POLITECNICO DI TORINO

Corso di laurea magistrale in

Ingegneria Gestionale

Tesi di laurea magistrale

Progettazione e Neuroimaging: definizione degli strumenti di supporto alla progettazione ed analisi delle attività cognitive ed oculari durante un task creativo.

Relatore: Francesca Montagna

Studente: Roberta Massaria

Anno Accademico 2019/2020
Sommario

Introduzione... 1

1. Contestualizzazione.. 6
 1.1 Ambiente.. 6
 1.1.1 Sviluppo di un nuovo prodotto............................ 6
 1.1.2 Conceptual Design... 7
 1.2 Science of design.. 9
 1.3 Creatività e pensiero divergente..............................10
 1.4 Basi neurali nell’idea generation.............................12
 1.5 Il cervello.. 14
 1.5.1 Anatomia del cervello......................................14
 1.5.2 Conoscenze di base...17
 1.5.3 Sorgenti di dipolo e potenziali postsinaptici...........19
 1.5.4 Dinamica neuronale...20
 1.5.5 Componenti del segnale EEG.............................23
 1.5.6 Elettrodi per l’EEG...25
 1.5.7 Limiti e vantaggi dell’EEG...............................26
 1.6 Occhio..27
 1.6.1 Anatomia dell’occhio.......................................27
 1.6.2 Eyetracker..29

2. Processo di progettazione ..32
 2.1 Processi creativi..32
 2.1.1 Guilford e il pensiero divergente..........................32

i
2.1.2 Modello a 4 stadi ...32
2.1.3 Evoluzione del modello a 4 stadi34
2.1.4 Critiche al modello a 4 stadi37
2.2 Metodi di supporto alla progettazione38
 2.2.1 Brainstorming ...38
 2.2.2 Brainstorming modificato ...43
 2.2.3 Analisi morfologica ...44
 2.2.4 Design trasformativo ..45
 2.2.5 Design per analogia ..46
 2.2.6 Sketches ..48
 2.2.7 TRIZ ..50
2.3 Esperimenti neuroscientifici ..53
 2.3.1 Ricerca nella memoria ..54
 2.3.2 Attenzione interna ...55
 2.3.3 Immagini mentali ...56
3. L’esperimento (Colombo, 2019) ..58
 3.1 Configurazione dell’apparato sperimentale58
 3.2 Strumenti di raccolta dati ..60
 3.3 Obiettivo dell’attuale ricerca61
 3.4 Analisi dati EEG ..63
 3.4.1 Design of Experiment ..63
 3.4.2 Task Related Power ..63
 3.4.3 Database ...65
3.4.4 Risultati 2x2x3...66
3.4.5 Risultati 2x2x6..67
3.4.6 Analisi sociodemografica..69
3.5 Analisi dati Eye-tracker ...73
 3.5.1 Dilatazione pupillare..73
 3.5.2 Movimenti oculari..77
3.6 Rating..80
 3.6.1 Analisi di coerenza...81
 3.6.2 Analisi criteri...82
4. Protocollo sperimentale...85
 4.1 Introduzione..85
 4.2 Metodo...86
 4.2.1 Set-up sperimentale..86
 4.2.2 Partecipanti...87
 4.2.3 Task...88
 4.3 Protocollo...89
 4.4 Design of Experiment..91
 4.4.1 Strumento di Supporto...91
 4.4.2 Area..92
 4.4.3 Emisfero..93
 4.5 Session output..93
 4.5.1 Questionario...93
 4.5.2 Analisi dei criteri...94
Appendice ..101
 A.1 Istruzioni operative ...101
 A.2 Analisi dati EEG Within Factors ..110
 A.3 Analisi dati EEG Between Factors ..112
 A.3.1 Corso di Studi ..112
 A.3.2 Età ..117
 A.3.3 Genere ..122
 A.4 Analisi dati eye-tracker ..127
 A.4.1 Dilatazione Pupilla ..127
 A.5 Metodo per la valutazione delle risposte ..132

Bibliografia ...137
Indice delle figure

Figura 1 - Method supporting conceptual design (Cantamessa & Montagna, 2016) ... 8
Figura 2 – Anatomia cervello (Malori Comer, 2015) 14
Figura 3 – Lobi cerebralì (http://www.oliver.io/ao/didattica/Cervello) 17
Figura 4 - Neuroni piramidali negli strati corticali (Onofri, 2017) 18
Figura 5 - Ciclo eccitatorio/inibitorio della corteccia cerebrale (Onofri, 2017) 22
Figura 6 - Componenti del segnale EEG (Babiloni et al., 2005) 23
Figura 7 - Anatomia dell’occhio (fonte: https://www.fielmann.it) 27
Figura 8 - Brainstorming modificato 6-3-5 (Jensen, Weaver, Wood, & Linsey, 2009) .. 44
Figura 9 - Analisi morfologica di un tagliaunghie (Jensen, Weaver, Wood, & Linsey, 2009) ... 44
Figura 10 - Principi e Facilitatori nel design trasformativo 45
Figura 11 - Design per analogia Far Field (Jensen, Weaver, Wood, & Linsey, 2009) .. 46
Figura 12 - Principi dagli innovatori storici (N. Copernico e C. Colombo) 47
Figura 13 - Principi dagli innovatori storici (Platone e A. Einstein) 47
Figura 14 - Teoria C-K (Jensen, Weaver, Wood, & Linsey, 2009) 49
Figura 15 - Evoluzione ARIZ dal 1946 al 1985 (Khomenko, 2007) 51
Figura 16 - Presentazione preliminare nell’esperimento di Colombo (2019) 59
Figura 17 - Presentazione degli stimoli (Colombo, 2019) 60
Figura 18 - Disposizione elettrodi EEG sullo scalpo............................ 64
Figura 19 - Configurazione DB iniziale .. 65
Figura 20 - Configurazione 2x2x3 .. 66
Figura 21 - Interazione Area*Condizione nella configurazione 2x2x3 67
Figura 22 - Configurazione 2x2x6 .. 68
Figura 23 - Interazione Area*Condizione nella configurazione 2x2x6..........................68
Figura 24 - Interazione Corso di studi * Emisfero...70
Figura 25 - Interazione Corso di studi*Area nella configurazione 2x2x3....................70
Figura 26 - Interazione Corso di studi*Area nella configurazione 2x2x6....................71
Figura 27 - Interazione Età*Area nella configurazione 2x2x3..................................72
Figura 28 - Interazione Età*Area nella configurazione 2x2x6..................................72
Figura 29 - Area d’interesse (AOI)...73
Figura 30 - T-test Dilatazione Pupillare nel periodo di riferimento.......................74
Figura 31 - T-test Dilatazione pupillare nel periodo di Idea Generation....................75
Figura 32 - T-test Dilatazione pupillare normalizzata rispetto al riferimento............75
Figura 33 - T-test Dilatazione pupillare con fattore between Glasses nel periodo di riferimento ...76
Figura 34 - T-test Dilatazione Pupillare con fattore between Glasses nel periodo di idea generation ..76
Figura 35 - T-test Dilatazione Pupillare con fattore between Glasses normalizzato ...77
Figura 36 - Analisi a fattori misti 2x2 (Lato*Condizione) della misura Numero di Fissazioni ..78
Figura 37 - Analisi a fattori misti 2x2 (Lato*Condizione) della misura Tempo Speso [%]..79
Figura 38 - Design Task Arredamento...88
Figura 39 - Protocollo sperimentale..90
Figura 40 - Fattore within Area nei suoi 3 e 6 livelli ...92
Figura 41 - Fattore within Emisfero nei suoi 2 livelli..93
Introduzione

In letteratura si trovano due distinti approcci mirati allo studio dei meccanismi coinvolti nella progettazione creativa: le analisi protocollari e le ricerche basate sui risultati (Hay, 2017). L’analisi protocollare è un metodo di ricerca empirica e osservazionale incentrato sull’analisi di pezzi di registrazioni, protocolli, che negli studi di progettazione sono rappresentati da registrazioni audio, videocassette o schizzi (Yen & Jiang, 2009). Gli studi basati sull’output sono focalizzati sulla valutazione dei risultati del processo creativo. Questi due approcci, pur presentando delle notevoli qualità, trascurano i dati riguardanti i processi cognitivi che i progettisti attuano per giungere ad una soluzione. Per questa ragione, negli ultimi anni, sono stati adottati diversi strumenti di neuroimaging in modo tale da comprendere i pattern di attivazione cognitiva durante il processo di generazione delle idee. Lo scopo della presente ricerca è individuare pattern neurocognitivi e
fisiologici tramite strumentazioni come l’elettroencefalogramma e l’eyetracking al fine di valutare i pattern di attivazione cognitiva e di movimentazione oculare. Per valutare il processo creativo si è deciso di prendere come riferimento primario il modello proposto da Guilford (1950). Questo modello afferma che il processo di ideazione è caratterizzato da due fasi principali, chiamate pensiero divergente, un processo non lineare che mira alla generazione di idee diverse su un argomento e pensiero convergente che punta a strutturare, organizzare e analizzare tutte le idee generate tramite pensiero divergente. Le due fasi si alternano durante il processo creativo e consentono da un lato di esplorare lo spazio delle soluzioni e dall’altro lato di selezionare le scelte migliori per un dato problema (Guilford, 1950). Al fine di valutare questi due aspetti, è stato riprodotto l’esperimento di Jauk & Benedek (2012), con la metodologia Alternative Uses Task (AUT) in cui ai partecipanti è stato chiesto di trovare diverse soluzioni alternative agli oggetti d’uso quotidiano in un periodo limitato di tempo.

La presente ricerca ha come obiettivo l’analisi dei dati raccolti tramite EEG ed eye-tracker al fine di estendere le ricerche in letteratura tramite un esperimento chiaro e definito. Le linee guida dell’esperimento di Colombo et al. (2020) saranno infatti alla base del protocollo proposto nell’ultimo capitolo di questo lavoro di tesi.

La presente ricerca si inserisce nelle fasi successive alla raccolta dati e parte da alcune delle analisi effettuate da Candusso (2019). Si pone l’obiettivo di analizzare tutti i dati raccolti tramite l’elettroencefalogramma e l’eye-tracker andando a descrivere il comportamento del campione nei termini di attivazioni cognitive e movimenti oculari. L’individuazione di pattern cognitivi specifici potrebbe consentire in futuro il riconoscimento di condizioni ambientali o strumenti di supporto in grado di stimolare determinate attivazioni cerebrali, andando quindi a migliorare il processo di generazione delle idee. A tal fine si propone un protocollo sperimentale che, partendo dai risultati ottenuti nell’esperimento di Colombo
(2019), vada ad indagare come varino le attivazioni cerebrali utilizzando strumenti di supporto alla progettazione più o meno strutturati.

La principale fonte di informazione per questo lavoro è la tesi di Laurea Magistrale di Colombo (2019), da cui sono state raccolte le informazioni principali utili a contestualizzare l’esperimento. L’esperimento è stato progettato seguendo il paradigma Alternative Uses Task, altamente adottato nella valutazione del pensiero divergente.

Al fine di raccogliere informazioni neurofisiologiche, è stato adottato l’elettroencefalogramma, con il supporto di un Eye-tracker per acquisire una maggior quantità di dati. Per le analisi di preelaborazione e post-elaborazione dei dati è stato utilizzato il software Matlab. È stata inoltre definita da Candusso (2019) una metodologia per la valutazione delle risposte fornite dai partecipanti. L’applicazione dei criteri di valutazione ha confermato l’ipotesi secondo la quale durante lo svolgimento di un task non comune i soggetti risulterebbero oggettivamente più creativi conferendo al protocollo sperimentale un’ottima replicabilità.

Questo lavoro di tesi ha visto l’utilizzo dei software R ed SPSS per la conduzione delle analisi nella fase post-sperimentale. In particolare, per analizzare i dati raccolti tramite EEG ed Eye-tracker sono state condotte Analisi di varianza a misure ripetute (ANOVA) e Analisi a fattori misti (T-test).

Sono state condotte anche delle analisi di coerenza, andando ad applicare il metodo di valutazione delle risposte proposto da Candusso (2019), tramite il calcolo del parametro statistico Alpha di Cronbach.

Il documento presenta, escludendo l’Introduzione e le Conclusioni, 4 capitoli.

Il primo capitolo è incentrato sulla spiegazione del contesto e sulle conoscenze di base inerenti all’analisi della progettazione da un punto di vista neuro-cognitivo. È una presentazione di tutti i concetti di base e comincia la sua esplorazione dalla nozione di Ambiente ingegneristico e dallo studio dei processi di progettazione per poi migrare verso Creatività e Pensiero Divergente. Vi è anche un breve riassunto sul cervello e sull’occhio dal punto di vista anatomico e funzionale. È inclusa in questo capitolo una breve spiegazione degli strumenti utilizzati per la raccolta dei dati nell’esperimento di Colombo (2019).

Il secondo capitolo entra nel merito del processo di progettazione andando ad eviscerarlo nelle sue componenti: il processo creativo ed i modelli ad esso associati e i metodi di supporto alla generazione delle idee. Il terzo paragrafo di questo capitolo va a studiare il processo di progettazione da un punto di vista comportamentale, andando a vedere quali siano i processi subconsci che si instaurano nel cervello dei progettisti.

