembler Code

B.1 IF

58

1 ; Integrate and fire.
2 ; DEFAULT operation without virtual layers
3
4 ; Network definitions
5
6 define virtual_layers 0 ; Up to 7
7 define gsynapses 0 ; Up to 32 global synapses
8 define lsynapses 15 ;99 Due to the local RAM encoding, synapse 0 cannot be used

(corresponds to no synapse code)
9 define tot_synapses 15 ;131

10
11 .DATA
12
13 ; Membrane potential parameters common to all neurons
14 VREST="FFFFE4A8" ; Resting potential -70 mV = -7000 in tens of of uV
15 VTHRES="FFFFEA84" ; Threshold voltage -55 mV = -5500
16 VDEPOL="FFFFE0C0" ; Depolarization voltage -80 mV = -8000
17 VACT = "00001771" ; Action potential +10 mV = +1000
18 ;
19 ;
20 ; Neural and Synaptic RAM addresses
21 SEEDH_ADDR = "00000200" ; Address of noise seed in NSBRAM
22 SEEDL_ADDR = "00000201" ;
23 NEU_ADDR="00000100" ; First address of Neural parameters in NSBRAM
24 SYN_ADDR="00000000" ; First address of Synaptic parameters in NSBRAM.
25 ;
26 ; General constants
27 THAU_MEM="0000799A" ; Membrane time constant decay (inverse value). To be tuned. Thau = 20
28 NOISE_MSK="0000001F" ; Noise mask. To be tuned
29
30 ; Constants for debug
31 JUMP_MV = "00000100" ; Jump 2.56 mV on spike
32 LFSR_VAL= "0000AAAA"
33 LFSR_VAL2= "00005555"
34
35 INIT_VAL ="FFFFE890" ; Vmem initiated at -60 mV, 10 mV above rest potential
36
37 .CODE
38 ;
39 GOTO MAIN ; Jump to main program
40 ;
41 ; **************************** PROCEDURES BEGIN ****************************
42 ;
43 .RANDOM_INIT ; Uses R0 and R1
44 LOADBP SEEDH_ADDR
45 LOADSN
46 SEED ; High seed
47 LOADBP SEEDL_ADDR
48 LOADSN
49 SEED ; Low seed
50 RET
51 ;
52 .LOAD_NEURON ; Uses R0, R1, R2 and R3
53 READMPV NEU_ADDR ; Address of real neuron + virt (valid also for non-virtual)
54 LOADBP ; NSBRAM pointer to currently processed neuron
55 LOADSN ; Load Neural parameters from NSBRAM to R1 & ACC
56 MOVR R2 ; Move Vmem from ACC to R2
57 RET
58 ;
59 .MEMBRANE_DECAY ; Uses R0, R4
60 MOVA R2
61 LDALL R4 VREST
62 SUB R4
63 LDALL R1, THAU_MEM
64 MULS R1 ; Calculate decay
65 SHLAN 1 ; Shift one bit left because we multiply by n-1 bits (positive value in

2's complement)
66 ADD R4
67 MOVR R2 ; Back to R2 where membrane potential is stored
68 RET
69 ;
70 .ADD_NOISE ; Uses R0, R2 and R5
71 RANDON ; LFSR ON
72 LLFSR ; Noise to ACC
73 MOVR R5
74 LDALL ACC, NOISE_MSK
75 AND R5
76 SHRN 1
77 RANDOFF ; LFSR OFF. Arbitrarily here
78 FREEZENC
79 MOVR R5
80 RST ACC
81 SUB R5 ; Generate signed noise without the negative bias of two's complement
82 UNFREEZE

83 MOVSR ACC ; TO MONITOR THE NOISE
84 ADD R2 ; Add to Vmem
85 MOVR R2 ; Back to R2
86 RET
87 ;
88 .DETECT_SPIKE ; Uses R0 and R2
89 LDALL ACC, VTHRES
90 SUB R2 ; Compare Vth - Vmem
91 SHLN 1 ;subtraction sign to C flag
92 RST ACC
93 FREEZENC ; If positive, spike
94 SET ACC
95 LDALL R2 VREST ; Vmem to resting potential
96 UNFREEZE
97 STOREPS ; Push spikes
98 RET
99 ;
100 .STORE_NEURON ; uses R0 and R1
101 MOVA R2 ; Move Vmem from R2 to ACC
102 READMPV NEU_ADDR ; Address of real neuron + virt (valid also for non-virtual)
103 LOADBP ; NSBRAM pointer to currently processed neuron
104 STORESP ; Store Vmem to NSBRAM
105 RET
106 ; **************************** MAIN PROGRAMME BEGIN ************************
107 .MAIN
108
109 ; Initial instructions
110 GOSUB RANDOM_INIT ; For noise initialization
111
112 .EXEC_LOOP ; Execution loop
113
114 ;%VIRT LOOP VLAYERS ; Neuron loop for virtual operation
115 GOSUB LOAD_NEURON
116 GOSUB MEMBRANE_DECAY ; Calculate membrane potential decay
117 GOSUB ADD_NOISE
118 LOADBP SYN_ADDR ; Initial position for addresses
119 LOOP tot_synapses ; synaptic loop
120 LOADSP ; Load Synaptic parameters and spike to R1 & ACC
121 SHRN 1 ; Move spike to flag C
122 FREEZENC
123 MOVA R1 ; Synaptic parameter to ACC
124 ADD R2
125 MOVR R2 ; Save Neural parameter in R2
126 UNFREEZE
127 RST ACC
128 STORESP ; Stores synaptic parameter and increases BP for next synapse

processing
129 ENDL
130 ; Compare and eventually spike
131 GOSUB DETECT_SPIKE
132 GOSUB STORE_NEURON
133 NOP ; Empty pipeline wait NOPs
134 NOP
135 NOP
136 SPKDIS ; Distribute spikes
137 GOTO EXEC_LOOP ; Execution loop
138

B – Assembler Code

B.2 IF VIRT

61

1 ; GOTO CODE
2 ;
3 ; Integrate and fire. Both non-virtual and virtual
4
5 ; Network definitions
6 define virtual_layers 7 ; from 0 up to 7 (1 to 8 layers)
7 define gsynapses 2 ; Up to 32 global synapses
8 define lsynapses 15 ;99 Due to the local RAM encoding, synapse 0 cannot be used

