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Abstract

Because of its potential to drastically change mobility and transport, autonomous
systems and self-driving vehicles are attracting much attention from both the re-
search community and industry. Recent work has demonstrated that it is possible
to rely on a comprehensive understanding of the immediate environment while fol-
lowing simple high-level directions, to obtain a more scalable approach that can
make autonomous driving a ubiquitous technology. However, to date, the majority
of the methods concentrates on deterministic control optimisation algorithms to
select the right action, while the usage of deep learning and machine learning is
entirely dedicated to object detection and recognition.

Recently, we have witnessed a remarkable increase in interest in Reinforcement
Learning (RL). It is a machine learning field focused on solving Markov Decision
Processes (MDP), where an agent learns to make decisions by mapping situations
and actions according to the information it gathers from the surrounding envi-
ronment and from the reward it receives, trying to maximise it. As researchers
discovered, reinforcement learning can be surprisingly useful to solve tasks in sim-
ulated environments like games and computer games, and RL showed encouraging
performance in tasks with robotic manipulators. Furthermore, the great fervour
produced by the widespread exploitation of deep learning opened the doors to
function approximation with convolutional neural networks, developing what is
nowadays known as deep reinforcement learning.

In this thesis, we argue that the generality of reinforcement learning makes it a
useful framework where to apply autonomous driving to inject artificial intelligence
not only in the detection component but also in the decision-making one. The focus
of the majority of reinforcement learning projects is on a simulated environment.
However, a more challenging approach of reinforcement learning consists of the
application of this type of algorithms in the real world. For this reason, we designed
and implemented a control system for Cozmo, a small toy robot developed by Anki
company, by exploiting the Cozmo SDK, PyTorch and OpenAI Gym to build up a
standardised environment in which to apply any reinforcement learning algorithm:
it represents the first contribution of our thesis.

Furthermore, we designed a circuit where we were able to carry out experiments
in the real world, the second contribution of our work. We started from a simplified
environment where to test algorithm functionalities to motivate and discuss our
implementation choices. Therefore, we implemented our version of Soft Actor-
Critic (SAC), a model-free reinforcement learning algorithm suitable for real-world
experiments, to solve the specific self-driving task with Cozmo. The agent managed
to reach a maximum value of above 3.5 meters in the testing phase, which equals
more than one complete tour of the track. Despite this significant result, it was not



able to learn how to drive securely and stably. Thus, we focused on the analysis
of the strengths and weaknesses of this approach outlining what could be the next
steps to make this cutting-edge technology concrete and efficient.
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Chapter 1

Introduction

Autonomous systems and in particular self-driving for unsupervised robots and ve-
hicles (e.g. self-driving cars) are becoming more and more an integral part of human
lives. This topic attracted much attention from both the research community and
industry, due to its potential to radically change mobility and transport. In general,
most approaches to date focus on formal logic methods, which define driving be-
haviour in annotated geometric maps. These methods can be challenging to scale,
as they rely heavily on an external mapping infrastructure rather than using and
understanding the local scene, leaving fully autonomous driving in a real urban
environment an essential but elusive goal.

However, recent work on autonomous driving has demonstrated that it is possi-
ble to exploit the knowledge about the surrounding environment to obtain a more
scalable method for self-driving vehicles. The work in [49] demonstrated that this
approach is feasible on rural country roads, using GPS for coarse localisation and
LIDAR to understand the local scene. The ability to drive and navigate in the
absence of maps and explicit rules, relying – just like humans do – on a comprehen-
sive understanding of the immediate environment while following simple high-level
directions (e.g. turn-by-turn route commands) may be the correct approach to rev-
olutionise autonomous driving by making it a genuinely ubiquitous technology.

To date, the majority of the methods adopted to exploit the local scene and
to learn how to drive concentrates on deterministic algorithms to recognise the
surroundings and select the right action (e.g. lane following problem on well-marked
structured highways). However, these methods, like the previous ones, are not able
to generalise proficiently in a different environment because of their deterministic
nature.

In this context, the usage of deep learning and machine learning is entirely
dedicated to object detection and recognition, while the decision-making aspect is
left to control optimisation algorithms [26].

Recently, we have witnessed a remarkable increase in interest in Reinforcement
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Introduction

Learning (RL). Reinforcement Learning is a machine learning field focused on solv-
ing Markov Decision Processes (MDP), where an agent learns to act in an environ-
ment by mapping situations and actions, trying to maximise some reward function.
To date, it represents the closest example of a learning approach that mimics the
ability of humans to learn from experiences. The agent, the brain of reinforcement
learning, learns to make decisions according to the information it receives from the
surrounding environment and from the positive (or negative) reward it receives. It
represents a crucial step towards Artificial General Intelligence (AGI). This ma-
chine learning paradigm achieved super-human results at games such as Go [61] or
chess [62]. Therefore, researchers found out that it can be surprisingly useful to
solve tasks in simulated environments like computer games [44], and it possesses
promising features to perform tasks with robotic manipulators [18]. Furthermore,
the great fervour produced by the widespread exploitation of deep learning opened
the doors to function approximation with neural networks and convolutional neural
networks, developing what is nowadays known as Deep Reinforcement Learning.

In this thesis, we argue that the generality of reinforcement learning makes it a
useful framework where to apply autonomous driving to inject artificial intelligence
not only in the detection component but also in the decision-making one. The
majority of the work in this research field are focused on simulated environments
where experiments with a large number of iterations can be straightforwardly com-
pleted without direct human interaction. However, to date, the more challenging
approach of reinforcement learning consists of the application of this type of algo-
rithms in the real world [28]. In this context, the crucial challenges are the one
related to hyper-parameters configurations that requires numerous and expensive
iterations in order to obtain valuable results, but also the data noisiness and explo-
ration. Despite these obstacles, the results that could derive from the application of
these technologies to a real context could be compelling and revolutionary. For this
reason, we accepted this challenge, and we decided to apply reinforcement learning
algorithms to an autonomous driving problem, following the inspiring research of
[29].

To develop our considerations about the particular application of this research
field, we designed and implemented a control system to control Cozmo, a small
toy robot developed by Anki company, by exploiting the Cozmo SDK and OpenAI
Gym to build up a standardised environment in which to apply any reinforcement
learning algorithm. This implementation represents the first contribution of our
thesis. In the second contribution of our work, we aimed to implement state-
of-the-art model-free deep reinforcement learning algorithms and discuss the result
obtained. We opted for Soft Actor-Critic (SAC) [21, 20], a model-free reinforcement
learning algorithm suitable for real-world experiments whose authors managed to
overcame hyper-parameters configuration dependency of Deep Deterministic Policy
Gradient (DDPG) [41], focusing on what could be next steps to make this cutting-
edge technology concrete and efficient.
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1.1 Structure of the thesis
This section aims to describe the main structure of the thesis.

Chapter 1 - Introduction

The current chapter contains the motivation underlying this work and the structure
of the thesis.

Chapter 2 - Reinforcement Learning

This chapter aims to offer a description as detailed as possible about reinforcement
learning state-of-the-art in order to provide the reader with useful tools to enter
in this research field. The chapter consists of three principal parts. The first
one aims to describe traditional reinforcement learning fundamentals. In contrast,
the second one focuses reader’s attention to the deep approach to reinforcement
learning, providing an outline of deep learning and presenting Deep Deterministic
Policy Gradient (DDPG) and Soft Actor-Critic (SAC) algorithms.

The last part of this chapter contains a related work review to introduce to the
reader the problem we aimed to solve.

Chapter 3 - Tools and Frameworks

This chapter explains which are the primary tools, frameworks and languages that
we used in this thesis. There will be a particular focus on OpenAI Gym, one of the
most popular reinforcement learning framework nowadays, Anki Cozmo, the robot
we used to carry out reinforcement learning experiments, and PyTorch, the deep
learning framework we used to use convolutional neural networks in reinforcement
learning.

Furthermore, we outlined the motivations behind the choices made through the
analysis of the alternatives present at the time of the thesis development.

Chapter 4 - Design of the control system

The first contribution of our thesis was the implementation of a control system
to perform reinforcement learning experiments in the real world, binding all the
technologies presented in the previous chapter and focusing on reusability of this
system to exploit other reinforcement learning algorithms.

The fourth chapter aims to present the whole set of features we implemented
together with an analysis of the solutions we proposed to the problems we faced.

3
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Chapter 5 - Experimental results

The second contribution of our thesis consists of the experiments we carried out
with Soft Actor-Critic (SAC) algorithm to solve an autonomous driving task in the
real world with Anki Cozmo robot. This chapter aims to present the results we
obtained starting from the preliminary experiments on a modified environment to
tests features and functionalities and concluding the chapter with the discussion
about the learning process of the robot.

It also contains some considerations about the approach taken and a general
discussion on how to measure performances in reinforcement learning algorithms.

Chapter 6 - Conclusions

This chapter provides a summary of the results obtained from experiments together
with a specific critic part. Furthermore, the thesis will conclude with a specific part
dedicated to possible future improvements to this work.

1.2 Github repository
The ideas and the source code of the work contained in this thesis is publicly avail-
able on Github at https://github.com/pieromacaluso/Deep-RL-Autonomous-
Systems. The primary motivation behind this choice is allowing people to use,
test, contribute and improve it even after the conclusion of this thesis work.
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Chapter 2

Reinforcement Learning

Reinforcement learning (RL) is a field of machine learning that is experiencing a
period of great fervour in the world of research, fomented by recent progress in
deep learning (DL) which opened the doors to function approximation develop-
ing what is nowadays known as deep reinforcement learning. RL represents the
third paradigm of machine learning alongside supervised and unsupervised learn-
ing. The idea underlying this research field is that the learning process to solve a
decision-making problem consists in a sequence of trial and error where the agent,
the protagonist of RL, could discover and discriminate valuable decisions from pe-
nalising ones exploiting information given by a reward signal. This interaction has
a strong correlation with what human beings and animals do in the real world to
forge their behaviour.

Before discussing the results of this thesis, it is good to delineate what today
represents the state-of-the-art to understand the universe behind this paradigm
better. Indeed, the exploration of this field of research is the main aim of this
chapter. The first section begins with the definition of the notation used and with
the theoretical foundations behind traditional RL. In the second section, it moves
progressively towards what is deep RL through an introduction to the fundamentals
of deep learning and a careful discussion of the essential algorithms paying more
attention to those used during the thesis project. The last section aims to illustrate
the starting point and ideas of the thesis, drawing what the scenario of deep RL
applied to autonomous systems and real-world robotic tasks is today.

The elaboration of this chapter is inspired by [60], [66], [48], [37] and [15].

2.1 Fundamentals of reinforcement learning
Reinforcement learning is a computational approach to sequential decision making.
It provides a framework that is exploitable with decision-making problems that are
unsolvable with a single action and need a sequence of actions, a broader horizon, to
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be solved. This section aims to present the fundamental ideas and notions behind
this research field in order to help the reader to develop a baseline useful to approach
section 2.2 on page 18 about deep reinforcement learning.

2.1.1 The reinforcement learning problem
Agent, environment and reward

The primary purpose of RL algorithms is to learn how to improve and maximise a
future reward by relying on interactions between two main components: the agent
and the environment.

The agent is the entity that interacts with the environment by making decisions
based on what it can observe from the state of the surrounding situation. The
decisions taken by the agent consist of actions (at). The agent has no control
over the environment, but actions are the only means by which it can modify and
influence the environment. Usually, the agent has a set of actions it can take,
which is called action space. Some environments have discrete action spaces, where
only a finite number of moves are available (e.g. A = [North, South,East,West]
choosing the direction to take in a bidimensional maze). On the other side, there are
continuous action spaces where actions are vectors of real values. This distinction
is fundamental to choose the right algorithm to use because not all of them could
be compatible with both types: according to the needs of the specific case, it may
be necessary to modify the algorithm to make it compatible. The sequence of states
and actions is named trajectory (τ): it is helpful to represent an episode in the RL
framework.

The environment (E) represents all the things that are outside the agent. When-
ever the agent takes an action, it emits a reward and an observation of the envi-
ronment.

The reward rt is a scalar feedback signal that defines the objective of the RL
problem. This signal allows the agent to be able to distinguish positive actions
from negative ones in order to reinforce and improve its behaviour. It is crucial
to notice that the reward is local: it describes only the value of the latest action.
Furthermore, actions may have long term consequences, delaying the reward. As it
happens with human beings’ decisions, receiving a conspicuous reward at a specific
time step does not exclude the possibility to receive a small reward immediately
afterwards and sometimes it may be better to sacrifice immediate reward to gain
greater rewards later.

In this context, many features make reinforcement learning different from su-
pervised and unsupervised learning. Firstly, there is no supervisor: when the agent
has to decide what action to take, there is no entity that can determine what the
optimal decision is in that specific moment. It does not learn from a set of labelled
objects taken from a knowledge base as in supervised learning, but it exploits its
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direct experience composed by observations and rewards as feedback. On the other
hand, the presence of a mapping between input and output is the main differ-
ence from unsupervised learning, where the objective is to find underlying patterns
rather than mappings.

The agent receives only a reward signal which may delay compared to the mo-
ment in which it has to perform the next action. This fact brings out another
significant difference: the importance of time. The sequentiality links all actions
taken by the agent, making resulting data no more independent and identically
distributed (i.i.d).

The concept of return

Given these definitions, it is noticeable that the primary purpose of the agent is to
maximise the cumulative reward called return.

The return gt is the total discounted reward starting from timestep t defined by
eq. (2.1) where γ is a discount factor.

gt = rt+1 + γrt+2 + · · · =
∞Ø

k=0
γkrt+k+1, γ ∈ [0,1) (2.1)

Not only the fact that animal and human behaviour show a preference for immediate
rewards rather than for the future ones motivates the presence of this factor, but
it is also mathematically necessary: an infinite-horizon sum of rewards may not
converge to a finite value. Indeed, the return function is a geometric series, so,
if γ ∈ [0,1), the series converges to a finite value equal to 1/(1 − γ). For the
same convergence sake, the case with γ = 1 makes sense only with a finite-horizon
cumulative discounted reward.

States and observations

The other data emitted by the environment is the observation (ot) that is related
to the state (st). It represents a summary of information that the agent uses to
select the next action, while the state is a function of the history, the sequence of
observation, actions and rewards at timestep t as shown in eq. (2.2).

ht = o1, r1, a1, . . . , at−1, ot, rt, st = f(ht) (2.2)

The state described above is also called agent state sa
t , while the private state

of the environment is called environment state se
t . This distinction is useful for

distinguishing fully observable environments where ot = se
t = sa

t , from partially
observable environments where se

t /= sa
t . In the first case, the agent can observe

the environment state directly, while in the second one, it has access to partial
information about the state of the environment. Beyond the fact that this chapter
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will focus on fully observable environments, the distinction between state and ob-
servation is often unclear and, conventionally, the input of the agent is composed
by the reward and the state as shown in fig. 2.1.

Furthermore, a state is called informational state (or Markov state) when it
contains all data and information about its history. Formally, a state is a Markov
state if and only if satisfies eq. (2.3).

P[st+1|st] = P[st+1|s1, . . . , st] (2.3)

It means that the state contains all data and information the agent needs to know
to make decisions: the whole history is not useful anymore because it is inside the
state. The environment state se

t is a Markov state.

Agent

Environment

atst rt

st+1

rt+1

Figure 2.1. Interaction loop between Agent and Environment. The
reward and the state resulting from taking an action become the input
of the next iteration. [66]

The Markov decision problem

With all the definitions shown so far, it is possible to formalise the type of problems
on which RL can unleash all its features: the Markov decision process (MDP), a
mathematic framework to model decision processes. Its main application fields are
optimisation and dynamic programming.

A MDP is defined by:

< S,A,P ,R, γ >

where S is a finite set of states
A a finite set of actions
P a state transition probability matrix Pa

ssÍ = P[st+1 = sÍ|st = s, at = a]
R a reward function Ra

s = E[rt+1|st = s, at = a]
γ a discount factor such that γ ∈ [0,1]

(2.4)

8



Reinforcement Learning

The main goal of an MDP is to select the best action to take, given a state, in order
to collect the best reward achievable.

Policies, models and value functions

The components that may compose the agent, the brain of the reinforcement learn-
ing problem, can not be missing: they are the model, the policy and the value
function.

A model consist of information about the environment. These data must not be
confused with the ones provided by states and observations: they make it possible
to infer prior knowledge about the environment, influencing the behaviour of the
agent.

A policy is the representation of the agent’s behaviour. It is a function that
describes the mapping from states to actions. The policy is represented by π and it
may be deterministic at = π(st) or stochastic π(at|st) = P[at|st]. In this perspective,
it is evident that the central goal of RL is to learn an optimal policy π∗. The
optimal policy is a policy which can show to the agent what the most profitable
way to achieve the maximum return is, what is the best action to do in a specific
situation. In order to learn the nature of the optimal policy, RL exploits value
functions.

A value function represents what is the expected reward that the agent can
presume to collect in the future, starting from the current state. The reward signal
represents only a local value of the reward, while the value function provides a
broader view of future rewards: it is a sort of prediction of rewards. It is possible
to delineate two main value functions: the state value function and the action value
function.

• The State Value Function V π(s) is the expected return starting from the state
s and always acting according to policy π.

V π(s) = Eτ∼π[gt|s0 = s] (2.5)

• The Action Value Function Qπ(s) is the expected return starting from the
state s, taking an action a and then always acting according to policy π.

Qπ(s, a) = Eτ∼π[gt|s0 = s, a0 = a] (2.6)

2.1.2 Bellman equations
Both eqs. (2.5) and (2.6) satisfy recursive relationships between the value of a state
and the values of its successor states. It is possible to see this property deriving
Bellman equations [4] – shown in eq. (2.7) on the following page and demonstrated
in appendix A.1 on page 107 – where st+1 ∼ E means that the next state is sampled
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from the environment E and at+1 ∼ π shows that the policy π determines the next
action.

V π(st) = Eat∼π,st+1∼E[r(st, at) + γV π(st+1)]
=
Ø
a∈A

π(a|s)
Ø

sÍ∈S,r∈R
P (sÍ, r|s, a)

è
r + γV π(sÍ)

é
Qπ(st, at) = Est+1∼E[r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]]

=
Ø
a∈A

π(a|s)
Ø

sÍ∈S,r∈R
P (sÍ, r|s, a)

è
r + γQπ(sÍ, aÍ)

é (2.7)

r(st, at) is a placeholder function to represent the reward given the starting state
and the action taken. As discussed above, the goal is to find the optimal policy π∗

to exploit. It can be done using Bellman optimality equations defined in eq. (2.8).

V ∗(st) = max
a

Est+1∼E[r(st, a) + γV ∗(st+1)]

= max
a

Ø
sÍ∈S,r∈R

P (sÍ, r|s, a)
è
r + γV ∗(sÍ)

é
Q∗(st, at) = Est+1∼E[r(st, at) + γ max

aÍ
[Q∗(st+1, aÍ)]]

=
Ø

sÍ∈S,r∈R
P (sÍ, r|s, a)

è
r + γ max

aÍ
Q∗(sÍ, aÍ)

é
(2.8)

Therefore, value functions allow defining a partial ordering over policies such
that π ≥ πÍ if Vπ ≥ VπÍ ,∀s ∈ S. This definition is helpful to enounce the sanity
theorem. It asserts that for any MDP there exists an optimal policy π∗ that is better
than or equal to all other policies, π∗ ≥ π,∀π, but also that all optimal policies
achieve the optimal state value function and the optimal action-value function.

The solution of the Bellman optimality equation is not linear and, in general,
there is no closed-form solution. For this reason, there are many iterative methods:
sections 2.1.4 and 2.1.5 on page 12 and on page 14 contain some of them.

2.1.3 Approaches to reinforcement learning
Every agent consists of an RL algorithm that it exploits to maximise the reward
it receives from the environment. Every single algorithm has its singularity, and
it could work with a specific application field which depends on the particular
approach it supports. Understanding differences among these groups is useful to
adequately understand what type of algorithm satisfies better the needs of a spe-
cific problem. Nowadays, RL algorithms are numerous, and drawing the complete
picture behind them could be a complicated purpose. The distinctions presented
in this section aims to describe the most crucial distinctions that are useful in the
context of the thesis without claiming to be exhaustive.
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Components of learning

The first worthy distinction between RL algorithms can be made analysing how
the algorithms exploit the different components of the agent: indeed it is possible
to explain the main strategies in RL using policy, model and value function defined
in section 2.1.1 on page 9.

One of the most crucial aspects of an RL algorithm is the question of whether
the agent has access to or learns the model of the environment: this element enables
the agent to predict state transitions and rewards. A method is model-free when it
does not exploit the model of the environment to solve the problem. All the actions
made by the agent results from direct observation of the current situation in which
the agent is. It takes the observation, does computations on them and then select
the best action to take. This last representation is in contrast with model-based
methods. In this case, the agent tries to build a model of the surrounding envi-
ronment in order to infer information useful to predict what the next observation
or reward would be. Both groups of methods have strong and weak sides. Ordi-
narily, model-based methods show their potential in a deterministic environment
(e.g. board game with rules). In these contexts, the presence of the model enables
the agent to plan by reasoning ahead, to recognise what would be the result of a
specific decision before acting. The agent can extract all this knowledge and learn
an optimal policy to follow. However, this opportunity is not always achievable:
the model may be partially or entirely unavailable, and the agent would have to
learn the model from its experience. Learning a model is radically complex and
may lead to various hurdles to overcome: for instance, the agent can exploit the
bias present in the model, producing an agent which is not able to generalise in real
environments. On the other hand, model-free methods tend to be more straightfor-
ward to train and tune because it is usually hard to build models of a heterogeneous
environment. Furthermore, model-free methods are more popular and have been
more extensively developed and tested than model-based methods.

The use of policy or value function as the central part of the method repre-
sents another essential distinction between RL algorithms. The approximation of
the policy of the agent is the base of policy-based methods. The representation of
the policy is usually a probability distribution over available actions. This method
points to optimise the behaviour of the agent directly and may ask manifold obser-
vations from the environment: this fact makes this method not so sample-efficient.
On the opposite side, methods could be value-based. In this case, the agent is still
involved in finding the optimal behaviour to follow, but indirectly. It is not inter-
ested anymore about the probability distribution of actions. Its main objective is
to determine the value of all actions available, choosing the best one. The main
difference from the policy-based method is that this method can benefit from other
sources, such as old policy data or replay buffer.
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Experience

Model Value/Policy

Model learning Acting

Model-Free
Planning

Figure 2.2. Overview of components of an agent with their relation in respect of
different approaches of learning. Model-Free methods work with the experience,
value functions and the policy, while model-based techniques try to build up a
model to derive value functions and policy in order to act in the environment.

Learning settings

The learning setting could be online or offline. In the first case, the learning
process is done in parallel or concurrently while the agent continues to gather new
information to use, while the second one progresses toward learning using limited
data. Generalisation becomes a critical problem in the latter approach because the
agent is not able to interact anymore with the environment. In the context of this
thesis, what matters is online learning: the learning phase is not bound to already
gathered data, but the whole process goes on using both old data coming from
replay buffers and brand new data obtained in the most recent episode.

Another significant difference in RL algorithms consists of the distinctive usage
of the policy to learn. On-policy algorithms profoundly depend on the training data
sampled according to the current policy because they are designed to use only data
gathered with the last learned policy. On the other hand, an off-policy method
can use a different source of valuable data for the learning process instead of direct
experience. This feature allows the agent to use, for instance, large experience
buffers of past episodes. In this context, these buffers are usually randomly sampled
in order to make the data closer to being independent and identically distributed
(i.i.d): the random extraction guarantees this fact.