Il terzo capitolo è il nucleo di questo lavoro di tesi, con le analisi sui dati raccolti tramite Elettroencefalogramma ed Eye-tracker. Dopo una breve introduzione all’esperimento di Colombo (2019), sono presentate una serie di analisi: analisi sui dati cognitivi raccolti tramite EEG, analisi sui dati oculari raccolti tramite eye-tracker ed infine analisi di rating per definire la coerenza dei raters e la validità del protocollo proposto.
Il quarto ed ultimo capitolo vede l’introduzione di un nuovo protocollo sperimentale che vada ad estendere l’applicabilità del precedente, cercando di abbandonare l’ambito della micro-progettazione per approdare nell’ambito della macro-progettazione. Il protocollo sperimentale proposto si pone l’obiettivo di studiare l’attivazione cognitiva durante l’utilizzo di strumenti di supporto alla generazione di idee non strutturati (Brainstorming), parzialmente strutturati (Analisi Morfologica) e strutturati (TRIZ).
1. Contestualizzazione

1.1 Ambiente

1.1.1 Sviluppo di un nuovo prodotto

Lo sviluppo di nuovi prodotti è un processo complesso, difficile da implementare e standardizzare, poiché dipende da una serie di variabili tra cui l’industry, il prodotto, la storia dell’impresa ed il suo posizionamento sul mercato. È un processo influenzato da un contesto turbolento nel quale è necessario prendere una serie di decisioni di diversa natura. Tuttavia, è possibile identificare e definire alcune fasi comuni che caratterizzano il processo. Tali fasi non sono però sequenziali, ma prevedono una serie di iterazioni e di gradi di sovrapposizione che vanno a parallelizzare una o più attività piazzandosi nell’ambito della concurrent engineering (Clark & Fujimoto, 1991).

Di seguito è riportata la sequenza di fasi nel caso di prodotti fisici, ma può essere facilmente adattata al caso dei servizi (Cantamessa & Montagna, 2016).

1) *Product planning* è la fase iniziale del processo in cui l’impresa definisce il nuovo prodotto, concentrandosi sui dati di mercato, sulle prestazioni tecnologiche, sulle risorse e sulle capacità dell’azienda. Dai dati raccolti si va a definire il posizionamento del prodotto, identificando i bisogni ed i requisiti dell’utente. Viene inoltre definito un budget per il prodotto, che sarà poi rivisto nelle fasi successive del processo.

2) *Conceptual design* è la fase in cui viene definita una soluzione tecnica tale per cui siano soddisfatti il posizionamento del prodotto e le esigenze dello user. L’output di questa fase è il concept di prodotto.

3) *System-level design* è l’attività in cui si concretizza il concept di prodotto. In questa fase vengono fatte scelte importanti sull’architettura del prodotto.
andando a definire ciò che l’impresa farà internamente (make) e ciò che acquisterà dai fornitori (buy).

4) *Detailed design* è l’attività in cui si concentra la maggior parte del lavoro ingegneristico. Vengono infatti scelti materiali e componenti andando a definire una soluzione fattibile e dettagliata.

5) *Prototyping and testing* è la fase in cui si mettono in pratica le soluzioni dettagliate andando a verificare se queste ultime siano conformi alle esigenze dello user.

6) *Process design* è la fase in cui sono definite la modalità di produzione e distribuzione.

7) *Product launch and production* è la fase finale del processo nella quale il prodotto è immesso sul mercato partendo da una produzione su scala limitata per poi espanderla in base alla domanda.

Questo lavoro di tesi si concentra principalmente sulla fase di conceptual design, in cui i progettisti cercano di essere creativi andando a generare una serie di soluzioni innovative ed utili.

1.1.2 Conceptual Design

Il conceptual design è un processo iterativo che ha come punto di partenza l’identificazione dei bisogni e dei requisiti dello user. I designer in questa fase esplorano e generano nuove alternative andando poi a selezionare i concepts migliori.

Il design è quindi un’attività tecnica nella quale i progettisti mettono la tecnologia in pratica al fine di ottenere il risultato desiderato (Ulrich & Eppinger, 1995). Un aspetto tipico di questa fase è la sua natura creativa; la creatività non si presenta come un singolo evento, ma come un processo cognitivo complesso nel quale i progettisti devono in prima battuta inquadrare e comprendere il problema.
Sviscerato il problema, i designer andranno a generare lo spazio delle possibili soluzioni usando un approccio divergente (“divergent thinking”). Infine, andranno a definire le soluzioni e, dopo una serie di iterazioni, tramite un approccio convergente, selezioneranno quella più adatta a risolvere il problema posto (“convergent thinking”).

Secondo il modello di Ulrich ed Eppinger (1995) è possibile descrivere il conceptual design come segue:

![Diagram](image)

Figura 1 - Method supporting conceptual design (Cantamessa & Montagna, 2016)

In primo luogo, il team di progettisti formula il problema identificando gli elementi funzionali necessari. Successivamente si entra nella fase a maggior contenuto di creatività nella quale sono esplorate e generate una serie di soluzioni alternative; questa è la fase in cui si vanno a identificare un certo numero di soluzioni tecniche volte a svolgere una serie di funzioni necessarie. Ogni combinazione possibile di soluzioni tecniche va a identificare un concept differente (Pugh, 1981). Il terzo step consiste nel confrontare i concepts generati andando a scartare quelli peggiori e a migliorare i più promettenti; i concepts rimasti saranno poi classificati in modo tale da identificare un unico concept finale.

Come mostrato nella Figura 1, il processo di conceptual design alterna fasi divergenti (), caratterizzate da creatività sfrenata, a fasi convergenti (), caratterizzate da una rigorosa analisi.
1.2 Science of design

I progettisti, durante l’attività di progettazione concettuale, perseguono l’obiettivo di generare soluzioni tecniche tali da soddisfare i requisiti e i bisogni dell’utente; per cui, partendo da una situazione specifica, elaborano soluzioni appropriate.

Il concetto di science of design nasce dall’esigenza di progettare soluzioni in grado di affrontare un’ampia gamma di circostanze differenti e si pone l’obiettivo di migliorare l’attività di progettazione fornendo strumenti e metodi di supporto.

Nel 2017 Hay ha proposto due differenti approcci con lo scopo di ottenere informazioni sui meccanismi cognitivi coinvolti nella progettazione di prodotti innovativi; il primo è basato sugli studi protocollari, il secondo è basato sui risultati.

L’analisi protocollare è un metodo di ricerca empirico che consiste nell’osservazione diretta dell’interazione del progettista e il dominio del problema e dai modelli di ragionamento progettuale (Purcell & Gero, 1998). Il dominio del problema è composto da due dimensioni ortogonali, l’una riguardante l’artefatto a livello tangibile e l’altra a livello astratto. L’approccio più mirato ai risultati ha invece lo scopo di scomporre la strategia utilizzata dai progettisti in pezzi di registrazioni e protocolli (Yen & Jiang, 2009).
Schön studiando il processo tramite le analisi protocollari, ha scoperto che il processo di progettazione è fortemente iterativo e basato su feedbacks loop, ognuno dei quali si avvicina sempre più all’obiettivo finale.

Gero e Kannengiesser (2004), sulla scia dell’analisi protocollare, hanno scoperto che i progettisti tendono ad utilizzare molteplici approcci cognitivi e logici.

L’analisi protocollare, tuttavia presenta una serie di drawbacks: primo tra tutti la perdita di informazioni, legate alla sfera inconscia, data dalla incapacità di verbalizzarle; un altro problema che può sorgere è dato dal ritardo tra la visualizzazione e la verbalizzazione dei pensieri; infine vi è un inconveniente legato all’interpretazione delle risposte che risulta altamente soggettivo (Dinar, 2015).

L’analisi basata sull’output è focalizzata sulla valutazione dei risultati generati durante il processo al fine di valutare i comportamenti dei progettisti durante l’attività (Hay, 2017).

Uno degli obiettivi di questa tesi è trovare un collegamento tra approcci basati sui risultati e i processi cognitivi che si instaurano nei progettisti a livello neurofisiologico. Usando un approccio di questo tipo, siamo andati a confrontare i dati neuro cognitivi raccolti con l’esito comportamentale del processo di generazione di nuove idee.

1.3 Creatività e pensiero divergente

La creatività è un aspetto fondamentale nell’ambito della idea generation e più in generale della progettazione di prodotti innovativi. È infatti una qualità che può essere sfruttata in molteplici aree nelle quali sia coinvolto il processo decisionale (marketing, strategia, design). Come prospettiva individuale, in letteratura c’è l’identificazione di due fasi durante il processo creativo: pensiero convergente e pensiero divergente. È necessario quindi studiare la creatività perché è storicamente
correlata al pensiero divergente che è l’obiettivo principale degli esperimenti AUT. Mentre il pensiero convergente è coinvolto nella risoluzione diretta dei problemi, il pensiero divergente può andare in diverse direzioni. Ciò implica che usando il pensiero divergente è possibile determinare una serie di possibili soluzioni ad un dato problema (Guilford, 1984). Il pensiero divergente è una fase non lineare, in cui la mente del soggetto è libera di fluire in ogni direzione e grazie a tale flusso, si generano connessioni tra idee, in base alle esperienze passate del soggetto e agli stimoli esterni. È un indicatore valido e affidabile della produzione creativa e consente ai ricercatori di studiare la creatività in ambienti controllati. Il pensiero convergente ha l’obiettivo di strutturare, organizzare ed analizzare lo spazio di soluzioni esplorato durante il processo divergente.

Warr nel 2005 (Warr & O’Neill, 2005) ha distinto tre principali tipologie di creatività:

- Processo creativo: processo interno ad un individuo attraverso il quale sono generate le idee.

- Persona creativa: persona che manifesta un tratto di personalità creativa.

- Prodotto creativo: riflessi nel prodotto di segni di creatività.

In passato misurare la creatività durante il processo di generazione delle idee risultava alquanto difficile, per cui spesso si andava a misurare attraverso una valutazione dell’output in termini di quantità e qualità (Shah & Vargas-Hernandez, 2003). Negli ultimi decenni, si è deciso di adottare metodologie e strumenti che consentano ai ricercatori di migliorare l’analisi del processo stesso, quali strumenti di neuroimaging e neuro elettrici, al fine di integrare i risultati del processo con i dati raccolti durante esso e per raccogliere i dati in modo impersonale e standard (Colombo, 2019).
1.4 Basi neurali nell’idea generation

I recenti risultati comportamentali e di neuroimaging hanno dimostrato che la difficoltà nel generare idee creative sia legata alla mancata inibizione delle risposte intuitive (Benedek, 2012). In breve, una serie di studi, tra cui quello di Benedek, hanno dimostrato che per pensare fuori dagli schemi risulta necessario inibire ciò che è già presente nel cervello sottoforma di memoria.

Nell’ambito del problem solving, fondamentale fu il lavoro di Duncker (1945) nel dimostrare che la capacità di esplorare soluzioni insolite può essere limitata dalla fissità funzionale che tende ad innescare nel cervello dei progettisti l’uso classico dell’oggetto analizzato rendendo la soluzione al problema tutt’altro che originale (Duncker, 1945; German & Barrett, 2005). Un simile effetto di fissazione sulla conoscenza più accessibile e comune è stato segnalato quando gli individui devono generare idee piuttosto che risolvere un problema (Ward, 1994; Purcell & Gero, 2006; Jansson & Smith, 1991); i progettisti tendono a seguire il percorso a minor resistenza per ridurre al minimo i costi cognitivi associati all’attività attivando basi di conoscenza vicine al concetto generativo. Pertanto, l’incapacità di generare soluzioni originali sembrerebbe essere legata ad un fallimento dell’inibizione di soluzioni intuitive basate sull’attivazione spontanea di conoscenze comuni. In linea con questa ipotesi, un numero crescente di studi ha dimostrato che la generazione
di idee creative è in parte correlata al controllo inibitorio (cioè la capacità di resistere a impulsi, pensieri, conoscenze e comportamenti prevalenti), come suggerito da le correlazioni positive riportate tra misure di inibizione e prestazioni di pensiero divergenti (Jauk e Benedek, 2014; Benedek, 2012).

I risultati di studi elettrofisiologici supportano anche l’affermazione che durante l’ideazione siano richiesti processi cognitivi di alto livello, come rivelato dalla relazione osservata tra le variazioni della potenza alfa durante l’EEG (elettroencefalografia) e i processi di ideazione (Benedek, & Neubauer, 2011; Benedek, 2012). In effetti, precedenti studi EEG hanno rivelato che un aumento della potenza alfa (sincronizzazione alfa) riflette l’attivazione dei processi top-down, mentre una diminuzione della potenza alfa (alfa desincronizzazione) riflette l’attivazione dei processi dal basso verso l’alto (Pfurtscheller, 1999).

Per determinare il ruolo dei processi top-down o bottom-up nella creatività, una serie di studi (Benedek et al., 2011; Benedek et al., 2014) hanno esaminato le variazioni della potenza alfa durante l’esecuzione di compiti creativi, tra cui un emblematico compito di pensiero divergente chiamato ‘compito di usi alternativi’ (compito di UA, Guilford, 1966). Questi studi hanno utilizzato un adattamento dell’attività UA in cui ai partecipanti è stato chiesto di dare un uso alternativo di un oggetto comune mentre il nome di questo oggetto veniva visualizzato (condizioni interne basse) o meno (condizioni interne alte) sullo schermo di un computer. Benedek et al. hanno analizzato un periodo di 1 s che precede le risposte dei partecipanti e hanno osservato una desincronizzazione alfa nelle regioni posteriori del cervello quando i partecipanti hanno usato informazioni dal basso verso l’alto (bassa condizione interna) e una sincronizzazione alfa nelle regioni prefrontali bilaterali e nella regione temporale destra quando l’attività richiedeva loro di mantenere il nome dell’oggetto nella memoria di lavoro (condizioni interne elevate).
Questi risultati suggeriscono l’esistenza di una dinamica funzionale tra regioni prefrontali (tipicamente coinvolte in processi top-down come il controllo inibitorio) e le regioni temporo-parietali di destra (che sono associate a processi semantici di alto livello) (Fink et al., 2007; Benedek et al., 2014). Inoltre, la sincronizzazione alfa bilaterale prefrontale e destra tempo-parietale era correlata all’originalità delle idee generate. Secondo gli autori, questo modello di sincronizzazione alfa ha rivelato che la generazione di idee creative si basa su 1) richiamo della memoria di idee comuni, 2) processi immaginativi che facilitano l’attenzione diretti internamente e 3) memoria di lavoro coinvolta nella ricerca di informazioni diverse all’interno della rete semantica.