(corresponds to no synapse code)
9 define tot_synapses 15 ;131

10
11 .DATA
12
13 ; Virtual layers
14
15 V0 = "00000001" ; Number of assigned synapses (s-1) to the main layer
16 V1 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 1
17 V2 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 2
18 V3 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 3
19 V4 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 4
20 V5 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 5
21 V6 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 6
22 V7 = "00000001" ; Number of assigned synapses (s-1) to virtual layer 7
23 VLAYERS="00000007" ; Number of virtual layers(n-1).
24
25 ; Membrane potential parameters common to all neurons
26 VREST="FFFFE4A8" ; Resting potential -70 mV = -7000 in tens of of uV
27 VTHRES="FFFFEA84" ; Threshold voltage -55 mV = -5500
28 VDEPOL="FFFFE0C0" ; Depolarization voltage -80 mV = -8000
29 VACT = "00001771" ; Action potential +10 mV = +1000
30 ;
31 ;
32 ; Neural and Synaptic RAM addresses
33 SYN_ADDR0="00000000" ; First address of Synaptic parameters in SNRAM for V = 0.
34 SYN_ADDR1="00000002" ; First address of Synaptic parameters in SNRAM for V = 1.
35 SYN_ADDR2="00000004" ; First address of Synaptic parameters in SNRAM for V = 2.
36 SYN_ADDR3="00000006" ; First address of Synaptic parameters in SNRAM for V = 3.
37 SYN_ADDR4="00000008" ; First address of Synaptic parameters in SNRAM for V = 4.
38 SYN_ADDR5="0000000A" ; First address of Synaptic parameters in SNRAM for V = 5.
39 SYN_ADDR6="0000000C" ; First address of Synaptic parameters in SNRAM for V = 6.
40 SYN_ADDR7="0000000E" ; First address of Synaptic parameters in SNRAM for V = 7.
41 GSYN_ADDR="00000064" ; First address of Global Synaptic parameters in SNRAM.
42 NEU_ADDR0="000003E3" ; First address of Neural parameters in SNRAM (995) for V = 0.
43 NEU_ADDR1="000003E4" ; First address of Neural parameters in SNRAM (996) for V = 1.
44 NEU_ADDR2="000003E5" ; First address of Neural parameters in SNRAM (997) for V = 2.
45 NEU_ADDR3="000003E6" ; First address of Neural parameters in SNRAM (998) for V = 3.
46 NEU_ADDR4="000003E7" ; First address of Neural parameters in SNRAM (999) for V = 4.
47 NEU_ADDR5="000003E8" ; First address of Neural parameters in SNRAM (1000) for V = 5.
48 NEU_ADDR6="000003E9" ; First address of Neural parameters in SNRAM (1001) for V = 6.
49 NEU_ADDR7="000003EA" ; First address of Neural parameters in SNRAM (1002) for V = 7.
50
51 SEEDH_ADDR = "000003FD" ; Address of noise seed in SNRAM
52 SEEDL_ADDR = "000003FE" ;
53 PEID = "000003FF" ; Address of PE Identifier number
54
55 ; General constants
56 ;THAU_MEM="00007F00" ; Membrane time constant decay (inverse value). To be tuned
57 THAU_MEM="0000799A" ; Membrane time constant decay (inverse value). To be tuned. Thau = 20
58 NOISE_MSK="0000001F" ; Noise mask. To be tuned
59
60 ; Constants for debug
61 JUMP_MV = "00000100" ; Jump 2.56 mV on spike
62 LFSR_VAL= "0000AAAA"
63 LFSR_VAL2= "00005555"
64
65
66 .CODE
67 ;
68 GOTO MAIN ; Jump to main program
69 ;
70 ; **************************** PROCEDURES BEGIN ****************************
71 ;
72 .RANDOM_INIT ; Uses R0 and R1
73 LOADBP SEEDH_ADDR
74 LOADSN
75 SEED ; High seed
76 LOADBP SEEDL_ADDR
77 LOADSN
78 SEED ; Low seed
79 RET
80 ;
81 .LOAD_NEURON ; Uses R0, R1, R2 and R3
82 READMPV NEU_ADDR0 ; Address of real neuron + virt (valid also for non-virtual)
83 LOADBP ; SNRAM pointer to currently processed neuron

84 LOADSN ; Load Neural parameters from SNRAM to R1 & ACC
85 MOVR R2 ; Move Vmem from ACC to R2
86 MARK
87 RET
88 ;
89 .MEMBRANE_DECAY ; Uses R0, R4
90 MOVA R2 ; TEMPORARY WHILE MULS has problems.

REWRITE when it works
91 LDALL R4 VREST
92 SUB R4
93 LDALL R1, THAU_MEM
94 MULS R1 ; Calculate decay
95 SHLAN 1
96 ADD R4
97 MOVR R2 ; Back to R2 where membrane potential is stored
98 RET
99 ;
100 .ADD_NOISE ; Uses R0, R2 and R5
101 RANDON ; LFSR ON
102 LLFSR ; Noise to ACC
103 MOVR R5
104 LDALL ACC, NOISE_MSK
105 AND R5
106 SHRN 1
107 RANDOFF ; LFSR OFF. Arbitrarily here
108 FREEZENC
109 MOVR R5
110 RST ACC
111 SUB R5 ; Generate signed noise without the negative bias of two's complement
112 UNFREEZE
113 MOVSR ACC ; TO MONITOR THE NOISE
114 ADD R2 ; Add to Vmem
115 MOVR R2 ; Back to R2
116 RET
117 ;
118 .SYNAPSE_CALC
119 LOADSP ; Load Synaptic parameters and spike to R1 & ACC
120 SHRN 1 ; Move spike to flag C
121 FREEZENC
122 MOVA R1 ; Synaptic parameter to ACC
123 ADD R2
124 MOVR R2 ; Save Neural parameter in R2
125 UNFREEZE
126 RST ACC
127 STORESP ; Stores synaptic parameter and increases BP for next synapse processing
128 RET
129 ;
130 .DETECT_SPIKE ; Uses R0 and R2
131 LDALL ACC, VTHRES
132 SUB R2 ; Compare Vth - Vmem
133 SHLN 1 ;subtraction sign to C flag
134 RST ACC
135 FREEZENC ; If positive, spike
136 SET ACC
137 LDALL R2 VREST ; Vmem to resting potential
138 UNFREEZE
139 STOREPS ; Push spikes
140 RET
141 ;
142 .STORE_NEURON ; uses R0 and R1
143 MOVA R2 ; Move Vmem from R2 to ACC
144 READMPV NEU_ADDR0 ; Address of real neuron + virt (valid also for non-virtual)
145 LOADBP ; SNRAM pointer to currently processed neuron
146 STORESP ; Store Vmem to SNRAM
147 RET
148 ;
149 ; **************************** PROCEDURES END ******************************
150
151 ; ************************* MAIN PROGRAMME BEGIN ***************************
152 .MAIN
153
154 ; Virtual operation init
155 LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non-virtual operation
156 LDALL ACC, VLAYERS ; Load defined virtual layers to PE array
157 SPMOV 0 ; VIRT <= ACC
158
159 ; Initial instructions
160 GOSUB RANDOM_INIT ; For noise initialization
161
162 .EXEC_LOOP ; Execution loop
163
164 LOOP virtual_layers ; Neuron loop for virtual operation
165 NOP ;to prevent pipeline error
166 GOSUB LOAD_NEURON

167 GOSUB MEMBRANE_DECAY ; Calculate membrane potential decay
168 GOSUB ADD_NOISE
169 READMPV SYN_ADDR0
170 LOADBP
171 LOOPV V0 ; synaptic loop. Reads number of current-layer synapses
172 NOP ;to prevent pipeline error
173 GOSUB SYNAPSE_CALC
174 ENDL
175 ; Compare and eventually spike
176 GOSUB DETECT_SPIKE
177 GOSUB STORE_NEURON
178 INCV
179 ENDL
180 .FINISH
181 NOP ; Empty pipeline wait NOPs
182 NOP
183 NOP
184 SPKDIS ; Distribute spikes
185 GOTO EXEC_LOOP ; Execution loop
186

Appendix C

Netlist

C.1 netlist ringosc5x5.txt

0 0 0 0 1 1 131072000
0 0 1 0 2 1 131072000
0 0 2 0 3 1 131072000
0 0 3 0 4 1 131072000
0 0 4 1 4 1 131072000
0 1 4 2 4 1 131072000
0 2 4 3 4 1 131072000
0 3 4 4 4 1 131072000
0 4 4 4 3 1 131072000
0 4 3 4 2 1 131072000
0 4 2 4 1 1 131072000
0 4 1 4 0 1 131072000
0 4 0 3 0 1 131072000
0 3 0 2 0 1 131072000
0 2 0 1 0 1 131072000
0 1 0 0 0 1 131072000

C.2 netlist ringosc10x10.txt

0 0 0 0 1 1 131072000
0 0 1 0 2 1 131072000
0 0 2 0 3 1 131072000
0 0 3 0 4 1 131072000
0 0 4 0 5 1 131072000

65

C – Netlist

0 0 5 0 6 1 131072000
0 0 6 0 7 1 131072000
0 0 7 0 8 1 131072000
0 0 8 0 9 1 131072000
0 0 9 1 9 1 131072000
0 1 9 2 9 1 131072000
0 2 9 3 9 1 131072000
0 3 9 4 9 1 131072000
0 4 9 5 9 1 131072000
0 5 9 6 9 1 131072000
0 6 9 7 9 1 131072000
0 7 9 8 9 1 131072000
0 8 9 9 9 1 131072000
0 9 9 9 8 1 131072000
0 9 8 9 7 1 131072000
0 9 7 9 6 1 131072000
0 9 6 9 5 1 131072000
0 9 5 9 4 1 131072000
0 9 4 9 3 1 131072000
0 9 3 9 2 1 131072000
0 9 2 9 1 1 131072000
0 9 1 9 0 1 131072000
0 9 0 8 0 1 131072000
0 8 0 7 0 1 131072000
0 7 0 6 0 1 131072000
0 6 0 5 0 1 131072000
0 5 0 4 0 1 131072000
0 4 0 3 0 1 131072000
0 3 0 2 0 1 131072000
0 2 0 1 0 1 131072000
0 1 0 0 0 1 131072000