2.1.4 Dynamic programming
Dynamic programming (DP) is one of the approaches used to resolve RL problems.
Formally, it is a general method to explain complex problems by breaking them into
more manageable sub-problems. After solving all sub-problems, it is possible to sum
them up in order to obtain the final solution to the whole original problem. This
technique provides a practical framework to solve MDP problems and to observe
what is the best result achievable from them, but it assumes to have full knowledge
about the specific problem. For this reason, it applies primarily to model-based
problems.
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Furthermore, dynamic programming methods bootstrap: it means that these
strategies use one or more estimated values in the update step for the same kind
of estimated value, leading to results more sensitive to initial values.

Policy Iteration

The policy iteration aims to find the optimal policy by directly manipulating the
starting policy. However, before proceeding with this process, a proper evaluation
of the current policy is essential. This procedure can be done iteratively following
algorithm A.1 on page 108 where θ is the parameter that defines the accuracy: the
more the value is closer to 0, the more the evaluation would be precise.

Policy improvement is the second step towards policy iteration. Intuitively, it
is possible to find a more valuable policy than the starting one by changing the
action to select in a specific state with a more rewarding one. The key to check if
the new policy is better than the previous one is to use the action-value function
Qπ(s, a). This function returns the value of taking action a in the current state s
and, after that, following the existing policy π. If Qπ(s, a) is higher than Vπ(s),
so the action selected is better than the action chosen by the current policy, and
consequently, the new policy would be better overall.

Policy improvement theorem is the formalisation of this fact: appendix A.2 on
page 108 shows its demonstration. Thanks to this theorem, it is reasonable to act
greedily to find a better policy starting from the current one iteratively selecting
the action that produces the higher Qπ(s, a) for each state.

The iterative application of policy improvement stops after an improvement step
that does not modify the initial policy, returning the optimal policy found.

Value Iteration

The second approach used by dynamic programming to solve Markov decision pro-
cesses is value iteration. Policy iteration is an iterative technique that alternate
evaluation and improvement until it converges to the optimal policy. On the other
hand, value iteration uses a modified version of policy evaluation to determine V (s)
and then it calculates the policy. The pseudocode of this method is available in
algorithm A.2 on page 109.

Generalised Policy Iteration

Generalised Iteration Policy (GPI) indicates the idea underlying the interaction
between evaluation and improvement steps seen in value and policy iteration. Fig-
ure 2.3 on the next page reports how the two processes compete and cooperate to
find the optimal value function and an optimal policy. The first step, known as
policy evaluation step, exploits the current policy to build an approximation of the

13



Reinforcement Learning

value function. The second step, known as policy improvement step, tries to im-
prove the policy starting from the current value function. This iterative scheme of
dynamic programming can represent almost all reinforcement learning algorithms.

Figure 2.3. Generalised policy iteration (GPI) schema [66]. Value and policy
functions compete and cooperate to reach the joint solution: the optimal value
function and an optimal policy.

2.1.5 Model-free approach
As reported in the previous section, having a comprehensive knowledge of the
environment is at the foundation of dynamic programming methods. However,
this fact is not always accurate in practice, where it is infrequent to have a full
understanding of how the world works. In these cases, the agent has to infer
information using its experience, so it has to exploit model-free methods, based on
the assumption that there is no prior knowledge about state transitions and rewards.
This section intends to provide a brief description of two model-free approaches to
prediction and control: Monte Carlo (MC) methods and Temporal-Difference (TD)
ones.

Monte Carlo learning

Monte Carlo methods [66, Chapter 6] can learn from episodes of experience using
the simple idea that averaging sample returns provide the value. This lead to the
main caveat of these methods: they work only with episodic MDPs because the
episode has to terminate before it is possible to calculate any returns. The total
reward accumulated in an episode and the distribution of the visited states is used
to calculate the value function while the improvement step is carried out by making
the policy greedy concerning the value function.
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This approach brings to light the exploration dilemma about how it is possible
to guarantee that the algorithm will explore all the states without prior knowledge
of the whole environment. Ô-greedy policies are exploited instead of full greedy
policy to solve this problem. An Ô-greedy policy is a policy that acts randomly
with probability Ô and follows the policy learned with probability (1− Ô).

Unfortunately, even though Monte Carlo methods are simple to implement and
they are unbiased because they do not bootstrap, they require a high number
of iteration to converge. Furthermore, they have a wide variance in their value
function estimation due to lots of random decisions within an episode.

Temporal Difference learning

Temporal Difference (TD) is an approach made combining ideas from both Monte
Carlo methods and dynamic programming. TD is a model-free method like MC
but uses bootstrapping to make updates as in dynamic programming. The central
distinction from MC approaches is that TD methods calculate a temporal error
instead of using the total accumulated reward. The temporal error is the difference
between the new estimate of the value function and the old one. Furthermore, they
calculate this error considering the reward received at the current time step and
use it to update the value function: this means that these approaches can work
with continuing (non-terminating) environments. This type of update reduces the
variance compared to Monte Carlo one but increases the bias in the estimate of the
value function because of bootstrapping.

The fundamental update equation for the value function is shown in eq. (2.9),
where TD error and TD target are in evidence.

V (st)← V (st) + α
1 TD targetú ýü û

rt+1 + γV (st+1)−V (st)ü ûú ý
TD error (δt)

2
(2.9)

Two TD algorithms for the control problem which are worth quoting because of
their extensive use to solve RL problems are SARSA (State-Action-Reward-State-
Action) and Q-Learning.

SARSA is an on-policy temporal difference algorithm whose first step is to learn
an action-value function instead of a state-value function. This approach leads to
focus not to estimate the specific value of each state, but to determine the value of
transitions and state-action pairs. Equation (2.10) represents the update function
of SARSA, while algorithm 2.1 on the following page summarise its pseudocode.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.10)

Q-learning [74] is an off-policy TD control algorithm which represents one of
the early revolution and advance in reinforcement learning. The main difference
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Algorithm 2.1: SARSA (on-policy TD control) for estimating Q ≈ q∗

Input: step size α ∈ (0,1], small Ô > 0
1 Initialise Q(s, a) ∀ s ∈ S, a ∈ A arbitrarily, except that Q(terminal, ·) = 0
2 foreach episode do
3 Initialise st

4 Choose at from st using policy derived from Q (e.g. Ô-greedy)
5 repeat
6 Take action at → obtain rt+1 and st+1
7 Choose at+1 from st+1 using policy derived from Q (e.g. Ô-greedy)
8 Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
9 st ← st+1 ; at ← at+1

10 until st is terminal
11 end

from SARSA is the update rule for the Q-function: it selects the action in respect
of an Ô-greedy policy while the Q-function is refreshed using a greedy policy based
on the current Q-function using a max function to select the best action to do in
the current state with the current policy. Equation (2.11) represents the update
function of Q-learning, while algorithm 2.2 summarise its pseudocode.

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (2.11)

Algorithm 2.2: Q-learning (off-policy TD control) for estimating π ≈ π∗

Input: step size α ∈ (0,1], small Ô > 0
1 Initialise Q(s, a) ∀ s ∈ S, a ∈ A arbitrarily, except that Q(terminal, ·) = 0
2 foreach episode do
3 Initialise st

4 Choose at from st using policy derived from Q (e.g. Ô-greedy)
5 repeat
6 Take action at → obtain rt+1 and st+1
7 Choose at+1 from st+1 using policy derived from Q (e.g. Ô-greedy)
8 Q(st, at)← Q(st, at) + α[rt+1 + γ maxa Q(st+1, a)−Q(st, at)]
9 st ← st+1 ; at ← at+1

10 until st is terminal
11 end
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Temporal Difference Lambda Learning

As reported previously, Monte Carlo and Temporal Difference learning perform
updates in different ways. The first approach exploits the total reward to update the
value function, while the second one, on the other hand, works with the reward of
the current step. Temporal Difference Lambda, also known as TD(λ) [66, Chapter
7,12], represents a combination of these two procedures and it takes into account the
results of each time step together with the weighted average of those returns. The
idea of calculating TD target looking n-steps into the future instead of considering
only a single step is the baseline of TD(λ). This lead to the formalisation of the
λ-weighted return Gλ

t presented in eq. (2.12).

Gλ
t = (1− λ)

∞Ø
n=1

λn−1G
(n)
t (2.12)

TD(λ) implementation takes into account an additional variable called eligibility
trace et(st) which indicates how much learning should be carried out for each state
for each timestep. It aims to describe how much the agent encountered a specific
state recently and eq. (2.13) describes the updating rule of this value where the λ
represents the trace-decay parameter.

et(s) = γλet−1(s) + ✶(s = st) (2.13)

2.1.6 Model-based approach
Heretofore, the focus of this section was on methods which have no prior knowledge
of the environment, since this thesis grows on model-free foundations. Despite this
point, it is worth to summarise the main concepts behind model-based approaches.
Model-based methods gather information to enable the ability of planning, which
can enhance the sample efficiency of the algorithm.

There are two primary principles to model-based learning. The first one implies
to assemble a model starting from prior knowledge and to exploit it to calculate the
policy and the value-function, while the second one is to infer the model from the
environment by sampling experience. The central drawback of the first technique is
that prior knowledge could be not as accurate as expected, leading to sub-optimal
results. Consequently, the preferred way to learn is the second one.

The decisive point behind these approaches is that they are more sample-efficient
concerning model-free ones: they require fewer data to learn a policy. On the other
hand, the algorithm must learn the policy as well as the model: this translates
to two different sources of approximation errors and an increase of computational
complexity.
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2.2 Deep reinforcement learning

The strategies shown so far works smoothly with systems with well-defined states
and actions. In this context, it is reasonable to use lookup tables to describe
the problem: state-value function V has an entry for each state while action-value
function Q has an entry for each state-action pair. It is easy to understand how this
setting cannot scale up with very large MDPs: problems regarding the availability
of memory arise as it becomes difficult to manage the storage of a large number of
states and actions. Also, there may be obstacles concerning the slowness of learning
the value of each state individually. Furthermore, the tabular form could lead to
expensive computation in linear lookup and can not work with continuous action
and state spaces.

Function approximators represent the solution to overwhelm this problem. The
underlying intention is to use a vector θ = (θ1, θ2 . . . , θn)T to estimate state-value
and action-value function as shown in eq. (2.14), generalise from seen states to
unseen states and finally update parameter θ using MC or TD Learning strategies.

V (s, θ) ≈ Vπ(s)
Q(s, a, θ) ≈ Qπ(s, a)

(2.14)

In these terms, function approximators can be considered as a mapping from the
vector θ to the value function. This choice leads to a reduction in the number of
parameters to learn and consequently to a system which can generalise better in
fewer training samples.

Nowadays, since its widespread use in research, neural networks represent the
most intuitive option to take as function approximator: it reduces the training
time for high dimensional systems, and it requires less space in memory. This
point represents the bridge between traditional reinforcement learning and recent
discoveries in the theory of deep learning. Thanks to the last decade great fervour
of deep learning, neural networks have become the fundamental tool to exploit as
function approximator to develop deep reinforcement learning (Deep RL) which
accomplished remarkable results. One of the first steps towards Deep RL and
general artificial intelligence – an AI broadly applicable to a different set of various
environments – was done by DeepMind with their pioneering paper [44] and the
consequent [45].

Because of the nature of this work, the focus of this section will be on model-
free algorithms. This section aims to explain the state-of-the-art and the leading
theory behind Deep RL framework together with an overview about deep learning
and the presentation of two deep actor-critic algorithms used in the experiments
of this thesis: Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic
(SAC).
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2.2.1 Fundamentals of deep learning
Artificial neural networks

Deep learning (DL) is an approach to learning based on a function f : X → Y
parametrised with w ∈ Rnw | nw ∈ N such that y = f(x; w).

The starting point of this research field is the artificial neuron, inspired by the
biological neuron from the brain of animals and human being. A neuron consists of
numerous inputs called dendrites coming from preceding neurons. Therefore, the
neuron elaborates the input and, only if the value reaches a specific potential, it
fires through its single output called axon.

The neuron elaborates the inputs by taking the weighted sum, adding a bias
b and applying an activation function f following the relation y = f(qn wxi + b).
Figure 2.4 shows the parallel comparison between the biological neuron and the
artificial one. The set of parameter w needs to be adjusted to find a good parameter
set: this process is called learning.

Figure 2.4. Comparison between biological neuron (left) and artificial neuron
(right). The artificial neuron designs the dendrites as weighted inputs and returns
the sum through an activation function. [65].

A deep neural network (NN) organises a set of artificial neurons in a series
of processing layers to which correspond non-linear transformation. The whole
sequence of these alterations directs the learning process through different levels of
abstraction [13]. To better understand the nature of a deep neural network, it is
convenient to describe a neural network with one fully-connected layer represented
by fig. 2.5 on the next page.

h = g(w1 · i + b1)
o = w2 · h + b2

(2.15)

The input layer receives as input a column vector of input-features i of size n ∈ N.
Every value of the hidden-layer represented by a vector h of size m ∈ N is the
result of a transformation of the input values given by eq. (2.15) where w1 is a
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Figure 2.5. An example representation of a deep neural network with one
fully-connected hidden layer.

matrix of size m × n and b1 is a bias term of size m. g is a non-linear parametric
function called activation function, which represents the core of neural networks.
Subsequently, the second and last transformation manipulates the hidden layer h
to produce the values of the output layer following eq. (2.15) on the previous page
using w2 with size o×m and b2 with size o.

Learning process

The learning process aims to seek a set of parameters θ that results in the best
possible function approximation for a specific objective. In supervised learning, the
actual output Y is available for each particular input X, and it is used to update
the parameters. The learning process can be carried out iteratively according to
the following steps.

Forward pass The input X is forwarded through the neural network and the
output Ypred = f(X, θ) is gathered.

Loss The resulting predicted value Ypred is compared with the actual value Y
computing the loss function L(θ). There are a lot of loss functions available to
satisfy the particular needs of specific learning tasks. The error is the difference
between the output of the neural network for a specific input data and the actual
value: it is essential to calculate the loss function. One of the most exploited loss
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function is the Mean-Squared Error (MSE) [59] shown in eq. (2.16) which works
with L2-distance.

L(y, ŷ) = (yθ − y)2

J = 1
n

nØ
i=1

L(yi, f(xi))
(2.16)

Backpropagation The next step is the computation of the global gradient of the
loss function∇L(θ), which is carried out together with its backpropagation through
the network. The backpropagation algorithm [56] calculates the local gradient of
loss for each neuron in the hidden layers. The concept underlying this procedure and
shown in eq. (2.17) is the chain rule [39], which computes derivatives of composed
functions by multiplying local derivatives.

y = g(x), z = f(g(x)), ∂z

∂x
= ∂z

∂y

∂y

∂x
(2.17)

Therefore, the chain rule is exploited to propagate the calculated global gradient
loss ∂L(θ)

∂θ
back through the network, in the opposite direction of the forward pass.

The procedure calculates the local derivatives during the forward pass and estimates
the local gradient of loss during backpropagation determining the multiplication be-
tween the local derivative and the local gradient of the loss of the connected neuron
of the next layer: if the neuron has multiple connections neurons, the algorithms
adds up all the gradients.

Update The final step consists in the update of the weights of all neurons. There
are many ways developed through the years to carry out the update phase, but the
most common one is the gradient descent. The objective of the gradient descent is
to minimise the loss function by refreshing the internal parameters of the network
in the negative direction of the gradient loss: this choice leads the function approx-
imation process closer to the minimum at each iteration. Equation (2.18) describes
the update rule presented by the gradient descent where α is the learning rate. The
last-mentioned parameter determines how quickly the algorithm should approach
the minimum. A higher learning rate leads to a more significant step towards the
minimum, which threatens to overshoot the target.

θ ← θ − α∇θJ (2.18)

Nowadays, the technique applied in the majority of research projects is stochastic
gradient descent (SGD) which combines batch learning [65] and gradient descent,
but also its various improved extensions and variants, such as ADAM [31] and
AdaGrad [12]: these extensions manage to improve the convergence of SGD thanks
to the introduction of adaptive learning rates.
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Regularisation

The final aim of the learning process is to obtain a function approximator capable
of generalising over data. This fact means that a neural network should show
performances on unseen data comparable to the one obtained from training data.
For this reason, it is necessary an appropriate trade-off between underfitting and
overfitting.

A shallow approximated function and insufficient training data with a lack of
diversity are the leading cause to the first situation: the network generalises on
the data, but the prediction error is always too high for all data points. The
phenomenon of overfitting describes the exact contrary of underfitting. The leading
cause is a too complex approximation function: this lead to a network which scores
an excellent performance on training data, but poorly predicts unseen points.

Regularisation [5, 39] represents an approach to overcome and prevent the prob-
lem of overfitting. It works extending the loss function with a regularised term Ω(θ)
as shown in eq. (2.19) where λ is the regularisation factor.

LÍ(θ) = L(θ, Y, Ypred) + λΩ(θ) (2.19)

Equations (2.20) and (2.21) show two examples of regularisation terms. The first is
L2-regularisation which exploits the squared sum of the weights θ in order to keep
the weights small. The second approach is known as L1-regularisation: in this case,
large weights are less penalised, but this method leads to a sparser solution.

LÍ(θ) = L(θ, Y, Ypred) + λ
1
2 ||θ||

2 (2.20)

LÍ(θ) = L(θ, Y, Ypred) + λ
1
2 ||θ|| (2.21)

Activation function

Equation (2.22) shows the most common activation functions: in general, ReLu
achieves better performance over a wide variety of tasks, but usually, the selection
of the best activation function has to be done starting from all information and
requirements of the deep learning model.

Sigmoid → g(x) = 1
1 + e−x

Hyperbolic Tangent → g(x) = ex − e−x

ex + e−x

Rectified Linear Unit (ReLu) → g(x) = max(0, x)

(2.22)
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Batch Learning and Normalisation

The basic concept underlying batch learning [65] is to process a set of n training
samples called also mini-batches in the place of a single one. This method works
with the gradient averaged over all the samples in the mini-batch: it leads to a
more accurate gradient reducing its variance and the training time.

Batch normalisation consists of zero-centring and rescaling all data in a specific
batch, resulting in a mean of normalised data close to 0 and a variance close to 1.
The algorithm presented in algorithm 2.3 is the one provided in [27]. This method
computes the mean µβ and the variance σβ element-wise for each spatial position
in the batch: Ô > 0 is a small value to avoid the division by zero. The batch
normalisation layer then processes the resulting normalised value: γ and β are the
parameters of this layer that are in addition to the original parameter set θ of the
neural network in the learning process. The new learning dynamic provided by
the addition of this class of layer increases the network expressivity: applying this
method to the input data and the output of any hidden layer results in the reduction
of the training time, better regularisation during learning and the reduction of the
overfitting phenomenon.

Algorithm 2.3: Batch normalisation
Input: Mini-batch B = x1...m; γ and β prameters to be learned
Output: yi = BNγ,β(xi)

1 µβ ← 1
m

qm
i=1 xi // Mini-batch mean

2 σ2
β ← 1

m

qm
i=1(xi − µβ)2 // Mini-batch variance

3 x̂i ← xi−µβ√
σ2
β

+Ô
// Normalisation

4 yi ← γx̂i + β ≡ BNγ,β(xi) // Scale and shift

Convolutional Neural Networks

Sensory reception represents how humans and animals react to changes: it consists
of sensors which process the input data and are sensitive to specific stimuli. This
system inspired the architecture underlying Convolutional Neural Networks: they
could efficiently handle significant input data with many applications in computer
vision. Figure 2.6 on the next page displays the LeNet-5 [40] which is capable to
recognise digits in images. It represents a perfect example of a standard convo-
lutional neural network architecture: it consists of a series of convolutional layers
followed by a subsampling pooling layer. At the end of the convolutional stack,
the values map into final hidden layers of the network to compute the final low-
dimensional output of the network: fully-connected layers usually compose these
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final layers. It is possible to suppose that the first layers have to learn low-level
features of the input data while succeeding layers are responsible for combining the
last-mentioned features in high-level ones.

Figure 2.6. LeNet Architecture Representation. It consists of two distinct parts.
The first one is composed of two stacks of convolutional and pooling layer. The
last part is composed of two fully connected layers that produce the output. It
represents the first compelling evidence showing the results of training convolu-
tional neural networks by backpropagation. It was adopted to recognise digits for
processing deposits in ATMs. [40]

Convolutional Layer Convolutional layers [38] operates with a set of learnable
filters (called kernels) with dimensions n×m smaller than the whole input image.
The convolution is the essential operation employed in these class of layer: it con-
sists in convolving each filter across the width and height of the input data and
computing dot products between the values in the filter and the ones in the input
at any position. The result of this operation is a 2-dimensional activation map
that contains the results of that filter at every spatial position. In this context, the
network can learn filters that detect specific features in the image such as edges,
textures and patterns [13].

It is possible to compute the output size W2×H2×D2 of a convolutional layer
starting from the input size W1 × H1 × D1 and from the hyperparameters of this
class of layer: the number of filters K, their spatial extent F , the stride S and
the amount of padding P . The resulting volume size can be calculated using the
relations reported in eq. (2.23).

W2 = (W1 − F + 2P )/S + 1
H2 = (H1 − F + 2P )/S + 1
D2 = K

(2.23)

The number of parameters introduced by a single kernel is equal to F · F ·D1, so
the convolutional layer has a total of (F · F ·D1) ·K weights and K bias.

In a convolutional layer, the number of weights is kept small and then the
computation is more efficient than the one of a fully-connected layer: small filters

24



Reinforcement Learning

need fewer parameters and less work in the convolutional operation. Besides this
motivation, the filters are kept small also because it makes them capable of learning
small and low-level features. The great innovation behind convolutional layers is
that the same neuron can recognise the related learned features even if they emerge
in different locations of the image: this is the property of translation invariance of
feature detection.

Pooling Layer It is common to insert a pooling layer in-between successive con-
volutional layers. The main objective of this class of layers is to apply a down-
sampling filter on the input: it progressively reduces the spatial size of the repre-
sentation, decreasing the number of parameters and the computational cost in the
network. It is also useful to control overfitting.

It is possible to compute the size of the output W2×H2×D2 of a pooling layer
using starting from the size of the input W1×H1×D1 and from the hyperparameters
of this class of layer: the spatial extent of the filter F , the stride S. The resulting
volume size can be calculated using the relations reported in eq. (2.24).

W2 = (W1 − F )/S + 1
H2 = (H1 − F )/S + 1
D2 = D1

(2.24)

The most common types of pooling layer are the max-pooling and the average-
pooling layer. Both classes return a single value for each position of the filter: the
first returns the maximum value, while the second returns the average among the
values in the specific section of the input.

Figure 2.7. Example of a max-pooling operation with a stride of 2
and a spatial extent of 2. [65].

It is worthy of using a pooling layer in a situation where the exact feature
position is not relevant but rather whether a particular feature exists in the input
at all. Increasing the stride of convolutional layers represent an alternative approach
to downsample without the usage of max-pooling layers [64].
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2.2.2 Value-based methods
The first class of algorithms to explore is value-based one. They work learning an
approximator Qθ(s, a) to infer the optimal action-value function Q∗(s, a) using an
objective function based on Bellman equations. The preponderance of optimisations
belonging to this category is off-policy: this means that the optimisation step is done
using all data collected during the whole training, not only with the most recent
policy available. In this configuration, the information used for the learning phase
could also come from exploration decision, apart from ones obtained with the most
recent policy. Indeed, value-based approaches are more sample efficient because
they can reuse data more efficiently, but they are considered less stable than policy
gradient ones. Thanks to the relation expressed by a(s) = argmaxa Qθ(s, a), it is
possible to obtain the policy learned so far from the current action-value function.