1.5 Il cervello

1.5.1 Anatomia del cervello

Il cervello è uno degli organi del corpo umano più complesso e risulta ad oggi non del tutto comprensibile. Infatti, molte delle sue attività e funzioni non sono ancora state del tutto comprese. È l’organo principale del sistema nervoso centrale (SNC) ed è responsabile di funzioni estremamente complesse.

Anatomicamente può essere suddiviso in 4 macro-componenti: (1) tronco encefalico, (2) sistema limbico, (3) cervelletto e (4) cervello.

Il tronco encefalico è alla base del cervello ed è responsabile di tutti i movimenti involontari, come il battito cardiaco, l’atto respiratorio, i ritmi circadiani di alternanza tra sonno e veglia, la termoregolazione, i riflessi involontari e i movimenti viscerali. È quindi colui che conduce tutti quei movimenti automatici
che consentono la sopravvivenza dell’essere umano e un suo danneggiamento può causare la morte cerebrale.

Il sistema limbico è la parte più antica del cervello e comprende alcune funzioni fondamentali come l’olfatto e la memoria a breve termine. Una delle strutture principali di questo sistema è l’ipotalamo responsabile di funzioni necessarie alla sopravvivenza della specie quali lotta, alimentazione, fuga e riproduzione. Altra struttura che lo caratterizza è l’ippocampo, che è la sede della memoria a lungo termine, e quindi risulta indispensabile per la formazione della identità delle persone.

Il cervelletto è responsabile di tutti i movimenti volontari del corpo, in particolare dei movimenti oculari e degli arti. È però anche la sede di alcuni altri processi cognitivi, tra cui la concentrazione, la memorizzazione e il linguaggio. Non è la sede degli stimoli motori, ma è il coordinatore dei movimenti nello spazio e nel tempo, e un danno a quest’area dell’encefalo può causare perdita di equilibrio e di postura.

Il cervello, o cortecce cerebrale è l’area designata per i processi cognitivi più complessi, come il ragionamento, i processi decisionali e, per questa ragione, sarà oggetto dello studio di questa tesi. È responsabile della maggior parte delle attività dell’organismo, infatti riceve ed elabora le informazioni dagli organi sensoriali e prende decisioni riguardo alle varie istruzioni da dare al corpo. Il cervello è formato da due emisferi simmetrici collegati tra loro dal corpo calloso, un fascio di fibre che trasmette le informazioni da una parte all’altra. Ciascun emisfero controlla la parte opposta del corpo: l’emisfero destro la parte sinistra, il sinistro la destra. Non tutte le funzioni dei due emisferi sono condivise, infatti mentre il sinistro regola abilità come il linguaggio, la scrittura, il ragionamento logico, il destro controlla la creatività, l’intuito, la percezione dello spazio e la competenza musicale. Ogni
emisfero è formato da quattro lobi cerebrali, separati tra loro da alcune fessure, le cosiddette scissure.

Come mostrato nella Figura 3 i lobi prendono i loro nomi dalle ossa craniche superiori:

1) **Lobo frontale** è situato nella parte frontale della testa vicino alla fronte e forma la parte dominante del nostro cervello. Tra le diverse funzioni che può svolgere, troviamo: la produzione del linguaggio e della parola (area di Broca); sofisticate funzioni esecutive che ci permettono di pianificare, prestare attenzione, memorizzare dati a lungo termine, comprendere quello che vediamo, regolare le emozioni; comprendere e reagire ai sentimenti degli altri (empatia); regolazione della motivazione e ricerca delle ricompense.

2) **Lobo temporale** è fondamentale per le azioni sensoriali e intellettuali. È sede dell’area uditiva, dei processi mnemonici e della comprensione della lingua parlata. È anche responsabile della memoria a lungo termine.

3) **Lobo parietale** si trova sopra del lobo temporale e dietro il lobo frontale. Le sue funzioni sono molteplici, ma a definire quest’area cerebrale è soprattutto il suo ruolo nella percezione sensoriale e dello spazio, il movimento del corpo e il senso dell’orientamento. In questo lobo vengono captate anche le informazioni relative alla maggior parte dei nostri organi sensoriali. Qui viene elaborato e modulato il dolore, ma anche lo sforzo fisico e la temperatura corporea. Grazie al lobo parietale siamo in grado di comprendere la natura dei numeri.

4) **Lobo occipitale** è il più piccolo tra i quattro, ma anche il più interessante. Si trova in prossimità della nuca e non ha una vera e propria funzione. Piuttosto, è la via di connessione e organizzazione della maggior parte dei processi mentali. Partecipa ai processi di percezione e riconoscimento visivo, la sua corteggia regola diverse aree del campo visivo, come quella che individua gli schemi mentali, per
elaborare l’informazione e a inviarla alle altre aree dell’encefalo, aiuta a distinguere i colori e partecipa all’elaborazione delle emozioni e dei pensieri.

![Image of brain with lobe labels](http://www.oliverio.it/ao/didattica/Cervello)

Figura 3 – Lobi cerebrali

1.5.2 Conoscenze di base

Il cervello è costituito da circa cento miliardi di neuroni, fisicamente connessi tra loro tramite delle terminazioni chiamate sinapsi. Queste ultime sono responsabili dell’attività eccitatoria ed inibitoria dei neuroni consentendo o ostacolando la propagazione dei segnali da un neurone ad un altro. La trasmissione sinaptica è innescata dal rilascio di neurotrasmettitori provocando una differenza di potenziale tra la membrana cellulare e l’esterno. La variazione di tensione genera un campo elettrico, noto anche come **potenziale post-sinaptico**, che dura di durata variabile dalle decine alle centinaia di millisecondi.

Tipicamente l’elettroencefalografia (EEG) registra proprio il campo elettrico generato dal potenziale postsinaptico ogni qualvolta sia coinvolto un gruppo di neuroni. È possibile registrare il segnale tramite l’apposizione di elettrodi sul cuoio capelluto poiché vi sono dei neuroni, chiamati **neuroni piramidali della corteccia**, che, ogni qualvolta si instauri una differenza di potenziale, si orientano perpendicolarmente alla superficie corticale garantendo la propagazione del campo elettrico fino al cuoio capelluto (iMotions, 2016).
I neuroni piramidali costituiscono circa i 3/4 dei neuroni corticali, e sono caratterizzati da un corpo di forma triangolare con la base rivolta verso il basso e l’apice diretto verso la superficie della corteccia, risultando disposti in modo perpendicolare alla superficie stessa della corteccia.

Figura 4 - Neuroni piramidali negli strati corticali (Onofri, 2017)

La parte rimanente dei neuroni corticali è costituita dalle cellule non piramidali, caratterizzate da un corpo cellulare piccolo e dendriti che si ramificano in tutte le direzioni. A differenza delle cellule piramidali, non contribuiscono in modo sostanziale alle registrazioni di segnale EEG in superficie, fungendo da interneuroni inibitori.

Ogni atto cognitivo che avviene nel cervello coinvolge diversi gruppi di neuroni appartenenti alla stessa area corticale, oppure appartenenti a diverse aree del cervello. Vi sono due tipologie di connessioni: la prima è nota come feedforward ed è una connessione bottom-up ovvero parte dal basso, tipicamente da uno stimolo, per poi giungere alle fasi più alte di elaborazione; la seconda è nota come feedback ed è una connessione top-down ed ha come punto di partenza una attività endogenà.
Nel cervello vige in realtà il principio di reciprocità, per il quale se un’area trasmette informazioni ad un’altra può avvenire anche il viceversa (A. Lapsia, 2018).

1.5.3 Sorgenti di dipolo e potenziali postsinaptici

Sebbene il segnale EEG venga registrato tramite elettrodi posti sul cuoio capelluto, è noto che sia in realtà dovuto alle cellule piramidali che risiedono negli strati superiori della cortecchia.

La normale attività di queste cellule è mediata da piccoli potenziali elettrici, tipicamente dai 10 ai 100 millivolt, che vengono gestiti attraverso le membrane cellulari. Una cellula di per sé produce quindi un flusso di corrente estremamente piccolo e localizzato, ma grazie ad un fenomeno noto come volume di conduzione tale flusso si propaga in tutto il cervello. Questo fenomeno avviene perché la testa, come il resto del corpo umano, è costituita per più dell’80% da acqua, che è un buon conduttore di segnali elettrici e consente quindi la circolazione di corrente elettrica nei tessuti.

Vi sono però altri segnali, molto più ampi, che possono diffondersi attraverso i tessuti cerebrali, tra cui il movimento oculare, l’attività muscolare e l’attività cardiaca. Per cui quando si effettua la registrazione del segnale EEG bisogna tenere in conto che potrebbe includere una parte di altri segnali derivanti da fonti fisiologiche differenti. La legge matematica alla base della conduzione del potenziale elettrico è nota come Equazione di Poisson e mette in relazione la distribuzione superficiale di potenziale alla carica sottostante e alla percuttività del tessuto.

Le sorgenti di dipolo nel caso in questione sono proprio le cellule piramidali. Il campo dipolare generato sarà dato dalla combinazione lineare dei campi di potenziale che ciascuna sorgente produrrebbe individualmente.
Per generare un campo sufficientemente potente, sarà necessaria la presenza di una popolazione significativa di neuroni, che depolarizzano all’unisono per produrre il potenziale esterno. Questo fenomeno è noto come sincronia locale.

La maggior parte delle cellule piramidali opera in modo asincrono, dando vita a potenziali che si annullano a vicenda, ma è sufficiente che il 5% delle cellule piramidali si sincronizzino per dare vita ad un segnale EEG visibile.

Quando i dipoli corticali sono tutti orientati verticalmente (perpendicolarmente alla superficie corticale), il sensore, che si trova direttamente sopra il sito attivo, registra la risposta maggiore. Tuttavia, questo spesso non è vero. Una quantità considerevole di superficie corticale risiede nelle pieghe (‘solchi’), e produce dipoli con angolazioni diverse. Può capitare ad esempio che un dipolo si orienti parallelamente alla superficie andando a generare un potenziale nullo (il sensore collocato sopra di esso vedrà i 2 poli allo stesso modo). Questo fenomeno, noto come lateralizzazione paradossale, è responsabile del fatto che, alcune volte, i potenziali generati su un lato del cervello possano produrre il maggiore potenziale interamente sull’altro lato del cuoio.

1.5.4 Dinamica neuronale

La corteccia cerebrale ospita decine di miliardi di neuroni, organizzati in gruppi funzionali, interconnessi tramite una complessa rete di collegamenti fra regioni corticali e con le strutture cerebrali sottostanti. Durante una normale attività cerebrale, queste reti sono sottoposte ad un’attività caratterizzata da frequenze che vanno da qualche Hertz a centinaia di Hertz.

I gruppi di neuroni corticali subiscono cicli di attività caratterizzati da 3 fasi: reclutamento, attività vera e propria e rilascio. L’attività coordinata delle diverse regioni è evidenziata da onde ritmiche registrate in posizioni particolari. Questo
modello ciclico di attività produce un identificabile crescendo e diminuendo di segnali, della durata di qualche secondo.

Un meccanismo specifico che si trova in tutta la cortecchia è quello del cosiddetto riverbero, che consiste nella ripetizione ciclica di schemi di attivazione e che tipicamente coinvolge il talamo e le regioni corticali ad esso associate. Il riverbero talamo-corticale, che coinvolge le aree corticali e il talamo, dà origine al ritmo alfa e beta lento. Mentre, quando il riverbero coinvolge la cortecchia e i nuclei subtalamici, si originano le onde theta a bassa frequenza. Le onde beta, caratterizzate da una maggior velocità, sono mediate principalmente da riverberi cortico-corticali e si originano tramite connessioni a corto raggio tra i siti corticali.

Tutta l’attività descritta in questo paragrafo è altamente ripetitiva, come evidenzia il segnale elettroencefalografico, il cui caratteristico andamento rispecchia l’attivazione e disattivazione delle aree all’origine dei potenziali superficiali.

I sottogruppi neuronali hanno anche un’altra peculiarità, chiamata *inibizione laterale* che consente loro di isolarsi dai neuroni adiacenti. È il meccanismo tramite il quale il cervello riesce ad autoregolarsi, garantendo un corretto ciclo di attivazione ed inibizione, e ad elaborare informazioni significative. Una corretta alternanza tra eccitazione e inibizione è fondamentale per garantire una rete cerebrale sana. Infatti, quando i neuroni eccitatori si attivano, iniziano a stimolare le cellule inibitorie a loro associate, dopodiché queste si attivano e cominciano, a loro volta, ad inibire i neuroni eccitatori, la cui attività diminuisce. Infine, la guida per i neuroni inibitori diminuisce, con conseguente diminuzione della attività inibitoria, e ripresa dell’attività eccitatoria.

