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Summary

Web based vulnerabilities have been of great interest because of the huge quantity of attacks over
the last years, a trend that seems to continuously increase. This is why both academic researchers
and companies are investing a large amount of money to secure and protect their networks.

This thesis gives its contribution to the literature by presenting an intrusion detection system
that uses a number of different anomaly detection techniques to detect attacks against web servers
and web based applications over the HTTP protocol. The system analyzes client queries that
reference server side programs and creates models for a range of different features of these queries.
Examples of such features are the length and the byte distribution of a certain parameter. In
particular, the use of application specific modeling of the invocation parameters allows the system
to perform focused analysis and produce a reduced number of false positives.
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Chapter 1

Introduction

Attacks against web applications pose one of the most serious security threats to modern computer
systems. Not surprisingly, an explosive growth in the amount of security incidents involving web
applications has been observed in recent years. According to a report presented by the cyber-
security company Imperva, the overall number of new vulnerabilities in 2018 (17,308) increased
by 23% compared to 2017 (14,082) and by 162% compared to 2016 (6,615). More than half of
web application vulnerabilities (54%) have a public exploit available to hackers. In addition, more
than a third (38%) of web application vulnerabilities do not have an available solution, such as a
software upgrade workaround or software patch [6].

Web application vulnerabilities create opportunities for hackers to launch devastating attacks.
Sophisticated attack techniques have enabled hackers to launch large-scale attacks more quickly.
Hackers have also become more organized, building criminal networks and sharing exploits in
underground forums. New automated attack tools now leverage search engines to rapidly discover
and attack tens of thousands of sites and, for even greater efficiency and scale, hackers have built
networks of bots (remotely controlled devices) to unleash large-scale attacks.

The most popular cyber attacks are currently injections and Cross-Site scripting (XSS). The
first type accounted for 19% (3,294) out of the total vulnerabilities of 2018, which is also a 267%
increase from the previous year. When speaking about injections, the first thing that comes to
mind is SQL injections, but also remote command execution (RCE) are becoming very common.
On the other hand XSS vulnerabilities continued to grow steadily and appears to be the second
most common vulnerability (14%) among 2018 web application vulnerabilities.

A security breach involves severe losses for a company. The global average cost of a data breach
for the 2019 study is $3.92 million, a 1.5% increase from the 2018 study, as stated by a report from
IBM in [7]. The average total cost of a data breach climbed from $3.5 million in 2014, showing a
growth of 12% between 2014 and 2019.

There are many different solutions to protect the applications and the network of a company:
firewalls (and in particular web application firewalls, WAF), intrusion detection systems (IDSs)
and intrusion prevention systems (IPSs).

An intrusion detection system (IDS) monitors network traffic for suspicious activity and issues
alerts when such activity is discovered. As a consequence, it does not alter the network packets in
any way. There are several types of intrusion detection systems, which employ different techniques:

• Network-based Intrusion Detection Systems (NIDS): it analyzes the inbound and
outbound network traffic to and from all the hosts in the network.

• Host intrusion detection systems (HIDS): it monitors only the traffic related to the host
in which it runs. It is more precise than a NIDS and can identify malicious data generated
by the host itself (for instance if infected).

• Signature-based intrusion detection systems: match the packets observed in the net-
work against a database of signature of known attacks.

1



1 – Introduction

• Anomaly-based intrusion detection systems: it analyzes the network traffic and raises
alerts if something is suspicious with respect to an established baseline.

Unlike an IDS, an intrusion prevention system is not limited to traffic monitoring only, but it
also provide a control mechanism. While an IDS is usually passive in the sense that it logs the
observed activity without performing any active action, an IPS deeply inspects the packets and
can execute a real-time response to stop an immediate threat to the network. There are three
common response actions:

• Terminate the TCP session that has been used to carry the attack and block the offending
source IP address or user account from accessing any resource in the network.

• Reprogram or reconfigure an existing firewall to prevent a similar attack occurring in the
future.

• Remove or replace any malicious content that remains on the network following an attack.
This is done by repackaging payloads, removing header information and removing any infected
attachments from file or email servers.

IDS and IPS have in common many features. They both suffers from the generation of false
positives. However, while for IDS this is not a big issue (because no real action is taken and it is
up to the system administrator to decide what to do), an IPS automatically takes countermeasures
against the identified intrusions and it can lead to the denial of legitimate traffic. As a consequence
this latter kind of systems requires very fine tuning of the parameters.

In this context lies HTTPServer, an intrusion detection system that performs anomaly detection
on the HTTP traffic flowing across a network to secure. The goal is to identify and report attacks
against web servers and web based applications. HTTPServer applies a custom machine learning
algorithm to profile the HTTP traffic targeting a certain web application and to be able to detect
outliers, which usually are symptoms of malicious inputs.

One key feature that distinguishes this anomaly detector from the other systems presented
in literature is that HTTPServer performs unsupervised machine learning, instead of supervised
machine learning.

In Supervised learning, the model is trained using data which is well ”labeled.” It means that
some data is already tagged with the correct answer (for instance benign or malicious). Therefore,
a supervised learning algorithm learns from labeled training data and helps in predicting outcomes
for unforeseen data. On the contrary, unsupervised learning is a machine learning technique where
it is not needed to supervise the model. Instead, it works on its own to discover information and
it mainly deals with the unlabelled data.

HTTPServer is designed to process data in real time, as soon as they are received. As a
consequence, supervised machine learning is not applicable. The learning phase for an unsupervised
algorithm is usually more complex to implement because there is not a data set with both benign
and malicious inputs that trains the model and allows it to understand what is good and what is
bad. However, HTTPServer is able to automatically adapt itself to the traffic targeting the specific
web server it is protecting and it is robust to the presence of outliers.

HTTPServer is a module of LLAnta, the company’s network analysis tools. In the following
sections I will give a description of the company an its products, in order to provide the context
needed to understand how HTTPServer works and it has been developed. Next there will be a
review of the work done in literature and from which I took inspiration. It follows a detailed
explanation of the system structure and how the different components interact together. Finally,
I will show the results and present my final consideration and what I plan to do as future work.
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Chapter 2

Lastline

This chapter contains an introduction to the enterprise where I spent my internship period, Lastline,
Inc.. Over the years, Lastline has developed a full ecosystem of components that are involved in
processing network data and produce outputs. A general understanding of the interactions among
the various elements is required to achieve a better comprehension on how the system I built works
and it is integrated inside the already established ecosystem.

2.1 The Company

Lastline, Inc. is an American cybersecurity company founded in 2011 by Engin Kirda, Christopher
Kruegel and Giovanni Vigna and based in Redwood City, California. Its first objective is to protect
enterprise’s networks from the increasing number of threats in the digital world, allowing them to
stop intrusions in advance and prevent possible dangerous data breaches.

Lastline, Inc safeguards every aspect of a company network and focuses on six main security
challenges [13]:

• Protect Public Cloud Workloads: secure both the internal and external public cloud
traffic in infrastructure-as-a-service (IaaS ) environments, like the well known Amazon Web
Services (AWS ).

• Accelerate Threat Response: quickly cut through the noise, understand the most urgent
threats and drive the correct response, avoiding to detect the intrusion when it is too late.

• Detect Lateral Movement: identify the anomalous behavior of the internal compromised
systems, as the attack spreads inside the network.

• Block Unauthorized Access: recognize unauthorized access from inside (for instance
because of an attacker using stolen credentials) or outside the customer network.

• Prevent Data Exfiltration: prevent leakages of confidential data.

• Secure Any Email System: additional layer of defense for cloud email as well as customer-
managed email systems. It protects users from advanced email security threats that are
engineered to defeat other security tools, such as spear-phishing, ransomware, credential
stealers, and other malicious emails.

Lastline, Inc. provides an innovative and unique solution to face all these hazards by using Arti-
ficial Intelligence (AI) as the main engine of the system. Artificial Intelligence describes the ability
of computer systems to simulate intelligent human behavior. This often includes capabilities such
as learning information from the processed data, taking decisions and being able to automatically
correct an erroneous behavior.
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The majority of the other existing solutions applies the AI to network (and user) behaviors only
in order to find anomalous patterns of behavior within the network traffic. However, by looking
solely at anomalies, one would incur the risk of being flooded by anomalous-yet-benign events (i.e.
false positives), which are commonplace in most networks. At the same time, one would be blind
to malicious events that do not generate any anomaly.

Reducing the number of false positives is a task of tremendous importance for this kind of
application, since the quantity of processed data is very large. Consider, for instance, a network in
which, every day, a server receives 1 million HTTP requests. A false positive rate of 0.1%, which
seems very low, would generate 10000 alerts per day, which would be likely not easily manageable
for most organizations.

Lastline, Inc. copes with this issue by training AI automatically, both on network traffic and
malicious behaviors. This unique combination enables deterministic detections and eliminates
most of false positives. In addition, unlike the competitors, the company performs deep inspection
on the analyzed traffic, extracting not only high-level information but events at several different
abstraction levels (from raw packets to network flows). This allows for richer input data and the
creation of more precise models.

2.2 The Lastline ecosystem

Lastline has built a scalable and distributed architecture that allows a Managed Security Services
Provider (MSSP) to deliver next-generation managed security services to protect its customers
against advanced threats.

An MSSP provides outsourced monitoring and management of security devices and systems [8].
The main network security services include firewall, intrusion detection and threat intelligence.

As illustrated in figure 2.1, Lastline’s products can be integrated in the tools offered by the
MSSPs. On top of Lastline technology, they can easily add further value for their customers, as
the platform allows MSSPs to add their own tools.

Lastline’s architecture for MSSPs is made of four modules:

• Sensor: inspects inbound and outbound traffic to protect the network from web threats and
malicious artifacts (binaries, documents, and email attachments) entering the customer’s
networks. It also forwards unknown objects and the alerts related to malicious connections
to the Manager for additional analysis.

• Engine: is the high-resolution sandbox based on full-system emulation. Engines receive the
artifacts from the Manager and analyze them, detecting advanced malware. The results of
the analysis are shown to the customers in the Manager’s dashboard.

• Data Node: analyzes network data to identify anomalous activity on the network.

• Manager: is the core component of the architecture that correlates all data coming from
Sensors, Data Nodes, and Engines. It configures the Sensors, it provides the alert dashboard
and reporting interface and it mediates the communication between the Sensors and the
Engines.

During my internship period I mainly worked on the Sensors and the Data Nodes (with the
LLAnta project). Therefore, the following two sections provide a more detailed description of these
components.
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Figure 2.1: MSSP Deployment Model

2.3 The Sensor

The sensor represents the front line of defense for all the Lastline’s products, upon which all the
detection mechanisms are built. It is the core component that inspects the network traffic entering
and exiting the customer network and performs all the operations needed to guarantee the security
of the monitored environment.

Essentially, a sensor is a little box running a modified version of the Ubuntu Xenial (16.06)
operating system that contains a number of proprietary components used to perform the analysis
on the network traffic and to communicate with the upstream Manager.

A sensor can be deployed in various operating modes to accomplish different degrees of protec-
tion. A more detailed description of these configurations and the related components interactions
is provided below.

2.3.1 Simple Sniffing

The sensor architecture in this configuration is shown in figure 2.2. The data are extracted out of
the network card by two sniffing components:

• llpsv: it performs fast and lightweight processing on packets. Mainly it matches Lastline’s
blacklist for hosts and IP addresses, it parses DNS traffic and generates netflow logs.

• suricata: extension with proprietary patches of the open source version of Suricata, a well-
known intrusion detection system (IDS). It performs full deep packet inspection, applies
Lastline’s network signatures, extract files and extracts various types of application layer
protocol logs (such as HTTP, Kerberos and SMB).

Even though it may seem redundant to have two different sniffing components, llpsv and suricata
perform completely different jobs. As delineated by figure 2.2, the output of llpsv reaches directly
the llshed component, while the output of suricata follows a more complex path.

The main goal of llshed is to ensure that all the inputs it receives from the other sensor
components are successfully uploaded to the backend (i.e. the Manager). In case of a temporary
communication failure, llshed will continue to retry the upload of the information until it succeeds.
This safeguards customers from data loss even in case of temporary connection issues with the
Manager.
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Figure 2.2: The Sensor components in simple sniffing mode.

Moreover, llshed is in charge of enforcing several types of filtering policies and aggregation for
the data generated by the sensor, in order to avoid to upload to the backend too much information.
This is accomplished by bucketing the information and giving priority to interactions with rarely
contacted endpoints or endpoints with unknown or low reputation.

For instance, connections to domains such as facebook.com or twitter.com are quite common
and likely to be benign. Therefore, if the sensor captures many connection to these domains and
maybe one connection only to another unusual domain, it will give priority to the latter. As a
result, even if not all the information is provided to the manager, it is unlikely to miss relevant
(i.e. malicious) traffic.

As mentioned above, llpsv produces artifacts ready to be sent to the Manager, while the output
of the suricata component needs to be processed by another set of workers, that constitute the so
called suricata-eve element. There are currently five workers in charge of different jobs:

• alerts: IDS alerts generated by suricata are first converted into the format used by Lastline
and then sent to llshed for upload.

• fileinfo: any file extracted from the traffic requires additional analysis before it can be
uploaded. There are currently three different cases:

– Emails: email data are processed by the llmail component.

– Interesting files: interesting file observed over the HTTP/FTP and SMB2 protocols
are collected. A given file is considered relevant if it matches a set of custom rules defined
by the company. These files are submitted to the llfd service, that applies a pre-filter
to decide whether the file should be uploaded to the Manager for further inspection.

– Suspicious HTML and JavaScript: a special collection of rules is used to flag HTML
or JavaScript code that is likely to contain malicious content. The collected data are
sent to the lljsd daemon, that applies heuristics on each extracted document. If it is
considered suspicious, its entire content will be uploaded to the backend.
This worker mainly addresses malicious web pages containing drive-by downloads at-
tacks.

• flow-snip: Lastline’s proprietary version of Suricata is able to build a small pcap containing
packets of the flow that produced a specific IDS alert. These files are then sent to llshed for
upload to the backend.
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• http: suricata generates a log for every HTTP message sent to or from the customer network.
These logs are both uploaded to the Manager and submitted to the lltic component. lltic is
the Lastline’s threat intelligence cache used for local detection. If any of the URLs seen in
the logs is considered malicious, lltic has the capability of generating an alert.

• stats: Suricata collects detailed statistics on the operation of its different components on a
regular basis. These stats are uploaded to the Manager.

2.3.2 ICAP

ICAP (Internet Content Adaptation Protocol) is a lightweight protocol designed to off-load specific
content to dedicated servers, thus freeing up resources and standardizing the way in which features
are implemented. It was born from the need to ease the number of value-added services the web
servers have to provide and to reduce the overhead in providing these services to the customers.

ICAP is mainly used as a vector for HTTP services, although the communication that it can
handle is not restricted just to this protocol. An ICAP client has two basic operations modes:

• Request modification (REQMOD): in this configuration, the ICAP client will relay to
the ICAP server all the incoming HTTP requests before relaying them to the actual origin
server. The ICAP server can inspect the content of the HTTP request and it can even make
some modifications.
This mode is used to provide cached content, to redirect an unauthorized/restricted request
to another page (content filtering) or to prevent clients from exfiltrating data towards low
reputation domains.

• Response modification (RESPMOD): in this scenario, the ICAP client will share with the
ICAP server the HTTP response generated by the origin server before delivering it back to
the client. In this way the ICAP server has the capability to see the server response and,
for instance, it can perform on-the-fly virus checks and block the clients from downloading
malicious documents.

The basic concepts of the protocol are illustrated in figure 2.3.

Figure 2.3: ICAP basic concepts.
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Commonly, there is an ICAP server for each dedicated function (virus scanning, content filter-
ing...), in order to provide a proper standardization.

The Lastline appliances can handle both REQMOD and RESPMOD requests at the same time,
offering the maximum level of protection and, if the client implements it, they support the use
of the ICAP Preview functionality. In this scenario, rather than sending to the ICAP server the
entire HTTP transaction, a client can start by delivering the beginning of such transaction and let
the ICAP server itself decide whether the transaction should be skipped or fully delivered. The
Lastline ICAP implementation has the capability to derive from the preview content the file type
of the document being served, and therefore determine whether it is potentially malicious.

Nowadays, ICAP is used to extend transparent proxy servers. A proxy is a server that sits
between a client and a content provider (i.e. a web server). As with the ICAP protocol, when
a client sends a web request to a certain server, the proxy intercepts the request and performs
some processing before forwarding it to the server. The term transparent is used to distinguish a
transparent proxy from an ordinary one. Contrary to traditional proxies, it is invisible to user (i.e.
it does not require any client side configuration) and it is not allowed to modify the request sent
by the client. Transparent proxies have three main applications:

• Proxy caches: store the content requested by the client. Therefore, if a client requests the
same content, the proxy is able to provide it itself, reducing the load on the web server. This
also allows to save bandwidth and reduce loading times. In order to avoid consuming too
much space, the cache entry related to a certain content usually expires if no client requests
the same content in a given amount of time.

• Filtering proxies: prevent access to certain websites or web services. This is usually done
by companies to restrict the services their employees can access to. It is also used to monitor
users activity.

• Authenticate users: this is frequently implemented by companies offering a public WiFi
to let the users use Internet after they agree to their terms and conditions.

Lastline’s sensors can be configured to operate as ICAP servers to provide additional security to
their customers. However, if the customers use the HTTPS protocol instead of HTTP to perform
their web requests, all the traffic is encrypted and ICAP becomes useless.

This is why, on top of the ICAP configuration, a sensor can work as an explicit proxy. In such
a case, the sensor is able to perform TLS decapsulation on the HTTPS traffic(i.e. it is able to
decrypt the proxied traffic and process the content in clear text).

The diagram in figure 2.4 represents the information flow of an explicit proxy sensor. Beside
the detection capabilities provided in Simple Sniffing mode, it is possible to generate the following
events:

• events on blacklist hits: whenever the user attempts to visit a low reputation domain,
ICAP will prevent access. The reputation information is obtained by ICAP by making
requests to the lltic service (described above) on each visited URL.

• events on malicious file downloads: whenever a file is detected by ICAP, it is shared
with the llfd service for analysis. ICAP then periodically checks for the analysis progress
until a score for the file has been determined by llfd.

• events on suricata IDS detections: if Suricata detects something anomalous, an entry
related to the suspicious content will be added to the lltic cache and blocked by ICAP as if it
was a blacklist event. This scenario becomes possible only if the sensor works as an explicit
proxy. In fact, in this situation, Suricata is able to monitor the unencrypted traffic flowing
across the sensor.