C.3 netlist snake10x10.txt

0 0 0 0 1 1 131072000
0 0 1 0 2 1 131072000
0 0 2 0 3 1 131072000
0 0 3 0 4 1 131072000
0 0 4 0 5 1 131072000

66

C – Netlist

0 0 5 0 6 1 131072000
0 0 6 0 7 1 131072000
0 0 7 0 8 1 131072000
0 0 8 0 9 1 131072000
0 0 9 1 9 1 131072000
0 1 9 1 8 1 131072000
0 1 8 1 7 1 131072000
0 1 7 1 6 1 131072000
0 1 6 1 5 1 131072000
0 1 5 1 4 1 131072000
0 1 4 1 3 1 131072000
0 1 3 1 2 1 131072000
0 1 2 1 1 1 131072000
0 1 1 1 0 1 131072000
0 1 0 2 0 1 131072000
0 2 0 2 1 1 131072000
0 2 1 2 2 1 131072000
0 2 2 2 3 1 131072000
0 2 3 2 4 1 131072000
0 2 4 2 5 1 131072000
0 2 5 2 6 1 131072000
0 2 6 2 7 1 131072000
0 2 7 2 8 1 131072000
0 2 8 2 9 1 131072000
0 2 9 3 9 1 131072000
0 3 9 3 8 1 131072000
0 3 8 3 7 1 131072000
0 3 7 3 6 1 131072000
0 3 6 3 5 1 131072000
0 3 5 3 4 1 131072000
0 3 4 3 3 1 131072000
0 3 3 3 2 1 131072000
0 3 2 3 1 1 131072000
0 3 1 3 0 1 131072000
0 3 0 4 0 1 131072000
0 4 0 4 1 1 131072000
0 4 1 4 2 1 131072000
0 4 2 4 3 1 131072000
0 4 3 4 4 1 131072000
0 4 4 4 5 1 131072000
0 4 5 4 6 1 131072000

67

C – Netlist

0 4 6 4 7 1 131072000
0 4 7 4 8 1 131072000
0 4 8 4 9 1 131072000
0 4 9 5 9 1 131072000
0 5 9 5 8 1 131072000
0 5 8 5 7 1 131072000
0 5 7 5 6 1 131072000
0 5 6 5 5 1 131072000
0 5 5 5 4 1 131072000
0 5 4 5 3 1 131072000
0 5 3 5 2 1 131072000
0 5 2 5 1 1 131072000
0 5 1 5 0 1 131072000
0 5 0 6 0 1 131072000
0 6 0 6 1 1 131072000
0 6 1 6 2 1 131072000
0 6 2 6 3 1 131072000
0 6 3 6 4 1 131072000
0 6 4 6 5 1 131072000
0 6 5 6 6 1 131072000
0 6 6 6 7 1 131072000
0 6 7 6 8 1 131072000
0 6 8 6 9 1 131072000
0 6 9 7 9 1 131072000
0 7 9 7 8 1 131072000
0 7 8 7 7 1 131072000
0 7 7 7 6 1 131072000
0 7 6 7 5 1 131072000
0 7 5 7 4 1 131072000
0 7 4 7 3 1 131072000
0 7 3 7 2 1 131072000
0 7 2 7 1 1 131072000
0 7 1 7 0 1 131072000
0 7 0 8 0 1 131072000
0 8 0 8 1 1 131072000
0 8 1 8 2 1 131072000
0 8 2 8 3 1 131072000
0 8 3 8 4 1 131072000
0 8 4 8 5 1 131072000
0 8 5 8 6 1 131072000
0 8 6 8 7 1 131072000

68

C – Netlist

0 8 7 8 8 1 131072000
0 8 8 8 9 1 131072000
0 8 9 9 9 1 131072000
0 9 9 9 8 1 131072000
0 9 8 9 7 1 131072000
0 9 7 9 6 1 131072000
0 9 6 9 5 1 131072000
0 9 5 9 4 1 131072000
0 9 4 9 3 1 131072000
0 9 3 9 2 1 131072000
0 9 2 9 1 1 131072000
0 9 1 9 0 1 131072000
0 9 0 0 0 1 131072000

C.4 netlist BPF VIRT.txt

0 0 0 0 0 0 0 1 1 65536000
0 0 0 0 0 0 1 1 1 32768000
0 0 0 0 0 0 2 1 1 32768000
0 0 0 1 0 0 0 3 1 65536000
0 0 1 1 0 0 0 2 1 32768000
0 0 2 1 0 0 0 2 2 32768000
0 0 0 2 0 0 0 3 2 -65536000
0 0 0 0 0 0 1 0 1 163840000
0 0 1 0 0 0 2 0 1 163840000
0 0 2 0 0 0 3 0 1 163840000
0 0 3 0 0 0 0 0 1 163840000

69

Appendix D

VHDL listing

D.1 PE.vhd

−−−
−− Pro jec t Name: HEENS
−− Design Name: PE. vhd
−− Version : 3 .9
−− Date : 19/07/2019
−−
−− Creator : Roberto Gattuso
−− Company : Un i v e r s i t a t Po l i t e cn i c a de Catalunya (UPC)
−−
−−
−− Descr ip t i on :
−−
−− Spike p i p e l i n e and v i r t u a l i z a t i o n suppor t are in t roduced
−−−
l ibrary IEEE ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . STD LOGIC MISC . a l l ;
use i e e e . s t d l o g i c u n s i g n e d . a l l ;
use i e e e . numer ic std . a l l ;
use work . log pkg . a l l ;
use work . SNN pkg . a l l ;

entity PE i s
generic (

row number : i n t e g e r ;
col number : i n t e g e r ;
Load In i tF i l e : i n t e g e r

) ;
port (

c l k : in s t d l o g i c ;

70

D – VHDL listing

r e s e t : in s t d l o g i c ;
r e s e t s p i k e : in s t d l o g i c ;
n e x t v i r t : in s t d l o g i c ;
v l a y e r s : in s t d l o g i c v e c t o r (v l a y e r b i t s −1 downto 0) ;
BRAMD seq : in s t d l o g i c v e c t o r (31 downto 0) ; −− bram seq −> BRAMD seq
BRAMA spike : in s t d l o g i c v e c t o r (17 downto 0) ; −− addr bram −> BRAMA spike
c o n f i g : in s t d l o g i c ; −− Se l e c t i o n s i g n a l
AM on : in s t d l o g i c ;
sp IntExt : in s t d l o g i c ;
en x : in s t d l o g i c ;
en y : in s t d l o g i c ;
e n s p i k e t x : in s t d l o g i c ;
s p i k e i n p u t : in s t d l o g i c ;
sp ike output : out s t d l o g i c

) ;
end PE;

architecture behav io ra l of PE i s

component SynapNeuralMemory i s
generic (

row number : i n t e g e r ;
col number : i n t e g e r ;
Load In i tF i l e : i n t e g e r

) ;
port (

c lka : in s t d l o g i c ;
ena : in STD LOGIC;
wea : in s t d l o g i c v e c t o r (0 downto 0) ;
addra : in s t d l o g i c v e c t o r (9 downto 0) ;
dina : in s t d l o g i c v e c t o r (31 downto 0) ;
douta : out s t d l o g i c v e c t o r (31 downto 0)

) ;
end component ;

component BRAM Array Memories i s
generic (

row number : i n t e g e r ;
col number : i n t e g e r ;
Load In i tF i l e : i n t e g e r