Questo ciclo continuo è alla base di tutte le attività cerebrali. Un cervello normale è quindi in grado di passare con estrema flessibilità da un rilassamento completo (che corrisponde ad un EEG a bassa frequenza, ampiezza elevata e alto sincronismo
neuronale) ad una attività più intensa (che corrisponde ad un EEG ad alta frequenza, bassa ampiezza e basso sincronismo).

![Figura 5 - Ciclo eccitatorio/inibitorio della corteccia cerebrale (Onofri, 2017)](image)

Il potenziale d’azione si dice eccitatorio quando il neurotrasmettitore causa una depolarizzazione dell’interno della cellula, mentre si dice inibitorio quando causa una iperpolarizzazione.

Il potenziale postsinaptico è un potenziale locale, quindi può essere misurato nella zona sinaptica, dove vi sono numerosi canali ionici; nelle zone limitrofe perde ampiezza. La differenza di carica tra interno ed esterno genera un campo elettrico che può essere misurato tramite l’elettroencefalografia. In particolare, un elettrodo posizionato sul cuoio capellutoregistrerà una deflessione positiva se è vicino ad una zona a carica positiva e una deflessione negativa se è vicino ad una zona a carica negativa (Jackson and Bolger, 2014). La tensione registrata avrà una ampiezza maggiore tanto più l’elettrodo sarà vicino al polo.
1.5.5 Componenti del segnale EEG

L’EEG è una forma d’onda complessa, non di semplice lettura, che include più componenti in frequenza. Vi sono tre principali ragioni per cui abbiamo la necessità di identificare le specifiche componenti: in primo luogo, per identificare se ci sia un tipo di onda dominante rispetto alle altre; in secondo luogo, perché nell’utilizzare i filtri è possibile isolare una banda di frequenze anche in presenza di altre componenti; in terzo luogo, perché andando ad isolare le diverse componenti sarà possibile eliminare il rumore generato da artefatti di origine muscolare e cardiaca. Pertanto, a prescindere da quali siano i ritmi dominanti, si può sempre isolare una banda tramite computer processing.

Ciò che distingue le diverse componenti, anche dette *bande di componenti*, è il significato fisiologico più che l’aspetto visivo o la frequenza associata. Un particolare componente potrebbe infatti apparire al di fuori della gamma di frequenza tipica senza dover necessariamente essere conforme all’usuale definizione di tale fascia. Per questa ragione è importante non identificare arbitrariamente un ritmo EEG basandosi unicamente sulla sua frequenza apparente, ma tenendo in considerazione altri parametri come la posizione e l’andamento della componente in esame. La Figura 6 mostra l’andamento delle cinque componenti del segnale elettroencefalografico e le relative frequenze:

Figura 6 - Componenti del segnale EEG (Babiloni et al., 2005)
Si descrivono brevemente le caratteristiche delle cinque componenti:

1. **Delta** è il più lento dei ritmi EEG ed ha una frequenza tipica che va da 1 a 3 Hertz. È associato a stati di incoscienza o di sonno nella fase non-REM. L’onda Delta non è sinusoidale, ma presenta un andamento sconnesso.

2. **Theta** è un ritmo mediato da meccanismi subtalamic e presenta una frequenza tipica di 4-7 Hertz. Esattamente come delta, l’andamento di questa componente non è sinusoidale. Si presenta principalmente nelle aree frontali ed è solitamente associato a volontà e movimenti. Ma spesso è associato anche a pensieri creativi e al recupero della memoria.

3. **Alpha** è un ritmo di riposo del sistema visivo, che aumenta quando gli occhi si chiudono, ed ha un andamento crescente o calante. La sua frequenza tipica va dagli 8 ai 12 Hertz. La componente alpha svolge anche alcune tipologie di scansione della memoria. A differenza dei precedenti segnali, l’andamento è sinusoidale e simmetrico e presenta un massimo nella parte occipitale. L’attività alpha è associata ad una ridotta attivazione cerebrale, per cui, quando sono presenti onde alfa, tale regione è in uno stato di inattività, e quindi è meno attiva. Pertanto, un aumento delle onde alpha implica una diminuzione dell’attività cerebrale. La banda di alpha può essere ulteriormente suddivisa in 2 andando a identificare le onde alpha veloci (10-12 Hz), che riflettono l’elaborazione della memoria di fondo ed uno stato inattivo, e le onde alpha lente (8-10 Hz), che sono fortemente associate all’elaborazione emotiva.

4. **Beta** è un ritmo associato al pensiero cosciente e intenzionale. Quando sono presenti indicano una attivazione cerebrale ed una comunicazione cortico-corticale. La frequenza tipica di questa componente va dai 15 ai 30 Hz. Le onde beta alte, con frequenza 20-30 Hz, sono tipiche di stati di ansia o agitazione.
5. **Gamma** è un ritmo veloce (35-45 Hz), difficile da registrare a causa della scarsissima ampiezza che lo caratterizza. Onde di questo tipo si riscontrano in momenti di massimo sforzo, fisico e mentale, e profonda concentrazione.

1.5.6 Elettrodi per l’EEG

La registrazione dell’attività elettrica cerebrale avviene convenzionalmente tramite elettrodi per biopotenziali posizionati sulla testa e nelle orecchie. Poiché gli strati più esterni dello scalpolo sono tipicamente cattivi conduttori, è necessaria una preparazione preliminare della cute. Tale preparazione prevede un primo step di pulizia tramite una apposita pasta abrasiva della regione di interesse, seguito da un secondo step che prevede l’applicazione di un gel conduttivo o una soluzione elettrolitica, utile per migliorare la conduttività del tessuto e per mantenere una adesione costante elettrodo-cute riducendo gli artefatti da movimento, ed infine un ultimo step nel quale avviene il posizionamento degli elettrodi.

Poiché le cariche elettriche non sono in grado di spostarsi da un tessuto biologico ad un metallo, si rende necessario l’utilizzo di un elettrolita che vada a favorire la conduzione. La coppia di elettrodi funge quindi da trasduttore tra un materiale a conduzione elettrolitica, la soluzione elettrolitica, ed un materiale a conduzione elettronica, il metallo. L’interfaccia fra il punto di contatto dell’elettrodo e la zona sottostante da cui si deriva l’EEG costituisce uno dei punti cruciali nel procedimento di registrazione del segnale. Un elettrodo ideale dovrebbe possedere le caratteristiche di un circuito equivalente a un filo metallico che consenta il passaggio di tutte le correnti generate dal cervello qualunque sia la loro frequenza e direzione. Nella pratica il circuito equivalente è molto più complesso, e i valori dei componenti dipendono principalmente da tre fattori:

- l’elettrolita;
- il materiale dell’elettrodo;
- la densità di corrente.

1.5.7 Limiti e vantaggi dell’EEG

L’elettroencefalografia è una delle tecniche di imaging non invasivo più utilizzata nell’ambito delle neuroscienze. Per effettuare la registrazione dei segnali elettrici si utilizzano una serie di elettrodi posizionati sul cuoio capelluto con una risoluzione temporale molto buona (attività registrata quasi istantaneamente con una frequenza di campionamento di 250-500 Hertz).

Il principale limite di questa tecnica è la sua scarsa risoluzione spaziale che non consente di ottenere informazioni morfologiche precise. Infatti, avendo una precisione dell’ordine del centimetro, consente al più di individuare popolazioni di neuroni, andando così a perdere informazioni (Cohen, 2017).

Chiaramente essendo posizionati sullo scalp, gli elettrodi non riusciranno a registrare i segnali elettrici del singolo neurone, ma sarà necessaria l’attività simultanea di centinaia di milioni di neuroni per fare in modo da ottenere un potenziale sufficiente (Cohen, 2017; Nunez, 2006).

L’EEG va però a registrare qualunque segnale sufficientemente ampio, e non soltanto quelli derivanti dall’attivazione dei neuroni. Per questa ragione vi sarà nel segnale elettrico una grossa componente data dal cosiddetto rumore. Tale rumore, presente nella registrazione di qualsiasi segnale fisiologico, può essere causato da fonti fisiologiche, attività muscolare, cardiaca o semplicemente oculare, oppure da fonti non fisiologiche. Ovviamente nell’analisi del segnale elettroencefalografico sarà necessario separare le diverse componenti del segnale andando poi ad eliminare le componenti con ampiezza molto diversa e gli artefatti.
1.6 Occhio

L’occhio è uno degli organi di senso più importanti e la sua attività risulta altamente correlata ai processi cognitivi che si instaurano nel cervello degli individui. Andando a tracciare i movimenti oculari e la dimensione della pupilla si possono ottenere informazioni utili riguardo al livello di concentrazione del soggetto e al grado di attivazione delle diverse aree del cervello (Smith et al., 2013).

1.6.1 Anatomia dell’occhio

Figura 7 - Anatomia dell’occhio (fonte: https://www.fielmann.it)
Come mostrato in Figura 7 i componenti principali dell’occhio sono:

(1) **Cornea** è una membrana convessa completamente trasparente e costituisce la parte anteriore dell’occhio. Risulta costituita da sei strati, ognuno dei quali svolge una particolare funzione. Attraverso la cornea, mantenuta idratata dal liquido lacrimale, i raggi luminosi vengono raccolti e rifratti al centro.

(2) **Pupilla** è una apertura circolare e nera ed è l’unico punto d’accesso per la luce. Tramite essa infatti la luce penetra nell’occhio. La sua dimensione varia a seconda della quantità di luce che la colpisce: se la luce è forte, il muscolo costrittore la fa restringere contraendosi; se la luce è poca, il muscolo dilatatore la fa allargare dilatandosi. I muscoli della pupilla sono involontari e consentono una variazione della dilatazione non solo quando varia la luminosità, bensì anche quando il soggetto è concentrato, agitato, felice o triste.

(3) **Iride** è l’anello colorato che circonda la pupilla. Si trova davanti al cristallino ed è costituito da tessuto connettivo. Si occupa della regolazione della quantità di luce che scherma l’occhio e, inoltre, scherma la luce non consentendole di penetrare l’occhio.

(4) **Sclera** è una membrana fibrosa, di colore bianco, composta da collagene e ha il compito di proteggere l’apparato visivo sottostante. Avvolge l’occhio dal nervo ottico, fino alla cornea e risulta piuttosto dura e stabile.

(5) **Retina** è la membrana interna dell’occhio. È costituita da cellule recettoriali, coni e bastoncelli, che le consentono di ricevere onde luminose per poi convertirle in impulsi nervosi. È il luogo dove si formano le immagini così come le percepiamo, colorate e nitide.

(6) **Lente cristallina** è una lente discoidale trasparente elastica e deformabile. Riceve i nutrienti necessari attraverso l’umor acqueo. È in grado di cambiare la sua forma e adattarsi alle diverse distanze. In particolare, viene appiattito dai muscoli ciliari ogniqualvolta si voglia mettere a fuoco un oggetto lontano,
mentre tende ad assumere una forma più tondeggiante quando il focus è su un oggetto vicino.

(7) **Nervo ottico** è il collegamento tra retina e cervello. Attraverso questo nervo le immagini acquisite sottoforma di impulsi elettrici vengono trasferite al cervello.

1.6.2 Eyetracker

L’eyetracker è uno strumento in grado di rilevare l’attività degli occhi, attraverso una serie di parametri: la dilatazione pupillare, il numero di fissazioni e il tempo di fissazione. Il dispositivo di rilevazione oculare comprende tipicamente due componenti fondamentali: una sorgente di luce infrarossa diretta dal dispositivo agli occhi del soggetto e una fotocamera in grado di rilevare la luce a infrarossi riflessa dalla cornea attraverso la pupilla. Una volta estrapolate le informazioni, vengono trasferite al computer e registrate su un software compatibile (nel caso in questione iMotions).

Per ottenere buoni dati tramite l’utilizzo dell’eyetracker deve sussistere una condizione, ovvero l’occhio del soggetto non deve presentare anomalie di rifrazione (ametropia) altrimenti i dati risulterebbero altamente distorti e quindi non confrontabili.

I dati sul movimento oculare possono essere analizzati in diversi modi. Il campionamento del materiale visivo può essere caratterizzato sia a livello di visione generale, sia al livello di visione diretta. Se nella visione generale si va a vedere un certo parametro, come il numero di fissazioni, sull’intero display, nella visione diretta si va a suddividere il display in una o più regioni di interesse (ROI) al fine di consentire la valutazione degli effetti relativi a variabili di interesse indipendenti. Le misure di osservazione dirette possono anche essere combinate con indici temporali al fine di valutare le variazioni di una determinata misura nel tempo (Deborah E. Hannula, 2010).
Si riportano di seguito le varie caratterizzazioni comunemente utilizzate della visione generale e diretta:

A) VISIONE GENERALE

- Numero di fissazioni: numero di pause discrete degli occhi per un display;
- Durata fissazioni: periodo di tempo in cui l’occhio si ferma sul display (tipicamente 200-300ms);
- Ampiezza saccade: distanza percorsa tra fissazioni successive;
- Numero di regioni fissate: numero di regioni discrete campionate sullo stesso display;
- Numero di transizioni tra regioni: numero di transizioni degli occhi tra regioni discrete;
- Prima fissazione del ritorno: numero di fissazioni effettua prima di tornare in una regione precedentemente campionata;
- Entropia di primo ordine: la prevedibilità delle transizioni tra la posizione di una determinata fissazione e la fissazione precedente.
- Entropia di secondo ordine: la prevedibilità delle transizioni verso una determinata posizione di fissazione in base alla posizione delle due fissazioni immediatamente precedenti.
- Chi quadro, lambda asimmetrico: misure utilizzate per quantificare la casualità di una tabella di transizione del movimento oculare.