8
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Figure 2.4: The Sensor components in Explicit proxy/ICAP mode.

To sum up, the complete sensor data and process flow are shown in diagram 2.5.
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Figure 2.5: The Sensor data and process flow.

2.4 LLAnta

LLAnta (LastLine Advanced Network Traffic Analysis) is a network traffic analysis system that
runs inside the Data Nodes and communicates with the Manager. It receives inputs from multiple
sources, such as Lastline’s sensors, other network firewalls or the monitored hosts themselves, and
processes them to create models (statistical profiles of hosts inside the network).

LLAnta analyzes the data it receives using a combination of machine learning, statistical anal-
ysis and content analysis. It is able to automatically detect anomalous activity in a monitored
network and supports hunting for suspicious activity.

Currently, three kinds of inputs are managed:

• Netflow: netflow data.

• PDNS: DNS data.

• URL: rich information on each observed URL.

After the elaboration of the input information, LLAnta can produce two different outputs:

• Facts: properties associated to hosts inside a monitored network. An example of a fact is
the operating system running on a host, or the host role inside the network (such as name
server or email server).

• Alerts: caused by anomalies identified analyzing facts, possibly with respect to the models.
An example of alert is represented by anomalous traffic types (for instance a nameserver that
suddenly generates HTTP traffic).

10
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These outputs are sent to the Manager for further processing and are shown to the customers
in the UI (User Interface).

2.4.1 Architecture

The general architecture is shown in figure 2.6.

The LLAnta service communicates with the external environment (i.e. the Manager) thanks
to the llupload worker. This takes care of fetching the data from the Manager and storing them
in the appropriate queue, one for each supported input. For each queue there is a corresponding
processor element (NetflowProcessor, URLProcessor and PassiveDNSProcessor) that is in charge
of retrieving the input from its queue and sending it to the service.

The LLAnta service and the worker exchange information using a bidirectional protocol (request-
response protocol). For every request, the client should always expect a response, that can poten-
tially be empty.

There are four possible types of request the llupload worker can send to the LLAnta service:

• ProcessRequest: used to submit new data to the service. The data type (netflow, URL,
PDNS) defines how the data field should be processed.
The response to this request is empty.

• FlushRequest: the flush operation is a periodic operation that triggers the collection of the
facts and alerts produced by the service. The output data are sent to the llupload worker,
where the FlushProcessor component stores them in a queue. These data will then be sent
to the Manager for further processing.

• ConfigureRequest: used to configure the service with specific settings.
The response to this request is empty.

• QueryStatusRequest: query the service and retrieve status information.

The llanta services manages multiple instances of LLAnta using a master-slave model. The
master (Muxer master) is in charge of routing the requests received by the llupload worker to
the various slaves (Muxer slaves). Each slave runs in a separate process and can handle multiple
LLAnta instances thanks to the BasicMuxer component.

An example of possible workflow is the following:

1. A collection of LLAnta inputs, for instance coming from a never-seen-before sensor, is received
by the LLAnta service, encapsulated in a ProcessRequest message.

2. The request is handled by the Muxer master and there are three possible outcomes:

• If a new slave can be allocated (i.e. the maximum number of possible running slaves
has not been reached yet), a new process is spawned.

• If it is impossible to create a new slave, the less-loaded one is chosen.

• If all the slaves are fully loaded, an error message is logged and the message is discarded

3. On the slave, a new LLAnta instance is instantiated and the processing starts.

4. Each following ProcessRequest with inputs from the same sensor will be routed to the same
slave, which will process the inputs in the same LLAnta instance.

2.4.2 LLAnta instance

A LLAnta instance processes all the received inputs (netflows, URLs, PDNS) and returns LLAnta
Facts and Alerts. It is made of four main components: Network State, Plugins, Detectors and
Context. The overall structure is shown in figure 2.7.

11
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Figure 2.6: LLAnta architecture.

Figure 2.7: LLAnta instance.

Network State

The Network State is a model of the monitored network and it is comprises three elements: the
Network Graph, the Managed Networks and the DNS Cache.

The first one is a directed graph modeling all the network interactions observed in the network.
Each node of the composed graph is an IP address and an edge between two nodes exists if there
has been a connection between the two IP addresses. The direction of the edge is determined
according to the source and destination of the connection.

12
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The data flows represented by the edges are enriched with a variety of metadata merging
information obtained from different data sources. For instance, a web request between two hosts
will create a data flow between the two endpoints and include high level HTTP information about
the request. Moreover each entry in the graph has an expiration timeout. When a new node or
edge is created, it is assigned with the timestamp of the input source that generated that entry.
The timestamp is updated each time a new input is received with the same data. The network
periodically checks its entries and delete every element whose timestamp is too old (according to
a configuration parameter).

With the Managed Networks, instead, LLAnta tries to define the boundaries of the customer
network based on the analysed traffic. A Managed Network consists of a set of IP addressed that
belongs to the same CIDR (Classless Inter-Domain Routing). A customer network can have mul-
tiple networks configured, with separated IP ranges over different CIDR blocks. This abstraction
is extremely important to LLAnta to be able to apply its logic. It is in fact needed to distinguish
between hosts internal and external to the customer network and to properly correlate the event
seen in the traffic.

Context

The LLAnta context is the main way to exchange unstructured information between plugins and
detectors. It can store anything that a plugin/detector wish to store, in opposition to the Network
State, that can only contain specific information (for instance the DNS cache only holds associations
between an IP address and the corresponding domain name).

The context consists of a key-value structure which is periodically serialized on disk for re-
siliency. This is useful for two main reasons:

• In case of failure of a LLAnta instance, its state can be restored from the disk and the loss
of data is minimized.

• The context state can be populated offline, for instance with data collected in the past, and
then it can be used to test the behaviour of plugins and detectors.

Like in the Network State for the Network Graph, an entry in the context is deleted after a
certain amount of time has elapsed without the information being refreshed.

Plugin

Plugins are components that operate simple and fast actions on every single input entering the
LLAnta instance (netflows, URLs, PDNS). In order to receive an input of a certain type, a plugin
must register itself as processor of that input family.

A plugin performs two main jobs:

• Generate Facts about a host: plugins can output Facts learned from the inputs.

• Populate the state for the detectors: a plugin can be considered as a an aggregation stage for
the data that will be analyzed by a detector. It can store information in the Network State
and in the Context. When a detector is scheduled, it can access all these data and get all
the information needed to be able to decide if it is needed to generate an alert or not.

LLAnta counts more than twenty different plugins, each one designed for a specific purpose,
such as port scan and DNS tunnelling detections.
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Detector

Detectors are modules that work in cooperation with the plugins. Similarly to the plugins, detectors
need to register themselves to the input family they want to process, but they can perform heavier
computation, because they are not scheduled any time a new input is received. Moreover, while
the plugins can only generate Facts, detectors are in charge of generating anomaly alerts.

A LLAnta Alert is generated for a specific host when the logic of the detector matches with
data read from the Network State and/or the Context.

2.4.3 LLAnta Manager

Each LLAnta instance is has a LLAnta Manager component, that controls the scheduling of plugins
and detectors. Respectively, Plugins are handled by a PluginManager, while a DetectorManager
takes care of the detectors.

In general, while plugins are scheduled at every ProcessRequest message sent by the llupload
worker, the DetectorManager, in presence of a ProcessRequest request, runs a detector only if:

1. The detector is not already scheduled for the given host.

2. The TRIGGER TYPE of the detector corresponds to the type of the item to process.

3. The trigger check of the detector is satisfied for that item (i.e. the not only the input data
is correct, but there are also enough data to actually perform the required computation).

4. An amount of time defined by the SCHEDULE DELAY parameter has elapsed since the
detector was scheduled. This is often needed because, if a detector is run too often, it may
not acquire enough information to actually generate the alerts.

The (high level) class diagram in 2.8 shows the architecture of the classes, and 2.9 summarizes
the detector scheduling workflow.

2.4.4 LLAnta batch processing

All the mechanism described above happens in streaming, i.e. the inputs are processed as soon as
they are received and the results are given straightaway.

LLAnta supports another working mode, the batch (or offline) processing workflow. In this
scenario, batch jobs can load the Network State and the Context of a specific LLAnta instance
from stable storage, they can perform the required analysis and output both Facts and Alerts
(along with the ones produced by plugins and detectors).

This operation mode results particularly useful for jobs that do not need real time data and/or
are computationally heavy to run (therefore they can affect the performance of the whole instance).
Moreover, it can be used to test offline a certain algorithm before deploying it to work in real time
inside plugins or detectors.

LLAnta jobs run periodically on Data nodes, with a scheduling granularity that can be cus-
tomized for the single job. In this way different batch jobs can be scheduled to run periodically
with different intervals.
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Figure 2.8: High Level class diagram of a LLAnta instance.
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Figure 2.9: Flow chart of the detector scheduling process.
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Chapter 3

State Of The Arts

In this chapter I provide an introduction to the basic knowledge that will allow even a non-expert
reader to understand the development of this master thesis. This includes a brief description of
the network protocol on which my job focuses, the HTTP protocol.

It follows an analysis of the work done in literature, with a particular attention to one solution
from which I took inspiration, elaborating and improving the idea it as much as possible.

3.1 The HTTP Protocol

HTTP (Hypertext Transfer Protocol) is an application layer protocol which runs over the TCP
transport layer protocol. The first version was designed in the early 1990s and it has evolved over
time. Nowadays it exists also a secure version of this protocol (HTTPS) that is sent over a TLS
encrypted connection.

HTTP is used to exchange resources all over the World Wide Web. The most common type
of resource is a file, but it can be anything that it is identified by an URL (Uniform Resource
Locator).

An URL, commonly called web address, is a sequence of five hierarchical components (as shown
in figure 3.1):

1. A scheme ( ”http” for the HTTP protocol) followed by ”:”.

2. An optional authority, made of three subcomponents:

• An optional user info which provides the username and the password of the user
(deprecated for security reasons).

• An host, which can be an hostname or an IP address.

• An optional port number.

3. A slash-separated path defining the resource to retrieve.

4. An optional query used to send parameters to the server.

5. An optional fragment that provides direction to a secondary resource, such as a section
heading in an article identified by the rest of the URL.

HTTP is a client-server protocol. An entity, the user-agent, sends an HTTP request message
to the server, asking for a resource. The server handles the request and provides an answer sending
an HTTP response. The user-agent can be any tool that acts on behalf of the user, but most of
the times is a regular web browser. This process is represented in figure 3.2.
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Figure 3.1: Example of an URL including all the optional components.

Figure 3.2: The HTTP request/response pattern.

HTTP is a stateless protocol, which means that each HTTP requests is self-contained and
independent from any other request a client sent before. However, this can be problematic for
web servers that want to answer coherently to several inputs from the same client. Thus, this
shortcoming has been addressed by taking advantage of the HTTP extensibility and introducing
HTTP cookies. An HTTP cookie (also called web cookie or browser cookie) is a small piece of
data that a server sends to the user’s web browser. The browser may store it and send it back with
the next request to the same server. It remembers stateful information for the stateless HTTP
protocol and it is typically used to create the concept of session between a client and a server.

HTTP is generally designed to be simple and human readable. The request and response
messages have a well defined structure and they can be read and understood by humans, which is
very helpful for debugging purposes.

An HTTP request message is composed by:

• A request line. This contains the HTTP method that defines the operation the client wants
to perform, the path of the resource addressed by the request and the version of the HTTP
protocol in use. Most of the times a client wants to retrieve a resource (using the GET
method) or send values to the web server, such as a form (using the POST method).

• Optional HTTP headers used to provide the web server with additional information.

• An empty line.

• An optional message body, used by some methods (such as the POST method) to send data
to the web server.

Accordingly an HTTP response message consists of:

• a status line including the version of the HTTP protocol in use, the status code and the
status message, that indicate the outcome of the corresponding request. For instance, for a
successful HTTP request the status code is 200 and the status message is ”OK”.

• HTTP response headers like for the HTTP request.
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• An empty line.

• An optional message body containing the fetched resource.

This is a very short overview of the HTTP protocol that enables a non-expert reader to un-
derstand the basics of how resources are exchanged over the web. HTTP deals with many other
aspects such as access control, authentication and caching, but these topics are not addressed here
and they are left to the readers to be explored.

3.2 Literature Review

Web-based vulnerabilities have been of great interest in the academic world over the last years.
Attacks against web servers are one of the most serious security threats to modern computer
systems and this trend does not seem to be likely to change soon. Therefore, many researchers
have coped with this problem and they came out with several different solutions, each of them
with both drawbacks and advantages.

One very popular approach is to develop a misuse detection system. This usually comes in the
form of custom signatures to detect signs of web-based attacks. However, writing signatures is a
very time consuming and error-prone process that entails some major disadvantages. First of all,
they require a profound knowledge of all the possible hazards. Moreover, the signature database
needs to be constantly updated to keep up with the increasing number of new vulnerabilities being
discovered. Finally, the main problem of this kind of solution is that they can only detect known
attacks, but they are completely harmless against the so called zero-day exploits. These are attacks
that leverage on yet unknown vulnerabilities, therefore no signature can be written for them.

Another possible solution, instead, is to build an anomaly detection system. The goal is to
try to profile the behavior of the web server to protect and report as anomalous every transaction
that deviates significantly from the established profile. In this way, the detection capabilities are
tailored for each web server and they do not rely on any known pattern. However, this approach is
possible only under the assumption that the attack pattern is different from the normal behavior.

My work is related to this second method and, in particular, it takes inspiration mainly from
the ideas presented by Christopher Kruegel, Giovanni Vigna, William Robertson in [1] and Tammo
Krueger, Christian Gehl, Konrad Rieck, Pavel Laskov in [2]. In the following sections I will describe
more in details these two papers, focusing on the challenges that need to be faced to improve what
has been done.

3.2.1 A multi model-approach to the detection of web-based attack

Kruegel and al. propose an anomaly detection system following a learning-based approach. Their
analysis is targeted to the identification of attacks in the parameters contained in the query string
of an HTTP request. To achieve this goal, they rely on a training data set to build profiles of the
normal, benign behavior of users and applications [1].

The detection process makes use of several different models that are applied to the query at
various levels of granularity (some are related to a single query attribute, while other can take into
account the whole query or even multiple queries at once). A model is a set of procedures used to
evaluate a certain feature of a query [1]. By making use of multiple models at the same time, it is
possible to increase the accuracy of the overall system and reduce the false positives.

The models are created for each specific program run by the web server, identified by the re-
source path in the HTTP request. This means that both the modeling and the detection mechanism
are performed separately for each resource path provided by the web server.

Each model assigns an anomaly score to its related feature (either a single query’s attribute
of a whole query). This score represents the likelihood that a certain feature value occurs in the
HTTP requests sent towards a given web server. The idea is that, if a given feature value has a
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very low probability (i.e. an high anomaly score), there is a big enough confidence that the value
under analysis is not benign. In other words, the goal of this system is to detect the outliers in the
HTTP traffic, based on the assumption that benign requests have common feature values, while
an attacker will probably send really rare content.

The system is organized in three stages:

1. First each model operates in training mode. During this initial training phase, the models
profile the traffic they receive and learn which is the usual user behavior.

2. Then each model goes through a validation phase. After having gained enough information
to determine the characteristics of normal events, the models are matched against a second
set of HTTP requests. For each feature, they compute and store the highest anomaly score.
Then they set up the threshold as a certain percentage higher than the computed maximum
score.

3. After the validation phase, the models start operating in testing mode. Each model analyzes
the HTTP traffic, computes the corresponding anomaly scores and, if a feature value has a
score higher than the defined threshold, the query is reported as anomalous. Every model
has the same weight regardless of the granularity level at which it operates, therefore it is
sufficient that one model only reports an anomaly to flag the whole request a malicious.

However, a strong assumption is required in order for the system to operate as intended. The whole
process requires that both the sets of HTTP requests analyzed during the training phase and the
validation phase (respectively the training and the validation set) are clean from any attack.

This is impractical in real world environments for several reasons. First, it is very uncommon
that regular HTTP traffic towards a publicly exposed web server is all benign because Internet is a
public network and there is plenty of malicious sources. For instance, it is true that the anomalous
data is often generated by an actual attack but it can originate also from more benign tools. In
fact, there are many vulnerability scanners on the Internet that send inputs particularly crafted to
resemble an attack for either research or testing purposes. However, this kind of input cannot be
considered a real intrusion because there is no intention in exploiting a potential discovered flaw.

As a consequence, in order to build and validate the models, the system needs to collect in
advance sample data of the HTTP traffic targeting the web server to protect and remove the
anomalous feature values. This pre-processing phase adds a level of complexity to the whole
system and has to be done manually by a system administrator.

Moreover this approach implies that training and validation are done offline, with data collected
in the past, that can soon became obsolete. Therefore, It is likely that the models need to be
periodically re-trained because the average user behavior can change over time and, if the same
models are kept for too long, it is possible that they would start flagging as anomalous feature
values that instead are perfectly normal. This would require to run the pre-processing phase every
time the models need to be re-trained and validated, which can be very expensive.

Kruegel and al. evaluated the performance of the system using three different sample data sets
(a web server located at Google, Inc, one at the University of California in Santa Barbara and on
at the Technical University in Vienna). The main goal is to be able to detect the anomalies while
keeping as low as possible the false positives. In their experiments, they were able to reach a false
positive rate between 0.01% and 0.07%.

At first, these percentages can seem very low (hence good), but it is extremely important to
take into account the full traffic load targeting a given web server. For instance, concerning the
Google web server, the false positive rate after the analysis of a day of HTTP requests (490.704
queries) was 0.04%. As a consequence there were nearly five thousands (4944) alarms that in fact
were not anomalies. For some organizations, five thousands false alerts per day can be impossible
to handle.

In the following sections, the models implemented in [1] are described in details. Part of them
has been implemented also in the system I developed, with some major differences, needed to
overcome the limitations encountered analyzing real world HTTP traffic.
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Attribute Length Model

The length of a query attribute can be used to detect signs of infections, especially if a certain
attribute accepts only fixed-length values. The goal of this model is to approximate the actual
but unknown distribution of the parameter lengths and detect instances that significantly deviate
from the observed normal behavior [1].

To achieve this objective, the model computes the mean µ and the variance σ2 of the attribute
lengths of all the values observed during the training phase for a given attribute. The creation
of the model has a very low cost, proportional to the number of queries processed in the training
phase.

