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Chapter 1

Introduction

In the last few years, thanks to the spread of social networks and the rise of
news web pages, we have had a huge growth in data traffic over the Inter-
net. Every day a large amount of information, regarding the most disparate
topics, is published on different sites. It is impossible for a user to manually
examine all the available material of his interest. That’s why text summariza-
tion has become an important and useful tool. The idea behind is to group
documents by topic and extract a summary including the most salient as-
pects. Another potential problem is the text is written in various languages,
often not understandable by end users. Cross-lingual summarization (CLS)
aims at solving this problem. It allows to extract a summary in a different
language from the one of the source documents, generally using translations
tools to translate input texts into the target language.

In this thesis we address a variant of the cross-lingual summarization task,
in which we suppose to have a mix of documents in the target and other lan-
guages. Similar to CLS, the summary is expected to be in the target language
and consists of a selection of sentences picked from the input documents in
the target languages. Unlike traditional summarization tasks, the summary
should reflect also the content of the input documents written in the other
languages, i.e., sentence selection in the target language is influenced by the
presence of related content in the other languages.

The main contributions of this thesis can be summarized as follows:

• it presents a variant of the official CLS task

• it proposes a graph-based and a distance-based summarization approaches
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1 – Introduction

that used multilingual word embedding model to tackling the newly pro-
posed task

• it investigates the influence of using different metrics in measuring the
similarity between sentences in the embedding space

The typical use case of this system is to generate a summary in a partic-
ularly complex target language (e.g. Hindi) for which, generally, few docu-
ments are available and their word embedding models contain representations
for a limited number of words. To solve the problem, domain knowledge is
added in another more common language (e.g. English) to improve the qual-
ity of the summaries in Hindi.

In practice, a centroid-based summarizer and several alternative versions
of TextRank are proposed. The latter differ in the way sentence embeddings
are obtained and in the measure of similarity used. The different types of
sentence vector are derived by combining word embedding in various ways.
In particular, Word2Vec and FastText are the embedding models used.

The dataset the methods are tested on is MultiLing Pilot 2011 Dataset.
It provides articles in several languages (Arabic, Czech, English, French and
Hindi) and from 2 to 5 human summaries for each topic and each language
to allow to evaluate the generated summaries. Several tests were performed
using as input English documents plus those in one of the other languages
mentioned above and by considering 5 or 10 articles for each of the source
languages and also only 10 articles in the target language. Furthermore all
the algorithms proposed have been compared to their alternative version
which uses Google Translator and to extractive state-of-the-art summariz-
ers, like TextRank, LexRank and CoReRank. The quality of the generated
summaries was assessed quantitatively by measuring the similarity with sum-
maries generated by experts.
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1.1 – Structure of the Thesis

1.1 Structure of the Thesis
This thesis is organized as follows:

• Chapter 2 makes an overview of the main existing text summarization
techniques. Also an overview of the most relevant works in the field of
extractive text summarization and cross-lingual summarization is then
provided.

• Chapter 3 first shows which are the main techniques of vector repre-
sentation of the text, dealing with both word embeddings and sentence
embeddings methods. In addition, two ways to align word embedding
models are described. In the final part, the similarity measures used in
this thesis are illustrated.

• Chapter 4 presents the proposed summarization methods and the various
stages that make them up: preprocessing, model alignment, sentence
representation and sentence selection.

• Chapter 5 describes the tests carried out and the relative results.

• Chapter 6 contains the conclusions about this thesis work and what
could be the future works.
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Chapter 2

Text Summarization:
State-of-the-Art

2.1 Text Summarization Techniques
Text Summarization[11] is a relevant NLP task. It turns a source text into a
shorter version, trying to preserve the overall meaning. The main advantage
of having a summary is that it allows you not to have to read the whole
source text, thus saving reading time. A good summarization system should
be able to maintain the different topics covered in the document, aiming to
keep redundancy to a minimum.

The following part provides an overview of the main summarization tech-
niques, although in this thesis only extractive methods for cross-lingual text
summarization are proposed.

2.1.1 Abstractive and Extractive Summarization
There are two main approaches for the automatic generation of summaries:
abstractive and extractive summarization.

• Abstractive summarization: it consists in interpreting and rework-
ing the original text through the use of advanced language analysis tech-
niques to generate a summary that contains the most critical and im-
portant information. It is based on the selection of words according to
their semantics, but also on those words not present in the source docu-
ments. It’s a more advanced technique and is comparable to the method

15



2 – Text Summarization: State-of-the-Art

used by humans to read a text and summarize it with their own words.
Researchers are very interested in this approach because of its potential.

• Extractive summarization: the summary is generated by concate-
nating only some selected sections of the input text, such as sentences
or even paragraphs. Therefore the document is first divided into sub-
sections and then the most important are selected. The importance is
based on statistical or linguistic features of sentences.

2.1.2 Single-Document and Multi-Document Summa-
rization

Based on the number of documents provided as input, the text summarization
techniques are classified into:

• Single-document summarization: the summary obtained is repre-
sentative of a single input document.

• Multi-document summarization: it aims to extract a meaningful
summary of a group of texts. The input documents must all concern
the same topic, although in each one it will be described from different
perspectives and putting emphasis on different aspects. It allows indi-
vidual users to quickly become familiar with the information contained
in a large group of documents. Between the two approaches, it’s the one
that best suits the information redundancy on the internet.

2.1.3 Multi-Lingual and Cross-Lingual Summarization
A further subdivision is made based on source and target languages.

• Multilingual Summarization: it consist in a summarization algo-
rithm who allows to generate a summary of a document set where all
the documents share the same language. The language of the output
summary is the same of input documents. Generally it is tested on a
variety of languages.

• Cross-Lingual Summarization[23][22]: its goal is to obtain a sum-
mary in a different language from the one of the source documents.

First studies in cross-language text summarization analyzed the infor-
mation in only one language.
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2.1 – Text Summarization Techniques

The typical schemes of CLTS are the early and late translations (see
Figure 2.1). The first scheme consists in summarizing the input docu-
ments translated into the target language, using only the information
of the translated sentences. Instead, the other scheme does exactly the
reverse. Firstly it gets the summary, then translates it into the target
language.

Some approaches use a translation quality score to improve the quality
of cross-language summarization. Generally a human translation is pro-
vided as a reference to make a comparison between it and the system
translated text because the aim of machine translation evaluation is to
assess the correctness and quality of the translation.

More recent methods generate summaries by taking into account infor-
mations from both languages. However the quality of the summary could
be lower as the performances may vary by languages.

Figure 2.1. Early and late translation schemes for cross-lingual summa-
rization. In the first case, documents are translated before applying the
summarization algorithm. In the second one, after extracting the sum-
mary, it is translated into the target language.
(image from [22])
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2 – Text Summarization: State-of-the-Art

2.2 Related Works
This section is organized as follows: in the first are shown part extractive
summarization methods generally used as baselines, in the second part some
multilingual documents are described, instead the third part will focus on
the main existing cross-lingual summarization methods.

2.2.1 Extractive Summarization
Many approaches that are used as baselines for extractive summarization
are graph-based. The two most famous are Lexrank[7] and TextRank[24]
and both of them are inspired by Google PageRank algorithm[4].

PageRank is used for online searches and allows to classify the resulting
web pages. To each page it associates a rank based on the contained links
pointing to another page. The score corresponds to the probability that a
user, clicking on one of the links, will end to visit a particular site. The prob-
abilities of a user to go from a page to another one are collected in a square
matrix. Then, the values in it are iteratively updated to get the final page
rankings. The modified version of this algorithm is used in TextRank and
LexRank. In these cases, instead of web pages they consider the sentences.
The probability of a user visiting one sites from another is replaced by the
similarity between two sentences. As before, these scores are then stored in
a square matrix.

LexRank [7]

It is an unsupervised method for text summarization. Since it is an extractive
technique, it is based on the identification of the most relevant phrases in a
document or set of documents. To do this, it represents the sentences in a
graph and, based on the concept of eigenvector centrality, derives how much
important each sentence actually is. The idea is that if a sentence is similar
to many others, then it is probably a phrase of high importance.

LexRank uses as similarity measure among sentences the IDF-modified
cosine of TF-IDF vectors. The graph is created by associating to each vertex
a sentence and by linking two sentences with an edge every time the similarity
between them is above a threshold. At this point, PageRank is applied
to rank sentences. Among the outputted ranked sentences, the top-n are
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2.2 – Related Works

selected to become part of the summary. LexRank also adds a passage in
which it processes the top-n sentences so that those choices are not too similar
to each other.

TextRank [24]

As a graph-based ranking algorithm, it consists in identifying the vertices
that are most important inside a graph, basing the decision on all the infor-
mation contained within the graph.

After the subdivision of the input text into phrases, it generates the ma-
trix by calculating the similarity among each pair of sentences based on the
number of words two sentences have in common, which is then divided by
the length of the sentence. From it, a graph is obtained and then is applied
the PageRank ranking algorithm to derive the scores of each sentence. In
the graph each vertex corresponds to a phrase and the edges are the scores
between sentences. The last step is to select the top-n ranked sentences to
extract the final summary.

This method is the one mainly adopted in this thesis. In particular, it
has been enriched with the use of word embeddings and has been tested
considering various ways of obtaining sentence embeddings.

Rossiello et al. (2017) [29] proposed a centroid-based method. Unlike the
techniques mentioned so far, this one exploits word embeddings. What it
does is use TF-IDF to find the words to include in the centroid and select
the phrases that are most similar to the centroid vector. Affinity is computed
with cosine similarity.

This latter method has also been implemented in this thesis and adapted
to become a cross-lingual summarizer instead of a mono-lingual one.

Kobayashi et al. (2015) developed two methods that use embeddings to
compute the similarity between documents: DocEmb and EmbDist ,that
differs for the objective functions used [18].