B) VISIONE DIRETTA

- Proporzione di fissazioni: percentuale di fissazioni totali dirette ad una ROI;
- Proporzione di tempo: proporzione del tempo di visualizzazione totale diretta a una ROI;
- Numero di transizioni dentro/fuori da una regione critica: il numero di transizioni dello sguardo in / out di una ROI;
- Durata del primo sguardo: tempo totale di visualizzazione di una ROI definita dallo sperimentatore sul primo sguardo diretto a quella ROI;
- Numero di fissazioni del primo sguardo: numero di fissazioni per una ROI definita dallo sperimentatore durante il primo sguardo diretto in quella ROI.

In funzione delle piattaforme di eyetracking utilizzate e della configurazione dell’esperimento, le misure sopra riportate possono essere calcolate in modi diversi. Ad esempio, i successivi campioni di registrazione della posizione dell’occhio possono essere considerati come una singola fissazione qualora i cambiamenti nella posizione dello sguardo tra i campioni risultano inferiori a 1 ° di angolo visivo e se, una volta combinati, hanno una durata di almeno 100 ms (Hannula, 2007). In alternativa una fissazione può essere definita come l’assenza di qualsiasi saccade (Ryan, 2007). Per quanto riguarda il numero di regioni fissate vi sono due approcci alternativi: il primo consiste nel raggruppare le fissazioni di ciascun partecipante e definire appartenenti alla stessa regione quelle fissazioni che rientrano in una distanza specificata a priori, mentre le fissazioni al di fuori di questa distanza sono considerate appartenenti a una regione separata (Althoff, 1999); il secondo prevede invece l’utilizzo di una griglia fissa con uguali dimensioni per tutti gli stimoli e per tutti i partecipanti indistintamente (Smith, 2008).
2. Processo di progettazione

2.1 Processi creativi

2.1.1 Guilford e il pensiero divergente

Guilford nel settembre del 1950, durante un discorso alla American Psychological Association, affermò che occorreva andare ben oltre i limiti del quoziente intellettivo se si voleva studiare la creatività degli individui. Guilford, oltre a rilevare i limiti del Q.I., elaborò successivamente un modello della struttura dell’intelligenza. Scompose l’intelligenza umana in 120 fattori risultanti dalla combinazione di cinque categorie di operazioni (cognizione, memoria, produzione divergente, produzione convergente e valutazione) con sei categorie di prodotti (unità, classi, relazioni, sistemi, trasformazioni ed implicazioni). Guilford fu ampiamente criticato in termini di approccio teorico e metodologico del suo modello, tuttavia fu il primo a individuare la distinzione tra pensiero convergente e pensiero divergente. La cosiddetta produzione convergente è una operazione volta a ricercare necessità logiche e che si manifesta quando un’unica risposta esatta viene identificata tra le possibili alternative. La produzione divergente è la ricerca di possibilità logiche in cui si pone l’accento sulla quantità e varietà delle soluzioni sulla base delle informazioni fornite.

2.1.2 Modello a 4 stadi

A partire dalla fine del diciannovesimo secolo, una gran quantità di autori si sono imbattuti nello studio del processo creativo. Ad esempio, Hermann von Helmholtz, fisico e fisiologo, descrisse come, dopo aver studiato a fondo un problema, “le idee felici arrivarono inaspettatamente senza sforzo, come un’ispirazione”. Le idee infatti non nascevano quando era stanco o seduto alla scrivania, ma piuttosto quando faceva una pausa (Wallas, 1926).
Il primo a teorizzare un modello a 4 stadi fu Poincaré (1922), matematico francese, che dopo aver sperimentato sulla propria pelle il processo creativo, ne progettò un modello. Egli sosteneva che il processo creativo iniziasse con un lavoro consapevole su un problema, seguito da un lavoro inconscio che può avere o meno successo. Nel caso di successo di traduce in una “illuminazione improvvisa”. Il processo termina con un’ultima fase conscia con l’obiettivo “mettere in forma i risultati dell’ispirazione”, esplorare le conseguenze, formalizzare e verificare l’idea.

Sulla base delle evidenze empiriche precedenti, Wallas nel 1926 teorizzò il suo modello a 4 stadi. Una prima fase di Preparazione nella quale è coinvolto il pensiero conscio e consiste nella raccolta di conoscenze e nella comprensione del problema. Segue la fase di Incubazione nella quale prende il sopravvento il subconscio. L’individuo in questa fase può scegliere se lavorare ad altri problemi o rilassarsi. Tuttavia, la mente continua a lavorare sul problema formando treni di associazioni. Si ritiene che la maggior parte delle associazioni o combinazioni di idee si verifichino proprio durante questa fase. La mente inconscia va a rifiutare la maggior parte delle connessioni generate, ma talvolta riesce a trovare un’idea promettente. Segue la fase di Illuminazione, nella quale l’idea promettente sfugge alla consapevolezza cosciente. È una sorta di lampo di luce che improvvisamente colpisce il soggetto. Segue la quarta ed ultima fase detta di Verifica nella quale il soggetto cosciente valuta, perfeziona e sviluppa la propria idea (Wallas, 1926).

Il modello a 4 stadi è stato supportato da una serie di ricerche empiriche. Si cita ad esempio Patrick che a partire dal 1935 condusse una serie di studi su poeti, artisti visivi, scienziati e laici. Ai partecipanti era stato assegnato il compito di pensare ad alta voce mentre componevano una poesia, dipingevano o risolvevano problemi scientifici. Osservando le loro azioni Patrick riuscì a distinguere le 4 fasi del processo creativo ed in particolar modo la fase di incubazione. Circa il 70% dei partecipanti
mentre stavano esponendo un’altra idea, vedevano il ripresentarsi di una idea precedente.

Per un certo numero di ricercatori, il modello in quattro fasi o una sua variante è servito e continua a fungere da base per la comprensione del processo creativo. In particolare, si cita il modello proposto da Amabile nel 1996 composto dalle seguenti fasi: (a) identificazione del problema e del compito, (b) preparazione (raccolta e riattivazione di informazioni e risorse pertinenti), (c) generazione di risposte e (d) conferma della risposta e comunicazione. Queste fasi, che non si verificano necessariamente secondo una sequenza fissa, descrivono il processo creativo di individui singoli o piccoli gruppi.

2.1.3 Evoluzione del modello a 4 stadi

In termini di estensione o miglioramento del modello di base in quattro fasi, diversi autori hanno suggerito che è importante distinguere una fase di individuazione dei problemi o di formulazione dei problemi dalla fase preparatoria in cui vengono raccolte le informazioni pertinenti e in cui si avanzano le idee preliminari (Amabile, 1996; Getzels & Csikszentmihalyi, 1976; Osborn, 1953). La ricerca dei problemi implica il riconoscimento dell’esistenza di un problema, la ricerca di lacune, incongruenze o difetti rispetto allo stato dell’arte attuale. Einstein e Infeld (1938) notarono l’importanza di sollevare nuove domande, formulare un problema e vedere vecchi problemi da nuove angolazioni. Allo stesso modo, Isaksen e Treffinger (1985) hanno proposto che la risoluzione di problemi creativi inizi con una fase di “ricerca di confusione” da cui vengono definiti i problemi.

Per quanto riguarda le altre fasi del processo creativo, alcuni autori hanno suggerito che una fase di frustrazione si verifica dopo la fase preparatoria quando la mente conscia raggiunge il suo limite nel trattare il problema; la frustrazione può provocare l’incubazione (Goleman, Kaufman e Ray, 1992; Hutchinson, 1949).
nel 1992 ha proposto che tra l’incubazione e il momento dell’illuminazione potrebbe esserci spesso un “punto di frustrazione creativa”. Tale punto di frustrazione creativa consiste nel prendere una decisione su come affrontare le difficoltà incontrate durante la risoluzione dei problemi.

È stata anche esplorata la natura dell’incubazione - un periodo durante il quale un problema viene “messo da parte” spesso a causa di un punto morto nella risoluzione dei problemi (Guilford, 1979; Smith & Dodds, 1999). L’incubazione può comportare la diffusione automatica dell’attivazione in memoria, la ricerca passiva di dettagli dei problemi o idee trincerate che non funzionano, ampia attenzione e uso di segnali fortuiti dall’ambiente o pensiero associativo attraverso un processo di combinazione casuale (Ochse, 1990; Olton, 1979; Smith & Dodds, 1999). Per quanto riguarda la parte finale del processo creativo, alcuni autori hanno proposto una fase di implementazione o di comunicazione in cui la produzione creativa è presentata in un ambiente sociale (Amabile, 1996; Stein, 1974).

Nel 2005 Warr O’Neill propone un modello a tre stadi del processo creativo: (1) Generazione delle idee, (2) Preparazione delle idee, (3) Valutazione delle idee. I tre stadi in realtà non seguono un ordine temporale, ma possono essere affrontati anche contemporaneamente.
Nel 2009 Miller & Jones sviluppano il modello di generazione delle idee IR^3. Definendo il processo di generazione delle idee durante la fase concettuale come un processo fluido.

Il designer genera ed affina le idee, per poi lasciare il cerchio con una idea pronta per essere implementata. Il modello consiste in 4 fasi principali: (1) Ispirazione, (2) Ricerca, (3) Rappresentazione e (4) Raffinamento.

La prima fase, quella più esterna al cerchio, è detta Ispirazione e prevede 4 step distinti:

- Passive searching: cercare qualcosa senza una idea precisa (fonti: riviste, libri, siti internet);
- Encompassing: immergersi in informazioni rilevanti per il progetto corrente;
- Socialising: parlare con altri soggetti di argomenti estranei al progetto in modo da liberare la mente;
- Incubating: chiudersi in sé stessi al fine di interiorizzare le informazioni e trovare l’ispirazione.

La Ricerca è la seconda fase del processo IR^3 nella quale i progettisti cercano di acquisire ulteriori conoscenze al fine di identificare potenziali soluzioni. È possibile suddividere questa fase in 4 step:

- User Research: ricerche svolte dai designer al fine di provare empatia per gli users (consiste praticamente nel “mettersi nei panni” dei potenziali utilizzatori).
- Forced Analogy: i designer sfruttano analogie anche far field in modo tale da sviluppare uno spazio di ricerca più ampio possibile.
- Active Search: è una ricerca attiva svolta dai designer che necessitano di informazioni molto specifiche o tecniche.
- Sketches and Documentation: gli schizzi e i documenti risultano molto utili per fissare e riorganizzare le idee.

Terza fase del processo di Miller & Jones è la cosiddetta Rappresentazione e consiste nel tentativo di visualizzare e fissare le idee generate tramite l’utilizzo di immagini e/o oggetti fisici. I metodi di rappresentazione più utilizzati sono 4:

- Sketches and Documentation: utilizzati come modo per concettualizzare il progetto;
- Storyboard: utilizzati dai designer per visualizzare le conoscenze acquisite durante la fase di ricerca. Includono informazioni sugli utenti ricercati.
- Prototypes: usati come modo per rappresentare fisicamente un’idea in maniera approssimativa.
- Elicit expertise: sfruttati nel caso in cui il prodotto da progettare non appartenga all’area di competenza dei progettisti.

La quarta ed ultima fase è detta di Raffinamento. In questa fase i progettisti fanno convergere le idee basate sulla valutazione dei concetti. Attraverso le Critiche, di natura formale o informale, i progettisti vanno a ridurre il numero di idee, effettuando una sorta di selezione.

2.1.4 Critiche al modello a 4 stadi

Le prime critiche al modello a 4 stadi di Wallas (1926) vennero da due autori Eindhoven e Vinacke che in un esperimento del 1952 non trovarono evidenze che attestassero 4 fasi discrete del processo creativo. Sostennero inoltre che il processo creativo dipendesse fortemente dal soggetto analizzato.

2.2 Metodi di supporto alla progettazione

2.2.1 Brainstorming

La parola Brainstorming ha assunto nel tempo una varietà di significati popolari: per alcuni significa semplicemente riunirsi e avere una discussione informale per trovare nuove idee; altri credono invece che il termine brainstorming sia un sinonimo di idea generation; per altri, il brainstorming è un trattamento universale (l’unico modo per essere creativi) o sinonimo dell’intero processo CPS; per altri ancora equivale ad una perdita di tempo.
2.2.1.2 Modello di Osborn

Osborn (1953) nel suo libro *Applied Imagination* ha delineato una varietà di strumenti e approcci alla risoluzione di problemi creativi. In particolare, il Brainstorming come una conferenza creativa il cui unico scopo fosse produrre una lista di idee da valutare successivamente. Il brainstorming di gruppo è stato suggerito come supplemento all'ideazione individuale, non come strumento sostitutivo.

Alla base dello strumento vi sono però delle linee guida da seguire:

1. Le critiche sono escluse. Il giudizio negativo sulle idee deve essere svolto a posteriori e non durante la sessione di brainstorming. La sessione ha come unico scopo quello di generare un gran numero di opzioni non convenzionali.

2. La generazione di idee a ruota libera è benvenuta. Più primitive sono le idee, meglio sarà. Infatti, è più facile criticare piuttosto che ideare. Fino a che le critiche sono vietate, è accettabile e altamente desiderabile che le idee davvero selvagge e insolite siano condivise.

3. L'obiettivo primario è la quantità di idee: maggiore è il numero, maggiore risulta la probabilità che qualcuna possa essere utile.