Deep Q-Network (DQN)

This algorithm grows from the ideas underlying Q-Learning [74] shown previously
in section 2.1.5 on page 15. The team of DeepMind introduced the Deep Q-Network
(DQN) in [44] and in the next cutting-edge paper [45]: they managed to create an
algorithm capable of learning to play ATARI video-games online using raw image
and pixels. It works with neural networks as a function approximator, employ-
ing convolutional layers as first layers of the neural network and performing the
optimisation with a variant of stochastic gradient descent called RMSprop [67].
The exploited neural network provides as output a probability distribution over all
possible discrete actions to determine what is the best action to take.

To overcome the instability problem of value-based methods, DQN utilises two
heuristics to narrow instabilities.

Target Network The presence of a second network, also called target network,
enriches the update phase of this algorithm. Equation (2.25) defines the loss func-
tion of DQN where yi value is computed using the target network instead of the
local network. Therefore, the parameters of the target network are hard updated
every I ∈ N iterations: this choice precludes instabilities and avoids divergence
because of target networks parameters remain fixed for I iterations.

Li(θi) = Es,a∼π

è
(yi −Q(s, a; θi))2

é
yi = EsÍ∼E[r + γ max

aÍ
Q(sÍ, aÍ; θi−1)|s, a]

(2.25)

Experience Memory Replay Another crucial introduction in this algorithm is
experience memory replay buffer [42]. Trajectories sampled from the environment
are temporally correlated, and this could lead to overfitting the parameters of the
neural network because the data are not independent and identically distributed
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(i.i.d.). The setting of this algorithm is online because the replay buffer stores
Nreplay ∈ N replacing old steps as new ones arrive. The experience is collected as
tuples (st, at, rt, st+1) using the Ô-greedy policy. The learning phase samples a set
of limited tuples called mini-batch allowing a wider set of state-action pair in the
update of the network and improving the procedure in terms of variance in respect
of single tuple update. Trajectories sampled from the environment are temporally
correlated, and this could lead to overfitting the parameters of the neural network.
Using a batch sample from the replay buffer makes the data i.i.d. and consequently
improves the learning.

Improvements of DQN

Further investigation and speculation followed the publication of the thriving DQN.
Summing up and comparing these new approaches to original DQN is the main
aim of Rainbow [25]: it also introduces an algorithm called Rainbow DQN with
all the techniques proposed. The following paragraphs will delineate three main
improvements of DQN.

Double DQN The double DQN [22, 72] improvement can handle the intricacy
of overestimation of Q-values caused by the maximisation step in eq. (2.25) on
the preceding page. It works with two separate Q-Network with parameters θ and
θ− for estimating TD-target. It allows for removing the positive bias in estimating
action values, leading to less overestimation of Q-learning values, improved stability
and performance. In this context, the target yi is replaced by eq. (2.26).

yi = EsÍ∼E[r + γQ(sÍ, argmax
a

Q(sÍ, a; θi−1); θ−
i−1)|s, a] (2.26)

Prioritised Experience Replay The fundamental idea underlying prioritised
experience replay [57] is precisely to prioritise experiences that contain more cru-
cial information than other ones. An additional value that defines the priority of
a specific transition joins each tuple stored in the replay buffer: thanks to this
approach, experiences with higher priority has a higher sampling probability and
are more likely to remain longer in the replay buffer. It is possible to use TD-error
to measure the importance of each tuple in the experience. A high TD-error means
that the agent behaved better or worse than expected in that particular moment,
and therefore, it can learn more from that specific passage.

Dueling DQN The Dueling DQN architecture [73] presented in fig. 2.8 on the
following page works decoupling the Q-value estimation in two distinct sequences
of fully-connected layers right after convolutional layers.

These streams are capable of providing separate estimates of the state-value
V (s; θ, β) and advantage A(s, a; θ, α) functions exploited in the end to obtain the
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β

α
θ

Figure 2.8. Dueling DQN architecture [73]: it consists in two stream to estimate
state-value parametrised with β and advantages values parametrised with α for
each action. The last layer represent the combination of these two types of values
to obtain the Q-function. [15]

Q-value function Q(s, a; θ, α, β) estimate where θ represents the parameters of con-
volutional layers while α and β the ones of state-value and advantage function
respectively.

The first formalisation of the Q-value function is shown by eq. (2.27), but [73]
also suggests a different approach shown in eq. (2.28) with increased stability in
practice.

Q(s, a; θ, α, β) = V (s; θ, β) +
1
A(s, a; θ, α)−max

aÍ∈A
A(s, aÍ; θ, α)

2
(2.27)

Q(s, a; θ, α, β) = V (s; θ, β) +
1
A(s, a; θ, α)− 1

|A|
Ø

aÍ∈A
A(s, aÍ; θ, α)

2
(2.28)

2.2.3 Policy gradient methods

Policy gradient algorithms aim to optimise the policy performance measure in
eq. (2.29) on the next page by finding a suitable policy πθ(s|a) capable of generat-
ing a trajectory τ that maximises the expected rewards eq. (2.30) on the following
page instead of learning a value function. Indeed the objective function in policy
gradient methods consists of maximising J(θ) value by finding a proper policy by
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updating θ parameters directly.

J(θ) = E

 NØ
t=0

r(st, at); πθ

 =
Ø

τ

P (τ ; θ)r(τ) (2.29)

θ∗ = argmax
θ

J(θ) (2.30)

Stochastic gradient ascent is used to refresh the parameters of the policy θ. Gra-
dient ascent is the inverse of gradient descent and updates the parameters θt in
the positive direction of the gradient of the policy’s performance measure ∇θJ(θ)
following eq. (2.31) where α is the learning rate which defines the strength of the
steps in the direction of the gradient.

θt+1 ← θt + α∇θJ(θt) (2.31)
The main advantage of policy gradient approaches consists in the stability of their
convergence: these methods work updating their policy directly at each time step
instead of renewing value function from which to derive the policy like value-based
methods. Last-mentioned approaches can lead to a radical change in the policy
output even for a small change in the value function: this event can cause prominent
oscillation during training. Furthermore, policy gradient algorithms can face infinite
and continuous action space because the agent estimates the action directly instead
of calculating the Q-value for each possible discrete action. The third feature is
their ability to learn stochastic policies, useful in uncertain contexts or partially
observable environments. Despite the presence of the advantages just mentioned,
policy gradient methods have a substantial disadvantage: they tend to converge to
a local maximum instead of the global optimum.

Actor-Critic Architecture

Actor-critic architecture, shown in fig. 2.9 on the following page, represents the
point of contact between value-based approaches and policy gradient methods.
They are policy gradient methods basically but exploit value-function to learn the
parameters θ of the policy. As its name suggests, these approaches work with two
different parts called actor and critic [33]. The actor relates to the policy, while
the critic deals with the estimation of a value function (e.g. Q-value function). In
the context of deep reinforcement learning, they can be represented using neural
networks function approximator [43]: the actor exploits gradients derived from the
policy gradient theorem and adjusts the policy parameters, while the critic esti-
mates the approximate value function for the current policy π.

Standard practice is to update both networks with the TD-Error, discussed in
section 2.1.5 on page 15. Estimation made by the critic is useful to determine
the contribution that expected values of the current and next state gives to the
TD-error. Essentially, the output of the critic contributes to the update of the
actor.
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Figure 2.9. Actor-critic architecture schema: the actor represents the policy and
maps the input state to an output action, while the critic represents the value
function. Both networks can be updated using the contribution of the critic. It is
noticeable that the actor uses the critic during the learning process [66].

2.2.4 Deep Deterministic Policy Gradient (DDPG)
Deep Deterministic Policy Gradient (DDPG) [41] is a policy gradient algorithm that
works learning a Q-function and a policy, and that grows from the deterministic
policy gradient algorithm (DPG) [63]. It is a model-free, off-policy, actor-critic
algorithm which utilises deep function approximators to learn policies in high-
dimensional, continuous action spaces. It can be applied to situations that can
not be solved using DQN algorithm [45] because of the presence of continuous
action spaces. A fine discretisation of the action space to adapt the situation to
DQN would lead to an explosion in the number of discrete actions and the curse
of dimensionality. Bellman equation and Q-learning are integral parts of this algo-
rithm. The algorithm concurrently learns a Q-value function and a policy: it uses
off-policy data and the Bellman equation to learn the Q-value function and uses
the Q-value function to learn the policy.

Usually, in reinforcement learning, if the optimal action-value function Q∗(s, a)
is known, then in any given state, the optimal action a∗(s) can be found by solving
eq. (2.32).

a∗(s) = arg max
a

Q∗(s, a) (2.32)

When the number of discrete actions is finite, calculating the max poses no problem,
because the Q-values can be calculated for each action separately, then directly
compared. However, when the action space is continuous, this process becomes
highly non-trivial: it would need to be run at every step of the episode, whenever
the agent wants to take any action in the environment, and this can not work.

Because the action space is continuous, the function Q∗(s, a) is presumed to
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be differentiable concerning the action argument. For this reason, an efficient,
gradient-based learning rule for a policy π(s) which exploits that fact can be set
up, approximating it with maxa Q(s, a) ≈ Q(s, π(s)).

Target networks

DDPG algorithm exploits 4 neural networks: the local actor π, the local critic Q,
the target actor πÍ and the target critic QÍ. Actor networks aim to approximate the
policy using parameters θ while critic networks approximate the Q-Value function
using parameters φ.

Initially, actor and critic networks have both randomly initialised parameters.
Then the local actor – the current policy – starts to propose actions to the agent,
given the current state, starting to populate the experience replay buffer.

When the replay buffer is big enough, the algorithm starts to sample randomly
a mini-batch of experiences for each timestep t. This mini-batch is used to update
the local critic minimising the Mean Squared Error (MSE) between the local Q-
value and the target one shown in eq. (2.33) where yi = yt given by eq. (2.36) on
the following page and to update the actor policy using the sampled policy gradient
defined in eq. (2.39) on the next page.

L = 1
N

Ø
i

(yi −Q(si, ai|φ))2 (2.33)

We can imagine the target networks as the labels of supervised learning.
Also, the target networks are updated in this learning step. A mere copy of the

local weights is not an efficient solution because it is prone to divergence. For this
reason, a soft target updates is used. It is given by eq. (2.34) where τ ¹ 1.

θÍ ← τθ + (1− τ)θÍ (2.34)

Learning equations

The two fundamental functions in reinforcement learning exploited in DDPG are
the action-value function – see eq. (2.6) on page 9 – and the correspondent Bell-
man equation – see eq. (2.7) on page 10. If this policy is deterministic we can
describe it as a function π : S ← A obtaining eq. (2.35) which depends only on the
environment.

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γQπ(st+1, π(st+1))] (2.35)

This means that it is possible to learn Qπ off-policy, using transition generated by
a different stochastic behaviour policy β.

Focusing more and more on DDPG, the Bellman equation is the starting point
for learning an approximator to Q∗(s, a) of Q-Learning. The approximator is
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parametrised by φ and the value network is updated and optimised by minimising
the loss defined in eq. (2.36) where dt is a flag which indicates whether the state
st+1 is terminal.

L(φ) = Est∼ρβ ,at∼β,rt∼E[(Q(st, at|φ)− yt)2]
yt = r(st, at) + γ(1− dt)QÍ(st+1, πÍ(st + 1|θ̄)|φ̄)

(2.36)

It is clear from the eq. (2.36) that the loss is calculated starting from the transitions
generated by the policy β. For this reason a great importance in this algorithm is
given to replay buffer – see section 2.2.2 on page 26 – and target networks – see
section 2.2.4 on the previous page.

From the policy perspective, the objective is to maximise eq. (2.37) calculating
the policy loss through the derivative of the objective function concerning the policy
parameter eq. (2.38). However, since the algorithm is updating the policy in an
off-policy way with batches of experience, it is possible to use the mean of the sum
of gradients calculated from the mini-batch eq. (2.39).

J(θ) = E[Q(s, a)|s=st,a=π(st)] (2.37)
∇θJ(θ) ≈ ∇aQ(s, a)∇θπ(s|θ) (2.38)

∇θJ(θ) ≈ 1
N

Ø
i

è
∇aQ(s, a|φ)|s=si,a=π(si)∇θπ(s|θ)|s=si

é
(2.39)

Algorithm 2.4 on the next page shows the pseudocode of the DDPG algorithm.

Exploration vs. Exploitation

In reinforcement learning for discrete action spaces, exploration is done selecting a
random action (e.g. epsilon-greedy). For continuous action spaces, exploration is
done adding noise to the action itself. In [41], the authors use Ornstein-Uhlenbeck
process [71] to add noise to the action output at = π(st|θ) + N . After that, the
action is clipped in the correct range.

Hyperparameters

Exploration noise The exploration noise consists of two sets of parameters.
The first set refers to the Ornstein-Uhlenbeck Process noise parameters π, σ, θ as
reported in [71]. The second one consists of the parameters of Ô, a small value to
decrease the impact of the noise on the action. Equation (2.40) describes how the
impact of the noise decreases in function of the current episode number e, where
Ôstart represent the starting value of the noise and Ôend the final one.

Ô = Ôstart − (Ôstart − Ôend) min
1.0,

e

Ôdecay

 (2.40)
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Replay buffer The parameters available for replay memory are its maximum
size, its minimum size to start the learning phase and the mini-batch size to sample
for each learning step.

Neural Network The neural network can be considered as a whole complex
hyperparameter because it is possible to select among different layers to exploit
for specific problems – e.g. the number of layers, the type of layers, the number
of hidden features. Given the network architecture, the primary neural networks
hyperparameters are the learning rate α and the update method – e.g. Adaptive
Momentum Estimation (ADAM).

Learning Update The parameters of the learning phase of the algorithm are
mainly two. The first one is γ, the main parameter in the reinforcement learning
framework, which characterises the discounted return. The second is the soft target
update parameter τ , which determinates the entity of the update of the network
at each learning step.

Algorithm 2.4: DDPG Algorithm [41]
Input: Initial critic network Q with parameter φ and actor network π with

parameter θ
1 Initialise target networks QÍ and πÍ with weights φ̄← φ, θ̄ ← θ
2 Initialise replay buffer D
3 for episode = 1, M do
4 Initialise a random process N for action exploration
5 Receive the initial observation state st ← s1
6 repeat
7 Select action at = π(st|θ) +N and clip results
8 Execute action at, obtain tuple (st, at, rt, st+1, dt) and store in D
9 if it is time to update then

10 Sample random minibatch of N transitions (st, at, rt, st+1, dt) from D
11 Compute the target yt = rt + γ(1− dt)QÍ(st+1, πÍ(st+1|θ̄)|φ̄)
12 Update the critic by minimising the loss: L = 1

N

q
i(yi −Q(si, ai|φ))

13 Update the policy using the sampled policy gradient:
∇θJ ≈ 1

N

q
i∇aQ(s, a|φ)|s=si,a=π(si)∇θπ(s|θ)|si

14 Soft update Target Critic: φ̄← τφ+ (1− τ)φ̄
15 Soft update Target Policy: θ̄ ← τθ + (1− τ)θ̄
16 end
17 st ← st+1
18 until st is terminal
19 end
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2.2.5 Soft Actor-Critic (SAC)
Soft Actor-Critic (SAC) [20, 21] combines the off-policy actor-critic setup with a
stochastic policy (actor), devising a bridge between stochastic policy optimisation
and DDPG-style approaches. As DDPG, SAC can work in situations characterised
by the presence of continuous action spaces, and it is model-free.

SAC algorithm can overcome some of the problems of DDPG. The latter can
achieve excellent performance, but the interaction between the deterministic actor-
network and the Q-function makes it difficult to stabilise and brittle concerning
hyperparameters and other kinds of tuning [11, 24]. The learned Q-function begins
to dramatically overestimate Q-values, which then leads to the policy breaking
because it exploits the errors in the Q-function. For this reason, SAC exploits
Clipped Double-Q Learning also used by Twin Delayed DDPG (TD3) [16]. It learns
two Q-functions instead of one and uses the smaller of the two Q-values to form
the targets in the Bellman error loss functions.

Another feature of SAC is entropy regularisation [77, 70, 53, 14, 19]. The policy
is trained to maximise a trade-off between expected return and entropy, a measure
of randomness in the policy. This peculiarity is strongly related to the exploration-
exploitation trade-off: increasing entropy results in more exploration, which can
accelerate learning later on, but it can also prevent the policy from prematurely
converging to a local optimum.

Target networks

SAC algorithm exploits 5 neural networks: the local stochastic policy network with
parameter θ, two local Q-Networks with parameters φ1, φ2 respectively, two target
Q-Networks with parameters φ̄1 and φ̄2 respectively. Their behaviour is the same
as the one of DDPG target network: the algorithm updates the target networks
following eq. (2.34) on page 31.

Algorithm 2.5 on page 37 shows the pseudocode of the SAC algorithm.

Entropy-Regularised Reinforcement Learning

Entropy represents the average rate at which a stochastic source of data produces
information. It is, in simple terms, a quantity which describes how random a
random variable is. The motivation behind the use of entropy is that when the
data source produces a low-probability value, the event carries more information
than when the source data produces a high-probability value.

Let x be a random variable with probability mass or density function P . The
entropy H of x is computed from its distribution P according to eq. (2.41).

H(P ) = Ex∼P [− log P (x)] (2.41)
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In entropy-regularised reinforcement learning the standard objective is generalised
by augmenting it with entropy. The agent gets a bonus reward at each time step
proportional to the entropy of the policy at that timestep. Assuming an infinite-
horizon discounted setting, this changes the RL problem as shown in eq. (2.42)
where α > 0 is the temperature parameter that determines the relative importance
of the entropy term controlling the stochasticity of the optimal policy.

π∗ = arg max
π

Eτ∼π

 ∞Ø
t=0

γt

A
R(st, at, st+1) + αH(π(·|st))

B (2.42)

It is clear that the standard maximum expected return can be retrieved in the limit
as α→ 0.

From eq. (2.42) it is possible to derive state-value function V π(s) and action-
value function Qπ(s, a) as shown in eq. (2.43) and eq. (2.44).

V π(s) = Eτ∼π

 ∞Ø
t=0

γt

A
R(st, at, st+1) + αH(π(·|st))

B-----s0 = s

 (2.43)

Qπ(s, a) = Eτ∼π

 ∞Ø
t=0

γtR(st, at, st+1) + α
∞Ø

t=1
γtH(π(·|st))

-----s0 = s, a0 = a

 (2.44)

From these equations is possible to derive the connection between state-value
and action-value function given by eq. (2.45) and the Bellman equation given by
eq. (2.46).

V π(s) = Ea∼π[Qπ(s, a)] + αH(π(·|s)) (2.45)

Qπ(s, a) = EsÍ∼P,aÍ∼π[R(s, a, sÍ) + γ(Qπ(sÍ, aÍ) + αH(π(·|sÍ)))]
= EsÍ∼P [R(s, a, sÍ) + γV π(sÍ)]

(2.46)

Learning equations

SAC algorithm learns a policy πθ with θ parameter set and two Q-functions Qφ1 , Qφ2

with φ1 and φ2 parameter sets respectively. The state-value function is implicitly
parametrised through the soft Q-function parameters thanks to eq. (2.47). In [20]
a function approximator for this function was introduced, but in [21] the authors
found it to be unnecessary.

V π(s) = Ea∼π[Qπ(s, a)] + αH (π(·|s))
= Ea∼π[Qπ(s, a)− α log π(a|s)]
≈ Qπ(s, ã)− α log π(ã|s), ã ∼ π(·|s).

(2.47)
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Learning Q Q-functions are learned by Mean Squared Bellman Error (MSBE)
minimisation, using a target value network to form the Bellman backups using
eq. (2.48). Equation (2.47) on the preceding page implicitly parametrise the state-
value function.

JQ(φi) = E(st,at)∼D

1
2

Qφi(st, at)−
1
r(st, at) + γEst+1∼pVφ̄i

(st+1)
22

 (2.48)

The update shown makes use of target soft Q-function with parameters φi, which
are calculated, like in the DDPG algorithm, as an exponentially moving average of
the soft Q-function parameters [45]. It can be optimised using stochastic gradients.

Learning the Policy It is possible to derive SAC starting from the definition of
soft policy iteration demonstrated in [21, Section 4]. In particular, the policy has
to be learned starting from the minimisation of the expected KL-divergence [34, 35]
and exploiting eq. (2.49).

Jπ(θ) = Est∼D[Eat∼πθ [α log πθ(at|st)−Qφ(st, at)]] (2.49)

As [21] reports, there are several options for the minimisation of Jπ(θ), but the most
straightforward one using neural network as function approximator is to apply the
reparametrisation trick. It works reparametrising the policy using a neural network
transformation following eq. (2.50) where Ôt in a noise vector sampled from some
fixed distribution.

at = fθ(Ôt; st) (2.50)

Therefore, it is possible to rewrite the expectation over actions in eq. (2.49) into
an expectation over noise as in eq. (2.51).

Jπ(θ) = Est∼D,Ôt∼N [α log πθ(fθ(Ôt; st)|st)−Qφ(st, fθ(Ôt; st))] (2.51)

To get the policy loss, the final step is to substitute Qφ with one of our function
approximators: the choice falls on mini=1,2 Qφi(st, fθ(Ôt; st)), as the authors of [21]
suggest.

Exploration vs. Exploitation

SAC algorithm trains a stochastic policy using entropy regularisation. α is the
entropy regularisation coefficient which is the parameter that explicitly controls
the exploration-exploitation trade-off. A higher α corresponds to more exploration,
while a lower α corresponds to more exploitation.
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This parameter has a fundamental importance in the algorithm, and it may vary
from environment to environment. Choosing the optimal α parameter is a non-
trivial task that could require careful tuning in order to find the one which leads to
the stablest and highest-reward learning. In [21, Section 5], the authors formulated
a different maximum entropy reinforcement learning algorithm to overcome this
problem. Forcing the entropy to a fixed value is a weak solution because the policy
should be free to explore more where the optimal action is uncertain, and to exploit
the learned mapping in states with a more clear optimal action. The gradients are
computed using eq. (2.52)

J(α) = Eat∼π[−α log π(at|st)− αH̄] (2.52)

During the test phase, the algorithm uses the mean action instead of a sample
from the distribution learned. This choice tends to improve performance over the
original stochastic policy, allowing to see how well the policy exploits what it has
learned.

Algorithm 2.5: Soft Actor-Critic [21]
Input: Initial policy parameter θ and Q-function parameters φ1, φ2

1 Initialise target network weights φ̄1 ← φ1, φ̄2 ← φ2
2 Initialise an empty replay buffer D
3 for episode = 1, M do
4 Receive initial state st ← s1
5 repeat
6 Observe state st and select action at ∼ πθ(·|st)
7 Execute at and obtain tuple (rt, st+1, dt)
8 Store (st, at, rt, st+1, dt) in replay buffer D
9 st ← st+1

10 until st is terminal
11 end
12 if it is time to update then
13 Sample random minibatch of N transitions (st, at, rt, st+1, dt) from D
14 Calculate targets
15 Critics Update: φi ← φi − λQ∇φiJQ(φi), for i ∈ {1, 2}
16 Actor Update: θ ← θ − λπ∇θJπ(θ)
17 Temperature Update: α← α− λ∇αJ(α)
18 Soft Critics Update: φ̄i ← τφi + (1− τ)φ̄i, for i ∈ {1, 2}
19 end

Output: Optimised policy parameter θ and Q-function parameters φ1, φ2
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Hyperparameters

Entropy regularisation parameter The only parameter of this section is α. It
can be set as constant through all the training, or it can be learned thanks to the
approach described in [21]. Further details in section 2.2.5 on page 36.

