
Politecnico di Torino

Master Thesis Report

submitted towards fulfillment of the Double Degree academic program
Master of Science in Embedded Systems

at the Department of Electronics and Telecommunications (DET)

 with Kungliga Tekniska Högskolan (KTH)

by

Giulia Cioffi
March, 2020

Title :

UVM Test-bench acceleration on FPGA

Internship Advisor: Yann Oddos, Apple Technology Services B.V. & Co. KG
Internship Co-advisor : Philipp Kadletz, Apple Technology Services B.V. & Co. KG
University Supervisor: Prof. Edgar Ernesto Sanchez Sanchez, Politecnico di Torino

Abstract

Keywords: co-emulation, Test-bench acceleration, FPGA, SCE-MI, UVM

iii

 The complexity of integrated circuits is increasing much faster than what CAD tools
can handle. Even at IP level test cases can run for several hours or even days. Researchers
and developers have introduced several techniques to tackle this issue. One promising ap-
proach to speed-up the verification process is co-emulation.
Before diving into details, this thesis gives a background on Universal Verification Method-
ology (UVM) which allows Test-bench modularity and reusability. The available co-
emulation techniques and their advantages and drawbacks are then discussed, with par-
ticular focus on the one used in this research project: Test-bench acceleration. The first
part of the thesis concludes with the state of the art of existing Test-bench accelera-
tion implementations and the evaluation of common weaknesses. The core of the thesis
focuses on the description of the developed architecture and the adopted case study: a
period jitter monitor. The SW Test-bench has been written in Python according to UVM.
This allows to execute it from any workstation on which Python is installed. SW-HW
communication is performed using Accellera’s Standard Co-Emulation Modeling Interface
(SCE-MI). While the available versions of the standard are written in C/C++, for this
project a Python version of it has been defined and used. The platform used to perform
hardware acceleration has been Arria 10 FPGA. To evaluate the performance of the de-
signed infrastructure, the same test scenarios have been executed both in RTL simulation
and Test-bench acceleration and the execution times have been compared. For 1 million of
jitter measurements, RTL simulation requires several days. The same test case, executed
with Test-bench acceleration on FPGA, completes in few minutes. The speed-up factors
obtained with the developed co-emulation infrastructure are between 750x and 2000x.
This thesis concludes with some suggestions on how to additionally improve the infras-
tructure performance and speed-up the SW-HW communication.

Acknowledgement

I would also like to thank Helder and Yifan, who closely worked with me for the realization
of this project. It does not matter which problem of which kind you are facing, Helder
always has the right solution for it. Yifan gave probably the most delicate and the same
time crucial contribution to the project and I would like to thank him for this.
A special thank goes also to Rajen. With his wise advice he let me step outside from a
blocking point which I was facing. I will probably remember this hint for the rest of my
working career.

Un grazie, dal profondo del mio cuore, va alla mia famiglia, unico punto fermo in questo
mio percorso di studi, ma soprattutto di vita. Grazie a mio padre, che mi ha trasmesso
l’entusiasmo per la conoscenza: dalla passione per la lettura all’amore per la musica, di
tutti i tipi, che sia una hit dei Beatles cantata in auto o un notturno di Chopin suonato al
pianoforte. Ma soprattutto, grazie per avermi sempre sostenuta in tutte le decisioni che
ho preso durante questo percorso. Grazie a mia madre, che ha avuto la forza di preparare
“i pacchi da giú” e le valigie per tre figlie assetate della voglia di conoscere il mondo, forse
un po’ troppo da non riuscire a capire il vuoto che lasciavano a casa dopo la loro partenza.
Sono cose che si capiscono col tempo, con l’instancabile amore dei propri genitori.
Grazie alle mie sorelle, senza le quali probabilmente non sarei neanche qui a scrivere queste

v

My gratitude goes to all the members of the Design & Verification team, who welcomed
me from the very first day here at Apple. I learned a lot from all of you.

I would like to thank Philipp, who supervised me during this research project. One of
the most important thing that I learned from him is that having a clear method in mind
is an optimal start to face any problem. Whenever I was blocked on something, he
always found the time to sit at my desk and solve it together.

The internship at Apple has been the most challenging and enriching experience of my
life. I would like to thank the Apple community for giving me such an opportunity.
Among the people who always gave me support, I would like to thank my advisor, Yann,
who constantly and wisely guided me through these months. With his enormous experi-
ence he always gave me the right advice and suggestion at the right time to put me back
on track whenever I was a bit lost.

 A lot of gratitude goes to Professor Ernesto Sanchez, who showed interest in my Master
Thesis project from the beginning and supported me during these six months. I would
like to thank him for the help and feedback that he provided me.

In questi anni di studio tanti sono stati gli spostamenti e le persone che ho incontrato. Ma
non importava dove io fossi, la mia Family torinese era sempre con me, pronta a support-
armi. Agnese, grazie perché sei sempre pronta a strappare una risata (e sappiamo quando
ce ne sia bisogno quando si studia ingegneria!) e per essere stata la migliore coinquilina
che si potesse avere. Alessandro, grazie per essere semplicemente contro corrente come
sei: sfido chiunque ad avere un amico che é pronto a portare sotto braccio una scala in
Corso Duca all’1 di notte solo per cambiarti la lampadina della camera.
Un grazie di cuore va anche alla mia amica Giusi. Non ricordo neanche piú da quanti
anni mi sopporti. Sei una delle prima persone con le quali sono felice di condividere le
mie piccole vittorie e lamentarmi delle mie sconfitte. E ne sono successe di cose da quel
famoso primo giorno di scuola!
Ed ora il turno dei mei fantastici Nardi’s Angels. Cosa posso dire ragazzi? Un giorno
senza le vostre perle di saggezza nel nostro gruppo é un giorno perso. Alb, tu sei il mio
indiscusso life coach. Fiore, tutti dovrebbero avere il piacere di ascoltare i tuoi monologhi
sulla vita. Nico, la tua energia e il tuo entusiasmo sono semplicemente invidiabili. Grazie
per avere reso questi anni letteralmente indimenticabili. Alessio, da te invece aspetto
ancora la famosa spadellata!
Grazie alla spensierata e insostituibile Sede Creek che mi fa immediatamente sentire a
casa ogni volta che ritorno a Soleto.
Un grazie dal profondo del mio cuore va ad Alessandro, la mia roccia in questi ultimi anni
di continui spostamenti. Non é stato semplice assecondarmi e starmi dietro, ma tu sei
riuscito ad essere ancora piú forte di quanto io pensassi di essere. Hai sempre creduto in
me, spingendomi a dare sempre il meglio e a non sottovalutarmi mai. Grazie per essere
stato tutto ció di cui avevo bisogno senza che io te lo chiedessi.
Non riesco a contare le persone che ho avuto il piacere di incontrare durante questo
percorso, da Torino a Stoccolma a Monaco. Sono convinta che tutte abbiano lasciato
un’impronta nella mia vita ed un insostituibile contributo. Di ció sono infinitamente
grata.

righe. Silvia, la più grande, il primo punto di riferimento in questo percorso. La persona
da chiamare quando si ha bisogno di un consiglio, la prima che ha percorso questa strada
piena di ostacoli e di soddisfazioni. Maria Chiara, la sorella con la quale ho condiviso
tutto, dai giochi da piccolina agli amici, dal letto nella prima casa a Torino alle prime
esperienze universitarie e professionali. Ne abbiamo affrontate di prove e di cambiamenti,
ma condividerli con te ha reso tutto più semplice. E non tutti hanno questa fortuna.
Tra la mia famiglia, un bacione va alla mia nonnina, che era sempre pronta ad aspettarmi
a casa dopo ogni sessione d’esami. E quando le dicevo che gli esami erano andati bene,
quanto mi faceva tenerezza sentirmi dire che era perch “io ho fatto una preghierina
per te”.

Contents

1 Introduction 1
1.1 The need for verification . 2
1.2 Design Flow and Pre-Silicon Verification 2
1.3 Problem statement . 4
1.4 Co-emulation goals . 5

2 Background 7
2.1 Verification with UVM . 8
2.2 Test-bench structure . 9
2.3 Co-emulation methodologies . 10

2.3.1 Hardware acceleration . 10
2.3.2 In-circuit emulation . 11
2.3.3 Test-bench acceleration . 12

2.4 Platforms for co-emulation . 12
2.4.1 Emulation platform . 13
2.4.2 FPGA . 13

2.5 UVM Test-bench acceleration with FPGA 17
2.5.1 Dual SW and HW domains . 17
2.5.2 Modeling of timed HW domain . 17
2.5.3 Definition of transaction-based SW-HW API 18

2.6 Standard Co-Emulation Modeling Interface 19
2.6.1 Function-based SCE-MI . 19
2.6.2 Pipe-based SCE-MI . 20
2.6.3 Macro-based SCE-MI . 20

3 State of the art 23

4 Case study 31

5 Co-emulation architecture 33
5.1 General SW-HW architecture . 34
5.2 Software block . 35

5.2.1 UVM-like Test-bench . 35
5.2.2 SCE-MI SW layer . 37

5.3 SW to FPGA communication channel . 38

vii

viii

5.3.1 User Datagram Protocol . 39
5.3.2 Address Resolution Protocol . 40
5.3.3 Ethernet interface on FPGA . 42
5.3.4 Ethernet configuration register blocks 42

5.4 Hardware structure . 45
5.4.1 Receive interface . 47
5.4.2 TX/RX general FIFOs . 49
5.4.3 Flow control for TX/RX FIFOs . 50
5.4.4 Dispatcher . 51
5.4.5 Transactor FIFO domain . 52
5.4.6 Transactors . 52
5.4.7 Flow control for transactor FIFOs 52
5.4.8 Arbiter . 54
5.4.9 Transmit interface . 56

5.5 Driver . 58
5.6 Monitor . 59

6 Experimental Results 61
6.1 Test-bench acceleration set-up . 62
6.2 Simulation vs. co-emulation results . 62
6.3 Co-emulation Timing Analysis . 66

6.3.1 Bottleneck . 68
6.4 Further improvements . 70

7 Conclusions & Perspectives 71

Bibliography 73

List of Figures

1.1 Relative cost of finding bugs. 2
1.2 Design flow . 3
1.3 Design flow timeline . 4
1.4 Verification Gap . 5
1.5 Performance speed-up from RTL simulation to co-emulation 6

2.1 UVM family tree. 8
2.2 UVM Class Library . 9
2.3 UVM Test-bench structure . 9
2.4 Hardware acceleration with emulation platform 11
2.5 In-circuit emulation methodology . 12
2.6 Test-bench acceleration methodology . 12
2.7 Generic architecture of FPGA . 14
2.8 interconnect of FPGA . 14
2.9 Basic Logic Element (BLE) of FPGA . 15
2.10 Test-bench - DUT interaction in RTL simulation 16
2.11 Test-bench - DUT interaction in FPGA Test-bench acceleration 16
2.12 UVM layered test-bench . 18
2.13 UVM test-bench for acceleration . 18
2.14 Three SCE-MI interfaces . 19
2.15 Macro-based architecture . 20

3.1 CPU Processing time in simulation and co-simulation with Verilop PLI . .

24
25

3.4 Block diagram of PCI-IB . 26
3.5 Transactor designing process . 28
3.6 Speed-up factors obtained with discussed implementations 29

4.1 DUT architecture . 31

5.1 High Level view of HW-SW communication through SCE-MI infrastructure 34
5.2 UVM-like Python Test-bench structure . 35
5.3 Generic SCE-MI frame . 38
5.4 Ethernet frame and UDP frame format . 40

ix

3.3 CPU Processing time in simulation and co-emulation with Test-bench ac-
 celeration .

3.2 CPU Processing time in simulation and co-simulation with API

24 24

24
24

x List of figures

5.5 ARP Request frame format . 40
41

5.7 ARP protocol before UDP packets transmission 41
5.8 Ethernet communication interface . 42
5.9 Configuration register blocks . 43
5.10 Array row format in Instruction mem block 43
5.11 FSM of Instruction mem block . 44
5.12 FSM of Configuration reg bridge block . 45
5.13 Infrastructure on FPGA . 46
5.14 Block diagram on Receive interface . 47
5.15 Reset packet . 47
5.16 SceMi packets for transactors . 48
5.17 Flow control packets . 48
5.18 FSM of Receive interface block . 49
5.19 Block diagram of Flow Control . 50
5.20 Ethernet XOFF frame . 50
5.21 Block diagram of Dispatcher . 51
5.22 FSM of Dispatcher block . 51
5.23 Ready message frame . 53
5.24 Block diagram of Control block . 53
5.25 FSM of Control block block . 54
5.26 Block diagram of Arbiter . 54
5.27 FSM of Arbiter block . 55
5.28 Block diagram of Transmit if . 56
5.29 UDP frame formatting by Transmit if . 56
5.30 FSM of Transmit if block . 57
5.31 Block diagram of Driver . 58
5.32 SceMi instruction frame . 59
5.33 Block diagram of Monitor . 59

6.1 Comparison between simulation and co-emulation time results 63
6.2 Comparison between three Test-bench versions 65
6.3 Speed-up factors comparison between Revision 1 and 3 66
6.4 Execution times of 100 test cases for 10k measurements each - transactor

clock frequency = 75MHz . 67
6.5 SW-HW communication speed-up . 68

7.1 Processing times in RTL simulation and Test-bench acceleration for 1M
measurements . 72

5.6 ARP Reply frame format .

List of Tables

2.1 Comparison between co-emulation methodologies 10
2.2 Applications and related HW accelerators 11
2.3 Comparison between RTL simulation and co-emulation methodologies . . . 13

5.1 Layers of OSI model . 38
5.2 Features of Arria 10 interfaces . 39

6.1 RTL Simulation times vs. Test-bench acceleration times 63
6.2 Test-bench acceleration times with and without print instructions 64
6.3 Test-bench acceleration times without print with two options to dump the

measurement results . 64
6.4 RTL simulation times vs. co-emulation time in Revision 3 65
6.5 Co-emulation times in Revision 3 with increasing transactor’s clock speed . 67

xi

xii List of tables

List of Abbreviations

A
API Application Programming Interface
AVM Advanced Verification Methodology

B
BFM Bus Function Model

C
CDC Clock Domain Crossing
CPU Central Processing Unit
CRC Cyclic Redundancy Check

D
DPI Direct Programming Interface
DUT Design Under Test

E
EDA Electronic Design Automation
eRM e Reuse Methodology
ES Embedded Systems

F
FPGA Field Programmable Gate Array
FSM Finite State Machine

H
HDL
HVL
HW

I
IC Integrated Circuit
ICE In-Circuit Emulation
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property

L
LFSR Linear Feedback Shift Register

xiii

 Hardware Description Language
 Hardware Verification Language
Hardware

xiv List of Abbreviations

LUT Lookup Table

M
MAC Media Access Control
MDI Medium Dependent Interface
MTBF Mean Time Between Failures

O
OS Operating System
OSI Open Systems Interconnection
OVM Open Verification Methodology

P
PCI Peripheral Component Interconnect
PCS Physical Coding Sublayer
PLI Programming Language Interface
PMA Physical Medium Attachment

R
RAL Register Abstraction Layer
RTL Register Transfer Level
RVM Reference Verification Methodology

S
SCE-MI Standard Co-Emulation Modeling Interface
SoC System on Chip
SW Software

T
TB Test-Bench
TSE Triple Speed Ethernet

U
UDP User Datagram Protocol
URM Universal Reuse Methodology
UVM Universal Verification Methodology

V
VMM Verification Methodology Manual

Chapter 1
Introduction

Contents
1.1 The need for verification . 2

1.2 Design Flow and Pre-Silicon Verification 2

1.3 Problem statement . 4

1.4 Co-emulation goals . 5

1

2 Chapter 1 : Introduction

1.1 The need for verification

The impact of integrated circuits (ICs) in our lives is enormous. They are the main
components of almost all electronic devices. They are fabricated in mass production and
delivered for the most disparate applications.