4. Combinazione e miglioramento sono i benvenuti. Oltre a contribuire con le proprie idee, i partecipanti dovrebbero suggerire come migliorare le idee degli altri o come due o più idee possano essere unite per crearne una terza.

La sessione di Brainstorming vede coinvolti gruppi di 5-10 persone che in un tempo prestabilito, tipicamente 30-45 minuti, devono generare il maggior numero di idee possibile. Osborn individua nella preparazione preliminare al compito, uno degli aspetti più importanti dello strumento di progettazione. Ed è proprio nella preparazione antecedente all'ideazione di gruppi che l'individuo può autonomamente generare le proprie idee, andando ad ampliare il tempo di
incubazione delle idee generate. Per fare ciò veniva consegnata ad ogni partecipante una nota preparatoria contenente le informazioni sul compito da svolgere. Quando si utilizza la procedura di Brainstorming con i gruppi, è importante ricordare che il gruppo potrebbe aver bisogno di una varietà di strategie di mediazione per mantenere alta l’energia e produrre molte, varie e insolite opzioni (McFadzean, 1997). Ed è per questo che Osborn propone nel 1953 la figura del moderatore. Il moderatore, per mantenere produttiva la discussione in gruppo, deve condurre la discussione ed essere in grado di porre domande stimolanti, sviluppare piani per guidare la generazione di idee, fornire pratiche di riscaldamento e orientamento per i partecipanti, insegnare e rafforzare le linee guida e gestire la pianificazione e programmazione di sessioni e incontri di follow-up. Un moderatore è confidente nell’uso dello strumento, è responsabile del processo e delle procedure, delle strutture e della preparazione dell’ambiente, rafforza i ruoli e le regole di base per la sessione, concentra le risorse del gruppo, ed è sensibile a una varietà di dinamiche di gruppo (Kinlaw, 1993 e 1996; Rees, 1991). Una assenza di tale figura può generare un numero significativamente più basso di idee (Offner, Kramer and Winter, 1996).

2.2.1.3 Studi di Yale

Il modello proposto da Osborn però fu ampiamente criticato dagli studiosi di Yale degli anni Cinquanta e Sessanta. Primi a criticare Osborn furono nel 1958 Taylor, Berry e Block, che in un esperimento di coacting sostennero che la produttività, data dalla somma delle idee generate, dei singoli soggetti operanti individualmente fosse maggiore della produttività dei soggetti operanti in gruppi. Questo esperimento, come molti dei successivi, non adopera tutte le accortezze individuate da Osborn nel suo modello: manca il mediatore, manca la preparazione preliminare e la conseguente ideazione individuale.
2.2.1.4 Produttività

Il livello di esperienza e competenza dei membri del gruppo, livello di sviluppo del gruppo e tipo di diversità all’interno del gruppo sono fattori importanti nella comprensione della produttività del gruppo (Bottger & Yetton, 1987).

Prato e Parnes (1959) hanno scoperto che, confrontando soggetti addestrati che lavorano in gruppi reali che utilizzano brainstorming con gruppi che utilizzano un approccio di gruppo alternativo che prevede una valutazione critica, la qualità delle idee risulta migliore utilizzando il brainstorming.

Torrance nel 1970 scopre che coloro che utilizzano le linee guida del brainstorming mostrano più originalità e flessibilità durante idea generation.

La perdita di produttività del brainstorming sostenendo è in parte dovuta alla paura di un giudizio negativo e alla voglia di essere in accordo con gli altri (Diehl & Stroebe, 1987; Mullen, Johnson, & Salas, 1991).

Ad avvalorare tale tesi, nel 1993, Shepperd va ad associare la perdita di produttività con due fenomeni sociali: (1) Social Loafing e (2) Free riding. Il fenomeno di Social Loafing si verifica quando c’è una riduzione della motivazione e del conseguente sforzo quando gli individui lavorano in gruppo rispetto a quando lavorano individualmente o in modo coattivo (Harkins, 1987; Harkins, Latané e Williams, 1980; Harkins & Petty, 1982; Karau & Williams, 1993; Latané, Williams e Harkins, 1979). Il fenomeno di Free Riding si verifica quando gli individui, percependo che i
loro sforzi personali sono poco influenti, riducono i loro sforzi e contributi al gruppo (Olson, 1965; Kerr & Bruun, 1983; Williams & Karau, 1991).

2.2.1.5 Umorismo

L’umorismo è l’espressione fisiologica che accompagna la risata. È un fenomeno psicologico che sembra essere unico per l’uomo e fondamentale nel modo in cui ci relazioniamo con gli altri (Coser, 1959; Ziv, 1976). L’umorismo intenzionale creato dalle persone coinvolge tre elementi: un comunicatore, un ascoltatore e un messaggio (Coser, 1959; McGee, 1989).

La variabile più rilevante per l’umorismo è l’umore o l’atmosfera presente durante una sessione di brainstorming. Ciò è stato descritto come critico per il successo del successo della generazione di idee (Mcfadzean, 1998; VargasHernandez et al, 2010) in quanto consente ai partecipanti di parlare più liberamente e senza timore di
critiche (Stroebe, Nijstad e Rietzschel, 2010). L’umorismo quindi può essere utilizzato in due modi per incoraggiare la creatività del design: migliorare l’umore e strutturare la generazione di idee.

Le situazioni irreali proposte quando si usa l’umorismo allentano le regole del pensiero razionale possono aumentare le possibilità di pensiero divergente o laterale (Ziv, 1976). Il processo cognitivo coinvolto durante la generazione di nuove idee è molto simile a quello di produrre uno scherzo (Koestler, 1964), e negli studi sulla produzione di umorismo negli studenti universitari, Treadwell (1970) ha scoperto che coloro che presentavano un più alto grado di creatività erano più bravi anche nel produrre umorismo. Entrambi implicano la creazione di un’associazione casuale, che si tratti di una soluzione al problema o di una battuta simpatica, il che significa che entrambi richiedono un pensiero divergente. Adattare il processo di brainstorming andando ad incoraggiare disconnessioni o combinazioni insolite che sono caratteristiche della teoria dell’incongruenza nell’umorismo, può migliorare la creatività della sessione.

2.2.2 Brainstorming modificato

Per evitare che le dinamiche di gruppo possano interferire con la produttività in termini di numero di idee generate, spesso si ricorre all’utilizzo della cosiddetta tecnica 6-3-5. Come mostrato in Figura 7, un gruppo di 6 persone si riunisce attorno ad un tavolo ed in un tempo compreso tra i 5 e i 15 minuti ha il compito di sviluppare un piccolo numero di concetti. Sono forniti ai partecipanti grandi fogli di carta e pennarelli colorati ed ogni partecipante dovrà nel tempo stabilito scrivere o disegnare una idea. Trascorso il tempo previsto, ogni partecipante passerà alla sua destra il foglio e colui che lo riceverà potrà andare a modificare o implementare l’idea proposta dal collega. La rotazione continua fintanto che ognuno avrà apportato delle modifiche a tutte le idee proposte. Durante la sessione ci è una
regola fondamentale: ogni comunicazione, verbale e non, è severamente vietata.
Così facendo, ogni partecipante è costretto ad astenersi dal giudicare le idee altrui, ed ha anzi la possibilità di modificare o implementare le idee proposte dagli altri a suo piacimento.

![Brainstorming modificato 6-3-5](Jensen, Weaver, Wood, & Linsey, 2009)

2.2.3 Analisi morfologica

L’analisi morfologico-funzionale è un metodo di supporto alla progettazione che descrive cosa un prodotto deve fare, in termini di funzioni da svolgere, ma non come svolgerà tale funzione (forma di realizzazione).

![Morf Matrix: Finger Nail Clipper](Jensen, Weaver, Wood, & Linsey, 2009)
È sostanzialmente un metodo che, partendo da un problema di progettazione, va a scomporre un oggetto in tutte le sue funzioni. Dopodiché si vanno a cercare delle possibili soluzioni progettuali tali da espletare al meglio ogni funzione individuata. Chiaramente, ogni soluzione avrà dei drawbacks più o meno evidenti che andranno risolti tramite la combinazione delle diverse soluzioni individuate. La soluzione finale al problema nascerà quindi dalla scelta migliore tra le possibili soluzioni e dalla loro combinazione.

2.2.4 Design trasformativo

Il design trasformativo nasce dall’idea che un qualunque prodotto, subendo una qualche trasformazione possa offrire nuovi utilizzi. La trasformazione è quindi il cambiamento di stato al fine di fornire nuove funzionalità. Tale tecnica è basata su 3 principi trasformazionali che descrivono come la trasformazione debba avvenire: (1) Espandere/Collassare, (2) Esporre/Coprire, (3) Fondere/Dividere. Per ciascuno di questi principi sono poi suggeriti 20 facilitatori trasformazionali che descrivono i componenti chiave per la trasformazione.

![Table of principles and facilitators](image)

Figura 10 - Principi e Facilitatori nel design trasformativo

Il design trasformativo è spesso associato all’utilizzo di mappe concettuali. La tecnica di mind mapping consente di posizionare le parole chiave al centro di un foglio andandole ad arricchire con le informazioni ad esse correlate tramite collegamenti logici.
2.2.5 Design per analogia

L’analogia è un metodo potente per sviluppare nuovi concepts, ma spesso risulta molto difficile da implementare. Come suggerisce la parola stessa, la progettazione per analogia prevede la comparazione tra due o più parole in base alla loro somiglianza semantica. Tale tecnica prevede la creazione di rappresentazioni linguistiche multiple delle funzioni da risolvere. Uno degli strumenti utilizzati per facilitare il task di progettazione è WordNet. WordNet è una sorta di dizionario che prende in input una parola, espletante una funzione o esigenza chiave del compito, e produce troponimi e iperonimi. I troponimi sono sinonimi specifici della parola inserita, mentre gli iperonimi sono sinonimi più generali. WordTree consente di organizzare le informazioni partendo dal sinonimo più generale per poi passare a quelli più specifici.

Gran parte del design per analogia prende spunto dalla biologia: identificata una funzione chiave si va a vedere se nella realtà ci siano animali o sistemi biologici da imitare. La biologia infatti è un regno molto fertile per le analogie, ed ispirandosi ad essa si possono realizzare oggetti dalle funzionalità inaspettate. Chiaramente, l’analogia non deve necessariamente guardare ai sistemi biologici. Ad esempio, l’analogia Far Field identifica 3 regni a cui ispirarsi: (1) Fisica, (2) Arte e (3) Meccanica della società.

| PHYSICS: State Changes, Quantum Mechanics, Relativity, Classical Mechanics (fluids, structures, orbital) |
| ART: Painting, Sculpture, Music, Poetry, Literature, etc. |
| SOCIOLOGICAL MECHANICS: Governments, Interpersonal relationships, Family dynamics, Organizational systems (corporate, military, family, recreational,…) |

Figura 11 - Design per analogia Far Field (Jensen, Weaver, Wood, & Linsey, 2009)
La progettazione per analogia a campo lontano va proprio a chiedersi come la Fisica, l’Arte o la Meccanica sociale svolgano una determinata funzione utile al compito di progettazione.

Sempre nell’ambito della progettazione per analogia, si cita il Design basato sui principi degli innovatori storici. La storia passata ha esibito numerosi esempi di individui dalla straordinaria creatività, quindi perché non cercare di imitare questi prodigiosi personaggi applicando gli stessi principi utilizzati da loro nel processo di idea generation?

Si riportano in Figura 12 e 13 quattro esempi di individui straordinari con le loro caratteristiche principali: N. Copernico, C. Colombo, Platone e A. Einstein.

Figura 12 - Principi dagli innovatori storici (N. Copernico e C. Colombo)

Figura 13 - Principi dagli innovatori storici (Platone e A. Einstein)
2.2.6 Sketches

Gli schizzi, definiti come parte non verbale del pensiero dei progettisti, possono contribuire in maniera significativa al processo di idea generation (Ferguson, 1992). I disegni iniziali infatti sono noti per la loro capacità di migliorare la generazione di idee (Goldschmidt 1991; Goel 1995). Consentono di esternalizzare idee e informazioni, migliorando quindi memoria e pensiero (Goel 1995; Suwa & Tversky 1997; Tversky 1999). Infatti, aiutano a fissare le immagini mentali dei progettisti, consentendo loro un approccio più concreto al problema di progettazione. Risultano molto efficaci sia nella fase di cernita che nella fase elaborazione delle informazioni, consentendo un accesso privilegiato in termini di originalità e novità.

In termini di performance, non vi è una correlazione diretta tra il volume di disegni generati e la quantità di idee esplorate.

Van der Lugt (2000, 2002, 2005), ha identificato tre potenziali ruoli del disegno:
1. Lo sketch potrebbe fornire supporto per la reinterpretazione durante il processo di pensiero individuale.

2. Gli schizzi potrebbero supportare la reinterpretazione dei disegni di qualcun altro.

3. Gli schizzi potrebbero fornire un accesso migliore alle idee primitive, svolgendo così una funzione di "memorizzazione".

Gli schizzi hanno quindi una natura generativa, ma, per comprenderla, è necessario analizzare e conoscere la strategia progettuale del designer.

Tra le tecniche che adottano lo sketching, si cita la cosiddetta C-K Theory: è una teoria modellata su due spazi, il primo basato sulla conoscenza (Knowledge Space) ed il secondo basato sui concepts (Concept Space).