2.2.2 Multilingual Summarization
The characteristic of these types of summarizers is to be completely inde-
pendent from the input language. An example is the JRC summarizer[33]
proposed by Steinberg et al. (2011). It makes use of the Latent Semantic
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2 – Text Summarization: State-of-the-Art

Analysis and applies the Singular Value Decomposition (SVD) to a term-by-
sentence matrix, using the output to select the most important sentences. It
is the summarizer that reached top results in the MultiLing Pilot of the TAC
2011 contest.

Another multilingual summarizer is the one developed by Cagliero et al.
(2019) . It’s based on LSA and on itemset extraction. The summary is ob-
tained by selecting sentences in which the largest number of frequent itemsets
are present, but with the aim of minimizing redundancy [5].

Radev et al. (2000) have implemented MEAD [28], a summarizer that
uses TFIDF to represents phrases and creates clusters of sentences. Based
on the characteristics of the sentences and the calculation of cosine similarity,
some sentences from each cluster are picked to become part of the summary.

2.2.3 Cross-Lingual Summarization

First studies in this field consider only the information of one language. More
recent methods have instead tried to improve performance by considering a
translation quality score and information both in the source language and in
the target language.

Wan et al. (2010) [38] proposed a method for English to Chinese cross-
language summarization which that takes into account the translation quality
of each sentence. For all the English sentences, this score is first predicted.
They used a Support Vector Machine (SVM) regression method for this cal-
culation. Then they used it for the summarization task in combination with
the informativeness scores. After the selection of the most relevant English
sentences, they are translated in Chinese.

Wan (2011) in [37] developed two ways to obtain a summary in a tar-
get language starting from documents in a different source language. He
proposed to use informations in both languages. In particular he consid-
ered only English and Chinese. The methods proposed are Simfusion and
CoRank, both graph-based algorithms.
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SimFusion [37][14]

It uses English-side information and Chinese-side information together to
produce a summary. Starting from a set of documents in English, each sen-
tence is translated into Chinese. Later, for each pair of sentences, the sim-
ilarity is calculated, but by merging the similarity scores obtained in both
languages. Finally it uses an algorithm similar to PageRank to extract the
most important sentences which is applied to a graph built by considering
each node as a sentence and the similarity scores as edges. The phrases se-
lected are only the Chinese one and in case of multidocument summarization,
a greedy algorithm reduces importance of highly scored sentences.

This method is almost similar to the one proposed in this thesis work.
The main differences consist in the additional use of word embedding models
and in the non-use of automatic translation tools. A further difference is
the calculation of the scores. It is based on the cosine similarity which is
computed between each pair of sentences (also between a sentence in the
source language and a sentence in the target language).

CoRank [37][14]

Similar to SimFusion, it is graph-based too. It ranks both English and
Chinese-translated sentences at the same time. The main idea is that the
importance of a sentence depends on those to which it is connected, whether
they are of the same language or of the second language. In particular
this method relies on three kinds of sentence relationships: English-English,
Chinese-Chinese, English-Chinese (see Figure 2.2). Based on this, three affin-
ity matrices are calculated:

• M cn
ij : describes the cosine similarity between Chinese sentences i and j

• M en
ij : describes the cosine similarity between English sentences i and j

• M cn
ij : represents the affinity between English sentence i and the Chinese

sentence j

Wan et al.(2018) [39] proposed a new framework. They first extract many
candidate summaries and analyzed them to improve quality. These sum-
maries are obtained in different ways and with different translation tools.
Then, they proposed a new method to classify this candidates which is an
ensemble ranking that exploits biligual informations.
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Figure 2.2. Relationship between English sentences (en-en), Chinese
sentences (cn-cn) and between an English and a Chinese sentence (en-
cn).
(image from [37])
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Chapter 3

Vector Representations of
Text

In Natural Language Processing there’s the need to transform text into some-
thing understandable by the machine. There are several text representation
techniques but not all of them are equal, consequently the choice of the
method can influence the performances [31].

3.1 Word Representation

The following section describes word embeddings that is the representation
used in this thesis.

3.1.1 Word Embeddings

It’s a technique capable of providing a numerical representation of the words
of a vocabulary. It associates to each single word a vector of real numbers in
a predefined vector space and is able to capture the relationship with other
words in such a way that similar terms have similar representations.

The dimensionality of the vector is low compared to the number of words
in the vocabulary. In order to achieve good results, during the learning phase,
it needs very large texts that include as many words as possible.
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Word2Vec [26]

It is an efficient method used for word embeddings, developed in 2013 at
Google by a team lead by Tomas Mikolov. These are neural networks with
an input layer, a projection layer and an output layer, trained to reconstruct
the linguistic contexts of words.
It provides a vocabulary in which each term has associated a vector and is
able to capture the relationships between words. In fact it has been noticed
that word vectors manage to capture many linguistic regularities and gener-
ates useful properties such as linear relationship (see Figure 3.1).

A largely used example is the analogy ’king is to queen as man is to woman’.
In vector space the difference between king and queen is similar to the one
between man and woman. This implies that a vector operation such as:

vector(′king′)− vector(′man′) + vector(′woman′)

results in a vector very close to vector(’queen’).

There are two methodologies for obtaining a Word2Vec model: SkipGram
and Common Bag Of Words (CBOW).

• Skip-Gram model: given an input word, it gives the probability for
each word in the vocabulary to be the closest word. In this case it’s a
simple neural network, trained to perform a task, that will not be the
one for which it will actually be used. The real goal is in fact to learn
the hidden layer weights that represent the word vectors it is trying to
learn.

• CBOW model: it tries to predict a term using context as input. For
example, given the words w(t-1), w(t-2), w(t + 1), w(t + 2), the model
will output w(t). The context can be a single word or a set of words. The
number of words in each context is determined by a parameter called
window size which indicates how many words before and after a given
term will be included in the context.

Given a window size equal to 2, if the Skip-Gram model is used, the input
word will be used to predict its two previous and two subsequent words. If
the CBOW model is used, given the two previous words and the next two
words of the target one, the target word will be predicted.
The table 3.1 shows some examples using the phrase "the quick brown fox
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3.1 – Word Representation

Figure 3.1. Example of two-dimensional PCA projection of the vec-
tors of countries and their capital cities. It shows the model’s ability
to organize concepts and learn the relation between them. (image
from Mikolov et al., 2013 [25])

jumps over the lazy dog":

According to Mikolov, CBOW represents well the most frequent words
and is faster. At the same time, Skipgram better represents rare words and
works best with a small amount of data.

A feature of the Word2Vec model is that it can be queried to detect re-
lationships between words. This can be achieved with the nearest neighbor
functionality.

For example, if the model is interrogated to know the 10 nearest neighbors
of the word person, the output will be:
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Input Target
Skip-Gram the quick,brown

quick the,brown,fox
brown the,quick,fox,jumps

... ...
CBOW quick,brown the

the,brown,fox quick
the,quick,fox,jumps brown

... ...

Table 3.1. Example of input and target of Skip-Gram and CBOW starting
from the sentence: "the quick brownfox jumps over the lazy dog"

Figure 3.2. CBOW architecture uses the context to predict the current word;
Skip-gram does the opposite: it predicts surrounding words based on the
current word. (image from Mikolov et al., 2013 [26])

[ ( 'woman ' , 0 .633482813835144) ,
( ' persons ' , 0 .6320774555206299) ,
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3.1 – Word Representation

( ' someone ' , 0 .6248975992202759) ,
( ' pa t i en t ' , 0 .5782430171966553) ,
( ' i n d i v i d u a l s ' , 0 .5622785687446594) ,
( ' anyone ' , 0 .5621103048324585) ,
( 'man ' , 0 .5503214597702026) ,
( ' v i c t im ' , 0 .5433194041252136) ,
( ' defendant ' , 0 .5410549640655518) ,
( ' c h i l d ' , 0 .5287619233131409) ]

They are sorted by the cosine similarity with the input word. Cosine similar-
ity is a metric used to measure the cosine of the angle between two vectors.
(see Section ...)

Word2Vec is not the only existing word embedding method. Other popular
models in use today are GloVe and FastText.

GloVe [27]

GloVe, abbreviation of Global Vectors, is an unsupervised learning algorithm
for obtaining vector representations for words published in 2014 by Stanford
researchers. GloVe exploits global co-occurence statistics to obtain word vec-
tors. In this it differs from Word2Vec, who rely on local context information
of words ignoring whether some context words appear more often than oth-
ers. The main idea underlying the model is that if words co-occur many
times, it means they have some linguistic or semantic similarity.

Firstly it constructs a co-occurrence matrix and then computes conditional
probability for each word. For example, consider the co-occurrence probabil-
ities for target words ice and steam with various words from the vocabulary.
As can be seen from the Figure 3.3, the probability P(k|ice) is higher if k is

Figure 3.3. Co-occurrence probabilities for words ice and steam
(image from [27])

solid than when k is gas. Considering instead the word steam, it co-occurs

27
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more frequently with gas than it does with solid.
After performing all statistical computations, the large matrix is formed,
whose dimensionality is reduced afterwards.

FastText [3][15][2]

This model is a development by Facebook released in 2016. The idea is similar
to Word2Vec, but it uses not just words to get word embeddings. In fact,
it takes into account sub-word and character-level information. The word
embeddings obtained look like the ones by Word2Vec, with the difference
they are a combination of lower-level embeddings. Each word is represented
by the word itself and as bag of characters n-grams.

For example, taking n = 3 and considering the word person, FastText
representation for the character n-grams is

< pe, per, ers, rso, son, on >

The word itself (’person’) need to be added to this group.
This approach offers two main advantages: needs less training data because
much more information can be extracted from each piece of text and allows
generalization as long as new words have the same characters as known ones.

3.2 Sentence Representation
Since the final objective of this thesis is to create a summary by selecting
from the input texts the sentences considered most relevant, it is necessary
to obtain a vectorial representation of the phrases themselves. Starting from
the words representation, it is possible to get the vector of a sentence.