Replay buffer See section 2.2.4 on page 32.

Neural Network See section 2.2.4 on page 32.

Learning Update See section 2.2.4 on page 32.

2.3 Related work
A truly inspiring work for this thesis is [30] where the authors show, probably for
the first time, that deep reinforcement learning is a viable approach to autonomous
driving. Nowadays, most approaches focus on formal logic which determines driving
behaviour using annotated 3D geometric maps: the external mapping infrastructure
intuitively makes this approach limited to the models and the representation of the
surroundings. This technique is not able to scale up efficiently because of last-
mentioned strong dependencies.

The fundamental concept underlying [30] to make autonomous driving systems
a ubiquitous technology is the design of a system which can drive relying - just
like humans - on a comprehensive understanding of the immediate environment
[2]. [49] is useful to motivate the research in this direction because it represents an
example of autonomous vehicle navigation exploiting GPS for coarse localisation
and LIDAR to understand the local scene instead of detailed prior maps. Many
sensors have been developed through the years to gather information and observa-
tions increasingly sophisticated. However, the major problem is the massive budget
needed to afford all these technologies. The extraordinary results obtained by [30]
are not based on intelligent sensing techniques, but on the usage of a monocular
camera image together with vehicle speed and steering angle. They decided to
apply the model-free approach of reinforcement learning because it is exceptionally
general and useful to solve tasks that are complex to model correctly. As discussed
previously in this chapter, model-based algorithms tend to be more data-efficient
than model-free ones; however, the quality of the adopted model limits the results
[9].

The authors decided to exploit Deep Deterministic Policy Gradient (DDPG)
[41]. Firstly, they developed a 3D driving simulator using Unreal Engine 4 to
tune reinforcement learning hyperparameters such as learning rates and number
of gradient steps to take after each training episode. Then, they tried to apply
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the DDPG algorithm in the real world using the parameters learnt. They also did
some experiments using a compressed state representation provided by a Variational
Autoencoder [32, 55]. The excellent results obtained in [30] have been exceeded by
the same authors in [76] that shows astonishing performances driving on narrow
and crowded urban road never-seen during training.

Starting from all these outlined ideas, we decided to investigate ways and ap-
proach to autonomous driving with reinforcement learning without using simulators
or prior data in order to make a step towards the so-called reinforcement learning
in the wild [8]. The most popular and prominent achievements in reinforcement
learning to date consist of experiments done using simulated environments or ones
which exploit the knowledge acquired in simulated environments in real ones. The
team of the DeepMind manages to develop smart agents capable of performing
super-human results in numerous games and videogames such as Go [61, 62], while
OpenAI engineers an agent capable of beating the world champion of the multi-
player Dota 2 game [46, 47]. These problems are not easy to solve but have the
benefit of having a training environment equal to the test one. This fact does not
apply to the approach which exploits simulated experiments results in real environ-
ments.

The last-mentioned method encloses a critical caveat: the awareness that the
simulator has limits. Unlike what happens in some environments where there are
many similarities between the simulator and the environment – e.g. games and
videogames –, in harder environments – e.g. autonomous vehicle on public roads,
ads marketplaces, biology, and applications around human behaviour – is compli-
cated to get a simulator capable of reproducing with high-fidelity the wild envi-
ronment because of approximations that could mislead the learning. On the other
hand, learning directly on the environment need a fast learning cycle because of
the significant number of interaction with the environment and, above all, cheap or
low-risk exploration cost: millions of self-driving episodes in simulator ending with
a crash of the car has a small cost in respect of one episode with the same ending
crash in the real world.

Despite all these problems, the introduction of reinforcement learning in future
applications may revolutionise the actual learning approach, as shown in fig. 2.10
on the following page. Nowadays, deep learning is mainly focused on perception in
autonomous driving and most artificial intelligence applications. Concrete decisions
on what to do in specific situations are entrusted to hard-coded and human-designed
rules through optimal control algorithms. Reinforcement learning aims to create
a direct path from data to value to learn how to perceive data, but also how to
make valuable decisions to perform a specific task. This cutting-edge approach
brings out new questions like ethics that both research and industry are starting to
discuss and address to understand and protect from data biases onto the algorithm
behaviours.

Between the end of 2018 and the beginning of 2019, UC Berkeley and Google
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Figure 2.10. Most AI applications today exploit deep learning and machine
learning for image detection and computer vision. Decisions are made by op-
timal control algorithms which are hard-coded and designed by humans. The
reinforcement learning approach aims to inject machine learning algorithms
in the decision component of the algorithm to make steps towards Artificial
General Intelligence (AGI) [8].

jointly developed a state-of-the-art off-policy model-free reinforcement learning al-
gorithm called soft actor-critic (SAC) (see section 2.2.5 on page 34). The critical
goal is to provide a deep RL algorithm suitable for real-world problems and the
related new challenges that they pose. They outlined the desired properties of the
ideal deep reinforcement learning algorithm:

Sample Efficiency: the process of learning in the real world can be a very time-
consuming task. For this reason, it is desirable a functional sample complexity
to learn skills successfully.

No sensitive hyperparameters: as mentioned before, hyperparameter tuning
could be a tough task to complete in real-world experiments as it could re-
quire numerous repetitions in situations where the cost in terms of time and
money could be burdensome. The proposed solution of the authors is maxi-
mum entropy RL which provides a robust framework that minimises the need
for hyperparameter tuning.

Off-policy learning: this learning approach allows the reuse of collected data for
various tasks. This possibility helps the process of prototyping a new task
when adjusting parameters or choosing a different reward function.

Soft actor-critic (SAC) represents a deep RL algorithm capable of satisfying the
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previously mentioned requirements. The authors of [20, 21] revealed that the algo-
rithm is capable of solving real-world robotic tasks in a conspicuous but acceptable
number of hours, showing its robustness to hyperparameters and working on a large
variety of simulated environments always using the same set of parameters. Not
only it shows great performances in numerous challenging tasks compared to deep
deterministic policy gradient (DDPG), twin delayed deep deterministic policy gra-
dient (TD3) [16] and proximal policy optimisation (PPO) [58], but reveals its power
by solving three tasks from scratch without relying on simulators or demonstrations
[54].

The real-world robotic task involving a 3-finger dexterous robotic hand to ma-
nipulate an object similar to a sink faucet with a coloured end presented in [21,
Section 7.3] shows similar concepts to the task analysed in this thesis for what
concerns the framework of deep reinforcement learning exploited. The algorithm
exploits raw RGB images and processes them through a convolutional neural net-
work. The final goal of the robot is to rotate the valve into the correct position
– with the coloured part pointing to the right – starting from a random position
for each episode. The results obtained represents one of the most sophisticated
real-world robotic manipulation tasks learned end-to-end with deep reinforcement
learning, starting from raw images and without any previous simulation or pre-
training phase.

Taking all arguments into account, we decided to follow [30] implementing a
similar self-driving framework based on the design of a control system for a small
toy robot called Anki Cozmo. Therefore, we formalised the autonomous driving
learning problem as a Markov decision process to enable the application of rein-
forcement learning algorithms, taking into account the improvements mentioned
in this section about model-free reinforcement learning algorithms applied to real-
world robotic problems. Chapter 4 on page 59 provides a detailed description of the
choice made and the system design. Chapter 5 on page 80 reports the experiment
we carried out in the environment we designed.
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Tools and Frameworks

This chapter aims to describe the main tools and frameworks used to develop the
project of this thesis. The first section will describe the OpenAI Gym framework, a
central toolkit for developing and comparing reinforcement learning algorithms, and
explain why this tool is essential for reinforcement learning research. The second
part of this chapter will outline Cozmo, the powerful toy robot developed by Anki
that we used as an agent in the reinforcement learning scenario to apply algorithms
to try solving autonomous self-driving tasks: chapter 5 on page 80 will report
the analysis and description of these experiments. This section will also report a
set of available alternatives to Cozmo, explaining the motivations underlying the
final choice. The description about PyTorch, an optimised tensor library for deep
learning using GPUs and CPUs used to build up the convolutional neural network
of this work, and the related comparison with TensorFlow will occupy the last part
of this chapter.

3.1 OpenAI Gym
Nowadays, OpenAI Gym [6], released in 2016 with its public beta, is one of the most
popular toolkits and frameworks in the reinforcement learning scenario. A brief
analysis of reinforcement learning research could be useful to outline the motivations
underlying the need for a reinforcement learning framework.

As reported previously in chapter 2 on page 5, reinforcement learning is a sub-
field of machine learning dedicated to the world of decision making and motor
control: researchers study how an agent can learn and improve to achieve a specific
goal in a complex, usually unknown environment. This machine learning paradigm
is becoming more and more attractive for both researchers and industries because
of its visionary property of being very general. A reinforcement learning algorithm
can be exploited to control a robot’s motor in order to make it capable of running
or jumping, play a videogame or a board game, make critical business decisions like
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pricing and inventory management, but also learn how to invest in financial trading
environments. The generality of reinforcement learning became engaging thanks
to the remarkable results achieved in many challenging environments, as reported
previously in chapter 2 on page 5.

Despite these appealing features, the research was slowed down by other circum-
stances, no less critical. The need for better benchmarks represents the first factor.
As an example, the abundant availability of conspicuous datasets like ImageNet
[10] has driven supervised learning improvement in the research. For what con-
cerns reinforcement learning, the nearest equivalent to supervised learning datasets
would be a broad collection of different environments in order to test various al-
gorithms with different kinds of observations or rewards. The second withdraw of
this approach to learning is the lack of standardisation of environments designed
in publications. In reinforcement learning, subtle differences in problem definition,
reward function design or action space typology could make the difficulty of the
task grow. This fact threatens to slow down and corrupts experiments reproducibil-
ity making an objective comparison between the results of different papers almost
impossible.

The need to fix both problems was the primary motivation behind the design
and implementation of OpenAI Gym.

3.1.1 Environments
The agent and the environment represent the main components of reinforcement
learning. The choice of OpenAI was to implement and provide the abstraction
mainly for environments, not for agents. They decide to provide a standard envi-
ronment interface instead of forcing the developer to use pre-defined agent inter-
faces: the motivation behind this choice was to leave developers independent in the
design of the agent, the core of reinforcement learning, and facilitate the creation
and usage of environments. Thanks to this approach, all agents implemented with
OpenAI Gym can be used with the whole set of environments provided by the
framework. Therefore, it is possible to create a personalised environment to suit
the needs of a specific experiment that can be used by all agents exploiting OpenAI
Gym environment interfaces.

In this scenario, we realised the first contribution to our thesis. Thanks to
this framework features, we implemented an OpenAI Gym environment capable of
interacting with Anki Cozmo by providing a binding between functions of Cozmo
SDK and interfaces of the reinforcement learning framework. In chapter 4 on
page 59 we will provide further information and details about our contribution.

The importance related to the high quantity of environment is fundamental to
build a reliable and sustainable framework for reinforcement learning algorithms.
For this reason, OpenAI Gym contains a various and heterogeneous environment
database, ready to be used.
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Interface functions

Exploring OpenAI Gym, it is essential to focus on the most crucial interface func-
tions that the agent will exploit to interact with the environment. The functions
which constitute the skeleton of an OpenAI Gym environment are the following:

• def step(self, action): through this function, the agent can communi-
cate the action it wants to take. The input data depends on the type and
number of variables in the actions space (e.g. discrete or continuous). As will
be discussed in section 3.1.2 on the following page, the values returned by
this function represent the environment state after the manipulation caused
by the agent action. Thanks to these data, the agent will be able to select
the next action following the reinforcement learning loop.

• def reset(self): during the episode, internal variables of the environment
changes, influenced by the action taken previously. This function allows the
agent to restart the initial situation of the environment. This procedure is
particularly helpful when an episode finishes and the agent has to restart the
next learning episode in a brand new copy of the environment.

• def render(self, mode=’human’, close=False): this function is mainly
used in simulated environments. It enables the visual render (if available) of
the environment.

• def close(self): the final function to close the environment after the end
of all experiments and episodes.

Available environments

To date, OpenAI Gym includes the following environments:

• Algorithms: learning to imitate computations, such as copying or reversing
symbols from the input tape, is the main aim of this typology. These envi-
ronments might seem easy to be solved by a computer, but it is essential to
remember that the objective here is to learn to solve these tasks purely from
examples. Therefore, it is possible to vary the sequence length to increase or
decrease task difficulties quickly.

• Atari: Atari 2600 is a home video game console developed in 1977 which
spread the use of general-purpose CPUs into gaming with game code dis-
tributed through cartridges. This environment section provides a database
which contains more than 100 environments emulating Atari 2600 videogames.
OpenAI Gym exploits Arcade Learning Environment (ALE) [3] providing
RAW pixel images or RAM as observation of the environment.
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• Box2D: in this group is possible to find some continuous control tasks in a
simple 2D simulator such as BipedalWalker, CarRacing and LunarLander

• Classic Control: this class provides a set of problem borrowed by control
theory and widely exploited in the classic reinforcement learning literature.
Some task examples are balancing a pole on a cart or swing up a pendulum.

• MuJoCo: this collection contains continuous control tasks running in a fast
physics three-dimensional simulator called MuJoCo which stands for Multi-
Joint dynamics with Contact. This physics engine aims to facilitate research
and development in robotics, biomechanics, graphics and animation. The sim-
ulator is particularly suitable for model-based optimisation allowing to scale
up computationally-intensive techniques. Thanks to its features, it became
useful as a source for reinforcement learning algorithms. [68]

• Robotics: OpenAI released this algorithm typology to provide eight robotics
environments with manipulation tasks significantly more complicated than
the MoJoCo ones. It contains Fetch, a robotic arm to move and grab objects,
and ShadowHand, a robotic hand to manipulate and grab pens, cubes and
balls. [51]

3.1.2 Observations
As previously reported, the step(self, action) environment interface is the most
important one because it contains the behaviour definition of the environment that
reacts to agent actions. Indeed, the agent has to know in which way its actions
are influencing the environment in order to stop doing random actions and start
making valuable decisions.

In order to provide this type of information to the agents, the step function
returns four relevant values that reinforcement learning algorithms can exploit to
determine the best action to do in the future. These values are:

• observation (object): a specific object which represents the environment
observation and shows the changes provoked by agent actions. Its structure
and interpretation depend on the implementation of the specific environment.
For example, it could represent the raw pixel data from a camera, the status
of a board game or physics data of a robot (joint angles and velocities).

• reward (float): this is the fuel of the reinforcement learning algorithms.
This value represents the reward achieved thanks to the action taken by the
agent. The reward for each action can change among environments, but this
is the crucial information to enable the agent to learn.

45



Tools and Frameworks

• done (boolean): this value is a simple boolean that signals the agent when
the episode ended and it is time to reset the environment to start a brand
new episode.

• info (dict): a Python dictionary to monitor and show diagnostic informa-
tion useful for debugging. The agent could use it as additional information
in the learning process, but the documentation of OpenAI Gym does not rec-
ommend to use this data in the learning process to maintain the coherence
with the reinforcement learning loop.

The last important thing to report about the OpenAI Gym framework is the
definition of Spaces. As reported in the second chapter, an environment consists of
the action space and the observation space. Both can provide discrete or continuous
values: this distinction is fundamental to determine the usage of a specific algorithm
rather than others to solve a given task better. For this reason, OpenAI Gym
provides Discrete and Box to initialise discrete and continuous spaces, respectively.
It allows the user to define a lot of features useful in the learning process, such as
a maximum and minimum value setup or a default function to sample a random
value from the defined space instantly.

3.2 Anki Cozmo

Figure 3.1. On the left there is a photo of Anki Cozmo in action, while on
the right side there is a graphical reconstruction of the whole set of gears
and hardware inside the robot.

Especially in the latest decades, human beings have started a complicated rela-
tionship with robots. They are very fascinated by the prospect of artificial intelli-
gence offered by recent researches and applications. However, they are apprehensive
and worried at the same time because of the apocalyptic plot that many sci-fi films
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show and the significant promise of automation, capable of replacing human work-
ers in the future. However, all these concerns disappear after meeting Cozmo,
the palm-sized toy robot developed by the San Francisco-based company Anki and
available on the market since 2016. On first glance, Cozmo might appear as one
of the cutest toy robots: not surprisingly Anki employed the guidance of Carlos
Baena, the former Pixar animator, to design this robot. Therefore, it can interact
with people using a small display screen together with audio effects to mimic human
emotional reactions and responses. The result is a toy robot WALL-E-inspired both
aesthetically and personality-wise, powered up by artificial intelligence to move and
discover the surrounding environment. Thanks to the built-in camera, Cozmo can
remember faces and recite names, but also to plan paths and play various games
with its three cubes that carry sensors and lighting.

Despite these entertaining, but not so technical facts, Cozmo hides a lot of pow-
erful features under the hood. Anki developers produced a high-quality Python
SDK that allows developers to take control of the whole set of Cozmo sensors and
actuators thanks to the interaction granularity offered by functions and interfaces.
This section aims to outline the hardware and software architecture hidden under-
neath the cute Cozmo bodyworks, together with a comparison with the alternatives
available to design the reinforcement learning system of this thesis. An essential
inspiration in the writing of this section came from [7], [69] and Anki Forums 1.

3.2.1 Cozmo architecture
It is possible to define Cozmo as a vision-guided mobile manipulator, one of the
first consumer robot which can boast vision among its features. However, as re-
ported before, the features it shows during the normal toy usage, do not equal the
number of interfaces and functions made available to developers. The hardware
and the software developed for Cozmo makes it the right choice to fast prototyping
computer science projects: it is the main reason why we decided to exploit Anki
Cozmo instead of other alternatives. The SDK provided by Anki consists of a com-
prehensive set of low- and high-level functions which grants full access to sensor
data providing the right flexibility, simplicity and granularity to satisfy every de-
veloper needs. It is versatile because it could be easily connected with hundreds
of third-party libraries to augment Cozmo capabilities. Therefore, it is an entirely
open-source SDK to give the community the freedom to customise and contribute.

Figures 3.2 and 3.3 on the next page and on page 50 shows technologies, the
hardware and software involved in the production of Cozmo. The first image rep-
resents stacks and connections between the robot core and the mobile application

1Anki Cozmo SDK Forums: https://forums.anki.com/
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provided by Anki, while the second one shows the interaction between the last-
mentioned application and the Python user program on the development machine.
The reader can retrieve a global perspective about the whole Cozmo architecture
by merging these two figures.

Figure 3.2. Interaction between the Robot and the mobile application stack. The
main program of the robot interacts with the Cozmo Engine (C++) implemented
in the mobile application through a proprietary TCP protocol established using
an ad-hoc WiFi connection. [7]

Analysing fig. 3.2, it is noticeable that Cozmo has a lot of sensors and actua-
tors, which enable it to move and understand the surrounding environment. For
what concerns the sensor part, the VGA Camera is the crucial component ex-
ploited in the thesis. This camera provides a grayscale image with 320×240. Anki
reported a camera resolution equal to 640×480, but the latest firmware version sup-
ports only the lower resolution. Furthermore, the camera can detect and acquire
colours, but the firmware limits this feature to maintain the bandwidth stable and
avoid overloads or slowdowns in the communication with the mobile application
and subsequently, the user program running on the computer. The camera has
approximately 60° field of view (FoV) and 290mm focal length.

As regards the actuators column, Cozmo can explore the world thanks to its
four motors and over fifty gears. Instead of having wheels, this robot has two tracks
to navigate: it can steer and move freely by controlling the speed of each track.
Another moving part is the head that can move up or down to direct the camera
and the display. It also has a forklift with which it can lift objects or the cubes
available in the kit.

Cozmo can perform one single action at a time: if the current action is not
yet complete and the request of a new action occurs, the new action fails with a
tracks locked failure code. For this reason, the SDK does not allow the execution
of multiple actions. Despite this fact, it is easy to notice that Cozmo animations
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and behaviours typically use combinations of actions: indeed the user can send
simultaneous actions to the robot by calling them using in_parallel=True in its
script, but these actions have to belong to a different action track. This approach
allows the parallel execution of actions, provided that they use different tracks.
Cozmo software architecture holds seven independent action tracks:

• HEAD: raise/lower robot head.

• LIFT: raise/lower robot forklift.

• BODY: wheels or treads actions for driving and turning.

• FACE_IMAGE: actions with the OLED display such as animations or
faces.

• EVENT: for this action type Anki does not release further information.

• BACKPACK_LIGHTS: actions or animations of lights on Cozmo back.

• AUDIO: speech or sound effects emitted by the robot.

The project of this thesis mainly exploited the body action track to move the
robot in the environment: it also employed head and lift tracks, but only to position
the robot head to provide images about the track to the main program and the
reinforcement learning agent. The usage of parallel operations was not necessary.

The Cozmo hardware includes an on-board CPU and a WiFi access point,
thanks to which the user can interact with the robot. However, to activate this
communication, it is necessary to install the Cozmo Android/iOS application on a
personal tablet or smartphone. This application is the same used to play with the
toy-side of Cozmo, but in its settings, there is a function to enable Cozmo devel-
opment mode. After connecting the chosen personal device to the robot through
a simple WiFi connection, the application manages to create a proprietary TCP
protocol to interact directly with the main robot program. The creators of Cozmo
developed this mobile application using C++ to implement the Cozmo Engine, the
component which shall be responsible for the TCP communication with the robot.
To design and implement the game experience and the graphical user interface,
they used Unity and C#.

This last-mentioned part utilises the component internally designed and imple-
mented by Anki to provide a contact point between the Cozmo SDK installed in
the development machine, as shown in fig. 3.3 on the following page: the C-like Ab-
stract Data language (CLAD). The fundamental idea behind this tool is to make
the process of serialisation, communication and deserialisation of data structures
written in Python easier for the developer. In practice, for every data which has
to pass over the wire, files with extension .clad to define enums, structures and
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messages are generated: their syntax is similar to C struct one. After that phase,
this tool auto-generates Python, C++ and C# code for each structure previously
defined. This process allows the user to define a specific message in Python and
to send it to the C++ engine where it will be deserialised automatically, avoiding
problems and sources of bugs coming from intricate underlying details.

Figure 3.3. Interaction between the mobile application stack and the
Python user program. Anki designed a C-like Abstract Data Language
(CLAD) to implement the connection between the Cozmo SDK and the
Cozmo Engine on the mobile application. This approach puts a decoupling
layer between Python interfaces and low-level functions to make prototyping
easier and fast-forwarding for developers. [7]

This approach results in a process method much lighter than the one provided
by Protocol Buffers (Protobuf) by Google: even then, the main aim of this imple-
mentation choice was reducing the network bandwidth. Taking all arguments into
account, CLAD is the protocol used for the interaction between the SDK and the
C++ Engine that allows the developer to not care about the low-level part of the
code and to focus on the high-level logic using Python. It is also useful to maintain
the same interface for the user even if low-level logic changes occur.

In this case, the CLAD communication messages exploit a wired connection be-
tween the mobile device and the computer with a simple USB cable. In this thesis,
we used an Android tablet to run the experiments, and for this reason, we used the
Android Debug Bridge (ADB) to make this exchange possible. It is a command-line
tool included in the Android SDK Platform-Tools package that allows the commu-
nication between the computer and Android devices. It facilitates many device
actions such as installing, debugging apps or running a variety of commands on a
device. It is a client-server program that consists of three components: it includes
a client hosted in the development machine, a daemon (adbd) which runs the com-
mands on the device as a background process and finally a server, a background
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process in the development machine that manages the communication between the
two previous components.