) ;
port (

c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
en : in s t d l o g i c ;
Sp IntExt : in s t d l o g i c ;
BRAMA spike : in s t d l o g i c v e c t o r (AER RX WIDTH − 1 downto 0) ;
BRAMD seq : in s t d l o g i c v e c t o r (GLOBAL SYN − 1 downto 0) ;

71

D – VHDL listing

Config : in s t d l o g i c ;
AM on : in s t d l o g i c ;
r e s e t s p i k e R e g : in s t d l o g i c ;
GblSpike : out s t d l o g i c v e c t o r (GLOBAL SYN − 1 downto 0) ;
Lc lSp ike : out s t d l o g i c v e c t o r ((s i z e x ∗ s i z e y) − 2 downto 0)

) ;
end component ;

component REG i s
port (

c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
regcode : in s t d l o g i c v e c t o r (2 downto 0) ;
en : in s t d l o g i c v e c t o r (7 downto 0) ;
data in0 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in1 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in2 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in3 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in4 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in5 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in6 : in s t d l o g i c v e c t o r (15 downto 0) ;
data in7 : in s t d l o g i c v e c t o r (15 downto 0) ;
data out0 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out1 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out2 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out3 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out4 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out5 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out6 : out s t d l o g i c v e c t o r (15 downto 0) ;
data out7 : out s t d l o g i c v e c t o r (15 downto 0)

) ;
end component ;

component ALU i s
port (

c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
InA : in s t d l o g i c v e c t o r (15 downto 0) ;
InB : in s t d l o g i c v e c t o r (15 downto 0) ;
OP CODE : in s t d l o g i c v e c t o r (5 downto 0) ;
OutCarry : out s t d l o g i c ;
OutZero : out s t d l o g i c ;
OutSolve : out s t d l o g i c v e c t o r (31 downto 0)

) ;
end component ;

−− Operation S i gna l s
signal data in : s t d l o g i c v e c t o r (15 downto 0) ;
signal addr reg : s t d l o g i c v e c t o r (2 downto 0) ;

72

D – VHDL listing

signal addr reg2 : s t d l o g i c v e c t o r (3 downto 0) ; −− JM
signal opcode : s t d l o g i c v e c t o r (5 downto 0) ;
signal PE en : s t d l o g i c ;

−− Reg i s t e r Bank S i gna l s
signal regcode : s t d l o g i c v e c t o r (2 downto 0) ;
signal REG en : s t d l o g i c v e c t o r (7 downto 0) ;
signal en addr : s t d l o g i c v e c t o r (7 downto 0) ;
signal en op : s t d l o g i c v e c t o r (7 downto 0) ;
signal data in0 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in1 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in2 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in3 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in4 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in5 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in6 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data in7 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out0 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out1 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out2 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out3 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out4 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out5 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out6 : s t d l o g i c v e c t o r (15 downto 0) ;
signal data out7 : s t d l o g i c v e c t o r (15 downto 0) ;

−− SynapNeuralMemory S i gna l s
signal SynNeuMem WE : s t d l o g i c v e c t o r (0 downto 0) ;
signal SynNeuMem WE aux : s t d l o g i c v e c t o r (0 downto 0) ;
signal SynNeuMem Addr : s t d l o g i c v e c t o r (9 downto 0) ;
signal SynNeuMem Addr aux : s t d l o g i c v e c t o r (9 downto 0) ;
signal SynNeuMem DataIN : s t d l o g i c v e c t o r (31 downto 0) ;
signal SynNeuMem DataIN aux : s t d l o g i c v e c t o r (31 downto 0) ;
signal SynNeuMem DataOUT : s t d l o g i c v e c t o r (31 downto 0) ;

−− LFSR S i gna l s
signal LFSR : s t d l o g i c v e c t o r (63 downto 0) ;
signal random en : s t d l o g i c ;

−− ALU S i gna l s
signal ALU A : s t d l o g i c v e c t o r (15 downto 0) ;
signal ALU B : s t d l o g i c v e c t o r (15 downto 0) ;

−− s i g n a l OP CODE : s t d l o g i c v e c t o r (5 downto 0) ;
signal ALU Carry aux : s t d l o g i c ;
signal ALU Carry : s t d l o g i c ;
signal ALU Zero aux : s t d l o g i c ;
signal ALU Zero : s t d l o g i c ;
signal ALU Solve : s t d l o g i c v e c t o r (31 downto 0) ;
signal B aux : s t d l o g i c v e c t o r (15 downto 0) ;

73

D – VHDL listing

signal B aux2 : s t d l o g i c v e c t o r (15 downto 0) ;
signal B aux3 : s t d l o g i c v e c t o r (15 downto 0) ; −− JM
signal flag MUL : s t d l o g i c ;
signal no MUL : s t d l o g i c ;
signal signal MUL : s t d l o g i c ;

−− Freeze S i gna l s
signal f r e e z e r e g : s t d l o g i c v e c t o r (7 downto 0) ;
signal n o f r e e z e : s t d l o g i c ;

−− Spike S i gna l s
signal s p i k e l o c a l : s t d l o g i c v e c t o r ((s i z e x ∗ s i z e y) − 2 downto 0) ;
signal s p i k e g l o b a l : s t d l o g i c v e c t o r (GLOBAL SYN − 1 downto 0) ;
signal sp ike : s t d l o g i c ;
signal s p i k e o u t : s t d l o g i c v e c t o r (max neuron v downto 0) ;
signal sp ike aux : s t d l o g i c v e c t o r (2∗∗ l o g 2 c e i l ((s i z e x ∗ s i z e y) + GLOBAL SYN) − 1 downto 0) ;
signal l oad sp : s t d l o g i c ;
signal s p i k e a : s t d l o g i c ;
signal virt num : i n t e g e r range 0 to max neuron v := 0 ; −− JM

begin

data in <= BRAMD seq(27 downto 1 2) ;
addr reg <= BRAMD seq(8 downto 6) ;
addr reg2 <= BRAMD seq(9 downto 6) ;−− JM
opcode <= BRAMD seq(5 downto 0) when c o n f i g = ’0 ’ else

(others => ’ 0 ’) ;

random enable process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f ((r e s e t = ’1 ’) OR (opcode = RANDOFF)) then

random en <= ’ 0 ’ ;
e l s i f (opcode = RANDON) then

random en <= ’ 1 ’ ;
end i f ;

end process ;

LFSR process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f r e s e t = ’1 ’ then

LFSR <= X” 0000000000000001 ” ;
e l s i f (opcode = SEED) then −−JM

LFSR(63 downto 32) <= LFSR(31 downto 0) ;
LFSR(31 downto 0) <= data out1 & data out0 ;

e l s i f ((opcode = RANDON) OR (random en = ’1 ’)) then
LFSR(63) <= LFSR(0) ;

74

D – VHDL listing

LFSR(62 downto 4) <= LFSR(63 downto 5) ;
LFSR(3) <= LFSR(4) xor LFSR(0) ;
LFSR(2) <= LFSR(3) xor LFSR(0) ;
LFSR(1) <= LFSR(2) ;
LFSR(0) <= LFSR(1) xor LFSR(0) ;

end i f ;
end process ;

BRAM write : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f r e s e t = ’1 ’ then

SynNeuMem Addr aux <= (others => ’ 0 ’) ;
e l s i f opcode = STORESP then

SynNeuMem Addr aux <= SynNeuMem Addr aux + 1 ;
e l s i f opcode = LOADBP then

SynNeuMem Addr aux <= data in (9 downto 0) ;
end i f ;

end process ;

n o f r e e z e <= ’1 ’ when ((f r e e z e r e g = x”00”) AND (c o n f i g = ’ 0 ’)) else
’ 0 ’ ;

PE en <= ’1 ’ when c o n f i g = ’0 ’ else
(en x AND en y) ;

CFLAG process : process −− carry f l a g
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