Mikolov et al. in [25] show the unweighted average of word vectors are a
good way to meaningfully combine words of a sentence. This is the simplest
method and one of those used in this thesis.

An improvement of it would be to average them proportionally to their
TF-IDF or, as is done in the thesis [12], only to their IDF. In the last case,
before summing all the word vectors, each of them is divided by the number
of sentences in which it appears.
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Another weighting function is smooth inverse frequency (SIF), proposed
in [1] as a new baseline for sentence embeddings.
The following part explains TF-IDF and SIF.

3.2.1 TF-IDF
TF-IDF[35] is the abbreviation for Term Frequency - Inverse Document Fre-
quency. It is a weighting function used in information retrieval. It allows to
measure the importance of a word in a text. In fact its goal is to give more
importance to less recurring words and, at the same time, reduce the one
of the most frequent words, believing that those terms brought less specific
information to the text. Each word is associated with a weight which grows
proportionally to the number of times the word occurs in the document and
inversely proportional to its occurrences in the collection.

Term Frequency

TF is the number of times the term i occurs in document d. Mathematically:

tfi,j = ni,j

|dj|

where ni,j is the number of occurences of terms i in the document j, while
the denominator |dj| is the dimension of the document j, which corresponds
to the number of words in it.

Inverse Document Frequency

IDF indicates the general importance of the term and is obtained with:

idfi = log |D|
|{d : i ∈ d}|

where |D| is the number of documents in the cluster and the denominator
represents the number of documents in which the terms i appears.
Thus IDF value is calculated based on the entire corpus.

TF-IDF formula

It is obtained from the two formulas shown above. Indeed it is calculated as:

(tf-idf)i,j = tfi,j × idfi
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Sentence Embedding with TF-IDF

The vector of a word is multiplied with the word’s tf-idf score for the sentence
and this is done to all the words that belong to the phrase. Then they are
all added up and divided by the number of words in the sentence.
The sentence embedding is the obtained vector.

3.2.2 SIF
Aurora et al. proposed SIF [1], acronym for Smooth Inverse Frequency, an
unsupervised approach for sentence embedding.
It makes the weighted average of the vectors of the words in the sentence.
The weight function is a

a + p(w), where a is a parameter tipically set to
0.001 and p(w) is the estimated frequency of the word. Then, for the set of
sentences, the principal component of their embeddings is computed. Finally
it substracts from the sentence embeddings their projection on their first
principal component. All these operations are schematized in Algorithm 1.

What SIF tries to do is to reduce the importance of words (e.g. "the",
"but","and", etc.) that are quite irrelevant from a semantic point of view and,
according to the authors, the component removal allows semantic information
to be more dominant in the vector’s direction, decreasing the amount of
syntactic information contained in sentence embeddings.

Algorithm 1 SIF Embedding
Input: Word embeddings {vw : w ∈ V }, a set of sentences S, parameter a
and estimated probabilities {p(w) : w ∈ V } of the words.
Output: Sentence embeddings {vs : s ∈ S }

1: for all sentence s in S do
2: vs ← 1

|s|
∑︁

w∈s
a

a+p(w)vw

3: end for
4: Form a matrix X whose columns are {vs : s ∈ S}, and let u be its first

singular vector
5: for all sentence s in S do
6: vs ← vs - uuT vs

7: end for

All the methods described above have been used in this work, but, to
give a wider view, two further methods are explained (paragraph vector and
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Doc2Vec), although not used in this field of extractive summarization.

3.2.3 Paragraph Vector
More popularly known as Doc2Vec[20], is an unsupervised method to gen-
erate embedding for input sequences of variable length like sentences, para-
graphs or documents. It’s an adaptation of Word2Vec indeed it mappes the
texts in the vector space using the Word2Vec model, but adding another
feature, unique for each document: the paragraph ID.

In the paper are proposed two ways to obtain the vectors: the Distributed
Memory Model of Paragraph Vectors (PV-DM) and the Distributed Bag of
Words (DBOW).

PV-DM [20]

The idea is similar to the CBOW model of Word2Vec. Given a paragraph,
it samples consecutive words randomly and predicts a central word from
randomly sampled set of words. This is done taking context words and a
paragraph ID as input (see Figure 3.4).

Figure 3.4. Distributed Memory Model of Paragraph Vectors (PV-
DM). It uses context words and paragraph ID as input to predict a
central word. (image from [20])

Every column of paragraph matrix (D) is the vector of a paragraph, while
columns in matrix W represents word vectors. Paragraph and word em-
bedding are then averaged or concatenated to predict the next word in the
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context.

PV-DBOW [20]

Distributed Bag of Words differs slightly from PV-DM. It is a method which
consists in forcing the model to predict the words randomly sampled from
the paragraph in the output, not taking into account the context words in
the input. This is shown in Figure 3.5. Since this technique doesn’t need to

Figure 3.5. Distributed Bag of Words of Paragraph Vector. Paragraph
vector is trained to predict the words in a small window. (image from [20])

save word vectors, it is faster and consumes less memory.

Skip-Thought Vectors

Skip-thought vectors, presented in the article [17] is a relatively simple method
which has achieved good results in tasks like sentiment analysis and para-
phrase detection. It can be viewed as the Word2Vec version for sentences.
Instead of predicting context words from a specific word, it predicts the sur-
rounding sentences starting from a certain phrase (see Figure 3.6). This is
done by training an encoder-decoder model. First it encodes a sentence in a
vector and then decodes that representation into the surrounding sentences.

For example, given a tuple (si1, si, si + 1) of contiguous sentences, with si

the i-th sentence of a text, the sentence si is encoded and tries to reconstruct
the previous sentence si1 and next sentence si + 1.
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3.3 – Model Alignment

Figure 3.6. Example of the skip-thoughts model. In this case the input is
the sentence triplet "I got back home., "I could see the cat on the steps.",
"This was strange". (image from [17])

3.2.4 FastSent
FastSent [13] takes up the idea of skip-thought vectors, trying to improve its
training time. It proposes a much simpler model, where the sum of the word
embeddings is used to compose a sentence vector. The word embeddings
are trained for the purpose of maximize the inner product between sentence
embedding and the word embeddings of surrounding sentences.

The methods described so far who allows to get a sentence embedding
from word embeddings obtained by word2vec are those used in this thesis,
thus Paragraph Vector, Skip-thought vectors and FastSent are not used.

3.3 Model Alignment
The alignment of two word embedding models is a central problem in machine
learning with several applications in natural language processing, including
sentence translation. For the final purpose of this thesis it is necessary that
words, and consequently sentences, in different languages, can be comparable
in a common space. This is why alignment is needed. It generally consists
in learning a rotation matrix by using a bilingual lexicon and applying the
transformation to one of the model. It also makes possible to expand the
lexicon because the transformation generalizes well the transformation is able
to generalize well to words which were not considered during training [16].

Consider for example the English word ’earth’ and the corresponding
French word ’terre’. When the two embedding models of the two languages
are trained, the English one will associate a vector to the word ’earth’ which
will most likely be different from the one that for the French model corre-
sponds to the word ’terre’. Thanks to the alignment, the French model is
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transformed in such a way that the word ’terre’ is mapped to a vector almost
similar to the one of the corresponding English word. This concept is best
illustrated in the figure 3.7.

Joulin et al. (2018) developed a supervised alignment [16]. It is the method
used to align the FastText models used in this work. The implementation of
it is available on GitHub1.

In the next part two type of alignment are described: one based on Pro-
crustes and an unsupervised alignment of embeddings with Wasserstein Pro-
crustes [10].

3.3.1 Procrustes
It’s a method aimed to find the orthogonal matrix that maps a given set of
points to another given set of points. It needs to known a priori the one-to-
one corrispondence of points between the two sets.
Given two matrices X and Y, the goal is to find an orthogonal matrix R
which most closely maps X to Y. Mathematically, the orthogonal Procrustes
problem is:

R = arg min
Ω
∥ΩX − Y ∥F subject to ΩT Ω = I

Peter Schönemann solved it in 1964 [32], showing that the solution is equal
to:

R = UV T .

where USV T is the singular value decomposition of Y XT .

3.3.2 Wasserstein Procrustes
It’s an approach to transform one set of data to represent another set of data
as closely as possible. To align two sets of points in high dimension, it uses
the joint estimation of an orthogonal matrix and a permutation matrix. In
this case the one-to-one correspondences are not known [10].

Like in the Procrustes problem, the goal is to learn the orthogonal matrix
such that the points of A are close to the one of B, but also to deduce one-
to-one matches. It uses the Wasserstein distance to represent the distance
between the two set of points.

1https://github.com/facebookresearch/fastText/tree/master/alignment
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Combination of Wasserstein with Procrustes lead to:

min
Ω

W 2
2 (XΩ, Y ) = min

Ω
min

P
∥XΩ− PY ∥2

2

Its a non-convex and computationally expensive problem and in the paper
[10] they proposed a stochastic algorithm to solve it.

Figure 3.7. Unsupervised alignment problem for word vectors [10]. Aim:
estimate the transformation to map the vectors and the correlation between
the words. Left: PCA on the non-aligned word embeddings. Right: PCA on
the aligned word embeddings.

3.4 Similarity Measures
3.4.1 Cosine similarity
It measures the similarity between two vectors by computing the cosine of
the angle between them. It is obtained by taking the dot product of the
two vectors, divided by the magnitude value. Considering a vector A and a
vector B, their cosine similarity is defined as:

similarity = cos(θ) = A ·B
||A|| · ||B||

This implies that if two vectors have the same orientation, their similarity
will be equal to 1; a value of -1 means they have an opposite orientation; if
one vector is oriented 90° with respect to the other, the cosine similarity is
0.
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3.4.2 WMD
Word Mover’s Distance[19] is a distance function who measures the dissim-
ilarity between two documents even when they have no words in common.
It is inspired by the Earth Mover’s Distance, a well known transportation
problem, but adapted to the space of documents. Indeed the dissimilarity be-
tween two documents corresponds to the minimum cumulative distance that
all words in a document need to travel to exactly match another document.
A visualisation of the idea is in Figure 3.8.