Figure 1.1: Relative cost of finding bugs.

Finding bugs as soon as possible is, indeed, critical for industries.

1.2 Design Flow and Pre-Silicon Verification

During the development of a digital or mixed signals IP, the design goes through multiple
steps: from the original specifications to the final product. Each of these steps corresponds
to a different description of the system, which incrementally has more details. A high level
description of the typical design flow is shown in Figure 1.2.
In the industrial world some portions of the flow may be iterated several times. Moreover,
some of them may be developed in parallel. This is indeed the case for design and
verification phases.

During the production cycle of an integrated circuit, major attention is paid to the veri-
fication phase. When the IC is produced, it must work and be reliable. To ensure that,
verification procedure must be adopted during the entire flow from the design specification
to the actual IC’s fabrication.

One of the main rules in ICs production is that the sooner a bug is found, the cheaper it
is to fix it. Bob Gottlieb [Got06] analyzed the relationship between the time at which a
failure is found and the related economic impact that it has. This is typically referred as
”the rule of ten”: at each step of the design flow, the cost to fix the bug increases by a
factor of 10. As it is possible to see from Figure 1.1 (source: [Fos10]), finding a bug in the
initial design phase is 10000 times (or even more) cheaper than finding it after the first
silicon phase.

1.2 : Design Flow and Pre-Silicon Verification 3

Figure 1.2: Design flow

Design specifications generally correspond to a description of constraints and function-
alities that the device must satisfy and provide.

Once the initial version of the RTL design is completed, the RTL verification begins. This
phase consists in stressing the design so that its functionality is proven in every possible
(or at least almost every possible) scenario. Every time a design error is found, it must

The functional description provides a high level model which can potentially include hard-
ware/software tradeoffs and architectural features. Some of the design characteristics
specified at this time of the flow are interfaces and communication protocols within inter-
nal blocks or with other external components.
The next phase is represented by the Register Transfer Level (RTL) design. The architec-
tural description is defined using a Hardware Description Language (HDL). The clocking
system is defined and attention is paid to timing and power analysis.

4 Chapter 1 : Introduction

If the outcome of the gate level verification is positive, it is possible to proceed to tech-
nology mapping, placement and routing. This phase will allow to obtain a geometrical
description of the layout which is used during fabrication.
Once the silicon die has been produced it is tested and packaged.
The design flow of an electronic device can be divided in two big phases: pre silicon and
post silicon. During the former, the verification phase occupies a large portion of time, as
shown in Figure 1.3.

Figure 1.3: Design flow timeline

RTL verification is a crucial phase in electronic system development. The market
is imposing always shorter production times with respect to device complexity. Then,
in order to keep up, verification must be carried out with a valid methodology which
encourages the reuse and the adoption of common practices.

1.3 Problem statement

Over the past years the complexity of circuits has increased much faster than what CAD
tools can handle. The Test-benches used to verify them are also becoming more and more
complex. EDA tools are, instead, lagging behind this progress. While the complexity
of designs and tests increases, the performance of available simulators is lagging behind
(Figure 1.4). This is referred as verification gap [AV19].

be corrected by updating the RTL design. While in Figure 1.2 RTL verification appears
as an isolated phase, it actually works in parallel with design.

Verification is generally carried out at two levels: partition and chip level. The former can
be either a module, an IP, or a collection of IPs. Each partition is verified independently,
with tests that include the production of input patterns to stimulate the module and the
verification of the obtained output with respect to what is expected. The latter involves
the verification of the entire design as a whole. The goal is to verify the proper interaction
among the modules. This can be done only after a fair confidence about the correctness
of each single module.

The next step is to perform synthesis optimisation. At this point, a gate level netlist is
generated from the design and timing, power or area constraints are applied to meet the
specifications. A new verification phase (RTL vs. gate level) is needed to evaluate if the
applied optimisations introduced functional errors.

1.4 : Co-emulation goals 5

Figure 1.4: Verification Gap

Running the simulation of complex IPs can require several hours or even days, due to
the fact that SW can run at a contained frequency speed. Timing can be crucial also when
dealing with small IPs on which a high number of register accesses needs to be performed.
RTL verification is carried out by means of RTL simulators. A wide variety of them is
available on the market, provided by different vendors. They are easy to use, cost ef-
fective, and have sophisticated debugging capabilities. However, their execution speed is
contained.
Let’s consider that it is required the verification of a design which has a size of hundreds of
millions of gates. Not only the DUT itself is very complex, but also the test case executed
for its verification should perform a very high number of operations in order to reach a
certain coverage. Executing this on a RTL simulation could even be unfeasible.
The main problem lies in the fact that RTL simulators can run at a frequency of few kHz.
While software has this limited speed, hardware can run at a higher frequency. In this
regard, co-emulation techniques have been developed over the past years [vdSS17].
Among the diffused co-emulation methodologies, one of them is called Test-bench accel-
eration.

1.4 Co-emulation goals

The problem related to reduced speed of RTL simulators can be faced by executing a
portion of the test case on an environment running at higher speed. This is the main
intent of co-emulation. This methodology is based on the co-operation of the software
running on the workstation and a hardware domain executing on an emulator. The former
executes the software Test-bench, while the latter is a physical board onto which some
tasks are loaded and executed at a higher speed.
The main goal of adopting co-emulation over RTL simulation would be to achieve a speed-
up of few orders of magnitude. Figure 1.5 shows the time shortening in both Testbench
and Design domains obtained by adopting co-emulation.

6 Chapter 1 : Introduction

Figure 1.5: Performance speed-up from RTL simulation to co-emulation

In particular, adopting a co-emulation methodology called Test-bench acceleration, a
speed-up factor between 50x and 1000x (or even more) [vdSY15] could be obtained. This
would allow to run test scenarios in a much shorter time. Moreover, it will also allow to
run some test cases which execution was unfeasible in RTL simulation.

The achievable speed-up factor from RTL simulation to co-emulation relies on three main
factors:

• adopted emulator and maximum HW speed

• HW-SW partitioning

• HW-SW communication

Examples of emulators are Field Programmable Gate Arrays (FPGAs) or complex em-
ulation platform. The hardware speed is typically higher than the software one, but it
strongly varies according to the HW platform itself [Riz14].

Moving the RTL code from the SW environment onto the programmable board will also
allow to move a step forward from pre-silicon verification and test the design on real hard-
ware.
The aimed result of this research project is to achieve a speed-up factor higher than
the results presented by the past implementations. To reach this, the definition of the
infrastructure and the SW-HW flow control play key roles. The architecture, on both
software and hardware domains, must be DUT-independent. This will allow to use it for
the verification of any IP.

It is available a wide variety of papers regarding co-emulation implementations [HKPS05,
TJY14, WDBP11]. The obtained performance improvements are very different.

This research project aims at providing an implementation of the Test-bench acceleration
co-emulation methodology. The adopted use case is the verification of a period jitter
monitor. The main idea is to port the DUT and some of the verification tasks of the
SW Test-bench onto FPGA. This will unload the software tool of some time-consuming
operations, letting them execute on reprogrammable hardware.

Chapter 2
Background

Contents
2.1 Verification with UVM . 8

2.2 Test-bench structure . 9

2.3 Co-emulation methodologies . 10

2.3.1 Hardware acceleration . 10

2.3.2 In-circuit emulation . 11

2.3.3 Test-bench acceleration . 12

2.4 Platforms for co-emulation . 12

2.4.1 Emulation platform . 13

2.4.2 FPGA . 13

2.5 UVM Test-bench acceleration with FPGA 17

2.5.1 Dual SW and HW domains . 17

2.5.2 Modeling of timed HW domain 17

2.5.3 Definition of transaction-based SW-HW API 18

2.6 Standard Co-Emulation Modeling Interface 19

2.6.1 Function-based SCE-MI . 19

2.6.2 Pipe-based SCE-MI . 20

2.6.3 Macro-based SCE-MI . 20

7

8 Chapter 2 : Background

2.1 Verification with UVM

UVM has been derived from other existing methodologies. Figure 2.1 (source: [Dou15])
shows its family tree and the vendors from which they have been originated.

Figure 2.1: UVM family tree.

It has been directly derived from OVM (Open Verification Methodology) [Ayn] and
VMM (Verification Methodology Manual), derived in turn by Vera’s RVM (Reference
Verification Methodology). OVM has been, instead, originated from Cadence’s URM
(Universal Reuse Methodology) and Mentor’s AVM (Advanced Verification Methodology).
From 2017, UVM is a standard approved by IEEE as a methodology that can improve
interoperability and facilitate the reuse of verification components.
The main benefits of UVM are:

• providing standard Test-bench structure

• coming with a methodology

• splitting two problems: defining test scenarios and implementing pin-level protocols

 The increasing complexity of the IPs over the past years inevitably led to structure more
and more complex Test-benches for their verification. Adopting the known verification
techniques without a good methodology, conducted in most of the cases to write very
complex but inefficient and unreusable Test-benches. For this purpose, the Universal
Verification Methodology (UVM) has been defined: it allows to realize complex Test-
benches in a faster, more efficient and scalable way.

The building blocks needed to develop a well-constructed and reusable Test-bench in
SystemVerilog are provided by the UVM Class Library [Acc11a]. Its structure is shown
in Figure 2.2 (source: [Acc11b]).

2.2 : Test-bench structure 9

Figure 2.2: UVM Class Library

2.2 Test-bench structure

The typical architecture of a UVM Test-bench is shown in Figure 2.3.

Figure 2.3: UVM Test-bench structure

Crossing its hierarchy from the top, it is composed of a Top-level wrapper (tb top)
that connects the test-bench and the DUT. The test-bench environment (uvc env) encap-

10 Chapter 2 : Background

sulates the needed UVM components.
Inside the environment, multiple agents can be instantiated according to the DUT inter-
faces. An agent can be active (containing a sequencer, a driver and a monitor) or passive
(containing only a monitor that samples DUT signals).
To interface the DUT, proper sequences of stimuli need to be generated. Sequence items,
consisting of data fields required to generate the stimuli, are randomized and inserted into
sequences. The sequencer controls the flow of sequence items that need to be provided to
the driver. This, in turn, converts the sequence items into pin level stimuli towards the
DUT. At the same time, the monitor records the signals from the DUT. According to the
interface protocol, it converts the signal changes back into sequence items.
The scoreboard is then responsible for checking the functionality of the DUT by comparing
the DUT’s outputs with the expected values.

2.3 Co-emulation methodologies

When adopting co-emulation, the verification engineer can choose among different
methodologies. They mainly differ in the used hardware emulator, the SW-HW parti-
tioning and the communication interface.
As Rizzati mentions in his article [Riz14], the two main choices for hardware-assisted
verification are based on emulation platforms or on FPGA[Yas11]. Advantages and dis-
advantages of these two platforms are analyzed in section 2.4.
AbdElSalam and Salem explain in their paper [AS16] how different co-emulation method-
ologies can be implemented according to the used platform: three of the main ones are
hardware acceleration, in-circuit emulation and test-bench acceleration. Table 2.1 sum-
marizes the comparison among these three co-emulation methodologies.

Blocks on Blocks on
Method Platforms

acceleration platform host workstation

Hardware Test-bench + DUT

acceleration
Emulation platforms

CPU + OS can be present
SW debugger

Test-bench +
In-circuit Emulation platform Emulating circuit for

emulation + FPGA (if needed) Target system + Software debugger

DUT + Speed adapter
Test-bench Emulation platform DUT + BFMs for Test-bench +
acceleration or FPGA Drivers and Monitors SW communication layer

Table 2.1: Comparison between co-emulation methodologies

2.3.1 Hardware acceleration

In this methodology, [WBW01] an operation can be typically executed faster on an
application-specific hardware than on a general purpose processor.

Hardware acceleration is a technique already largely adopted in many fields. Some of
them are listed in the Table 2.2 [HWa20].

2.3 : Co-emulation methodologies 11

Application Hardware accelerator

Digital signal processing Digital signal processor (DSP)

Computer networking Network on a chip (NoC)

Computer graphics Graphics processing unit (GPU)

Field programmable gate arrays (FPGA),
Application-specific integrated circuits (ASIC),

Systems-on-Chip (SoC)

Verification tasks Emulation platforms

Table 2.2: Applications and related HW accelerators

Hardware acceleration implies that the entire system is loaded onto the hardware accel-
erator.

Figure 2.4: Hardware acceleration with emulation platform

2.3.2 In-circuit emulation

In-circuit emulation has been widely used for debugging embedded systems [Wal12].
It allows to connect the host workstation to the embedded system. The user can load
programs through the emulator onto the target embedded system. It is also possible to
set breakpoints, display memories etc. A speed adapter is required to bridge the fast side
of the real-device with the low speed side of the emulated circuit [AS16].
The software program (Test-bench) is executed by the emulation platform, like in Hard-
ware acceleration. The user tracks the verification process using a software debugger on
the workstation.
If a user wants to perform digital circuit verification from the RTL description of the
DUT, since the target system is not a physical device yet, another emulator is needed. An
FPGA can then be used to map the synthesized netlist on its hardware.
Historically the platforms used for ICE were bond-out processors.Their name derive from
the fact that their internal signals and bus were brought out to external pins for debugging
purposes. Nowadays standard chips are available on the market and they are provided
with a JTAG-based on-chip debugger[BB03].