![Diagramma C-K Theory](image)

Figura 14 - Teoria C-K (Jensen, Weaver, Wood, & Linsey, 2009)

Nello spazio della conoscenza le affermazioni ammettono uno stato logico, ovvero è possibile definire se una affermazione sia vera o falsa, mentre nello spazio dei concepts ciò non avviene. All’interno degli spazi è comunque possibile modellare le mosse secondo 4 operatori: K -> C, C -> C, K -> K e C -> K.
2.2.7 TRIZ

TRIZ è un acronimo russo (Теория Решения Изобретательских Задач, che sta per “Theory of Inventive Problem Solving”) sviluppato da Genrich Saulovich Altshuller tra il 1946 e il 1998. È comunemente indicato come una teoria, una metodologia, un insieme di strumenti, a volte persino una filosofia che con l’aiuto di mezzi sistematici va a guidare e supportare le tecniche creative.

2.2.7.1 Origini

Altshuller, impiegato all’ufficio brevetti della marinai sovietica, ebbe la possibilità di studiare miglioramenti di brevetti e comprendere problemi e soluzioni ad essi associati. Il suo lavoro iniziale fu rivolto principalmente al rifiuto di un approccio alla risoluzione dei problemi del tipo Trial & Error e allo sviluppo di un approccio scientifico.

Sin dall’inizio, attraverso l’analisi di soluzioni brevettate, è stato rivelato che le invenzioni di livello superiore non accettano compromessi tra requisiti contrastanti. Inoltre, qualunque sia il campo di applicazione, nuovi paradigmi sono caratterizzati dall’eliminazione, o almeno dalla mitigazione, di questi conflitti o ‘contraddizioni’ (Altshuller & Shapiro, 1956). Altshuller intui che gli stessi principi innovativi sono alla base dello sviluppo di diversi settori e che tutti i sistemi tecnici si evolvono secondo schemi ripetibili. Di conseguenza tali principi possono essere codificati e generalizzati per una applicazione potenzialmente universale.

Dopo aver acquisito consapevolezza dell’esistenza di modelli generali di evoluzione dei sistemi tecnici, Altshuller ha iniziato a lavorare allo sviluppo di un vero e proprio metodo per la risoluzione di problemi inventivi.
Tra il 1964 e il 1965 sviluppò una procedura chiamata ARIZ (Algorithm for Inventive Problem Solving), che partendo dall’analisi di un problema consente di rivelare le contraddizioni alla base e andandole a superare tramite l’utilizzo di principi universali. Negli anni successivi Altshuller andò a sviluppare una matrice di contraddizioni: una tabella in cui i principi statisticamente più efficaci nel superamento delle contraddizioni tecniche sono associati alle coppie di parametri tecnici in conflitto.

Nella seconda metà degli anni ‘70 Altshuller cercò di fare un passo aggiuntivo: passare da una teoria per la risoluzione dei problemi inventivi ad una per lo sviluppo di sistemi tecnici. Pertanto, durante questa fase, a parte le nuove versioni di ARIZ, la tecnica di modellazione Substance-Field e il sistema di soluzioni standard per i problemi inventivi è stato ulteriormente arricchito. Lo sviluppo di TRIZ è considerato concluso nel 1985 con l’ultima versione di ARIZ approvata dal suo autore.

2.2.7.2 Modello di Altshuller

Il modello teorizzato da Altshuller si basa su 3 concetti fondamentali: (1) la contraddizione, (2) l’idealità e (3) i modelli di evoluzione dei sistemi. Le
contraddizioni sono indicative di problemi inventivi e si presentano come una significativa incompatibilità delle caratteristiche desiderate all’interno di un sistema. Risolvere le contraddizioni consente di risolvere i problemi. Vi sono due principali tipi di contraddizioni:

a) Contraddizioni tecniche: si presentano quando cercando di migliorare alcuni attributi o funzioni del sistema si arriva ad un deterioramento degli attributi stessi.

b) Contraddizioni fisiche: si verificano quando ci sono incoerenze nei requisiti per le condizioni fisiche del sistema stesso.

L’idealità è una misura di quanto un sistema sia vicino alle sue massime potenzialità, cioè l’ideale macchina. Per raggiungere la condizione ideale, bisogna aumentare il più possibile i vantaggi offerti dal sistema, riducendo da un lato i costi degli input e dall’altro le funzioni dannose che ne derivano.

I modelli di evoluzione dei sistemi sono accomunati da una serie di principi e presentano uno sviluppo regolare. Vi sono otto tendenze distinte che guidano lo sviluppo e ogni tendenza si divide ulteriormente in linee di evoluzione (Gadd, 2011).

2.2.7.3 Soluzioni standard e strumenti

TRIZ presenta una serie di strumenti e soluzioni che vanno a supportare praticamente i designer nel processo di progettazione. Si riassumono di seguito 3 gruppi di strumenti:

1) Strumenti analitici (analisi di campo, analisi funzionale e ARIZ): aiutano a definire formulare e modellare un problema.

2) Strumenti basati sulla conoscenza (40 principi inventivi, 76 soluzioni ed effetti standard): offrono raccomandazioni per trasformare il sistema. I 40 principi inventivi forniscono soluzioni concettuali a contraddizioni tecniche
e fisiche; le 76 soluzioni standard consentono di risolvere i problemi di sistema senza la necessità di identificare contraddizioni; il database degli effetti include circa 2500 concetti estratti dal corpo di conoscenze ingegneristiche e scientifiche e applicati alla risoluzione dei problemi.

3) Operatori psicologici: aiutano a facilitare la risoluzione creativa e a risolvere i problemi del processo.

2.2.7.4 Performance

TRIZ è quindi una tecnica strutturata che consente, tramite l’utilizzo di tools e soluzioni standard, la comprensione di problemi complessi. Se applicato in ambito di progettazione innovativa presenta una serie di vantaggi:

✓ Aiuta a identificare e chiarire problemi e fornisce buoni suggerimenti per la soluzione;
✓ Fornisce soluzioni insolite e utili;
✓ Aiuta a generare idee più innovative;
✓ Consente di risolvere problemi complessi molto più velocemente.

Chiaramente TRIZ, rispetto agli strumenti di supporto alla progettazione visti in precedenza, risulta nettamente più complesso. La comprensione degli strumenti richiede infatti un notevole dispendio di tempo e risorse mentali, oltre all’oggettiva difficoltà nella scelta di soluzioni standard e strumenti migliori per un dato problema di progettazione.

2.3 Esperimenti neuroscientifici

Per studiare il processo di progettazione da un punto di vista comportamentale, bisogna andare ad analizzare le informazioni cognitive ed i processi subconsci che si svolgono nel cervello dei progettisti. Sono loro infatti che, partendo da un input di qualsivoglia natura, devono esplorare lo spazio delle soluzioni al fine di generare

Una serie di autori nell'ambito della psicologia e delle neuroscienze, hanno tentato di determinare come nel cervello umano si generasse la creatività e a quali pattern di attivazione cerebrale fosse correlata. I papers neuroscientifici evidenziano che la creatività possa essere la somma di tre principali comportamenti: (1) Ricerca nella memoria; (2) Attenzione interna; (3) Immagini mentali.

2.3.1 Ricerca nella memoria

Molti autori che hanno studiato la creatività hanno riscontrato la tendenza dei soggetti a recuperare nella propria memoria, quindi nella propria esperienza passata, le informazioni necessarie al fine di sviluppare prodotti innovativi. Sembra essere un controsenso il fatto che nello svolgere task creativi i soggetti vadano a ripescare le informazioni nella propria memoria, ma in realtà non è così. Benedek nel 2013 evidenzia che le persone creative mostrano una maggiore fluidità associativa e risposte più rare. Quindi la creatività potrebbe non essere correlata a una speciale organizzazione cognitiva, ma piuttosto a un modo più efficace di accedere ai contenuti della memoria associativa (Benedek & Neubauer, 2013). Ciò implica che tutti i soggetti, se stimolati in modo corretto, possono sviluppare soluzioni innovative, non convenzionali.

Durante compiti di pensiero divergenti, le persone spesso iniziano ricordando gli usi noti per gli oggetti prima di generare eventualmente nuovi usi (Benedek, Beaty, Christensen, & Schacter, 2017). Quindi i concepts fortemente associati ad un dato segnale possono fungere da fonte di interferenza e il controllo cognitivo è il mezzo

La generazione di idee creative risulta essere in parte correlata al processo inibitorio, cioè alla capacità di resistere a impulsi, pensieri, conoscenze e comportamenti prevalenti (Camarda, et al., 2018). Se i soggetti non riescono a resistere a tali impulsi ricadono nella cosiddetta fissazione che è appunto l’incapacità di esplorare nuove idee e soluzioni rimanendo ancorati agli usi convenzionali degli oggetti, e alle soluzioni già note. Nell’esperimento di Camarda (2018) si evidenzia che il controllo inibitorio riduce le capacità creative dei soggetti in termini di fluidità, flessibilità e originalità.

2.3.2 Attenzione interna

Nella maggior parte degli esperimenti di neuroimaging si evidenzia il fatto che quando i soggetti cercano soluzioni creative tendono ad escludere l’ambiente esterno, andando a porre le attenzioni verso l’interno. Benedek et al. (2016) associano un alto livello di potenza alpha alla tendenza degli individui di porre attenzione sui processi interni piuttosto che sugli stimoli esterni (Benedek, et al., 2016). È necessario mantenere la propria mente focalizzata sui processi interni nonostante la continua stimolazione sensoriale al fine di mantenere un treno di pensieri. Si evince quindi che un focus sull’attenzione interna implica un disaccoppiamento dell’attenzione dalle informazioni percettive, che serve a isolare i processi interni in corso da interferenze esterne. Mentre l’attenzione diretta esternamente risulta associata al network di attenzione dorsale (DAN) che coinvolge le regioni parietali superiori ed intraparietali, l’attenzione diretta internamente è
stata comunemente associata al default network (DN) che include la corteccia prefrontale mediale, il cingolato posteriore, i lobi temporali mediali e la corteccia parietale inferiore posteriore.

Fink & Neubauer (2014) hanno dimostrato che le condizioni che convogliano l’attenzione verso l’interno mostrano una maggiore potenza delle onde alpha nelle regioni parietali dell’emisfero destro. L’aumento della potenza alfa nell’area parietale destra può corrispondere a una disattivazione della giunzione temporoparietale destra, che riflette un’inibizione della rete di attenzione ventrale. Si ritiene che l’inibizione di questa regione prevenga il riorientamento a stimoli esterni irrilevanti (Benedek, Schickel, Jauk, Fink, & Neubauer, 2014).

Benedek et al. (2016) dimostrano che l’attenzione diretta internamente è associata ad una maggiore attivazione nel lobo parietale inferiore anteriore destro (a IPL), nel giro linguale bilaterale e nel cuneus, nonché con estese disattivazioni delle regioni parietali e occipitali superiori che rappresentano parti della rete di attenzione dorsale. L’a IPL destro ha inoltre mostrato una maggiore connettività con le regioni occipitali suggerendo un meccanismo top-down attivo per proteggere i processi interni in corso dalla stimolazione sensoriale potenzialmente distruttiva in termini di disaccoppiamento percettivo (Benedek, et al., 2016).

2.3.3 Immagini mentali

Un altro aspetto fondamentale nella generazione di soluzioni creative è la creazione di immagini mentali. Infatti, le persone nello svolgimento di task creativi tendono a rappresentare mentalmente i prodotti della loro creatività. Rataj nel 2018, riscontra in un esperimento del tipo AUT che le richieste relative all’accesso e all’integrazione delle informazioni semantiche necessarie per creare una nuova rappresentazione degli oggetti (uso alternativo), sarebbero maggiori rispetto al caso degli usi comuni, che non richiedono la creazione di una nuova rappresentazione.
Se per gli oggetti di uso comune il soggetto va a pescare dalla propria memoria l’immagine ad essi associata, per quelli di uso non comune il soggetto dovrà andare a creare una rappresentazione nuova. Quindi l’aumento delle richieste di elaborazione semantica nella valutazione dell’uso alternativo risulta legato alla creazione di rappresentazioni concettuali (Rataj, Nazareth, & Velde, 2018).

Schwab nel 2014 ha implementato un esperimento nel quale i partecipanti, effettuata la bozza di un nuovo prodotto, dovevano andarla a migliorare mentalmente aumentandone l’originalità. L’ideazione creativa in questo compito figurale era generalmente associata a una desincronizzazione relativamente forte della potenza alfa superiore su siti parietali e occipitali, indicando elevate esigenze di elaborazione visiva e figurale.
3. L’esperimento (Colombo, 2019)

L’esperimento effettuato da Samuele Colombo nasce dal tentativo di replicare, con una serie di accorgimenti, un paper intitolato “Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity” (Jauk, Benedek, & Neubauer, 2012). L’esperimento consiste nel sottoporre ai partecipanti una serie di oggetti di uso comune, andando a chiedere loro di trovare alternativamente un uso comune o non comune per quel determinato item. Le risposte dei partecipanti sono poi state elaborate integrandole da un lato con le misurazioni EEG, dall’altro lato con le misurazioni del movimento oculare.

3.1 Configurazione dell’apparato sperimentale

La popolazione coinvolta nell’esperimento è costituita da 40 studenti, 11 femmine e 29 maschi, di nazionalità diverse ed età compresa tra 19 e 32 anni. Il compito proposto ai partecipanti era una variazione dell’esperimento alternative uses task (AUT) proposto da Guilford (Guilford, 1967). Dopo la lettura di un file introduttivo, ai partecipanti venivano sottoposti una sequenza di 40 item, rappresentanti oggetti di uso comune. L’esperimento è stato diviso per ogni soggetto in due parti principali, una per la condizione common (c) e l’altra per la condizione uncommon (u). Ogni blocco era composto da 20 stimoli, forniti ai partecipanti in ordine casuale in modo tale da evitare ogni pregiudizio. La richiesta fatta ad ogni partecipante era quella di trovare un solo utilizzo per un dato item in un tempo massimo di 30 secondi, in base alla condizione: nella condizione common l’utilizzo doveva essere convenzionale (ordinario), mentre nella condizione uncommon il soggetto poteva dare libero spazio alla sua creatività per trovare un utilizzo non convenzionale (alternativo).