The model computes the anomaly score for a certain value making use of the Chebyshev’s
inequality. This is a measure of distance that guarantees that there exists very few elements of a
distribution for which the difference between their value and the mean exceeds a certain threshold.
More in details, the probability p that the difference between a random variable x and the mean
µ exceeds the threshold t is less than the ratio between the variance σ2 and the square of the
threshold, as illustrated by the formula:

p(|x− µ| > t) <
σ2

t2
(3.1)

When the length l of a value is very far from the mean, the probability p of a legitimate sample
having a length greater than l should be very small. Therefore, the authors of the paper defined
the threshold t as the difference between the length l of the attribute value and the mean µ. Thus,
the previous formula becomes:

p(|x− µ| > |l − µ|) < σ2

(l − µ)2
(3.2)

The Chebyshev’s inequality presents several advantages:

• First of all it can be applied to any probability distribution in which the mean and variance
are defined, so it is suitable for almost any kind of data.

• It is different from most of the techniques that try to identify a range of acceptable lengths,
because this method takes into account the variance of the distribution observed during the
training phase and it returns a probability value (not only a boolean anomalous/benign).

• It is quite efficient because it requires only to compute the length of the input and to perform
a simple computation.

• It computes a very loose upper bound meaning that it has an high degree of tolerance. In
many situations this can be inadmissible but, since the distributions of the attribute values
usually have a large variance, in this case it can be useful to report only the significant
anomalies.

. This model can be particularly efficient in identifying those attacks that require a big payload,
such as Buffer Overflows or Cross-Site Scripting attacks.

Attribute Character Distribution Model

This model profiles the character distribution of a regular attribute. Often, attribute values have
a constant structure and the used characters are taken from a small subset of the 256 possible
values. For instance, it is quite common that attribute values contain mostly letters and few
special characters. Therefore, legitimate inputs usually have a character distribution that follows
a specific pattern.
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To identify this pattern, the model computes the relative character frequency sorted in descend-
ing order for each attribute value seen during the training phase. Thus, for each value the model
stores an array with 256 entries, one for each possible byte (that in most situations corresponds to
a character). By sorting in descending order, the relationship between the individual character and
its relative frequency is lost (i.e. it is impossible to know the number of occurrences of a certain
character). The authors observed that, for legitimate values, the obtained distributions decrease
slowly, without any character having a predominant frequency.

At the end of the training phase, the model derives the Idealized Character Distribution (ICD)
for a particular attribute by computing the average of all the collected characters distributions.
Then it starts computing the anomaly scores for validation and testing phase.

This model makes use of a statistical test to assess if a given value is malicious or benign (i.e. if
it belongs to the observed ICD or not), the variant of the Pearson’s χ2-test for the goodness of fit.
The Pearson’s χ2-test is a widely used statistical procedure and, in particular, the variant for the
goodness of fit establishes whether an observed frequency distribution differs from a theoretical
distribution. This statistical measure tests the validity of the null hypothesis, stating if the fre-
quency distribution of certain events observed in a sample is consistent with a particular theoretical
distribution.. It applies to categorical data only and it requires that every level of the categorical
variable in analysis has a minimum number of occurrences (in literature the recommended value
is at least 5).

The test involves the following steps:

1. Find the degrees of freedom df. This parameter identifies the number of independent variables
and it is equal to the number of levels (k) of the categorical variable minus 1:

df = k − 1 (3.3)

2. Compute the expected frequencies (E ). For each level of the categorical variable, the expected
frequency is computed as the sample size times the related proportion from the theoretical
distribution.

Ei = l ∗ ni (3.4)

Where Ei is the expected frequency of the categorical data at level i, l is the length of the
sample value and ni is the proportion from the theoretical distribution.

3. Compute the χ2 value. This is the normalized sum of squared deviations between the observed
frequencies O and the expected frequencies E :

χ2 =

i<kX
i=0

(Oi − Ei)

Ei
(3.5)

Where Oi is the observed frequency of the categorical variable at level i.

4. Derive the probability value p, representing the probability to observe a distribution as
extreme as the one with the computed χ2 value. This value is taken from the χ2 distribution
using χ2 and df and looking up in a pre-defined table. The higher p the higher the confidence
that the value under analysis is taken from the expected distribution.

Since the χ2-test can be applied to categorical data only, the authors divide the function domain
of a character distribution into six intervals. The choice of the bins is arbitrary and the values
were aggregated as follows:

1. [0]

2. [1, 3]

3. [4, 6]
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4. [7, 11]

5. [12, 15]

6. [16, 255]

Even though this choice is completely subjective, it takes into account the fact that lower indices in
the ICD contains an higher number of occurrences, because the character distributions are sorted
in descending order.

When the input value is provided to the model, it first computes its absolute character frequency
(sorted in descending order). Then, the observed frequencies O are obtained by aggregating the
elements according to the scheme defined above. The expected frequencies E, instead, are computed
by multiplying each bin of the ICD times the length of the attribute value under analysis. After
this step, the χ2-value can be measured. In this scenario, the degrees of freedom df are five
(the number of bins minus one). At this point, the model has all the information to retrieve the
probability value p, that represents the anomaly score of the attribute value.

Like the Attribute Length Model, this model is not expensive to build and apply, as it only
requires to compute the character frequency of the input value and the χ2-test. The cost is linear
in the length of the input value for the the first operation and constant for the second.

This model is mainly intended for attacks that send binary data (such as Buffer Overflows) or
that repeat the same character many times (such as in Directory Traversal exploits). Since most
of the attribute values are made of printable characters, it is likely that the character distributions
in presence of these kind of attacks differs broadly from the ones of regular attribute values.

However, one major drawback of this technique is that the χ2-test is very unreliable when the
bins have low values. In real world scenarios, it is not uncommon that some bins have zero or very
low values, especially for attributes that have short length, and this was one of the challenges I
faced when developing my system.

Structural Inference Model

This is a very specific model of a query attribute that profiles values in order to build the regular
grammar of legitimate inputs. The grammar should be able to generate at least all the values
present in the training set, but it can also be generalised to produce arbitrary strings.

The approached followed by the authors is to generalize the grammar as long as it seems to be
”reasonable” and stop before too much structural information is lost. The notion of ”reasonable
generalization” is specified with the help of Markov models and Bayesian probability [1].

The cost of building this model without any optimization is very high, O(n ∗ l)3, with n the
number of values analyzed during the training phase and l their maximum value. Such a complexity
makes this model impossible to use as is. Therefore, the authors applied a number of different
optimizations (such as the Viterbi path approximation) reducing the complexity to O(n ∗ l2). This
is much more affordable for moderate values of l, even though still expensive.

The Structural Inference is a very effective model that is particularly thought to target those
scenarios in which the Attribute Length and the Attribute Character Distribution models cannot
detect the maliciousness. In fact, a powerful attacker can be able to hide his attack inside attribute
values that looks perfectly normal concerning the length and the byte distribution. However, by
knowing the structure of the attribute legitimate values, even a well-crafted attack can be spotted.

The major drawback of this technique is the high building cost, even with all the optimizations,
that can become prohibitive if l is too large. This is the reason why this model is hard to use in
scenarios where the traffic load can be huge and it is critical to be very responsive.
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Token Finder Model

The goal of this model is to assess if a query attribute accepts only a finite number of values (i.e.
the attribute belongs to an enumeration). It is not uncommon that certain attributes can assume
only few possible values (for instance a boolean flag can only be true or false).

Therefore, the Token Finder is used to detect attacks that send an unexpected attribute value.
Of course, if for a certain attribute an enumeration cannot be established, no alert is raised by this
model.

The classification of an attribute as enumeration or random is based on the assumption that
the number of possible values is bound by a threshold t. During the training phase, if the number
of a feature values grows proportionally with the number of occurrences of the feature, then it is
likely that the attribute is not an enumeration. More formally, the model computes the Pearson
Correlation Coefficient ρ between the functions f and g of the occurrences of a certain attribute a.

The Pearson Correlation Coefficient is a measure of the linear correlation between two variables
(in this case the functions f and g). It can assume values between -1 and +1, where:

• A correlation of -1 indicates that the two variables are perfectly negatively correlated. If one
increases in value, the other decreases proportionally.

• A correlation of 0 indicates that the two variable are not correlated together.

• A correlation of 1 indicates that the two variables are perfectly correlated. They both increase
and decrease with the same proportion.

The Pearson Correlation Coefficient and the functions f and g are defined by the formulas:

f(x) = x (3.6)

g(x) =


g(x− 1) + 1 if the xth value for a is new

g(x− 1) + 1 if the xth value for a is new

0 if x = 0

(3.7)

ρ =
Cov(f, g)

σf ∗ σg
(3.8)

Where Cov(f, g) is the covariance between f and g, and σf , σg are the corresponding standard
deviations.

The functions f and g are computed during the training phase. The first one reflects the
increasing number of analyzed parameters (it is just a counter of the occurrences). The second
one, instead, increases if a value has not been seen before and decreases otherwise. Thus, if the
same value recurs many times, g decreases.

At the end of the training phase, ρ is computed. If it less than 0, an enumeration is assumed
because the observed trend is that as more attribute values are processed, few new values are
registered. Otherwise, if ρ is grater than 0, this means that there is an high variability in the
values assumed by the attribute under analysis.

If the attribute is considered as an enumeration, the set of all the observed values is stored to
be used during the detection phase. The detection simply consists in checking if the input value
belongs to the enumeration (if the attribute is not classified as random). If it does not, an alert is
reported.

The cost of building this model is low, because it only requires to compute the Pearson Corre-
lation Coefficient and it depends on the number of queries in the training set. The detection is a
simple table lookup.
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Attribute Presence/Absence Model

While the previous models were specific for a single query attribute, this one (and the following)
profiles the behavior of the whole query, taking into account multiple attributes at once.

Usually, web server are not accessed directly by the user, i.e. an user does not write the URL
in the browser himself, but it is a client-side program or script that does the job on his behalf. For
example, when an user submits a form, the information are automatically sent to the web server
in a predefined way. This results in a high regularity of the traffic, meaning that for a certain web
resource the number of parameters and their order is practically standard. On the contrary, an
attacker usually crafts by hand the URL to send to the web server and does not pay attention to
the order or the completeness of the parameters.

Therefore, the purpose of this model is to learn which are the legitimate parameter for a certain
web resource. If a required attribute is missing or if two mutually exclusive parameters are present
it can be a sign of attack.

During the training phase, the model simply records each group of parameters present in a
certain web request. Then, in detection phase, it checks if the set of parameters for the input
query has been seen in the training phase. If it does not, an alert is reported. Notice that there is
not a validation phase in this case.

Building this model is very efficient because it only requires to store a set of value for each
processed input. In the same way, the detection cost it is low, as it requires only one table lookup.

The Attribute Presence/Absence targets those situations where an attacker probes a web-server
by sending incomplete or malformed requests. However, there might be some false positive, because
it is not always feasible to learn during the training phase all the possible sets of parameters suitable
for a query. Moreover, there are web-servers built in such a way that a query can contain one or
more parameters randomly generated. In these cases, it is impossible to check if a parameter is
required or not because it constantly changes and this would always lead to false alarms.

Attribute Order Model

This model is strictly related to the previous one. Its goal is to profile the parameters order for
a certain query, under the assumption that server side programs are invoked following a standard
format.

An attribute ai of a program (i.e. a web server resource path) precedes another attribute aj
when ai and aj appear together in the parameter list of at least one query and ai comes before aj
in the ordered list of attributes of all queries where they appear together [1]. Therefore, the order
constraints is defined as a set of attribute pairs O :

O = (ai, aj) : ai precedes aj and ai, aj ∈ (Sqj : ∀j = 1, ..., n) (3.9)

where Sqj is the set of attribute of query qj and n is the corresponding number of queries.

During the training phase, the set O is built in two steps:

1. First the graph G is created for a certain program. For each distinct attribute ai, G has
a corresponding vertex vi. For every processed query, the model collects the ordered list of
attributes (a1, ... ,ai). Then, for each attribute pair in the list (ai, aj , with i /=j ), a directed
edge vi → vj is inserted in the graph.

2. At the end of the first step, G contains all the order constraints defined by the queries in the
training set. A constraint between two attributes (ai, aj) is represented by either a direct
edge between the corresponding vertices (vi, vj), either by a path that links together the two
vertices.
However the graph built in this way can contain cycles due to different order constraints
derived from different queries, therefore another step is required to compute O. In fact, the
presence of a cycle would make impossible to check whether a test query satisfies the order
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dependencies or not because it would cause an infinite loop between the vertices of the graph.
The solution to this problem is obtained applying to the graph G the Tarjan’s algorithm, a
linear-time complexity technique used to find the Strongly Directed Components (SCC) of
a direct graph. A strongly connected component of a directed graph is a maximal strongly
connected sub-graph and a sub-graph is said to be strongly connected if every vertex is
reachable from every other vertex. Figure 3.3 shows an example of the strongly directed
components (represented by the two dotted squares) of a direct graph.
Once the SCCs are obtained, an acyclic graph is derived by removing in each component
all edges connecting vertices of the same SCC. Finally, the set O is built starting from the
acyclic graph by simply enumerating for each vertex vi all its reachable nodes (vg, ... ,vh)
and adding the corresponding attribute pairs ((ai, aj), ... ,(ai, ah)) to the set.

Figure 3.3: The SCCs of a graph.

During the detection phase, the model analyzes all the attribute pairs ((ai, aj), with i /=j ) of
the input query in order to find a violation of the order constraints defined in O. A violation occurs
if, for any attribute pair (ai, aj), the corresponding pair with switched elements (aj , ai) is present
in O. In this case the model raises an alert.

Similarly to the Attribute Presence/Absence, the Attribute Order is meant to detect those at-
tacks in which the attacker crafts by hand the malicious request and he can introduce a discrepancy
in the usual attribute order for a given query.

Access Frequency Model

Unlike the classifiers presented so far, this model (and the following two) does not profile a single
query or a single attribute, but takes into account multiple queries at once.

The objective here is to monitor the access frequency of a certain web server program. Different
resource paths are queried with different frequencies, but the general access pattern should remain
practically constant over time.

For each program, two types of access frequency are profiled: the absolute frequency of all
accesses and the access frequency for each client (identified by the IP address). These two separate
metrics have been chosen to build a complete model of the access pattern.

On one hand it is in fact possible to have some applications that are invoked very often in
general but not so much from a single client. An example of this scenario can be a login page,
which is visited once per each client and very often overall because it is the first page used to access
a web server.

On the other hand, there are also programs that are invoked very often by a single client but
they are not very popular globally. This could be the case of a search page, that is not visited
regularly but it is rather accessed in burst by a client looking for a certain information. A change
in these access patterns can be a symptom of attack.

During the training phase, the time interval identified by timestamp of the first query and the
timestamp of the last one in the set is split in smaller fixed-size periods (for instance 10 seconds per
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period). Then, the absolute access frequency and the number of accesses per client are measured
in each of these periods. At the end of this step the model obtains two distributions (one for each
access pattern) and computes their mean µ and variance σ.

During the testing phase the time is divided in intervals of the same size used for the training
phase. For each query the model computes the absolute access frequency and the access frequency
per client, deriving the two testing distribution. These patterns are compared with the correspond-
ing training distributions by means of the Chebyshev’s Inequality, the same technique applied for
the Attribute Length Model in section 3.2.1. The final anomaly score is derived by computing the
average of the two probability values returned by the two Chebyshev’s Inequality measures.

The cost of both of learning and detection is proportional to the number of requests processed
in the training and in the detection phase, respectively.

This model is intended stop an attacker probing a web application for vulnerabilities or attacks
such as bruteforce exploits, where the attacker sends many web requests trying to guess the value
of a certain parameter.

Inter-Request Time Delay Model

This is an example of another kind of model that profiles the client access patterns towards a
web application. However, unlike the previous classifier, this one monitors the delays between the
requests sent by each client.

During the training phase, the regular distribution of the time intervals between consecutive
requests is created. To do so, for each client the model stores the time delays between successive
queries. Then, similarly to what is done in the Attribute Character Distribution Model in section
3.2.1, the delays are aggregated in small bins. Finally, the regular distribution is obtained by
averaging the values of the bins of all the observed clients.

During the detection phase, a distribution of time delays is created for each client. Next, each
distribution is compared with the training distribution by means of the Pearson’s χ2−test, used
also in the Attribute Character Distribution Model. The anomaly score that is returned by this
model depends on two factors: the likelihood that an observed distribution is a sample from the
learned expected distribution as described above and, additionally, the number of requests which
have been monitored from a specific client for that application [1].

The first aspect is related to how anomalous the testing distribution is with respect to the
training one, while the other one defines with how much confidence we should consider this anomaly
score. The latter is very important because, if a client sends only few requests, the corresponding
distribution could be considered anomalous but there is not enough data to be sure of it.

Therefore, the anomaly score is scaled by a factor that takes into account the number of
processed requests for a client. This factor increases as the number of queries increments and it
eventually will reach a value of 1 and it will be discarded (when the sample data will be big enough
to have high confidence in the predictions).

This model can be built and applied efficiently, as its cost is linear in the number of processed
queries. It raises an alert when a deviation from the computed regular distribution is detected.
This can happen especially in case of some probing attacks, where the web requests are sent at
regular intervals, because this pattern is not common to most of legitimate clients (which instead
show a more variable behavior).

Invocation Order Model

This is the last model presented in [1] and it analyzes the traffic at the highest level of granularity.

In general, the programs exposed by a web-server are accessed by a client following a well-
defined pattern. Consider, for instance, an e-commerce web application such as Amazon. If a
customer wants to buy an item, he first needs to login with his credentials before he can complete
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the purchase in the appropriate area. Therefore, one could expect that the client first visits the
login page, then it looks for an item and finally it reaches the purchasing page.

The purpose of this model is to learn the natural order of invocations of different web-application
of a certain web server. In this way, it is possible to derive the structure of a regular session for a
client. Deviations from this pattern cause the raise of an alert.

During the training phase, the model builds a session by grouping together the program in-
vocations done in a certain time interval by a client (always identified by the IP address). This
is different from the aggregation technique of the other models that was done always on a per
resource path basis (instead of per client).

Given all the training sessions, the model infers the structure of a regular session using the
same method as the Structural Inference Model in section 3.2.1. The only difference is that in this
case the inputs are series of program accesses instead of sequences of attribute characters.

During the testing phase, a certain query is associated to its session S. If S belongs to the
learned pattern the query is considered benign, otherwise it is deemed malicious.

Since this model is analogous to the Structural Inference, it shares with it the same (quite
expensive) costs for creation and application.