General computation tasks

12 Chapter 2 : Background

Figure 2.5: In-circuit emulation methodology

2.3.3 Test-bench acceleration

Adopting this co-emulation methodology, not only the DUT, but also the synthesizable
part of the Test-bench (FSMs for Drivers and Monitors) run on a hardware emulator.
They interact with a test-bench running on a host. The workstation executes the non-
synthesizable portion on the Test-bench, written in a Hardware Verification Language
(HVL) [vdSY15].
A framework composed of a software layer and a hardware layer is required to manage
the interaction between the two domains.

Figure 2.6: Test-bench acceleration methodology

2.4 Platforms for co-emulation

Two of the main platforms available today are emulation platforms and Field Pro-
grammable Gate Arrays. About the former ones, their performance and required tools
are highly dependent on their vendor and they are typically used only at industrial level,

When adopting this methodology, there is no request for specific and advanced interactive
capabilities on the emulator side, since verification tasks such as the ones executed
by sequencers and checkers are still executed in software. For this reason, any FPGA can
be used instead of an expensive modern emulation platform.
One drawback of using FPGA boards for Test-bench-acceleration is that it would be
possible to perform only black box verification. Indeed, it would be very complex to
manage internal signal probing on the FPGA and transfer the information back to the
Test-bench side on the workstation. On the contrary, this feature can be supported by
emulation platforms [AS16].

2.4 : Platforms for co-emulation 13

due to their high cost. The latter ones are widely diffused and switching from one board
to another, provided by the same vendor, is almost immediate.
Table 2.3 summarizes the comparison [AS16, Riz14] among standard RTL simulation and
co-emulation with emulation platforms and FPGAs.

Design HW SW Bring-up Debug
Method

capacity frequency frequency effort capabilities
Cost

RTL ∼100M

Simulation gates
/ ∼10kHz low high low

Emulator-based ∼10-15B medium-

co-emulation gates
∼2.5MHz / medium

high
high

FPGA-based ∼100M medium- medium-

co-emulation gates
∼100MHz ∼10kHz high

low low

Table 2.3: Comparison between RTL simulation and co-emulation methodologies

2.4.1 Emulation platform

Emulation platforms are widely used for their large capacity: they can support very
large designs, such as entire System-on-Chips (SoC).
An emulation platform combines hardware architecture, operating system, specialized
applications and peripheral solutions to deliver a comprehensive verification environment.
They provide good debug visibility: users can download triggers, set breakpoints, advance
clock signals, etc. They also provide simulation use models for assertion and coverage
based verification.

The maximum speed at which an emulation platform can run is around a few megahertz,
which is still a good improvement with respect to RTL simulation. Having a simulator that
runs at a frequency around 10kHz, the overall speed-up can be a few orders of magnitude.
This is typically less then what other platforms (like FPGAs) can provide, since they can
run at a frequency of hundreds of megahertz.
Their cost can vary according to the platform, but is generally very high compared to the
cost of FPGA boards.
Emulation platforms can deliver all the three mentioned methodologies: HW Acceleration,
In-Circuit Emulation and Test-bench Acceleration.

2.4.2 FPGA

FPGA boards provide higher speed at a reduced cost with respect to a full emulation
platform.
There are several families of FPGAs, manufactured by different companies (Altera, Xilinx,
Atmel etc.). Despite their differences in architecture and features, they follow a common

The DUT is compiled and converted into a gate level netlist which is mapped onto the
platform. The Test-bench, if not synthesizable, is handled by the microprocessor and
Operating System internally available on the emulation platform. Specialized
applications are provided by the vendor to interact with the emulation platform OS.

14 Chapter 2 : Background

architecture [Bis19]. Its structure is shown in Figure 2.7 (source: [ea12]).
It consists of three main parts:

• Configurable logic blocks (CLB), implementing logic functions

• Programmable interconnect: switch boxes (SB) and connection boxes (CB), im-
plementing routing

• Programmable I/O blocks, connecting with external components

Figure 2.7: Generic architecture of FPGA

Figure 2.8: interconnect of FPGA

CLBs are arranged in a two-dimensional grid and are connected through programmable
interconnects. The routing network is mesh-based and consists of horizontal and vertical
tracks which are connected through switch boxes. Connection boxes are used to connect
the routing network to the logic blocks. A high-level view of a programmable interconnect
is shown in Figure 2.8.

2.4 : Platforms for co-emulation 15

The design loaded onto the FPGA is decomposed in basic logic functions. Each of
them is executed by a CLB, which works in parallel to all the others. According to the
vendor, a CLB can be composed of different elements. The most diffused CLB structure
is based on look-up tables (LUT-based). It provides a good trade-off between too fine-
graned and too-coarse graned logic blocks.
A CLB can be composed of a single Basic Logic Element (BLE) or of a cluster of them.
A BLE consists of a look-up table (LUT), a D Flip-Flop and multiplexers, as it is shown
in Figure 2.9 (Source: [ea12]). A LUT with k inputs contains 2k configurations and can
implement any k-input logic function.

Figure 2.9: Basic Logic Element (BLE) of FPGA

The routing network occupies 80-90% of the total area, while logic elements occupy
only 10-20% of it. The routing network consists of horizontal and vertical tracks connected
through switch boxes (SW). Then, CLBs are connected to the routing network through
connection boxes (CB).

I/O blocks sit at the periphery of the grid. They are used to interface the CLBs and the
routing architecture with external components.

Among the three methodologies mentioned in section 2.3, FPGA is adopted for Test-
bench Acceleration, which allows to run portions of the Test-bench at frequencies in the
order of hundreds of MHz, leading to a speed-up of a few orders of magnitude with respect
to RTL simulation.

Neighboring logic cells may be routed with high speed dedicate lines to improve perfor-
mance.

16 Chapter 2 : Background

Figure 2.10: Test-bench - DUT interaction in RTL simulation

In FPGA Test-bench acceleration a communication layer between the host worksta-
tion and the FPGA is required (Figure 2.11). This introduces an overhead due to the
communication between the two domains. If this additional time is not significant with
respect to the time spent in HW (FPGA) and the time spent in SW (host workstation),
this overhead can be leveraged.

Figure 2.11: Test-bench - DUT interaction in FPGA Test-bench acceleration

One possibility to carry out the communication between SW and HW is by means of
the SCE-MI interface. This standard describes the implementation of this communication
interface, which is divided into a software and a hardware layer. Its bring-up requires an
initial demanding effort: the infrastructure must be designed to be reusable and non-DUT
dependent.
Debugging the DUT and the infrastructure on the FPGA is difficult, given the limited
debug capability offered by the available logic analyzers. However, once the bring-up
phase of the infrastructure is completed, it is highly reusable: only dedicated BFMs for
the DUT interfaces need to be designed.

In RTL simulation the Test-bench directly interacts with the DUT (Figure 2.10), directly
implementing pin-level protocols.

2.5 : UVM Test-bench acceleration with FPGA 17

2.5 UVM Test-bench acceleration with FPGA

One of the key points of this co-emulation project is the need to maintain the pre-existing
verification environment used for RTL simulation. Only few modifications have been done
to support the co-emulation features.
The methodology adopted in this research project is test-bench acceleration of UVM test-
benches, performed using the Altera FPGA Arria 10 as acceleration platform [Int18].
As van der Schoot and Yehia explain in their article [vdSY15], three steps are needed to
create a unified dual domain framework for UVM test-bench acceleration:

• definition of dual software and hardware domains

• modeling of the timed test-bench portions in the HW domain

• definition of a transaction-based intra-domain API

2.5.1 Dual SW and HW domains

The HW domain runs on the emulator, containing the synthesizable portion of the ver-
ification framework: DUT, clock and reset generators and Finite State Machines (FSMs)
to interface the DUT.
On the other side, SW domain is strictly untimed and contains the non-synthesizable
behavioral test-bench code. It generates transaction-level stimuli and contains analysis
components like generators, scoreboards and coverage collectors.
This domain partitioning is facilitated by the UVM abstraction and layering principles:
upper test-bench layer components delegate timing control to lower layer components such
as UVM drivers and monitors.
Figure 2.12 shows the layered structure of a UVM test-bench. Three sections can be iden-
tified: a Test-bench layer, a Transaction layer and a RTL layer. It is possible to notice
that most of the UVM test-bench is naturally untimed (Test-bench layer). The timed
portion of the Test-bench is implemented by Bus Function Models (BFMs) loaded onto
the FPGA (section 5.5).

2.5.2 Modeling of timed HW domain

On the UVM test-bench side, ”uvm driver” and ”uvm monitor” instances will still be
present, but they will not be responsible anymore for clocked stimuli generation.

 Co-emulation is a very useful methodology for the verification of DUTs with time-
demanding RTL simulations or for the execution of particular stress test cases. However,
it is not meant to entirely replace RTL simulation.

 The Transaction layer is in charge of converting untimed transactions into cycle-
accurate clocked events applied at the interface of the DUT and vice versa. As shown
in Figure 2.12, Drivers and Monitors sit on both the Test-bench layer and the Transac-
tion layer : on the former side they send/receive sequence items, while on the latter the
Driver converts sequence items into pin-level stimuli and the Monitor does the opposite.
The functionalities of Drivers and Monitors related to the interaction with the DUT in-
terface signals can be ported on the HW domain: they are implemented as Bus Function
Models (BFMs).

18 Chapter 2 : Background

Figure 2.12: UVM layered test-bench

Moving the BFMs from SW to HW domain means that UVM test-bench objects can now
access DUT signals only indirectly, by means of a DUT proxy model.

2.5.3 Definition of transaction-based SW-HW API

Figure 2.13 shows how a UVM test-bench for acceleration is structured, highlighting how
the layered structure shown in Figure 2.12 is maintained.

Figure 2.13: UVM test-bench for acceleration

 After partitioning the test-bench, a communication interface between the two domains
needs to be defined. SW domain can interact with HW domain by following a remote
proxy design pattern [vdSY15].
The communication between the two domains can be carried out by means of an inter-
mediate layer. One way to implement the intra-domain communication is by using the
Standard Co-Emulation Modeling Interface (SCE-MI)[Acc16], which provides protocols
and channels that allow to connect the software to the hardware.

2.6 : Standard Co-Emulation Modeling Interface 19

The SCE-MI interface sits right in between the Test-bench layer and the Transaction
layer, working as a communication channel between them.

2.6 Standard Co-Emulation Modeling Interface

The Standard Co-Emulation Modeling Interface (SCE-MI) is an Application Program-
ming Interface (API) developed by Accellera. It provides multiple channels of communi-
cation. Each channel allows software models to connect to hardware models.
The main purpose is to interface purely untimed software models with a register transfer
level (RTL) or gate level DUT. Given the speed difference between the two end points,
the focus of the interface is to avoid communication bottlenecks which might compromise
the performance of the emulator.
The SCE-MI interface has been defined in three versions:

• Message-passing Macro-based interface

• Function-based interface

• Pipes-based interface

Figure 2.14: Three SCE-MI interfaces

2.6.1 Function-based SCE-MI

The Function-based interface [Tom] is based on SystemVerilog Direct Programming
Interface (DPI), which was designed to provide an easy way to use inter-language com-
munication mechanism based on function calls. The user can create his/her own API by
defining functions in one language and calling them from the other. Although SistemVer-
ilog provides a wide set of data types, only a small subset is compatible with the SCE-MI
standard.
Function calls provide an intermediate level of abstraction which is suitable to be con-
nected to both the emulator and host workstation domains.

20 Chapter 2 : Background

2.6.2 Pipe-based SCE-MI

The Pipe-based interface [Acc16, PGM11] supports constructs called transaction pipes
which are accessed through function calls and stream transactions to and from the HDL
side.

The transaction pipes are unidirectional, which means that it is guaranteed that the data
sent from one end of the pipe are received in the same order by the other end.

2.6.3 Macro-based SCE-MI

In the Macro-based interface the interconnects between the transactors on the emulator
side and the test-bench model on the workstation are provided in the form of message
channels. Each message channel has two ends: the one on the software side is called
message port proxy, which gives API access to the channel, while the one on the hardware
side is the related transactor’s interface.

Figure 2.15: Macro-based architecture

The DUT proxy receives untimed messages from the Test-bench models. It then sends
them to the proper message input port proxy. Each port is defined by a transactor and
port name. It has a defined bitwidth but is data agnostic. Messages are not associated

To perform send and receive operation over a transaction pipe, two function calls very
similar to the write and read calls to UNIX sockets have been defined. Pipelining stream-
ing items allows to reach an optimal streaming throughput, leveraging the round trip
latency issue.

Message channels should be seen as network sockets which use message passing protocols.
The transactor decomposes messages arriving at the input channels into sequences of
cycle-accurate events and, for the other direction of flow, recomposes sequences of events
coming from the DUT back into messages sent via output channels.
The SCE-MI infrastructure works as a transport layer that delivers messages between the
host workstation side and the emulator side, as is it shown in Figure 2.15

2.6 : Standard Co-Emulation Modeling Interface 21

For the other flow direction, the HDL side constructs messages that are sent through the
message output channel. The DUT proxy monitors the message output port proxies to
check for arriving messages and de-serializes them back into abstract data types.
The work flow for system verification through SCE-MI environment can be divided in
three phases:

•

• Infrastructure linkage: during this process, the macro-based SW layer reads a de-
scription of the hardware containing information of the transactors (total number,
names, widths of the messages) and elaborates its structure

• Hardware model elaboration: a netlist is generated, loaded onto the emulator and
prepared for binding to the software

with clocked events, but they are considered as data types that can be transported among
software models. Before messages are sent over a message input channel, they are serialized
into a bit vector by the DUT proxy model.

Software model compilation: the models that run on the workstation are compiled
and linked with the software side on the SCE-MI infrastructure

22 Chapter 2 : Background

Chapter 3
State of the art

To bridge the gap between ICE and simulation, different methodologies started to be
adopted in the mid-1990s. In-circuit emulators have been virtualized into functionalities
such as Programming Language Interfaces (PLIs), Application Programming Interfaces
(APIs), Direct Programming Interfaces (DPIs) and so on.
Early co-simulation techniques via the Verilog PLI started to be adopted, sold by emu-
lation vendors. However, they were very difficult to use and they were signal-oriented.
Because of the inefficient communication through the signal-level interface, the simulation
speed could achieve only few kilohertz. The emulator was, instead, capable of running at
frequencies in the order of megahertz.