The last step to start programming with Cozmo SDK is to install it in a devel-
opment machine following the instruction provided by its documentation 2.

3.2.2 Why Cozmo?
Before starting the development of this thesis project, we spent some time analysing
the small car market situation in order to find out the right choice for our specific
needs. In addition to Anki Cozmo, the ideal alternatives in the self-driving scenario
when we started this thesis were AWS DeepRacer Vehicle and a customised vehicle
implemented from scratch exploiting Donkey ®Car library.

This section part aims to briefly describe the main alternatives to Anki Cozmo
listing strengths and weaknesses for each approach to motivate the final choice
made.

AWS DeepRacer

AWS DeepRacer is a platform developed by Amazon to learn and refine machine
learning, reinforcement learning algorithms and techniques on AWS DeepRacer
vehicle.

The whole ecosystem consists of two main part:

• AWS DeepRacer Car. It is a 1/18 scale race car developed and built to
test reinforcement learning algorithms on a real track. It aims to show how
the reinforcement learning model trained in a simulated environment can be
conveyed to the real-world by using cameras to view the track and the model
to control throttle and steering. It has a lot of impressive specifications under
the hood such as Intel Atom ® Processor, 4GB of RAM, an expandable 32GB
of storage to accommodate the trained model and a 4-megapixel camera with
MJPEG.

• AWS DeepRacer Simulator. The user can build his models in Amazon
SageMaker and train, test and iterate the learning process using the racing
simulator. It offers an integrated environment hosted on the AWS cloud
to experiment and optimise algorithms to apply to the autonomous driving
model.

There are many advantages in using the DeepRacer stack. It offers an integrated
approach where the developer has to focus just on reinforcement learning: indeed,
it abstracts a significant part of the software giving the developer the chance to

2Cozmo SDK Documentation: http://cozmosdk.anki.com/docs/
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work almost exclusively on the model. It has a growing development community
to confront ideas and find solutions through challenging competitions around the
world. One of the fundamental aims behind this product is to build up a regu-
lated environment where amateurs and researchers can compare and tests different
approaches in solving the autonomous driving task. Therefore it provides a high-
performance car where to store the trained model in order to make it independent
to the training environment.

On the other hand, one of the main disadvantages of this approach is that it is an
Amazon lock-in: the framework provided force developer to use the whole Amazon
stack. This fact can be inconvenient economically-wise because of the rates of the
Amazon platform that adds to the price of the car, but, above all, because Amazon
may have access to all developer implementations and experiments.

Another not negligible factor was the product release date: Amazon had to
release it in July, but, to date, it is not yet available in Italy. Therefore, because
of this thesis is focused on the application of reinforcement learning algorithms
directly in the real world without the aid of simulators and model, the absence of
the physical car was crucial for the final decision.

Another important withdraw consists of the strict correlation between the simu-
lator and the real system: the framework provided by Amazon seems to be suitable
only to test reinforcement learning algorithms after the model training in the sim-
ulator, but not for the sake of this thesis.

Donkey®Car

The second important alternative to Cozmo was to develop a small car from scratch
using integrated boards such as RaspberryPi or NVIDIA Jetson Nano, sensors and
camera to personalise the device and satisfy specific project needs. Donkey®Car 3

is the most popular choice to build a personal self driving toy car. It is an open-
source community project powered by volunteers who are interested in build their
own self-driving cars. They cooperated to build up a high-level self-driving library
written in Python, focusing on enabling fast experimentation and contribution.
They provide detailed instructions to build a personal Donkey vehicle, providing
kits or lists of components to use: the whole kit costs among 250-300$.

It is also possible to install the Donkey library on any RC car to make it self-
driving and autonomous. Despite this fact, Donkey developers suggest building the
Donkey2 car, which is a tested hardware and software setup, to avoid problems
such as incompatibilities or bugs and make the most out of the presence of a dense
community.

3Donkey Car community website: https://www.donkeycar.com
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The main strength of this choice is the freedom to develop a completely cus-
tomised car to suit better the needs and requirements of a great set of autonomous
driving projects. In the last releases of the library, Donkey developers released a
complete sandbox simulator for training a self-driving car. The languages used to
develop it are Unity for simulation and Python with Keras and Tensorflow for train-
ing. They also provide an OpenAI Gym environment to use with such simulator.

The main weakness of this method consists in the process of building a self-
driving car system from scratch. It offers versatility and flexibility in components
choice, but the time to devote to building a working system, free from as many
bugs as possible would have slowed down the prototyping of the system itself and
the whole thesis project. The duration of development is not associated with the
process of physically assembling the car because Donkey developers estimate two
hours to build the car. The real obstacle consists of the setup of a connection
similar to the Cozmo one: it needs to be as stable as possible to make all stack
working smoothly in real-time.

The final choice

As easily predictable, the final choice fell on Anki Cozmo. It provides a fast-
forwarding SDK ready to be exploited in prototyping a brand new project together
with the strictly necessary sensors to perform the reinforcement learning experi-
ments in the real world. A crucial factor in reaching the final decision was the
dimension of the car: Donkey and Amazon DeepRacer are 1/10 and 1/18 scale
race cars respectively, while Cozmo is just 5.5cm wide, which results in a ratio of
about 1/30. This fact not only makes Cozmo an easily transportable solution to
speed up experiments and to restart episodes effortlessly but also a solution that
supports the design of a track in a restrict space such as the one in the laboratory
of Eurecom.

Therefore, the connection between the development machine and the robot is
suitable for implementing an OpenAI Gym environment, and it is similar, at least
in the premises, to the distributed off-board computation approach. The main
algorithm, the neural network, the reinforcement learning framework and the other
cognitive parts are computed and managed by the workstation, instead of being
stored in the vehicle as happens in Amazon DeepRacer and Donkey car approaches.

Taking into account the perspective of autonomous cars in the real world, on-
board and off-board computation approaches are still under research. With the on-
board method, cars have much computational hardware inside in order to manage
every aspect of autonomous driving by themselves, but it requires more powerful
batteries to counterbalance energy consumption. On the other hand, the connection
to off-board computer facilities or the clouds leads to new vectors of attack but
also enables companies to monitor the behaviour of the vehicle fleet to identify
malicious activities early. To date, both approaches are still under research, and
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it is not possible to decree a legitimate winner. For what concerns the thesis, the
designed system emulates an off-board approach.

In the end, Cozmo provides plain and straightforward control of the car, a
rich Python SDK to use with OpenAI Gym, and it is the best trade-off between
functionalities and fast-developing.

3.3 PyTorch
PyTorch 4 [50] is an open-source machine learning and deep learning library devel-
oped by Facebook’s AI Research Lab and released to the public in October 2016.
The main aim of PyTorch is to provide an intuitive and straightforward framework
to develop artificial intelligence projects: two of the main applications to date are
computer vision and natural language processing.

The programming languages utilised to develop PyTorch were Python, C++
and CUDA, the parallel computing and API model created by Nvidia to allow
software developers and engineers to use CUDA-enabled GPU for general purpose
processing. The primary interface provided by the library to the user employs
Python, the project where Facebook developers mainly put their efforts. Despite
this fact, it also offers a C++ interface.

PyTorch consists of the following components:

• torch: PyTorch Tensor library with strong GPU support. It implements
interfaces similar to those of the NumPy library. It contains data structures
for multi-dimensional tensors and mathematical operations, providing many
utilities for efficient serialising tensors and arbitrary types.

• torch.autograd: the tape-based automatic differentiation library that sup-
ports every differentiable operation on tensors available in torch.

• torch.jit: this component is a compilation stack that uses TorchScript to
create serializable and optimizable models from PyTorch code. This tool
allows the user to train models in PyTorch using Python and then export the
model in a production environment where Python may be disadvantageous
for performance and multi-threading reasons.

• torch.nn: this component provides a neural networks library that is entirely
compatible with autograd and designed for flexibility.

• torch.multiprocessing: this component is based on the Python multipro-
cessing library, but it implements memory sharing of torch tensors across
processes.

4PyTorch Github Repository: https://github.com/pytorch/pytorch
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• torch.utils: it contains many utility functions to better exploits the fea-
tures of PyTorch.

PyTorch provides a NumPy-like experience to interact and manipulate data
structures suitable for GPU computation, offering a deep learning research platform
which can provide flexibility and speed. These data structures are called Tensors
and they can be used both on the CPU and the GPU, accelerating the computation
thanks to the whole set of functions and manipulators explicitly designed for every
scientific computation need.

PyTorch is not a straightforward binding to an underlying complex C++ frame-
work. The library design focused on establishing Python as the main priority, and
for this reason, the user experience is very natural and similar to other important
machine learning libraries already present in the package manager.

It is noticeable that PyTorch developers aimed to create an intuitive and linear
product to use. To follow this idea, they decided to make PyTorch synchronous to
permit the debugger to receive and understand messages and stack traces promptly.
This feature translates in a better debugging experience for the end-user.

Beyond these features, one of the traits that distinguish PyTorch from other
frameworks is its single way to build neural networks by using a tape-based auto-
matic differentiation. The majority of deep learning frameworks available in the
market, such as TensorFlow, Theano or Caffe, exploits a static approach in struc-
ture computation graph creation: they reuse the same layout in the whole program,
therefore changing a simple component triggers the regeneration of the graph from
scratch. PyTorch utilises an entirely different approach which is not unique to Py-
Torch, but it provides one of the fastest implementations: they call it Tape-Based
Autograd. This term refers to the reverse-mode automatic differentiation exploited
in the framework, which is a technique based on the properties of the chain rule:
to calculate the derivative of an output variable w.r.t. any intermediate or input
variable, the only requirement is to know the derivatives of its parents and the for-
mula to calculate derivative of primitive expression. The main improvement that
this approach brings is allowing the user to change the network structure on-the-fly
without lag or overhead.

3.3.1 TensorboardX
One of the most crucial means that every machine learning researchers need is a
tool to visualise and measure data efficiently: this fact is significant because we
need to measure in order to improve models, projects and results. However, one
of the main problem in PyTorch is the absence of such a tool, specifically designed
for the Facebook framework. It can always use powerful tools such as Matplotlib,
but it offers a synchronous approach that leads to slow down the main program
since the primary process has to wait for the data rendering before starting next
operations.
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On the other hand, TensorFlow, the most important deep learning alternative
to PyTorch developed by Google, provides in its package TensorBoard which is a
webserver to serve visualisation of the training progress of the neural network. It
can show to the user scalar values, images or text, and it is particularly useful to
visualise experimental metrics such as loss and accuracy. The particularity of this
tool consists in the fact that it stores these typologies of information asynchronously
as events. The Python script calls specific functions to store information and goes
on with the next operation without waiting for its render: that is possible thanks
to the decoupling level inserted by this approach between the visualisation and the
creation of data. Indeed, Tensorboard operates by opening and reading TensorFlow
events files that contain the summary data generated during experiments. There-
fore, it will be the webserver to take care of elaborate data for rendering without
bothering the current Python script.

Fortunately, PyTorch can exploit the features of Tensorboard thanks to a library
called TensorboardX 5 that stands for Tensorboard for X to highlight developers
aim to make Tensorboard available for all deep learning framework.

3.3.2 Comparison with TensorFlow
After the advent of deep learning, many companies decided to put their efforts
to design architectures and frameworks to vehiculate this new technology. The
two most popular frameworks in this research field are TensorFlow [1] by Google
released in 2015 and PyTorch [50] by Facebook released in 2017.

Implementing the same neural network in these two frameworks will lead to
different results because of the training process has many parameters that depend
on the underlying technologies provided by the specific framework. For instance, the
training process in PyTorch is enhanced by CUDA GPU usage, while TensorFlow
can access to GPU through its GPU acceleration. The choice between these two
frameworks is not straightforward because it depends on the perspective and the
needs of the specific projects to develop. For this reason, this section aims to outline
differences between these two libraries without aiming to decree the best one but
to motivate the decision we made using PyTorch.

Dynamic versus Static

The first difference concerns the construction of the computational graph. A com-
putational graph is an abstraction useful to represent the computation process
through a direct graph.

In TensorFlow, computational graphs are defined statically, before running the
code. The main advantage of this method is allowing parallelism and dependency

5TensorBoardX documentation: https://tensorboardx.readthedocs.io/
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driving scheduling, features that boost the learning and make it more efficient. This
framework communicates with the external world via specific tensors that will be
substituted by input data at runtime. Only with TensorFlow 2.0, Google decided
to implement dynamic computational graph in its product, but its stable version
was released after the start of this thesis.

As mentioned above, PyTorch approach to computational graphs is dynamic.
This characteristic means that the graph is built incrementally at runtime without
using particular data structures as placeholders. This feature supports projects
where the author needs to change the computational graph on-the-fly avoiding the
application restart. In this sense, PyTorch is more pythonic than TensorFlow [36].

Distributed training

Another key feature is the distributed training and data parallelism. PyTorch
offers native support for asynchronous execution from Python, and then it could
improve performances. On the other hand, TensorFlow needs more efforts to allow
distributed training: the developer must fine-tune every computation to make it
running on a specific device. Both frameworks offer the same opportunities in these
terms. However, TensorFlow needs more effort to make things work.

Visualisation

As discussed in the previous section, TensorFlow exploits TensorBoard to provide
all tools that machine learning researcher needs to visualise learning and keep track
of the training process. Facebook researchers developed Visdom for this purpose,
but it provides very minimalistic and limited features compared to the ones offered
by TensorBoard. As reported before, it is possible to use TensorBoard with PyTorch
thanks to the library TensorBoardX.

Production deployment

For what concerns the deployment of trained models into production, TensorFlow
offers the best service via TensorFlow serving, a framework that offers and uses
REST Client API. The production deployment in PyTorch improved from its early
releases, but, currently, it does not provide a framework to deploy the trained
models on the web: the developers must use Flask or Django as backend server to
provide the right environment to exploit the model.

Conclusions

Considering all the points explained in this section, we decided to utilise PyTorch
for this project, but it is noticeable that there is no winner in this comparison.
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Both frameworks have strengths and weaknesses that depends on the specific
applications where we would use them. TensorFlow is a mature and robust tool,
notably suggested for production and AI-related products. Although it needs some
time to get the developer used to its programming approach and, at least at the start
of this thesis project, it supports only static computational graph methods. On the
other side, PyTorch is an efficient and young framework with a large community
and which provides dynamic computational graphs and is more Python friendly.
Therefore, it is especially recommended for research-oriented developers.
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Chapter 4

Design of the control system

In the previous chapters, we outlined deep reinforcement learning fundamentals
with its most critical underlying concepts, and then we discussed the choice made
about the technologies to use as baselines for our experiments. The decision fell on
Anki Cozmo because of the high-quality SDK provided to developers, its dimension
and its features, while for what concerns the deep learning framework we opted
for the versatility and flexibility provided by PyTorch, particularly suitable for a
research context.

The following step in the path of this thesis consists of merging reinforcement
learning theory with tools and frameworks presented previously to create the system
in question. Indeed, this chapter aims to describe the design of the control system
for reinforcement learning experiments with Anki Cozmo. The work presented in
this part represents one of the contributions of our thesis and the necessary step
towards reinforcement learning experiments.

The outline of the whole ecosystem with the description of interfaces, frame-
works and technologies used occupies the first section of the chapter. This part
also comprehends the description about the implementation of the OpenAI Gym
environment to make reinforcement learning algorithms interact with Cozmo, em-
phasising its differences from a typical simulated environment: we will start from
the problem formalisation as Markov Decision Process (MDP) to conclude with the
implementation of human-robot interaction.

We already presented the theory underlying DDPG [41] and SAC [20, 21] algo-
rithms in sections 2.2.4 and 2.2.5 on page 30 and on page 34 respectively. For this
reason, the second section consists of a discussion about the specificities of rein-
forcement learning implementations we built with references to the choice we made
in terms of hyper-parameters and neural network design in a real-world application.
In the final section of this chapter, we will present some relevant problems we faced
in the design and setup of the real-world track together with the decision we made
to overcome them.
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4.1 Outline of the system

The development of the control system for Anki Cozmo was the main contribution
of the thesis, together with the experiments carried on with the robot in the real
world. The main aim of this work was to create an OpenAI Gym environment
capable of interacting with a robot in the real world without any interaction, fine-
tuning or prior knowledge obtained through the use of a simulator. OpenAI Gym
usually provides plain and straightforward interfaces to interact with simulated
environments: we decided to exploit these functions to allow the application of
reinforcement learning algorithm directly in the real-world decision of the robot.

The fundamental source of inspiration to develop this control system was [29,
30]. This publication represents, as its authors reported, the first reinforcement
learning self-driving experiment where a car learned to drive through the application
of a reinforcement learning algorithm, by trial and error. They first trained the
model exploiting Deep Deterministic Policy Gradient (DDPG) in a simulator for
many epochs to find the most suitable hyper-parameters to use. After this simulated
learning process, they started their experiments in the real world using the set of
parameters obtained from preceding experiments. Unfortunately, the authors did
not describe in details the fine-tuning process in the simulation and did not provide
the results of these experiments in order to allow a weighted comparison with
the real-world experiment. They revealed only a table with a report of the best
performance for each model. This fact, accompanied by the challenging prerogatives
of this type of experimentation, was the propulsive thrust that led us to attempt
to implement a similar reinforcement learning configuration without any prior help
from simulations.

We decided to export and implement these ideas in our project, adapting them to
the specificities and particularities of the Cozmo setup. Figure 4.1 on the next page
summarises the resulting system providing a schematic overview of every technology
employed and interactions among them. This section aims to describe as clearly as
possible all the components of the control system we designed.

4.1.1 OpenAI Gym Cozmo environment

Before starting the description of the system we designed to carry out reinforcement
learning experiments it is necessary to outline the decisions we made about what to
implement in CozmoDriver, the OpenAI Gym environment we developed to apply,
train and test reinforcement learning algorithms with Cozmo.

The path of this section will follow the steps of a typical formalisation of the
Markov Decision Process (MDP), bringing out the problems encountered, the rea-
soning behind them and solutions proposed as they go.
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Figure 4.1. The interaction between the user and Anki Cozmo has a crucial
role in this system. The main Python script utilises OpenAI Gym for the
reinforcement learning component and PyTorch for the deep learning one. The
user can interact with the flow of the system through a simple web app that
uses OpenAI Gym and the Cozmo SDK directly to provide information for the
user (e.g. images, learning information) and the robot (e.g. commands). The
last component consists of TensorBoard thanks to which the script can store
results that can be retrieved later by the user.

Markov Decision Process formalisation

Starting from the definition of MDP that we already reported in eq. (2.4) on page 8,
we studied and investigated the best configuration to provide an acceptable trade-
off between performance and memory consumption, capable of making the system
work on the development machine we used for our experiments. In the following
paragraphs, we will analyse each MDP aspects paying particular attention to the
problems we faced and the motivations behind every decision made to overcome
them.

State/Observation space The environment observation is the group of informa-
tion that the reinforcement learning agent can see and obtain from the interaction
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with the real world. Current autonomous driving technology usually works thanks
to the presence of various sensor positioned in different points of the car body as
we discussed in section 2.3 on page 38. However, this approach is quite different
from what human beings use to guide every day: the only input that the human
receives is what he sees. Taking this fact into account, in the self-driving tasks in
question, we thought that the most reasonable way to obtain knowledge about the
surrounding environment as similar as possible to how humans do was to exploit
front camera images provided by Cozmo SDK. However, it is essential to remember
that, by definition, the state must satisfy the Markov property. According to this
definition, the state must be independent of the past given the present. For this rea-
son, using a single image to describe the current state may be an oversimplification
of the problem. Even a human would not be able to determine the best action to
take starting from a single frame. That is because it is difficult to infer or determine
the current direction of the car, speed or steering wheel position. Merely adding
another image can intuitively improve the human perception of the scene: as an
example, the first intuition this introduction could reveal is where the car is going,
allowing the user to decide more accurately about the trajectory to follow.

To verify this fact before starting the experiments with the application of the
reinforcement learning algorithms to Cozmo, we firstly analysed the results of some
experiments on the environment of the classic control problem of trying to keep
a frictionless pendulum standing up (Pendulum-v0 ). The original version of this
environment utilises angle position and trigonometric results as observation to re-
turn to the agent. However, this environment offers to the user the access to the
images provided by the OpenAI Gym render interface. It represents an entirely
different kind of experiment from Cozmo driving task, but they have in common
the improvement in trajectory inference brought by the presence of a number of
pictures higher than one. In order to make this environment suitable for convolu-
tional neural networks, we decided to appropriately modify it to exploit raw images
as observations instead of the original information. Therefore, we noticed that the
usage of a single picture as observation led to unstable and worse results than the
ones obtained by combining two subsequential images to feed the algorithm. For
this reason, we decided to use two consecutive raw images provided by Cozmo by
using a queue data structure with size two. In the code flow, the developer merely
has to push the next image obtained from the robot and use the specific queue func-
tion implemented to obtain the concatenation of the last two images, only when
necessary.

Therefore, we decided to reduce the original size of the input Cozmo image to
64×64. We made this decision as a trade-off between performance, learning phase
duration and space available in the central memory to store the replay memory.

In conclusion, the observation provided to the agent is the concatenation of two
grayscale images with dimension 64×64 pixels.
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Action Space Another essential part that we needed to formalise is the action
space, how the agent can interact and influence the surrounding environment. In
the car scenario, the two main components of driving are the speed of the vehicle
and the position of the steering wheel. To straightforwardly formalise these two
parts, we decided to use two simple real values.

We chose to define the desired speed value in a range of 0 to 1, while we opted
for a range of -1 to 1 for the steering wheel position. These limits allow the agent
to manipulate simple values in the decision-making process and to facilitate the
manipulation of neural network results. At the same time, the underlying logic of
the environment takes care to translate these values into a compatible format for
the Cozmo SDK. Indeed, as reported in section 4.1.2 on page 65, the Cozmo SDK
function exploited to manoeuvre the robot needs at least the speed of each tread.
Algorithm 4.1 reports key steps of this translation. Therefore we decided to raise
acceleration parameters by setting them equal to 4 times the velocity of each thread
to reach the desired speed as fast as possible.

Algorithm 4.1: CozmoDriver actions conversion from virtual to real
Input: Desired speed st ∈ {x ∈ R|0 ≤ x ≤ 1}

Steering wheel position wt ∈ {x ∈ R| − 1 ≤ x ≤ 1}
Maximum forward speed sforward

max = 150mm/s
Maximum turning speed sturning

max = 100mm/s
1 Left tread speed: tsleft = st · sforward

max + wt · sturning
max

2 Right tread speed: tsright = st · sforward
max − wt · sturning

max
Output: Left tread speed tsleft

Right tread speed: tsright

Reward Function The reward function is the crucial feature to define in the
formalisation of the MDP. After a review of the available literature and the analysis
of the problem, we obtained a list of ideas and concepts to model the reward
function:

• Lane Distance: this model calculates the reward of each action by calculat-
ing the distance between the car and the centre of the lane. The main aim is
to prioritise the correct positioning of the car on the lane, crucial for driving
safety. However, it is noticeable that this value can be easily calculated in
a simulated environment, while it needs a lot of sensors and calculations to
obtain a good estimation in a real-world environment. Beyond this problem,
this approach has difficulties in scaling to varying environments where road
typology and dimension is not a pre-configured constant. Therefore, it is a
limited approach because human beings do not always drive the car in the
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perfect centre of the lane: for instance, when approaching a curve, it could
be more convenient to move the car slightly away from the perfect centre.
This fact reveals the shortcomings of this approach: the system can perform
only as good as the human intuition underlying the hand-crafted lane reward.

