
Master Thesis

Design and Development of a Python
Package implementing a

General-Purpose Evolutionary
Algorithm

Candidate:
Luca Barillari

Supervised by
Giovanni Squillero

Alberto Tonda

Final Project Report for the
Master in Computer Engineering - Data Science

DAUIN
Politecnico di Torino

Italy, Turin
March 2020

Design and Development
of a Python Package implementing a

General-Purpose Evolutionary Algorithm

Luca Barillari

Supervised by:

Supervisor 1
Giovanni Squillero - DAUIN

Supervisor 2
Alberto Tonda - INRA

Abstract
The thesis focuses on the design and on the development of MicroGPv4, a Python

package implementing a versatile, general-purpose evolutionary algorithm. It explains
how it was conceived, why certain decisions were taken, and how to make the most out
of it. In the first part, the document explains the basis of an Evolutionary Algorithm:
how it works, which are its components and when it should be used. There are also
references and comparisons to other currently available libraries implementing Genetic
Algorithm in Python and Java. After a brief introduction on the history of MicroGP, it
shows the structure and the main genetic operators available in the highly customizable
tool. Furthermore, examples are provided to ensure a correct and simple use. Experimental
tests have been performed on the One-Max problem (a typical test case used to check
performances of Genetic Algorithms). These experiments have the goal of maximizing the
bit count (ones or zeros) of a fixed length bit-string. Given the past of MicroGP, another
experiment I devised produces a x86 assembly code implementing the One-Max problem.
The thesis also included the creation of an online documentation that allows a quick and
readable consultation of the source code.

3

Acknowledgements

I want to take a moment at the end of this journey to thank all the people who supported
me through the years of my degree.

Thanks to my parents and my sister who took care of me supporting during the hardest
moments of my university and non-university career.

Thanks to all people that shared with me the ups and downs of university experience.
A special thanks to my friends Pietro and Gabriele for every time they came through with
the help I needed.

Thanks to my colleagues with whom I did group projects: Antonio, Federico, Giuseppe,
Luca and Tommaso.

Thanks to my longtime friends who have endured me so far.
Last but not the least, a great thanks to my wonderful girlfriend.. Yes she is real.

4

Contents

1 Introduction to Evolutionary Computation 19
1.1 Problems to be solved . 19

1.1.1 Simulation problem . 19
1.1.2 Modeling problem . 20
1.1.3 Optimization problem . 20

1.2 Data feeds Machine Learning . 20
1.3 Optimization algorithms . 21

1.3.1 Global vs. Local Optimization . 21
1.4 Evolutionary Computation . 22

1.4.1 How does a Evolutionary Algorithm work? 23
1.4.2 Multi-Objective optimization problems 24

1.5 Genetic Algorithms . 24
1.5.1 Individuals and Population . 24
1.5.2 Evaluation and fitness . 25
1.5.3 Mutation and Crossover . 25
1.5.4 Parent and offspring selection . 26
1.5.5 Termination criteria . 27

2 Background and history of MicroGP 30
2.1 State of the art . 30

2.1.1 ECJ - Evolutionary Computation System 30
2.1.2 Inspyred - Bio-inspired Algorithms in Python 30
2.1.3 DEAP - Distributed Evolutionary Algorithms in Python 31

2.2 The history of MicroGP . 31
2.2.1 The version 1 - MicroGPv1 . 31
2.2.2 The version 2 - MicroGPv2 . 31
2.2.3 The version 3 - MicroGPv3 . 31

2.3 Introduction to MicroGPv4 . 32
2.4 The goal . 32

3 Proposed solution 33
3.0.1 OneMax Problem . 33

3.1 Constraints definition . 33
3.1.1 Parameters . 34
3.1.2 Macro . 35
3.1.3 Section . 35
3.1.4 Individual object . 37
3.1.5 Properties . 37

3.2 Darwin class . 38
3.2.1 Operators . 39
3.2.2 GenOperator . 39

5

3.2.3 Population . 39
3.2.4 Archive . 40

3.3 Individual Operators . 40
3.3.1 Initialization operator . 41
3.3.2 Mutation operators . 41
3.3.3 Crossover operators . 43

3.4 Fitness and evaluation . 46
3.4.1 Order by fitness logic . 46
3.4.2 Evaluator . 47

3.5 Evolution process . 47
3.5.1 Parent selection . 49
3.5.2 Offspring selection . 49

4 Experiments 50
4.1 Introduction . 50
4.2 OneMax problem - Base . 50

4.2.1 OneMax Base version 1 . 50
4.2.2 OneMax Base version 2 . 52

4.3 OneMax problem - Assembly . 55

5 Conclusions and future works 60
5.1 Future works . 61

5.1.1 Statistics for genetic operators selection 61
5.1.2 Stopping conditions . 61
5.1.3 2D and 3D categorical sorted parameter 61

List of Figures

1 Left: Genotype of the solution. Right: Phenotype of the solution 16
2 Darwin class evolution logic and parameters. 17
3 Genetic operators implemented for the package. 17
4 Installation of MicroGPv4 package through PIP. 17
5 Online documentation home page. 17

1.1 Schema of a Simulation Problem. 19
1.2 Schema of a Modeling Problem. 20
1.3 Schema of an Optimization Problem. 20
1.4 Schema of a Spam Detection Classifier. 21
1.5 Travel Salesman Problem schema with 4 cities and their distances. 22
1.6 Local and global minimum/maximum. 22
1.7 General schema of an Evolutionary Algorithm. 23
1.8 Example of a Pareto frontier. 24
1.9 Schema of an Individual composed by a chromosome with 9 genes. 25
1.10 Example of population in a Genetic Algorithm. 25
1.11 Single-point Crossover. 26
1.12 Double-point Crossover. 26
1.13 Mutation of three genes. 27

2.1 MicroGPv4 Logo . 32

3.1 Parameter class schema. 35
3.2 Section class schema. 36
3.3 Example of a node . 37
3.4 Example of parents selected to generate a new individual with Switch pro-

cedure crossover. 43
3.5 Example of new solutions produced by Switch procedure crossover. 44
3.6 Example of parents selected to generate a new individual with MacroPool

OneCut crossover. 45
3.7 Example of new solutions produced by MacroPool OneCut crossover. 45
3.8 Example of parents selected to generate a new individual with MacroPool

Uniform crossover. 46
3.9 Example of new solutions produced by MacroPool Uniform crossover. 46
3.10 Schema of Fitness Tuple class. 47
3.11 Schema of Fitness Tuple Multi-objective class. 47

4.1 Plot of an individual generated for OneMax Base version 1 problem. 53
4.2 Plot of an individual generated for OneMax Base version 2 problem 55
4.3 Plot of an individual generated for OneMax Assembly problem. Black edges

are next edges and the red ones are LocalReferences (jump). 57

5.1 Installation of MicroGPv4 package through PIP 60

8

5.2 Online documentation home page . 60

Listings

3.1 Constraints definition for OneMax problem v2. 33
3.2 Setting up the evaluator function and the fitness type. 34
3.3 Examples of Parameters definition. 35
3.4 Create a section of name word_sec containing a macro (word_macro), it will

appear once inside the individual. 36
3.5 Create a section of name sec_jmp that contains 1 to 4 macros (jmp1), it will

appear once inside the individual. 36
3.6 Create a section with a default unique name that contains 2 to 5 macros

chosen in add, sub and it can appear 0 to 10 times inside the individual. . 36
3.7 Build the main section with 3 sections, the second one is a SubsectionsSequence

that contains 3 sections: a SubsectionsAlternative sec2a, sec2b, a sim-
ple section sec_jmp (MacroPool) a simple section containing a Macro with-
out parameters (MacroPool) . 36

3.8 Instantiating a unique Frame. 37
3.9 Create two cumulative (custom) builders and add a checker that tests that

two sections have the same number of nodes. 38
3.10 Initialize a Darwin object. 38
3.11 Evolve and print results (Population). 38
3.12 Print the Archive that contains the best eve individuals. 39
3.13 Create and fill an Operators object to be passed to a Darwin object. 39
3.14 Select k operators that has arity in the given range 39
3.15 Build three genetic operators passing the method and the arity. 39
3.16 Call the method inside the genetic operator. 39
3.17 Add a set of individuals in the population 40
3.18 Add a single individual in the population. 40
3.19 Remove a single individual from the population. 40
3.20 Remove multiple individuals (set) from the population. 40
3.21 Retrieve from population an individual using tournament selection Tourna-

ment selection. 40
3.22 Retrieve the entire set of individual contained in the population. 40
3.23 Try to insert an individual in the archive. 40
3.24 Declaration of an evaluator running a script stored in a file. 47
4.1 OneMax Base version 1 - Source code. 50
4.2 OneMax Base version 1 - Example log. 52
4.3 OneMax Base version 2 - Source code. 53
4.4 OneMax Base version 2 - Example log . 54
4.5 OneMax Assembly evaluator (eval.bat) . 55
4.6 OneMax Assembly possible script solution (phenotype). 56
4.7 OneMax Assembly - Source code . 57
5.1 First generation genetic operators selection 61
5.2 Current version of microgp.darwin.Darwin.evolve() method 61

11

List of Algorithms

1 Remove node mutation . 41
2 Add node mutation . 42
3 Hierarchical mutation . 42
4 Flat mutation . 43
5 Do generation . 48

13

Summary

Abstract

MicroGP (or µGP) is an optimizer that
exploits Evolutionary Computation to find
optimal solutions to hard problems. The
thesis consists in the complete re-design of
the toolkit and in the new implementation
in Python language.

1. The goal of the thesis

MicroGP was created almost 20 years ago to
generate assembly-language programs used
to test microprocessors. The project has
evolved in the following years improving the
flexibility, usability and functionalities. C
and then C++ language was used for the
implementation.

The thesis philosophy is to analyze er-
rors and shortcomings of the previous ver-
sions which lead to a complete re-design of
the tool. At first, defining the individual’s
structure and using the evolutionary parts
required an enormous effort that only an ex-
pert programmer could handle. The goal
has been to build a simpler and more dy-
namic evolutionary tool increasing the num-
ber of users. As a result, we have selected
Python language because it is easy, flexible
and highly supported by its community. In
order to use the tool, the user only needs to
know the Python syntax to define the indi-
viduals and genetic operators.

2. Introduction to EC

Evolutionary Computation is a branch of
Computational Intelligence that consists
in iterative optimization of solutions in-
spired by biological evolution. The kind of
algorithms called Evolutionary Algorithms
(EA) starts from a bunch of randomly gen-
erated solutions and applies a set of opera-

tors leading eventually to the optimal ones.
The solutions are typically represented with
a certain format called genotype and their
physical representation is called phenotype
(see Figure 1).

3. New Design

An individual is a directed multi-graph (Fig-
ure 1 left) in which the information is en-
coded in its nodes and edges (genotype).
The instruction library, is used to de-
fine the individuals’ structure reducing the
search space through smart decisions. It is
composed by sections that contain one or
more macros (text with zero or more pa-
rameters). The class called Constraints
stores the instruction library and the proper-
ties. Properties are boxes that can contain
values and checkers that run tests on the val-
ues. The user can perform any kind of check
passing user-defined functions. They are run
during each validation phase of any solution.

An individual is composed by frames
that are unique instances of sections. The
solutions evaluator can be a Python method,
or a script run by an external program/ma-
chine.