23

 The need for simulation speed-up has been faced since many years from companies that
design complex hardware. They need to ensure good functionality and performance of
their devices in the shortest possible time frame. Hans van der Schoot and John Stickley
describe in their article [vdSS17] the history of this effort, from the old In-Circuit Emu-
lation (ICE) methodology to the advanced transactor-based co-emulation techniques.
The first methodology developed to speed-up the verification process has been In-Circuit
Emulation. It has been extensively used until the 1990s. It was a quite expensive tech-
nique and only the richest companies producing processors could afford it. Their processor
was connected with an enormous amount of cables to big hardware emulators. Because
of its structure, the engineers called it ICE spaghetti cables. Despite its expensive cost,
it had a mean time between failures (MTBF) of a few hours. Every movement of one
of the cables could have alterated the verification process.The final solution was to use
ICE only at the final verification stage, to reduce the tape-out risk. An RTL simulation
environment was instead used in the precedent phases.

This performance degradation has been reduced by elevating the abstraction level of
the test-bench, which were written in C/C++. PLI-based communication has been
replaced by API-based interfaces. Figure 3.1 and Figure 3.2 (source: [vdSS17]) show
the performance improvements obtained using co-simulation with Verilog and C/C++
Test-benches respectively.
However, co-simulation did not allow to exploit the full speed of the emulator, which
was held back by the Test-bench. A solution to this problem has been introduced when
co-simulation has been replaced by co-emulation (Figure 3.3). Test-bench acceleration
methodology started to be adopted, dividing the Test-benches into two parts as
described in section 2.3.3.

24 Chapter 3 : State of the art

Figure 3.1: CPU Processing time in simulation and co-simulation with Verilop PLI

 An extensive number of papers regarding Test-bench acceleration implementations
have been written in the past years.

Figure 3.2: CPU Processing time in simulation and co-simulation with API

25

Hassoun, Kudlugi, Pryor and Selvidge give in their paper [HKPS05] an analytical com-
putation of the speed-up ratio that could be obtained by using transaction-based instead
of cycle-based communication. Having:

• Lt: latency of one transaction measured in time units

• Cuser: clock cycles of work generated by the transaction

• Lsc: latency of one cycle-based instruction

• π: clock period

The speed-up ratio can be computed as

ratio =
(Cuser × π + Lt)

(π + Lsc)
(3.1)

Keeping Lt low and performing many cycles of work per transaction (Cuser high) will result
in good performances.
The main topic of their paper is the description of a layered architecture used for both
simulation and emulation. An analysis of their results with respect to the expected ones
is then provided.
They adopt the Test-bench acceleration methodology, highlighting two domains:

• Driving Environment(DE): contains the user application, the application adapter
(which provides an API) and the drivers

 Figure 3.3: CPU Processing time in simulation and co-emulation with Test-bench accel-
eration

26 Chapter 3 : State of the art

• DUT environment: contains the netlist of the DUT, the transactors and co-modeling
primitives

To perform intra-domain communication they did not use any standard, but they de-
veloped their own API with different C routines. The application adapter is the block
responsible for providing these routines.
For simulation, DE and DUT environments are implemented as two processes and con-
nected via UNIX-based socket.
For co-emulation, the DE is implemented on the host workstation and the DUT environ-
ment is loaded onto the emulator (Altera Flex 10 KE FPGA [Alt03]). The connection
between the two is done through PCI-IB.

Figure 3.4: Block diagram of PCI-IB

This interface provides that data received and sent have a fixed length, as it is shown
in Figure 3.4 (source: [HKPS05]). This has the disadvantage that in case of transactions
with multiple bytes, several PCI transactions are also required.
On the FPGA side, the PCI interface is directly connected to input/output macros, which
in turn are connected to the transactors. Such a structure does not provide any interactive
flow control capability. Hardware and software will for sure run at different frequencies.
The only way to be sure that no packets are lost and that the software buffer and hardware
FIFOs do not get full is to always wait for a certain number of transactions to go around
the full loop (from host workstation to FPGA and way back). This of course degrades
the overall co-emulation performance.
The two metrics used to evaluate the performance of the emulator were:

• round-trip latency: time required to perform one transaction without the latency
introduced by the FIFOs within the PCI-IB card. It can be computed as the
addition of the following metrics:

1. delay within the workstation: time spent to execute an API write or read

2. delay transferring the data from the workstation to the PCI-IB card

3. delay within the PCI-IB card

4. delay transferring the data from the PCI-IB card to the emulator

5. delay within the emulator co-modeling ”Primitives”

6. delay within the emulator transactors

7. delay within the DUT

27

• communication bandwidth (CB): number of frames that can be inserted and re-
moved from a full pipeline per second. The limiting CB could be one of the following
two paths:

1. between the workstation and the PCI-IB card

2. between the PCI-IB card and the transactors

The PLI simulation time has been compared with the emulation one. The authors verified
two different IPs and the obtained speed-up factors were 240x for the first one and 320x
for the other one.

Tomas, Jiang and Yang discuss the difference between signal-based and transaction-
based communication. In their paper [TJY14] they briefly introduce the functionalities
and protocols of the SCE-MI interface (3.6.3) and then the topic of their work: SoC Scan-
Chain verification with emulation platform using both signal-based and transaction-based
communication.
They use the functional verification platform Aldec Riviera-PRO [Ald]. During simula-
tion acceleration with signal-based communication, the DUT has been loaded onto the
emulation platform. Connection with the host workstation is done by means of a PCIe
connector. The emulator compiler automatically analyzes the RTL sources and distin-
guishes between synthesizable and non-synthesizable code. The former is loaded onto the
emulation platform, the latter is executed on the simulator. Their design has 7 inputs
and 7 outputs, which are mapped to single-ended lines on the platform. It is clear that
this solution cannot be feasible for DUTs with a large number of I/O pins.

• 2.11x with simulation acceleration (signal-based)

• 5.8x with FSM emulation (transaction-based)

The implementation proposed by Tomas, Jiang and Yang [TJY14] provides good results
if we consider that an emulation platform is used. The maximum frequency that it can
provide is tied to few megahertz (8 MHz in case of Aldec Riviera-PRO). The authors of
the paper were able to reach a speed-up of 5.8x with respect to RTL simulation. This
factor can be good in case of simulations that run for minutes or even few hours. On the
other hand, for test cases that require a longer simulation time, a higher spee-up factor
might be needed. To reach that it is necessary to use a faster platform like an FPGA.

Moving to the transaction-based methodology, some modifications were required. In or-
der to use the SCE-MI interface, the test-bench on the software side has been written in
SystemC. On the hardware side, message ports and transactors are designed to convert
messages into signals towards the DUT. They provide two different versions of transactors
implementation. One called ”pass-through”transactors, which do not manipulate the data
coming from the software. The other one is FSM-based, with transactors serially shifting
in the data received from the software. The obtained speed-up factors with respect to
RTL simulation were:

• 2.43x with pass-through emulation (transaction-based)

28 Chapter 3 : State of the art

The authors describe how software and hardware transactors are automatically gener-
ated. The SystemC description of the transactors and the message frames (XLM language
[Qui11]) can be divided by a parser into a C++ transactor proxy and a Verilog synthe-
sizable transactor description (Figure 3.5, source [WDBP11]).
They executed seven testcases and compared the overall time needed in RTL simulation
and SW-HW co-emulation. The second implementation was 70 times faster than the first
one.

Figure 3.5: Transactor designing process

 Another implementation of Test-bench acceleration has been developed by Wrona, Bar-
cik and Pietrasina [WDBP11]. Their co-emulation environment was composed of a Sys-
temC Test-bench, the SCE-MI interface and an FPGA platform. The project was intended
to verify a high resolution VGA interface controller. The DUT has been loaded onto the
programmable board together with the hardware SCE-MI layer and the transactors.
The USB port [Mur] was used to perform the physical connection between the host
workstation and the platform. A SCE-MI interface domain was used to decode the re-
ceived messages and interact with a FIFO-domain. Message ports were placed between
FIFOs (containing input/output messages) and the transactors. Other blocks were used
to control the DUT clock signals and manage the external memory connection.

29

One common weakness of the implementations presented in the mentioned papers
[HKPS05, TJY14, WDBP11] is that the authors do not discuss about SW-HW intra-
domain flow control. This could be due to the fact that the SCE-MI standard [Acc16]
provides that whenever a transaction is sent from the SW to the HW, a reply should be
generated by the hardware and sent back to the software side. At each transaction, a
handshake mechanism is established between the two side. This approach slows down the
overall architecture, since the fast side should anyway wait for the slow one.
An alternative approach would be to implement a flow control technique that allows to
continuously stream messages on both direction, preventing that software buffers or hard-
ware FIFOs get full.

Figure 3.6: Speed-up factors obtained with discussed implementations

Moreover, as already mentioned before, in order to achieve a higher speed-up, FPGA
boards should be chosen over emulation platforms. This can be noticed by looking at
Figure 3.6. It contains a comparison between the results obtained by Wrona, Barcik
and Pietrasina [WDBP11] (70x) and Hassoun, Kudlugi, Pryor and Selvidge [HKPS05]
(240x, 320x) with the ones obtained by Tomas, Jiang and Yang [TJY14] (5.8x).

30 Chapter 3 : State of the art

Chapter 4
Case study

The DUT which has been verified with Test-bench acceleration is a Period jitter mon-
itor. A high level description of the architecture of the DUT is shown in Figure 4.1. It
consists of a measurement block configured by a control logic.

Figure 4.1: DUT architecture

The input clock can be chosen between two sources: an external source (CLK IN 1)
and an internal one (CLK IN 2). A multiplexer selects one of the two paths and provides
the output clock to the measurement block. The input clock can be observed externally
through CLK OUT.
The input clock jitter can be analyzed by collecting many measurements. The root-mean-
square (RMS) random period jitter can be calculated from the collected values. The
higher the number of samples, the more accurate is the calculation of the RMS.

31

32 Chapter 4 : Case study

Chapter 5
Co-emulation architecture

Contents
5.1 General SW-HW architecture 34

5.2 Software block . 35

5.2.1 UVM-like Test-bench . 35

5.2.2 SCE-MI SW layer . 37

5.3 SW to FPGA communication channel 38

5.3.1 User Datagram Protocol . 39

5.3.2 Address Resolution Protocol 40

5.3.3 Ethernet interface on FPGA 42

5.3.4 Ethernet configuration register blocks 42

5.4 Hardware structure . 45

5.4.1 Receive interface . 47

5.4.2 TX/RX general FIFOs . 49

5.4.3 Flow control for TX/RX FIFOs 50

5.4.4 Dispatcher . 51

5.4.5 Transactor FIFO domain . 52

5.4.6 Transactors . 52

5.4.7 Flow control for transactor FIFOs 52

5.4.8 Arbiter . 54

5.4.9 Transmit interface . 56

5.5 Driver . 58

5.6 Monitor . 59

33

34 Chapter 5 : Co-emulation architecture

5.1 General SW-HW architecture

Figure 5.1: High Level view of HW-SW communication through SCE-MI infrastructure

The host workstation side contains:

• Test-bench: it is structured as a UVM TB, but written in Python, allowing us to
run it on any workstation where Python is installed

• DUT proxy: it serializes messages into a large bit vector, before transporting them
through the input channel. It de-serializes them back into a Python data type,
after they are received on an output channel

• Message input/output Port Proxies: send/receive messages to/from hardware side

• Python PHY: it allows to open sockets to communicate over the physical connection
with the hardware side

The FPGA side contains:

• PHY: embedded on the programmable board

• Receive/Transmit Interfaces: they respectively receive from and send messages to
the PHY

• Message FIFOs: where messages received from or sent to each transactor are stored

• Transactors: they implement BFMs that interface to the DUT. A transactor de-
 composes messages arriving at input channels from the software side into sequences
 of cycle-accurate events. For the other direction of flow, a transactor recomposes
 sequences of events coming from the DUT back into messages to send to the soft-
 ware side

 The general SW-HW architecture developed to perform Test-bench acceleration is based
on the Standard Co-Emulation Modeling Interface [Acc16]. The implementation used is
the Macro-based message passing interface. As already mentioned in section 2.6.3, it
allows to connect transactor models on the emulator (hardware) side to untimed models
on the workstation (software) side. A high level view of the architecture is provided in
Figure 5.1. The physical connection between software and hardware domains has been
performed using Ethernet.

5.2 : Software block 35

5.2 Software block

The software layer, depicted in green in Figure 5.1, includes the Python Test-bench and
the software side of the Macro-based SCE-MI interface. A description of them is provided
in the next sections.

5.2.1 UVM-like Test-bench

The structure of the Python Test-bench has been created close to the one defined in
the UVM standard. The hierarchy of the Test-bench is shown in Figure 5.2.

Figure 5.2: UVM-like Python Test-bench structure

It starts with the test case, which contains the Register Abstraction Layer (RAL)
parser and the environment. Only the control agent is instantiated inside the environment.
In contrast to the UVM guidelines, this agent does not implement a sequencer since for
this specific use case it is not required. Another difference to common UVM TBs, is the
absence of UVM ports. Instead, queues and methods are used to forward transaction
items between components.
This TB is purely transaction-level based, to be able to interact with the Sce-Mi SW-HW
intra-domain API.

The test case can be potentially any test that extends the base test class. The base test
instantiates the RAL parser, the environment and provides the following methods:

• run phase(): this method calls the run phase of the control agent, the run test seq
and the stop all threads method, which needs to be implemented by the child class

• write(reg name, val): it triggers a write transaction by creating a sequence item
of type seq item. This transaction item is then forwarded to the send transaction
method of the environment

• read(reg name, non blocking, timeout sec=5): it triggers a read transaction by cre-
ating a sequence item of the type seq item. This transaction item is then forwarded
to the send transaction method of the environment. Only in case the argument
non blocking is set to False, the read method waits for the response of the read

36 Chapter 5 : Co-emulation architecture

transaction. A timeout is triggered when there is no transaction for more than
timeout sec. The default value is 5

• stop all threads(): it calls the same method from the environment

• power up(): this method configures the DUT’s registers

• dump csv file: it extracts the value of the DUT’s measurements and dump them
into a csv file

In case the access type is read, is read transaction() returns true.