• Distance Covered: the second approach we investigated was the one sug-
gested by [29, 30], where the reward of a specific action consists of the total
distance covered by the car for each specific action taken. Approaching the
problems with this method leads to results that can be easily understandable
for humans: indeed, the total reward of each episode represents the total
distance travelled by the robot.
In the car scenario of the previously mentioned publication, it is possible to
use the car odometry device to quickly retrieve this value after each action and
calculate the reward of a specific decision obtaining the difference with the
previous value. Cozmo does not have such kind of sensor on board. There-
fore it is necessary to calculate this value manually. The intuition behind
a reasonable estimation of the distance covered by Cozmo consists of using
the fundamental formula of kinematics: the speed. Indeed, in the designed
system, we have direct access to the aspired speed because it is a parame-
ter that the agents decide at each iteration, and it is possible to derive the
time elapsed between one action and its following one by manually calculating
them inside the OpenAI Gym environment.

• Speed Crash Penalty: the third typology of reward we investigated consists
of a sort of life bonus reward. The robot receives a reward (e.g. 1 point) for
each timestep of correct decisions and a negative reward (e.g. -10 points)
every time the user stops the robot preventing the crash. Therefore we added
to the positive reward a small quantity that depends on the current speed to
encourage the robot to stay on track and increase its speed. Consequently,
we decided to add a penalty in faulty time step proportional to the robot
crash speed to entice the robot in avoiding high speed when close to critical
points. Equation (4.1) formalises the reward used in this approach: p1 and p2
are two parameters that determine how much the speed influence the reward
and their module must be much less than the constant value in the equation
to highlight the fact that they represent a secondary objective [52].

rt =
+1 + p1 · st, if Cozmo on the track
−10− p2 · st, if Cozmo off the track

(4.1)

After the analysis of these three reward design proposal, we decided to select
the second one to pursue our experiments in the real world. As previously reported,
the first option would have been hard to carry on and to scale up. The third option
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hints intriguing facts that a reinforcement learning agent could take into account
to better solve the driving task of our experiments. The only withdrawal of this
approach is related to the correlation between reward and distance covered: this
correspondence is significant for the developer to have a more transparent overview
of what is happening and how the algorithm is learning, at least in the early stages
of development. In the second option, the distance covered by the robot is equal to
the reward, while this conformity is lacking in the third option. For this reason, we
decided to take the second reward proposal for this time. We noticed that it could
be an exciting future development trying to merge the second alternative with the
third one to obtain a brand new reward function that both penalises bad decisions
proportionally to speed and maintain its correspondence with the track crossed.

4.1.2 Human-Robot interaction

It is noticeable that the simulator can undoubtedly be programmed to understand
whenever the car is going outside the track, crossing the roadside. In a reinforce-
ment learning scenario, this fact facilitates the restarting procedure for an episode:
the developer has to bind some events or actions to a process that stops the current
episode, put the car on the road again and starts the next experiment. In the real
world, the situation is more complicated not only because of the need of the human
intervention to relocate the car in a safe place but also because there are more vari-
ables to take into account. The most critical factor is that the failure of an episode
in the simulator has no threats or costs, while real-world experiments failures could
lead to high costs and severe damage to the car and equipment. Despite this point,
the application of such experiment typology in a real environment instead of a mere
simulation represents an exciting challenge that could bring reinforcement learning
to the next level. In order to make experiments as safe as possible, the authors
of [29, 30] implemented a self-driving system designed explicitly for self-driving re-
inforcement learning experiments where the car driver has the faculty of stopping
the car when it is going to run off the road or in a dangerous situation and relo-
cating it in the nearest safe position to start the next learning episode. By simply
pressing a button, the logic of the car disables reinforcement learning algorithm
decisions and gives full control to the real driver of the car.

We aimed to implement this kind of user-robot interaction also in our setup.
The requirements were almost the same as the ones described in the paper, but
this case could not rely on steering wheel, brakes and accelerator as in the car
scenario where they are directly accessible by the user. The system needed an
interface to allow the developer to stop the robot whenever it is approaching the
side of the road and manoeuvre the robot just like a car. For this reason, we
firstly implemented a straightforward interface using a web app implemented using
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Figure 4.2. This image shows the web application we implemented to control
Cozmo during reinforcement learning experiments. The focus is on the first two
columns of the application since they provide the essential tools. The first one
is entirely dedicated to the list of key the user can use to drive the robot or
control the reinforcement learning algorithm flow. The second column consists
of the live image coming from Cozmo front camera and some information about
the current state of the RL system.

plain HTML5, CSS3 and Javascript for the frontend and Flask 1, a lightweight
Web Server Gateway Interface (WSGI) web application framework, as backend.
Therefore, we designed the web-app interface by using the Bootstrap framework 2

to offer an easy-understandable and appealing user experience. A screenshot of the

1Flask Github Repository: https://github.com/pallets/flask
2Bootstrap documentation: https://getbootstrap.com/
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dashboard is available in fig. 4.2 on the previous page.
The aim of this application is allowing user interaction with Cozmo and Flask

represented the right choice to allow the communication between this interface
and the OpenAI Gym environment. The Flask backend interacts directly with
the functions offered by Cozmo SDK to allow the user to see the live streaming
from Cozmo camera directly in the web app. Therefore it can receive, convert
and forward commands from the robot to the SDK. These commands consist of
the pressure of both single or combination of buttons: Flask decides the action
to trigger programmatically with hard-coded conditions and calculates speeds and
accelerations of both right and left treads.

The SDK function we utilised to control Cozmo is drive_wheels(). The pa-
rameters of this function are the following:

• l_wheel_speed (float): mandatory parameter that specifies the speed of the
left tread (in millimeters per second).

• r_wheel_speed (float): mandatory parameter that specifies the speed of the
right tread (in millimeters per second).

• l_wheel_acc (float): optional parameter that specifies the acceleration of
the left tread (in millimeters per second squared). The default value is the
equal to l_wheel_speed.

• r_wheel_acc (float): optional parameter that specifies the acceleration of
the right tread (in millimeters per second squared). The default value is the
equal to r_wheel_speed.

• duration (float): it specifies the duration of the driving action of the robot.
It calls stop_all_motors() after this duration has passed. The default value
is None. In this case, the behaviour of this function is equivalent to the non-
async drive_wheel_motors() one: the wheels will continue to move at that
speed until commanded to drive at a new speed.

This method is the same we used to implement the OpenAI Gym environment,
allowing the algorithm to interact with the robot just like a human in the driving
seat. Just as examples, the user can start and stop the episode using the enter
button, forget the previous episode with backspace and relocate the robot on the
track using W, A, S and D buttons.

4.1.3 System flow
The implementation of an algorithm flow to sustain the specific experimental need
was necessary due to the continuous interactions between the human and the robot.
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Figure 4.3. This image shows the flow chart of the system we implemented. The
most crucial phases are highlighted in blue. This chart is deliberately drawn
without an end, because, although there was the possibility, we never set a fixed
maximum limit of experiments in Cozmo scenario. It is possible to retrieve the
warm-up procedure by answering no to the last two decision branch.

Starting from the ideas of [29, 30], we decided to divide the learning process in a
series of phases highlighted in blue in fig. 4.3.

The phases we defined are the following:

• Episode phase. This phase consists of a single episode take. It represents
the results of a series of action taken from the agent to solve the task. In
the early part of the experiment, the algorithm has to perform a warm-up, a
procedure where the agent makes random actions to explore the environment
randomly and obtains an initial set of entries for experience replay memory.
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After the agent gathered the minimum amount of entries, which is usually
equal to the batch size or a multiple thereof, the agent starts to exploit the
neural network to act using a noisy policy for exploration purpose. This
last-mentioned part is still an episode phase, but testing or checkpoint phase
never follows it. As reported in section 4.3.1 on page 75, the time between two
subsequent actions is a parameter we set according to limitations of Cozmo
SDK to avoid problems in the learning process.
The user is the main responsible for this phase. It can interact by toggling
enter button on the keyboard. The first hit starts the episode, while the
second one determines the end of the episode and attributes zero rewards to
the last action taken.

• Undo phase. As described in section 4.3.3 on page 76, it is possible to in-
validate experiments due to a human or a system error. For this reason, we
implemented a procedure that the user can trigger to delete the knowledge
acquired in the last training episode and restore the previous state. We po-
sitioned it right after the episode phase to delete faulty episodes as soon as
possible.
In this case, the user has two possibilities to undo the last episode. The
user can either hit the backspace button in substitution of the second enter
button hit to stop the episode and start the undo phase or pressing it after
the end of the episode and before the next one. Initially, the first choice led
to a direct restore of the previous situation without executing the training
phase, while the second one executed the training phase and only afterwards
the undo phase. After some tests, we decided to set the first behaviour as
unique for both possibilities. This choice led to a delay increase between two
consecutive episodes because of the addition of an indirect confirmation of
the current episode before starting the training phase. However, thanks to
the careful design of the network, the waiting time remained manageable.

• Training phase. This section starts its execution after the initial warm-up
phase, and it is located after each Cozmo episode. It manages all neural
networks updates with several optimisation steps, also known as epochs: the
number of optimisation steps is set as a parameter by the developer.

• Testing phase. This phase disables noisy policies from the algorithm to
allow the agent to take the action that the neural network decree as best in
that specific iteration. It consists of a repetition of a finite set of episodes
that triggers after every specified number of epochs, given as parameter of
the system: the average reward calculated by the rewards obtained from
each testing episode is the result of this phase. This value is crucial for
the reinforcement learning experiments because we used them to build the
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average reward performance graph that shows how much the agent learned in
the graphs of chapter 5 on page 80 and determines the quality of the learning
process itself.

• Checkpoint phase. This phase is described in section 4.3.3 on page 76. It
consists of saving all data to make the developer able to restart the experiment
from the last available checkpoint. It is usually located right after the testing
phase in order to save all values together with network weights and biases.
The user can also trigger this phase manually by toggling the C button before
starting the next episode by hitting the enter button. It allows to virtually
pause experiments, like the one with Cozmo, that could last tens of hours,
and that can need multiple days to complete.

4.2 Algorithm setup
Another crucial step in the design of the system is the setup of reinforcement
learning algorithms we exploited. This thesis aims to show results and challenges
of the implementation of SAC algorithm to solve a real-world driving task, so it
is essential to include in this document ideas and implemented choices we used to
develop our system.

Given the fervour that has led to an impressive development of reinforcement
learning in recent years, numerous repositories were born to be able to offer ready-
made implementations of these algorithms in order to speed up the implementation
process in the most suitable experiments. Nowadays, the most famous and exploited
reinforcement learning repository available for developers is OpenAI Baselines 3

which provides a set of high-quality implementations of reinforcement learning al-
gorithms realised using Tensorflow deep learning library. In addition to this last-
mentioned project, there are many new forks of this project which offers improve-
ments, refactorings or additional implementations of the latest algorithms offered
by the continuous scientific research in this field.

Despite this fact, we decided to implement our versions of reinforcement learning
algorithms from scratch taking the last-mentioned implementations as guidelines
to follow in the developing process instead of exploiting them directly. We chose to
follow this workflow primarily for didactical reasons. Implementing an algorithm
from scratch, starting from the theory provided by the related paper escorted by
the numerous implementations available is probably the best way to understand
the whole set of ideas underlying algorithms properly. Furthermore, we made this
decision to have the opportunity to manage and implement architectural choices to

3OpenAI Baselines Github Repository: https://github.com/openai/baselines
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create a suitable workflow for the episodes carried out in Cozmo experiments that
could be compatible with the human-robot interaction of Cozmo.

This section contains the choices we made in the design of the neural network
and a reflection about the selections made for the hyper-parameters of reinforcement
learning algorithms.

4.2.1 Neural networks design
Another essential component in the developing of the control system is the convo-
lutional neural network we designed. As already reported in chapter 3, we opted
using PyTorch as deep learning framework. To choose the neural network that could
better meet the requirements, we analysed the models used in [41, 29, 20, 21].

The author in [41] presented two types of neural networks, but the model we
are interested in is the convolutional one, used to learn from pixels. It consists of
3 convolutional layers without pooling with 32 filters at each layer. Therefore, the
authors added two fully connected layers with 200 units. The paper also contains
information about the initialisation of network weights and biases: they set final
layer ones from a uniform distribution of [−3×10−3,3×10−3] and [−3×10−4,3×10−4]
respectively in order to ensure the initial outputs for the policy and value estimates
were near zero. They used uniform distributions [ −1

f0.5 , 1
f0.5 ] where f is the layer

fan-in. The actions were concatenated just before fully connected layers.
In [29], the authors used a convolutional neural network with four convolutional

layers, with 3×3 kernels, a stride of 2 and 16 feature dimensions, shared between
the actor and critic models. Therefore, the flattened encoded state obtained from
convolutional operations were used as input for fully connected layers of both actor
and critic: in the last case, it was concatenated with the actions. In this architec-
ture, there was only a single fully-connected layer of 8 features. They conducted the
experiments using a modified Renault Twizy vehicle with a single forward-facing
video camera situated in the centre of the roof at the front of the car, carrying out
their experiments on-board using a single NVIDIA Drive PX2. They managed to
solve their self-driving task in a handful of trials using 250 optimisation steps with
a batch size of 64. They managed to make the experiment very manageable with
an optimisation phase that took approximatively 25 seconds, which is a reasonable
amount of time considering that the driver must reposition the car at the centre of
the lane before restarting the procedure. As stated in the paper, their agent was
able to cover a distance of about 300 metres in 37 minutes of training time within
just 35 episodes. In the real world, the environment is much more complicated
than the simulated one, and then they decided to implement the logic of the agent
through the usage of a Variational Autoencoder (VAE). This decision led to an
improvement in the reliability of the algorithm.

In [21], the authors reported the training of a real-world robotic task with a 3-
finger dexterous robotic hand. The objective of the agent is to position a sink faucet
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in a specific position highlighted by a coloured end. The neural network exploited
on this occasion consisted of two convolutional layers with four 3×3 filters and
max-pool layers, followed by two fully connected layers with 256 units. Even in
this case, the authors exploited RGB images to carry out real-world training of
the agent. Therefore, they included some information about training time: the
agent needed 300k environment interaction steps with an equivalent of 20 hours of
training.

The problems just outlined have relative differences, but the varying durations
of the experiments are truly impressive. This fact underlines how the training
duration depends not only on the data quality but also on hyper-parameters used,
on the complexity of the problem and the available computational power. It is the
primary motivation behind the elaborateness of an experiment carried out entirely
in the real-world.

After the analysis of the neural network used in the last-mentioned papers,
we tried to modify these models after testing them on a modified version of the
Pendulum-v0 environment, provided by the OpenAI Gym framework, with a variety
of architectures. We exploited the network architectures that passed this selection
to made experiments with Pendulum-v0 and, consequently, with the environment
we designed with Cozmo. Chapter 5 on page 80 will show the results in question.

However, before finding a good architecture to exploit, we started little experi-
ments with Cozmo to analyse changes in the behaviour policy of the robot. There
we noticed a crucial factor to take into account to decide what network to use for
our experiment: the optimisation phase duration. It is a vital parameter to make
the experiment manageable for the user: in this thesis work, the agent is not in a
simulation where the computer automatically decides when to restart the episode
so that the human can let the experiment running by itself. In this context, the user
must be ready to stop, reposition and restart the car at any moment. Given the
evidence that an experiment like this could last thousands of episodes, we aimed
to reduce the waiting time for the user to make the experiments last less, or, at
least, obtain a good relationship between the duration of the episode and that of
the optimisation steps. To avoid a long waiting time after each episode, we tried
to spread the optimisation phase inserting a single learning step after each action
taken by the agent. We found out this approach in some implementation of DDPG
algorithm mainly applied to simulated environments. This choice seemed work-
ing with the Pendulum-v0 task because, in a simulated context, the environment
stops itself waiting for the next action taken by the agent during the optimisation
phase: the system flow is independent of the duration of the last-mentioned phase.
It is noticeable that this fact does not apply to a real-world scenario like the one
we implemented with Cozmo. As discussed in section 4.3.1 on page 75, the robot
continues to drive even during the learning process. Therefore the system is highly
unstable because this process not always has the same length and every action lasts
differently: it depends on the specific network topology. After the analysis of this
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behaviour, we decided to maintain the optimisation phase among episodes and to
fix a specific duration for each action of Cozmo.

The architecture we selected was a sort of merge of the ones we found in [29,
30, 21]. We opted for a neural network with three convolutional layers with 16
filters of 3×3 dimension. We decided to use a stride of 2 instead of using pooling
layers with a stride of 1, following ideas of the authors of [29, 30]. This decision
aims to shorten the optimisation phase and obtain more manageable experiments
without impacting performance excessively [64]. We applied batch normalisation
after each convolutional level to improve the speed, performance, and stability of
neural networks [27]. Finally, we flattened the results and used them as input
for the last part of the architecture, which consists of two fully-connected layers
with a hidden size of 256 features. We decided to implement the network using
the Rectified Linear Unit function (ReLU) as non-linearity, to initialise all network
biases to 0 and all weights using Xavier initialisation [17].

In the Q-Network implementation, the outputs of the convolutional section were
concatenated with actions, and there is one single output value after the fully-
connected part, which represents the value of the action-value function Q. In the
policy scenario, as shown in fig. 4.4 on the next page, there is no concatenation
at the end of the convolutional layers stack, and the output size depends on the
dimensionality of the specific action space which, in the Cozmo scenario, is equal
to 2.

4.2.2 Algorithms implementations and hyperparameters
As already mentioned in this section, the experiments we made in this thesis were
carried out in a real-world environment. At the beginning of this thesis work, we
implemented the DDPG algorithm following the theory of the related paper and the
hyperparameters suggested in [41, 29, 30]. This process was carried out in parallel
with the implementation of the same algorithms for a simulated environment offered
by the OpenAI Gym framework, Pendulum-v0. This decision was useful to check the
correctness of the architectural decisions we made step by step. Despite this fact,
the learning context of Cozmo showed its complexity since the first experiments
bringing out differences from Pendulum-v0 environment. We found out that, in
order to obtain results that could show as clearly as possible whether the algorithm
is working and improving with the selected set of parameters, it was necessary
to wait for a large number of epochs corresponding to tens of hours or few days
depending on the neural network architecture and the hyper-parameters.

Furthermore, these experiments can not exploit the advantages of the simulated
environment in which the researcher can set the parameter ranges at the beginning,
leaving the computer to start and complete the search for each combination of the
available parameters. The real-world approach we described in this chapter needs
the constant presence of a human to carry out the learning process, and the whole
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Figure 4.4. Convolutional Neural Network Architecture for Cozmo experi-
ments. This particular example shows the model exploited as the Policy with a
tensor with dimension equal to the action space size as output and two consec-
utive grayscale images which represents the state of the environment as input.
The first part of the network consists of three convolutional layers with 16 filters
of 3×3 dimensions. Each level is supplemented by a batch normalisation one.
The results are then flattened and concatenated with the vector of actions before
entering the second part. This section consists of two fully-connected layers with
256 features. The output of this particular network represent the action to take,
given the input state. This network uses ReLu as non-linearity. Before starting
experiments, the network is initialised with biases equal to zero and weights set
utilising Xavier initialisation [17].

procedure is further slowed down by the Cozmo battery lifetime and its charging
time: both take about 30 minutes. It is noticeable that, in a real-world scenario
like this, it is almost impossible to make a humanly manageable workflow capable
of doing a sustainable grid search. For this reason, we decided to initialise these
parameters following the guidelines provided by the DDPG paper. The results, in
this case, were not as good as we expected: the robot showed no tangible progress
even after numerous episodes. The policy learned led to strange behaviour with
sharp turns in a direction and episodes that ended almost immediately.

After this implementation, we started a search for a reinforcement learning al-
gorithm more suitable for real-world problems. The ideal objective would be to
find a hyperparameter agnostic algorithm capable of performing well regardless of
algorithm configuration and ensuring the absence of unfairness introduced from
external sources [24]. The last-mentioned aim is still being researched today by
the scientific community. Despite this fact, we found out an algorithm capable
of automatically adapt itself to reduce the hyper-parameter dependency: SAC, an
algorithm which was born precisely as an evolution of the DDPG approach to im-
prove its performance in real-world applications and overcome hyper-parameters
dependencies. Therefore, we also implemented this algorithm from scratch by us-
ing the implementation of the so-called parameter auto-tuning proposed in [20, 21].
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Chapters 5 and 6 on page 80 and on page 104 will present the performance compar-
ison between these two algorithms in a Pendulum-v0 simulated environment and
the performance of SAC in the real-world Cozmo one.

4.3 Real-World experiments
The real-world nature of the approach we followed in the work of this thesis revealed
more questions and problem than the corresponding simulated environment. This
fact happens because executing a self-driving task in the real world is meaningfully
more challenging. There are plenty of factors that inevitably emerge, and that can
not be monitored and audited appropriately if not after making a large number of
attempts.

This section aims to describe the most crucial and interesting problems we
faced in the development of this control system together with a debate on possible
countermeasures.

4.3.1 Actions duration
In the first implementation of the environment, the agent was able to make decisions
without a specific timing between actions. This fact led to different problems in
the implementation of reinforcement learning agents. The first problem was related
to experience memory gathering also caused by the limitation of Cozmo Camera:
it is a 30fps camera but, as reported in the documentation of Cozmo SDK, the
Cozmo framework emits a new camera image generally up to 15 times per second.
Therefore, the frequency of image requests was very high because the system did
not contain timing implementation constraints in the control of operations. These
two factors led the system to retrieve the same image both before and after taking
the current action.

Consequently, the state of each environment step consisted of the concatenation
of two images that were often the same picture. This consequence led to a con-
ceptual error that may influence the process of learning if we observe that with a
human perspective: a state of this kind represents an action that does not impact
the environment of the system while it is modifying it.

We noticed this problem because, in the first part of the experiments, where
the agent takes random action to explore the surrounding environment, the robot
continued to drive a straight path, even if shaky, without taking a definite step in
a specific direction and with an almost constant speed. This symptom was strictly
related to the robot’s inability to have the right time to carry out a specific action
before interacting with the environment with the next one. Accordingly, the robot
ends up navigating with an average speed close to the half of the maximum speed
and always going in a straight line only with small and temporary slopes to the right
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or left. After noting this problem, we fixed it by hard-coding a minimum interval
between the execution of a specific action and the beginning of the next one in the
OpenAI Gym environment: we selected this value according to the constraint given
by the Cozmo SDK about robot camera device.

4.3.2 Driving bias
As we reported in section 4.1.2 on page 65, the user has to interact with the robot
to indicate how valuable is the last action taken by the robot agent. It is noticeable
that, in this context, human-robot interaction has a crucial role in the learning
process. As the sole source of information for the algorithm, it is responsible for
all improvements and imperfections of learning process results: the robot learns
which actions are valuable and which are unprofitable or disadvantageous, but it
is essential to remember that the human is the one who decides the correctness
of each action by stopping the car in a dangerous situation. This fact inevitably
leads to the introduction of unconscious bias in the algorithm that could affect final
results.