The evolution process has been imple-
mented in the Darwin class (see Figure 2).
Size of the population, initial population
size, number of genetic operators used at
each generation and other evolution param-
eters are passed during the creation of this
object. A set of genetic operators is passed
to Darwin, they can be the ones provided by
the package or user defined methods. The
evolution logic handles efficiently the selec-
tion of operators and manages the popula-
tion keeping the best solutions in an archive
that is updated at each generation.

The parameters are used to make

15

Figure 1: Left: Genotype of the solution. Right: Phenotype of the solution

macros dynamic and describe some individ-
uals genes. They can be of several types:
integer, bitstring, categorical, ordered cate-
gorical, local reference or external reference.
The reference parameters act on the edges
of the graph linking nodes together. The in-
teger parameter can take a range of values
specifying minimum and maximum. During
the creation of the categorical and ordered
categorical parameters types the user defines
a set of alternatives. The bitstring parame-
ter generates strings of bits with the speci-
fied length.

MicroGPv4 offers eight basic genetic
operators (see Figure 3). Three of them
are crossover operators (or recombination
operators), four are mutation operators.
The last has the goal to create a random
individual starting from the user-defined
instruction library. The initialization differs
from the other EAs libraries because usu-
ally the logic implementing the creation of
the solution is detached from the set of the
genetic operators.

One of the mutation operators mutates
the graph inserting a new node that con-
tains a valid macro, on the contrary, an-
other operator removes a node from the
graph. The remaining mutation operators
mutate the values of the parameters inside
one or more macros. The operator called
switch_proc_crossover copies a particular
sequence of nodes from an individual to an-
other one. The other recombination oper-
ators swap one or more nodes between two
individuals.

The library allows the use multiple types
of fitnesses: FitnessTuple, FitnessTuple-
Multiobj, both inherit from a base class that

handles Tuple-like fitnesses. The different
selection schemes are implemented simply
by overriding the "greater than" operator.
The sorting logic of individuals with fitness
type FitnessTupleMultiobj uses Pareto fron-
tier to get a list of individuals ordered con-
sidering multiple values to maximize.

4. New possibilities

MicroGPv4 has been engineered to allow the
creation and use of user-defined Parameters
and Operators. The friendly and flexible
logic implemented during the design of the
top-level methods makes all this easy and
immediate, a sign that the goal we had set
has been achieved. Users can be divided in
three levels: (1) the user knows Python syn-
tax and uses MicroGP in a Jupyter Note-
book exploiting provided parameters and ge-
netic operators; (2) the user knows how to
code in Python and can develop its own pa-
rameters and genetic operators; (3) an ex-
pert coder can re-implement its own evolu-
tion process as has been developed for Dar-
win class.

5. Experimental Evaluation

A typical experiment used to test an EA is
OneMax problem. The algorithm produces
a set of individuals that contain a fixed num-
ber of 0s and 1s. The goal is to increase
the number of ones in the solution. To
determine the effectiveness of MicroGP we
solved the OneMax problem in three ways.
The first version the simplest, the second in-
troduces complexity in the graph structure.
The most complex version generates assem-
bly working programs that perform some

computations and return the value stored in
a register. An example of a possible result
produced is shown in Figure 1.

6. Current release and future works

The released version is a pre-alpha, meaning
that the tool is fully functional but largely
incomplete in terms of functionalities that
will be available in the next updates. Two
of them are: the introduction of customiz-
able stopping conditions and the implemen-
tation of statistics that guide the decisions
taken during the selection process of genetic
operators.

Due to the fact that this version of

MicroGP has been designed to be used
by a broad number of users, the state
of the art for distribution of FOSS (Free
Open Source Software) has been used. The
current version of the package has been
uploaded on PyPI servers and is instal-
lable through a Python de-facto standard
package-management system (see Figure 4).
The documentation has been deployed with
Read the Docs. It contains a precise expla-
nation of how the library works and how to
use it. All experiments studied during the
development process are there listed and ex-
plained. The GitHub repository containing
the source code is public.

Figure 2: Darwin class evolution logic
and parameters.

Figure 3: Genetic operators implemented
for the package.

Figure 4: Installation of MicroGPv4
package through PIP.

Figure 5: Online documentation home
page.

Chapter 1

Introduction to Evolutionary
Computation

In the last decades Artificial Intelligence[23] has improved lots of technologies. Major
smartphone companies are introducing new dedicated chipsets[19] that help the devices to
compute data and to make decisions. Some examples can be: photo editing, whether or
not to unlock the device with the scanned face[17] or how to answer the questions asked to
the voice assistant[31]. Nonetheless improving user experience is not the only application.
There are many areas that have taken advantage thanks to the adoption of AI.

This chapter will introduce some AI techniques with a deeper focus on the optimiza-
tion algorithms.

1.1 Problems to be solved
Artificial Intelligence can be applied to solve problems which can be described either math-
ematically or logically. Among those problems, AI has been used to tackle optimization,
modeling, and simulation problems. Such problems can be described by three elements:
input, model, and output. An input is a collection of raw information. The model is a
mathematical function mapping raw information into a useful output. Depending on the
problem, one of these elements is unknown while the others are not.

1.1.1 Simulation problem
In case of a simulation problem[18] (Figure 1.1) the known elements are the input and
the model; the goal is to find the right output given a certain input. This means that
sometimes the output is specified and the simulation must produce a more or less coherent
result. Solving this problem means, in most cases, saving money[32] because it is much
cheaper to simulate rather than, for example, building a physical circuit and test it.

Figure 1.1: Schema of a Simulation Problem.

19

1.1.2 Modeling problem
A modeling problem is the process of developing a system using mathematics and logic[2].
In this kind of problems the missing element is the model (Figure 1.2). In this case the
solution to the modeling problem is a model that accurately maps input data to the output
space.

Figure 1.2: Schema of a Modeling Problem.

1.1.3 Optimization problem
An optimization problem is the selection of optimal solutions from a set of available
alternatives. The model is known, the output is specified (or sometimes known) and the
unknown element is the input (Figure 1.3).

An illustrative example can be represented by the shortest path problem. In this case
the goal is to find shortest itinerary from a starting point to a pre-defined destination.
Each possible sequence of instructions used to reach the target is called feasible solution.
The goal is to find the optimal solution among the feasible alternatives. This problem can
be solved either to minimize the distance travel or the time required to reach the final
destination.

Figure 1.3: Schema of an Optimization Problem.

Optimization problems can be used to optimize the parameters of a modeling problem
(i.e. Artificial Neural Network) with the goal of maximizing the model accuracy.

1.2 Data feeds Machine Learning
One of the most popular Artificial Intelligence sub-class is Machine Learning (ML)[1].
"Machine learning is the idea that there are generic algorithms that can tell you something
interesting about a set of data without you having to write any custom code specific to
the problem. Instead of writing code, you feed data to the generic algorithm and it builds
its own logic based on the data."[15].

Machine learning can be used to solve modeling problems. For instance, it can be ap-
plied to the spam detection problem. The algorithm optimize the model (a.k.a. Classifier)

20

parameters with the objective of predicting if an e-mail (input) should be considered as
spam/not-spam (output). See Figure 1.4.

In contrast to other mathematical approaches, the accuracy of ML usually increases
with the amount of data used to feed the algorithms.

ML has been used to classify the e-mails as spam or not spam[28], to improve search
engine results[4], to improve cybersecurity analyzing data and predicting intrusions or
malware[11][14], and many more innovative purposes.

Figure 1.4: Schema of a Spam Detection Classifier.

1.3 Optimization algorithms
Considering the shortest path problem previously described, a navigation system can be
driven by an optimization algorithm in order to find the fastest route from a staring point
to an other.

This problem is also known as the Travelling Salesman Problem (TSP)[13]. The sales-
man has to visit a set of cities and turn back home. The cities are placed at a certain
distance from each other. The objective is to choose the ordered sequence of cities that al-
lows to get smallest possible covered distance. The Figure 1.5 is the abstract representation
of the TSP problem: four cities (A, B, C, D), linked by weighted edges (distances).

This model has several applications, for example, the selection of the best route of a
network packet travelling from a server to another one[16], reducing the delivery time and
speeding up the network.

1.3.1 Global vs. Local Optimization
The challenge, for an optimization algorithm, is to choose the solution good enough to solve
the considered problem. Sometimes, the program execution could last too much in terms
of running time and then a solution that is not the best one can be considered as the final
one. Consequently, the solution can be of two types: globally optimal[33] or, more often,
locally optimal. If the objective is to minimize an error, then the algorithm tries to find
the global/local minimum, on the contrary if the objective is to maximize the score, for

21

Figure 1.5: Travel Salesman Problem schema with 4 cities and their distances.

example, a game score, accordingly we have to consider the global/local maximum values.
The problem requirements could be satisfied with a solution that is not the best ever but
achieves a sufficient quality. Termination criteria will be discussed in the next pages.

In Figure 1.6 we have on x-axis the parameter that represents the solution and on
y-axis the quality of the solution. It is important to notice that there could be several
local minimum/maximum points and only one global minimum/maximum.

Figure 1.6: Local and global minimum/maximum.

1.4 Evolutionary Computation
Evolutionary Computation[12] is an area within Evolutionary Intelligence which takes
inspiration from natural evolution process described by the Darwin’s evolutionary the-
ory [25].

22

"A given environment is filled with a population of individuals that strive for survival
and reproduction. The fitness of these individuals is determined by the environment, and
relates to how well they succeed in achieving their goals"[12]. The environment represents
the problem to be solved with its output that is described as the goal of minimizing or
maximizing a number. This number is correlated to a fitness describing a quality. The
individuals are the candidate solutions (inputs) that could or not satisfy the output
constraints. In other words this is a method that allows to optimize solutions based on the
notion survival of the fittest in which the individuals with higher fitness have more chances
to be kept in the population of the next generation.

1.4.1 How does a Evolutionary Algorithm work?
The algorithm behind the Evolution Computation is known as Evolutionary Algorithm
(EA) and can be described with three main characteristics[12]:

1. Population-Based: Evolutionary algorithms manipulate individuals trying to get
better solutions. The set of the current solutions is called population.

2. Fitness-Oriented: A function, called fitness function, determines whether a so-
lution is better than another one, through a value called fitness score. Each in-
dividual (or solution) has one fitness score that can be equal to the one of another
individual, despite the differences between the two individuals.

3. Variation-Driven: Mechanisms allow to generate variations in individuals letting
them be very different from each other. The solutions thus created are then evaluated
by the fitness function giving a better or worse score then the previous one.

An EA is divided into several phases. The Initialization phase consists in a random
generation of individual with determined characteristics depending on the problem. The
Evaluation phase allows to determine the score (fitness) of each individual that composes
a population. The next step is theParent selection phase in which individuals are chosen
to create offspring through recombination and mutation. The offspring is then evaluated
and selected in the Survivor selection phase. The new population is evaluated to
determine whether to continue with the next generation or terminate the process. This
algorithm can be represented with the schema in Figure 1.7.

Figure 1.7: General schema of an Evolutionary Algorithm.

23

1.4.2 Multi-Objective optimization problems
Real problems have several variables that can influence the results in a more or less im-
portant way. Therefore, it is necessary to use algorithms that take into account more
than one feature during the maximization of the solution score. These algorithms solve
Multi-Objective Optimization problems[5].