ALU Carry <= ’ 0 ’ ;
e l s i f (n o f r e e z e = ’1 ’) AND ((opcode = SHLN) OR (opcode = SHLAN) OR (opcode = SHRN) OR (opcode = RTL) OR (opcode = RTR) OR (opcode = INC) OR (opcode = DEC) OR (opcode = OP ADD) OR (opcode = OP SUB) OR (opcode = SETC)) then

i f (ALU Carry aux = ’0 ’) then
ALU Carry <= ’ 0 ’ ;

e l s i f (ALU Carry aux = ’1 ’) then
ALU Carry <= ’ 1 ’ ;

end i f ;
end i f ;

end process ;

ZFLAG process : process −− zero f l a g
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

ALU Zero <= ’ 0 ’ ;
e l s i f (n o f r e e z e = ’1 ’) AND ((opcode = SETZ) OR (opcode = RST) OR (opcode = CLRZ) OR (opcode = SET) OR (opcode = SHLAN) OR (opcode = SHRAN) OR (opcode = INC) OR (opcode = DEC) OR (opcode = OP ADD) OR (opcode = OP SUB) OR (opcode = BITSET) OR (opcode = BITCLR) OR (opcode = OP AND) OR (opcode = OP OR) OR (opcode = OP XOR) OR (opcode = INV)) then

i f (ALU Zero aux = ’0 ’) then
ALU Zero <= ’ 0 ’ ;

e l s i f (ALU Zero aux = ’1 ’) then

75

D – VHDL listing

ALU Zero <= ’ 1 ’ ;
end i f ;

end i f ;
end process ;

FREEZE process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f r e s e t = ’1 ’ then

f r e e z e r e g <= (others => ’ 0 ’) ;
else

i f (opcode = FREEZEC) then
i f (ALU Carry = ’1 ’) then

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 1 ’ ;
else

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 0 ’ ;
end i f ;

e l s i f (opcode = FREEZENC) then
i f (ALU Carry = ’0 ’) then

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 1 ’ ;
else

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 0 ’ ;
end i f ;

e l s i f (opcode = FREEZEZ) then
i f (ALU Zero = ’1 ’) then

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 1 ’ ;
else

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 0 ’ ;
end i f ;

e l s i f (opcode = FREEZENZ) then
i f (ALU Zero = ’0 ’) then

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 1 ’ ;
else

f r e e z e r e g (7 downto 0) <= f r e e z e r e g (6 downto 0) & ’ 0 ’ ;
end i f ;

e l s i f (opcode = OP UNFREEZE) then −− UNFREEZE: opcode not v a l i d
f r e e z e r e g (7 downto 0) <= ’0 ’ & f r e e z e r e g (7 downto 1) ;

end i f ;
end i f ;

end process ;

−− Max v i r t u a l i z a t i o n number by so f tware
M a x v i r t u a l i z a t i o n s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

virt num <= 0 ;
e l s i f opcode = SPMOV then

virt num <= t o i n t e g e r (unsigned (data out0)) ;

76

D – VHDL listing

end i f ;
end process ;

SPIKE process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

s p i k e o u t (max neuron v downto 0) <= (others => ’ 0 ’) ;
e l s i f l oad sp = ’1 ’ then

s p i k e o u t ((max neuron v) downto 1) <= s p i k e o u t ((max neuron v − 1) downto 0) ;
s p i k e o u t (0) <= data out0 (0) ;

e l s i f e n s p i k e t x = ’1 ’ then
s p i k e o u t (t o i n t e g e r (unsigned (v l a y e r s))) <= s p i k e i n p u t ;

e l s i f n e x t v i r t = ’1 ’ then
s p i k e o u t ((max neuron v) downto 1) <= s p i k e o u t ((max neuron v − 1) downto 0) ;
s p i k e o u t (0) <= ’ 0 ’ ;

end i f ;
end process ;

−− LOAD Spike enab l e
with opcode select
l oad sp <= ’1 ’ when STOREPS,

’0 ’ when others ;

sp ike output <= s p i k e o u t (t o i n t e g e r (unsigned (v l a y e r s))) ;

with opcode select
regcode <= ”001” when RST,

”010” when SET,
”011” when SWAPS,
”100” when MOVSR,
”101” when MOVRS,
”000” when others ; −− Externa l wr i t e case

−− Reg i s t e r Enable v e c t o r
with opcode select
en op <= en addr when LDALL | MOVR | SWAPS | RST | SET | MOVRS | MOVSR, −− JM f i x −− Implementar MOVS

” 00000001 ” when LLFSR | SHLN | SHRN | RTL | RTR | INC | DEC | OP ADD | OP SUB | MULS | OP AND | OP OR | INV | OP XOR | MOVA | SHLAN | SHRAN | BITSET | BITCLR,
” 00000011 ” when LOADSP | LOADSN | MUL,
” 00000000 ” when others ;

−− Reg i s t e r enab l e v e c t o r by address
with addr reg select
en addr <= ” 00000001 ” when ”000” ,

77

D – VHDL listing

” 00000010 ” when ”001” ,
” 00000100 ” when ”010” ,
” 00001000 ” when ”011” ,
” 00010000 ” when ”100” ,
” 00100000 ” when ”101” ,
” 01000000 ” when ”110” ,
” 10000000 ” when ”111” ,
” 00000000 ” when others ;

−− Aux i l i a r y ALU B operand
with addr reg select
B aux <= data out0 when ”000” ,

data out1 when ”001” ,
data out2 when ”010” ,
data out3 when ”011” ,
data out4 when ”100” ,
data out5 when ”101” ,
data out6 when ”110” ,
data out7 when ”111” ,
X”0000” when others ;

with addr reg select
B aux2 <= X”0000” when ”000” ,

X”0001” when ”001” ,
X”0002” when ”010” ,
X”0003” when ”011” ,
X”0004” when ”100” ,
X”0005” when ”101” ,
X”0006” when ”110” ,
X”0007” when ”111” ,
X”0000” when others ;

B aux3 (3 downto 0) <= addr reg2 ;
B aux3 (15 downto 4) <= (others => ’ 0 ’) ;

−− ALU B operand o f ALU.
with opcode select

ALU B <= B aux when INC | DEC | OP ADD | OP SUB | MUL | MULS | OP AND | OP OR | INV | OP XOR,
B aux2 when SHLN | SHRN | RTL | RTR |SHLAN | SHRAN,
B aux3 when BITSET | BITCLR,
X”0000” when others ;

sp ike aux (spike aux ’ l ength − 1 downto s p i k e g l o b a l ’ l ength + s p i k e l o c a l ’ l ength) <= (others => ’ 0 ’) ;
sp ike aux (s p i k e g l o b a l ’ l ength + s p i k e l o c a l ’ l ength − 1 downto 0) <= s p i k e g l o b a l & s p i k e l o c a l ;

sp ike <= spike aux (t o i n t e g e r (unsigned (SynNeuMem Addr(l o g 2 c e i l ((s i z e x ∗ s i z e y) + GLOBAL SYN) − 1 downto 0)))) AND (NOT AM on) ;

78

D – VHDL listing

−− Write R0 (ACC)
with opcode select
data in0 <= data in when LDALL,

LFSR(15 downto 0) when LLFSR,
(SynNeuMem DataOUT(15 downto 1) & s p i k e a) when LOADSP | LOADSN,
x”0000” when RST,
x”FFFF” when SET,
B aux when MOVA,
data out0 when MOVR,
ALU Solve (15 downto 0) when others ;

with opcode select
s p i k e a <= sp ike when LOADSP,

SynNeuMem DataOUT(0) when others ;

−− Write R1
with opcode select
data in1 <= data in when LDALL,

SynNeuMem DataOUT(31 downto 16) when LOADSP | LOADSN,
x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
ALU Solve (31 downto 16) when others ;

−− Write R2
with opcode select
data in2 <= data in when LDALL,

x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
x”0000” when others ;

−− Write R3
with opcode select
data in3 <= data in when LDALL,

x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
x”0000” when others ;

−− Write R4
with opcode select
data in4 <= data in when LDALL,

x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
x”0000” when others ;

79

D – VHDL listing

−− Write R5
with opcode select
data in5 <= data in when LDALL,

x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
x”0000” when others ;

−− Write R6
with opcode select
data in6 <= data in when LDALL,

x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
x”0000” when others ;