The Invocation Order mainly aims at detecting attacks to the application logic. It should be
able to recognize situations in which an attacker tries to bypass a credential check (such as a login
page) to access privileged pages directly.

3.3 TokDoc: A Self-Healing Web Application Firewall

TokDoc is a system that integrates many of the concepts presented in [1] and it also proposes some
very interesting extensions. It is defined by the authors as a reverse HTTP proxy.

I introduced the concept of forward proxy server, or simply proxy, in section 2.3.2. The main
difference between a forward and a reverse proxy is that while the former is a server situated in
front of the client that delivers a client’s request to the target web server, the latter works in the
opposite way, sitting in front of a web server and sending to it the requests coming from the clients.
The sample traffic flow of these two kinds of proxy is illustrated in figures 3.4 and 3.5 respectively.

Figure 3.4: Traffic flow of a forward proxy.
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Figure 3.5: Traffic flow of a reverse proxy.

A reverse proxy has three main applications:

• Security: it allows to perform traffic filtering (therefore it can block potential malicious
requests coming from the clients) and it hides the web server’s IP address, making more
difficult to perform Denial of Service Attacks (DOS).

• Load Balancing: a popular web application can be distributed among multiple servers.
The clients requests will arrive to the proxy that will divide the traffic evenly to the servers,
avoiding overloading.

• Caching: it can temporarily store some documents. In this way, if a client requests always
the same content, this can be provided directly by the proxy, thus improving the performance
and reducing the load on the web server.

As in [1], TokDoc performs anomaly detection on HTTP requests based on feature models.
However, it extends the analysis with respect to the work of Krueger et al. because, while in [1] an
alert raised by a model affected the whole web request (regardless of the granularity level at which
the model was operating), here each decision interests only the token subject of the analysis.

More in details, every request is parsed into token-value pairs according to a given heuristic
and then the anomaly detectors are applied to detect signs of attacks for that specific token. If the
processed value is deemed malicious, TokDoc employs a mangling technique to make the anomaly
harmless and it delivers the HTTP request to the recipient.

The mangling techniques are named Healing Actions. Beside detecting and reporting an in-
trusion, they can also neutralize an attack instead of simply dropping the malicious web request.
This not only improves detection accuracy but makes decisions more fault-tolerant, since the re-
placement of content with a suitable alternative in certain cases does not harm even if it has been
wrongly classified as malicious [2]. An Healing Action is automatically assigned to a certain token
according to token-specific rules during the so called Setup procedure.

Finally, one major advantage in comparison with [1] is that the system is built in such a way
that it does not require a clean training set to make the models learning the regular traffic targeting
a web server, because the implemented technique should be robust against contaminated data.

TokDoc is therefore made of three components:

• Token Types: the authors define four token types, based on their analysis of real HTTP
traffic.
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• Anomaly Detectors: anomaly detection techniques associated to certain token types dur-
ing a setup phase.the Setup procedure.

• Healing Actions: the authors propose for different techniques, depending on the token type
and on the desired level of protection.

These elements are discussed more in details in the following sections.

3.3.1 Token Types

TokDoc parses every received HTTP request in token-value pairs. It considers as tokens all the
GET parameters (like in [1]), but it also extends the analysis to the URI path, the POST parameters
and all the HTTP header fields.

Naturally, the distribution of token values is very diverse, thus they are classified in four cate-
gories, according to their properties:

• Constants: the simplest case of token, in which the value is always the same. An example
is the header field user-agent when monitoring a certain session.

• Enumerations: these are tokens that can accept only a small set of values, such as the
header field accept-language.

• Machine input: this third type of tokens comprises machine-generated data, such as session
numbers, identifiers and cookies [2].

• Human Input: this category includes all the human-provided inputs, such as form val-
ues. This is the most difficult type to monitor because the data can be anything, without
restrictions.

The peculiar characteristics of the token types are used to properly assign the anomaly detectors
and healing actions, as described next.

3.3.2 Anomaly Detectors

TokDoc applies anomaly detection algorithms to every token of an HTTP request. The anomaly
detectors are built following the ideas presented by Kruegel et al. in [1]. The main difference is
that, unlike in [1], the decisions taken by a certain classifier do not affect the whole HTTP request
but only the corresponding token.

There are four anomaly detectors:

• LIST

• N-gram Centroid Anomaly Detector (NCAD).

• Markov Chain Anomaly Detector (MCAD).

• Length Anomaly Detector (LAD).

The LIST detector is the default one for constants and enumerations, while the others are
automatically assigned to the corresponding token type during the Setup procedure (described
later).

LIST

This is the simplest classifier and it is very similar to the Token Finder Model presented in [1].

It just records all the different values observed during the training phase for a specific token.
Then, when working in detection mode, if the value under analysis has not been seen in the training
data, it is deemed suspicious.
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N-gram Centroid Anomaly Detector (NCAD)

N-gram models are very popular in security applications. An n-gram is a sequence of n items
taken from a given sample input. This technique is commonly used in text or speech processing,
therefore an n-gram is often defined as a sequence of n-words. For instance, a bigram is a two-word
sequence, a trigram is a three-word sequence and so on.

An N-gram model is a probabilistic metric that predicts the occurrence of an item based on
the occurrence of its N - 1 previous items. It answer the question: how far back in the history of
a sequence of items should we go to predict the next item? For instance, picking up the previous
example, a bigram model (N = 2) predicts the occurrence of a word given only its previous word
(as N - 1 = 1). Similarly, a trigram model (N = 3) predicts the occurrence of a word based on its
previous two words (as N - 1 = 2 in this case).

TokDoc performs an n-gram analysis in which the items are not words but bytes sequences.
Given the set of all possible n-grams S = {0,...,255}n, the authors define the embedding function
φ for a token value x as :

φ(x) = (φs(x))s∈S ∈ <|S| (3.10)

Where φs(x) returns 1 if the n-gram s is contained in x and 0 otherwise.

The parameter n is critical for the model as it affects the trade-off between performance and
precision. The higher the more precise is the analysis because the model has more context to make
the prediction. On the other hand, the vector space induced by the embedding of n-grams grows
exponentially with n [2].

Given two embedding vectors φ(x) and φ(z), they are first normalized to one to eliminate the
length dependency and then they are compared measuring the Euclidean distance d(x,z):

d(x, z) = ||φ(x) − φ(z)||2 =

sX
s∈S

|φs(x) − φs(z)|2 (3.11)

The NCAD model defines the embedding vector µ of a regular token as the arithmetic mean of
the embedding vectors computed from the training values of that token:

µ =
1

k

kX
i=1

φ(xi) (3.12)

where k is the number of training elements and xi is value i for token x.

Once the model has µ it can derive the anomaly score as:

scoreNCAD =

(
normal if d(µ, x) ≤ ta

anomaly otherwise
(3.13)

where ta is a threshold defined during the Setup procedure.

Markov Chain Anomaly Detector (MCAD)

Markov chains have been widely used in literature for security purposes. A Markov chain is a
mathematical system that experiences transitions from one state to another according to certain
probabilistic rules. It is an example of stochastic process, with the addition that it satisfies the
Markov property: no matter how the process arrived at its present state, the possible future states
are fixed. This means that the probability of going from one state to another one does not depend
on the previous visited states but only on the current state and the time elapsed.

Markov chains have many applications as statistical models. They are usually modeled as finite
state machines and the state space, or set of all possible states, can be anything (letters, numbers
or even market stocks). Figure 3.6 shows an example of Markov chain in the form of a state
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Figure 3.6: An example of Markov Chain with three states.

machine, where each node is a state and each edge represents a transition with the corresponding
probability.

TokDoc defines the state space as the 256 possible byte values. Each state can have 256 possible
transitions (we need to consider loop transitions, back to the same state). The state transitions
probabilities are learnt by monitoring the transition frequencies from consecutive byte values in
the training data. In this way, for each token, TokDoc builds a transition table with 2562 + 256
rows and columns. Notice that the 256 additional entries represent the dummy start state of each
byte.

Given the transition table, the probability of a token value x of length n for a Markov Chain
C is:

P (x|C) = P (X1 = x[1])

nY
i=1

P (Xi+1 = x[i+ 1]|Xi = x[i]) (3.14)

where x[i] represents the i-th byte in the token value x [2].

The authors did not use any length normalization technique in order to take in to account both
the length and the content of the analyzed value. Once computed P (x|C), the anomaly score is
obtained as:

scoreMCAD =

(
normal if P (x|C) ≥ pa

anomaly otherwise
(3.15)

where pa is an anomaly threshold computed during the Setup procedure.

Length Anomaly Detector (LAD)

This detector achieves the same goal as the Attribute Length Model in [1] (identify malicious values
based on their length) but adopts a different metric. In fact, the Chebyshev’s Inequality used in
[1] can be very unreliable, especially when the training set is small. Therefore, TokDoc tries to
find a solution efficient also when data availability is low.

Given a predefined significance level αLAD, the authors estimate the 1 − αLAD quantile of
the length distribution of the train and validation data, namely L1−αLAD

. Then they construct a
confidence interval for L1−αLAD

by first calculating σ, the bootstrap estimate of the standard error
of L1−αLAD

[2], obtaining the interval:

I = (L1−αLAD
− cσ, L1−αLAD

+ cσ) (3.16)

where c is a constant chosen in such a way that I has a probability coverage of 1 − αLAD.

The upper bound of the interval I is used as threshold, therefore the anomaly score for a token
x is computed as:

scoreLAD =

(
normal if len(x) ≤ L1−αLAD

+ cσ

anomaly otherwise
(3.17)

This detector is less complex than the NCAD and MCAD detectors and it is used only for
tokens that, during the learning period, are not able to collect enough data to train the other two
anomaly detectors.
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3.3.3 Healing Actions

Once a token value is deemed to be malicious, TokDoc can apply an healing action to ”sanitize”
the input and send an harmless web request to the server.

This approach is much better than simply dropping the whole anomalous request, because
often the ”healed” token value does not affect the response from the web server. Therefore, in
case TokDoc wrongly flags a value as suspicious (i.e. it generates a false positive), there still is the
chance that the request reaches the server and the response is correct.

The choice of the particular healing action is tightly correlated with the token type and the
assignment is done during the Setup procedure. TokDoc implements four healing actions:

• Drop: this is the most conservative measure, that entails the suspicious token to be dis-
carded. Notice that, even if extreme, this action is still better than dropping the whole
request. It is the default option for each token assigned to a LAD detector.

• Encode: this approach encodes the suspicious value with HTML entities. In this way, most
of the web attacks based on Cross-Site scripting and SQL injection are neutralized because
the dangerous characters are escaped. Moreover, this technique does not affect the majority
of the web server because they are usually able to handle the additional encoding layer.

• Freq: this action replaces the anomalous value with the most frequent one for the particular
token. This is the default choice for tokens using the LIST detector, such as constant and
enumeration tokens.

• Near: the most complex action, that replace the malicious token value with its nearest-
neighbor from the training set. It is associated with tokens assigned to NCAD and MCAD
detectors.

3.3.4 The Setup procedure

The setup of TokDoc strongly depends on the initial available data set. The more web requests
are available for training and validation the better.

A detector is automatically assigned to a particular token following a well-defined workflow:

1. The HTTP requests in the input data set are grouped according to the target web application
exposed by the web server (as in [1]), allowing for the creation of service-specific models.

2. The pool related to a particular service is further divided in two smaller groups: the training
set to learn the models and the validation set to set up the thresholds (again based on [1]).

3. After the learning phase, each token of the original data set is assigned to its detector by
making use of both a structural and a statistical test, according to the following constraints:

• If the training set contains less than 50 samples for the current token, this is assigned to
the LAD detector. This choice is supported by the fact that the other detectors require
much more samples in order to be effective.

• If more than 50 samples are available, TokDoc assesses if the token is an enumeration or
not. First it checks if less than 10 unique values have been observed. If this structural
test is passed, the χ2-test is used as statistical tool to compute the probability that
new unseen values will occur in the future. If this probability is below a predefined
threshold, the token is linked with the LIST detector.

• Otherwise, the remaining choices are between the NCAD and the MCAD detectors. At
this step, the structural test simply measures the median length of the token values. If
it is higher or equal than 5, TokDoc computes the probability value P :

P (||X − µ|| ≥ dmax) = 0 (3.18)
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where X is the training data for the token under test, µ is the NCAD centroid and dmax
is the maximum distance from µ, defined as:

dmax =
p

||µ||2 + 1 (3.19)

If P (||X − µ|| ≥ dmax) is equal to 0, NCAD is chosen, otherwise MCAD is assigned to
the current token.

4. After the assignation is completed, the anomaly thresholds for both NCAD and MCAD are
computed. The threshold is set to be the maximal distance observed in the validation set for
the NCAD detector, while the minimal probability is used for MCAD.
The threshold is defined after a semi-automatic outlier adjustment: all values of the validation
data set are ordered by the according output of the detector (descending distances to the
mean for NCAD and ascending probabilities for MCAD) and a system administrator decides
whether the extremal value is a real, user-generated sample or a malicious token value [2].

5. Before deployment, the system administrator can manually modify the healed action associ-
ated to the token. For instance, privacy sensitive data such as passwords and cookies should
not use the Near healing action but should instead drop the token completely.

6. After deployment, if the detector of a certain token produces too many false positives, the
system administrator can decide to trigger again the setup procedure for that token.

TokDoc implements a Setup procedure that is completely data-driven. However, it requires
the presence of a system administrator to properly prepare the input data set. As I will detail
better in the next chapter, the anomaly detector I realized is completely autonomous: it is able to
automatically build its models and it does not require any pre-processing step (neither manually
as in [1], neither semi-automatic as in [2])
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Chapter 4

Methodology

HTTPServer is an anomaly detector system designed to identify and report unusual parameters
in the HTTP queries targeting a web server to protect. It is integrated into LLAnta, Lastline’s
network analysis system and it works in cooperation with many other anomaly detectors that
target different threats, such as port scans, TLS and DNS anomalies.

The basic structure reproduces the ideas presented in [1] and [2]: it analyzes incoming HTTP
GET requests, create machine learning models to profile the behavior of the specific web server
and it raises alerts if something looks suspicious. The produced alerts will be sent to the LLAnta
Manager for further processing and, eventually, they will be shown in the customer user interface.

HTTPServer proposes different, more efficient solutions to some of the concepts introduced in
the literature and it adds several interesting features on top of them, with the goal to contribute
in creating a more precise and reliable product.

HTTPServer contains four components interacting with each other:

• Anomaly Classifier: the basic unit of the whole anomaly detector system, in charge of
building a model of the server behavior according to a specific heuristic. HTTPServer im-
plements many different classifiers, each of them devised to address a particular threat.

• Plugin: a LLAnta plugin, as described in section 2.4. It processes the web requests targeting
the web server and and manages the classifiers.

• Detector: a LLAnta detector, that decides which web request was actually malicious and
reports the alerts to the LLAnta Manager.

• Context: a LLAnta context, that allows to store information on disk and permits the
communication between the plugin and the detector.

In this chapter I am going to describe in details the overall architecture, how the system works
and the reasons behind the design choices I made. In the next sections I outline the mode of
operation of each component following a bottom-up approach. I will therefore start introducing
the fundamental working units (the classifiers) and how they combine together to build a more
complex system.

The last section of the chapter, instead, will focus on the testing mechanisms I adopted to
make sure everything worked as expected before deploying the system in the real world. Writing
tests is a core component in developing new products. It is important to build a suite that is able
to emulate as close as possible existent working environments because in this way it is possible
to reduce to the minimum the number of bugs the system has when deployed. It also helps the
development of the application itself and adding new features. For instance, if by introducing a
new element to the system the tests of an unrelated component fail, there is clearly a logic bug
somewhere in the code.
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4.1 Anomaly Classifiers

An anomaly classifier is the equivalent of a model in [1] and of an anomaly detector in [2]. It
profiles the inbound traffic, employing and renovating the three-step approach introduced in [1]:

1. Training.

2. Validation.

3. Testing.

The main difference, however, is that each anomaly classifier automatically goes from one
operation mode to the other one, without the need for any human interaction or offline processing.
In fact, both training and validation are done monitoring directly the customer traffic. This is
possible because the implemented system is resistant against contaminated data, that are expected
when analyzing real world traffic. As a consequence, there is no requirement for any clean data
set to build the models (while is needed in [1]), nor any time consuming pre-processing step is
necessary (like in [2]).

HTTPServer implements three anomaly classifiers:

• LengthClassifier: the purpose is to identify anomalous parameter values based on their
length. This kind of detector has already been proposed both in [1] and [2], but my imple-
mentation uses completely different techniques.

• DistributionClassifier: the goal of this model is to detect malicious values based on their
byte distribution. It is quite similar to the Attribute Character Distribution Model presented
in [1] but it introduces some major improvements.

• DataTypeClassifier: this kind of anomaly classifier is new with respect to both [1] and [2].
It tries to determine the type of the parameter under analysis and it flags as malicious any
value that does not belong to the learned data class.

On top of these three basic anomaly classifiers, HTTPServer introduce also the AttributeModel
class, that aggregates and combine the above classifiers (from now on sub-classifiers, because
they are working units of an AttributeModel) to provide a reliable, tamper-resistant model of an
HTTP parameter. It determines the regular behavior of a certain attribute based on the heuristics
provided by its sub-classifiers and it is the component that actually predicts if a value is benign or
not.

The AttributeModel objects are managed by HTTPServerPlugin, that processes all the incom-
ing web requests and sets up HTTPServerContext for HTTPServerDetector (as described next in
the corresponding sections).

All the anomaly classifiers (i.e. AttributeModel and sub-classifiers) implement a well-defined
interface represented by the AbstractClassifier abstract class. This design choice allows to stan-
dardize the way each classifier should operate, regardless from the particular metrics in use. Having
an interface to be compliant to greatly increases the modularity of the code.

Each member of the interface exposes the same API (Application Program Interface) to the
outside, meaning that the interaction with any module is done always invoking the same methods,
even if the inner implementation is completely different from one component to another. Of
course a certain unit can define other methods needed to accomplish its working target. The only
restriction is that all the methods defined in the interface must be implemented.

This design pattern makes easier to extend the system (it is only needed that the new element
exposes the same API) and widely improves the code readability because the structure of each clas-
sifier is known and clear. Moreover it improves the code maintainability, a terms used to indicate
how easy is to maintain the software. This is an important topic because an high maintainable
code improves the general performance of the system in many ways, for instance allowing to fix
bugs easier and improving the usability.
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4.1.1 AbstractClassifier

The AbstractClassifier is an abstract class representing the interface implemented by all the other
classifier objects. An abstract class is often used as a basis for creating specific objects that conform
to its protocol, i.e. the set of operations it supports.