To calculate the distance, WMD makes use of word embeddings and nor-
malized Bag-of-Words. The advantage of this metric is that it has no hyper-
parameters, but the main problem is the cost of computing the EMD.

Figure 3.8. Example of the word mover’s distance. Bold words are all
non-stop words and are embedded into a word2vec space. The distance be-
tween document 1 and document 2 is the minimum amount of distance that
the embedded words of document 1 need to "travel" to reach the embedded
words document 2. (image from [19])

In the upper part of the Figure 3.9 is shown the WMD metric from sen-
tences D1 and D2 to D0. Each arrow represents towards which term the
word will "travel" to, while the label corresponds to the distance. Instead the
bottom part shows how WMD behaves when sentences, in this case D0 and
D3, differs in the number of words they contain.
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Figure 3.9. Example of how Word Mover’s Distance works in two different
scenarios (image from [19])
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Chapter 4

Proposed Methodology

This thesis aims to obtain a cross-lingual summary trying to exploit the se-
mantic relationships between cross-lingual content by using word embedding
models. In particular, documents in two different languages (e.g. English
and French) are taken as input to obtain a summary in one of them (e.g.
English).
The collection of documents in non-target language can be:

• a collection of other documents

• the translated target collection (translated by human or through Ma-
chine Translation)

The typical use case of this system is to generate a summary in a particu-
larly complex target language (e.g. Hindi) for which generally few documents
are available and their word embedding models contain representations only
for a limited number of words. To solve the problem, domain knowledge
is added in another more common language (e.g. English) to improve the
quality of the summaries in Hindi.

Only extractive methods are proposed. The main steps that constitute the
extractive summarization algorithm are: preprocessing, model alignment +
sentence representation, selection and evaluation (see Figure 4.1), although
the latter is not strictly necessary for the summarization task.

• Preprocessing: it allows to remove irrelevant and noisy information
present in the text.
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• Model Alignment and Representation: consists in aligning the word em-
bedding models and in finding a vector representation for each sentence
in the source text.

• Selection: the most relevant sentences are taken and concatenated to
create the summary.

• Evaluation: it is used to check the quality of the summary.

The following sections explore each phase.

Figure 4.1. Phases of the proposed extractive summarization methods

4.1 Preprocessing
In this case it is necessary to obtain a better representation of the sentences.
There are different text preprocessing techniques.
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4.1.1 Lowercasing
One of the simplest way of preprocessing, useful in most of NLP problems.
It consists in lowercasing all the text data. It can help when the dataset is
small.

4.1.2 Tokenization
There are two types of tokenization:

• Word tokenization: is the task of splitting a document into pieces called
tokens. The main approach is to use single space character to separate
words.

• Sentence tokenization: is usually done based on punctuations such as
".", "!", "?" as they generally represent sentence boundaries.

4.1.3 Stemming
It is the process of reducing inflected words to a root form. The root may not
correspond to the morphological root of the word, it is just a smaller or equal
form of the word. In general, it is enough that related words are mapped into
the same stem. What it does is to cut off the ends of the words according to a
crude heuristic process. The most common algorithm for stemming English
is Porter’s algorithm, which is rule based.

Considering the English language and the Porter algorithm, in Tab 4.1.3
there are two examples of how stemming works. As said before, the stem
may not be a real word, as can be seen in the second example in the tab.

original words stemmed words
connect, connects, connection, connected connect

argue, argues, argued, arguing argu

Table 4.1. Example of stemmed words

4.1.4 Lemmatization
It maps words into the actual root without just chopping off the ends of
words: for example it transforms is and are in be. Therefore is similar to
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stemming, but more complex. It needs to know the part of speech of the
word to map to its lemma and require more knowledge about the structure
of a language.

Considering the English language and the WordNet Lemmatizer, the table
4.2 shows some examples.

original words lemmatized words
better good

is, are, were be

Table 4.2. Example of lemmatized words.

4.1.5 Stop-Word Removal
It’s a technique that allows to focus on the most important words of a text
since it consists in removing low information words. In fact, stop words are
the most common terms used in a language. Examples of English stop words
are "the", "are", "a", etc.

4.1.6 Noise Removal
It is about cleaning up the text from characters which can represent a prob-
lem for the text analysis. This includes numbers removal, html formatting
removal, punctuation removal, special characters removal, etc. How the text
is cleaned depends on the domain you are working in and what is considered
"noise" for that specific task.

In all the extractive summarization methods proposed in this work, pre-
processing is perfomed. In the source documents there are probably words
like "the", "at", "of", etc., that are stop-words hat don’t bring useful infor-
mation, so there is the need to remove them to allow to focus on the most
important terms of the text. Other words need to be removed and are those
for which the model does not have the corresponding embedding. The text is
lowercased and is also cleaned from special character which can represent a
problem. Whenever possible, stemming was done. In particular for English,
French and Arabic texts, the stemmer used is the Snowball Stemmer that is
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available in nltk1 package. It doesn’t support Czech and Greek and no valid
stemmers for these two languages has been found.

4.2 Model Alignment and Sentence Repre-
sentation

Word embedding models have to be aligned before sentence representation.
Alignment allows words of various languages to be comparable. Taking mod-
els of two different languages as input, a word in the language-1 and the cor-
responding word in language-2 need to be mapped to similar vectors. The
method applied here is Procrustes and is explained in section 3.3.

Section 3.2 describes different techniques for sentence representation. It
consists into combining embedding of words contained in a phrase to obtain
the sentence vector.
Among them, the methods used in this work are:

• average of word embeddings

• weighted average with TF-IDF

• weighted average with IDF

• SIF embedding

4.2.1 Average of Word Embeddings

The sentence vector is obtained just averaging the embedding of the words
belonging to the phrase itself, as shown in Algorithm 2.

1https://www.nltk.org/
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Algorithm 2
Variables:
- vw is the word embedding of word w
- S is a set of sentences
- n is the number of words in the sentence
- vs is the resulting sentence embeddings

1: for all sentence s in S do
2: vs ← 1

n

∑︂
w∈s

vw

3: end for

4.2.2 Weighted Average with TF-IDF

First for all the words the TF-IDF value is calculated, then the vector of each
word is multiplied by the corresponding TF-IDF score. Mathematically this
score is the multiplication of the following two values:

tfi,j = ni,j

|dj|

with ni,j the number of occurences of terms i in sentence j and with |dj| the
number of words in it,

idfi = log |D|
|{d : i ∈ d}|

where |D| is the total number of articles and the denominator is the number
of articles in which the terms i appears.

Thanks to this score, words have not all the same weight: more importance
is given to less recurring words, and most frequent words become less relevant.
Then they are all added up and divided by the number of words in the
sentence, as shown in Algorithm 3.
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Algorithm 3 TF-IDF Embedding
Variables
- vw is the word embedding of word w
- S is a set of sentences
- n is the number of words in the sentence
- tfidfw is the tfidf score of word w
- vs is the resulting sentence embeddings

1: for all sentence s in S do
2: vs ← 1

n

∑︂
w∈s

tfidfw × vw

3: end for

4.2.3 Weighted Average with IDF

Similar to TF-IDF embedding, but here the weighting function is the IDF.
Algorithm 4 illustrates it.

Algorithm 4 IDF Embedding
Variables
- vw is the word embedding of word w
- S is a set of sentences
- n is the number of words in the sentence
- idfw is the idf score of word w
. vs is the resulting sentence embeddings

1: for all sentence s in S do
2: vs ← 1

n

∑︂
w∈s

idfw × vw

3: end for

4.2.4 SIF embedding

It also makes a weighted average of word embeddings, but in addition to
it, it subtracts from the sentence embeddings their projection on the first
principal component (see Algorithm 5).
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Algorithm 5 SIF Embedding
Variables
- vw is the word embedding of word w
- S is a set of sentences
- a is a variable equals to 0.001
- p(w) is the estimated frequency of w
- vs is the resulting sentence embeddings

1: for all sentence s in S do
2: vs ← 1

|s|
∑︂
w∈s

a
a+p(w)vw

3: end for
4: Form a matrix X whose columns are {vs : s ∈ S}, and let u be its first

singular vector
5: for all sentence s in S do
6: vs ← vs - uuT vs

7: end for

4.3 Sentence Selection
In this phase the sentences which results to be the most representative of the
input documents are selected. The methods used are:

• PageRank [4]

• the centroid method proposed by Rossiello et al. in the paper "Centroid-
based Text Summarization through Compositionality of Word Embed-
dings"[29]

4.3.1 PageRank Method
Once the sentence embeddings are obtained, it is necessary to calculate the
similarity among phrases. This is done in two ways: with the cosine similarity
and with the word mover’s distance. The results are then stored in a matrix
which is passed to PageRank, one of the algorithm Google uses to rank
search results. In this case it is used to convert the similarity matrix into a
graph: each vertices represents a sentence, each similarity score an edge. The
output is a ranked list of sentences, from which the ones that will compose
the summary are taken.
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Since input documents are not monolingual, the top-n phrases of the
ranked list obtained by PageRank can be composed of sentences in different
languages and for this reason they must be filtered. The applied strategies
are:

• A: select the top-n sentences in the target language, ignoring the ones
in the other language

• B: from the top-n sentences, the ones in the target language are directly
picked, while each one of the others is used to find what sentence in the
target language is most similar to it. The similarity is derived using the
cosine similarity or the word’s mover distance, depending on which one
was used in the previous step.