−− Write R7
with opcode select
data in7 <= data in when LDALL,

x”0000” when RST,
x”FFFF” when SET,
data out0 when MOVR,
x”0000” when others ;

−− ALU r e s u l t
ALU A <= data out0 ;

with opcode select
SynNeuMem WE <= b”1” when STORESP,

SynNeuMem WE aux when others ;
SynNeuMem WE aux(0) <= ’1 ’ when BRAMA spike(16 downto 13) = ”0111” and c o n f i g = ’1 ’

else ’ 0 ’ ;

SynNeuMem DataIN aux <= data out1 & data out0 ;

signal MUL <= ’1 ’ when ((opcode = MUL) OR (opcode = MULS)) else
’ 0 ’ ;

no MUL <= ’1 ’ when ((flag MUL = ’0 ’) AND (signal MUL = ’ 1 ’)) else
’ 0 ’ ;

f lag MUL process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

flag MUL <= ’ 0 ’ ;
e l s i f (no MUL = ’1 ’) then

flag MUL <= ’ 1 ’ ;

80

D – VHDL listing

else
flag MUL <= ’ 0 ’ ;

end i f ;
end process ;

−− Block r e g i s t e r enab l e s when Freeze
REG en <= en op when (n o f r e e z e = ’1 ’ AND (no MUL = ’ 0 ’)) else

” 00000000 ” ;

−− Reg i s t e r por t map
REG inst : REG
port map(

c l k => c lk ,
r e s e t => r e s e t ,
regcode => regcode ,
en => REG en ,
data in0 => data in0 ,
data in1 => data in1 ,
data in2 => data in2 ,
data in3 => data in3 ,
data in4 => data in4 ,
data in5 => data in5 ,
data in6 => data in6 ,
data in7 => data in7 ,
data out0 => data out0 ,
data out1 => data out1 ,
data out2 => data out2 ,
data out3 => data out3 ,
data out4 => data out4 ,
data out5 => data out5 ,
data out6 => data out6 ,
data out7 => data out7

) ;

SynNeuMem Addr <= BRAMA spike(9 downto 0) when c o n f i g = ’1 ’ else
SynNeuMem Addr aux ;

SynNeuMem DataIN <= BRAMD seq when c o n f i g = ’1 ’ else
SynNeuMem DataIN aux ;

−− BRAM synap t i c por t map v2
SynapNeuralMemory inst : SynapNeuralMemory
generic map(row number ,

col number ,
Load In i tF i l e
)

port map(
c lka => c lk ,
wea => SynNeuMem WE,

81

D – VHDL listing

ena => PE en ,
addra => SynNeuMem Addr ,
dina => SynNeuMem DataIN ,
douta => SynNeuMem DataOUT

) ;

−− ALU por t map
ALU inst : ALU
port map(

c l k => c lk ,
r e s e t => r e s e t ,
InA => ALU A,
InB => ALU B,
OP CODE => opcode ,
OutCarry => ALU Carry aux ,
OutZero => ALU Zero aux ,
OutSolve => ALU Solve

) ;

BRAM Array Memories inst : BRAM Array Memories
generic map(row number ,

col number ,
Load In i tF i l e

)
port map(

Config => con f i g , −− MUX s i g n a l
BRAMA spike => BRAMA spike , −− addr bram MUX sp i k e i n
BRAMD seq => BRAMD seq , −− data bram MUX da ta s e q
AM on => AM on , −− i npu t s d e l array
en => PE en , −− i npu t s d e l array
r e s e t => r e s e t ,
r e s e t s p i k e R e g => r e s e t s p i k e ,
Sp IntExt => sp IntExt , −− i npu t s d e l array
c l k => c lk ,
GblSpike => s p i k e g l o b a l ,
Lc lSp ike => s p i k e l o c a l

) ;

end behav io ra l ;

82

D – VHDL listing

D.2 PE row.vhd

−−−
−− Pro jec t Name: HEENS
−− Design Name: PE row . vhd
−− Version : 4
−− Date : 19/07/2019
−−
−− Creator : Roberto Gattuso
−− Company : Un i v e r s i t a t Po l i t e cn i c a de Catalunya (UPC)
−−
−−
−− Descr ip t i on :
−−
−− Spike p i p e l i n e and v i r t u a l i z a t i o n suppor t are in t roduced
−−−
l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use work . log pkg . a l l ;
use work . SNN pkg . a l l ;
use i e e e . numer ic std . a l l ;

entity PE row i s
generic (

row number : i n t e g e r ;
Load In i tF i l e : i n t e g e r
) ;

port (
c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
r e s e t s p i k e : in s t d l o g i c ;
n e x t v i r t : in s t d l o g i c ;
v l a y e r s : in s t d l o g i c v e c t o r (v l a y e r b i t s −1 downto 0) ;
BRAMD seq : in s t d l o g i c v e c t o r (31 downto 0) ; −− bram seq

−> BRAMD seq
BRAMA spike : in s t d l o g i c v e c t o r (17 downto 0) ; −− addr bram −> BRAMA spike
c o n f i g : in s t d l o g i c ; −− Se l e c t i o n s i g n a l

−−
AM on : in s t d l o g i c ;
sp IntExt : in s t d l o g i c ;
enab le x : in s t d l o g i c v e c t o r (s i z e x 1 downto 0) ; −−
enab le y : in s t d l o g i c ;
next PE row : in s t d l o g i c ;
sp ike inR : in s t d l o g i c v e c t o r (s i z e x 1 downto 0) ;
sp ike outR : out s t d l o g i c v e c t o r (s i z e x 1 downto 0)
) ;

end PE row ;

architecture connect ion of PE row i s

83

D – VHDL listing

component PE i s −− Process Element c e l l
generic (

row number : i n t e g e r ;
col number : i n t e g e r ;
Load In i tF i l e : i n t e g e r
) ;

port (−− Ports o f Process Element
c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
r e s e t s p i k e : in s t d l o g i c ;
n e x t v i r t : in s t d l o g i c ;
v l a y e r s : in s t d l o g i c v e c t o r (v l a y e r b i t s −1 downto 0) ;
BRAMD seq : in s t d l o g i c v e c t o r (31 downto 0) ;
BRAMA spike : in s t d l o g i c v e c t o r (17 downto 0) ;
c o n f i g : in s t d l o g i c ;
AM on : in s t d l o g i c ;
sp IntExt : in s t d l o g i c ;
en x : in s t d l o g i c ;
en y : in s t d l o g i c ;
e n s p i k e t x : in s t d l o g i c ;
s p i k e i n p u t : in s t d l o g i c ;
sp ike output : out s t d l o g i c
) ;

end component ;

−− Reg i s t e r ed s i g n a l s
signal BRAMD seq reg : s t d l o g i c v e c t o r (31 downto 0) ;
signal BRAMA spike reg : s t d l o g i c v e c t o r (17 downto 0) ;
signal r e s e t r e g : s t d l o g i c ;
signal r e s e t s p i k e r e g : s t d l o g i c ;
signal c o n f i g r e g : s t d l o g i c ;
signal AM on reg : s t d l o g i c ;
signal sp In tExt r eg : s t d l o g i c ;
signal e n a b l e x r e g : s t d l o g i c v e c t o r (s i z e x 1 downto 0) ;
signal e n a b l e y r e g : s t d l o g i c ;

begin

−− Array o f PE por t map genera t ion
gPEj : for j in 0 to s i z e x 1 generate −− columns

PEj : entity work .PE
generic map(row number ,

j ,
Load In i tF i l e

)
port map(

c lk ,
r e s e t ,

84

D – VHDL listing

r e s e t s p i k e r e g ,
n e x t v i r t ,
v layer s ,
BRAMD seq reg , −− bram seq
BRAMA spike reg , −− addr bram
c o n f i g r e g , −− con f i g
AM on reg , −− AIR f l a g
sp IntExt reg , −− sp In tEx t
e n a b l e x r e g (j) , −− PE co l enab l e
enab l e y reg , −− PE row enable
next PE row ,
sp ike inR (j) , −− s p i k e i n pu t
sp ike outR (j) −− s p i k e ou t pu t
) ;

end generate gPEj ; −− columns

r e s e t p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
r e s e t r e g <= r e s e t ;

end process ;

r e s e t s p i k e p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

r e s e t s p i k e r e g <= ’ 0 ’ ;
else

r e s e t s p i k e r e g <= r e s e t s p i k e ;
end i f ;

end process ;