Genetic Algorithms (GA)[10] are evolutionary algorithms that perform well with this
kind of problems (see Section 1.5). They allows to customize the fitness functions and
to use methods that promote solution diversity keeping in the population several very
different individuals.

An individual is called nondominated (or Pareto optimal) if "if none of the objective
functions can be improved in value without degrading some of the other objective values"1.

In Figure 1.8 we can see the Pareto frontier [22] (red line) defined by the set of Pareto
optimal solutions. Consider that the smaller is the value better is the solution. The points
on the top-right of the Pareto frontier are individuals dominated by the optimal solutions.

Figure 1.8: Example of a Pareto frontier.

1.5 Genetic Algorithms
A Genetic Algorithm (GA) is a sub-class of Evolutionary Algorithms that has a big random
component in it. It is based on Darwin’s theory[25] of evolution because the process of
solution improvement acts with little and slow changes.

1.5.1 Individuals and Population
Each solution that is generated by a GA is called individual (Figure 1.9). It is described
by a sequence of features called genes that altogether form a chromosome. Each chro-
mosome defines how the solution is codified, it can have a variable number of genes and
each gene can take any value (allele). For instance, an integer number (42), a real number
(5.62), a Boolean/binary value (True = 1 or False = 0).

1Multi-objective optimization: https://en.wikipedia.org/wiki/Multi-objective_optimization

24

Figure 1.9: Schema of an Individual composed by a chromosome with 9 genes.

The set of individuals is called population (Figure 1.10) whose size is defined as
population size (popsize).

Figure 1.10: Example of population in a Genetic Algorithm.

A Genotype is a sequence of genes representing a chromosome, while the physical
representation of the chromosome is called Phenotype. For example, considering the
Figure 1.9, if the genotype of an individual is the bit-string 110101000 its phenotype could
be the decimal representation 424.

1.5.2 Evaluation and fitness
Each individual can be associated with a value called fitness value produced by the fitness
function on the basis of the final goal and the chromosome (see Subsection 1.4.2). The
phase in which the fitness values are computed is called evaluation phase (see Section
1.4.1).

1.5.3 Mutation and Crossover
The first population is created randomly during the first generation, to produce a new
population, modifications have to be applied to the individuals. The operators that perform
the variation are called Variation Operators and they are: crossover (or recombina-
tion) operator and mutation operator.

Crossover

The crossover consists of the creation of one or more individuals that take some genes
from an individual and some others from another. The number of genes taken from each
parent and the point of the chromosome from which they are taken is random. This works
in a similar way to the natural reproduction in which some characteristics are taken from

25

the father and others from the mother of a new born. The amount of new individuals thus
produced, varies from the problem specifications and its whole is called offspring.

In Figure 1.11 you can see an example of a single-point crossover (or one-point cut
crossover) in which a point in the chromosomes is chosen and the new individuals will be
composed by a combination of parents.

The same behavior can be exploited by choosing two points instead of one (see Figure
1.12).

Figure 1.11: Single-point Crossover.

Figure 1.12: Double-point Crossover.

Mutation

The individuals thus created are then modified by the mutation operator. This operator
chooses randomly one or more genes and, with a given probability, mutates them assigning
random values (alleles). For instance the algorithm decides that the genes 3, 4 and 9 will
be mutated producing a new individual (see Figure 1.13).

1.5.4 Parent and offspring selection
The individuals that are selected for the crossover and mutation are called parents, they
are chosen in the parent selection phase (see Section 1.4.1) based on the fitness score.
Usually the higher is the score, the more likely it is to be chosen. The set of the selected
individuals is called mating pool; in some cases the parents can be more than two. The
selection of individuals with high fitness scores allows to create new solutions that will
probably have high score too.

26

Figure 1.13: Mutation of three genes.

After the mutation the offspring can’t be simply joined to the population, here is where
the offspring selection takes place. There are several techniques of selection, one of the
simplest is the one that joins the offspring to the population, rank it and keep only the
popsize best individuals, removing the worst ones preventing them from reproducing.

In Table 1.1 on the top-left there is the tabular representation of the population after
the recombination and mutation phase. On the bottom is shown the population and
the offspring ranked together. In the last table (top-right) the new population after the
selection that has removed the worst individuals

It is trivial to come to conclusion that after a certain number of generations the pop-
ulation will contain solutions with a fitness score higher than the fitness score of the first
randomly generated population.

1.5.5 Termination criteria
The evolution keeps running until one or more stopping conditions occur. Stopping
conditions depend on the goal of the use case, some of them could be:

• Limited amount of run time;

• Limited number of generations run by the algorithm;

• Limited number of evaluations of the fitness score;

• Slow changes in individuals among generations;

• Fitness score good enough.

27

Individual Fitness score Individual Fitness score
1 A 10 F 44
2 B 23 B 23
3 C 22 C 22
4 D 14 D 14
5 E 3 A 10
6 F 44 E 3

Individual Fitness score
1 F 44
2 FB1 39
3 B 23
4 C 22
5 FB2 15
6 D 14

A 10
E 3

Table 1.1: Select the best popsize individuals after ranking them by fitness score.

28

Chapter 2

Background and history of MicroGP

2.1 State of the art

Online there are several libraries that implement Evolutionary Programming (or Genetic
Programming), this is a clear sign that there is a great interest in solving problems through
an optimizer. There are different use cases such as industrial, scholars and research. In
this chapter we give a brief introduction to three of the most used EC frameworks.

2.1.1 ECJ - Evolutionary Computation System

ECJ 1 is a java library for implementing Evolutionary Computation developed at George
Mason University’s ECLab (Evolutionary Computation Laboratory). It was presented at
GECCO 2019 with the paper ECJ at 20: Toward a General Metaheuristics Toolkit [29] and
it received a grant from NFS (National Science Foundation) for improving and enhancing
its features.

The library has a basic GUI that can be used for loading, running jobs, managing
parameters and plot statistics; it is multi-threading ready and the solutions can be coded
also with tree and vector representations. There is the possibility to use multiple operators
and it can hook for other multi-objective optimization methods. There is also a user
manual online 2.

2.1.2 Inspyred - Bio-inspired Algorithms in Python

Developed by taking into account the book “Evolutionary Computation: A Unified Ap-
proach.”[9], Ispyred is a Python package that uses bio-inspired algorithms. Because of the
variety of problem that a Genetic Algoritm can solve, the Ispyred developers design their
code with a central principle: keep separate the problem specific components from the
algorithm-specific components. This approach allows to make algorithms as flexible and
generic as possible. The library is composed in two main components: problem-specific
components and algorithm-specific evolutionary components. More information are avail-
able on the website3

1ECJ: https://www.parabon.com/dev-center/origin/ecj/index.html
2ECJ Manual: https://cs.gmu.edu/ eclab/projects/ecj/manual.pdf
3Inspyred documentation: https://pythonhosted.org/inspyred/overview.html

30

2.1.3 DEAP - Distributed Evolutionary Algorithms in Python
Inspyred is not the only EC project implemented in Python, another example is DEAP
(Distributed Evolutionary Algorithms in Python). Its strength is the ease with
which you can define the structures used for the solutions. The main difference with the
other libraries is the ability to create types with the specifics given by the user, that will
also have to select the most suitable operator. There is also the possibility to build your
own operator. The documentation is available in "Read the Docs" format4

2.2 The history of MicroGP
As you can imagine the MicroGPv4 is not the first version, several versions in several
programming languages have been developed, improving the capabilities and introducing
new features and higher flexibility.

2.2.1 The version 1 - MicroGPv1
After almost a year of studies, the first version of MicroGP was created, it was the 2001
and the goal was to generate real assembly programs through an evolutionary algorithm.
The code was composed of hundreds of C lines and some scripts with the purpose of testing
feasibility of the idea (see Efficient machine-code test-program induction[7]).

The algorithm produced an individual in the form of directed acyclic graphs that were
modified by changing the topology and modifying the parameters present inside the nodes.
The final program was then built to be evaluated, starting from the graph.

2.2.2 The version 2 - MicroGPv2
The new version uses directed multi-graphs to encode the structure of the individuals and
allows to operate with specific microprocessors thanks to the ability of loading the list
of the parametric code fragments (macros) from a file. The core logic was completely
changed in order to embrace the Genetic Programming paradigm (hence the GP in the
name). The programming language remains C and its development has been supported by
Intel through a grant named "GP Based Test Program generation".

Some examples of test program generation for design validation of microprocessors can
be read in the paper MicroGP — An Evolutionary Assembly Program Generator [30]. A
subsequent re-design lead to a re-implementation in C++.

The tool has been used by engineers for the test and verification of small microproces-
sors, it is also possible to scale up tackling of a real Pentium 4 (see Automatic test pro-
grams generation driven by internal performance counters[21]). The first machine-written
programs able to become King of the Hill in all core-war competitions was created by Mi-
croGPv2 (see Efficient machine-code test-program induction[8]). Thanks to its flexibility
it has been used to design bayesian networks, create mathematical functions represented
as three, integer and combinatorial optimization, real-value parameter optimization.

2.2.3 The version 3 - MicroGPv3
Started in 2006 and released in different versions spread from 2010 to 2016, the MicroGPv3
brought a complete change of paradigm. The new goal was the generalization of the library
which allows the users finding solutions to a wider range of applications.

4DEAP documentation: https://deap.readthedocs.io/en/master/index.html

31

A description of the version released in 2010 (called Bluebell) can be found in the book
Evolutionary Optimization: the microGP toolkit [27]

2.3 Introduction to MicroGPv4

Figure 2.1: MicroGPv4 Logo

MicroGP is an optimizer that adopts Genetic Programming to find solutions to hard
problems. Starting from a bunch of randomly generated solutions, it applies a set of already
provided operators to the solutions changing their characteristics. The solutions that has
closer fitness score to the ideal solution are kept. The process repeats itself until an optimal
solution is found. This technique allows to explore the search space efficiently.

2.4 The goal
As mentioned above, there are several releases of MicroGP, the last one is the "v4" and
for the first time Python language has been used for the implementation.

Looking on the web, there is a big variety of libraries that implement evolutionary
algorithms, it is therefore clear the need for this kind of tools. The main uses are: industrial,
research and teaching. The v2 and v3 has been widely used for industrial purposes, but a
new target has been taken into account with the new version, it has been developed also
for research and teaching purpose. The package can be easily installed and used looking
at the examples inside it.

MicroGP allows to keep detached the evaluation of the individual and its generation.
This is an advantage for industrial uses because a company can execute the evaluation
on its machines without giving any industrial information to the developers in charge of
building the others evolutionary parts.

Individuals can be built with a very high structuring. With the other EC libraries
the possibilities of the solutions structures are restricted, for example with DEAP you can
define any kind of phenotype but it isn’t structured. With MicroGP I can build a procedure
that enters and exits from the protected mode of a Intel Pentium; this is impossible with
the other tools.

32

Chapter 3

Proposed solution

The aim of this chapter is to explain to the reader how MicroGPv4 package has been
designed, in order to ensure an easy and correct use of the tool.

As previously said the programming language used is Python v3.71. The individual is
composed by a graph managed by NetworkX v2.3 2, the log is colored by coloredlogs v4 3

and the plots of the solutions require Matplotlib v3.1 4.