The RAL parser takes a .json file as input and returns a RAL object. In the current
application, the functionality of the RAL object is very limited. It provides only one
method get reg address(reg name). However, this simple method allows to do register
accesses by name.

The environment component is a container of the control agent and it has three methods.
send transaction(seq item) is used to forward the sequence item to the agent. Vice-versa,
get transaction(timeout sec) returns the sequence item received from the agent.
stop all threads() is used to call the same method from the control agent.

The control agent instantiates the driver and the monitor. It implements two methods
used in the environment:

• send transaction(seq item): it puts the sequence item into the in port queue of the
driver

• get transaction(timeout sec): it tries to get a sequence item from the out port
queue of the monitor. In case of expired timeout, an exception is issued

The main function of the driver is to send a write or read transaction, depending on the
sequence item type.
It also defines the ready method. This is a callback method, called by the SCE-MI layer
whenever a pre-defined READY packet is received from the hardware. This ready method
fills the ready port queue with the expected number of freed slots. If this number is higher
than zero, the driver sends transactions to the FPGA.

The monitor extends the AeonvMonitor class, which defines two queues: out port and
recv port.
The monitor implements the recv method, which is called by the SCE-MI layer whenever
the hardware returns a transaction. This function maps the SceMiMessageData to the

 The driver is defined as an extension of another driver class. This defines two queues:
in port forwards the transaction items to the Test-bench and ready port is used for flow
control.

 The sequence item class contains all the information required for a transaction and im-
plements three methods. Two of them are used to set the register name, the address and
the access type of the read/write instruction.

5.2 : Software block 37

sequence item and puts it into the recv port queue. In the run phase the monitor moves
the sequence item from the recv port queue to the out port queue.

5.2.2 SCE-MI SW layer

The software side interface is described by the following classes:

• class SceMiEC: used for error handling

• class SceMi: this represents the software side of the infrastructure and contains
methods for global interface operations (initialization, shutdown, binding...)

• class SceMiMessageInPortProxy: it presents to the application a proxy interface to
interact with a transactor’s driver on the hardware receive side. The flow direction
is from software to hardware

• class SceMiMessageOutPortProxy: it presents to the application a proxy interface
to interact with a transactor’s monitor on the hardware transmit side. The flow
direction is from hardware to software

• class SceMiParameters: it provides access to the interface parameters

• class SceMiMessageData: it represents the vector of message data that will be
transferred from the port proxy to the hardware and vice-versa

The API gives the Test-bench access to a set of input/output ports that communicate to
the hardware side on the SCE-MI interface. To gain this access, the software side shall
first initialize its infrastructure, then bind to the hardware side.

The SceMiParameters class allows to:

• define the communication channel (Test-bench acceleration or HDL simulation)

• define the number and names of transactors

 The original Macro-based SCE-MI standard was only specified in C and C++. A
Phyton version of it has been defined and used in this research project. Its
implementation is identical to the C/C++ existing ones.

Initializing the SCE-MI means loading a parameter file containing the information to
establish the connection to the hardware side through the port proxies. Each port has a set
of parameters defined in the SceMiParameters class, which is initialized by a
configuration file.

 • define names and widths of message ports

Class SceMi defines the main method of the infrastructure: the ServiceLoop(). It is called
by the SW Test-bench and it is used to service the port proxies by checking for arriving
or pending messages, dispatching input-ready information and receiving callbacks.
Messages transmitted over the communication channels should be compliant with a pre-
defined format. The frame of a generic SCE-MI message is shown in Figure 5.3.

38 Chapter 5 : Co-emulation architecture

Figure 5.3: Generic SCE-MI frame

It contains following fields:

• Transactor ID: this is a unique identifier for the transactor and related port to
which it is destinated

• Timestamp: timing information should be encapsulated in this frame

• Data: the message that shall be sent to the transactor

5.3 SW to FPGA communication channel

The communication between two systems, based on a standard protocol, is described by
the Open Systems Interconnection model (OSI model) [Neu05]. The OSI model presents
a structure of the communication system into several abstraction layers (Table 5.1).

Layer Function

7 Application High-level APIs

6 Presentation Translation of data (encoding, encryption..) to allow the
communication between user application and network

5 Session It manages communication sessions between two nodes

4 Transport Responsible for end-to-end communication over a network

3 Network It manages multi-node network: it performs addressing, routing and
traffic control

2 Data link It handles the movement of data between two nodes into and out
from a physical medium

1 Physical Transmission and reception of raw bits over a physical medium

Table 5.1: Layers of OSI model

 To choose a communitation protocol, the available interfaces on the board have been
analyzed. The programmable board used in this research project, Arria 10 FPGA,
offers three interface options. Table 5.2 shows a comparison among them.

5.3 : SW to FPGA communication channel 39

Maximum Number of
Interface

connection speed interface pins
Protocol complexity

RS232 10-100 Mbps 5 Low

Ethernet 1.25 Gbps 9 Medium

8 Gbps/lane,
PCIe

max. 64 Gbps full-duplex
38 High

Table 5.2: Features of Arria 10 interfaces

All the three described interfaces are serial. RS232 has a very low speed which could
corrupt the main intent of the project: consistently speed-up the test execution. PCIe
would provide the highest possible speed compared to the other two. However, imple-
menting its communication protocol on pure hardware would require a high effort. It is
indeed based on a Requester-Completer protocol [PCI].
On the other side, Ethernet does not provide the highest possible speed. However it allows
to implement a simpler protocol, such as the User Datagram Protocol (UDP) [Fai08].

5.3.1 User Datagram Protocol

Among the various Ethernet protocols, IPv4 UDP has been used. It requires a minor
number of frame fields compared to other ones.
UDP uses a connectionless communication model (differently from TCP), without hand-
shaking or acknowledgment mechanisms. This means that there is no certainty that the
packet has been delivered. However, this makes the protocol easy to reproduce, having a
shorter frame (in comparison to TCP) with a faster transmission over a serial interface.
UDP is a simple message-oriented transport-layer protocol. The SW application running
on the host PC can communicate with the FPGA by opening a UDP socket and specifying
the target IP address and port.
An Ethernet frame is composed of:

• Preamble (7 bytes, each byte set to 0x55): it indicates the beginning of a new
transmission

• Start Frame Delimiter (SDF, 1 byte = 0xD5): it indicates the beginning of the
Ethernet frame

• Destination MAC Address (6 bytes)

• Source MAC Address (6 bytes)

•

• MAC CLIENT DATA (min 46 bytes): it contains the message that is willing to be
transmitted, preceded by the headers required by the protocol used

Length/Type (2 bytes): according to the protocol used, it may indicate the length
of the message or the protocol type. In our case, since UDP uses the IP protocol
on the Network layer. The type is fixed to 0x0800

40 Chapter 5 : Co-emulation architecture

• PAD: this field may not be present if the length of the MAC CLIENT DATA field
is already higher than 46 bytes. If it is not, the PAD field (all bytes 0) is added to
reach the minimum length of 46 bytes

• FRAME CHECK SEQUENCE (4 bytes): it is cyclic redundancy check (CRC)
error detection code

To send a UDP packet, its protocol (implemented at Transport layer) must interact with
the Network layer below. For this reason, the Ethernet frame must contain a IPv4 header
and a UDP header.
The format of a general Ethernet frame and a UDP frame are shown below in Figure 5.4.

Figure 5.4: Ethernet frame and UDP frame format

5.3.2 Address Resolution Protocol

To send UDP packets from the host PC to the FPGA it is needed to just open a socket
and specify target address and port. However, in order to correctly build the frame, the
OS needs also the information about the target MAC address. To retrieve this information
and perform the two-point connection, the Address Resolution Protocol (ARP) [Har17]
is used.
As soon as the workstation tries to send the first packet to the target IP address (FPGA),
if this is unknown to the OS, an ARP request packet will be sent first. This packet
contains information about the sender and about the target IP that it wants to reach. It
is broadcasted to all the devices connected on the network. The format is shown in Figure
5.5.

Figure 5.5: ARP Request frame format

Only the device which has IP address equal to the one listed in the TARGET IP
ADDRESS field must answer with a ARP Reply frame. The content of the reply is shown

5.3 : SW to FPGA communication channel 41

Only after the ARP Reply is received and the sender has registered the Target Mac
address, UDP packets can be sent.
Figure 5.7 shows the communication protocol.

Figure 5.7: ARP protocol before UDP packets transmission

As soon as the ARP protocol terminates, a new ARP entry is inserted in the ARP
table of the OS, where information like IP address, MAC address and interface are stored.
The OS has a timeout, after which it deletes the ARP entry and eventually asks again a
new ARP request.
To avoid designing an ARP detector on the FPGA side, another solution can be adopted:

Figure 5.6: ARP Reply frame format

in Figure 5.6. Fields that have equal colors in Request and Reply frames have same
content.

42 Chapter 5 : Co-emulation architecture

• IP address of the target IP (FPGA): decided by the designer

• MAC address of the target device: decided by the designer

• name of the interface on the host workstation

5.3.3 Ethernet interface on FPGA

Arria 10 GX platform has an embedded Marvell 88E1111 PHY [Mar13]. This PHY
supports 10/100/1000 base-T Ethernet connection in combination with the Altera Triple-
Speed Ethernet IP [Int19c], provided by the Intel Library.
Marvell 88E1111 PHY uses 2.5 V and 1.0 V power rails and requires a 25 MHz reference
clock. This clock signal is driven by default from an embedded 25 MHz oscillator.
A RJ45 connector communicates with the Ethernet PHY through a MDI [20119] interface.
The PHY-to-FPGA connection employs SGMII at 1.25 Gbps transmit and receive. In
10-Mb or 100-Mb mode, the interface still runs at 1.25 GHz, but the packet is repeated
10 or 100 times.

Figure 5.8: Ethernet communication interface

The Triple-Speed Ethernet IP is responsible for processing the incoming/outgoing
Ethernet frames. It has been configured to contain:

•

• Physical Coding Sublayer (PCS) [Fra98]: performs the 8B/10B encoding/decoding
and is also responsible for the auto-negotiation process

• Media Access Control (MAC): its main functions are to append/check the FCS,
discard malformed frames and attach/remove preamble, SDF and padding

5.3.4 Ethernet configuration register blocks

The Triple-Speed Ethernet IP can be configured by updating the content of its register
space. It goes from address 0x00 to 0xFF and it is divided in the following way:

• Address space 0x00 - 0x7F contains MAC control registers

it is possible to add a permanent entry to the ARP table of the OS, such that the ARP
synchronization does not need to take place. The information needed to register a
new entry in the ARP table are:

Physical Medium Attachment (PMA): responsible for the deserialization/serializa-
tion of the incoming/outgoing data

5.3 : SW to FPGA communication channel 43

• Address space 0x80 - 0x9F contains PCS control registers

• Address space 0xA0 - 0xFF contains MDIO control space and registers for addi-
tional optional functionalities

The interface on the TSE to its control registers is an Avalon-MM interface [Int19a]. In
order to upload the intended content in the TSE configuration registers, two blocks have
been designed (Figure 5.9):

1. Instruction mem: this block contains a memory-like structure in which the in-
structions that should go through the Avalon-MM interface are stored

2. Configuration reg bridge: this block passes the instructions read from the pre-
vious block to the Avalon-MM interface

Figure 5.9: Configuration register blocks

The Instruction mem block contains an array where the operations that should be
performed on the TSE’s configuration registers are saved. Each row of the array contains
a 42-bit packed data as shown in Figure 5.10.

Figure 5.10: Array row format in Instruction mem block

The opcode field can be READ, WRITE or END, meaning that the operations to be
performed on the configuration register space of the TSE are finished.
The loaded instructions can be divided in two subgroups:

• PCS register space configuration:

1. Enable SGMII interface

2. Enable auto-negotiation

3. PCS reset

• MAC register space configuration:

44 Chapter 5 : Co-emulation architecture

1. MAC address configuration: 00-1C-23-17-4A-CB

2. Maximum frame length and inter-packets gap length

3. Pause quanta timeout

4. MAC SW reset and enable TX/RX paths

Instruction mem block has been implemented with a 5-states FSM (Figure 5.11):

• IDLE: reset and default state

• MEMORY LOAD: all the instructions are loaded into the array rows

• WAIT TRANS: wait for an instruction request by Configuration reg bridge

• SEND DATA: valid is asserted and the instruction is sent to Configuration reg bridge

• WAIT READY DEASSER: wait for Configuration reg bridge to release the cur-
rent request and be ready for another one

IDLE MEM LOAD WAIT TRANS

SEND DATA

WAIT READY DEASSER

rst n = 0 True True

ready = 0

ready = 1

ready = 0
ready = 1

True

Figure 5.11: FSM of Instruction mem block

The Configuration reg bridge reads the instructions from the Instruction mem block
and decodes them to perform the correct operations towards the TSE configuration reg-
isters. It has been implemented a 7-states FSM (Figure 5.12):

• IDLE: reset and default state

• READ INSTR: read the instruction from a row of the Instruction mem block,
whenever valid = 1

• INSTR REC: the instruction is decoded

5.4 : Hardware structure 45

• WRITE: write a register of the TSE’s register space

• READ: read a register of the TSE’s register space and compare its content to the
expected value. If the value does not match, the register is re-read until its content
matches the expected value. This feature is mainly used for reset bits, which could
take some time to be cleared

• NEXT INSTR: the counter to fetch another instruction from the Instruction mem
block is incremented

• END INSTR: the valid instructions in the Instruction mem block have all been
read, so the FSM blocks in this state

IDLE READ INSTR INSTR REC READ

WRITE

END INSTR

NEXT INSTR

rst n = 0 True

valid = 0

valid = 1

type = READ

type = WRITE

type = END

read! = exp read

read == exp read

waitrequest = 1

waitrequest = 1

waitrequest = 0True

Figure 5.12: FSM of Configuration reg bridge block

5.4 Hardware structure

This portion of the architecture contains the hardware side of the infrastructure. It is
loaded on the FPGA and is meant to connect the Ethernet interface to the DUT. The
complete schematic of the architecture loaded onto the FPGA is shown in Figure 5.13

46 Chapter 5 : Co-emulation architecture

Figure 5.13: Infrastructure on FPGA

5.4 : Hardware structure 47

5.4.1 Receive interface

Figure 5.14: Block diagram on Receive interface

It is configured from the top level design with the following parameters:

• FRAME WIDTH: Number of bytes of an IPv4 UDP Ethernet frame, as the one
shown in Figure 5.4

• MEX WIDTH: Number of bytes of the extracted SceMi packet containing an in-
struction, as the one shown in Figure 5.3

This block collects the bytes streamed out by the Avalon Streaming Source RX interface
of the TSE. The first byte is collected as soon as the rx sop signal is asserted, while the
last byte is sent in correspondence with the assertion of the rx eop signal. Transmission
happens from the Most Significant byte to the Least Significant byte.
The Receive interface must detect the entity of the packets received. There are three
types of packets that can be propagated:

• Reset packets: used to force the infrastructure reset from the SW side. They can
be identified by ITEM TYPE = 0xA5A5A5A5.