In object-oriented programming (OOP) languages (such as Python), abstract classes are useful
when creating hierarchies of classes because they make it possible to specify an invariant level of
functionalities in some methods, but leave the implementation of other methods until a specific
implementation of that class is needed. In this context, abstract classes represent the root of
the hierarchy and programmers use inheritance to define child classes that implement the specific
functionalities.

An abstract class has at least one abstract method, that does not contain any code but defines
the return type, the number and the type of the parameter required by the method itself. This is
the reason why an abstract class cannot be instantiated directly. When a derived class is created, it
must implement all the abstract methods following the constraints established in the parent class.

AbstractClassifier exposes the following interface, as illustrated in the class diagram in figure
4.1:

• from config: a python classmethod. It creates an instance of the current class given the
configuration file.

• add: this method receives a parameter value, extracts the feature specific to the current
classifier and stores it as a training sample.

• fit: this method uses the training features collected through the add method and fits the
classifier, meaning that it builds the model corresponding to the current classifier and it
defines an anomaly threshold.

• predict: this method receives a value and determines if it is anomalous or not.

• from dict: this method restores a JSON serialized version of the current classifier (repre-
sented by a python dictionary) into the actual object.

• to dict: this method transforms the current object into a JSON serialized object (i.e. a
python dictionary).

• is ready for fitting: a python property that tells if the classifier is ready to be fitted.

• is fitted:a python property that tells if the classifier is fitted or not, i.e. if the classifier is
still learning the model or if it is giving predictions.

Figure 4.1: AbstractClassifier class diagram.
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Based on the above description it is possible to infer the general behavior of a certain classifier.
Initially an instance is created and the required parameters are taken from a configuration file
calling from config. Then the learning phase begins and it starts building the related model. As
the web requests are processed by HTTPServerPlugin, the classifier receives attribute values and
learns the regular behavior for that parameter collecting feature values through the add method.

Next, when the classifier will be ready to consolidate the model (i.e. is ready for fitting returns
True), the fit method will be invoked and, given the collected metrics, it will sets up an anomaly
threshold for future tests values. This is the equivalent of the validation phase as described in [1].

Finally, when the model is fitted, the classifier switches in testing mode and, thanks to the
predict method, it will start flagging the received values as benign or malicious, based on the
anomaly threshold established during the fitting process. Moreover, periodically the classifier will
be serialized on disk and its state later restored, respectively invoking the to dict and from dict
methods. This is done because the classifiers are stored inside HTTPServerContext, a LLAnta
context class that is regularly serialized on disk for several reasons (as explained in section 2.4.2).

In the following sections I am going to describe in details each concrete class, explaining how
each child classifier implements the above abstract methods with its custom logic.

4.1.2 LengthClassifier

The objective of this model is to approximate the actual but unknown distribution of the parameter
lengths and detect instances that significantly deviate from the observed normal behavior. To
achieve this goal I considered two different metrics: the Chebyshev’s Inequality and a variant of
the well-know zscore statistical tool, known as robust (or modified) zscore.

Concerning the first technique, as stated by Kruegel et al. in [1], one drawback is that it
computes a weak bound. Nevertheless, according to the authors, this defect can actually be turned
into an advantage because in this way the model flags as anomalous only significant outliers.

However, analyzing samples of real traffic, I noticed that the bound was too loose. What
happened was that the probability value returned by the Chebyshev’s Inequality was almost always
equal to 1 (or even higher and therefore it saturated to a value of 1). As a consequence, since
the anomaly threshold was computed as the highest probability in the training set less a small
percentage, the sub-classifier ended up to be very sensible and it was producing several false
positives.

Moreover, the Chebyshev’s Inequality is based on the mean and variance measures. As described
by Rousseeuw in [3], these metrics are not robust in presence of outliers in the training set, that is
the exactly working scenario of the HTTPServer anomaly detector).

Rousseeuw presents an analysis of the most common statistical tools, the effect of outliers on
those and outlines a method to build a robust outlier detector. In order to investigate how robust
an estimator is, he considers the breakdown point, that is the smallest fraction of observations that
have to be replaced to make the estimator unbounded. In this definition one can choose which
observations are replaced, as well as the magnitude of the outliers, in the least favourable way [3].

An outlier identifier is made of two components: a location estimator T, that measures the
general position of the data, and a scale estimator S, that gives information about the spread of
the data. Examples of a weak location estimator and a weak scale estimator are the sample mean
and the standard deviation respectively. Concerning the first metric, the breakdown point applied
to a sample {x1, x2, ..., xn} of n observations, is equal to 1

n because it is sufficient to replace a
single observation by a large value. For the standard deviation, the breakdown point is also 1

n ,
meaning that a single outlier can lead to the explosion of this estimator.

In opposition to these weak metrics, Rousseeuw introduces the sample median as local estimator
and the median absolute deviation (MAD) as scale estimator. In both cases the breakdown point
is in fact 50%, a much higher value than 1

n , if there are a reasonable number of samples.

The following two examples can help to better understand what the breakdown point measures
and how much more robust the sample median is with respect to the mean:
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• Given the set of five observations x :

x = {6.22, 6.5, 6.12, 6.36, 6.40} (4.1)

The sample mean µ is equal to 6.32 while the sample median md is equal to 6.36. Notice
that these two values are not the same but they are very close.

• Consider now the same set of five observations where one element (the last one) has been
replaced and it is strongly different from the others:

x = {6.22, 6.5, 6.12, 6.36, 64} (4.2)

In this case, the sample mean is equal to 17.84, while the sample median did not change
(always 6.36). This shows how much the average is sensitive to outliers and the same hap-
pens with the two scale estimators, the standard deviation (weak) and the median absolute
deviation (robust).

Given a location estimator and a scale estimator, the author derives an outlier identifier, the
z-score:

zi =
xi − T

S
(4.3)

where zi is the z-score for sample xi. The classic z-score uses the mean as location estimator and
the standard deviation as scale estimator. However, Rousseeuw proposes a robust version using
the sample median as T and the median absolute deviation as S.

Once the outlier identifier is defined, a threshold needs to be set up in order to determine if a
value is an outlier or not. The author proposes a cut-off value of 2.5. The choice is arbitrary but
the probability that a zscore value |zi| is greater than 2.5 is very low.

For these reasons, I decided to change from the Chebyshev’s Inequality to this more robust met-
ric. In particular, Iglewicz and Hoaglin in [4] and IBM in [14] propose two variants of Rousseeuw’s
robust z-score:

• The first ones add a scale factor to the basic formula:

zi =
0.645 ∗ (xi −md)

MAD
(4.4)

Moreover, they suggest to set up the anomaly threshold to 3.5, rather than the Rousseeuw’s
recommended value of 2.5.

• IBM, instead, not only introduces a scale factor, but also proposes an alternative formula if
the median absolute deviation is equal to zero:

zi =


xi−md

1.486∗MAD if MAD > 0

xi−md
1.253314∗MeanAD if MAD = 0

(4.5)

where MeanAD is the mean absolute deviation, used to replace MAD.

After some tests I ended up using the metric presented by IBM, with one addition: if also
MeanAD is equal to 0, the zscore simply measures the number of times the length of the value
under analysis is greater than the collected median. Therefore, the complete formula becomes:

zi =



xi−md
1.486∗MAD if MAD > 0

xi−md
1.253314∗MeanAD if MAD = 0

xi−md
md if MeanAD = 0

(4.6)

Once delineated the statistical tool used by the LengthClassifier, its general workflow is the
following:
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1. An instance of the sub-classifier is created given the configuration file and the min samples
parameter, defining the minimum number of learning samples required to allow the sub-
classifier to fit, is set.

2. The sub-classifier starts its training phase. At every invocation of the add method, the length
of the training value is recorded. Notice that I do not use a list to store the attribute lengths
(that would be an obvious choice), but I rather manage a python collection.Counter.
This data structure allows me to count the number of elements with a certain length. In
this way, if for example the attribute is a constant (i.e. the length is fixed), I avoid storing
the same value multiple times for every sample but I just record the number of occurrences.
This is an optimization expedient that allows to save a lot of memory at run-time, especially
if there are many training samples with the same length.

3. When the sub-classifier is ready to be fitted, i.e. it has received a number of samples that
is greater than min samples, is ready for fitting returns True and the fit method is invoked.
During the fitting process, the three discussed metrics (median, median absolute deviation
and mean absolute deviation) are computed using the training samples collected so far.
Then the zscore of each training value is computed and the anomaly threshold is defined
by multiplying the highest zscore by a predefined factor. This product is done in order to
create some margin starting from the most anomalous training sample. Finally the collec-
tion.Counter containing the training lengths is emptied, to both save memory and to allow
for future retraining.
Notice that the sub-classifier can be retrained: in this scenario, when the fitting method is
invoked for the second time, the consolidate metrics are the average between the current and
the previous ones.

4. Once fitted, the sub-classifier automatically starts returning prediction for the input value,
instead of collecting its length for training purposes. When the testing value is received,
the model computes its zscore. If it is higher than the established threshold, the value is
considered as anomalous and the sub-classifier returns to the caller the state that led to
this decision. The state includes the computed zscore, the threshold, the median of the
lengths seen by the model during training phase and the length of the anomalous value. This
information about the anomaly will be used later on to show information in the customer
user interface. Otherwise, if the zscore is below the threshold the model returns nothing.

The sub-classifier includes also the to dict and from dict methods to allow the sub-classifier
serialization and deserialization on disk, and the re-implementation of the add and len
magic methods. More in details, when two LengthClassifiers are added, the training samples of
the two are merged together only if neither of the two sub-classifiers is already fitted, otherwise an
error is returned. The length of the sub-classifier, instead, is defined as the number of samples in
the attribute length variable.

The class diagram of the LengthClassifier model is shown in figure 4.2.

4.1.3 DistributionClassifier

The DistributionClassifier model captures the concept of a regular query parameter by looking at
its character distribution [1]. It is a re-implementation of the Attribute Character Distribution
Model presented in 3.2.1, with some major improvements.

First of all the analysis is focused on the byte frequencies without losing the connection between
value and corresponding character. This means that, unlike in [1], the byte distributions are not
sorted in descending order. Moreover, even if the metric used is the same (the Pearson’s χ2-test
for the goodness of fit), the way in which the observed frequencies O and the expected frequencies
E are created from the character distributions is different and therefore the comparison is different
from what happens in [1].

More in details, Kruegel et al. divide the function domain of a character distribution into the
following six intervals:
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Figure 4.2: LengthClassifier class diagram.

1. [0]

2. [1, 3]

3. [4, 6]

4. [7, 11]

5. [12, 15]

6. [16, 255]

This choice is completely arbitrary but reflects the fact that lower indices in the character
distribution contain an higher number of occurrences, because of the sorting in descending order.

In the DistributionClassifier, a character distribution is also split into six intervals, but the
choice is not arbitrary. Leveraging on the matching between byte numeric value and corresponding
character, the byte occurrences are grouped in such a way that characters belonging to the same
class are all together. The six defined classes are:

1. ASCII control characters.

2. ASCII digits.

3. ASCII lower case alphabetic characters.

4. ASCII upper case alphabetic characters.

5. ASCII special characters.

6. ASCII extended characters.

This is a more reasonable choice that follows a specific pattern. In this way, the χ2-test compares
the structures of the expected and observed distributions, meaning that it analyzes the type of
characters that constitute a parameter value. Furthermore, since the limitation of this technique
is that the χ2-test is very unreliable when the bins have low values (as stated in section 3.2.1), I
decided to set the starting value of each bucket in both E and O to 5, which is the recommended
value in literature to make the test work correctly. Of course, this choice is arbitrary but, since
the goal is to detect the outliers in a distribution of values which are very far from the regular
samples, it should not affect the analysis negatively.

The DistributionClassifier works as follows:

1. A new instance of the sub-classifier is created given the configuration file.
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2. The sub-classifier starts its training phase. At every invocation of the add method, the
absolute character distribution of the value is extracted by counting the occurrences of each
byte. As for the LengthClassifier, the character distributions are not stored in a list but in
a python collection.Counter, thus allowing to save memory at run time.

3. When the sub-classifier is ready to be fitted, the fit method is invoked. During the fitting
process, I divide each collected distribution by its length (deriving the relative byte frequency
for each training value) and I store the average of the so obtained distributions, that represent
what in [1] is referred to as Idealized Character Distribution (ICD).
Then I compute the χ2 probability by comparing the ICD with every training distribution
and I set the threshold by dividing the worst probability (i.e. the lowest) by a predefined
factor. Finally, I empty the python collection.Counter to allow for future re-training like for
the LengthClassifier.
Notice that I do not compute directly the relative byte occurrences in the training phase
because I need to keep the information of the length for each value. If I compute the relative
character distribution in the training phase, I would not be able to calculate the threshold
during the fitting phase, because the length of each training value would be missing and it
would be impossible to apply the test.

4. Once fitted, the sub-classifier starts working in testing mode and it returns predictions for
the input values. When a testing value is received, the model extracts its absolute character
distribution and group the values according to the classification above. These buckets repre-
sent the observed frequencies O. The expected frequency E, instead, are built starting from
the average distribution. The values are again grouped following the defined pattern and, in
addition, each bucket is multiplied times the length of the testing input. In this way, from a
relative measure, we obtain the expected number of occurrencies for each bucket.
Then, the χ2-test is applied. If the probability returned by the test is lower than the thresh-
old, the sub-classifier flags the value as anomalous and returns the state that led to the
prediction. The state just includes the probability of the testing value and the threshold.
Otherwise, everything is considered fine and no alert is reported.

Like the LengthClassifier, this sub-classifier has the capability to serialize/deserialize its state
to/from disk, it defines the concept of length and it supports the use of the + operator.

The class diagram is shown in figure 4.3.

Figure 4.3: DistributionClassifier class diagram.
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4.1.4 DataTypeClassifier

The DataTypeClassifier analyzes the input traffic and tries to determine the data type(s) of a given
attribute based on the observed values. Currently are supported 8 different data types, each of
them with a custom check function:

• Base64.

• Email.

• MD5.

• SHA1.

• SHA256.

• URL.

• UUID.

• Hostname.

These data types have been chosen because are commonly exchanged over the Internet. For
instance, it is frequent to send a file along with its hash, or to use an UUID to identify a certain
resource.

The possible data types of a certain value are guessed providing the value in input to the
compute data types function, that runs every check function against the value. Each check function

will return the corresponding data type if there is a match and nothing otherwise. Moreover, if
there is a match and the particular data type is a kind of encoding (for instance in the case of
Base64 encoding), the value is decoded and the check functions are recursively applied to the
decoded value. This process is repeated until a maximum level of recursion depth is not reached
or no check function matches the current value. At the end, compute data types returns a tuple
with the matching data types, which can also be empty if the value does not belong to one of the
supported categories.

The supported data types and corresponding check functions are the followings:

• Base64→ check base64: Base64 is a form of binary-to-text encoding that converts binary
data in an ASCII string format. It is generally used to transfer content-based messages over
the Internet sent over media that are designed to deal with textual data, like emails. This
is to ensure that the data remain intact without modification during transport. It is also
very common as a form of light obfuscation or to encode even plain text data, because there
may be some systems (usually quite old) that can handle a limited character-set only. For
instance, from the traffic I analyzed, some web servers where designed to receive encoded
urls or hostnames.

The encoding works by dividing every three bits of binary data into six bit units. The
newly created data is represented in a 64-radix numeral system and as seven-bit ASCII text.
Because each bit is divided into two bits, the converted data is 33 percent, or one-third,
larger than the original data. The increase may be larger if the encoded data is small. For
example, the string ”a” with length equal to 1 gets encoded to ”YQ==” with length equal
to 4, with a 300% increase.

To assess if a value is Base64 encoded, the check base64 method makes use of the base64
python library, that provides support for the encoding and decoding operations. Unfortu-
nately there is no way to determine if a string that is compliant to the Base64 encoding
standard it is actually Base64 encoded or not. For instance, the string ”aaaa” is a valid
Base64 input and can be decoded, but it is unlikely that the desired value is the decoded
one. Therefore, the method first tries to decode the value as Base64. If the string cannot be
decoded, for sure it is not a Base64 value and no match is returned. Otherwise, if the de-
coding is successful, the decoded value is accepted only if every obtained character is ASCII
printable. In this case, the method returns a match and also the decoded value, in order to
apply the checking functions recursively.
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• Email→ check email: The checker function uses a regular expression to look for a match.

• MD5→ check md5: MD5 (Message-Digest algorithm) is a widely used hash function that
transforms an arbitrary input into a 128-bit output, which can be represented as 32 hex-
adecimal values. It was originally designed for use as a secure cryptographic hash algorithm
for authenticating digital signatures, but it has been later deprecated because it suffers from
many vulnerabilities. Nowadays it is used to verify data integrity and detect unintentional
data corruption, for instance due to transmission errors.
The checker function makes use of a simple regular expression.

• SHA1→ check sha1: SHA stands for Secure Hashing Algorithm. SHA-1 is the first mem-
ber of this family and it produces a digest of 160 bit (40 hexadecimal digits). It has been
the main algorithm used by SSL for digital signatures for many years, until it was replaced
by its successor SHA2 in 2016.
Once again, a SHA-1 hash value is identified using a regular expression.

• SHA256→ check sha256: SHA256 (or SHA2) is a variant of the SHA hash family that
produces an output of 256-bit (64 hexadecimal values). As all the other hashes, the data
type is inferred using a regular expression.

• Url→ check url: It is quite hard to properly identify urls, not because they do not have a
well defined structure, but because often web servers are tolerant and accept inputs even if
they do not follow exactly the standard. The goal is therefore to be able to accept the most
number of legitimate variants and reducing the number of false positive while avoiding to
accept everything.
Firstly I tried to use a regular expression, but I soon realized it was too generic and it
was matching practically every input. Thus, I decided to separate the identification of an
hostname only from the URL data type (that of course can contain an hostname). In this
way I was able to make stricter the URL pattern recognition.
More in details, I used the urlparse python library. This module is able to parse an URL
string into its single components [15] (corresponding to the ones presented in section 3.1:

– scheme: URL scheme specifier.

– netloc: network location part.

– path: hierarchical path.

– params: parameters for last path element.

– query: query component.

– fragment: fragment identifier.