BRAMD seq process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

BRAMD seq reg <= (others => ’ 0 ’) ;
else

BRAMD seq reg <= BRAMD seq ;
end i f ;

end process ;

BRAMA spike process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

BRAMA spike reg <= (others => ’ 0 ’) ;
else

BRAMA spike reg <= BRAMA spike ;

85

D – VHDL listing

end i f ;
end process ;

c o n f i g p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

c o n f i g r e g <= ’ 0 ’ ;
else

c o n f i g r e g <= c o n f i g ;
end i f ;

end process ;

AM on process : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

AM on reg <= ’ 0 ’ ;
else

AM on reg <= AM on ;
end i f ;

end process ;

s p I n t E x t p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

sp In tExt r eg <= ’ 0 ’ ;
else

sp In tExt r eg <= sp IntExt ;
end i f ;

end process ;

e n a b l e x p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

e n a b l e x r e g <= (others => ’ 0 ’) ;
else

e n a b l e x r e g <= enab le x ;
end i f ;

end process ;

e n a b l e y p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

e n a b l e y r e g <= ’ 0 ’ ;
else

86

D – VHDL listing

e n a b l e y r e g <= enab le y ;
end i f ;

end process ;

end architecture connect ion ; −− o f PE row

87

D – VHDL listing

D.3 PE array.vhd

−−−
−− Pro jec t Name: HEENS
−− Design Name: PE array . vhd
−− Version : 3 .4
−− Date : 19/07/2019
−−
−− Creator : Roberto Gattuso
−− Company : Un i v e r s i t a t Po l i t e cn i c a de Catalunya (UPC)
−−
−−
−− Descr ip t i on :
−−
−− Spike p i p e l i n e and v i r t u a l i z a t i o n suppor t are in t roduced
−−−
l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use work . log pkg . a l l ;
use work . SNN pkg . a l l ;
use i e e e . numer ic std . a l l ;

entity PE array i s
generic (

Load In i tF i l e : i n t e g e r
) ;

port (
e n s i : in s t d l o g i c ;
c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
r e s e t s p i k e : in s t d l o g i c ;
row pe : in s t d l o g i c v e c t o r (4 downto 0) ; −− Row PE enab l e
c o l p e : in s t d l o g i c v e c t o r (4 downto 0) ; −− Col PE enab l e
BRAMD seq : in s t d l o g i c v e c t o r (31 downto 0) ; −− bram seq

−> BRAMD seq
BRAMA spike : in s t d l o g i c v e c t o r (17 downto 0) ; −− addr bram −> BRAMA spike
c o n f i g : in s t d l o g i c ; −− Se l e c t i o n s i g n a l
AM on : in s t d l o g i c ;
sp IntExt : in s t d l o g i c ; −− Enable s i g n a l f o r BRAM memories
v l aye r s count : in s t d l o g i c v e c t o r (v l a y e r b i t s −1 downto 0) ;
e o s p i k e : out s t d l o g i c ;
s p i k e v a l i d : out s t d l o g i c ;
row sp : out s t d l o g i c v e c t o r (4 downto 0) ; −− Row sp i k e addr
c o l s p : out s t d l o g i c v e c t o r (4 downto 0) ; −− Col s p i k e addr
v i r t s p : out s t d l o g i c v e c t o r (2 downto 0)
) ;

end PE array ;

architecture i n t e r c o n n e c t of PE array i s

88

D – VHDL listing

component PE row i s −− Process Elements Row
generic (

row number : i n t e g e r ;
Load In i tF i l e : i n t e g e r
) ;

port (−− Ports de l a f i l a de Process Elements
c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
r e s e t s p i k e : in s t d l o g i c ;
n e x t v i r t : in s t d l o g i c ;
v l a y e r s : in s t d l o g i c v e c t o r (v l a y e r b i t s −1 downto 0) ;
BRAMD seq : in s t d l o g i c v e c t o r (31 downto 0) ; −− bram seq

−> BRAMD seq
BRAMA spike : in s t d l o g i c v e c t o r (17 downto 0) ; −− addr bram −> BRAMA spike
c o n f i g : in s t d l o g i c ; −− Se l e c t i o n s i g n a l

−−
AM on : in s t d l o g i c ;
sp IntExt : in s t d l o g i c ;
enab le x : in s t d l o g i c v e c t o r (s i z e x 1 downto 0) ; −−
enab le y : in s t d l o g i c ;
next PE row : in s t d l o g i c ;
sp ike inR : in s t d l o g i c v e c t o r (s i z e x 1 downto 0) ;
sp ike outR : out s t d l o g i c v e c t o r (s i z e x 1 downto 0)
) ;

end component ;

type arrC i s array (s i z e y 1 downto 0) of s t d l o g i c v e c t o r (s i z e x 1 downto 0) ; −− Column array
type arrV i s array (max neuron v downto 0) of arrC ;
signal zero : s t d l o g i c v e c t o r (s i z e x 1 downto 0) := (others => ’ 0 ’) ;
signal row aux : i n t e g e r range 0 to s i z e y ;
signal co l aux : i n t e g e r range 0 to s i z e x 1 ;
signal v i r t a u x : i n t e g e r range 0 to (max neuron v +1);
signal e n c o l : s t d l o g i c v e c t o r (s i z e x 1 downto 0) ;
signal en row : s t d l o g i c v e c t o r (s i z e y 1 downto 0) ;
signal no sp ike : s t d l o g i c ;
signal en sp ik e : s t d l o g i c ;
signal s p v a l i d : s t d l o g i c ;
signal s h i f t s p : s t d l o g i c ;
signal s p i k e d i s p l : arrV ;
signal PE array count : i n t e g e r range 0 to s i z e y ;
signal s p i k e b u f f e r : s t d l o g i c v e c t o r (s i z e x 1 downto 0) ;
signal next PE row : s t d l o g i c ;
signal sp ike inA : arrC ;
signal sp ike outA : arrC ;

begin −− i n t e r connec t o f ne t addr

89

D – VHDL listing

−− Matrix o f PE row (Arrays o f PE) por t map genera t ion
gPEi : for i in 0 to s i z e y 1 generate −− rows

PEi : entity work . PE row
generic map (i ,

Load In i tF i l e)
port map(

c lk ,
r e s e t ,
r e s e t s p i k e ,
s h i f t s p ,
v laye r s count ,
BRAMD seq , −− bram seq
BRAMA spike , −− addr bram
con f i g , −− Valor a 0 per poder provar cod i
AM on , −− AM on
sp IntExt , −− sp In tEx t
e n c o l (s i z e x 1 downto 0) ,
en row (i) ,
next PE row ,
sp ike inA (i) (s i z e x 1 downto 0) ,
sp ike outA (i) (s i z e x 1 downto 0)
) ;

end generate gPEi ;

−− 1 s t Row s t a r t v e c t o r
g s p i k e i n 0 : for j in 0 to s i z e x 1 generate

s p i k e i n 0 : sp ike inA (0) (j) <= ’ 0 ’ ;
end generate g s p i k e i n 0 ;

−− Array In te rconnec t
g s p i k e A c o l i : for i in 0 to s i z e x 1 generate

gspikeA rowj : for j in 0 to (s i z e y 1 − 1) generate
sp ikeAj : sp ike inA (j +1)(i) <= spike outA (j) (i) ;

end generate gspikeA rowj ;
end generate g s p i k e A c o l i ;

−−PE Array b u f f e r
s p i k e b u f f e r p r o c e s s : process
variable temp : i n t e g e r range 0 to s i z e x 1 ;
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