3.0.1 OneMax Problem
We will consider the OneMax problem[6] as an example of a simple problem solvable
with Genetic Algorithms. Given a sequence of N random bits composing a bitstring (i.e.
10001010), the fitness score is given based on the number of ones present in it (higher is
better). The algorithm must generate a random set of individuals (strings of bits), evolve
them till they will contain only ones.

3.1 Constraints definition
MicroGP allows an amazing flexibility in building the possible solutions. The structure of
an individual can be described through sections (microgp.constraints.Section) that
contain one or moremacros (microgp.macro.Macro). Amacro is a fragment of text with
zero or more variable parameters (microgp.parameter.Parameter).

The first thing to do is to define the constraints that all solutions must follow.
The microgp.constraints.Constraints class contains the set of macros and sections
of which an individual is composed. Futhermore, you can define a set of properties
(microgp.properties.Properties) that will execute tests on the structure of the so-
lution. The fitness score will be computed by an evaluator stored as attribute of the
Constraint object.

The backbone of an individual is called instruction library. It must be defined in
this order: parameters, macros, sections and lastly the main section. Here is an example
of a the instruction library for the One Max problem (version 2) in which the individual
is composed by 8 macros with, each one, one parameter that can take two values (0 or 1):

� �
1 # Define a parameter of type ugp.parameter.Categorical that can take two values: 0

or 1

1Python: https://www.python.org/
2NextowkX: https://networkx.github.io/
3coloredlogs - PyPI: https://pypi.org/project/coloredlogs/
4Matplotlib: https://matplotlib.org/

33

2 bit = ugp . make_parameter (ugp . parameter . Categorical , alternatives=[0 , 1])
3 # Define a macro that contains a parameter of type ugp.parameter.Categorical
4 word_macro = ugp . Macro ("{bit}" , {’bit’ : bit })
5 # Create a section containing a macro that will appear 8 times
6 word_section = ugp . make_section (word_macro , size=(8 , 8) , name=’word_sec ’)
7 # Create a constraints library
8 library = ugp . Constraints ()
9 library [’main’] = ["Here is the bitstring" , word_section , ""]� �

Listing 3.1: Constraints definition for OneMax problem v2.

After that, the fitness type is chosen and the function that will evaluate the solutions
is set (See Listing 3.2). For more information about the evaluation function see Subsection
3.4.2.

� �
1 # Define the evaluator and the fitness type
2 def my_script (filename : str) :
3 with open (filename) as file : # Use file to refer to the file object
4 data = file . read ()
5 count = data . count (’1’)
6 return list (str (count))
7

8 library . evaluator = ugp . fitness . make_evaluator (script=my_script , fitness_type=ugp .
fitness . Lexicographic)� �

Listing 3.2: Setting up the evaluator function and the fitness type.

3.1.1 Parameters
The parameters are used to make the macros dynamic. For example you can build a
parameter of type microgp.parameter.categorical.Categorical passing some values
(alternatives); the macro that contains this kind of parameter will take the given values
and the resulting text of the macro will depends on the values taken by the assigned
parameters.

The method microgp.parameter.helpers.make_parameter allows to build a param-
eter providing the parameter class type and the needed attributes (See Listing 3.1 line
2).

There are several types of parameters (Figure 3.1):

• microgp.parameter.categorical.Categorical, it can assume one value among
the specified unsorted alternatives;

• microgp.parameter.categorical.CategoricalSorted, it can assume one value
among the specified sorted alternatives;

• microgp.parameter.bitstring.Bitstring, it can assume a fixed-length bitstring
value

• microgp.parameter.integer.Integer, it can assume an integer value between a
specified minimum and maximum;

• microgp.parameter.reference.LocalReference, it is used to reference a Node
connected through (undirected) “next” edges;

• microgp.parameter.reference.ExternalReference, it is used to reference a Node
non-connected through (undirected) “next” edges;

• microgp.parameter.special.Information, dummy Parameter whose purpose is to
insert information about the state of the system into the individual.

34

Here is an example of Parameters definition:� �
1 registers = ugp . make_parameter (ugp . parameter . Categorical , alternatives=[’ax’ , ’bx’ ,

’cx’ , ’dx’])
2 cat_sor = ugp . make_parameter (ugp . parameter . CategoricalSorted , alternatives=[’e’ , ’f

’ , ’g’ , ’h’ , ’i’ , ’l’])
3 bitstring8 = ugp . make_parameter (ugp . parameter . Bitstring , len_=8)
4 uint256 = ugp . make_parameter (ugp . parameter . Integer , min=0, max=256)
5 int256 = ugp . make_parameter (ugp . parameter . Integer , min=- 128 , max=128)
6 ref_fwd = ugp . make_parameter (ugp . parameter . LocalReference ,
7 allow_self=False ,
8 allow_forward=True ,
9 allow_backward=False ,

10 frames_up=1)
11 ref_bcw = ugp . make_parameter (ugp . parameter . LocalReference ,
12 allow_self=False ,
13 allow_forward=False ,
14 allow_backward=True ,
15 frames_up=1)
16 proc1 = ugp . make_parameter (ugp . parameter . ExternalReference , section_name=’proc1’ ,

min=5, max=5)� �
Listing 3.3: Examples of Parameters definition.

Figure 3.1: Parameter class schema.

3.1.2 Macro
A macro is made of a string that contains zero or more previously built parameters. The
macro builder receives a string, a dictionary containing the names of the parameters and
their types (classes, not objects) (See Listing 3.1 line 4).

3.1.3 Section
A section (Figure 3.1) is composed by one or more macros, a set or a list of other subsec-
tions:

• microgp.constraints.MacroPool: pool of macros;

• microgp.constraints.RootSection (root section of an individual)

• microgp.constraints.SubsectionsSequence: sequence of sections;

35

• microgp.constraints.SubsectionsAlternative: sequence of sections that can be
alternatively chosen.

Figure 3.2: Section class schema.

Each section can be built by the microgp.constraints.make_section method speci-
fying the pool of macros contained (one or more) (section_definition), the name of the
section (name), the number of macros that the section can contain (size), how many times
the section can appear inside an individual (instances) and how to translate a node into
string label_format.

The first parameter (section_definition) can be a macro, a list or a set of macros, a
string, a list or a set of sections; if a list is passed to the method, then a SubsectionsSequence
will be created, otherwise if the passed object is a set, the method will create a
SubsectionsAlternative containing the given set of macros/sections.

Examples:

� �
1 word_section = ugp . make_section (word_macro , size=(1 , 1) , name=’word_sec ’)� �

Listing 3.4: Create a section of name word_sec containing a macro (word_macro),
it will appear once inside the individual.

� �
1 sec_jmp = ugp . make_section (jmp1 , size=(1 , 4) , name=’sec_jmp ’)� �

Listing 3.5: Create a section of name sec_jmp that contains 1 to 4 macros (jmp1),
it will appear once inside the individual.

� �
1 generic_math = ugp . make_section ({ add , sub } , size=(2 , 5) , instances=(0 , 10))� �

Listing 3.6: Create a section with a default unique name that contains 2 to 5 macros
chosen in add, sub and it can appear 0 to 10 times inside the individual.

� �
1 library [’main’] = [
2 ’Prologue ...’
3 [{ sec2a , sec2b } , sec_jmp , ’; this is a comment ’] ,
4 ’Epilogue ...’
5]� �

Listing 3.7: Build the main section with 3 sections, the second one is a
SubsectionsSequence that contains 3 sections: a SubsectionsAlternative
sec2a, sec2b, a simple section sec_jmp (MacroPool) a simple section containing a
Macro without parameters (MacroPool)

36

3.1.4 Individual object
The microgp.individual.Individual object represents a possible solution, the
Individual.graph attribute is a NetworkX5 MultiDiGraph6, the nodes, inside it, are
identified by their unique identifier (microgp.node.NodeID object that inherits from int).
Each node (Figure 3.3) contains:

• a microgp.macro.Macro object;

• a dictionary that contains microgp.parameter.Parameter as values;

• a tuple of microgp.common_data_structures.Frame.

Figure 3.3: Example of a node

A Frame is a unique instance of a section, its name is unique and can be generated
by the microgp.individual.get_unique_frame_name() method in the following way:� �

1 new_unique_frame = Frame (individual . get_unique_frame_name (section) , section)� �
Listing 3.8: Instantiating a unique Frame.

3.1.5 Properties
Properties are boxes that can contain values and checkers that run tests on the values. The
testers can return True or False. Values in Properties can be customized, for instance a
value can be the number of macros in a certain section and can be set a checker on it that
checks that this values doesn’t exceed a certain threshold.

Builders can be:

• custom_builders: customizable by the user;

• default_builders: builders provided with MicroGP package.

Another distinction:

• base_builders: I can set a certain value;

5NetworkX: https://networkx.github.io/
6NetworkX MultiDiGraph: https://networkx.github.io/documentation/networkx-

1.9.1/reference/classes.multigraph.html

37

• cumulative_builders: I can set a value and it can be added up recursively going
through the frame tree.

Properties are used to check if a frame (i.e. the portion of the individual implementing a
given section) is valid. First, all functions registered as ‘values builders‘ are called, then
all functions registered as ‘check‘ are evaluated; if all succeeded, then True is turned.

‘Values‘ are divided in ‘custom‘ and ‘base‘. User’s builders build custom ones. Val-
ues can be retrieved through property ‘values‘ (i.e. microgp.properties.Properties.
custom_values()) that merge the two, alternatively they can be retrieved through prop-
erties ‘base_values‘and ‘custom_values‘.

‘Values builders‘ are functions returning a dictionary of values {’value_name’: value}
that is added to the current value-bag. Values cannot be shadowed.

‘Checks‘ are called when the value bag is complete and get getting all values as param-
eters, i.e. ‘check(**values)‘.

Here is an example:

� �
1 sec2a . properties . add_cumulative_builder (lambda num_nodes , ∗∗v : {’sec2a’ : num_nodes

})
2 sec2b . properties . add_cumulative_builder (lambda ∗∗v : {’sec2b’ : v [’num_nodes ’] })
3 library . global_properties . add_check (lambda sec2a , sec2b , ∗∗v : sec2a == sec2b)� �

Listing 3.9: Create two cumulative (custom) builders and add a checker that tests
that two sections have the same number of nodes.

3.2 Darwin class
This class manages the evolution, stores the genetic operators, the population, and the
archive. You can set some evolution parameters (lambda, tau, nu, sigma, mu) and a list
of stopping conditions (in the future releases). A microgp.population.Population and
a microgp.population.Archive objects are also initialized.

� �
1 mu = 10
2 nu = 20
3 sigma = 0.2
4 lambda_ = 7
5 max_age = 10
6 darwin = ugp . Darwin (
7 constraints=library ,
8 operators=operators ,
9 mu=mu ,

10 nu=nu ,
11 lambda_=lambda_ ,
12 sigma=sigma ,
13 max_age=max_age)� �

Listing 3.10: Initialize a Darwin object.

� �
1 darwin . evolve ()
2 logging . bare ("This is the population:")
3 for individual in darwin . population :
4 msg = ’Printing individual ’ + individual . id
5 ugp . print_individual (individual , msg=msg , plot=True)
6 ugp . logging . bare (individual . fitness)� �

Listing 3.11: Evolve and print results (Population).

38

� �
1 logging . bare ("These are the best ever individuals:")
2 ugp . print_individual (darwin . archive)� �

Listing 3.12: Print the Archive that contains the best eve individuals.