It emerged after many episodes, where the robot started to learn how to steer
near a curve: sometimes the robot managed to make the curve correctly, without
going out of the road line, other times it was able to steer with a tread slightly out
of the track, then continuing to drive correctly in the next straight section. Since
the reinforcement learning agent uses the reward received and the stack of images
that represent the previous and next state in order to understand the value of a
given action, the algorithm considers the last-mentioned approaches to the curve
equally valuable. From a human perspective, imperfectly executing a curve can still
be considered correct, but the risk is that experiences of this type may influence
the experience replay memory and then the learning process in the long term. This
factor is accentuated by the fact that, as the algorithm improves, borderline cases
of this type tend to increase more and more, and the user is more and more inclined
to accept them.

However subjective the error may be, we have always tried in our experiments
to be as severe as possible in accepting episodes to the limit of acceptability. We
will discuss the experiments and their results thoroughly in chapters 5 and 6 on
page 80 and on page 104.

4.3.3 Error management
Despite the care taken in the design of the reinforcement learning system covered by
this chapter, many factors sometimes invalidated the experiments launched. Just
to cite a few of them as an example, we can report the instability in the Cozmo
connection with its SDK caused by cable failure or the discharge of the robot battery
in the middle of an experiment without any warning signal.
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These events can also be added to those caused directly by the distraction of
the user who guides the learning process: sometimes it happened that the user
sent the episode end signal when the error was already made and over. The agent
had already started to insert wrong and off-road experiences in the replay memory,
invalidating the experiment carried out up to that moment.

To try to solve the problem, we have implemented two types of rescue systems.
The first is a volatile backup system for every single episode that is discarded after
the start of the next one. Once the episode has ended, if the user believes that it
has not been carried out correctly or a factor has occurred that risks compromising
the entire learning process, there is the possibility to restore the previous state of
the episode and start the process again from that point.

We implemented the second type of rescue as soon as the experiments proved
to last longer than expected. Because the experiments could take many hours or
even days, it was necessary to implement a checkpoint system to save the state
of the experiment and to restore it in the following days. We decided to insert
this process at the end of the periodic test phase: it serialises and stores in the
secondary memory storage the values of the neural network and the data of the
reinforcement learning algorithm.

4.3.4 Track design
In order to carry out real-world experiments with Cozmo, we need to build a track
specifically designed for robot dimensions. For this reason, we spent some time to
search for the most reliable way to build a path where to train Cozmo efficiently.

Firstly, we opted for an easily transportable track to allow various attempt
with different locations and environmental conditions that could affect the training
phase. Furthermore, we noticed that the presence of reflections might influence
the learning process, then it was necessary to use a material to use as terrain for
the track that was less reflective as possible to avoid such kind of problems. The
first choice was the black floor of the Data Science laboratory of Eurecom. It was
useful only during the initial design and development of the control system to build
small pieces of track in which testing functionalities. This solution had numerous
drawbacks such as the impracticality to transport and high light reflection.

After this first try, we analysed different solution to design the track. The
following list provides a brief report of the various solutions taken into account
during the thesis, together with a brief analysis of advantages and drawbacks.

• Covering fabric: this material is easily transportable, but it has a high light
reflection, and its structure is prone to make wrinkles and dunes particularly
challenging to remove.

• Tar paper : this solution slightly diminished the reflection problem compared
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Figure 4.5. Picture from above of the track we designed and build to carry out
experiments with Anki Cozmo robot. The route is a mixed track that includes two
straights, a narrow hairpin and a wide one that, united by a curve elbow, make
up a serpentine. The track length is about 3 metres.

to the previous choice, but the material was fragile and with the same draw-
backs of the covering fabric.

• Cotton fabric: this solution offers an easily transportable material with re-
duced light reflection where it is easy to remove wrinkles and dunes.

Summing up, it is noticeable that the cotton fabric provides the right trade-off
among all requirements reported before.

Another crucial factor was the dimension of the lane, which must reproduce an
environment similar to real driving. We opted for analysing the ratio of the size of
a vehicle to the width of a road. In our study, we utilised the width of a typical
family car and utilised the average width of a typical Italian motorway for the lane
dimension: we found out a value of about 160-170cm for the first one and between
275cm and 375cm for the second one. Therefore, we measured the Cozmo width
that was about 5.5cm for a resulting ratio of 1

30 . Accordingly, the scaled lane width
obtained was between 9cm and 12.5cm. The other component to take into account
was the material to use to draw the lane. In this case, we used a simple paper tape
of width equal to 2.5cm. Because of the narrow and limited angle of vision provided
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by Cozmo camera, we opted for a total width of about 10cm: the size of the road
changes slightly throughout the path emulating what can happen in a hypothetical
real road. Therefore, we chose this dimension because positioning the tape with a
distance greater than 10cm would result in a significant part of the tape outside
the view of the camera. A track picture is available in fig. 4.5 on the previous page.
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Chapter 5

Experimental results

In the previous chapters, we described the reinforcement learning control system we
designed, together with an analysis of the solutions we proposed for the problems
we faced during the development process. Indeed, this process has not been free
from difficulties, both of implementation level and parameter optimisation. After
completing the design of this architecture, our second goal was to look for an
algorithm that could better adapt to a real context, exceeding the limits set by
DDPG in hyper-parameter tuning. The ideal would have been to find a parameter
agnostic algorithm: an enabling feature to achieve excellent performance regardless
of the specific configuration and hyper-parameter selection. During our research,
we came across the SAC algorithm and, after a careful analysis of the paper and
having understood the considerations made by the authors about SAC real-world
applications, we thought it might be the right choice to get better performance than
the DDPG experiments. For this reason, this chapter aims to present a detailed
comparison between DDPG and SAC experiments carried out with Pendulum-v0
environment and show the performance achieved by SAC with the experiments with
Cozmo.

The first section of this chapter focuses on the experimental methodology. It
will be an opportunity to describe the hardware of the development machine we
used for the experiments and present in a more schematic and precise way the
OpenAI Gym environments on which we will apply the algorithms. We speak in
the plural, because we have decided to report both the experiments performed on
Pendulum-v0 environment, and those carried out with Anki Cozmo in the real
world using the architecture we built. This part will also contain a brief analysis of
how reinforcement learning experiments are assessed to date. For this segment, we
took inspiration by [24], an exciting publication where the authors investigated re-
producibility challenges, proper experimental techniques, and reporting procedures
of modern deep reinforcement learning to draw up guidelines from which to start in
order to obtain better reports, not so much from the result perspective, but from
how they are reported.
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The second and third sections of this chapter will, therefore, be devoted respec-
tively to the two types of environments used. We will show all the useful graphs in
order to analyse and to comment on the obtained results.

5.1 Experimental methodology
This preliminary section is essential to understand better the tasks we tried to solve
through the usage of reinforcement learning algorithms and what approach we used
to evaluate experiments results.

5.1.1 Hardware and software details
In order to carry out the experiments contained in this chapter, we used a personal
laptop. We chose this solution because the machine has excellent specifications to
support the computational power required by the machine learning experiments
both in terms of GPU and RAM.

Despite these initial considerations, we still had problems in terms of RAM.
This type of experiment requires an extensive experience memory replay to allow
optimal batch extraction. Despite the large RAM present and the reduction of the
size of the input image, we were still forced to reduce the maximum size of the
replay memory to complete the experiments.

We collected the essential information about hardware and software that we
have used to perform experiments in tables 5.1 and 5.2 on this page and on the
next page.

Table 5.1. Development Machine Hardware Specifications

Component Details
Laptop Dell Inspiron 15 7559
CPU Intel® Core™ i7-6700HQ

# of Cores: 4
# of Threads: 8
Processor Base Frequency: 2.60 GHz
Max Turbo Frequency: 3.50 GHz

GPU NVIDIA GeForce GTX 960M
CUDA Cores: 640
Memory: 4GB GDDR5, 2500 MHz

RAM 12GB DDR3L, 1600 MHz
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Table 5.2. Development Machine Software Specifications

Component Details
Operating System Ubuntu 18.04.3 LTS (Bionic Beaver)
Python v.3.6.8
PyTorch v.1.4.0
OpenAI Gym v.0.15.4

5.1.2 Pendulum-v0 environment
OpenAI Gym Pendulum-v0 environment formalises the inverted pendulum swing-
up problem, a classic problem in the control literature. In this version of the
problem, the pendulum starts in a random position, and the goal is to swing it up,
so it stays upright.

We have also decided to include in this thesis the experiments we have carried
out on this simulated environment because the results obtained and the problems
faced were essential to have a more prepared approach to deal with the real-world
experiment and the environment we designed for Cozmo.

Observation

The original implementation of this environment is based on a state represented by a
Box(3) type, a data structure defined by OpenAI Gym that extends functionalities
of a standard array. It contains values related to the current angle of the pendulum
as described in table 5.3.

Table 5.3. Original Observation Pendulum-v0 environment

Index Observation Min Max
0 cos(θ) −1.0 +1.0
1 sin(θ) −1.0 +1.0
2 θ̇ −8.0 +8.0

Since the goal of our thesis was to apply deep reinforcement learning algorithms
to a problem such as the autonomous driving one where input data is composed of
images, we decided to build a wrapper (gym.ObservationWrapper) for the original
environment in order to receive observations as raw pixels. Thanks to this approach,
we were able to apply the same considerations and the same convolutional neural
networks that we used in the Cozmo environment.
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We have started many experiments on this environment to find the most suitable
number of images to use as a state, looking for a trade-off between the algorithm’s
needs and the memory constraints imposed by the hardware we used. The agent
revealed instability using a single frame, while it led to excellent results using two
images. In the end, we decided to resize the image to 64×64 pixels to overcome
hardware limitations.

A sample screenshot of the environment in action is shown in fig. 5.1.

Figure 5.1. Frame of Pendulum-v0 environment. We decided to use a set of
two subsequent 64×64 images.

Actions

The actions that the agent can perform within this environment are described
through a Box(1) object containing only one element. This value corresponds to
the joint effort, which allows the agent to swing the pendulum. The action space
has also been maintained in the modified environment.

Table 5.4. Pendulum-v0 Actions

Index Action Min Max
0 Joint effort −2.0 +2.0

Reward

The reward for each timestep t is given by
rt = −(θ2

t + 0.1θ̇2 + 0.001a2
t )

where θ is normalized between −π and π. Therefore, the lowest cost is −(π2 + 0.1∗
82 + 0.001 ∗ 22) = −16.2736044, and the highest cost is 0. In essence, the goal is
to remain at zero angles (vertical), with the least rotational velocity, and the least
effort. The reward design has also been maintained in the modified environment.
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Starting state

The initial state of the environment in question is chosen randomly. Two values
are extracted: the first is an angle between −π to π, the second is a speed between
-1 and 1. A zero angle corresponds to the standing pendulum.

Episode termination

OpenAI Gym documentation does not specify a particular episode termination for
this environment: the choice is left to the user. In our case, after some attempts,
we decided to set a limit value of 200 steps for each episode.

Solved requirements

Even in this case, OpenAI Gym documentation does not specify any indications
to understand whether an episode has been solved. Indeed, Pendulum-v0 is an
unsolved environment, which means it does not have a specified reward threshold
at which it is considered correctly completed.

5.1.3 CozmoDriver-v0 environment
CozmoDriver-v0, the reinforcement learning environment we implemented, is one
of the contributions of this thesis. This section aims to present as schematically as
possible the basic parameters that characterise the environment we have designed.
Further details on the implementation choices, problems encountered, and solutions
we have adopted to solve them are available in chapter 4 on page 59.

Observation

The observations we decided to use in CozmoDriver-v0 are the same as those we
exploited in the Pendulum-v0 environment. Indeed, our agent will obtain, for each
action carried out, a queue composed of two images from the front camera of Cozmo
resized to 64x64 pixels. As in the previous environment, we decided to resize the
images obtained in order to remain within limits placed by the RAM available in
the development machine.

The first image represents the state before the action, while the second repre-
sents the consequences of the action taken. The number of images was set to two
after performing some experiments on Pendulum-v0 environment that revealed in-
stability in the use of a single image. We decided to limit ourselves to two images,
as we would increase the size of a single entry in replay memory by adding more
of them. This choice would have required a counterbalance such as the decrease of
the maximum size of replay memory.
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As we mentioned in chapter 3 on page 42, Anki Cozmo has a front camera
inserted inside its tilting head and one forklift. To obtain more valuable images for
our experiments, we decided to tilt the head as much as possible down and raise
the forklift: in this way, the image is focused on the lane, leaving everything that
could distract the learning process outside the view.

An example of two subsequent frames received by Cozmo is available in fig. 5.2.

Figure 5.2. An example of a two subsequent frame of CozmoDriver-v0 environ-
ment. We decided to resize the image returned by Cozmo to 64×64 for memory
consumption reason: a higher resolution would lead to a further decrease in
experience replay memory.

Actions

We have already discussed in section 4.1.1 on page 61 the decisions taken to imple-
ment the management of actions within the environment that we have built.

To describe the actions that the agent can perform within this environment,
we used a Box(2). The first value of this object corresponds to the desired speed,
while the second one represents the steering wheel position. Table 5.5 describes
schematically this object.

Table 5.5. CozmoDriver-v0 Actions

Index Action Min Max
0 Desired Speed (v) 0.0 +1.0
1 Steering Wheel Position (w) −1.0 +1.0
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Reward

The reward we chose for our experiment was the second one provided by sec-
tion 4.1.1 on page 61. The decision has fallen on the Lane Distance Reward be-
cause it describes with simplicity the final goal of the task, but above all because it
allows the user to have a direct counterproof of the effectiveness of the algorithm,
by matching the reward to the distance travelled. Equation (5.1) reports the cal-
culation that is executed to every time step to calculate the reward to the carried
out action. c is the time expressed in seconds between one action and the next one,
imposed as a system constant, while vt is the desired speed taken by the current
action expressed in millimetres per second.

Besides, we opted for setting the reward of the final episode step to zero because
it occurs when the robot is approaching a harmful situation.

rt = vt · c (5.1)

Starting state

The starting state position of the system is not constant, but changes from episode
to episode. This approach was preferred over the one with a fixed starting position
for two simple reasons:

• Reduces the path that has to be travelled by the robot in order to be able to
reposition, speeding up the experiments as it preserves battery consumption.
In this approach, the robot is repositioned on the road closest to where the
previous episode ended.

• It allows the agent to accumulate experiences that do not always refer to the
same road segment. With this methodology, the experiences will most always
begin and end in different states, leading the agent to put more effort into
generalisation.

The episode starts as soon as the agent receives the start signal.

Episode termination

The episode ends when the robot goes off the road or reaches a dangerous situation.
Even this time, the episode ends when the agent receives the stop signal.

Solved requirements

We have not provided a well-defined parameter to understand whether the task has
been solved or not, because it depends on the path and the particular needs of the
programmer. Potentially the episode could last forever if the robot could learn to
run an entire circuit.
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No mechanism has been implemented to communicate to the robot that the
episode ended positively. For this reason, we suggest applying this environment to
circuits and not paths where beginning and end do not coincide.

In our case, the route used is almost 3 meters long. So we decided to use this
value as a target to reach to determine the resolution of the task.

5.1.4 Measuring performance
In recent years, we have witnessed the rapid growth of interest in deep reinforce-
ment learning by the entire scientific community. This growth has led to an increase
in experiments and works on this subject, which are often readily available. How-
ever, reproducing reinforcement learning experiments is not always as intuitive and
straightforward as expected. Often, the measurements reported by papers and
studies of this kind are difficult to interpret due to non-determinisms inherent in
most environments in which these algorithms are applied. Without appropriate
and meaningful metrics accompanied by standardisation in presenting the results,
it becomes difficult to determine conclusively the improvements made to the state-
of-the-art.

By reviewing the available literature, it is noticeable that reinforcement learning
algorithms are often evaluated by presenting tables and graphs showing cumulative
average rewards or the maximum reward achieved on a pre-set number of timesteps.
However, the combined features of environments and algorithms make these values
typically inadequate for a fair comparison. The cause is that numerous factors
come into play, such as seeds and trials that lead to different performances and
that do not contribute to making more transparent the actual performance of an
algorithm. However, when these are accompanied by confidence intervals, based
on a reasonably large number of attempts, then there are the premises to make
decisions and formulate more informed considerations.

Once again, however, we have been forced to come to terms with reality. We were
able to produce analysis as honest and specific as possible regarding experiments
on Pendulum-v0. In this case, we could easily repeat the experiments ten times for
each algorithm, so that we could report graphs containing more useful information,
such as confidence margins.

On the other hand, experiments with Cozmo took a much larger number of
episodes before starting to show the first improvements. We managed to maintain
an average of just under 500-750 episodes per day: this underlines how difficult it
was to get to conclude even a single experiment. For this experiment, we reported
the results obtained without any confidence margin but focusing on the best training
results as opposed to the results obtained during the test.

Another crucial consideration is the one concerning loss functions results: the
values reported in a loss graph should not be considered in the typical sense from
supervised learning. There are two crucial differences in reinforcement learning loss
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functions:

• Data distribution depends on the current parameters. In supervised learning,
we are used to working with loss functions that are defined on fixed data
distribution. They are independent of the parameter that the process aims
to optimise. In reinforcement learning, this characteristic does not apply
because the data must be sampled from the current and most recent policy.

• A loss function can not determine and measure the performance of an algo-
rithm. Even in this case, it could be useful to make a comparison with su-
pervised learning: in this approach, a loss function evaluates the performance
metric that we want to optimise. On the other hand, in the reinforcement
learning scenario, researchers are interested in the expected return. There-
fore, the loss function can not be useful to approximate this value. It is useful
only when evaluated with the current parameters, with data generated by the
current parameters.

The connection between loss function and performance does not apply immedi-
ately after the first step of gradient descent. Minimising a specific loss function for
a given batch of data has no guarantee of improving expected return. Therefore,
the word overfitting must not be interpreted from a supervised learning perspective:
it should be merely considered as a descriptive word without any relationship with
the generalisation error.

From a performance perspective, the loss function means nothing in reinforce-
ment learning [48]. This fact is one of the fundamental points that distinguish su-
pervised learning to reinforcement learning. The researcher should only care about
the average return. For this reason, we decided to measure the performance of the
experiments by using the deterministic policy with DDPG and the mean policy
with SAC without any noise for ten episodes and reporting the average return.

Sections 5.2 and 5.3 on the current page and on page 96 will show the most
relevant results and graphs obtained from the respective experiments. The final
part of each section will be accompanied by a comment on the results obtained,
paying particular attention to the comparison between the two algorithms.

5.2 Pendulum-v0 experiments
5.2.1 DDPG hyperparameters
The hyper-parameters we exploited in this experiment are shown in table 5.6 on
the next page. The epsilon decay function is presented in eq. (5.2) on the following
page where e is the current episode number. It is used to decrease the noise impact
on actions in function of the number of episodes. When it reaches the Ôend, it will
become a constant.
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Table 5.6. DDPG Hyper-parameter setup for Pendulum-v0 environment

Hyper-parameters Value
Policy Network Learning Rate: 1× 10−4

Architecture
3 CONV Layer 3× 3× 16, stride 2, padding 0
2 FC Layer with hidden size = 256
1 Output value

Q Network Learning Rate: 1× 10−4

Architecture
3 CONV Layer 3× 3× 16, stride 2, padding 0
2 FC Layer with hidden size = 256
1 Output value

Ornstein Uhlenbeck Noise µ = 0.0 σ = 0.3 θ = 0.15
Epsilon Decay Noise Start: 0.9, End: 0.2, Decay: 200
Gamma (γ) 0.99
Tau (τ) 1× 10−3

Observation Buffer Size: 2
Image Size: 64 × 64

Batch Size 64
Max Number of episode steps 205
Replay Memory Size 10000
#Epoch per Episode 250
Soft Target Update per Epoch 1
Test Phase Test frequency: every 5000 epochs

Test episodes: 10

Ô = Ôstart − (Ôstart − Ôend) min(1.0,
e

Ôdecay
) (5.2)

5.2.2 SAC hyperparameters
The hyper-parameters we exploited in this experiment are shown in table 5.7 on
the next page.
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Table 5.7. SAC Hyper-parameter setup for Pendulum-v0 environment

Hyper-parameters Value
Policy Network Learning Rate: 3× 10−4

Type: Gaussian Policy
Architecture
3 CONV Layer 3× 3× 16, stride 2, padding 0
2 FC Layer with hidden size = 256
1 Output value

Q Network Learning Rate: 3× 10−4

Architecture
3 CONV Layer 3× 3× 16, stride 2, padding 0
2 FC Layer with hidden size = 256
1 Output value

Gamma (γ) 0.99
Tau (τ) 5× 10−3

Entropy Autotune Enabled
Observation Buffer Size: 2

Image Size: 64 × 64
Batch Size 64
Max Number of episode steps 205
Replay Memory Size 10000
#Epoch per Episode 250
Soft Target Update per Epoch 1
Test Phase Test frequency: every 5000 epochs

Test episodes: 10

5.2.3 Comparative analysis

This section aims to present the most critical plots we obtained from Pendulum-
v0 experiments. The results obtained exploiting SAC algorithm are presented in
figs. 5.4 and 5.6 on page 92 and on page 93, while the ones gathered with DDPG
algorithm are presented in figs. 5.3 and 5.5 on page 92 and on page 93.

Figures 5.3 and 5.4 on page 92 shows the result of the training phase. These
plots have the number of episodes in the abscissa and the reward obtained in the
ordinate. The results of these graphs are unstable both in the average value and in
margins sizes. This phenomenon is mainly caused by the noise introduced during
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training: it allows the agent to explore the space in the environment without fo-
cusing on the current best action but trying to explore entirely and randomly the
totality of environment space. In the first case, the DDPG noise is given by the Orn-
stein Uhnlebeck process noise, while SAC exploits a Gaussian Policy by sampling a
random action from the current distribution given by the network. Therefore, SAC
algorithms exploit the entropy autotune presented by its authors: its main aim is to
reduce the impact of hyper-parameters by automatically tuning the α temperature
parameter. This lead to a more straightforward setup of the experiment without
requiring manual optimal temperature setup, which is non-trivial and needs to be
tuned for each task.

It is possible to investigate about these two trends in figs. 5.9 and 5.10 on
page 95. We exploited eq. (5.2) on page 89 to manipulate the importance of the
noise through the whole set of episodes for each run. The contribution of the noise
decreases directly proportional to the number of episodes completed to enhance
exploration in the first part of the experiment. On the other side, the autotuning
approach of SAC influences the way the reward is calculated and used to train
the network. The objective is to give more reward to actions that have higher
entropy, that is more unpredictable. This approach is motivated by the fact that
an unpredictable situation can bring more information to the learning process than
a more predictable one. In DDPG, the noise is regulated by the combination of
Ornstein Uhlenbeck noise process and an epsilon decay function that regulates how
the noise influences actions with the growth in the number of episodes completed.

It is noticeable that SAC results seem more valuable than DDPG ones: the SAC
agent manages to touch the zero value after about 30 episodes and reaches a sort
of asymptote between 100 and 200 after about 60 episodes. On the other hand, the
DDPG agent obtained a worse performance by touching the zero value after about
100 episodes and the corresponding values of SAC asymptote only in the last part
of the experiment. This fact is even more remarkable if we analyse the average of
the previous 100 episodes carried out in training, as shown in figs. 5.7 and 5.8 on
page 94.