4.3.2 Centroid Method

It is an approach presented by Rossiello et al. [29]. After getting the TF-IDF
score for all the words of the input texts, it selects the ones with a score above
a threshold. Those words represents the centroid and their embeddings are
combined with TF-IDF to get the centroid vector. The same embedding is
done for all the sentences in the source documents. To select the sentences
for the final summary, it calculates the cosine similarity between each of them
and the centroid. The top-n sentences most similar to the centroid are the
one choosen for the summary. Also in this case the selection was made in
two ways, that is with method A and method B already described in Section
4.3.1.

The procedure is reported in Algorithm 6.
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Algorithm 6 Centroid algorithm
Input: S, Scores, st, limit
Output: Summary

S ← SortDesc(S, Scores)
k ← 1
for i← 1 to m do

length← Len(Summary)
if length > limit then return Summary
SV ←SumVectors(S[i]) include ← True
for j ← 1tok do

SV 2← SumV ectors(Summary[j])
sim← Similarity(SV, SV 2)
if sim > st then

include← False
if include then

Summary[k]← S[i]
k ← k + 1
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Chapter 5

Experiments

5.1 Experimental Design

5.1.1 Dataset
The dataset used to test the proposed methods is MultiLing Pilot 2011
Dataset1. It contains 700 files, 100 for each of these languages: Arabic, Czech,
English, French, Greek, Hebrew, Hindi. The 100 articles per language are
further divided into 10 topics, each consisting of 10 texts. This dataset was
created taking English texts from WikiNews2. Subsequently, native speakers
translated them in order to create articles in the other 6 languages. To allow
the evaluation of the generated summaries, are also provided from 2 to 5
human summaries for every topic and every language. For each topic, the
gold summaries have been made by native speakers, after they read all the
articles concerning that topic.

5.1.2 Word Embedding Models
All the methods are performed once with Word2Vec models and once with
FastText[3] models. In both cases the vectors have been trained on Wikipedia
and their dimension is 300. As regards Word2Vec, the alignment is performed
through the Procrustes method [32], while FastText models have been aligned
using the method proposed in Joulin et al. (2018)[16].

1http://www.nist.gov/tac/2011/Summarization/
2http://www.wikinews.org/
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5.1.3 Experiments
Among the documents available in MultiLing Pilot 2011 Dataset, the ones
in English, French, Arabic, Czech and Hindi are taken into account. For all
the methods mentioned in Chapter 4, the following tests have been done:

• English + French to English

• English + French to French

• English + Arabic to English

• English + Arabic to Arabic

• English + Czech to English

• English + Czech to Czech

• English + Hindi to English

• English + Hindi to Hindi

Several tests have been done by considering as input different numbers of
articles for each language. These are the combination tested:

• 10 articles for each of the source languages. It is used to evaluate the
impact of the presence of the same articles in another language.

• 5 articles for each of the source languages about the same topic. This is
the case that most represents a real situation. In fact, thinking about
news that can be found in online newspapers which relate to the same
fact or event, they can be written in different languages, but, usually,
they are not a literal translation of the other.

• 10 articles in the source language (equals to the target one) plus those ob-
tained by translating them with Google Translate into the other source
language. In another case, starting from the 10 articles in the source
language (equals to the target one), 5 of them are used in the origi-
nal language, the other 5 are translated into the other source language
with Google Translate. They are both used to evaluate the impact of
using machine translation to generate documents in other languages for
summary extraction.
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• 10 or 5 articles only in the target language. They are useful to un-
derstand if the previous cases actually allow to obtain better results,
considering not only articles in the target language.

Every summarization method selects a number of sentences necessary to
reach the 250 words limit.

The performances of the proposed techniques are evaluated and compared
with the following baselines:

• TextRank [24]

• LexRank [7]

• CoReRank [6]

TextRank and LexRank summaries were obtained thanks to the implemen-
tation of these methods provided in the library sumy 0.8.1 [34]. Instead, for
CoReRank, the code used is the one provided by Chetan et al. on GitHub
[6].

5.1.4 Algorithm execution time
The execution time, in addition to depending on the machine used for the
experiments, mainly depends on the distance measurement computed and
the number of words present in the embedding models used. For the first
reason, using word mover’s distance instead of cosine similarity leads to a
longer run time (it can also take up to 20 minutes, 10 in the other case).
Instead, for the second reason, the less rich the embedding model, the less
the number of computations that the algorithm must perform (for example
if one of the two languages is Hindi, the algorithm is faster). Experiments
have been done on a PC with Intel Core i7-6700HQ 2.60GHz CPU and 16GB
memory.

5.2 Evaluation
Summaries evaluations are obtained through the ROUGE 2.0 toolkit[9]. It
allows to measure the quality of a summary by comparing it with the golden
summary. Since in all the cases the reference summaries provided for each
topic in the dataset used are more than one, the tool compares the generated
summary with each of the reference ones, and the result it provides is given
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by the average of the values obtained from the individual comparisons. All
system summaries have been truncated to 250 words before carrying out the
evaluation.

5.2.1 ROUGE
ROUGE[21][30] stands for Recall-Oriented Understudy for Gisting Evalua-
tion. It is a software for the evaluation of automatic summarization. It
compares the generated summary with one or more reference summaries,
which generally are human produced, to determine how good it is. At the
beginning it was only recall oriented. Recall allows you to obtain how much
the system summary is "capturing" of the reference summary. In case the
single words are considered, recall is obtained by:

noverlapping

Nreference

where noverlapping is the number of overlapping words and Nreference is the
total number of words in the reference summary. The problem with this
measure is that a summary, if very long, could capture all the words in
the reference summary, obtaining a recall value of 1, but resulting verbose.
To compensate for this problem, precision has been introduced. It can be
computed as:

noverlapping

Nsystem

where noverlapping is the number of overlapping words and Nsystem is the total
number of words in the system summary. It allows to measure how much of
the system summary is actually relevant or necessary.

In general is better to compute both the precision and recall and obtain
the F-Score from them. It is the harmonic mean of precision and recall:

Fscore = 2 · precision · recall

precision + recall

In certain situations, precision may be of little relevance and therefore may be
omitted, whereas only recall may be considered. Generally these are the cases
in which summaries are forced to be concise by imposing certain constraints.

The ROUGE metrics available are:

• ROUGE N: it is based on n-grams overlap. ROUGE-1 refers to the
overlap of unigrams between the system summary and the reference one.
Instead, ROUGE-2 is based on the overlap of bigrams.
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• ROUGE L (Longest Common Subsequence): measures the longest match-
ing sequence of words using LCS.

• ROUGE S: measures the skip-bigram co-occurrence. A skip-bigram is a
pair of words present within a sentence reported in their original order,
regardless of the terms between them.

• ROUGE SU: is an extension of ROUGE S. It is based on skip-bigram
and unigram-based co-occurrence.

5.3 Qualitative Analysis
Figure 5.1 and 5.2 respectively show an example of an English article and
the corresponding French article, while in Figure 5.3 there is an example
of one of the French human summary provided for the same topic of the
articles mentioned above. All of them are taken from the Multiling Pilot
2011 Dataset.

In the figures 5.4, 5.5 and 5.6 there are three examples of system French
summaries. Specifically, they have been obtained through the WMD method,
using as input respectively:

• 10 French articles from MultiLing Pilot 2011 Dataset of which 5 used in
the original language and 5 translated into English with Google Trans-
lator

• 5 French and 5 English articles from MultiLing Pilot 2011 Dataset

• 5 French documents from MultiLing Pilot 2011 Dataset
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Figure 5.1. Example of an English article from MultiLing Pilot 2011 Dataset.

Figure 5.2. Example of a French article from MultiLing Pilot 2011 Dataset.

As can be seen from Figure 5.2 and 5.1 the articles in the various languages
are translated from the English one in such a way as to maintain the general
structure and so that each sentence and the corresponding one in another
language express the same concept.

In general, the phrases of the summaries are not necessarily connected
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Figure 5.3. Example of a French human summary from MultiLing
Pilot 2011 Dataset.

Figure 5.4. Example of a French summary obtained with the WMD method
taking 10 French documents from MultiLing Pilot 2011 Dataset: 5 are used in
original language, the other 5 are translated in English with Google Translate.
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Figure 5.5. Example of a French summary obtained with the WMD
method taking as input 5 French documents and 5 English documents
from MultiLing Pilot 2011 Dataset.

Figure 5.6. Example of a French summary obtained with the WMD method
taking as input only 5 French documents from MultiLing Pilot 2011 Dataset.
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to each other. In fact, from the linguistic quality point of view, the system
summaries are not comparable to that obtained by a human, given that no
checks of this type are carried out and the summarization technique used is
extractive. This can be seen in the summary in the Figure 5.4, where the
initial sentence does not make much sense. Each method allows to obtain
different summaries. They may have sentences in common, but are usually
positioned differently. For example, the sentence "La Chine a promis 60,5
millions, le don national..." is selected from both 5+5* summary and 5+0
summary, but while in the first summary the phrase is in last position, in the
other summary it has been found to be more important and is therefore in
4th position. This implies that adding English information to French ones,
influences the importance that is associated to each sentence.
All the summaries are less than 250 words long to be evaluated.

5.4 Quantitative Evaluation
The following part shows all the ROUGE-2 Recall scores obtained for the
various tests performed. In order to understand the tables, here is the list of
the abbreviations used:

• A: as well as B, it refers to the sentence selection method used. In this
case it selects the top-n sentences in the target language, ignoring the
ones in the other language

• B: from the top-n sentences, the ones in the target language are directly
picked, while each one of the others is used to find what sentence in the
target language is the closest to it. The similarity is derived using the
cosine similarity or the word’s mover distance, depending on which one
was used in the previous step

• 10+10: 10 articles for each of the source languages are taken as input

• 10+10*: the inputs are 10 articles in the source language (equals to
the target one) plus those obtained by translating them with Google
Translate into the other source language

• 10+0: it takes as input only the 10 articles of the target language

• 5+5: 5 articles for each of the source languages are taken as input
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• 5+5*: starting from the 10 articles in the source language (equals to the
target one), 5 of them are used in the original language, the other 5 are
translated into the other source language with Google Translate

• 5+0: it takes as input only the 5 articles of the target language
Moreover the title of each table, e.g. "EN + FR to EN", refers to the lan-
guages use as input and as output. For example in the case "EN + FR to EN"
it means that an EN summary is obtained by taking EN and FR documents
as inputs.