If urlparse is not able to identify a certain component the resulting value will be an empty
string. Hence, after I parse the input value, I consider it an URL if either a scheme or a
netloc are present.

• UUID→ check uuid:An UUID is 128-bit (16 bytes) number used to identify information
in computer systems. Although the probability that a duplicate exists is not zero, it is close
enough to zero to be negligible and it is used for practical purposes [9]. An UUID is usually
displayed in 5 groups of hexadecimal digits separated by hyphens, in the form 8-4-4-4-12.
For example, the string 123e4567-e89b-12d3-a456-426655440000 is a valid UUID.

There exists many versions and variants that have been defined over the years and these are
specified by some bits in the UUID itself.

I used the uuid python module to identify a string as a valid UUID. This module generates
an UUID object from the corresponding string representation and raises an exception if the
provided input is not well-formatted. Therefore, in order to check the data type in input to
the sub-classifier, I simply try to create the UUID object and, if an exception is raised, this
means the input string was not a valid UUID.

• Hostname→ check hostname: For the hostname recognition I used a regular expression
that matches any hostname, including IP addresses or local hostnames that can have no dots.
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The DataTypeClassifier works as follows:

1. A new instance of the sub-classifier is created given the configuration file.

2. During training phase, at every invocation of the add method, the sub-classifier tries to
determine the data type(s) of the input value according to procedure described above. If
there is a match with at least one type, a counter is increased to take track of how many
times the value corresponds to a certain category.

3. When a sufficient amount of samples are processed, the sub-classifier is ready to be fitted
and the fit method is invoked. During the fitting phase, if one or more data types have been
observed for a number of times equal to the 80% of the training samples, then the attribute
is assigned to that matching pattern. Since re-training is allowed, the patterns are stored in
a set and, every time the sub-classifier is fitted, the new matching data types are added to
those already present in the set.

4. Once fitted, the sub-classifier switches to testing mode and it starts giving predictions for the
input values. When a value is received, the model infers its data type(s) and, if it matches
with the established pattern it does nothing, otherwise it flags the value as anomalous and
return its state. The state simply contains the computed data type(s) for the current value
and the expected ones.

As for the other classifiers, the DataTypeClassifier offers the capability to be serialized and de-
serialized to and from disk. Moreover it redefines the + operator and it defines the concept of
length.

The class diagram is shown in figure 4.4

Figure 4.4: DataTypeClassifier class diagram.

4.1.5 AttributeModel

The AttributeModel class is a classifier much more complex than the ones presented so far. It can
be considered as an aggregation stage for the other sub-classifiers and it is the model that represent
the behavior of a regular attribute of an HTTP GET request.

An AttributeModel combines together all the other classifiers and, using the techniques imple-
mented by the sub-classifiers, it is able to understand if a certain value is anomalous or not. It also
builds and applies several other heuristics in order to improve the analysis and avoid consuming
too much memory at runtime and space on disk.

First of all, the AttributeModel implements the same interface as its sub-classifiers (i.e. it
inherits from the AbstractClassifier class) even if it is an higher granularity level with respect to
the others. Therefore, the basic workflow is the same:
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1. There is a training phase during which the model collects samples and learn the regular
behavior of the attribute.

2. Then follows a fitting phase to fit all the sub-classifiers.

3. Finally the classifier switches to testing mode and start making predictions on the input
values.

However, on top of this, the AttributeModel adds two extra functionalities:

1. The model learns what is a legitimate value for the given attribute for each different client
sending HTTP requests to the target web server containing that attribute. Of course, learning
a model based on the same traffic on which predictions are made is sub-optimal because it is
impossible to know in advance if the traffic used to learn the model is benign or it contains
some malicious input. The latter scenario is very likely to happen, especially if the web server
is exposed to the public Internet, where there are plenty of malicious sources.

Therefore, one could argue that this kind of learning is not suitable for the HTTPServer
working scenario. However, the learning per client helps to face this problem and, at the
same time, overcomes the limitations of both [1] and [2]. In fact, the learning per client
allows to consider the traffic coming from each client as all benign. In this way, each client
has its own LengthClassifer, DistributionClassifier and DataTypeClassifier and each of them
separately builds the concept of what are the legitimate values for that attribute.

In a second time, when the AttributeModel switches to testing phase, each client will be
asked to evaluate the input and give its vote (malicious/benign). Using a majority vote
voting system, the AttributeModel will then consider the value as truly malicious or benign.

This whole system works under one assumption: I assume that the majority of the clients
sending traffic to the target web server are benign. Since usually legitimate users are much
more frequent than attackers, this should be reasonable enough. In this way, even if some
clients were malicious and thus they do not consider as anomalous another malicious input,
the hope is that there will be enough benign clients recognizing the attack, therefore obtaining
an overall malicious vote.

By implementing the learning per client and the concept of majority vote, we then solve
the problem of a contaminated data set for the training phase and we defeat the two main
limitations of the previous works in literature.

In fact, on one hand, Kruegel et al. in [1] make use of two different data sets for training
and validation and, in order for the system to work properly, they have to be clean from any
attack. This means that the inputs need to be collected in advance and undergo a cleaning
process if some malicious input is present. However, training and validation done in such a
way can cause the metrics to become obsolete very soon and therefore re-training (involving
the whole cleaning procedure) is required quite often. HTTPServer instead, learns, validates
and tests processing only real traffic from the customer network.

On the other hand, Krueger et al. in [2] implemented a system that is able to learn the
anomaly detectors using even contaminated data sets, but the setup of the system is not
fully automatic. In fact, a system administrator is needed to monitor the learning and
validation phases and to adjust some parameters. HTTPServer, instead, does not require
any human intervention to prepare the system: all the necessary parameters are read from
a configuration file and there is not a pre-processing phase to make the inputs ready to be
analysed.

2. Second, like the other sub-classifiers, the AttributeModel is periodically serialized on disk.
The AttributeModel stores a quite consistent amount of information and one object is created
for every parameter seen in the HTTP requests sent to the customer web server. As a
consequence, the quantity of memory used by HTTPServer at runtime and the chunk of disk
used when it gets serialized increases deeply as time passes.

In order to cope with this problem, an AttributeModel has a maximum number of clients it
can accept into the voting system. If the limit has been reached and a value from a client
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never seen before is received, the model implements a LRU (Least Recently Used) policy:
the information related to the client that did not send any input for the largest amount of
time is deleted and the new client is inserted in the model.

Moreover, the AttributeModel implements the concept of expiration of a classifier: a classifier
is defined as expired if it has not received any input in a certain amount of time (for instance
one day) and it is not fitted. This cleaning process works like a garbage collection mechanism.

Periodically, the AttributeModel object checks if there are any expired classifiers belonging
to the observed clients and it removes them from the corresponding dictionary. However,
instead of throwing away all the information collected so far, each classifier is merged into
a corresponding Default sub-classifier, which is not associated to any client. This is why
every sub-classifier overloads the + operator, allowing to perform the sum in a very easy and
straightforward way.

The idea is that, if in a certain amount of time a sub-classifier does not receive enough samples
to be fitted, probably it is not essential for the voting system and we can free memory and
space on disk. Anyway, the information is not all lost because the sub-classifier is merged
into the corresponding default one (until the default sub-classifier is not fitted, otherwise
nothing happens).

Therefore, the default sub-classifier of a sub-classifier collects all the inputs from unfitted
sub-classifiers belonging to different clients. As a consequence, a default sub-classifier can
contain any kind of input and we cannot assume that the samples are all benign like we do
when we consider the traffic separately for each client. This is the reason why the predictions
made by a default sub-classifier needs to be treated differently and have a different weight
compared to the others.

Since each sub-classifier can define the minimum number of samples it needs to be ready to
fit, it may happen that, for a certain client, some sub-classifiers expire and some not. In the
borderline case in which all the sub-classifiers of a client are expired and removed, the client
itself is considered expired and removed from the corresponding dictionary.

In conclusion, the expiration process has two main advantages. On one hand it avoids
consuming to much memory and space on disk for not very valuable information. On the
other hand, the information is not completely lost and can still be used to improve the
analysis, even if it is less reliable.

The workflow is the following:

1. A new instance of the classifier is created given the configuration file. In this phase, the
AttributeModel also creates one instance of each sub-classifier that is the default sub-classifier
for that kind.

2. When the add method is invoked, the AttributeModel first checks if the client (i.e. the source
IP address) has already been seen before. If not and the maximum number of clients has not
been reached, it creates an instance of each sub-classifier and it assigns them to that client.
If the maximum number of clients is already registered for the classifier, the LRU policy is
applied as explained above. Otherwise, if the client was already present, it is retrieved from
the pool, the timestamp of its last time activity is updated (it is needed for the expiration
process) and the value is used to train each sub-classifier if they are not yet fitted (invoking
again their add method).

3. The fit method receives as parameter the list of the client IP addresses that have one or more
sub-classifiers ready to be fitted. For every client in the list, the AttributeModel checks which
of its sub-classifiers can be fitted (invoking is ready for fitting) and it subsequently calls the
fit method. The AttributeModel has also the capability to force the fitting of a sub-classifier
even if it is not ready and this setting is enabled passing to the method an optional boolean
value.

Once the classifier are fitted, the AttributeModel also run the cleaning process as described
above.
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4. Finally, the predict method is used to determine if a certain value for the related attribute
is anomalous or not. As described above, the prediction makes use of a voting system. To
achieve this goal, the AttributeModel collects the predictions of all the sub-classifiers of all
clients. Then, if there are enough samples that gave an opinion (benign/malicious) about
the testing value, the model counts how many clients considered the value as malicious and,
if this number is higher than the 70% of the total voting clients, the value is flagged as truly
malicious.

The vote of a client consists of a combination of the predictions of its sub-classifiers. For the
time being, all the sub-classifiers are treated equally and therefore it is enough that one of
them gives a negative vote to make the client answering malicious.

Once a value is considered malicious, the AttributeModel collects the state of all the classi-
fiers giving a negative prediction. This step is extremely important because it provides the
upstream components (HTTPServerPlugin and HTTPServerDetector) with the information
needed to understand what led the AttributeModel to take this decision. The state will
undergo a further processing stage and it will finally be shown in the customer user interface
(UI) to help them have more context about what is happening in their network.

One important thing to notice is that, unlike the sub-classifiers, the AttributeModel never ends
the training phase and keep learning all the time while giving prediction once ready. In fact, while
the other classifiers do not receive values for training once they are fitted, the AttributeModel
keeps adding clients until a maximum number is reached and, even after that, the model does not
stop adding clients and it updates its metrics by replacing the oldest (i.e. less relevant) client.

In this way the AttributeModel is able to improve the accuracy of its predictions overtime. By
gradually increasing the number of clients that contribute to the voting system, it is more likely to
detect an anomalous value, given that the assumption that the majority of the clients contacting
the web server is benign holds.

Since there is not the concept of default classifier for the AttributeModel, it does not redefine
the + operator, while the length is defined as the sum of the lengths of the sub-classifiers of all
clients.

The class diagram is shown in figure 4.5.

Figure 4.5: AttributeModel class diagram.

This completes the analysis of the classifiers of the HTTPServer anomaly detector. The full
class diagram with all the relationships among the components is illustrated in figure 4.6.
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Figure 4.6: Classifiers class diagram.
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4.2 HTTPServerPlugin

HTTPServerPlugin is the main component of the whole system and it is a LLAnta plugin as
presented in section 2.4.2. It is scheduled any time a new web request is received by LLAnta and
it performs the core processing, in order to ease the work done later by the LLAnta detector,
represented by the HTTPServerDetector class.

When an instance of the plugin is created, it retrieves its attributes from a configuration
file. The same configuration file contains the settings for the AttributeModel class and all the sub-
classifiers and, therefore, it is stored by the plugin to pass it to every instance of the AttributeModel
class. Notice that an AttributeModel needs to store the configuration file to be able to pass it to
the sub-classifiers and that each AttributeModel is stored in the HTTPServerContext class, which
is periodically serialized on disk.

After the first deployment I noticed that this design choice has a consistent drawback. In fact
I did not take into account that there is a single configuration file for every plugin and detector
in LLAnta. Even if the size itself it is not big (it is currently around 6 KB), when replicated for
each attribute of each HTTP request, it was resulting in a huge waste and it was slowing down
the performance.

To solve this problem, when a new instance of the HTTPServerPlugin class is created, instead of
storing the full configuration file, the plugin just keeps the options needed by the AttributeModel
and the sub-classifiers. The file will still be replicated for every AttributeModel but its size is
irrelevant, as it only contains very few parameters.

The HTTPServerPlugin receives web requests in the form of IDSURL objects, whose class
diagram is shown in figure 4.7:

Figure 4.7: IDSURL class diagram.

When the plugin is scheduled it processes the web request only if its destination IP address
belongs to the customer network, named managed network. LLAnta automatically learns the
boundaries of the customer network, that can differ from the actual reality.

The basic architecture for a network in LLAnta is based on a python NetworkGraph. A Net-
workGraph is a direct graph based on networkx.DiGraph. Each node of the composed graph is an
IP address. A directed edge between two nodes exists if there has been a connection between the
two IP addresses and the direction is determined according to the source and destination of the
connection. Upon receiving an URL (i.e. an IDSURL object) both source IP and destination IP
(and their relative edge) are added to the graph.

It is important to notice how each entry in the graph, nodes and edges, have an expiration
timeout. Upon insertion, each entry is assigned with the timestamp of the input source that
generated that entry. This timestamp is updated each time a new input is received with the same
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data (source, destination, connection). The network periodically checks its entries and delete every
entry whose timestamp is older than a certain configuration parameter.

Once assessed that the target host of the web request belongs to the protected customer network,
the plugin extracts the parameters and corresponding values. These are obtained parsing the URL
of the request with the urlparse library as for the the DataTypeClassifier. In this scenario, the
query component is needed because it contains the string with the parameters and values.

Since we deal with malicious inputs, before processing this string to get the singles attribute-
value pairs, it needs to be manipulated in order to avoid parsing errors. More in details, I decode
any url-encoded = character (represented by the sequence %3d) and I encode any ; character (which
is converted into the characters %3B). The first step is needed because sometimes malicious inputs
encode the = character (used in a query string to associate the attribute name to its value) to hide
the attribute-value pair. The second modification, instead, is required because in old times the
; character was allowed together with & to separate the attribute-value pairs. urlparse supports
the ; character as separator for backward compatibility, but this often results in parsing errors,
especially in case of command injection attacks.

When all the attributes with their values are retrieved from the web request, the plugin starts
the actual processing. Notice that the same attribute can appear multiple times in a query and it
can also have an empty value. In the first case all the values are considered independent and they
are handled in sequence. Empty values, instead, are discarded and they do not contribute to the
analysis.

HTTPServerPlugin stores the AttibuteModels inside an instance of the HTTPServerContext
class, an example of LLAnta context. An AttributeModel gets created for each analyzed parameter,
separately for each resource path hosted by the target web server (similarly to what is done in [1]).
During an early development stage, instead, only one model was created for a certain parameter
name of an HTTP query. However, it is true that how a parameter is used internally can differ
from a web application to another one and that a single web server (identified by its IP address)
can also host multiple web applications. For instance, a certain URL could expect to receive an
attribute ”id” as a numerical value only, while another one could treat the same parameter as
an alphanumerical value. If one model only is created for this parameter, it would not correctly
represent the behavior of the traffic targeting the web server and the analysis would be skewed.

When the plugin processes an attribute, it retrieves the corresponding AttributeModel from the
context, which creates a new AttributeModel if the attribute was never seen before or returns the
one already present. Then, the plugin both adds the attribute value(s) to the model for training
and make a prediction on them. This can seem an erroneous design choice because it seems that
the same values are used both for training and testing. However, the AttributeModel class is
built in such a way that while training it will not return a prediction on the input (therefore the
predict will not perform any action). On the other hand, if all the AttributeModel sub-classifiers
are already fitted and the input comes from a client already seen before, the add method will be
ineffective and only the prediction will be done.

If for the current value the prediction cannot be obtained yet or the value was considered benign,
the plugin continues with the processing of the following parameters and values of the web request.
Otherwise, if the value is deemed as malicious, the plugin stores the evidence associated with the
prediction, that corresponds to the state returned by the AttributeModel’s predict method.

Once all the parameters and corresponding values have been processed by the plugin, if there
has been at least one pair considered as malicious, the plugin creates an alert and stores it in the
context. An alert is a llanta.service.objects.Alert object, whose class diagram is shown in figure 4.8.
An Alert is the only way LLAnta has to communicate with the upstream node (the Manager) and
report that something is wrong in the customer network. When the Manager receives an Alert, it
processes it and it extract from it some crucial information that will be then shown it the customer
in the user interface.

A LLAnta Alert contains a lot of data, mainly concentrated in two components:

• AlertURL: it contains high-level information about the URL that raised the alert, such as
the HTTP method, the protocol, the name and the path.
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• AlertEvidence: this object includes general information about the alert itself. In particular
it carries the state of the anomaly detector that led to the raise of the alert. Concerning the
HTTPServer anomaly detector, the alert state consists of the sequence of all the sub-classifiers
that considered a given attribute value as malicious.

By design only a LLAnta detector can send the Alerts to the Manager. Therefore, HTTPServer-
Plugin creates partial Alerts objects (because some fields can be filled only by the detector) and
it stores them into the context. They will be later on further processed by HTTPServerDetector
and uploaded upstream.

Figure 4.8: Alert class diagram.

Once the alert object is created and saved, the plugin terminates the processing of the input
web request and it is ready to work on the next one.

Notice that the plugin does not store anything locally but, instead, both the AttributeModels
and the Alerts are stored in the HTTPServerContext. This is done for multiple reasons. First,
this information cannot be lost in case of reboot or system failure and, therefore, the context is
the right place to put all of it since it gets periodically serialized on stable storage. Moreover, the
context is shared between a LLAnta plugin and detector and this comes particularly handy for the
HTTPServer anomaly detector because the detector needs to access and process the Alert objects
generated by the plugin.

Beside the main processing function, invoked whenever a web request is received by the LLAnta
instance, every plugin implements also a flush method, which is periodically called every 5 to
10 minutes. This method is usually meant to produce LLAnta Facts, general properties (non
malicious) associated to hosts inside a monitored network. For instance, a LLAnta plugin could
learn the operating system running on a certain host, or the host role inside the network (such as
name server or email server).

However, HTTPServerPlugin is not designed to generate any Fact. Instead, it performs three
main actions:

• Fit the AttributeModels: every time the method is invoked it accesses the context and
goes through all the AttributeModels created so far. For each of them it checks if there are
one or more clients that have sub-classifiers ready to be fitted and, if any, it proceeds to fit
them.