3.2.1 Operators
This class wraps all genetic operators, manages statistics (in the future versions), and
GenOperator selection. The selection is made on the basis of the arity and the success and
failure statistics of the operator.� �

1 operators = ugp . Operators ()
2 init_op1 = ugp . GenOperator (ugp . create_random_individual , 0)
3 operators += init_op1
4 mutation_op1 = ugp . GenOperator (ugp . remove_node_mutation , 1)
5 operators += mutation_op1
6 crossover_op1 = ugp . GenOperator (ugp . switch_proc_crossover , 2)
7 operators += crossover_op1
8 crossover_op2 = ugp . GenOperator (ugp . five_individuals_crossover , 5)
9 operators += crossover_op2� �

Listing 3.13: Create and fill an Operators object to be passed to a Darwin object.

� �
1 selected_operators = operators . select (max_arity=0, k=10)
2 selected_operators = operators . select (min_arity=1, max_arity=2 k=20)� �

Listing 3.14: Select k operators that has arity in the given range

3.2.2 GenOperator
Wrapper of a method that implements the algorithm manipulating or building one or more
individuals. This class will also manage (in the future versions) the statistics applied to
the assigned method.

The method wrapped in the GenOperator must have **kwargs in its parameters.� �
1 init_op1 = ugp . GenOperator (ugp . create_random_individual , 0)
2 mutation_op1 = ugp . GenOperator (ugp . remove_node_mutation , 1)
3 crossover_op1 = ugp . GenOperator (ugp . switch_proc_crossover , 2)
4 crossover_op2 = ugp . GenOperator (ugp . five_individuals_crossover , 5)� �

Listing 3.15: Build three genetic operators passing the method and the arity.

� �
1 selected_crossover_genoperator (individual1 , individual2)
2 selected_mutation_genoperator (individual , sigma=0.7 , constraints=constraints))
3 individuals = tuple (ind1 , ind2 , ind3 , ind4 , ind5)
4 kwargs = {’param1 ’ : var1 , ’param2 ’ : var2 , ’param3 ’ : [a , b , c , d , e] }
5 selected_crossover_5_individuals (∗ individuals , kwargs)� �

Listing 3.16: Call the method inside the genetic operator.

3.2.3 Population
This class contains the set of individuals composing the population and manages the
selection, insertion, removal of the individuals based on the age or whether their phenotype
is already in the population (future versions). A non-valid individual can’t be inserted.

39

� �
1 darwin . population += set (list_of_individuals)� �

Listing 3.17: Add a set of individuals in the population

� �
1 darwin . population += set (individual_A)
2 darwin . population += set (individual_B)� �

Listing 3.18: Add a single individual in the population.

� �
1 darwin . population -= set (individual_A)� �

Listing 3.19: Remove a single individual from the population.

� �
1 darwin . population = darwin . population - set (individual_A)� �

Listing 3.20: Remove multiple individuals (set) from the population.

� �
1 selected_individual = darwin . tournament_selection (tau)� �

Listing 3.21: Retrieve from population an individual using tournament selection
Tournament selection.

� �
1 population = darwin . population . individuals� �

Listing 3.22: Retrieve the entire set of individual contained in the population.

3.2.4 Archive
This class manages the set of individuals not dominated by all other individuals currently
or previously contained in the microgp.darwin.Darwin._population.

� �
1 self . _archive += individual� �

Listing 3.23: Try to insert an individual in the archive.

The individual will be inserted only if it is not dominated by all individual already
inside the archive. If it is not dominated then the individuals that just became dominated
are removed from the archive.

3.3 Individual Operators
MicroGPv4 package offers some basic variation operators that can be found in microgp.
individual_operators. Three of them are crossover operators, four are mutation
operators and one has the goal to create a random individual. As you can see during
the Dawin object declaration, the methods that are listed in this module can be passed
to the constructor of a GenOperator an then added to the list of operators used by the
microgp.darwin.Darwin object.

40

3.3.1 Initialization operator
The methodCreate random individual creates a random individual. Individuals are cre-
ated starting from section main. The new individual is eventually checked using is_valid.
If invalid it is discarded and the generation process starts over. The function eventually
gives up after a number of tries and rises an exception.

3.3.2 Mutation operators
This kind of operator change one or more genes that describe an individual. The intensity
of the change and the probability that it takes place depend on sigma. This is a parameter
specified during the creation of the Darwin object and it can assume values in [0, 1].

The Remove node mutation method tries to remove a node taken from the possible
set of nodes in the individual. The removal could fail because of the minimum number
of nodes that the individual must contain. This method returns a modified copy of the
passed individual leaving it unchanged (see Pseudocode 1).

Algorithm 1 Remove node mutation
1: procedure remove_node_mutation
2: new_individual ← copy of original_individual
3: do
4: if num of nodes in new_individual <= 2 then: return Empty list
5: shrinkable_frames ← (list of frames that have min_size) <= (num of

nodes in frame) - 1
6: if shrinkable_frames is empty then return Empty list
7: chosen_frame ← choose a random frame in shrinkable_frames
8: node_to_remove ← choose a random node in chosen_frames
9: if node_to_remove == entry_point of new_individual then

10: entry_point ← next node of node_to_remove
11: remove node_to_remove from new_individual
12: for all nodes of the ’next-chain’ in which node_to_remove was contained

do
13: if current_node has a parameter of type LocalReference with des-

tination = node_to_remove then
14: mutate the parameter
15: while random number > sigma
16: finalize new_individual
17: if new_individual is not valid then return Empty list
18: elsereturn List with the new_individual

The Add node mutation inserts a new node in the individual graph. An insertion
of a new node could fail because of there are no valid targets for the node that contains a
LocalReference. See Pseudocode 2).

The Hierarchical mutation builds a list of all parameters contained in all nodes then
choose one of them and mutate it. See Pseudocode 3.

The Flat mutation builds a list of all parameters contained in all nodes then choose
one of them and mutate it. This mutation differs fron the previous one in the probability
with which the Parameter is chosen. See Pseudocode 4.

41

Algorithm 2 Add node mutation
1: procedure add_node_mutation
2: new_individual ← copy of original_individual
3: do
4: if num of nodes in new_individual <= 2 then: return Empty list
5: expandable_frames ← (list of frames that have max_size) >= (num of

nodes in frame) + 1
6: if expandable_frames is empty then return Empty list
7: chosen_frame ← choose a random frame in expandable_frames
8: chosen_parent_node ← choose a random node in chosen_frame
9: chosen_macro ← choose a random macro in the MacroPool of

chosen_parent_node
10: node_to_insert ← insert in new_individual a new node with parent

= chosen_parent_node
11: initialize macros (chosen_macro) of node_to_insert
12: while random number > sigma
13: finalize new_individual
14: if new_individual is not valid then return Empty list
15: elsereturn List with the new_individual

Algorithm 3 Hierarchical mutation
1: procedure hierarchical_mutation
2: new_individual ← copy of original_individual
3: do
4: while True do
5: chosen_node ← choose a random node among all nodes in

new_individual
6: for all parameters in chosen_node do
7: if current_parameter is not of type Information then
8: candidate_parameters ← candidate_parameters +

current_parameter
9: if candidate_parameters is not empty then

10: chosen_parameter ← choose a random parameter in
candidate_parameters

11: mutate the chosen_parameter
12: break
13: while random number > sigma
14: finalize new_individual
15: if new_individual is not valid then return Empty list
16: elsereturn List with the new_individual

42

Algorithm 4 Flat mutation
1: procedure flat_mutation
2: new_individual ← copy of original_individual
3: do
4: for all nodes in new_individual do
5: for all parameters in current_node do
6: if current_parameter is not of type Information then
7: candidate_parameters ← candidate_parameters +

current_parameter
8: if candidate_parameters is empty then return Empty list
9: chosen_parameter ← choose a random parameter in

candidate_parameters
10: mutate the chosen_parameter
11: while random number > sigma
12: finalize new_individual
13: if new_individual is not valid then return Empty list
14: elsereturn List with the new_individual

3.3.3 Crossover operators
Switch procedure crossover: let’s consider a sequence of nodes connected through edges
with label= ‘next’, we will call this sequence next-chain. This operator selects the next-
chains belonging to the common sections between the two parents (excluding the main
section) and link a random node with ExternalReference parameter in it, to the selected
next-chain after copying it from the source to the destination individual. The word ‘proc’
in method name refers to the next-chains that are not ‘main’ sections. The destination
individual is a copy of a parent chosen randomly and then modified with the new cloned
next-chain.

In Figure 3.4 you can see two possible parents individuals that are used to generate a
new solution; the characters in the circles indicates generic macros. In Figure 3.5 there are
some examples of what this crossover can produce; in red the parts that don’t derive from
the original copied individual.

Figure 3.4: Example of parents selected to generate a new individual with Switch
procedure crossover.

43

Figure 3.5: Example of new solutions produced by Switch procedure crossover.

MacroPool OneCut crossover (see Subsection 1.5.3) builds two lists of MacroPools
in parentA and parentB belonging to common sections, chooses one element for each list and
chooses one node (called cut_node). parentA and parentB are cloned and subsequently
modified (in individualC, individualD); each individual will have the chosen MacroPool
with an half copied from the other individual. Examples:

• parentA has a MacroPool with nodes: [A, B, C, D, E];

• parentB has a MacroPool with nodes: [F, G, H, I, L];

• the chosen cut_node are B and G;

• individualC will have a MacroPool with nodes: [A, B, H, I, L];

• individualD will have a MacroPool with nodes: [F, G, C, D, E].

If the chosen MacroPools has a different number of nodes, then two cut point will be
chosen:

• parentA has a MacroPool with nodes: [A, B, C, D, E, F, G];

• parentB has a MacroPool with nodes: [H, I, L];

• the chosen cut_node are F and H;

• will have a MacroPool with nodes: [A, B, C, D, E, F, I, L];

• individualD will have a MacroPool with nodes: [H, G];

44

In Figure 3.6 you can see two possible parents individuals that are used to generate a
new solution, the green area underlines the nodes in a MacroPool, the red "|" indicates
the point chosen for the cut. In Figure 3.7 there is an example of what this crossover can
produce; the circles with red borders are the nodes that have been copied from the other
individual.

Figure 3.6: Example of parents selected to generate a new individual with MacroPool
OneCut crossover.

Figure 3.7: Example of new solutions produced by MacroPool OneCut crossover.

MacroPool Uniform crossover: builds two lists of MacroPools in parentA and par-
entB belonging to common sections, chooses one element for each list. parentA and parentB
are cloned and subsequently modified (in individualC , individualD); each individual will
have the chosen MacroPool swapped with that of the other. Examples:

• parentA has a MacroPool with nodes: [A, B, C, D, E];

• parentB has a MacroPool with nodes: [F, G, H, I, L];

• individualC will have a MacroPool with nodes: [F, G, C, D, E];

• individualD will have a MacroPool with nodes: [A, B, H, I, L].

If the chosen MacroPools has a different number of nodes:

• parentA has a MacroPool with nodes: [A, B, C, D, E, F, G];

• parentB has a MacroPool with nodes: [H, I, L];

• individualC will have a MacroPool with nodes: [H, I, L];

• individualD will have a MacroPool with nodes: [A, B, C, D, E, F, G].