In some tables, in addition to the results obtained by the various methods
proposed, there are also the scores getted by the baselines: CoReRank is
available only for the English language, while TextRank and LexRank could
not be calculated for Arabic and Hindi.

Before the detailed results tables, the ones with the Borda Count [36] re-
ranking results are shown. It is a consensus function that allows to deter-
mine the overall summarizer ranking from a set of results on each individual
language. The one with the best score wins. Thanks to these results it was
possible to draw conclusions on the method in general rather than on a spe-
cific language.
The first part of the summarizer name indicates the method used, the second
part the number of articles for language, the last part the selection method.

Word2Vec
Summarizer Borda Count Ranking

WMD_5+5*_C 350
WMD_5+5_F 323
WMD_5+5_C 310
WMD_5+5*_F 286
WMD_10+0_C 282
WMD_5+5_F 282

MEDIA_5+5_F 280
WMD_10+0_F 277
TFIDF_5+5_F 276

MEDIA_5+5*_F 265

Table 5.1. Borda Count Rankings achieved by the methods over all the
tested languages. The table shows the top-10 summarizers ranked by
ROUGE-2 Recall.
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FastText
Summarizer Borda Count Ranking

WMD_10+0_F 330
WMD_10+0_C 327
TFIDF_5+5*_C 287
WMD_5+5_C 283
WMD_5+5*_F 280
WMD_5+5_F 273
TFIDF_5+5_F 266
WMD_5+5*_C 264

IDF_5+5_C 262
TFIDF_5+5_C 256

Table 5.2. Borda Count Rankings achieved by the methods over all the
tested languages. The table shows the top-10 summarizers ranked by
ROUGE-2 Recall.

The method that is most able to take advantage of aligned embedding is
the TextRank with distance measurement given by the WMD (in that case
the best configuration seems to be 5+5*). Furthermore, from the two tables
above result that exploiting the FastText embedding models leads to lower
results than those of Word2Vec.

The results are detailed in the following part. Firstly all the results ob-
tained with Word2Vec are shown, followed by those of FastText.

Considering the summaries obtained in English in the case 10+10, if the
articles in French or Arabic are added to the English input ones, the fi-
nal results are better than a summary obtained through the use of Google
Translator or that obtained with baselines. Even the articles in Czech lead to
better summaries than those obtained considering only the English articles,
although in this case the method that uses the translation tool prevails.

For the 5+5 case, English with Arabic and English with Czech have better
performances than 5+5* or 5+0 cases.

As regards the summaries extracted in the French language, there is an
increase in performance thanks to the informations brought by the 10 addi-
tional English articles. The same thing can be observed from the test carried
out with 5 articles per language.

For the Arabic summaries, on the other hand, the scores do not allow to
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clearly understand if the use of two languages is effective: in the 5+5 test it
would seem so, but in the 10+10 one, a better summary is obtained by using
only the Arabic articles.

In extracting summaries in the Hindi language, it was demonstrated that
using documents in multiple languages allows for better summaries.

However, this does not apply to Czech summaries where LexRank per-
forms much better. It is the only case where adding information in English
results in significantly worse results.

Comparing the methods that exploit the cosine similarity and pagerank,
but each with different techniques of sentence embeddings, it is clear that
the worst is the one with SIF. This type of embedding is mainly designed
for textual similarity tasks, and this is perhaps the reason why it does not
perform well here. Instead, the methods with IDF and TFIDF are better,
even if they do not beat the one in which a simple average of the embeddings
of the words in a sentence is used.

However, in most cases, the method that performs better is the one with
the word mover’s distance instead of the cosine similarity. Even the centroid
method, sometimes, leads to the best results. A particular case is the one
which deals with summaries in Hindi, where the method that uses pagerank
and gets sentence embeddings by averaging the embeddings of the words in
it, outperforms the others.

As regards the method of selecting the sentences, on the other hand,
method A seems to perform better in several cases, but the distinction is
not clear-cut, therefore it is probably better to use the A selection mode, but
also mode B is not to be excluded a priori.

Unfortunately with FastText models the results do not correspond to those
obtained using Word2Vec embeddings. Here integrating the articles in one
language with those of another language does not allow to give an added
value for the extraction of a better summary. From these scores, however, is
confirmed the greater efficiency of the method that exploits the word mover’s
distance compared to the others.
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EN + FR to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,116513 0,118463 0,098611 0,123188 0,120768

idf+pagerank 0,096041 0,104019 0,09891 0,120989 0,092883
tfidf+pagerank 0,100519 0,10953 0,09026 0,099546 0,112969

sif+pagerank 0,08664 0,091593 0,068851 0,091163 0,089056
wmd+pagerank 0,155752 0,151951 0,12851 0,142367 0,148278

centroid 0,123309 0,122952 0,124941 0,121169 0,125486
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.3. ROUGE-2 Recall scores obtained by extracting an English
summary getting English and French documents as input. Word embed-
ding models used: Word2Vec.

EN + FR to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,130172 0,120018 0,120832 0,106209 0,131927

idf+pagerank 0,119807 0,109688 0,112724 0,105272 0,117253
tfidf+pagerank 0,126405 0,108307 0,108837 0,111867 0,120823

sif+pagerank 0,093917 0,086835 0,111173 0,084456 0,091694
wmd+pagerank 0,128165 0,132268 0,132923 0,138499 0,132236

centroid 0,118531 0,115168 0,129424 0,117308 0,116011
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.4. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and French documents as input. Word
embedding models used: Word2Vec.

Tables 5.3 and 5.4 show that adding articles in French and using the
corresponding word embedding model, can lead to better results than
simply considering English articles. However, if 5 articles per language are
considered, the method that uses google translator performs better, in
particular the version with WMD.
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EN + FR to FR
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,095498 0,097488 0,099705 0,110028 0,092849

idf+pagerank 0,073528 0,084989 0,081208 0,096475 0,070444
tfidf+pagerank 0,077041 0,087501 0,081506 0,100309 0,07245

sif+pagerank 0,065161 0,074148 0,063443 0,088402 0,068523
wmd+pagerank 0,141332 0,13101 0,147918 0,12492 0,138382

centroid 0,122943 0,114663 0,12387 0,11814 0,126791
textrank - - - - 0,09588
lexrank - - - - 0,13875

Table 5.5. ROUGE-2 Recall scores obtained by extracting a French
summary using English and French documents as input. Word embed-
ding models used: Word2Vec.

EN + FR to FR
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,093921 0,091683 0,093829 0,089834 0,093937

idf+pagerank 0,083171 0,084381 0,082709 0,099164 0,08538
tfidf+pagerank 0,081331 0,084407 0,085705 0,092522 0,083833

sif+pagerank 0,055688 0,074112 0,055925 0,072805 0,051733
wmd+pagerank 0,124705 0,126047 0,130118 0,144296 0,131468

centroid 0,110428 0,109414 0,114994 0,108785 0,102347
textrank - - - - 0,09794
lexrank - - - - 0,12775

Table 5.6. ROUGE-2 Recall scores obtained by extracting a French
summary using English and French documents as input. Word embed-
ding models used: Word2Vec.

Table 5.5 and 5.6 show that English articles help to get a better Frech
summary. In particular, in the case 10+10, the method proposed that
exploits wmd measure increases a lot the quality of summaries.
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EN + AR to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,092902 0,115227 0,114683 0,091919 0,120768

idf+pagerank 0,083555 0,106853 0,099724 0,095711 0,092883
tfidf+pagerank 0,079633 0,092404 0,112092 0,080413 0,112969

sif+pagerank 0,073001 0,082652 0,090212 0,074136 0,089056
wmd+pagerank 0,147401 0,122687 0,121217 0,145217 0,14600

centroid 0,142926 0,117442 0,137224 0,133093 0,125486
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.7. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Arabic documents as input. Word
embedding models used: Word2Vec.

EN + AR to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,111905 0,091547 0,097698 0,107238 0,131927

idf+pagerank 0,107797 0,085181 0,107918 0,097252 0,117253
tfidf+pagerank 0,098495 0,089127 0,09767 0,106086 0,120823

sif+pagerank 0,091991 0,08155 0,102482 0,088464 0,091694
wmd+pagerank 0,133062 0,130569 0,120848 0,122709 0,132236

centroid 0,140918 0,133311 0,135556 0,123922 0,116011
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.8. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Arabic documents as input. Word
embedding models used: Word2Vec.

From tables 5.7 and 5.8 is clear that better results can be reached by
considering Arabic news in addition to the English ones. While in the
10+10 case wmd is confirmed as the best method, in 5+5 the centroid wins.
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EN + AR to AR
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,110184 0,111302 0,11104 0,108466 0,100758

idf+pagerank 0,102479 0,096197 0,09741 0,092563 0,080633
tfidf+pagerank 0,095962 0,094975 0,098261 0,091154 0,078281

sif+pagerank 0,058988 0,063524 0,052724 0,056991 0,061673
wmd+pagerank 0,158362 0,152908 0,151712 0,158587 0,179391

centroid 0,154169 0,138189 0,123103 0,108849 0,122067

Table 5.9. ROUGE-2 Recall scores obtained by extracting an Ara-
bic summary using English and Arabic documents as input. Word
embedding models used: Word2Vec.