PE array count <= s i z e y ;
next PE row <= ’ 0 ’ ;
no sp ike <= ’ 0 ’ ;
s p i k e b u f f e r <= (others=> ’ 0 ’) ;
s p v a l i d <= ’ 0 ’ ;

e l s i f (en sp ik e = ’1 ’ and e n s i = ’1 ’ and s h i f t s p = ’0 ’) then

90

D – VHDL listing

i f (next PE row = ’1 ’) then
next PE row <= ’ 0 ’ ;
s p i k e b u f f e r <= spike outA (s i z e y 1) ; −− Buf fer s h i f t

e l s i f (s p i k e b u f f e r = zero) then
s p v a l i d <= ’ 0 ’ ;
i f (PE array count = 0) then

no sp ike <= ’ 1 ’ ;
PE array count <= s i z e y ;

else
PE array count <= PE array count − 1 ;
next PE row <= ’ 1 ’ ; −− PE array s h i f t

end i f ;
else

for i in 0 to s i z e x 1 loop
i f (s p i k e b u f f e r (i) = ’1 ’) then

temp := i ;
s p i k e b u f f e r (i) <= ’0 ’;
s p v a l i d <= ’ 1 ’ ;
exit ;

else
s p v a l i d <= ’ 0 ’ ;

end i f ;
end loop ;

end i f ;
else

no sp ike <= ’ 0 ’ ;
end i f ;
co l aux <= temp ;
row aux <= PE array count ;

end process ;

−− Construct ion o f s p i k e v ec t o r
c o l s p <= s t d l o g i c v e c t o r (to uns igned (co l aux , 5)) when s p v a l i d = ’1 ’ else −− NEXT ISSUE : b e t t e r i f 5 i s g en e r a l i z e d

(others => ’ 0 ’) ;
row sp <= s t d l o g i c v e c t o r (to uns igned (row aux , 5)) when s p v a l i d = ’1 ’ else −− NEXT ISSUE : b e t t e r i f 5 i s g en e r a l i z e d

(others => ’ 0 ’) ;
v i r t s p <= s t d l o g i c v e c t o r (to uns igned (v i r t aux , 3)) when s p v a l i d = ’1 ’ else

(others => ’ 0 ’) ;
s p i k e v a l i d <= s p v a l i d ;

−− Spike d i s p l a y
s p i k e d i s p l p r o c e s s : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

s p i k e d i s p l<= ((others=> (others=> (others= > ’0 ’)))) ;
e l s i f s p v a l i d = ’1 ’ then

s p i k e d i s p l (v i r t a u x) (row aux) (co l aux) <= ’1 ’;
else

91

D – VHDL listing

s p i k e d i s p l<= ((others=> (others=> (others= > ’0 ’)))) ;
end i f ;

end process ;

−− End f lag o f pu l s e dra in ing proces s
s h i f t s p <= no sp ike AND en sp ik e AND e n s i ;
e o s p i k e <= s h i f t s p ;

−− Spike enab l e r e g i s t e r
SPIKE enable : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f ((r e s e t = ’1 ’) or (s h i f t s p = ’1 ’) or (e n s i = ’ 0 ’)) then

en sp ik e <= ’ 0 ’ ;
e l s i f (e n s i = ’1 ’) then

en sp ik e <= ’ 1 ’ ;
end i f ;

end process ;

−− Vir tua l l a y e r counter
VIRT counter : process
begin

wait until c lk ’ event and c l k = ’ 1 ’ ;
i f (r e s e t = ’1 ’) then

v i r t a u x <= 0 ;
e l s i f (e n s i = ’0 ’) then

v i r t a u x <= 0 ;
e l s i f (s h i f t s p = ’1 ’) then

v i r t a u x <= v i r t a u x + 1 ;
end i f ;

end process ;

−− Write enab l e s i n g l e PE proces s
PE row enabling : process (row pe)
begin

en row <= (others => ’ 0 ’) ; −− d e f a u l t
en row (t o i n t e g e r (unsigned (row pe))) <= ’ 1 ’ ;

end process ;

PE co l enab l ing : process (c o l p e)
begin

e n c o l <= (others => ’ 0 ’) ; −− d e f a u l t
e n c o l (t o i n t e g e r (unsigned (c o l p e))) <= ’ 1 ’ ;

end process ;
end architecture i n t e r c o n n e c t ; −− o f PE array

92

Bibliography

[1] H. Paugam-Moisy, S. Bohte, “Computing with Spiking Neuron Networks” in
Handbook of Natural Computing, pp. 335–376, 2012.

[2] M. Zapata, U. K. Balaji, J. Madrenas, in “PSoC-Based Real-Time Data Acqui-
sition for a Scalable Spiking Neural Network Hardware Architecture” October
2018.

[3] J. Madrenas, in “HEENS private document” February 2018.

[4] S. J. Moreno, in “Implementation of a multiprocessor array for spiking neural
network emulation on FPGA” January 2017.

[5] J. Schemmel, J. Fieres, K. Meie, “Wafer-Scale Integration of Analog Neural
Networks” in IEEE International Joint Conference on Neural Networks, 2008.

[6] A. Sripad, G. Sanchez, M. Zapata, V. P. andTaho Dorta, S. Cambria, A. Marti,
K. Krishnamourthy, J. Madrenas, “SNAVA - A real-time multi-FPGA multi-
model spiking neural network simulation architecture” in Neural Networks,
v. 97, pp. 28–45, January 2018.

[7] E. M. Izhikevich, “Polychronization: Computation With Spikes” in Neural
Computation, June 2005.

[8] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, S. Millner, “A wafer-
scale neuromorphic hardware system for large-scale neural modeling” in In
Proceedings of 2010 IEEE international symposium on circuits and systems
(ISCAS), pp. 1947–1950, 2010.

[9] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy1, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk,
R. Manohar, D. S. Modha, “A million spiking-neuron integrated circuit with a
scalable communication network and interface” in Science, v. 345 (6197), pp.
668–673, 2014.

[10] X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple, S. B. Furber, “Modeling
spiking neural networks on SpiNNaker” in Computing in Science and Engineer-
ing, v. 12(5), pp. 91–97, 2010.

[11] H. E. Plesser, M. Diesmann, M.-O. Gewaltig, A. Morrison, “NEST: The Neu-
ral Simulation Tool” in Encyclopedia of Computational Neuroscience, pp. 1–4,

93

Bibliography

2013.
[12] A. Linares-Barranco, R. Paz-Vicente, F. Gomez-Rodriguez, Jimenez, M. Rivas,

G. Jimenez, A. Civit, “On the AER convolution processors for FPGA” in Pro-
ceedings of 2010 IEEE international symposium on circuits and systems, pp.
4237–4240, 2010.

[13] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty,
S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang,
H. Wang, “Loihi: a Neuromorphic Manycore Processor with On-Chip Learning”
in IEEE Micro, v. 38 (1), pp. 82–99, 2018.

[14] M. Zapata, in “Arquitectura Escalable SIMD con Conectividad Jerarquica y
Reconfigurable para la Emulacion de SNN” September 2017.

94

	Abstract
	Acknowledgments
	Abbreviations
	Introduction
	State of Art
	Biological neurons network
	Spiking Neuron Networks
	Leaky Integrate-and-Fire model
	Izhikevich’s neuron model
	Synaptic plasticity and STDP
	Polychronization
	Computational power of neurons and networks

	SNN Architectures

	Architecture Review
	HEENS architecture
	Processing Element array
	IF Assembly Code

	Pipelining and Extension of the Multiprocessor Array
	Spike pipeline
	Array Extension
	Synthesis and Implementation

	Virtualization
	IF Assembly Code supporting virtualization
	Memory Interface

	Virtualization Design
	Simulations

	Synthesis and Implementation

	Conclusions and future development
	Instruction Set
	Assembler Code
	IF
	IF_VIRT

	Netlist
	netlist_ringosc5x5.txt
	netlist_ringosc10x10.txt
	netlist_snake10x10.txt
	netlist_BPF_VIRT.txt

	VHDL listing
	PE.vhd
	PE_row.vhd
	PE_array.vhd

	Bibliography