A criticism that can be made to this analysis is represented by the different
amounts of noise present in different episodes. If that were the case, the testing
phase of the DDPG algorithm, where any noise is removed, should produce better
performance or, at least, comparable to those of SAC. However, analysing the
result of the test phase shown in figs. 5.5 and 5.6 on page 93, it is clear that the
different trends described above remain unchanged. As mentioned before in this
work, we decided to start a test phase every specified amount of epochs correctly
executed. For this reason, these plots have the number of epochs in the abscissa
and the average reward obtained from 10 testing episode in the ordinate. Even in
the testing phase, the most important, the outstanding performance of SAC is not
achieved by the DDPG one.
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Figure 5.3. DDPG Pendulum-v0 Reward Plot. The graph reports mean,
standard deviation range and min-max range of the reward of each episode
over 10 runs with different seeds.
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Figure 5.4. SAC Pendulum-v0 Reward Plot. The graph reports mean, stan-
dard deviation range and min-max range of the reward of each episode over
10 runs with different seeds.
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Figure 5.5. DDPG Pendulum-v0 Test Average Reward Plot. The graph
reports mean, standard deviation range and min-max range of the average
reward obtained from 10 test episodes every 5000 epochs. They are calculated
on 10 runs with different seeds.
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Figure 5.6. SAC Pendulum-v0 Test Average Reward Plot. The graph re-
ports mean, standard deviation range and min-max range of the average re-
ward obtained from 10 test episodes every 5000 epochs. They are calculated
on 10 runs with different seeds.
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Figure 5.7. DDPG Pendulum-v0 Last 100 Episode Average Reward Plot. The
graph reports mean, standard deviation range and min-max range of the last 100
episode average reward for each episode over 10 runs with different seeds.
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Figure 5.8. SAC Pendulum-v0 Last 100 Episode Average Reward Plot. The graph
reports mean, standard deviation range and min-max range of the last 100 episode
average reward for each episode over 10 runs with different seeds.
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Figure 5.9. DDPG Pendulum-v0 Noise Epsilon Decay. The graph shows the trend
of the noise epsilon decay applied to the Ornstein Uhlenbeck noise in DDPG.
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Figure 5.10. SAC Pendulum-v0 auto-tuning temperature. The graph shows
the trend of the temperature parameter learned through the auto-tune process
proposed by SAC authors.
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5.3 CozmoDriver-v0 experiments

After the completion of the experiments carried out with Pendulum-v0 environ-
ment, we started to implement both algorithm in parallel to work with the specific
features of CozmoDriver-v0.

5.3.1 The DDPG approach

By following the DDPG approach, we exported the code already used in the pre-
liminary experiments with Pendulum-v0 environment, by adapting it with proper
modifications. For instance, we gathered the learning phase at the end of each
episode instead of leaving it distributed on every action of each episode.

However, the results were unexpectedly bizarre: the robot, right after the warm-
up episodes phase, started to act by always selecting the same action. It kept
steering to the right with the maximum velocity, even after hundreds of episodes.
For this reason, we selected a range of possible algorithm components to modify in
order to analyse any changes in agent behaviour: among these points, we find the
neural network (e.g. weight initialisation, convolutional layers), the frequency and
extent of the learning phase or the amount of noise used. Therefore, we started a
set of experiments to validate these changes in order to find a solution to proceed to
carry out experiments on a broad set of episodes. This process has been complicated
to carry forward since it is almost impossible to do an accurate analysis (e.g. grid-
search) in the real world with such a large amount of parameters.

Unfortunately, despite this research, the agent behaviour did not change from
the initial one. This fact has not allowed the actual execution of the experiments
envisaged by our intentions. Indeed, the presence of concise episodes within the
long-term experiments (e.g. hundreds of episodes), due to a bizarre initial policy of
the robot, caused the constant insertion of experience coming from faulty episodes
in the replay memory: this fact inexorably poisoned the replay memory of the
agent, affecting the whole learning process.

The DDPG algorithm was created by its authors with a proper deterministic
nature, different from the assumptions made by the authors of the SAC algorithm,
who aimed to overcome the limits of the first approach to model-free deep rein-
forcement learning. As an example, we can report the presence of a deterministic
policy in DDPG instead of the Gaussian policy exploited by SAC. Taking all argu-
ments into account, we confirmed the intrinsic difficulties of the DDPG algorithm
regarding its application in the real world without proper preliminary experiments
in simulations (e.g. hyper-parameters tuning), convincing us definitively in carrying
out the experiments with SAC.
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5.3.2 The SAC approach
We decided to implement the SAC algorithm for this type of task after the great
results reached in previous experiments with Pendulum-v0 and its adaptability to
various kind of problems, especially real-world ones, reported by its authors.

In the first implementation, we decided to maintain the number of epochs
for each episode equal to 250. However, this decision revealed its fragility soon.
In Pendulum-v0 environment, the number of steps per episode was a constant
number chosen in the initial setup of hyper-parameters. On the other hand, in
CozmoDriver-v0 environment every episode can have a different number of steps
because this value is not a constant, but it depends on the decision of the user that is
teaching Cozmo how to drive by stopping episodes. The behaviour of these two ex-
periments also influences the filling of the replay memory. Because each step results
in a tuple to insert in this memory, it is noticeable that the agent performance in
the CozmoDriver-v0 experiment has consequences in how fast the memory is filled.
Therefore, starting 250 learning epochs after the completion of a short episode that
inserted little information in the replay memory can lead the algorithm to learn by
fetching batches of experiences from an almost identical group to the previous one.
The performance of this learning setup resulted in a bizarre policy where the robot
manages to correctly perform straight sections of the track and steer in the wrong
direction at each turn after almost 700 episodes. Furthermore, the temperature (α)
increased until an asymptote of 4: a bizarre tendency considering the experiment
carried out with the Pendulum-v0 environment.

After the analysis of the previous experiment, we decided to set a dynamic
approach in the number of epoch to take for each timestep. We decided to work
with multiples of 10 and follow eq. (5.3) to determine how many steps of learning
to take after each episode. In eq. (5.3), x variable determines how many epochs the
algorithm must perform for each set of ten steps in the episode in question, while
y specify the minimum number of epochs of the learning phase for each episode,
without depending on the number of steps. In the experiment in question, we chose
to set both values to 10. The results improved from the initial implementation
leading to a reduction in the gap time between two consecutive episodes and a
performance increase. Thanks to this method, the learning process depends on
episodes lengths and led to a more manageable experiments flow.

learning_epochs =
E
episode_steps

10

F
· x + y (5.3)

Since the number of learning epochs is not predictable a priori as happened with
Pendulum-v0 experiments, we decided to manage the frequency of the test phases
by starting them every 50 episodes. To appropriately represent these values in the
graph, we reported the number of learning epochs carried out up to that moment.
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5.3.3 SAC hyperparameters
The hyper-parameters we exploited in this experiment are shown in table 5.8.

Table 5.8. SAC Hyper-parameter setup for CozmoDriver-v0 environment

Hyper-parameters Value
Policy Network Learning Rate: 3× 10−4

Type: Gaussian Policy
Architecture
3 CONV Layer 3× 3× 16, stride 2, padding 0
2 FC Layer with hidden size = 256
2 Output value

Q Network Learning Rate: 3× 10−4

Architecture
3 CONV Layer 3× 3× 16, stride 2, padding 0
2 FC Layer with hidden size = 256
1 Output value

Gamma (γ) 0.99
Tau (τ) 5× 10−3

Entropy Autotune Enabled
Observation Buffer Size: 2

Image Size: 64 × 64
Batch Size 64
Replay Memory Size 10000
#Epoch per Episode Equation (5.3) on the preceding page with x = y = 10
Soft Target Update per Epoch 1
Test Phase Test frequency: every 50 episodes

Test episodes: 10

5.3.4 Results analysis
After carrying out numerous experiments to fix bugs in the code and verify the
correct execution of the algorithm flow, we managed to complete a whole set of
3000 episodes exploiting the SAC algorithm to solve the autonomous driving task
with Cozmo. Taking into account waiting times between episodes and charging
times, we managed to complete the experiments in almost one week, after almost
1.3× 105 epochs of learning.

Unfortunately, the results we reached have not led to a stable resolution of the
self-driving task. However, the graphs in figs. 5.12 and 5.14 on page 102 and on
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page 103 reports a continuous improvement in the behaviour of the robot during
the episodes.

The first 20 episodes were dedicated to the warm-up: the agent gathered replay
memory experiences by exploiting a random policy. This process was essential to
obtain a set large enough to allow a proper batch learning phase of the agent. After
that, the agent started to exploit the randomly initialised policy network to make
decisions in the real-world environment. As we can see from both training and test
graphs in figs. 5.12 and 5.14 on page 102 and on page 103, the first 150 episodes were
characterised by a minimal reward. This fact was particularly evident in the first
testing phases, where both average reward and standard deviation were meagre.
Indeed, the robot was stuck in fixed actions steering to the left or the right without
considering the current surrounding environment: this behaviour was caused by
the fact that the neural network was not enough trained to provide a thoughtful
decision. Furthermore, the dynamic increase of learning epochs which depends on
the length of each episode accentuated this phenomenon: at least in the first part
of the experiment, short episodes lead to fewer learning steps and then to slower
improvement in the performance of the neural network.

As the number of episodes increases, it is noticeable the rising of episode rewards
as we can see from the training and the last 100 episodes average plots in figs. 5.12
and 5.13 on page 102 respectively.

The training episodes plot shows an increase in the maximum reward obtained:
it culminates in reaching almost 2.7 metres in episode 2764. Despite this fact,
this particular increase is difficult to detect: this factor can be explained with the
addition of the noise for exploration sake, introduced during the experiment by
the random sampling from the output of the gaussian policy exploited, and the
presence of the temperature parameter α that manipulates the importance of the
entropy during the learning phase. The presence of this kind of noise did not lead
to a parallel increase of both reward and completed episodes.

Therefore, analysing average rewards calculated on the set of the last 100
episodes in fig. 5.13 on page 102, we noticed an increase until episode 900 and then
an almost constant fluctuation between 350mm and 450mm. Even in this case, the
results showed by this graph were not high, but this fact can be motivated again
by the presence of the noise in the training process.

However, the agent reached the most significant results in the testing phase
presented in fig. 5.14 on page 103. To report the testing phase more appropriately,
we decided to calculate the minimum and maximum values obtained in every set of
ten episodes together with the mean and the standard deviation. The graph reports
these values by using confidence intervals. Following this approach, we noticed a
performance increase with a maximum mean of almost 1 metre, as highlighted by
fig. 5.15 on page 103. Furthermore, the maximum value reached among all tests
episodes was equal to almost 3.5 metres which equals more than one complete tour
of the track. It is noticeable that the results are not stable as we expected after the
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experiments we carried with Pendulum-v0 environment: the reward values do not
improve uniformly with increasing epochs. However, carrying out the experiments
episode by episode, we noticed a marked improvement in the performance obtained
in the tests. The robot learned to approach turns and to stay on the lane of a
straight road.

Despite these improvements, the agent was not able to learn how to drive se-
curely and stably. It manages to perform great for the most of the track, but it
often concluded its run with a sudden turn out of the road. These facts made us
reflect on the critic points of our experiment setup that may have had a role in the
instability of the results obtained.

• The length of the experience memory replay we designed was equal to 104,
even if the length suggested by the literature is equal to 106, two lower or-
ders of magnitude. We made this decision because of the RAM available in
the development machine. The learning process of the agent needs to store
whole tuples of experience in the replay memory. They contain a total of
four 64× 64 images, two to represent the current state and two for the next
state. As we discussed in chapter 4 on page 59, another need that we had
to satisfy to recover the system from fault correctly, was the implementation
of a periodic backup phase. This feature was essential to complete long ex-
periments, like the one in question, to restart from the previous checkpoint
in case of unexpected errors. However, this process needed a lot of RAM to
store a serialised version of the whole set of variables used in the learning
process, such as neural network weights and biases or experience memory
replay. To avoid problems with memory and slowdowns due to the usage of
swap space, we had to reduce the dimension of the replay memory further.
We think that this decision has influenced the flow of the learning process:
the first motivation is the small dimension of the set used to do batch learn-
ing. This factor influences the experiment directly because only the latest
experiences are available for agent usage, and this leads inexorably to a lack
of generalisation.

• Another problem that emerged from this experiment was the one concerning
the behaviour of the robot on straight roads. Even after numerous learning
epochs, the agent often showed a curvilinear approach. After noticing this
fact, we started to analyse episode images to find out some correlation to
understand this behaviour better. We noticed that the image obtained from
the view of one side of the straight road was very similar to the turning point
situation. It was probably this similarity that caused the oddity in Cozmo
behaviour. Indeed, the viewing angle of the Cozmo camera was not large
enough to detect both lane lines at the same time. It would be also difficult for
a human to understand the best decision to make, using the images provided
by Cozmo SDK. We tried to reduce the width of the road, but, instead of
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finding a considerable improvement, it became more challenging to keep the
robot between the lines. In the end, we opted for maintaining the initial width
of the lane to preserve the proportion with the autonomous driving problem
with a real car.

• Another particular behaviour adopted by the reinforcement learning agent we
trained was caused by the combination of two factors: the particular design of
the track we build and the narrow viewing angle of the Cozmo camera. When
Cozmo was too close to one of the two road border, the agent often seemed
to recognise that line as the opposite one and decided to take a sudden turn
in the wrong direction.

In the end, we can report different results between the experiments carried out
with Pendulum-v0 environment and the CozmoDriver-v0 one. The evident moti-
vation is the different nature of these problems. The second one is in the real world
setup, where observations and actions may be brittle and different because of many
factors that start from uncontrollable changes in the surrounding environment.
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Figure 5.11. SAC Pendulum-v0 auto-tuned temperature. The graph shows
the trend of the temperature parameter learned through the auto-tune process
proposed by SAC authors.
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Figure 5.12. SAC CozmoDriver-v0 Reward Plot. The graph report the reward
obtained from each episode.
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Figure 5.13. SAC CozmoDriver-v0 Last 100 Episode Average Reward Plot. The
graph reports the last 100 episode average reward for each episode.
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Figure 5.14. SAC CozmoDriver-v0 Test Reward Plot. The graph reports mean,
standard deviation range and min-max range of the average reward obtained from
10 test episodes every 50 episodes.
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reports with a focus on the average reward obtained from 10 test episodes
every 50 episodes.
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Chapter 6

Conclusions

The growing interest in deep reinforcement learning approaches to real-world prob-
lems together with the fervour behind the development of autonomous driving has
motivated and stimulated our research. Reinforcement learning proposes a brand
new method to address decision-making problems, that is capable, in the premises,
of replacing hand-made algorithms in the most varied tasks. For this reason, it is
considered one of the enabling technologies to take a further concrete step towards
Artificial General Intelligence (AGI). Although it achieved its best results in sim-
ulated environments such as video games, the interest of research in recent times
has shifted to applications in the real world, looking for algorithms more and more
easily configurable and parameter agnostic.

The first contribution of this thesis consists of the design of a control system
to apply reinforcement learning algorithms in the real world. To achieve this aim,
we decided to use the standardised approach provided by OpenAI Gym to project
environments. We implemented the same interface used by simulated environments
binding OpenAI Gym methods to features and functions offered from Anki Cozmo
SDK. The approach used in the development of this system has allowed obtaining
an environment in which any researcher can apply his algorithms interfacing di-
rectly with the reinforcement learning framework, without worrying about direct
interfacing with the robot.

The designed system allowed us to perform reinforcement learning experiments
straightforwardly, meeting the specifications required, such as the possibility to
backup and restore their state.

The second contribution of this thesis consists of the application of a reinforce-
ment learning algorithm suitable for experiments in the real world. We designed
our implementation of Soft Actor-Critic (SAC) by modifying its original flow to
match the requirements of the environment. Firstly, we implemented a revised
environment of a traditional control problem to apply deep reinforcement learning
algorithms instead of traditional ones, using the same convolutional neural net-
work used with Cozmo experiments. Therefore, we performed and reported an
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experiment of 3000 episodes with the environment designed for Cozmo. We based
our approach on SAC algorithm after the analysis of the performance comparison
between DDPG and SAC experiments in the previously mentioned revised envi-
ronment, which showed better performances with SAC. The results were not so
astonishing as we expected from the results presented in [29, 30], but they appear
aligned with those obtained by [21]. We notice a constant improvement in the be-
haviour of the robot, especially in the testing phase, reaching a maximum value of
more than 3 meters and an average of about 1 meter on 10 test episodes. After the
conclusion of the experiments, as reported in section 5.3.4 on page 98, we focused
on what might have been the most significant factors that led to these results.

We localised two major problems which, in our opinion, have had a particular
influence on the results obtained. The first factor was the amount of RAM available
in the development machine. Off-policy reinforcement learning algorithms require
a memory replay in which to store past experiences and, in particular in our im-
plementation, a portion of free RAM to be able to backup variables easily. This
limitation forced us to decrease the size of the replay memory and a consequent
early deletion of less recent episodes. Analysing the plots, we noticed that this fact
translated in the increase of the temperature: this symptom underlines the need
for the algorithm to explore more the solution space. The second major problem
was the limitation of the camera sensor on the robot, particularly its viewing an-
gle. The features offered by the Anki Cozmo camera proved to be inadequate to
observe the track we designed. We noticed this fact after many episodes when the
robot started to improve its performance: it began to adopt a wave behaviour on
the straights, interpreting the vision of a single road line as a curve. Moreover, we
noticed the difficulty of the algorithm in detecting differences between left and right
lines: an excessive approach to one of them led the agent to recognise that line as
the opposite one and then to steer abruptly, making a mistake. The last-mentioned
problem may be related to the fact that the colour of the road is identical to the
part beyond road lines. However, Anki developers primarily designed the Cozmo
camera for facial recognition, so it does not have a viewing angle large enough to
allow a comprehensive view of the road.

6.1 Future work
Our proposals about future improvements to the project grow from the weakness in
our approach that we just described. Our attempt to make the system data-efficient
by decreasing the experience memory replay did not work. It could be interesting
to execute these algorithms on a device with a bigger RAM, but also to design this
approach with a Variational Auto-Encoder (VAE) [32] to reduce the dimensionality
of the information retrieved during experiments and compare the results with the
ones obtained in this thesis. Indeed, this method revealed improvements in many
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applications and in particular in the one reported in [29, 30].
It may be useful to enhance sensors installed in the self-driving robot to improve

SAC algorithm performances. We suggest, in particular, to substitute the camera
with one that has a viewing angle large enough to visualise the whole width of the
track. In addition to the possibility to build up a personal Donkey Car with custom
specifications and sensors, we believe that one valuable alternative to Anki Cozmo
could be Anki Vector, the successor of Cozmo which mounts a 720p camera with
120° Ultra Wide FoV. It could be interesting to use Anki Vector to perform rein-
forcement learning algorithms with the usage of the renewed front camera together
with the infrared laser scanner on-board. This approach can lead to the attractive
possibility to investigate approaches to data fusion with data provided by a set of
sensors and see the reflections of these choices in the performance of the learning
process.

In this thesis, we focused on model-free reinforcement learning algorithms to
solve the self-driving task we proposed, developing our ideas starting from the
intuitions provided by [29, 30]. However, taking into account the recent results
obtained in this research field as reported in [23, 75], we think that another intrigu-
ing research to carry out is an investigation about the application of model-based
reinforcement learning algorithms to autonomous driving. A more in-depth review
of the literature to better understand the feasibility of this approach compared to
model-free ones, focusing on its strengths and weaknesses, can be the right start-
ing point to make the next step towards the application of reinforcement learning
algorithms to autonomous systems.
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Appendix A

Reinforcement Learning

A.1 Bellman equation
The value function is decomposable in the immediate reward rt and the discounted
state value of the next state. It is possible to obtain the result in eq. (A.1) by
writing expectations explicitly.

V π(s) = E[gt|st = s]
= E[rt+1 + γrt+2 + γ2rt+3 + . . . |st = s]
= E[rt+1 + γgt+1|st = s]
=
Ø
a∈A

π(a|s)
Ø

sÍ∈S,r∈R
P (sÍ, r|s, a)

è
r + γE[gt+1|st+1 = sÍ]

é
=
Ø
a∈A

π(a|s)
Ø

sÍ∈S,r∈R
P (sÍ, r|s, a)

è
r + γV π(sÍ)

é
(A.1)

This equation expresses the relationship between the value of a state and the
values of its successor states. It is further possible to derive the Bellman Equation
for Action-Value function using the same procedure described above.

The resulting formulas are shown in eq. (2.7) on page 10.
Furthermore, it is possible to obtain the Bellman Equation solution in eq. (A.2)

working with matrix notation.

V π = Rπ + γPπV π

(I − γPπ)V π = Rπ

V π = (I − γPπ)−1Rπ

(A.2)
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A.2 Dynamic programming
Policy iteration algorithm

Algorithm A.1: Policy Iteration for estimating π ∼ π∗

Input: π the policy to be evaluated; a small threshold θ which defines the
accuracy of the estimation

1 Initialise V (s) ∀s ∈ S arbitrarily, except that V (terminal) = 0
2 is_policy_stable← true
3 repeat

/* Policy Evaluation */
4 repeat
5 ∆← 0
6 for each s ∈ S do
7 v ← V (s)
8 V (s)← q

a∈A π(a|s)qsÍ∈S,r∈R P (sÍ, r|s, a)
è
r + γV (sÍ)

é
9 ∆← max(∆, |v − V (s)|)

10 end
11 until ∆ < θ
12 Vπ ← V (s)

/* Policy Improvement */
13 while true do
14 for each s ∈ S do
15 old_action← π(s)

16 π(s)← arg max
a

q
sÍ∈S,r∈R P (sÍ, r|s, a)

C
r + γVπ(sÍ)

D
17 if old_action /= π(s) then
18 is_policy_stable← false
19 end
20 end
21 end
22 until ¬ is_policy_stable

Output: V ∗ and π∗

Policy improvement theorem

Let π and πÍ be any pair of deterministic policy such that

Qπ(s, πÍ(s)) ≥ Vπ(s) ∀s ∈ S (A.3)
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Then the policy πÍ leads to
V Í

π(s) ≥ Vπ(s) (A.4)
Therefore, the presence of strict inequality in eq. (A.3) on the preceding page

for a state leads to a strict inequality of eq. (A.4).
The proof of this theorem is shown in eq. (A.5).

Vπ(s) ≤ Qπ(s, πÍ(s))
= E[rt+1 + γVπ(st+1)|st = s, at = πÍ(s)]
= EπÍ [rt+1 + γVπ(st+1)|st = s]
≤ EπÍ [rt+1 + γQπ(st+1, πÍ(st+1))|st = s] (by A.3)
= EπÍ [rt+1 + γEπÍ [rt+2 + γVπ(st+2)|st+1, at+1 = πÍ(st+1)]|st = s]
= EπÍ [rt+1 + γrt+2 + γ2Vπ(st+2)|st = s]
≤ EπÍ [rt+1 + γrt+2 + γ2rt+3 + γ3Vπ(st+3)|st = s]
...
≤ EπÍ [rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . . |st = s]
= vπÍ(s)

(A.5)

Value iteration algorithm

Algorithm A.2: Value Iteration, for estimating π ∼ π∗

Input: A small threshold θ which defines the accuracy of the estimation
1 Initialise V (s) ∀s ∈ S arbitrarily, except that V (terminal) = 0
2 repeat
3 ∆← 0
4 for each s ∈ S do
5 v ← V (s)
6 V (s)← maxa

q
sÍ∈S,r∈R P (sÍ, r|s, a)

è
r + γV (sÍ)

é
7 ∆← max(∆, |v − V (s)|)
8 end
9 until ∆ < θ

10 Output a deterministic policy, π ∼ π∗, such that

π(s) = arg max
a

Ø
sÍ∈S,r∈R

P (sÍ, r|s, a)
è
r + γV (sÍ)

é

Output: V ∗ and π∗
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