EN + AR to AR
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,111611 0,105476 0,107368 0,099358 0,110573

idf+pagerank 0,101068 0,086747 0,109585 0,08975 0,098402
tfidf+pagerank 0,104699 0,102286 0,110572 0,093208 0,09845

sif+pagerank 0,066785 0,058576 0,065259 0,05899 0,075178
wmd+pagerank 0,136018 0,142624 0,138013 0,132028 0,132323

centroid 0,128536 0,104724 0,121322 0,115061 0,122875

Table 5.10. ROUGE-2 Recall scores obtained by extracting an Ara-
bic summary using English and Arabic documents as input. Word
embedding models used: Word2Vec.

In the case of 10+10 of EN+AR to AR, adding information in English
greatly worsens the results. However, it is not confirmed in case of 5 articles
for language. In both cases it is the wmd method that performs better.
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EN + CS to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,096744 0,10503 0,096149 0,091567 0,120768

idf+pagerank 0,087936 0,092325 0,095179 0,084747 0,092883
tfidf+pagerank 0,087782 0,090128 0,105875 0,094059 0,112969

sif+pagerank 0,092353 0,086495 0,083606 0,092458 0,089056
wmd+pagerank 0,141982 0,150043 0,120426 0,132697 0,148278

centroid 0,121616 0,132792 0,137611 0,134016 0,125486
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.11. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Czech documents as input. Word
embedding models used: Word2Vec.

EN + CS to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,107934 0,091085 0,112292 0,105231 0,131927

idf+pagerank 0,094849 0,088809 0,1138 0,10497 0,117253
tfidf+pagerank 0,103166 0,0889 0,10307 0,102046 0,120823

sif+pagerank 0,095447 0,103337 0,102842 0,084687 0,091694
wmd+pagerank 0,139877 0,139658 0,110038 0,138957 0,132236

centroid 0,111763 0,121388 0,122902 0,115683 0,116011
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.12. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Czech documents as input. Word
embedding models used: Word2Vec.

In the case EN+CS to EN, thanks to the embedding models, better results
are obtained. Moreover, the articles in Czech provide additional
information that allow to produce better summaries than those obtained
only from English.
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5 – Experiments

EN + CS to CS
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,10909 0,09331 0,090389 0,098767 0,10033

idf+pagerank 0,091726 0,085894 0,088636 0,082414 0,089913
tfidf+pagerank 0,088576 0,079843 0,089503 0,087111 0,08371

sif+pagerank 0,06397 0,077927 0,074062 0,077138 0,064793
wmd+pagerank 0,107977 0,10284 0,101398 0,100399 0,104307

centroid 0,107054 0,090483 0,114633 0,08389 0,091564
textrank - - - - 0,14924
lexrank - - - - 0,19208

Table 5.13. ROUGE-2 Recall scores obtained by extracting a Czech
summary using English and Czech documents as input. Word embed-
ding models used: Word2Vec.

EN + CS to CS
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,10333 0,091091 0,100951 0,099279 0,112422

idf+pagerank 0,100583 0,085597 0,104694 0,088311 0,095987
tfidf+pagerank 0,096563 0,088466 0,099238 0,08733 0,101357

sif+pagerank 0,075206 0,055699 0,083754 0,06284 0,08436
wmd+pagerank 0,108138 0,096104 0,110122 0,091634 0,115223

centroid 0,094383 0,099053 0,105533 0,091358 0,108918
textrank - - - - 0,09978
lexrank - - - - 0,13514

Table 5.14. ROUGE-2 Recall scores obtained by extracting a Czech
summary using English and Czech documents as input. Word embed-
ding models used: Word2Vec.

Tables 5.29 and 5.14 show that, in the extraction of Czech summaries,
baselines produce best summaries, while the other methods obtain
significantly lower results.
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5.4 – Quantitative Evaluation

EN + HI to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,10302 0,110889 0,117444 0,115169 0,120768

idf+pagerank 0,099094 0,102126 0,112838 0,108876 0,092883
tfidf+pagerank 0,09692 0,101481 0,116567 0,102909 0,112969

sif+pagerank 0,074525 0,086604 0,099957 0,084674 0,089056
wmd+pagerank 0,140313 0,147091 0,130765 0,145502 0,148278

centroid 0,083876 0,069821 0,12327 0,100043 0,125486
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.15. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Hindi documents as input. Word
embedding models used: Word2Vec.

EN + HI to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,110631 0,114269 0,122128 0,113214 0,131927

idf+pagerank 0,10123 0,110083 0,133473 0,108949 0,117253
tfidf+pagerank 0,109007 0,107487 0,121553 0,105089 0,120823

sif+pagerank 0,078595 0,085626 0,105667 0,085577 0,091694
wmd+pagerank 0,129457 0,141906 0,126869 0,141906 0,132236

centroid 0,093571 0,08232 0,116904 0,096209 0,116011
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.16. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Hindi documents as input. Word
embedding models used: Word2Vec.

Also in these cases, the technique with the word mover’s distance wins.
Embeddings can improve performance, while adding Hindi documents
allows good results in the case of 5 articles per language, but when 10
articles are considered, it does not bring benefits.
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5 – Experiments

EN + HI to HI
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,058857 0,046189 0,041928 0,060396 0,036147

idf+pagerank 0,044152 0,04762 0,048709 0,052986 0,040336
tfidf+pagerank 0,057053 0,043869 0,040618 0,054594 0,038875

sif+pagerank 0,05523 0,056974 0,05523 0,056894 0,036176
wmd+pagerank 0,056093 0,055293 0,049599 0,049656 0,044968

centroid 0,054629 0,059198 0,054629 0,059198 0,050903

Table 5.17. ROUGE-2 Recall scores obtained by extracting an Hindi
summary using English and Hindi documents as input. Word embed-
ding models used: Word2Vec.

EN + HI to HI
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,064256 0,051553 0,056812 0,050429 0,042876

idf+pagerank 0,057967 0,048659 0,059287 0,043245 0,058544
tfidf+pagerank 0,058024 0,035854 0,0564 0,037948 0,059206

sif+pagerank 0,047925 0,042168 0,044825 0,046637 0,0619
wmd+pagerank 0,04809 0,055159 0,058635 0,057868 0,049572

centroid 0,046797 0,046027 0,046797 0,046027 0,053198

Table 5.18. ROUGE-2 Recall scores obtained by extracting an Hindi
summary using English and Hindi documents as input. Word embed-
ding models used: Word2Vec.

Adding English to Hindi helps to improve the summary. The 5+5 case is
the only one in which pagerank with average performs better than the
other methods.
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5.4 – Quantitative Evaluation

EN + FR to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,089136 0,08379 0,100966 0,086102 0,092718

idf+pagerank 0,089647 0,088538 0,094643 0,082549 0,091233
tfidf+pagerank 0,0945 0,088827 0,098178 0,092235 0,097686

sif+pagerank 0,089436 0,069997 0,085083 0,080029 0,059421
wmd+pagerank 0,105159 0,112025 0,098022 0,113384 0,140637

centroid 0,125859 0,116443 0,136414 0,121179 0,122069
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.19. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and French documents as input. Word
embedding models used: FastText.

EN + FR to FR
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,090507 0,083312 0,103974 0,096107 0,112147

idf+pagerank 0,092158 0,087573 0,095889 0,087997 0,10211
tfidf+pagerank 0,084396 0,076645 0,0865 0,09039 0,113176

sif+pagerank 0,102564 0,081014 0,082877 0,094701 0,091722
wmd+pagerank 0,106972 0,105611 0,096536 0,107237 0,127931

centroid 0,12129 0,102653 0,124104 0,095715 0,119833
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.20. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and French documents as input. Word
embedding models used: FastText.

FastText embeddings don’t help getting good results with the method
proposed and this applies to all the combinations of languages considered.
In the cases in which 10 articles for language are taken as input, always win
the baselines, while in the case of 5 articles, it is almost always the 5+0
method that wins.
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5 – Experiments

EN + FR to FR
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,097441 0,092569 0,086798 0,104784 0,077561

idf+pagerank 0,083627 0,091398 0,060866 0,068382 0,052658
tfidf+pagerank 0,085643 0,091737 0,075026 0,07563 0,062048

sif+pagerank 0,060407 0,077212 0,056184 0,058662 0,059326
wmd+pagerank 0,103659 0,100348 0,102647 0,095632 0,137392

centroid 0,10643 0,104367 0,10643 0,104367 0,11061
textrank - - - - 0,09588
lexrank - - - - 0,13875

Table 5.21. ROUGE-2 Recall scores obtained by extracting a French
summary using English and French documents as input. Word embed-
ding models used: FastText.

EN + FR to FR
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,109956 0,109127 0,118969 0,114967 0,082638

idf+pagerank 0,073953 0,081127 0,06875 0,089044 0,067185
tfidf+pagerank 0,081042 0,085444 0,098046 0,093405 0,081156

sif+pagerank 0,061222 0,080889 0,060644 0,071091 0,052059
wmd+pagerank 0,107238 0,10557 0,10298 0,099869 0,129083

centroid 0,103835 0,116311 0,103835 0,116311 0,110853
textrank - - - - 0,09794
lexrank - - - - 0,12775

Table 5.22. ROUGE-2 Recall scores obtained by extracting a French
summary using English and French documents as input. Word embed-
ding models used: FastText.
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5.4 – Quantitative Evaluation

EN + AR to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,08741 0,08379 0,089476 0,086102 0,092718

idf+pagerank 0,091709 0,088538 0,085972 0,082549 0,091233
tfidf+pagerank 0,08869 0,088827 0,091466 0,092235 0,097686

sif+pagerank 0,081831 0,069997 0,064465 0,080029 0,059421
wmd+pagerank 0,100912 0,112025 0,101123 0,113384 0,140637

centroid 0,122158 0,116443 0,122081 0,121179 0,122069
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.23. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Arabic documents as input. Word
embedding models used: FastText.