45

In Figure 3.8 you can see two possible parents individuals that are used to generate a
new solution, the green area underlines the nodes in a MacroPool. In Figure 3.9 there is
an example of what this crossover can produce; the circles with red borders are the nodes
that have been copied from the other individual.

Figure 3.8: Example of parents selected to generate a new individual with MacroPool
Uniform crossover.

Figure 3.9: Example of new solutions produced by MacroPool Uniform crossover.

3.4 Fitness and evaluation
The library allows the use two main types of fitnesses (FitnessTuple, FitnessTupleMulti-
obj), both inherit from the microgp.fitness.Base class.

microgp.fitness.Base is the base class for handling Tuple-like fitnesses from scripts
or functions. The different selection schemes are implemented simply by overriding the >
(greater than) operator.

Please note that, according to Spencer’s ‘Survival of the Fittest’[24], the bigger the
better. Thus we are maximizing the fitness and not minimizing a mathematical function.

Fitness Tuple is the fitness used for single objective purposes (see Figure 3.10). Fit-
ness Tuple Multi-objective is the fitness used for multiple objective purposes (see Figure
3.11).

3.4.1 Order by fitness logic
A method named order_by_fitness(individuals_pool) is used to get a list of individ-
uals ordered by their correspondent fitness. This function calls the sort of the fitness,
following the object-oriented paradigm. The sort method of FitnessTuple objects is a sim-
ple Python sort with reverse order, while the FitnessTupleMultiobj object sorting method
uses the Pareto frontier[22] to determine which individuals dominate the others.

46

Figure 3.10: Schema of Fitness Tuple class.

Figure 3.11: Schema of Fitness Tuple Multi-objective class.

3.4.2 Evaluator
As previously explained, the evaluator is declared during the construction of Constraints.
The method microgp.fitness.evaluator.make_evaluator(script, fitness_type,
num_elements) can get a script that is a callable method or a string indicating the path of
the file that contains the script. During the declaration of the evaluator you can specify the
type of fitness passing the class type. The last parameter is the number of relevant element
in the script output; the remaining are considered "comment". If num_elements=None then
the all output is part of the fitness.

Here is an example of evaluator that runs a script from the bash:

� �
1 if sys . platform != "win32" :
2 script = "./ evaluator.sh"
3 else :
4 script = "evaluator.bat"
5 library . evaluator = ugp . fitness . make_evaluator (evaluator=script , fitness_type=ugp .

fitness . Lexicographic)� �
Listing 3.24: Declaration of an evaluator running a script stored in a file.

3.5 Evolution process
The evolution process is managed by microgp.darwin.Darwin class through the
do_generation() method that is called till one or more stopping conditions returns True.
In the first release of MicroGP stopping condition have not yet been implemented, therefore
a while-loop limits to 10 the number of generations.

A list of operators of length lambda are selected and used to generate an offspring that
will be filtered and joined to the population. The population is also shrunk in order to
keep only mu individuals in it.

You can see the pseudocode of microgp.darwin.Darwin.do_generation() here 5.

47

Algorithm 5 Do generation
1: procedure do_generation
2: if population is empty then:
3: selected_operators ← get from operators a GenOperator with max

arity = 0
4: else
5: selected_operators ← get from operators a GenOperator with min

arity = 1
6: for operator in operators do
7: if arity of operator > 0 then
8: original_individuals ← select individuals from population with

selection pressure = tau
9: temporary_offspring ← list of new individuals generated by calling

operator
10: final_offspring ← filter not valid individuals
11: update operator statistics based on the number of valid individuals pro-

duces
12: whole_offspring = whole_offspring + final_offspring
13: population ← population + whole_offspring
14: filter population by age
15: remove clones from population
16: sort and keep only mu individuals in population
17: update archive
18: grow old each individual in population

48

3.5.1 Parent selection
The selection of individuals passed to the variation operators is handled by the microgp.po-
pulation.Population object through the method Population.select(tau). It exploits
the tournament selection[3], which runs several tournaments among a few individuals and
returns the best one based on their fitness score.

tau is a microgp.darwin.Darwin parameter that specifies the selection pressure.
The higher it is, the higher is the number of tournament participants, thus weak individuals
are less likely to be selected.

3.5.2 Offspring selection
Several filters are applied to the offspring before join it with the population:

• None and not valid individuals are removed;

• individuals with age greater than the maximum age specified in Darwin class are
removed;

• individuals with the same phenotype (in the future versions).

This filtered resulting offspring is added to the current population, ordered by fitness and
only the best mu individuals are kept inside the population.

49

Chapter 4

Experiments

4.1 Introduction
MicroGPv4 comes with three experiments that can be also used as examples of the oper-
ating logic. The experiments are solutions to the OneMax problem already discussed in
Subsection 3.0.1.

4.2 OneMax problem - Base
As any library running Genetic Algorithms, MicroGPv4 can be tested for solving the
basic OneMax problem. Two alternatives can be used: the individual is composed by 8
categorical parameters or 1 bitstring parameter.

4.2.1 OneMax Base version 1
With reference to Listing 4.1, in version one an individual is composed by a word_section
(line 29) which contains a single macro (word_macro line 27) with a parameter (bit) of type
microgp.parameter.bitstring.Bitstring of length 8 bits (line 25). The main section
contains a simple prologue. The evaluator in both versions is a Python method (my_script
line 37) returning an int value that is the sum of ’1’ in the individual’s phenotype.

Here is the code:� �
1 import argparse
2 import sys
3

4 import microgp as ugp
5 from microgp . utils import logging
6

7 if __name__ == "__main__" :
8 ugp . banner ()
9 parser = argparse . ArgumentParser ()

10 parser . add_argument ("-v" , "--verbose" , action="count" , default=0, help="
increase log verbosity")

11 parser . add_argument ("-d" , "--debug" , action="store_const" , dest="verbose" ,
const=2,

12 help="log debug messages (same as -vv)")
13 args = parser . parse_args ()
14 if args . verbose == 0 :
15 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . INFO)
16 elif args . verbose == 1 :
17 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . VERBOSE)
18 elif args . verbose > 1 :
19 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . DEBUG)
20 ugp . logging . debug ("Verbose level set to DEBUG")
21 ugp . logging . cpu_info ("Program started")
22

50

23

24 # Define a parameter of type ugp.parameter.Bitstring and length = 8
25 word8 = ugp . make_parameter (ugp . parameter . Bitstring , len_=8)
26 # Define a macro that contains a parameter of type ugp.parameter.Bitstring
27 word_macro = ugp . Macro ("{word8}" , {’word8 ’ : word8 })
28 # Create a section containing a macro
29 word_section = ugp . make_section (word_macro , size=(1 , 1) , name=’word_sec ’)
30

31 # Create a constraints library
32 library = ugp . Constraints ()
33 # Define the sections in the library
34 library [’main’] = ["Bitstring:" , word_section]
35

36 # Define the evaluator method and the fitness type
37 def my_script (data : str) :
38 count = data . count (’1’)
39 return list (str (count))
40

41 library . evaluator = ugp . fitness . make_evaluator (evaluator=my_script ,
fitness_type=ugp . fitness . Lexicographic)

42

43 # Create a list of operators with their aritiy
44 operators = ugp . Operators ()
45 # Add initialization operators
46 operators += ugp . GenOperator (ugp . create_random_individual , 0)
47 # Add mutation operators
48 operators += ugp . GenOperator (ugp . hierarchical_mutation , 1)
49 operators += ugp . GenOperator (ugp . flat_mutation , 1)
50

51 # Create the object that will manage the evolution
52 mu = 10
53 nu = 20
54 sigma = 0.7
55 lambda_ = 7
56 max_age = 10
57

58 darwin = ugp . Darwin (
59 constraints=library ,
60 operators=operators ,
61 mu=mu ,
62 nu=nu ,
63 lambda_=lambda_ ,
64 sigma=sigma ,
65 max_age=max_age ,
66)
67

68 # Evolve and print individuals in population
69 darwin . evolve ()
70 logging . bare ("This is the final population:")
71 for individual in darwin . population :
72 msg = f"Solution {str(individual.id)} "
73 ugp . print_individual (individual , msg=msg , plot=True)
74 ugp . logging . bare (f"Fitness: {individual.fitness}")
75 ugp . logging . bare ("")
76

77 # Print best individuals
78 ugp . print_individual (darwin . archive . individuals , msg="These are the best ever

individuals:" , plot=True)
79

80 ugp . logging . cpu_info ("Program completed")
81 sys . exit (0)� �

Listing 4.1: OneMax Base version 1 - Source code.

As you can see in Listing 4.1 the only useful variation operators are the Hierarchical
mutation and Flat mutation (lines 48 and 49). No crossover operators are needed because
there is only one node that contains mutable parameters.

In Figure 4.1 is shown the plof of a solution. It has two nodes: prologue and a macro
containing a bitstring parameter.

Here is a possible log showing the results (Listing 4.2):

51

� �
1 This is the final population :
2 Solution 49
3 Bitstring :
4 01011111
5 Fitness : Lexicographic (6)
6

7 Solution 71
8 Bitstring :
9 01110111

10 Fitness : Lexicographic (6)
11

12 Solution 65
13 Bitstring :
14 10111111
15 Fitness : Lexicographic (7)
16

17 Solution 41
18 Bitstring :
19 11111110
20 Fitness : Lexicographic (7)
21

22 Solution 60
23 Bitstring :
24 11110111
25 Fitness : Lexicographic (7)
26

27 Solution 59
28 Bitstring :
29 11101111
30 Fitness : Lexicographic (7)
31

32 Solution 40
33 Bitstring :
34 11011101
35 Fitness : Lexicographic (6)
36

37 Solution 56
38 Bitstring :
39 10111101
40 Fitness : Lexicographic (6)
41

42 Solution 64
43 Bitstring :
44 11011011
45 Fitness : Lexicographic (6)
46

47 Solution 39
48 Bitstring :
49 01111111
50 Fitness : Lexicographic (7)
51

52 These are the best ever individuals :
53 Bitstring :
54 01111111
55 Bitstring :
56 10111111
57 Bitstring :
58 11111110
59 Bitstring :
60 11110111
61 Bitstring :
62 11101111� �

Listing 4.2: OneMax Base version 1 - Example log.

4.2.2 OneMax Base version 2
With reference to Listing 4.3, in version two an individual is composed by a word_section
(line 35) which contains exactly 8 macros (word_macro line 33) with a parameter of type

52

Figure 4.1: Plot of an individual generated for OneMax Base version 1 problem.

microgp.parameter.categorical.Categorical (line 31) that can assume as value: 1 or
0. The main section contains a simple prologue and epilogue. The evaluator is the same
already seen in version 1.