Figure 5.15: Reset packet

• SceMi packets for transactors: they carry valid instruction for the transactors.
The Receive interface block checks the ITEM TYPE field first, then if it is neither

 The Receive interface block is responsible for receiving packets from the TSE. Over
the Ethernet connection, not only SCE-MI packets can flow. It is very likely that other
packets used for synchronization and control are also transmitted. The Receive interface
must then identify the SCE-MI and propagate only them to the rest of the infrastructure.
On one side it is connected to the Avalon Streaming interface [Int19a] of the TSE and,
on the other side, to the RX FIFO. Its block diagram is shown in Figure 5.14.

48 Chapter 5 : Co-emulation architecture

a Reset or Flow control packet, the TIMESTAMP field is checked. It is used as
identification field for transactors messages, by setting it to a pre-defined value. The
Standard defines that the TIMESTAMP field should carry timing information. In
our architecture, this field was unused so, instead of creating another identification
field for the SceMi transactions, the TIMESTAMP has been used.

Figure 5.16: SceMi packets for transactors

• Flow control packets: they are sent from the SW to the FPGA to inform the
hardware side of how many slots the SW has available. If sent right after the Reset
packet, the Flow control packet has also the function of informing the FPGA that
it can start sending. These packets are identified by the field ITEM TYPE =
0xFFFFFFF. The field normally used as ADDRESS now contains the information
about the number of available slots in the SW buffer.
The number of available slots is communicated by the Receive interface to the
Transmit interface.

Figure 5.17: Flow control packets

This block has been designed as a 7-states FSM (Figure 5.18):

• IDLE: reset and default state

• RUN IF: the Receive interface asserts the rx ready signal and waits for the start
of a packet transmission (rx sop = 1). Then infrastr rstn signal is released

• READ PKT: a packet transmission has been initiated, so the Receive interface
saves the incoming bytes into a frame

• END PKT: rx eop has been asserted, so the packet has been fully received. The
Receive interface detects the packet type: if it is not a valid packet, the FSM
returns back to the RUN IF state

• WRITE FIFO: the packet received is a SceMi packet, so it is written in the
RX FIFO

• TX GO FRAME: the packet received is a Flow control packet, so a dual-ready
protocol with the Transmit interface is initiated

• RST INFRASTRUCTURE: the packet received is a Reset packet, so the infras-
tructure reset is enabled (infrastructure rstn = 0) for one clock cycles and released
right after

5.4 : Hardware structure 49

IDLE RUN IF READ PKT END PKT

WRITE FIFO

RST INFR

TX GO FRAME

rx rstn = 0 True

rx sop = 0
rx eop = 0

rx sop = 1 rx eop = 1

frame =
SceMi pktTrue

frame =
Reset

True

frame =
Flow ctrl

tx go rec = 0

tx go rec = 1

Figure 5.18: FSM of Receive interface block

5.4.2 TX/RX general FIFOs

• DEPTH TX RX FIFO: depth of the FIFOs

• MEX WIDTH: width in bytes of the FIFOs

• WHW TX RX FIFO: high water level of the FIFOs

 These FIFOs contain all the messages coming from the Receive interface or going to
the Transmit interface. They can be parameterized according to their depth, width,
highWaterLevel and lowWaterLevel. These parameters are set in the top level:

50 Chapter 5 : Co-emulation architecture

AsyncFifoFlop adl FIFOs are designed to have read-side and write-side running at differ-
ent frequencies. In this case, both sides run at the interface speed (125MHz).
The clock signals that drive the rx/tx sides of the hardware interface come from the TSE,
which is clocked with a 125MHz clock signal embedded on the board. The IP generates
in turn two clock signals tx clk and rx clk both running at 125MHz.
RX FIFO has the write-side driven by rx clk and the read-side driven by tx clk.
TX FIFO has both sides driven by tx clk.
The remaining part of the hardware infrastructure running at 125MHz is clocked by tx clk.

5.4.3 Flow control for TX/RX FIFOs

Whenever a FIFO domain is present in the infrastructure, a related Flow control mech-
anism must be put in place. Looking at Figure 5.13, two FIFO domains are present:

1. TX/RX FIFO domain

2. Transactor FIFO domain

In the same way, flow control has been divided in two stages:

1. First level: it relates to the TX/RX FIFO domain

2. Second level: it relates to the transactor FIFO domain

In the first level, the Flow Control block (Figure 5.19) checks if RX FIFO or TX FIFO
reach their highWaterLevel mark. Whenever one of the two FIFOs reaches it, it asserts
the whighWater signal.

Figure 5.19: Block diagram of Flow Control

The Flow Control block continuously samples these two signals and, whenever one (or
both) is high, it asserts the xoff signal at the interface of the TSE IP. This automatically
triggers the generation of an XOFF packet, which is the pause frame [Eth20] compliant
to the IEEE 802.3 Ethernet standard. Its format is shown below.

Figure 5.20: Ethernet XOFF frame

5.4 : Hardware structure 51

5.4.4 Dispatcher

This block reads a message from the general RX FIFO, extracts the TRANSACTOR ID
field and writes the message into the FIFO related to the proper transactor. Its block
diagram is shown below in Figure 5.21.

Figure 5.21: Block diagram of Dispatcher

• N TRANSACTORS: number of transactors in the infrastructure. For the current
case study, there is only one: the transactor

• MEX WIDTH: number of bytes of the extracted SceMi packet containing an in-
struction

In Figure 5.21, N = N TRANSACTORS and M = 8*MEX WIDTH.
wen[N-1:0] is an array where each i -th bit is connected to the wen signal of the FIFO
related to the transactor with TRANSACTOR ID = i. IDs for transactors are then
supposed to be assigned in increasing order. For the current case study, having just 1
transactor, wen reduces to a single bit signal and TRANSACTOR ID = 0.
wdata is routed to all the transactors FIFOs. Only the one with its wen signal asserted
will push in the current data at its write interface.
The Dispatcher block has been implemented with a very simple 2 state FSM (Figure 5.22),
whose states are:

• IDLE: reset and default state

• READ RX FIFO: data is read from the general RX FIFO and routed to the ded-
icated transactor’s FIFO

IDLE READ RX FIFO

rdata valid = 0

rstn = 0 rdata valid = 1

True

Figure 5.22: FSM of Dispatcher block

This block is parameterized from the top level:

52 Chapter 5 : Co-emulation architecture

5.4.5 Transactor FIFO domain

• DEPTH XTOR FIFO: depth of the transactors FIFOs

• MEX WIDTH: width in bytes of the transactors FIFOs

Constraints for CDC must be applied. They can be generated with the help of the Timing
Analyzer tool provided by Intel: from Quartus command line click Tools > Timing An-
alyzer. Once the GUI opens, select the constraints that are needed from the Constraints
tab in the command line.

5.4.6 Transactors

SceMi transactors are divided in a software part and in a hardware counterpart. Com-
munication between them happens through messages whose format is compliant to the
SceMi standard.
Each transactor is identified by a unique ID, which is shared by the Driver and the Mon-
itor (if both present) of the same transactor. Drivers and Monitors are implemented as
Bus Function Models (BFMs). They communicate on one side with their dedicated FIFO
and on the other side with the DUT.
For the current case study, the transactor is the only one present and it is implemented
with a Driver and a Monitor. Its TRANSACTOR ID is 0.
In case of multiple transactors, they can obviously run at different speeds: the same in-
frastructure can contain a very fast transactor and a very slow one. Dedicated FIFOs and
the second level of Flow control are indeed needed to prevent to have messages for the
fast transactor stuck behind the ones for the slow one.

5.4.7 Flow control for transactor FIFOs

This section of the architecture implements the second level of flow control, as mentioned
in Section 5.4.3. It is composed of three blocks: READY MSG FIFO, Control block and
FIFO WHW.

READY MSG FIFO

The main function of this FIFO is to implement the CDC between the clock domain of the
transactor and the clock domain (write side) of the infrastructure (read side, 125 MHz).

 In this domain the clock domain crossings (CDCs) between the infrastructure clock and
the transactors clocks takes place. Each FIFO in this domain has the write-side driven by
the interface clock signal (tx clk = 125 MHz), while the read-side is driven by the clock
signal of its own transactor. The depth of these FIFOs should be smaller than (or at least
equal to) the one of the general RX/TX FIFOs. They can be parameterized according
to their depth, width, highWaterLevel and lowWaterLevel. These parameters are set in
the top level:

 • WHW XTOR FIFO: high water level of the transactors FIFOs

The flow control for these FIFOs is managed by the transactors themselves which ex-
change ”READY” packets with the software. More details about this are provided in
section 5.4.7. For this reason, full and whighWater signals are not used.

5.4 : Hardware structure 53

Since each transactor can run at a different clock speed, a READY MSG FIFO block
must be instantiated per each transactor.
The content of the message stored in this FIFO is a ”READY” message (Figure 5.23),
defined by the Standard [Acc16]. This message is used for flow control: whenever a
transactor is ready to receive, it sends this message to the SW side.

Figure 5.23: Ready message frame

A ”READY” message contains the information of the TRANSACTOR ID field, with
its most significant bit set to 1. This field allows the SW side to understand from which
transactor the ”READY”message comes from. All the other fields are present, but ignored
by the infrastructure.

Control block

It checks by increasing order if the READY MSG FIFO blocks have valid READY mes-
sages. Whenever this happens the message is copied into the next fifo: FIFO WHW. Its
block diagram is shown in Figure 5.24.

Figure 5.24: Block diagram of Control block

Its parameters are the same ones of the other blocks, defined in the top level: N=N TRANSACTORS,
M=MEX WIDTH.
xtor ready[N-1:0] and xtor ready ack[N-1:0] signals are two arrays where each i -th bit is
connected to the related signal of the transactor’s Driver with TRANSACTOR ID = i.
ready msg[N-1:0][m-1:0] is a matrix where the READY message of the transactor with
TRANSACTOR ID = i is stored in each i-th row.
The Control block has been implemented with a 3 states FSM (Figure 5.25) with states:

• IDLE: reset and default state

• CHECK XTOR READY: checks if the i-th READY MSG FIFO has a valid mes-
sage

• SEND READY: the READY message is read from the current READY MSG FIFO
and stored in FIFO WHW

54 Chapter 5 : Co-emulation architecture

IDLE CHECK XTOR READY SEND READY
rstn = 0 True

ready = 0

ready = 1

True

Figure 5.25: FSM of Control block block

FIFO WHW

This FIFO has both read and write sides connected to the same 125 MHz clock signal.
The main function of this block is to store the ready messages of all the transactors and
provide them to the Arbiter block.
FIFO WHW has highest priority with respect to the other FIFOs connected to the Ar-
biter. As soon as an element is present in FIFO WHW it is immediately written in the
TX FIFO.

5.4.8 Arbiter

This block runs at the infrastructure speed (125MHz) and is connected to:

• FIFO OUT XTOR blocks, from which it reads the monitored instructions

• FIFO WHW, from which it reads the transactors READY messages

• TX FIFO, into which it writes the read messages

Figure 5.26: Block diagram of Arbiter

The ren[N:0] signal is an array where each i -th bit is connected to the ren signal of the
FIFO OUT XTOR related to the TRANSACTOR ID = i. The most significant bit of the
array (ren[N]) is connected to the related signal of FIFO WHW, containing the READY

5.4 : Hardware structure 55

messages.
Same connections are performed also for rdata valid and rdata arrays.
FIFO WHW has the highest priority in the arbitration process: the Arbiter always checks
first if a message is available in this fifo. Only if FIFO WHW is empty, the Arbiter checks,
by increasing order of the transactors IDs, the rdata valid signals of the transactors FIFOs.
This block has been implemented with a 6 states FSM, which states are:

• IDLE: reset and default state

• CHECK READY: rdata valid[N] is read to check if a READY message is available

• READ READY: the READY message is read from FIFO WHW

• CHECK XTOR MEX: the index i is updated, rdata valid[i] is checked

• READ XTOR MEX: a message is read from the i-th FIFO OUT XTOR

IDLE

CHECK READY

READ READY

CHECK XTOR MEX

READ XTOR MEX

WRITE FIFO

rstn = 0

True

rdata valid[N] = 1&
rempty[N] = 0

rdata valid[N] = 0|
rempty[N] = 1

rdata valid[i] = 1&
rempty[i] = 0

rdata valid[i] = 0|
rempty[i] = 1

True

True

True

Figure 5.27: FSM of Arbiter block

56 Chapter 5 : Co-emulation architecture

5.4.9 Transmit interface

The Transmit if block is responsible for receiving SceMi messages from the TX FIFO,
packing them into IPv4 UDP frames (as shown in Figure 5.4 of section 5.3.1) and for-
warding them, 1 byte at a time, to the Avalon Streaming Transmit interface on the TSE.
The block diagram of Transmit if is shown in Figure 5.28.

Figure 5.28: Block diagram of Transmit if

Messages coming from the TX FIFO are SceMi packets containing instructions for the
transactor or READY messages. The Transmit interface block encapsulates them into
IPv4 UDP packets. The SceMi message occupies the PAYLOAD field of the Ethernet
packet, as shown in Figure 5.29.