EN + AR to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,082191 0,083312 0,086101 0,096107 0,112147

idf+pagerank 0,088082 0,087573 0,084371 0,087997 0,10211
tfidf+pagerank 0,075976 0,076645 0,083511 0,09039 0,113176

sif+pagerank 0,084291 0,081014 0,08143 0,094701 0,091722
wmd+pagerank 0,102028 0,105611 0,10317 0,107237 0,127931

centroid 0,098711 0,102653 0,107276 0,095715 0,119833
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.24. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Arabic documents as input. Word
embedding models used: FastText.
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5 – Experiments

EN + AR to AR
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,088405 0,085955 0,094151 0,115124 0,078567

idf+pagerank 0,074462 0,070649 0,088088 0,080182 0,06727
tfidf+pagerank 0,088922 0,095736 0,090263 0,077976 0,061239

sif+pagerank 0,057549 0,053324 0,057382 0,049487 0,04106
wmd+pagerank 0,141535 0,141852 0,110613 0,098238 0,146912

centroid 0,12041 0,120899 0,110945 0,099676 0,117153

Table 5.25. ROUGE-2 Recall scores obtained by extracting an Ara-
bic summary using English and Arabic documents as input. Word
embedding models used: FastText.

EN + AR to AR
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,095139 0,096941 0,088683 0,112057 0,086107

idf+pagerank 0,073022 0,075119 0,084246 0,076509 0,067417
tfidf+pagerank 0,082642 0,085345 0,085689 0,095715 0,071831

sif+pagerank 0,065543 0,065866 0,054222 0,064601 0,052384
wmd+pagerank 0,118942 0,115207 0,119376 0,120114 0,128778

centroid 0,099683 0,086928 0,099319 0,081772 0,107175

Table 5.26. ROUGE-2 Recall scores obtained by extracting an Ara-
bic summary using English and Arabic documents as input. Word
embedding models used: FastText.
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5.4 – Quantitative Evaluation

EN + CS to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,092571 0,093029 0,093526 0,080445 0,092718

idf+pagerank 0,083108 0,087171 0,083108 0,077339 0,091233
tfidf+pagerank 0,093139 0,080907 0,093139 0,091172 0,097686

sif+pagerank 0,079093 0,096281 0,079093 0,09856 0,059421
wmd+pagerank 0,111311 0,113276 0,105549 0,11513 0,140637

centroid 0,094285 0,12155 0,092572 0,120827 0,122069
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.27. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Czech documents as input. Word
embedding models used: FastText.

EN + CS to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,084451 0,084689 0,086682 0,086667 0,112147

idf+pagerank 0,088783 0,09476 0,08786 0,082782 0,10211
tfidf+pagerank 0,07812 0,088256 0,084047 0,090885 0,113176

sif+pagerank 0,097326 0,092872 0,094409 0,079144 0,091722
wmd+pagerank 0,102108 0,116491 0,107691 0,117695 0,127931

centroid 0,081216 0,106097 0,081706 0,106097 0,119833
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.28. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Czech documents as input. Word
embedding models used: FastText.
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5 – Experiments

EN + CS to CS
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,060353 0,062577 0,093248 0,087242 0,071851

idf+pagerank 0,059758 0,065253 0,096158 0,091651 0,075721
tfidf+pagerank 0,062365 0,059731 0,097049 0,097506 0,071078

sif+pagerank 0,069747 0,066688 0,095923 0,082662 0,075587
wmd+pagerank 0,068536 0,06843 0,073638 0,072888 0,096026

centroid 0,064165 0,062061 0,063013 0,067233 0,087609
textrank - - - - 0,14924
lexrank - - - - 0,19208

Table 5.29. ROUGE-2 Recall scores obtained by extracting a Czech
summary using English and Czech documents as input. Word embed-
ding models used: FastText.

EN + CS to CS
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,067106 0,065904 0,067491 0,064956 0,079702

idf+pagerank 0,065325 0,063 0,085812 0,085177 0,079047
tfidf+pagerank 0,061898 0,063044 0,079956 0,080061 0,075697

sif+pagerank 0,06876 0,074195 0,069433 0,080882 0,073874
wmd+pagerank 0,072488 0,078272 0,077511 0,079555 0,107802

centroid 0,081337 0,080564 0,076437 0,087398 0,104431
textrank - - - - 0,09978
lexrank - - - - 0,13514

Table 5.30. ROUGE-2 Recall scores obtained by extracting a Czech
summary using English and Czech documents as input. Word embed-
ding models used: FastText.
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5.4 – Quantitative Evaluation

EN + HI to EN
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,097522 0,101322 0,104035 0,101322 0,092718

idf+pagerank 0,071867 0,090367 0,083086 0,094135 0,091233
tfidf+pagerank 0,064764 0,080668 0,07836 0,080668 0,097686

sif+pagerank 0,070958 0,090971 0,064868 0,092607 0,059421
wmd+pagerank 0,121605 0,120989 0,125784 0,121219 0,140637

centroid 0,082692 0,071389 0,099192 0,089344 0,122069
textrank - - - - 0,07640
lexrank - - - - 0,12761

corerank - - - - 0,14719

Table 5.31. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Hindi documents as input. Word
embedding models used: FastText.

EN + HI to EN
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,085299 0,086924 0,086083 0,086924 0,112147

idf+pagerank 0,082247 0,089749 0,097339 0,099379 0,10211
tfidf+pagerank 0,081942 0,092014 0,084109 0,094205 0,113176

sif+pagerank 0,085489 0,09275 0,087765 0,083861 0,091722
wmd+pagerank 0,113154 0,106717 0,111635 0,106955 0,127931

centroid 0,08431 0,092954 0,111615 0,108802 0,119833
textrank - - - - 0,09773
lexrank - - - - 0,12549

corerank - - - - 0,12301

Table 5.32. ROUGE-2 Recall scores obtained by extracting an En-
glish summary using English and Hindi documents as input. Word
embedding models used: FastText.
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5 – Experiments

EN + HI to HI
A B

10+10 10+10* 10+10 10+10* 10+0
media+pagerank 0,04173 0,042242 0,0551 0,04231 0,053176

idf+pagerank 0,043103 0,042157 0,050897 0,054038 0,053997
tfidf+pagerank 0,040924 0,040924 0,051986 0,047957 0,066668

sif+pagerank 0,047261 0,047239 0,053691 0,050885 0,050933
wmd+pagerank 0,056265 0,056265 0,048165 0,050902 0,058477

centroid 0,048646 0,052205 0,048646 0,052205 0,057212

Table 5.33. ROUGE-2 Recall scores obtained by extracting an Hindi
summary using English and Hindi documents as input. Word embed-
ding models used: FastText.

EN + HI to HI
A B

5+5 5+5* 5+5 5+5* 5+0
media+pagerank 0,040973 0,039364 0,051528 0,042519 0,064609

idf+pagerank 0,033712 0,035712 0,039368 0,034338 0,058413
tfidf+pagerank 0,046041 0,041955 0,041347 0,036394 0,055375

sif+pagerank 0,034765 0,039463 0,034908 0,041982 0,049498
wmd+pagerank 0,064762 0,065222 0,065341 0,068392 0,064097

centroid 0,036775 0,035924 0,036775 0,035924 0,053752

Table 5.34. ROUGE-2 Recall scores obtained by extracting an Hindi
summary using English and Hindi documents as input. Word embed-
ding models used: FastText.

Considering 5 articles for language, in the EN+HI to HI task, is the only
FastText case in which adding articles, not in the target language, brings
benefits.
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Chapter 6

Conclusions and future
works

The aim of this thesis is to propose and evaluate new techniques for extractive
summarization. Specifically, it points to extract a summary from a collection
of textual documents written in multiple languages, by exploiting the seman-
tic relationships between cross-lingual content. In particular, starting from
the implementation of TextRank, it has been modified in a way to enrich it
with word embedding models, such as Word2Vec and FastText, and in such a
way that it is able to extract a summary from articles in multiple languages.
Also another monolingual summarizer, proposed by Rossiello et al. (2017),
has been made able to produce a summary getting as input documents in
different languages.

In fact, the study aims to verify whether the use of embeddings and of
articles, not only in the target language, can lead to better performances.
In order to achieve this, all the algorithms proposed have been compared to
their alternative version which uses Google Translator and to state-of-the-art
methods of extractive summarization.

The results demonstrate that using cross-lingual text correlations improves
summarizer performance. In particular, starting from English documents, if
French or Arabic or Czech documents are added to them, a better summary
is obtained than that extracted only from the articles in English. Also in the
extraction of French summaries, the additional information, brought by con-
sidering also the articles in English, improves the results. The same applies
to Hindi summaries.

Various form of Word2Vec and FastText based sentence embeddings have
been incorporated in TextRank by using as edge weights in the graph, instead
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6 – Conclusions and future works

of the original normalized word overlap, the cosine similarity and the word
mover’s distance between the sentence vectors. With the exception of the
case in which summaries are obtained in Czech, the best proposed method
is always better than the baselines, showing that enriching TextRank with
word embeddings allows to obtain more precise summaries. This means that
embeddings are able to add information to the model and, at the same time,
the latter is able to exploit these informations to improve summary quality.
In particular, the version that computes word mover’s distance between sen-
tences is the best one, showing that, between the two distance measurements,
the most effective in this task is WMD.

All the conclusions presented so far concern only the methods that ex-
ploit Word2Vec models. For FastText the results show how the proposed
techniques do not allow to obtain valid summaries by exploiting this type of
embedding.

It would be useful to compare the results obtained with those of the ex-
isting crosslingual summarizer. Specially, it would be interesting the com-
parison with those that could be getted by SimFusion and Corank[37]. This
test could not be done because the code of these methods was not found
and moreover, as reported in the corresponding paper, the author only tries
to get a summary from articles in English and Chinese, and the latter is a
language not considered in this thesis.

Another thing that should be tried is to use other techniques that allow
to obtain sentence vectors. In fact, in this thesis, sentence embeddings are
getted only by combining the one of the words contained in it. An example
of model that can be tested is Doc2Vec [25].
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