Here is the code:� �
1 import argparse
2 import sys
3

4 import microgp as ugp
5 from microgp . utils import logging
6

7 if __name__ == "__main__" :
8 ugp . banner ()
9

10 parser = argparse . ArgumentParser ()
11 parser . add_argument ("-v" , "--verbose" , action="count" , default=0,
12 help="increase log verbosity")
13 parser . add_argument ("-d" , "--debug" , action="store_const" , dest="verbose" ,
14 const=2, help="log debug messages (same as -vv)")
15 args = parser . parse_args ()
16

17 if args . verbose == 0 :
18 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . INFO)
19 elif args . verbose == 1 :
20 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . VERBOSE)
21 elif args . verbose > 1 :
22 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . DEBUG)
23 ugp . logging . debug ("Verbose level set to DEBUG")
24

25 ugp . logging . cpu_info ("Program started")
26

27 # Delete old solutions
28 ugp . delete_solutions ()
29

30 # Define a parameter of type ugp.parameter.Categorical that can take two values:
0 or 1

31 bit = ugp . make_parameter (ugp . parameter . Categorical , alternatives=[0 , 1])
32 # Define a macro that contains a parameter of type ugp.parameter.Categorical
33 word_macro = ugp . Macro ("{bit}" , {’bit’ : bit })
34 # Create a section containing 8 macros
35 word_section = ugp . make_section (word_macro , size=(8 , 8) , name=’word_sec ’)
36

37 # Create a constraints library
38 library = ugp . Constraints ()
39 library [’main’] = ["Here is the bitstring" , word_section , ""]
40

41 # Define the evaluator and the fitness type
42 def my_script (filename : str) :
43 with open (filename) as file :
44 data = file . read ()
45 count = data . count (’1’)
46 return list (str (count))

53

47

48 library . evaluator = ugp . fitness . make_evaluator (script=my_script , fitness_type=
ugp . fitness . Lexicographic)

49

50 # Create a list of operators with their arities
51 operators = ugp . Operators ()
52 # Add initialization operators
53 operators += ugp . GenOperator (ugp . create_random_individual , 0)
54 # Add mutation operators
55 operators += ugp . GenOperator (ugp . hierarchical_mutation , 1)
56 operators += ugp . GenOperator (ugp . flat_mutation , 1)
57 # Add crossover operators
58 operators += ugp . GenOperator (ugp . macro_pool_one_cut_point_crossover , 2)
59 operators += ugp . GenOperator (ugp . macro_pool_uniform_crossover , 2)
60

61 # Create the object that will manage the evolution
62 mu = 10
63 nu = 20
64 sigma = 0.7
65 lambda_ = 7
66 max_age = 10
67

68 for _ in range (1) :
69 darwin = ugp . Darwin (
70 constraints=library ,
71 operators=operators ,
72 mu=mu ,
73 nu=nu ,
74 lambda_=lambda_ ,
75 sigma=sigma ,
76 max_age=max_age ,
77)
78

79 # Evolve
80 darwin . evolve ()
81 logging . bare ("This is the final population:")
82 for individual in darwin . population :
83 ugp . print_individual (individual , plot=True)
84 ugp . logging . bare (individual . fitness)
85 ugp . logging . bare ("")
86

87 # Print best individuals
88 logging . bare ("These are the best ever individuals:")
89 ugp . print_individual (darwin . archive)
90

91 ugp . delete_solutions ()
92

93 ugp . logging . cpu_info ("Program completed")
94 sys . exit (0)� �

Listing 4.3: OneMax Base version 2 - Source code.

As you can see in Listing 4.3 the only useful variation operators are the Hierarchical
mutation, Flat mutation, MacroPool OneCut crossover and MacroPool Uniform crossover.
The crossover operators applies variations to the graph structure because each node con-
tains a macro with one parameter.

Here is a possible log (Listing 4.4):

� �
1 This is the final population :
2 Solution 21
3 Bitstring :
4 0
5 1
6 1
7 1
8 0
9 1

10 1
11 1
12 Fitness : Lexicographic (6)

54

13

14 . . .
15

16 Solution 44
17 Bitstring :
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 Fitness : Lexicographic (8)
27

28 These are the best ever individuals :
29 Bitstring :
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1� �

Listing 4.4: OneMax Base version 2 - Example log

In Figure 4.2 is represented the graph of a solution. There are 9 nodes: the first is the
prologue and the other nodes contains macros with a Categorical parameter.

Figure 4.2: Plot of an individual generated for OneMax Base version 2 problem

4.3 OneMax problem - Assembly
The following code (Listing 4.7) produces assembly code that can be run on x86 processors.
The goal is to generate an assembly script that writes in eax a binary number with as much
as ones (1) as possible.

The evaluator is a .bat (Listing 4.5) file that generates an .exe file in charge of call a
script that counts the number of ones in the returned integer value.

� �
1 @echo off

55

2

3 rem comment
4

5 del a . exe
6 gcc main . o %1
7

8 if exist a . exe (
9 . \ a . exe

10) else (
11 echo - 1
12)� �

Listing 4.5: OneMax Assembly evaluator (eval.bat)

A possible solution (phenotype) could be the one in the Listing 4.6

. f i l e " s o l u t i o n . c"

. t ex t

. g l o b l _darwin

. de f _darwin ; . s c l 2 ; . type 32 ; .
endef

_darwin :
LFB17 :

. c f i_ s t a r t p r o c
pushl %ebp
. c f i_de f_c fa_o f f s e t 8
. c f i _ o f f s e t 5 , −8
movl %esp , %ebp
. c f i_de f_c fa_reg i s t e r 5

movl $−31312 , %eax
movl $25598 , %ebx
movl $−24861 , %ecx
movl $−19236 , %edx

sub %ebx , %edx
sh l $216 , %ecx
jnz n9
jnc n23
cmp %ecx , %ecx
sh l $207 , %edx

n9 :
j c n22
xor %ebx , %eax
jnz n28
xor %eax , %ebx
sub %edx , %edx
jno n15

n15 :
j z n28
shr $229 , %ebx
sub %ebx , %eax
j c n23
cmp %edx , %ebx
and %ebx , %ecx
sh l $186 , %eax

56

n22 :
cmp %eax , %edx

n23 :
jnz n29
j z n29
jmp n28
j c n29
sh l $143 , %ecx

n28 :
or %ebx , %eax

n29 :
movl %eax , −4(%ebp)
movl −4(%ebp) , %eax
l eave
. c f i_ r e s t o r e 5
. c f i_de f_cfa 4 , 4
r e t
. c f i_endproc

LFE17 :
. ident "GCC: (MinGW. org GCC−8.2.0−5) 8 . 2 . 0 "

F i tne s s s c o r e : Lex i cograph ic (29)

Listing 4.6: OneMax Assembly possible script solution (phenotype).

The correspondent graph plot is:

Figure 4.3: Plot of an individual generated for OneMax Assembly problem. Black
edges are next edges and the red ones are LocalReferences (jump).

� �
1 import argparse
2 import sys
3

4 import microgp as ugp
5 from microgp . utils import logging
6

7 if __name__ == "__main__" :
8 ugp . banner ()

57

9 parser = argparse . ArgumentParser ()
10 parser . add_argument ("-v" , "--verbose" , action="count" , default=0, help="

increase log verbosity")
11 parser . add_argument ("-d" , "--debug" , action="store_const" , dest="verbose" ,

const=2,
12 help="log debug messages (same as -vv)")
13 args = parser . parse_args ()
14 if args . verbose == 0 :
15 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . INFO)
16 elif args . verbose == 1 :
17 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . VERBOSE)
18 elif args . verbose > 1 :
19 ugp . logging . DefaultLogger . setLevel (level=ugp . logging . DEBUG)
20 ugp . logging . debug ("Verbose level set to DEBUG")
21 ugp . logging . cpu_info ("Program started")
22

23 # Define parameters
24 reg_alternatives = [’%eax’ , ’%ebx’ , ’%ecx’ , ’%edx’]
25 reg_param = ugp . make_parameter (ugp . parameter . Categorical , alternatives=

reg_alternatives)
26 instr_alternatives = [’add’ , ’sub’ , ’and’ , ’or’ , ’xor’ , ’cmp’]
27 instr_param = ugp . make_parameter (ugp . parameter . Categorical , alternatives=

instr_alternatives)
28 shift_alternatives = [’shr’ , ’shl’]
29 shift_param = ugp . make_parameter (ugp . parameter . Categorical , alternatives=

shift_alternatives)
30 jmp_alternatives = [’ja’ , ’jz’ , ’jnz’ , ’je’ , ’jne’ , ’jc’ , ’jnc’ , ’jo’ , ’jno’ , ’

jmp’]
31 jmp_instructions = ugp . make_parameter (ugp . parameter . Categorical , alternatives=

jmp_alternatives)
32 integer = ugp . make_parameter (ugp . parameter . Integer , min=- 32768 , max=32767)
33 int8 = ugp . make_parameter (ugp . parameter . Integer , min=0, max=256)
34 jmp_target = ugp . make_parameter (ugp . parameter . LocalReference ,
35 allow_self=False ,
36 allow_forward=True ,
37 allow_backward=False ,
38 frames_up=0)
39

40 # Define the macros
41 jmp1 = ugp . Macro (" {jmp_instr} {jmp_ref}" , {’jmp_instr ’ : jmp_instructions , ’

jmp_ref ’ : jmp_target })
42 instr_op_macro = ugp . Macro (" {instr} {regS}, {regD}" ,{ ’instr’ : instr_param ,

’regS’ : reg_param , ’regD’ : reg_param })
43 shift_op_macro = ugp . Macro (" {shift} ${int8}, {regD}" , {’shift ’ : shift_param

, ’int8’ : int8 , ’regD’ : reg_param })
44 branch_macro = ugp . Macro ("{branch} {jmp}" , {’branch ’ : jmp_instructions , ’jmp’ :

jmp_target })
45 prologue_macro = ugp . Macro (’ .file "solution.c"\n’ +
46 ’ .text\n’ +
47 ’ .globl _darwin\n’ +
48 ’ .def _darwin; .scl 2; .type

32; .endef\n’ +
49 ’_darwin :\n’ +
50 ’LFB17 :\n’ +
51 ’ .cfi_startproc\n’ +
52 ’ pushl %ebp\n’ +
53 ’ .cfi_def_cfa_offset 8\n’ +
54 ’ .cfi_offset 5, -8\n’ +
55 ’ movl %esp , %ebp\n’ +
56 ’ .cfi_def_cfa_register 5\n’)
57 init_macro = ugp . Macro (" movl ${int_a}, %eax\n" +
58 " movl ${int_b}, %ebx\n" +
59 " movl ${int_c}, %ecx\n" +
60 " movl ${int_d}, %edx\n" ,
61 {’int_a’ : integer , ’int_b ’ : integer , ’int_c’ : integer , ’

int_d ’ : integer })
62 epilogue_macro = ugp . Macro (
63 ’ movl %eax , -4(%ebp)\n’ +
64 ’ movl -4(%ebp), %eax\n’ +
65 ’ leave\n’ +
66 ’ .cfi_restore 5\n’ +
67 ’ .cfi_def_cfa 4, 4\n’ +
68 ’ ret\n’ +

58

69 ’ .cfi_endproc\n’ +
70 ’LFE17:\n’ +
71 ’ .ident "GCC: (MinGW.org GCC -8.2.0 -5) 8.2.0"\n’)
72

73 # Define section
74 sec1 = ugp . make_section ({ jmp1 , instr_op_macro , shift_op_macro } , size=(1 , 50))
75

76 # Create a constraints library
77 library = ugp . Constraints (file_name="solution{id}.s")
78 library [’main’] = [prologue_macro , init_macro , sec1 , epilogue_macro]
79

80 # Define the evaluator script and the fitness type
81 if sys . platform != "win32" :
82 exit (- 1)
83 else :
84 script = "eval.bat"
85 library . evaluator = ugp . fitness . make_evaluator (evaluator=script , fitness_type=

ugp . fitness . Lexicographic)
86

87 # Create a list of operators with their arity
88 operators = ugp . Operators ()
89 # Add initialization operators
90 operators += ugp . GenOperator (ugp . create_random_individual , 0)
91 # Add mutation operators
92 operators += ugp . GenOperator (ugp . hierarchical_mutation , 1)
93 operators += ugp . GenOperator (ugp . flat_mutation , 1)
94 operators += ugp . GenOperator (ugp . add_node_mutation , 1)
95 operators += ugp . GenOperator (ugp . remove_node_mutation , 1)
96 # Add crossover operators
97 operators += ugp . GenOperator (ugp . macro_pool_one_cut_point_crossover , 2)
98 operators += ugp . GenOperator (ugp . macro_pool_uniform_crossover , 2)
99

100 # Create the object that will manage the evolution
101 mu = 10
102 nu = 20
103 sigma = 0.7
104 lambda_ = 7
105 max_age = 10
106

107 darwin = ugp . Darwin (
108 constraints=library ,
109 operators=operators ,
110 mu=mu ,
111 nu=nu ,
112 lambda_=lambda_ ,
113 sigma=sigma ,
114 max_age=max_age ,
115)
116

117 # Evolve
118 darwin . evolve ()
119

120 # Print best individuals
121 logging . bare ("These are the best ever individuals:")
122 best_individuals = darwin . archive . individuals
123 ugp . print_individual (best_individuals , plot=True , score=True)
124

125 ugp . logging . cpu_info ("Program completed")
126 sys . exit (0)� �

Listing 4.7: OneMax Assembly - Source code

The script syntax has been built to work withWindows 10, 64-bit, forGCC: (MinGW.org
GCC-8.2.0-5) 8.2.0 1.