Figure 5.29: UDP frame formatting by Transmit if

The transmit interface is also responsible of managing the flow of packets from the
FPGA to the host workstation. The FPGA cannot send packets without taking control of
the availability of the SW side to receive. Assuming that the HW is faster than the SW,
if the FPGA continuously sends packets to the PC, the SW buffer will fill up. To avoid
this, the Transmit interface keeps a count of the slots available on the SW buffer. The
information about the number of available slots is sent by the SW to the FPGA inside a
Flow control packet (Figure 5.17).
The flow control procedure goes in the following steps:

1. The SW side is ready to receive and sends a Flow control packet containing the
information about the number of available slots

2. The Receive if block receives the Flow control packet and starts a dual-ready pro-
tocol with the Transmit if, sending to it the number of slots available

5.4 : Hardware structure 57

3. The Transmit if block updates its internal counter

4. Transmit if decrements its counter every time it sends a packet to the SW. If the
counter reaches 0, even if there are messages to send, it waits for another Flow
control packet to restart the transmission

This block has been implemented with a 8-states FSM (Figure 5.30). Its states are:

IDLE

RUN TX IF

TX GO

WAIT TX GO DEAS

READ FIFO

START PKT

TRANSMIT PKT

END PKT

tx rstn = 0

True

avail slots = 0|
rdata valid = 0|
tx empty = 1

tx go = 1

True

tx go = 1

tx go = 0

tx go = 0&
avail slots > 0&
rdata valid = 1&
tx empty = 0

True

tx ready = 0

tx ready = 1

count > 0

count = 0

True

Figure 5.30: FSM of Transmit if block

• IDLE: reset and default state

58 Chapter 5 : Co-emulation architecture

• RUN TX IF: the Transmit if waits for a valid message to be read from TX FIFO

• TX GO: the number of available slots on the SW side is received from the Receive if
block. The internal counter is updated and tx go rec signal is asserted for the
handshake with Receive if

• WAIT TX GO DEASSERTED: waits for the Receive if to release the tx go signal

• READ FIFO: a message is read from TX FIFO and the full UDP frame is created.
The counter of transmitted packets is updated

• START PKT: tx sop is asserted and the first byte is sent to the TSE IP

• TRANSMIT PKT: all the bytes (except the last one) are sent and the byte counter
is constantly decreased

• END PKT: tx eop is asserted and the last byte is transmitted

5.5 Driver

The current case study has just a control interface, meaning that only a pair of trans-
actors is needed. They are:

• Driver: it drives the interface signals to perform read and write instructions on the
DUT . It is also responsible of generating the READY messages

• Monitor: it observes the interface signals to track back the performed instructions

The block diagram of the Driver is shown in Figure 5.31.

Figure 5.31: Block diagram of Driver

It is connected to:

• its FIFO IN XTOR, from which it reads messages containing instructions

• its READY MSG FIFO, into which it writes its READY message

5.6 : Monitor 59

• control interface on the DUT

When the Driver is ready to receive a new instruction, it raises the ReceiveReadyIn driver
signal and waits for the assertion of TransmitReadyIn driver, meaning that the FIFO is
ready to send a new message. As soon as the message is received by the driver, Re-
ceiveReadyIn driver is released.
The messages received from the FIFO are in the following format (Figure 5.32):

• MessageIn driver[191:160] : transactor ID

• MessageIn driver[159:96] : timestamp

• MessageIn driver[95:64] : transaction type (1 : WRITE, 0 : READ)

• MessageIn driver[63:32] : pwdata (data to be written)

• MessageIn driver[31:0] : paddr (address of the target register)

Figure 5.32: SceMi instruction frame

The Driver is also in charge of managing the second level of flow control which prevents
that its own FIFO IN XTOR gets full. To do so, the Driver counts the number of packets
that it receives. Whenever it reaches a predefined amount set in the top level entity as
N PACK RX, the driver sends a READY message. The frame has been shown in Figure
5.23 and discussed in section 5.4.7.
The READY message is sent also to establish the initial handshake between SW and HW
right after a Reset packet from the SW. In case of multiple transactors, all of them will
send a READY message after their reset signals have been released.

5.6 Monitor

The Monitor (Figure 5.33) tracks the events at the DUT interface, detects instructions
and recomposes the SceMi message.

Figure 5.33: Block diagram of Monitor

60 Chapter 5 : Co-emulation architecture

It is connected to:

• its FIFO OUT XTOR into which it writes the messages containing the monitored
instructions

• control interface on the DUT

When the monitor is ready to write a new message into its dedicated FIFO, it asserts
TransmitReadyOut monitor. The message is packed as shown in Figure 5.32.

Chapter 6
Experimental Results

Contents
6.1 Test-bench acceleration set-up 62

6.2 Simulation vs. co-emulation results 62

6.3 Co-emulation Timing Analysis 66

6.3.1 Bottleneck . 68

6.4 Further improvements . 70

61

62 Chapter 6 : Experimental Results

6.1 Test-bench acceleration set-up

To evaluate the project performance, the total time required by RTL simulation has
been compared with the one required by Test-bench acceleration.

Software set-up

The Test-bench and SW SCE-MI layer have been executed on a MacBook Pro with
Intel i7 processor at 2,3GHz.
The Python test case is intended to run a set of measurements on the DUT. It contains
a start-up sequence (19 write instructions to control registers) and a measurement phase.
Per each measurement, the following instructions are sent:

• 1 WRITE to set the start bit in a dedicated register

• 1 READ to read the value of the measurement from the result field of a dedicated
control register

These two instructions are repeated every time a measurement must be acquired. If a test-
case requires 100k measurements, 200k instructions are sent from the host workstation to
the FPGA.

Hardware set-up

Once the board has been programmed, the synchronization and auto-negotiation phases
between FPGA and PC starts. These tasks are automatically handled by the PC’s OS
and the Triple-Speed Ethernet IP loaded on the board. The completion of this process is
identified by a green LED on the board. Only at this point, the test case can be executed.

6.2 Simulation vs. co-emulation results

The Python Test-bench has been tweaked several times during the performance evalua-
tion phase. Some changes to the software have been made to improve the overall timing
of the test case execution. Test-bench acceleration performance has been evaluated with
three different revisions of the SW Test-bench.

Revision 1

The SystemVerilog UVM Test-bench used in RTL simulation contains some print in-
structions. To fairly compare the obtained timing results, print instructions have also

 The HW side of the infrastructure ran on Arria 10 GX FPGA. The board is connected
to the host workstation through an Ethernet cable. Before running the software test case,
the board must be programmed loading onto it the .sof file of the synthesized
project’s netlist.

 In order to evaluate how the speed-up factor scales with time, 7 different sets of in-
creasing number of measurements have been considered: 1, 10, 100, 1k, 10k, 100k, 1M.
RTL simulation with 100k measurements was killed after 65284 measurements, within 7h
55m.

6.2 : Simulation vs. co-emulation results 63

TB acc time
Nr. measurements RTL sim time

(Revision 1)
Speed-up factor

1 26s 14.517ms 1791x

10 39s 24.014ms 1624x

100 1m 27s 134.94ms 645x

1k 6m 39s 1s 198ms 333x

10k 48m 39s 12s 247ms 238x

100k ∼7h 55m for 65284 2m 1s 471ms /

1M 4d 3h 8m 46s 19m 22s 687ms 307x

Table 6.1: RTL Simulation times vs. Test-bench acceleration times

Figure 6.1 displays the results in a logarithmic scale.

Figure 6.1: Comparison between simulation and co-emulation time results

As it can be seen from Table 6.1, for a very low number of measurements (1 or 10) the
co-emulation methodology is more than one thousand times faster than RTL simulation.
For higher number of measurements, the speed-up factor is around 300x.

Revision 2

Removing the print instructions has been the first improvement done to speed-up the
Test-bench acceleration. The obtained results are shown in Table 6.2.

been added to the first version of the Python UVM Test-bench. The obtained results are
shown in Table 6.1.

64 Chapter 6 : Experimental Results

TB acc time TB acc time
Nr. measurements

(Revision 1) (Revision 2)
Ratio

1 14.517ms 12.5ms 1.15

10 24.014ms 16.6ms 1.47

100 134.94ms 63.2ms 2.13

1k 1.198s 538.4ms 2.23

10k 12s 247ms 5s 429ms 2.26

100k 2m 1s 471ms 51s 2.38

1M 19m 22s 687ms 9m 41s 2.00

Table 6.2: Test-bench acceleration times with and without print instructions

As it is possible to notice, displaying messages on the terminal slows down the DUT
co-emulation of a factor equal or higher than 2.
The results in Table 6.1 and Table 6.2 have been obtained with a Python UVM Test-
bench structured in such a way that every time a measurement instruction was sent, the
test waited for the result and dumped it in a csv file. A large portion of time was indeed
wasted by the Test-bench to wait.

Revision 3

To improve the overall performance, the task to dump the results (dump measurements)
have been moved at the end of the Test-bench execution.
All the obtained results are received by the software monitor and stored inside a queue.
The test sends N measurement instructions to the hardware and only after that it dumps
the collected results into the csv file.
Table 6.3 contains the times measured by moving the dump measurements task at the
end of the Test-bench.

TB acc time TB acc time
Nr. measurements

(Revision 2) (Revision 3)
Ratio

1 12.5ms 12.5ms 1

10 16.6ms 15.0ms 1.105

100 63.2ms 49.8ms 1.269

1k 538.4ms 379.9ms 1.417

10k 5s 429ms 3s 889ms 1.396

100k 51s 37s 519ms 1.359

1M 9m 41s 6m 19s 1.532

Table 6.3: Test-bench acceleration times without print with two options to dump the
measurement results

6.2 : Simulation vs. co-emulation results 65

Results comparison

Figure 6.2 shows a summary of the results presented in Table 6.1, 6.2 and 6.3. The
Time axis has a logarithmic scale and timing values are in seconds.

Figure 6.2: Comparison between three Test-bench versions

If we compare the timing results obtained by RTL simulation with the ones obtained
by co-emulation with the third revision of the SW test-bench, we obtain much higher
speed-up factors. They are shown in Table 6.4

TB acc time
Nr. measurements RTL Sim time

(Revision 3)
Speed-up factor

1 26s 12.5ms 2080x

10 39s 15.0ms 2597x

100 1m 27s 49.8ms 1746x

1k 6m 39s 379.9ms 1050x

10k 48m 39s 3s 889ms 751x

100k ∼7h 55m for 65284 37s 519ms /

1M 4d 3h 8m 46s 6m 19s 941x

Table 6.4: RTL simulation times vs. co-emulation time in Revision 3

The speed-up factors in Table 6.1 and 6.4 are respectively obtained by comparing
revision 1 and revision 3 with the RTL simulation time. Their comparison among the
listed factors is shown in the histogram in Figure 6.3.

66 Chapter 6 : Experimental Results

Figure 6.3: Speed-up factors comparison between Revision 1 and 3

For the current case study, acquiring a high number of measurement results is crucial
for the verification of the DUT. Running one million of measurements can provide a very
good analysis of the behavior of the DUT. Doing it with RTL simulation would require
more than 4 days, while with co-emulation results are available after 6 minutes.

6.3 Co-emulation Timing Analysis

Theoretically, increasing the transactor’s clock frequency, the overall time should decrease.
However, this did not happen: for each set of measurements, changing the transactor’s
speed the overall time changed of irrelevant factors. All the results are shown in Table
6.5.

 A timing analysis related to the operating mode of the co-emulation architecture has
been carried out from Revision 3. The main idea was to evaluate the impact of the
transactor’s clock on the overall performance. The timings analyzed in the previous
section are related to the architecture with the transactor domain running at 48MHz.
One of the first idea to speed-up the verification would be to increase the frequency of
the clock signal of this domain. For this purpose, the architecture has been modified and
tested with the following transactor’s clock frequencies: 75MHz, 100MHz, 125MHz and
150MHz.

6.3 : Co-emulation Timing Analysis 67

Number of Transactor’s clock speed:
measurements 48 MHz 75 MHz 100 MHz 125 MHz 150 MHz

1 12.5ms 11.7ms 11.5ms 11.8ms 11.7ms

10 15.0ms 14.9ms 14.8ms 15.1ms 15.96ms

100 49.8ms 49.3ms 52.1ms 50.3ms 54.9ms

1k 379.9ms 388.2ms 384.4ms 384.0ms 380.3ms

10k 3s 889ms 3s 822ms 3s 809ms 3s 920ms 3s 827ms

100k 37s 519ms 37s 716ms 38s 111m 37s 777ms 38s 304ms

1M 6m 19s 6m 24s 6m 13s 6m 10s 6m 11s

Table 6.5: Co-emulation times in Revision 3 with increasing transactor’s clock speed

Another factor that impacts on the overall timing performance is given by the contribution
of the OS. To see the impact of this, 100 consecutive test cases have been executed and
their times have been collected. Revision 3 has been used, with the transactor’s clock
running at 48MHz on the hardware side. In each test case, 10k measurements have been
collected. The obtained results have been plotted in a graph shown in Figure 6.4. The
average value was equal to 3.34835s.

Figure 6.4: Execution times of 100 test cases for 10k measurements each - transactor clock
frequency = 75MHz

Taking into account the recorded values, having

 Speeding-up the hardware and not seeing timing improvements means that the time
needed by the software to send a packet might be longer than the time needed by the
hardware structure to receive it and send it back. Then, making the control interface
faster would not improve the overall communication.

68 Chapter 6 : Experimental Results

• Tmax = 3.53211s

• Tmin = 3.21701s

• Taverage = 3.3483501s

the deviation of the average value from the maximum one is around 5.5%, while the one
from the minimum value is around 4%.

6.3.1 Bottleneck

To understand which was the bottleneck of the HW-SW communication, the Test-bench
has been executed running the Python Profiler. The test case in account was performing
100k measurements with the transactor’s clock frequency at 48MHz.
Over a total execution time of 39.952 seconds, 34.387 where used for thread synchroniza-
tion. This was due to the structure of the Python UVM Test-bench. The SW driver
was implemented as a thread, which required synchronization for every read and write
instruction. Its structure has been changed to avoid this, allowing to reduce the overhead
due to thread synchronization.
Another factor that was slowing down the communication was related to the roundtrip
delay introduced by the SW-HW synchronization with the READY message. The soft-
ware was indeed stalling, waiting to receive the READY message in order to start sending
again.