• Trigger a cleaning process: in section 4.1.5 I introduced the cleaning process performed by
the AttributeModel class. Eventually if an AttributeModel does not receive enough inputs
after a certain amount of time (in the order of days), it will become degenerated, i.e. it
will be an empty skeleton without any sub-classifier associated to a client. When reaching
this condition, the AttributeModels are useless in the sense that they cannot provide any
prediction and, since they have not been trained in a long time, it is likely they are not
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samples of the attribute population crucial for the analysis. Therefore, the flushing includes
the periodic cleaning of all the degenerated AttributeModels from the context.

• Reset the evidences: at every flush the plugin discards the evidences collected so far related
to all the attribute values deemed malicious. This is done to save memory and it does not
affect at all the following analysis. In fact the information stored in the dict containing the
evidences is saved in the corresponding Alert objects.

The class diagram of HTTPServerPlugin is shown in figure 4.9.

Figure 4.9: HTTPServerPlugin class diagram.

4.3 HTTPServerContext

As explained in the introduction to the company, The LLAnta context is the main way to exchange
unstructured information between plugins and detectors. The context is local to a given module
and it is shared by the plugin and the detector defined inside the module itself. It is a a key-value
data structure, similar to a python dictionary. It therefore allows to store data identified by a
unique key and, unlike a classic dictionary, it is possible to set an expiration timeout for the stored
information.
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The content of the context will be serialized and loaded out of the LLAnta state during flush
operations (i.e. periodically every 5 to 10 minutes). As a consequence, the content of the con-
text must be JSON serializable and the classes deriving from the interface represented by the
AbstractContext class need to implement the two methods json encode and json decode, invoked
when serializing and deserializing respectively.

Besides the methods required by the abstract interface, HTTPServerContext also defines other
helper methods. In fact, HTTPServerPlugin is designed in such a way that it uses HTTPServer-
Context as a façade class. The façade pattern is a software design pattern commonly used in
object-oriented programming.

Façade pattern is classified as a structural design pattern. This design pattern is all about class
and object composition. It is used as a camouflage to cover the complexities of a large system
and therefore provides a simple interface to the client. Analogous to a façade in architecture, a
façade is an object that serves as a front-facing interface masking more complex underlying code
In other words, it is a wrapper class used to hide the implementation details and allows interaction
by exposing a set of methods (API) to the client. Moreover, this design pattern, by hiding the
implementation details, also improve the readability and usability of of the code.

HTTPServerPlugin makes use of HTTPServerContext to provide a simple interface to the
AttributeModel and Alert objects stored in it. Three methods are defined for this purpose:

• get attribute model: this method is invoked by the plugin every time it needs to provide a
training value or to receive a prediction for the value of a certain parameter. More in details,
this function returns the AttributeModel corresponding to the parameter under analysis and,
if it is the first time a value is received for that attribute, it creates the AttributeModel and
provides it to the plugin. Therefore, this is the method used by the plugin to access all
the information is generated over time. Remember that an AttributeModel is created for
each parameter analyzed by the plugin, separately for each resource path hosted by the web
server.

• clean: at every periodic flush operation, the plugin attempts to save same memory and
space on disk by trying to remove some useless AttributeModels from the context. Therefore
the cleaning process performed by this method removes from the context all the degenerated
AttributeModels.

• set alert: when the plugin identifies a web request that contains some malicious parameters
it creates an Alert object and it stores it in the context. Unlike the AttributeModels objects,
the Alert objects are not saved in the context to keep a state of the traffic processed by
the plugin and to be resilient to failures (i.e. to be able to restore as much information as
possible if the LLAnta instance crashes or gets restarted), but instead this is done to allow
HTTPServerDetector to access these data and perform further processing on them.

The complete class diagram for the context is shown in figure 4.10.
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Figure 4.10: HTTPServerContext class diagram.

4.4 HTTPServerDetector

LLAnta detectors are modules that work in cooperation with the plugins. They can perform
heavier computation with respect to the plugins and they are in charge of generating anomaly
alerts.

Like the plugin, a detector need to register itself to the input family they want to process.
The input data type that should trigger the scheduling of the detector is defined by the TRIG-
GER TYPE function. If the detector is meant to react only to a given type of data (for instane a
web request), this method returns the corresponding input type. Otherwise, if the default value is
used, it will cause the detector to be triggered by any type of activity.

When the detector receives an input that matches with what is defined in TRIGGER TYPE,
trigger check is invoked to decide whether a specific input should actually trigger it or not. This
allows a more fine-grained control over what TRIGGER TYPE allows, although the two can be
combined together. All the inputs matching a given TRIGGER TYPE will call this method that
will decide whether the detector should be triggered based on some specific condition of the input.
Concerning HTTPServerDetector, trigger check triggers it if there is at least one alert in the
context.

Once the detector receives an input that would trigger the processing logic, SCHEDULE DELAY
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defines the amount of seconds llanta should wait before executing the detector on a managed host
after the first activity from/to the host is detected. The intuition here is that we want to ensure
that, after some activity is detected, we let it run ”long enough” to leave a detectable fingerprint
in the network state. This value is potentially detector-specific.

The actual detector logic is stored in the run method, which is implemented by every class that
derives from AbstractDetector and it is invoked for the correct input type and after the defined
seconds of delay. More in details, the HTTPServerDetector workflow is the following:

1. Retrieve from HTTPServerContext the anomaly alerts reported by HTTPServerPlugin. The
alerts in the context are grouped for each resource path targeted by the potential attack and
for each client (source IP address) that sent the web request. Along with the alert object,
the attribute-value pairs that raised the alert are saved in the context.

2. Apply a filtering mechanism to reduce as much as possible the number of false positives: for
each alert related to a given resource path, the detector checks if the same attribute-value
pairs that raised that alert were reported by other clients with respect to that resource path.
If all the attribute-value couples are reported by at least max clients different IP addresses,
the current alert is considered a false positive and discarded. Moreover, the client IP is
inserted into a whitelist.

3. At the end of the filtering process, the detector removes all the remained alerts generated by
an IP address belonging to the whitelist. Notice that this can cause the cleaning of alerts
related to a different resource path than the one in which the false positive was founded,
increasing the overall accuracy.

4. Once the final list of alert objects is obtained, the detector fills the information required
to complete them (i.e. the information that the plugin did not have because it is detector-
specific). Then all the data stored in the context are removed to save space on disk and
memory and the list contaning the alerts is returned to the upstream Manager.

The class diagram of HTTPServerDetector is shown in figure 4.11.
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Figure 4.11: HTTPServerDetector class diagram.

Finally, to summarize the structure of the whole system, the complete class diagram of every
HTTPServer component with the corresponding interactions among them is shown in figure 4.12.
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Figure 4.12: HTTPServer anomaly detector class diagram.
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4.5 Testing

Testing is a core part of the development process, especially when the code base of a project is very
large, like in LLAnta. Testing is a process of executing a program with the aim of finding error.
To make the software perform well, it should be error free and, if testing is done successfully, it
will find many bugs.

Following a bottom-up approach, there are at least four levels of testing, as shown in figure
4.13:

1. Unit Testing: is a level of software testing where individual units/ components of a software
are tested. The purpose is to validate that each unit of the software performs as designed.

2. Integration Testing: individual units are combined and tested as a group. The purpose
of this level of testing is to expose defects in the interfaces and in the interactions between
integrated components or systems.

3. System Testing: at this level a complete and integrated software is tested. The purpose of
this test is to evaluate the system’s compliance with the specified requirements.

4. Acceptance Testing: the last level, where a system is tested for acceptability. The purpose
of this test is to evaluate the system’s compliance with the business requirements and assess
whether it is acceptable for delivery.

Figure 4.13: Testing methodologies.

What I did for the HTTPServer anomaly detector is to write a complete suite of Unit tests. This
of course is a best practice when new software is developed from scratch, but it is also mandatory
because, according to Lastline’s coding policies, a piece of code cannot be used inside a product if
it has not been properly tested and the overall code coverage is at least 90%. This is why, among
all the testing levels, I will focus on the first one.

In Unit testing, a unit is the smallest testable part of any software. It usually has one or a
few inputs and a single output. In object-oriented programming, the smallest unit is often a single
method, but it can also be a whole class. By writing tests first for the smallest testable units,
then the compound behaviors between those, one can build up comprehensive tests for complex
applications. Performing using testing provides several advantages:

• Problems are found early in the development cycle. The cost of finding a bug before coding
begins or when the code is first written is considerably lower than the cost of detecting,
identifying, and fixing the bug when the code is in production. Bugs in released code may
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lead to the crash of some components and, especially for critical applications such as health
and banks, this can cause risks to the end user and a potential loss of money.

Moreover, the process of writing the test while developing the code to be tested itself forces
the programmer to think about all the possible inputs and outputs and about the intended
behavior, thus enhancing the overall quality of the product.

• It can be used in a bottom-up testing style approach. By testing the parts of a program first
and then testing the sum of its parts, the next level of software testing, integration testing,
becomes much more straightforward.

• Code is more reusable. In order to make unit testing possible, a piece of code needs to be
self-contained. This means that a snippet of code becomes an independent module and it is
much easier to reuse.

• Changing and maintaining code becomes easier. If good unit tests are written and if they are
run every time any code is changed, it is possible to immediately identify any bug introduced
due to the change. As a consequence, also debugging is easier because, when a test fails, only
the latest changes need to be investigated. Instead, with testing at higher levels, changes
made over a consistent amount of time (days or even weeks or months) need to be analyzed.

On the other hand, there are also some drawbacks. For instance, unit testing can only show
the presence or absence of some errors, but they cannot prove a complete absence of errors. This
because it is impossible to evaluate any execution path for a program, especially if the code base
is very large (as it happens for every consolidate industrial product). This is the reason why unit
testing needs to be combined with the other layers described in figure 4.13. Moreover, another
problem one faces when writing the tests is the difficulty of setting up a realistic and useful
environment. It is necessary to create relevant initial conditions so the part of the application
being tested behaves like it would in a real world scenario. If these initial conditions are not set
correctly, the test will not be realistic and it would be useless.

When writing a unit test, it is important that each test case is run independently, in order to
isolate issues that may arise. It is not as easy to create unit tests when the unit interacts with
something external to the module itself. For instance, if a class depends on a database, the test
should not query directly the database but, instead, it should adopt an abstract interface around
that database connection and use some kind of replacement for the database. Substitutes such as
method stubs and mock can be used to assist testing a module in isolation.

Following the company policy for testing the code, I used mock objects to achieve module
isolation. Mock objects have gained a lot of popularity in the last years and they are one form of
special case test object, one that enables a different style of testing. In fact, they are often confused
with the more common concept of stub, even if there exists two main differences. On the one hand
there is a difference in how test results are verified: a distinction between state verification and
behavior verification. On the other hand it is a whole different philosophy to the way testing and
design play together [11].

Commonly, the process of writing a test includes four phases:

1. Setup: the environment for a realistic execution is created.

2. Exercise: the test is actually performed, meaning that all the operation required by the test
are executed on the unit.

3. Verify: confirm that the expected conditions are satisfied, by checking if the exercised
method carried out its task correctly.

4. Teardown: perform all the actions needed to restore the state of the system as it was prior
the execution of the test, such as freeing the memory from the used objects. Sometimes this
phase can be implicit, a task left to the garbage collector in some languages (like python or
java).
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The target of a unit test is often a single object, which is named differently in literature like
object-under-test or system-under-test. In the following it will be used the widely accepted term
system-under-test, abbreviated as SUT, presented by G. Meszaros in [5]. A SUT usually needs to
interact with one or more objects that are outside the scope of the test itself and these are called
collaborators.

As introduced above one style of testing uses state verification: it determines whether the
exercised method worked correctly by examining the state of the SUT and its collaborators after
the method was exercised. This approach is generally chosen when using stubs.

On the other hand mock objects enable a different idea to verification, behavior verification,
which checks if the SUT object operates as expected. This method is slightly different from
the previous one. To begin with the Setup phase it is divided in two: data and expectations.
The data part sets up the objects we are interested in working with, like it happens for state
verification. However, the objects that get created are different. In fact, the SUT is the same, but
the collaborators are mock objects (an instance of the Mock class), not the objects used in release.
The second part of the setup creates expectations on the mock object. The expectations indicate
which methods should be called on the mocks when the SUT is exercised [11].

Secondly, once the setup phase is done and the expectations are in place the exercise phase
gets executed and it is the same as the state verification. What differs, instead, is the verification
phase, which is divided in two like the setup phase. In the first step the conditions required by the
test are verified as above. In addition, also the mock objects are verified checking that they were
called according to their expectations.

The key difference then is how the verification is done. With behaviour verification the check is
done by telling the mock what to expect during setup and asking the mock to verify itself during
verification.

The vocabulary used to refer to these objects that replace the real ones to perform tests is very
wide and often misleading in literature. Meszaros in [5] uses the term Test Double as the generic
term for any kind of pretend object used in place of a real object for testing purposes. Moreover
he introduces five particular kinds of double:

• Dummy objects: objects never actually used and often needed just to fill the parameters in
a method.

• Fake objects: objects actually have working implementations, but usually take some shortcut
which makes them not suitable for production (for instance an in memory database example)
[11].

• Stubs: crafted to provide custom answers when a call is made during a test and they usually
do not respond to any call outside of the scope of the test.

• Spies: similar to stubs, they also record some information based on how they were called.

• Mocks: objects pre-programmed with expectations which form a specification of the calls
they are expected to receive.

Among all these kinds of double, only mocks make use of behavior verification. A stub usually
focuses on state verification, even if it can go for behavior verification if some particular expedients
are applied.
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Results

Evaluating the performance of a system of such complexity is not an easy task. In order to provide
quantitative measures as exhaustive as possible, I tested my anomaly detector using different
techniques and in multiple scenarios, so that the obtained results are meaningful. Regarding
the comparison with the work presented in literature, on one hand it is possible to compare the
performance with the product developed by Kruegel et al. in [1] but only partially, because the
data sets they used for their analysis are not available. On the other hand, the system presented
by Krueger et al. in [2] has a different structure and different purposes with respect to my work
and the one in [1], because it mainly aims at healing the malicious inputs instead of reporting
intrusions. As a consequence, the scope of this product is different and a comparison would not
be very significant.

To begin with, I divided the performance tests in two main categories: offline and online tests.
The first class deals with data collected from different sources and stored on disk, ready to be
processed at any time. On the other hand, instead, online tests process the traffic as soon as it is
received and nothing gets stored on stable storage. More details are given in the related sections.

Before running the tests, the system is configured according to the following combination of
parameters (that has proven to be the most effective):

• HTTPServerPlugin triggers the flush every 1000 processed web request.

• Each AttributeModel requires a minimum of 1 client with one or more fitted sub-classifiers
in order to start returning predictions.

• Each LengthClassifier requires at least 10 samples to be ready to fit.

• Each DistributionClassifier requires at least 10 samples to be ready to fit.

• Each DataTypeClassifier requires at least 15 samples to be ready to fit.

5.1 Offline Tests

Offline tests are a good indicator of the performance of a system because they allow to handle data
sets in a much easier way than online tests, because they are not volatile but they are saved in one
or more files. Therefore, the results are reproducible because the data do not change overtime and
multiple measurement techniques can be used to assess the behavior of the system using always
the same sample of inputs but from different points of view. As a consequence, I focused mainly
on these kind of tests to collect the results of my anomaly detector.

More in details, I collected the data needed for the tests following two approaches. On hand
I developed a web crawler in order to quickly generate HTTPS traffic (notice HTTPS and not
HTTP) towards web server of my choice; on the other hand I directly downloaded real customer
data sniffed by Lastline sensors and I used them to validate my work on real world traffic.
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One thing to notice is that here the analysis performed by my anomaly detector is slightly
different from what happens when it processes real customer data. In fact, when performing
online tests, each web request is processed as soon it is received. Depending on the traffic load
of the customer, this means that between one web request and the following one there may be
also a consistent interval of time. Since the whole system (cleaning process, plugin flush, detector
scheduling) is somewhat coordinated by time constraints this can lead to different behaviors with
respect to offline tests.

In the offline setup, in fact, the anomaly detector processes the web request as fast as possible
(because all the data are already available), the flushing process does no longer depends on the
time but it is triggered periodically after a certain amount of web requests are analysed and the
detector is scheduled only once, after the plugin has handled the whole data set. This differences
can skew the results and this is why also online tests are performed.

5.1.1 Web Crawler

I wrote a simple web crawler using the well-known python framework scrapy [10]. A Web crawler,
sometimes called a spider or spiderbot and often shortened to crawler, is a bot (i.e. an automated
process) that systematically browses the Internet according to a given policy.

The script I wrote takes as input a domain name and an URL. Then, starting from these two
seeds, it parses the initial web page and recursively visits all the URLs contained in it if they
belongs to the specified domain. I ran the crawler using the Twitter domain (twitter.com) and a
Twitter page as starting seeds and I collected roughly an hour of traffic.

Notice that the traffic generated towards the Twitter web server is HTTPS and, therefore,
encrypted. In order to have access to the parameters and values of GET requests I need first to
decrypt the traffic and analyze it in clear text. Of course, normally this is not possible. To face
this issue, I downloaded and installed a Lastline sensor on my working laptop and I configured it
to act as an explicit proxy, as detailed in section 2.3.2. More in details, working in this operation
mode, the sensor is able to perform TLS decapsulation on the HTTPS traffic (i.e. it is able to
decrypt the proxied traffic and process the content in clear text).

Therefore, when the sensor receives a web request from the crawler, it decrypts it and uploads
the content to the corresponding Lastline Manager, that will store the request into a database.
Afterwards, I was able to access this database, download all the data (in JSON format) and provide
them as input to the HTTPServer anomaly detector.

Notice that this approach presents another limitation (on top of the ones described above):
since the traffic is generated by one machine alone, there will be one client only in the data set
and, as a consequence, the voting system implemented in the AttributeModel class is not used in
practice.

The result of the analysis of 11718 web requests are provided in figure 5.1. The bar chart
is read in this way: over 8820 parameters value analyzed by the HTTPServer anomaly detector
in testing mode (i.e. after having considered done the training and validation phases), 20 values
were considered anomalous and flagged as false positives. All the detections are considered false
positives because the crawler simply recursively follows the links starting from a seed web page.
Therefore, any web request is legitimate, unless the web page has been infected with malicious
content (but this is unlikely for the test cases I used). As a consequence, this traffic can be used
only to assess the number of false positives generated by my anomaly detector.