1MinGW: http://www.mingw.org/

59

Chapter 5

Conclusions and future works

The re-design and re-implementation of previous MicroGP versions in Python language
let to a huge improvement. New users can now be reached through easy and flexible high
level methods and a completely new logic. A basic user can rapidly build its own project
downloading MicroGPv4 package simply writing pip install microgp in its command
line as shown in Figure 5.1.

Figure 5.1: Installation of MicroGPv4 package through PIP

A documentation with examples and guides is available online1 (Figure 5.2).

Figure 5.2: Online documentation home page

1Welcome to MicroGPv4: https://microgp4.readthedocs.io/

60

5.1 Future works
The released version is a pre-alpha, meaning that the tool is fully functional but largely
incomplete in terms of functionalities will be available in the next updates.

5.1.1 Statistics for genetic operators selection
The Darwin class, as first step of a generation, uses Operators class to retrieve a bunch of
genetic operators. The operators selection process simply returns a set randomly chosen
methods depending on the arity range passed by Darwin object. The arity indicates the
number of individuals on which the genetic operator works on.

For example, during the initialization phase only the operators with arity=0 are se-
lected and then run, allowing the creation of a bunch of new random individuals (see
Listing 5.1.

� �
1 if len (self . _population) == 0 :
2 # Example: generate 10.000 (nu) individuals and then keep only the best 10 (mu)

individuals
3 selected_operators = self . _operators . select (max_arity=0, k=self . _nu)� �

Listing 5.1: First generation genetic operators selection

The proposed improvement consists in tracking the efficiency of the operators and se-
lecting with higher probability the best ones. The quality of a genetic operator can be de-
scribed as the percentage of successes (number of times in which it returned a valid individ-
ual over the times it has been called). The method microgp.operators.Operators.select()
will implement a logic solving a typical multi-armed bandit problem[20].

5.1.2 Stopping conditions
By now, the only way for the evolution process to stop is if the number of generations have
reached a fixed value (Listing 5.2. In the future releases the Darwin object will receive a
bunch of stopping conditions[26] that will be verified at each generation. If one or more
stopping conditions verify the evolution process is immediately terminated.

� �
1 def evolve (self) -> None :
2 while self . _generation < 20 :
3 self . do_generation ()� �

Listing 5.2: Current version of microgp.darwin.Darwin.evolve() method

5.1.3 2D and 3D categorical sorted parameter
The currentCategorical Sorted parameter (microgp.parameter.categorical.Categor-
icalSorted) can be used for one dimensional ordered values. When a mutation of this
parameter takes place depending on the strength of the sigma parameter some values have
higher probability to be set. Usually, with a low sigma value, the alternatives closer to the
current one are selected.

We think that this logic can be useful for 2D and 3D spatial problems in which the
closeness is computed with more variables.

61

Bibliography

[1] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[2] Edward A Bender. An introduction to mathematical modeling. Courier Corpo-
ration, 2012.

[3] Tobias Blickle and Lothar Thiele. “A Mathematical Analysis of Tournament
Selection.” In: ICGA. Vol. 95. Citeseer. 1995, pp. 9–15.

[4] Justin Boyan, Dayne Freitag, and Thorsten Joachims. “A machine learning ar-
chitecture for optimizing web search engines”. In: AAAI Workshop on Internet
Based Information Systems. 1996, pp. 1–8.

[5] Jürgen Branke et al. Multiobjective optimization: Interactive and evolutionary
approaches. Vol. 5252. Springer Science & Business Media, 2008.

[6] Chihyung Derrick Cheng and Alexander Kosorukoff. “Interactive one-max
problem allows to compare the performance of interactive and human-based
genetic algorithms”. In:Genetic and evolutionary computation conference. Springer.
2004, pp. 983–993.

[7] F Corno et al. “Efficient machine-code test-program induction”. In: Proceed-
ings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.
02TH8600). Vol. 2. IEEE. 2002, pp. 1486–1491.

[8] Fulvio Corno, Ernesto Sánchez, and Giovanni Squillero. “Evolving assembly
programs: how games help microprocessor validation”. In: IEEE Transactions
on Evolutionary Computation 9.6 (2005), pp. 695–706.

[9] Kenneth De Jong. “Evolutionary computation: a unified approach”. In: Pro-
ceedings of the 2016 on Genetic and Evolutionary Computation Conference
Companion. 2016, pp. 185–199.

[10] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms.
Vol. 16. John Wiley & Sons, 2001.

[11] Sumeet Dua and Xian Du. Data mining and machine learning in cybersecurity.
CRC press, 2016.

[12] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary comput-
ing. Vol. 53. Springer, 2003.

[13] Merrill M Flood. “The traveling-salesman problem”. In: Operations research
4.1 (1956), pp. 61–75.

[14] James B Fraley and James Cannady. “The promise of machine learning in
cybersecurity”. In: SoutheastCon 2017. IEEE. 2017, pp. 1–6.

[15] Adam Geitgey. “Machine learning is fun”. In:Medium. Retrieved from https://medium.
com/@ ageitgey/machine-learning-is-fun-80ea3ec3c471 (2014).

63

[16] F Guerriero et al. “A biobjective optimization model for routing in mobile
ad hoc networks”. In: Applied Mathematical Modelling 33.3 (2009), pp. 1493–
1512.

[17] Abdenour Hadid et al. “Face and eye detection for person authentication in
mobile phones”. In: 2007 First ACM/IEEE International Conference on Dis-
tributed Smart Cameras. IEEE. 2007, pp. 101–108.

[18] Dieter W Heermann. “Computer-simulation methods”. In: Computer Simula-
tion Methods in Theoretical Physics. Springer, 1990, pp. 8–12.

[19] Francisco Jeronimo. “Mobile AI and the Future of Intelligent Devices”. In:
2017 White Paper IDC (2017).

[20] Volodymyr Kuleshov and Doina Precup. “Algorithms for multi-armed bandit
problems”. In: arXiv preprint arXiv:1402.6028 (2014).

[21] W Lindsay et al. “Automatic test programs generation driven by internal per-
formance counters”. In: Fifth International Workshop on Microprocessor Test
and Verification (MTV’04). IEEE. 2004, pp. 8–13.

[22] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. “Pareto multi objec-
tive optimization”. In: Proceedings of the 13th International Conference on,
Intelligent Systems Application to Power Systems. IEEE. 2005, pp. 84–91.

[23] Nils J Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 2014.

[24] John Offer. “From ‘natural selection’to ‘survival of the fittest’: On the signifi-
cance of Spencer’s refashioning of Darwin in the 1860s”. In: Journal of Classical
Sociology 14.2 (2014), pp. 156–177.

[25] Dov Ospovat. The development of Darwin’s theory: Natural history, natural
theology, and natural selection, 1838-1859. Cambridge University Press, 1995.

[26] Martín Safe et al. “On stopping criteria for genetic algorithms”. In: Brazilian
Symposium on Artificial Intelligence. Springer. 2004, pp. 405–413.

[27] Ernesto Sanchez, Massimiliano Schillaci, and Giovanni Squillero. Evolutionary
Optimization: the µGP toolkit. Springer Science & Business Media, 2011.

[28] Minoru Sasaki and Hiroyuki Shinnou. “Spam detection using text clustering”.
In: 2005 International Conference on Cyberworlds (CW’05). IEEE. 2005, 4–
pp.

[29] Eric O Scott and Sean Luke. “ECJ at 20: toward a general metaheuristics
toolkit”. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion. 2019, pp. 1391–1398.

[30] Giovanni Squillero. “MicroGP—an evolutionary assembly program generator”.
In: Genetic Programming and Evolvable Machines 6.3 (2005), pp. 247–263.

[31] George Alexis Terry et al. Systems and methods for using natural language in-
structions with an ai assistant associated with machine learning conversations.
US Patent App. 16/228,717. 2019.

[32] Matthias Thiel, Roland Schulz, and Peter Gmilkowsky. “Simulation-based pro-
duction control in the semiconductor industry”. In: 1998 Winter Simulation
Conference. Proceedings (Cat. No. 98CH36274). Vol. 2. IEEE. 1998, pp. 1029–
1033.

[33] Aimo Törn and Antanas Žilinskas. Global optimization. Vol. 350. Springer,
1989.

	Introduction to Evolutionary Computation
	Problems to be solved
	Simulation problem
	Modeling problem
	Optimization problem

	Data feeds Machine Learning
	Optimization algorithms
	Global vs. Local Optimization

	Evolutionary Computation
	How does a Evolutionary Algorithm work?
	Multi-Objective optimization problems

	Genetic Algorithms
	Individuals and Population
	Evaluation and fitness
	Mutation and Crossover
	Parent and offspring selection
	Termination criteria

	Background and history of MicroGP
	State of the art
	ECJ - Evolutionary Computation System
	Inspyred - Bio-inspired Algorithms in Python
	DEAP - Distributed Evolutionary Algorithms in Python

	The history of MicroGP
	The version 1 - MicroGPv1
	The version 2 - MicroGPv2
	The version 3 - MicroGPv3

	Introduction to MicroGPv4
	The goal

	Proposed solution
	OneMax Problem
	Constraints definition
	Parameters
	Macro
	Section
	Individual object
	Properties

	Darwin class
	Operators
	GenOperator
	Population
	Archive

	Individual Operators
	Initialization operator
	Mutation operators
	Crossover operators

	Fitness and evaluation
	Order by fitness logic
	Evaluator

	Evolution process
	Parent selection
	Offspring selection

	Experiments
	Introduction
	OneMax problem - Base
	OneMax Base version 1
	OneMax Base version 2

	OneMax problem - Assembly

	Conclusions and future works
	Future works
	Statistics for genetic operators selection
	Stopping conditions
	2D and 3D categorical sorted parameter