(a) Communication with SW stalling waiting
READY

Figure 6.5: SW-HW communication speed-up

This problem has been faced taking into account the following factors:

(b) Communication with improved performance

6.3 : Co-emulation Timing Analysis 69

• Roundtrip delay (tRTdelay): time between the READY message and the previous
instruction sent by the software

• Reply time (tHWreply): time between the instruction sent by the software and the
response from the hardware

n =
(tRTdelay)

(tHWreply)
(6.1)

where n is equal to the number of packets that can be additionally sent by the SW before
checking the READY message queue.
With these improvements it was possible to reduce the overall time for the 100k measure-
ments test case from 39.952 seconds to 33.009725 seconds.
However a higher performance improvement was expected. Let’s consider the absolute
time spent by a Sce-Mi frame to propagate over the entire hardware architecture. It can
be divided in the following contributions:

• NRX: number of cycles needed from the Receive Avalon Streaming interface on the
TSE IP to the clock domain crossing of the Driver’s FIFO

• Nxtor: number of cycles spent on the transactor domain, from the time in which
the Driver reads a message from its XTOR IN FIFO, to the time in which the
Monitor writes the message into its XTOR OUT FIFO

• NTX: number of cycles needed from the clock domain crossing of the Monitor’s
FIFO to the Transmit Avalon Streaming interface on the TSE IP

• NSGMII: number of cycles needed to transmit the Ethernet frame over the serial
line at 1.25Gbps

Looking at the simulation waveforms, NRX = 79, Nxtor = 5, NTX = 72. About the serial
transmission, having a Ethernet frame equal to 78 bytes as in our case, NSGMII = 78x8 =
624. Having the following clock periods

• Tclk IF = 8ns : clock period of the interface clock running at 125MHz

• Tclk xtor = 20.83ns : clock period of the transactor’s clock running at 48MHz

• Tclk SGMII = 0.8ns : clock period of the serial Ethernet clock running at 1.25GHz

the overall time for a Sce-Mi message can be computed as:

THW = (2 ∗NSGMII ∗ Tclk SGMII) + (NRX ∗ Tclk IF) + (Nxtor ∗ Tclk xtor) + (NTX ∗ Tclk IF)

(6.2)

Replacing the above numbers:

THW = (2 ∗ 624 ∗ 0.8ns) + (79 ∗ 8ns) + (5 ∗ 20.83ns) + (72 ∗ 8ns) = 2.31us (6.3)

However, looking at the timings of the packet transmission, it has been noticed that the
time between an instruction (WRITE or READ) from the software and the reply from
the hardware is around 20-30us. This value is more than 10 times higher than THW.
The time spent by a packet inside the TSE IP is unknown and should be added to THW,
but it should most likely be in the order of nanoseconds as for the other time contributions
in the hardware domain. From the obtained numbers, the main assumption is that there
still is some bottleneck on the communication.

70 Chapter 6 : Experimental Results

6.4 Further improvements

On top of this, other improvements can be applied. The first one would be to extend the
depth of the transactor’s FIFOs. This would allow to send the READY message back
to the software a lower number of times. In the current implementation, the READY
message is sent from the FPGA after every 4 instructions.
Let’s consider a test case of N measurements. The total number of transactions generated
by the SW Test-bench, considering also the start-up sequence, is equal to

ntransactions = 19 + (2 ∗N) (6.4)

The number of READY messages generated is then equal to

nREADY =
(ntransactions)

4
(6.5)

In a test case of 100k measurements, 50.004 READY messages are generated.
Increasing the number of counted packets from 4 to 20, for example, would reduce the
number of generated READY messages of 1/5.
Another important improvement is related to the packet structure. In the current imple-
mentation, the frame has been composed in the same way suggested by the standard: 4
bytes for the TRANSACTOR ID field and 8 bytes for the TIMESTAMP field.
Having 32 available bits for the TRANSACTOR ID means that 4294967296 transactors
could be supported by the infrastructure. However, this seems to be an unfeasible case.
A field of 1 byte would actually be more than enough to support the verification of any
complex IP.
Also the TIMESTAMP field is unused. Over 8 bytes, only the last 3 are used as an iden-
tification field for the messages dedicated to the transactors.
Since the Ethernet communication is serial, having a lower number of bits to be trans-
mitted is important if a speed-up is needed.

 As highlighted before, even after the latest improvements, a bottleneck in the commu-
nication is still present. It prevents to reach a higher speed and performance. To have a
better understanding of where the bottleneck of the communication is, it would be needed
to place some probes all over the hardware architecture and compute the exact times at
which packets are transmitted. This kind of computation should not be done on RTL
simulation, but using a logic analyzer (SignalTap) over the execution of the test case
in co-emulation.

Further improvements in the communication speed could be achieved by replacing the
Ethernet connection with a USB or PCIe one. However, implementing the communica-
tion protocol in pure hardware would not be so easy in this case. The adoption of a Nios
processor would then be needed to take care of the communication protocol. Adopting a
Nios would also reduce the Flow control effort on the hardware infrastructure itself.

Chapter 7
Conclusions & Perspectives

Even referring to 30M measurements, RTL simulation would have required more than 120
days (more than 3 months), while Test-bench acceleration provided the results in 1 day.
This is a clear example of the fact that co-emulation would represent a solution to develop
test cases that would be impossible to reproduce in RTL simulation.
Test-bench acceleration represents an optimal solution to save time in the verification
process. Of course the bring up phase of the architecture required an initial demanding
effort. However, having designed it in a standard and general way, no modifications will
be needed on it to be used for the verification of new IPs. What would be needed is the
design of the required transactors and their connection to the DUT and the infrastructure
itself.

Co-emulation cannot, of course, entirely replace RTL simulation. However, according to

71

 The obtained speed-up factors are approximately between 750x and 2000x, which rep-
resents a very good result. In the analyzed papers(Chapter 3), the maximum reached
speed-up factor was related to the implementation developed by Hassoun, Kudlugi, Pryor
and Selvidge [HKPS05]. It was equal to 320x. In our Test-bench acceleration, the mini-
mum obtained speed-up factor is equal to 751x, more than two times higher.
What has been obtained from the developed Test-bench acceleration methodology was
actually higher than what was expected when this research project began. It could have
been expected to obtain a performance improvement higher than 320x, but still close.
Having, instead, performance improvements around 700-900x, Test-bench acceleration has
been performed to run a test case of 100M measurements. Such scenario would be practi-
cally unfeasible in RTL simulation. For 1M measurements in RTL simulation, 4d 3h 8m
46s were required. Considering a linear increase, a test case of 100M measurements would
have taken more than 400 days, so more than one year.
It has been tried to run 100M measurements with Test-bench acceleration. The execution
has been killed after 37347530 measurements, within 1d 3h 30m 42s. The reason why
the test case has been killed is unknown, but it could be due to the fact that the csv file
containing the results had reached a maximum dimension. It has been tried to elaborate
the results on Matlab, but the tool reported an error message stating the size exceeded the
limits.

The Test-bench acceleration methodology provided in this project represents an initial
version on top of which other improvements can be applied. Some of them have been
discussed in section 6.4, others may be highlighted by its adoption for the verification
of other IPs.

72 Chapter 7 : Conclusions & Perspectives

the verified DUT and the test case that must be executed, Test-bench acceleration may
or may not represent a valid option.
This project’s case study was, indeed, the perfect fit for Test-bench acceleration. Having
just one control interface, only two transactors were designed. At the same time, its test
cases required several hours to reach completion, which became seconds or minutes in
co-emulation.
Looking at the obtained timing results for this project’s test case and at its repartition
provided by the Python Profiler, almost half of the overall time was spent on the send
method of the socket. Let’s then compare the obtained timing with Figure 3.3. Taking
into account the test case for 1M of measurement and its speed-up factor equal to 941x,
the co-emulation time is only 0.106% of the RTL simulation time. Half of them is used
by the API. The remaining is mostly used in the Test-bench software domain.

Figure 7.1: Processing times in RTL simulation and Test-bench acceleration for 1M mea-
surements

 The designed infrastructure is parametric, scalable and ready to use for the verification
of other IPs. Being able to easily perform Test-bench acceleration for all the IPs would
not only reduce the verification time, but also allow to think about test case scenarios
which would have been infeasible in simulation.

Bibliography

[20119] ”Medium-dependent interface”. Wikipedia, 2019.

[Acc11a] Accellera. ”Universal Verification Methodology (UVM) 1.1 Class Reference”,
June 2011.

[Acc11b] Accellera. ”Universal Verification Methodology (UVM) 1.1 User Guide”, May
2011.

[Acc16] Accelera. ”Standard Co-Emulation Modeling Interface (SCE-MI) Reference
Manual”, November 2016.

[Ald] Aldec. ”Riviera-PRO Advanced Verification Platform”.

[Alt03] Altera. ”FLEX 10K”, 4.2 edition, January 2003.

[AS16] Mohamed AbdElSalam and Ashraf Salem. ”SoC verification platforms using
HW emulation and co-modeling Testbench technologies”. IEEE, February
2016.

[AV19] Pranav Ashar and Vinod Viswanath. ”Closing the Verification Gap with
Static Sign-off”. IEEE, April 2019.

[Ayn] John Aynsley. ”A practical guide to OVM Part 1”. Technical report, Mentor
Graphics.

[BB03] Arnold Berger and Michael Barr. ”Introduction to On-Chip Debug”. embed-
ded.com, February 2003.

[Bis19] Priyabrata Biswas. ”Introduction to FPGA and its Architecture”. towards-
datasience.com, November 2019.

[Dou15] Doulos. ”UVM Adopter Class”, 2.3 edition, 2015.

[ea12] U. Farooq et al. ”Tree-Based Heterogeneous FPGA Architectures”. Springer,
2012.

[Eth20] ”Ethernet flow control”. Wikipedia, 2020.

[Fai08] Gorry Fairhurst. ”The User Datagram Protocol (UDP)”, November 2008.

73

74 BIBLIOGRAPHY

[Fos10] Harry Foster. ”Redefining Verification Performance (Part 2)”. Mentor, August
2010.

[Fra98] Jon Frain. ”1000BASE-X Physical Coding Sublayer (PCS) and Physical
Medium Attachment (PMA) Tutorial”. June 1998.

[FVe] ”Formal verification”. Tech Design Forum.

[Got06] Bob Gottlieb. ”Advances in Electronic Testing: Challenges and Methodolo-
gies”. Springer, 2006.

[Har17] Ed Harmoush. ”Traditional ARP”. practicalnetworking.net, January 2017.

[HKPS05] S. Hassoun, M. Kudlugi, D. Pryor, and C. Selvidge. ”A transaction-based
unified architecture for simulation and emulation”. IEEE, February 2005.

[HWa20] ”Hardware acceleration”. Wikipedia, 2020.

[Int18] Intel. ”Intel Arria 10 Device Overview”, June 2018.

[Int19a] Intel. ”Avalon Interface Specifications”, 2019.

[Int19b] Intel. ”Intel Arria 10 Device Datasheet”, June 2019.

[Int19c] Intel. ”Triple-Speed Ethernet Intel FPGA IP User Guide”, 2019.

[Joh02] Howard Johnson. ”Random and Deterministic Jitter”. sigcon.com, 2002.

[Mar13] Marvell. ”88E1111 Product Brief”, October 2013.

[Mur] Robert Murphy. ”USB 101: An Introduction to Universal Serial Bus 2.0”.
Cypress.

[Neu05] Ralf Neuhaus. ”A Beginner’s Guide to Ethernet 802.3”. 2005.

[PCI] ”Down to the TLP: How PCI express devices talk (Part I)”.

[PGM11] Chandrasekhar Poorna, Varun Gupta, and Raj Mathur. ”Transaction-
Based Acceleration - Strong Ammunition In Any Verification Arsenal”.
deepchip.com, January 2011.

[Qui11] Liam Quin. ”Extensible Markup Language (XML)”, 2011.

[Riz14] Lauro Rizzati. ”Hardware Emulation: A Weapon of Mass Verification”. Elec-
tronic Design, October 2014.

[TJY14] Bill Jason Tomas, Yingtao Jiang, and Mei Yang. ”SoC Scan-Chain verifica-
tion utilizing FPGA-based emulation platform and SCE-MI interface”. IEEE,
November 2014.

[Tom] Bill Jason P. Tomas. ”sce-mi for soc verification”. aldec.com.

[vdSS17] Hans van der Schoot and John Stickley. ”A brief history of hardware-assisted
verification: from the ICE age to today’s UVM transactors”. 2017.

BIBLIOGRAPHY 75

[vdSY15] Hans van der Schoot and Ahmed Yehia. ”UVM and Emulation: How to Get
Your Ultimate Testbench Acceleration Speed-up”. DVCON, 2015.

[Wal12] Colin Walls. ”In-Circuit Emulators”. ScienceDirect, 2012.

[WBW01] Remigiusz Wǐsniewski, Arkadiusz Bukowiec, and Marek Wȩgrzyn. ”Benefits
of hardware accelerated simulation”. June 2001.

[WDBP11] Wlodzimierz Wrona, Pawel Duc, Lukasz Barcik, and Wojciech Pietrasina. ”An
example of DISPLAY-CTRL IP Component verification in SCE-MI based
emulation platform”. IEEE, May 2011.

[Yas11] Muhammad Yasir. ”Introduction to FPGA Technology”. FPGARE-
LATED.com, May 2011.

	1 Introduction
	1.1 The need for verification
	1.2 Design Flow and Pre-Silicon Verification
	1.3 Problem statement
	1.4 Co-emulation goals

	2 Background
	2.1 Verification with UVM
	2.2 Test-bench structure
	2.3 Co-emulation methodologies
	2.3.1 Hardware acceleration
	2.3.2 In-circuit emulation
	2.3.3 Test-bench acceleration

	2.4 Platforms for co-emulation
	2.4.1 Emulation platform
	2.4.2 FPGA

	2.5 UVM Test-bench acceleration with FPGA
	2.5.1 Dual SW and HW domains
	2.5.2 Modeling of timed HW domain
	2.5.3 Definition of transaction-based SW-HW API

	2.6 Standard Co-Emulation Modeling Interface
	2.6.1 Function-based SCE-MI
	2.6.2 Pipe-based SCE-MI
	2.6.3 Macro-based SCE-MI

	3 State of the art
	4 Case study
	5 Co-emulation architecture
	5.1 General SW-HW architecture
	5.2 Software block
	5.2.1 UVM-like Test-bench
	5.2.2 SCE-MI SW layer

	5.3 SW to FPGA communication channel
	5.3.1 User Datagram Protocol
	5.3.2 Address Resolution Protocol
	5.3.3 Ethernet interface on FPGA
	5.3.4 Ethernet configuration register blocks

	5.4 Hardware structure
	5.4.1 Receive interface
	5.4.2 TX/RX general FIFOs
	5.4.3 Flow control for TX/RX FIFOs
	5.4.4 Dispatcher
	5.4.5 Transactor FIFO domain
	5.4.6 Transactors
	5.4.7 Flow control for transactor FIFOs
	5.4.8 Arbiter
	5.4.9 Transmit interface

	5.5 Driver
	5.6 Monitor

	6 Experimental Results
	6.1 Test-bench acceleration set-up
	6.2 Simulation vs. co-emulation results
	6.3 Co-emulation Timing Analysis
	6.3.1 Bottleneck

	6.4 Further improvements

	7 Conclusions & Perspectives
	Bibliography