From the chart it is possible to quickly compute the false positive rate (FPR), defined as:

FPR =
FP

FP + TN
(5.1)

where FP is the number of false positives and TN is the number of true negatives. For this data
set:

FPR =
20

8820
= 0.0023 = 0.23% (5.2)
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Figure 5.1: Results from the Twitter domain.

In comparison with the FPRs obtained in [1], with values between 0.01% and 0.07%, this result
seems much worse but remember that the system worked with limited functionalities with a data
set that does not really represent the real world traffic that targets a web server.

However, this was the first experiment I performed when I was not able to collect actual
customer data because I did not have the permissions to access the database during the first
months of my internship. Once I got these permissions, I was able to better evaluate my anomaly
detector and to simulate more complex and complete test environments.

5.1.2 Offline customer data sets

Lastline provides two operation modes for its products: hosted and on-premise. When configured
as hosted, all the data collected by the system components (mainly coming from the sensors) are
uploaded to a Lastline Manager which is maintained by the company itself and the data are stored
into a database hosted in the cloud. This means that Lastline has visibility over all the traffic
entering and exiting the networks of the customers with an hosted license.

On the other hand, certain customer deal with very sensitive information (think about banks
or military companies). Therefore, they do not want or they cannot share these data with Lastline
and, to cope with this issue, they purchase an on-premise license. In this configuration, all the
traffic is handled by a Lastline Manager that belongs to the customer itself and also the database is
local and it resides in the customer network. In this way, Lastline is able to provide all its services
without having any insight on the traffic, thus avoiding all the possible controversies, for instance
those privacy related.

Once I got enough permissions, I was able to access the database that stores the traffic targeting
the network of the customers with an hosted license. Among all the customers, I chose two web
servers for my analysis: one with a public IP address and one with a private one.

The first address belongs to a web server inside the network of the Tokyo Institute of Technology.
The choice was driven by the fact that the university exposes to the Internet an huge network (with
a /16 netmask). This means that the web server is reachable by any host in the Internet and, as a
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consequence, it is subject to receive any kind of traffic, both malicious and benign. For instance,
I noticed that this web server in particular, is often target of vulnerability scanners, an optimal
source of malicious inputs.

The second data set, instead, correspond to a JetBrain ”Floating License Server”, an on-premise
application that you can install in your company’s infrastructure to enable automatic distribution
of JetBrains floating licenses [12]. Being a web server with a private IP address it cannot be
directly contacted from the public Internet and, therefore, it receives an amount of traffic much
smaller than the one towards the first web server. Moreover, it is less likely to receive malicious
inputs because the server can be reached only from within the customer network, meaning that
if it receives suspicious data, they probably come from an infected internal host or they are the
result of misconfiguration errors.

For each web server, I downloaded two separate data sets containing traffic equivalent to about
three working days (I avoided the weekends because, as expected, the activity is much less). Then,
for each of the data sets, I applied a cross-validation algorithm to ensure that the system has got
most of the patterns from the data correct, and it is not picking up too much on the noise, or in
other words it is low on bias and variance.

Cross-validation helps dealing with problems such as underfitting (the system is not able to
extract enough features from the training data and performs poorly) and overfitting (the system
handles perfectly the training set but it is not able to generalize to different data). There are
several different cross-validation techniques, and I used the well known KFold.

KFold splits the input data set into k smaller chunks and then it uses k-1 chunks for training
and one for validation. The general procedure is the following:

1. Shuffle the data set randomly.

2. Split the data set into k groups.

3. For each unique group:

(a) Take the group as a hold out or test data set.

(b) Take the remaining groups as a training data set.

(c) Fit a model on the training set and evaluate it on the test set.

(d) Retain the evaluation score and discard the model.

4. Compare the metrics derived from each iteration.

Notice that each sample is given the opportunity to be used in the hold out set 1 time and used
to train the model k-1 times. I set k to 10 because this is the value that has been found through
experimentation to generally result in a model performance with low bias and modest variance.

However, due to the way my anomaly detector is designed, the concept of cross-validation does
not apply properly. In fact, given a data set, the goal of a cross-validation technique is to split that
data set into a training set and a validation set and to measure the performance of the model. Since
HTTPServer does not have a clear separation between training and validation (the sub-classifiers
continue training until they are not ready to make a prediction and the AttributeModel is always
in training mode), cross-validation can be used just to perform a permutation of the inputs given
to the model and to see if the false positive rate significantly increases or decreases.

Figures 5.2 and 5.3 shows the results obtained by providing as input to HTTPServer the two
data set containing the traffic towards the Tokyo Institute of Technology. Each data set contains
1000000 HTTP GET requests with a non empty query string, meaning that all the web requests
are used by the system.

In the chart there are ten group of three bars, one for each round of the KFold algorithm and,
for each round, I collect the number of attribute values for which the system gave a prediction
(i.e. after having completed the training phase), the number of suspicious values and the number
of false positives (that I computed manually after each iteration of the algorithm).
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Figure 5.2: Tokyo Institute of Technology 1

Figure 5.3: Tokyo Institute of Technology 2

At a first glance, it is possible to observe that, for both the data sets, the trend of the metrics
is practically constant. From a quantitative point of view, the minimum, maximum and average
false positive rates for both the data sets are provided in equations 5.3 and 5.4 respectively.

min FPR 1 = 0.03% max FPR 1 = 0.06% avg FPR 1 = 0.05% (5.3)

min FPR 2 = 0.07% max FPR 2 = 0.09% avg FPR 2 = 0.08% (5.4)

I applied the same logic to the other two data sets, each of them containing 10000 records
collected in the same amount of time as the previous example. Notice the number of web requests
(two order of magnitude less than the data set from the Tokyo Institute of Technology) that is in
line with the fact that this second web server is private and it receives much less traffic.

66



5 – Results

Figure 5.4: JetBrains License Server 1

Figure 5.5: JetBrains License Server 2

I obtained the results reported in figures 5.4 and 5.5 respectively.

Like for the first example, the quantitative measures of the false positive rates are illustrated
in equations 5.5 and 5.6.

min FPR 1 = 0.006% max FPR 1 = 0.02% avg FPR 1 = 0.01% (5.5)

min FPR 2 = 0.004% max FPR 2 = 0.02% avg FPR 2 = 0.01% (5.6)

As expected these latter results look better than the previous ones, always because this second
web server should be less exposed to potential attacks. Moreover notice that, of course, the pattern
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of the traffic targeting the two sample web servers is very different. In fact, when processing the
data set from the Tokyo Institute of Technology, even if the number of web requests is much higher,
the number of attribute values for which a prediction is given is in the order of 50 thousands for
the first batch and 30 thousands for the second.

The internal web server, instead, on average receives web request with a bigger number of
parameters and therefore, even with only 10000 web request in each data set, the number of
predictions is in the order of 80 thousands for both samples. This means that it is quite hard to
compare the performance of the system with data sets related to different sources. because the
traffic pattern is very dependent on the type of the applications exposed by the specific web server
and on how it interacts with its clients. However, if we want to make an analogy with the results
obtained by Kruegel et al. in [1], the performance of the HTTPServer anomaly detector are similar
and, in some scenarios, even better.

5.2 Online Tests

Every LLAnta module is designed to process the input as soon as they are received and, usually, it
means as soon as the traffic is sniffed by the sensor. The working environment is, therefore, very
dynamic.

Once the HTTPServer anomaly detector was ready to go in production, it was at first deployed
in a testing environment, where a bunch of pcap files are replayed in loop to generate some traffic.
The goal of this first stage is to make sure that the detector works, in the sense that it does not
crash and it does not generate too many alerts, symptom that something is off. Yet at this early
phase there may be some issues to face that are not highlighted by the unit tests. For instance,
I needed to solve a couple of problems, such as a wrong use of the configuration file (that was
causing a big waste of space on the disk) and a bug in the serialization (that was crashing the
python module in charge of storing the context on disk and, as a consequence, nothing was saved
on stable storage).

After these minutiae are fixed and the detector is stable for a couple of days, it is deployed
also in one host where a LLAnta instance is running. This host controls the networks of few
real customer and receives the traffic from the installed sensors. The system is then monitored
for roughly a week and, if everything looks fine and the module works without creating problems
to the whole LLAnta ecosystem, it is finally deployed in all the LLAnta instances processing the
inputs from all the Lastline customers.

During all the stages, checking the behavior of the system is not an easy task. For every host
where there is a running LLAnta instance I can access a dashboard collecting some metrics, such
as:

• Plugin processing time.

• Flush duration.

• Detector processing time.

• Number of alerts generated by the detector.

However, all these statistics are related to the LLAnta instance active on the analyzed host. This
means that, since the host receives traffic coming from more than one customer, the information of
different customers is mixed together. For instance, regarding the number of generated alerts, it is
impossible to tell which alert was generated by which customer by just looking at the dashboard
and without going to manually check in the database. Notice that, since each alert and the related
information appears in the customer user interface, it would be much easier to access the customer
dashboard and investigate from there but, since my module is new, it is not currently supported
in the UI.

Therefore, the only thing I could do was to monitor the behavior of the system by looking at
the dashboard and to make sure that the various graphs made sense. Given the huge amount of
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processed traffic, it is impossible to manually investigate each event to assess if it is a false positive
or not.

Figure 5.6 shows a graph with the alerts generated by the 11 customers handled by a LLAnta
instance. Over 30 days of analyzed traffic there was a maximum of 24 alerts and an average of
4 alerts per day. Notice that these number are perfectly manageable even if all the alerts were
actually false positives, because a network analyst can quickly investigate them without loosing
hours of work.

Figure 5.6: Alerts generated over 30 days.
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Conclusions

During my internship at Lastline I developed HTTPServer, a modular anomaly detector system
for HTTP traffic that has been successfully integrated in the company’s network analysis tool,
LLAnta. For this job, I took inspiration mainly from the ideas presented by Kruegel et al. in [1]
and by Krueger et al. in [2].

However, unlike the other systems in literature, HTTPServer is specifically designed to process
traffic in real time as fast as possible, in order to be able to report potential breaches as soon as they
are detected. For these purposes, it is essential that the single components (HTTPServerPlugin,
HTTPServerContext and HTTPServerDetector) are light enough to keep up with the traffic load
targeting the customer network. The more time HTTPServer requires for its processing, the
more delay is introduced in LLAnta, which can lead to an always increasing degradation of the
performance. This can eventually cause the drop of potential relevant data if it cannot handle the
speed at which the data come, that is a severe flaw for a cybersecurity company.

Moreover, also the context in which my anomaly detector is designed to operate is different
with respect to the literature. In fact, both the ideas in [1] and [2] propose their solutions to a
supervised machine learning problem. This means that there is either the possibility to access a
clean training set (i.e. composed by benign data only) as in [1], either the system goes through a
setup procedure before start working properly where a system administrator can properly tune all
the parameters and deal with false positives, as in [2]. In both cases, there is an a priori knowledge
of the type of traffic is going to be used to train the model.

HTTPServer, instead, performs unsupervised machine learning. The traffic targeting a certain
web server is specific to that customer and to the type of the exposed application. As a consequence,
besides truly malicious inputs, what is considered anomalous for one customer can be considered
perfectly benign for another one. For instance, a certain web server could expect to receive an
attribute ”id” as a numerical value only, while another one could treat the same parameter as an
alphanumerical value.

In this working scenario it is impossible to have knowledge of the kind of traffic is going to
be processed by the anomaly detector and, especially for web server exposed to the Internet, it
is not unlikely that malicious traffic is received during the training phase. By not being able to
assure that the training phase only deals with clean data, it is a quite complex challenge to allow
the detector to recognize benign inputs from malicious ones. HTTPServer is able to adapt to the
traffic of the particular web server it is protecting and it does not require any external data set
to work properly. Thanks to its design and the introduction of the client voting system for an
AttributeModel, it is very robust to the presence of outliers and the obtained results are at least as
good as the ones presented in [1], even in a more difficult working context. This innovative feature
is the main contribution I achieved during my internship.

The whole system should work under the assumption that the majority of the clients contacting
the web server produces benign traffic, so a potential malicious client will not affect the creation of
the model in a decisive manner. Moreover, I expect malicious inputs to have different character-
istics and to follow different patterns than benign ones. In particular, these where my hypothesis
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regarding each single sub-classifier that profiles the traffic:

• LengthClassifier: benign attribute values should have a length that does not vary too much
between requests associated to a certain resource path. Attacks such as buffer overflows
or Cross-Site scripting require to deliver a large payload that often exceeds the length of
legitimate parameters.

• DistributionClassifier: parameter values usually show a regular structure, for instance by
containing only printable characters. However, it is common in BOF attacks to send binary
data with a completely different distribution. This is true also for directory traversal exploits,
where there is a repetition of the dot character, which can be unusual, and for SQL injection
attempts.

• DataTypeClassifier: this classifier determines the data type of a certain parameter. If an
attribute belongs to a particular class it is very unlikely that values not matching the data
type are benign, even if they do not show attack-specific patterns (such as binary or large
payload). This can be useful to spot attackers probing a web server for vulnerabilities by
sending random inputs.

If all the above assumptions hold, and in general they do since they are quite reasonable,
HTTPServer should be able to detect not only truly malicious traffic but also all the inputs that
show a different pattern from the established benign one. This can include, for instance, client
sending anomalous payloads due to misconfiguration errors.

Naturally, the system is not perfect, it presents some weaknesses and there is a lot of work that
can be done to improve it and enhance the detection performance. One of the main concerns, for
instance, is finding the optimal combination of the configuration parameters. It is hard to set the
thresholds once for all, because Lastline has customers all over the world and the traffic generated
in Japan is completely different from the one generated in the US (think about the characters
encoding for instance).

As mentioned before, also the traffic changes according to the type of customer. Big companies
such as banks receive an huge quantity of web requests from a lot of different clients. In this
case the voting system should work good and it is fine to set up an high threshold on the number
of samples for the training of the classifiers. On the other hand, some customers also want to
protect internal web servers, that are not exposed to the public Internet, hence they receive much
less requests from a limited number of clients. In such situations it should be better to set lower
thresholds, otherwise it could take a very long time for the classifiers to start returning predictions.

There are multiple ways to achieve this goal:

• Before deployment is it possible to download some traffic belonging to the specific customer
and run HTTPServer offline (as in the offline tests in section 5.1.2). The customer can then
receive the results of the analysis and assess the system performance.

• After deployment, the customer itself can keep monitoring the behavior of the system and,
after a certain amount of time, a network analyst, by knowing the traffic that flows in its
own network, can decide if tuning the configuration setting is needed or not. A tune of the
parameter is generally recommended every once in a while, as the traffic targeting a certain
web server can vary over time.

Moreover, like many other companies, Lastline offers a trial of the products to potential cus-
tomers. The trial lasts about a month and during this period the customer can verify if the system
actually works or not and if it is satisfied by the overall provided protection.

Another aspect to consider is the technique used by the DistributionClassifier. I noticed that
sometimes the predictions returned by this classifier are unreliable if compared with the other two
classifiers. As a consequence, I have always set an higher number of minimum training samples
for it in all my test. This, however, can only be a partial fix and it would be nice to implement
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an automatic mechanism that is able to decide during the validation of a classifier if it is actually
ready to start operating in testing mode or if it is better to keep training.

There are several improvements and extensions I plan to do over the next months, such as:

• Improve logging. Log files are the first and easiest way to have an initial understanding of
what is going on (without going to check the detector state on disk, which can be very large,
especially after a week or more). My anomaly detector already provides some basic logging
but this is clearly not enough and, now that I have an insight on real traffic, I want to make
the records as meaningful as possible.

• Based on the logs and on the analysis of the serialized state, I would like to tune better
the threshold used by the detector. As described also in the previous reports, this is a very
challenging task because the network traffic targeting different customers varies widely and
it is almost impossible to find a ”golden rule” that works in every scenario.

• Expand the HTTPServer anomaly detector including also the HTTP headers in the process-
ing.

• Improve the analysis by adding more classifiers to the system (beside the LengthClassifier,
the DistributionClassifier and the DataTypeClassifier). Thanks to the modular design of the
system, the inclusion of new sub-classifiers requires minimal changes (only to the Attribute-
Model class).

• Allow the detector to wipe an AttributeModel from the HTTPServerContext if it detects
that the predictions are wrong (too many false positives).

• Add support for the POST HTTP request.

This latter idea is actually already in progress but, at the moment of writing, still not complete
because it involves changes to many components.

As introduced in section 2.3, Lastline develops proprietary Suricata patches in order to extend
the information sniffed from the network traffic. Therefore, the first part of this task was about
analyzing the related Suricata code, understanding it as much as possible (given the huge code
base) and finding a way to add the body of the HTTP POST requests in the data generated by
suricata-eve.

Once the sensor is able to extract the data I need and send them to the Lastline Manager, I
still have to extend the Manager to accept the new information and modify my LLAnta module
(in particular HTTPServerPlugin) to handle it. All these jobs represent a very good exercise that
allowed me to see and work on the whole Lastline pipeline.

I successfully added a patch for Suricata that extends the module dedicated to log information
(in JSON format) when an alert or an event for the HTTP protocol is generated. The new feature
can be enabled by setting to true the corresponding dump-req-body option in the configuration file,
suricata.yaml.

When an HTTP event or an alert is generated, if it is a POST request and the content-type
header value is application/x-www-form-urlencoded, the patch adds to the log also the request body,
encoded in Base64. The request body is encoded to avoid issues when transmitting binary data
over the network (for instance some bytes may be interpreted as control characters). Moreover,
The size of the body is limited to 1MB in order to avoid uploading too much information.

The choice of the constraint on the content-type header value is motivated by the fact that we
want to upload only the parameters sent to a web server, like it happens for GET requests. For in-
stance, we want to avoid uploading a file (usually represented by the content-type application/octet-
stream), because other Lastline’s components already take care of analyzing and securing this kind
of input.

Once the the information is dumped, it is serialized into a Google Protocol Buffer (protobuf).
It is then processed by suricata-eve, that decodes the input and sends it to the Lastline Manager.
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This will process the data and, if appropriate, it will dispatch them to the corresponding LLAnta
instance and to my detector. I still need to implement this second part and make HTTPServer
able to handle this new data.

One final consideration is related to the work done by Krueger et al. in [2]. When reading
the paper, I found really interesting and innovative the concept of healing action. I was tempted
to implement some of those techniques also in HTTPServer but I did not because the purpose of
my system is to work as an IDS (hence just to report the alerts without actually performing any
action).
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