Le differenze principali rispetto all’esperimento di Jauk et al. (2012) sono:
• Numero di partecipanti: 40 nell’esperimento di Colombo contro 20 nell’esperimento di Jauk et al.;
• Suddivisione in due distinti blocchi per le due condizioni, common e uncommon, dell’esperimento di Colombo;
• Raccolta tramite questionario dei dati personali dei partecipanti (età, genere, corso di studi etc.);
• Utilizzo eyetracker per registrare i movimenti oculari durante l’esperimento.

Si riporta di seguito la procedura preliminare attraverso la quale venivano presentati ai partecipanti i blocchi (Block 1, Block 2).

![Figura 16 - Presentazione preliminare nell’esperimento di Colombo (2019)](image)

La procedura prevede infatti tre step: nel primo step viene presentato per 5 secondi il blocco che si andrà a svolgere con la dicitura Block 1/Block 2. Il secondo step presenta le istruzioni da eseguire per un corretto svolgimento dell’esperimento. Questo blocco non ha una durata prefissata, quindi il partecipante avrà tutto il tempo necessario per comprendere il testo, e quando si sentirà pronto per iniziare dovrà premere la barra spaziatrice. Nel terzo step apparirà sullo schermo la condizione common/uncommon che il soggetto dovrà rispettare per i successivi 20 trials. La presentazione dei primi 20 item avviene senza pausa e segue una sola condizione (common/uncommon). Dopo il primo blocco, i soggetti hanno a disposizione 20 minuti di pausa per riprendere le energie e ritrovare la concentrazione. La pausa garantisce infatti al soggetto una buona performance anche nel secondo blocco, andando a limitare l’effetto stanchezza.

La presentazione dei 20 trials successivi avviene secondo la seguente procedura:
(1) Schermo bianco per 5 secondi;
(2) Croce fissa, al centro dello schermo, per 5 secondi. Utile al fine di ottenere un periodo di riferimento per l’analisi EEG;
(3) Parola al centro dello schermo sostituisce la croce per una durata di 500 ms. La parola quindi compare sempre al centro al fine di evitare distorsioni dovute ai movimenti oculari;
(4) Croce fissa, al centro dello schermo, per una durata massima di 30 secondi. Il partecipante dovrà pensare ad una risposta continuando a guardare al centro dello schermo. Una volta elaborata una risposta, il soggetto dovrà premere la barra spaziatrice al fine di interrompere il tempo.
(5) Il soggetto espone oralmente la sua idea.

Figura 17 - Presentazione degli stimoli (Colombo, 2019)

Si riporta in Appendice (A.1) la presentazione delle istruzioni operative fornite ai partecipanti.

Alla fine dell’esperimento è stato chiesto ai partecipanti di compilare un questionario riportando le proprie impressioni sull’esperimento.

3.2 Strumenti di raccolta dati

L’elettroencefalografia è una tecnica di imaging non invasiva dedicata principalmente a scopi medici al fine di leggere l’attività elettrica generata dalle strutture cerebralì. L’elettroencefalogramma (EEG) registra l’attività elettrica a partire dalla superficie del cuoio capelluto tramite elettrodi metallici e mezzi conduttivi.
La valutazione dei segnali cognitivi è stata effettuata adottando il dispositivo BrainVision ActiCHamp (sviluppato da BrainProducts GmbH, Germania), inclusi 32 elettrodi raccolti attraverso un box splitter collegato all’ActiCap. Trentuno elettrodi sono stati posizionati sul cuoio capelluto secondo il sistema internazionale 10-20 e uno era collegato alla punta del naso dei partecipanti fungendo da elettrodo di riferimento.

Oltre all’EEG si sono adoperati altri strumenti:

✓ Tobii X2-30 Eye Tracker Compact Edition per l’acquisizione di dati oculari.
✓ Due fotocamere Logitech c920, al fine di registrare il volto e le espressioni dei soggetti, ed eventuali movimenti eccessivi del corpo, che avrebbero potuto alterare la registrazione elettroencefalografica.

Per la registrazione dei dati è stato adottato il software iMotions 7.2, che consente da un lato la sincronizzazione dei segnali EEG, Eye-tracker e telecamere e dall’altro lato la gestione degli stimoli presentati ai partecipanti.

3.3 Obiettivo dell’attuale ricerca

L’obiettivo della seguente ricerca è quello di analizzare i dati raccolti durante la ricerca. Partendo dalle analisi sui dati elettroencefalografici di Candusso (2019), sono state effettuate ulteriori analisi between e within subjects, con lo scopo di validare i risultati di correlazione tra le risposte verbali e i dati cognitivi dei soggetti. Andando ad analizzare i database si è andati innanzitutto a cercare una correlazione tra le attività cognitive e gli stimoli esterni. È stata quindi condotta un’analisi di frequenza andando ad osservare i cambiamenti di tale parametro agli stimoli esterni (ovvero ai 40 item). La frequenza è stata analizzata attraverso un parametro chiamato Task Related Power (TRP) dell’onda alpha. In particolare, il TRP è un indicatore degli eventi di sincronizzazione (ERS) e degli eventi di desincronizzazione (ERD). Per le analisi di frequenza sono state effettuate delle ANOVA a misure
ripetute considerando come fattori within i parametri Area, Emisfero e Condizione. Sono state in seguito effettuate analisi between subjects sui fattori Genere, Età, Corso di studi.

Un passo aggiuntivo è stato poi fatto, andando ad analizzare i dati sul movimento oculare raccolti e andandoli a correlare ai dati cognitivi dei soggetti. L’analisi dei dati raccolti tramite eyetracker è stata effettuata andando a guardare due parametri principali: il movimento oculare e la dilatazione della pupilla. Per quanto concerne i movimenti oculari è stata definita un’area d’interesse (AOI), ed in relazione ad essa si è effettuata un’ANOVA a misure ripetute utilizzando come parametro within il lato (destra/sinistra) e come parametro between la Condizione (common/uncommon). Lo scopo dell’ANOVA era di determinare se vi fosse una correlazione tra la creatività e i movimenti oculari. Per quanto concerne invece la dilatazione pupillare sono stati effettuati una serie di t-test nelle due condizioni (common/uncommon) per verificare se ci fosse una correlazione tra la dilatazione della pupilla e la tipologia di task richiesto.

È stata infine effettuata un’analisi di Rating, andando a verificare quanto le risposte generate dai soggetti fossero effettivamente innovative. Tre giudici sono andati infatti a valutare le risposte dei 40 partecipanti esprimendo un giudizio da 1 a 4 circa 4 parametri: Originality, Feasibility, Paradigm Relatedness ed Effectiveness. Costruito il database con le risposte di rating, sono stati effettuati una serie di t-test nelle due condizioni (common/uncommon) per verificare se vi fosse una correlazione tra progettazione innovativa e tipologia del compito assegnato.
3.4 Analisi dati EEG

3.4.1 Design of Experiment

Al fine di confrontare l’attività corticale con il risultato del processo di generazione delle idee, si è assunto che i partecipanti avessero risposto in maniera più creativa nelle condizioni non comuni dell’esperimento. Tale assunzione è stata poi confermata dalle analisi di Rating (vedi sezione 3.6).

Per comprendere e classificare le attività corticali durante i task di pensiero divergente, sono stati presi in considerazione 3 principali fattori within: Area, Emisfero e Condizione. Per fare ciò si è resa necessaria una clusterizzazione degli elettrodi in macro-aree. Partendo dalle analisi di Candusso (2019), in questo lavoro di tesi si è deciso di studiare 2 configurazioni:

a) 3 macro-aree ottenute da una semplice suddivisione longitudinale del cervello in Frontale, Centrale e Posteriore;

b) 6 macro-aree ottenuta andando a raggruppare 2/3 elettrodi in base al posizionamento del casco EEG. Suddivide il cervello nelle regioni: ventrale frontale, dorsale frontale, ventrale centrale, dorsale centrale, ventrale posteriore e dorsale posteriore.

3.4.2 Task Related Power

Utilizzando l’output dell’ispezione visiva, Power Spectral Density (PSD), è stato possibile calcolare la potenza correlata alle diverse bande d’onda per ciascun elettrodo di ciascuna risposta. Questo processo è stato eseguito esternamente all’attuale ricerca a causa della mancanza della conoscenza adeguata richiesta per tale compito.

La potenza correlata è stata anche ottenuta per il segnale di riferimento al fine di evidenziare le differenze di attivazione corticale tra la fase di esecuzione dell’attività
e quella di riposo. La potenza alfa è stata quindi calcolata per ciascun elettrodo che utilizza la Task Related Power (TRP) (Pfurtscheller & Lopes da Silva, 1999), secondo la formula (Colombo, 2019):

$$TRP = \log(power_{activation}) - \log(power_{reference})$$

Da cui i TRP positivi risultano associati alla sincronizzazione relativa agli eventi (ERS) e quindi ad un aumento della potenza misurata durante il task rispetto alla condizione di riferimento; i TRP negativi sono invece associati ad una desincronizzazione relativa agli eventi (ERD) e quindi ad una diminuzione della potenza misurata rispetto al riferimento.

L’immagine sottostante rappresenta la disposizione degli elettrodi e la loro codifica:

![Disposizione elettrodi EEG sullo scalpo](image)

Figura 18 - Disposizione elettrodi EEG sullo scalpo

La codifica utilizzata per gli elettrodi è la seguente: (F) Area Frontale, (C) Area Centrale, (T) Area Temporale, (P) Area Parietale, (O) Area occipitale.
3.4.3 Database

Il database iniziale presentava sulle righe i soggetti ed i singoli trial, sulle colonne invece i TRP associati ai singoli elettrodi.

<table>
<thead>
<tr>
<th>Soggetto</th>
<th>Trial</th>
<th>Fp1</th>
<th>F3</th>
<th>F7</th>
<th>Fp2</th>
<th>F7</th>
<th>F3</th>
<th>Fp1</th>
</tr>
</thead>
</table>

Figura 19 - Configurazione DB iniziale

Prima di procedere con le analisi, si è deciso di implementare alcune correzioni:

- Le misure di TRP sono state organizzate secondo la configurazione Condizione Emisfero Area andando a raggruppare gli elettrodi come spiegato nella sezione 3.4.1.

- Sono stati esclusi dalle analisi tutti i valori di TRP fuori dall’intervallo (μ±3σ). La rimozione di tali valori, detti outlier, ha comportato l’eliminazione dell’intero task, quindi di tutte le misure TRP per ogni elettrodo, per un dato soggetto.

- Poiché il numero di misure di TRP associate ad ogni soggetto non era uniforme, si è deciso di equiparare il numero di risposte per ogni soggetto andando ad inserire celle nulle (999) laddove fosse necessario.

Al fine di calcolare un’analisi fattoriale considerando come condizioni within-subjects, aree ed emisfero all’interno del soggetto, è stata assunta una relazione univoca tra le risposte comuni e non comuni dei partecipanti, considerando quindi un soggetto come composto da due risposte (una comune e uno non comune). Questo presupposto si è reso necessario per la valutazione dell’intera popolazione in tutte le possibili configurazioni dell’esperimento.
3.4.4 Risultati 2x2x3

La prima configurazione analizzata, come mostrato in Figura 20, prevede per ogni soggetto:

- Condizione: 2 livelli (Common VS Uncommon)
- Emisfero: 2 livelli (Left VS Right)
- Area: 3 livelli (Frontale VS Centrale VS Posteriore)

![Figura 20 - Configurazione 2x2x3](image)

Sono state effettuate delle ANOVA a misure ripetute studiando le singole variabili Area, Emisfero e Condizione e le loro relative interazioni. Si evidenzia dalle analisi che la variabile Area è significativa ($F[2,706]=110.756; p=.000; \eta^2=.251$). Inoltre, anche le interazioni Area*Condizione ($F[2,706]=24.727; p=.000; \eta^2=.070$) ed Area*Emisfero risultano significative ($F[2,706]=3.730; p=.024; \eta^2=.011$).

Andando a rappresentare graficamente l’interazione Area*Condizione, si nota un andamento monotono decrescente dei valori di TRP nel passaggio dall’area Frontale a quella Posteriore. Si nota inoltre che la diminuzione della potenza alpha relativa alla condizione non comune risulta inferiore rispetto alla diminuzione di potenza nella condizione comune.
Si riportano in appendice A.3 gli output di SPSS relativi a tali analisi.

3.4.5 Risultati 2x2x6

L’altra configurazione studiata, mostrata in Figura 22, utilizza 6 macro-aree così suddivise:

- Dorsale Frontale (FD) che comprende gli elettrodi Fp1, F3, Fp2, F4.
- Ventricolare Frontale (FV) che comprende gli elettrodi F7, FT9, F8, FT10.
- Ventricolare Centrale (CV) che comprende gli elettrodi FC5, T7, CP5, FC6, T8, CP6.
- Dorsale centrale (CD) che comprende gli elettrodi FC1, C3, CP1, FC2, C4, CP2.
- Ventricolare Posteriore (PV) che comprende gli elettrodi TP9, P7, TP10, P8.
- Dorsale Posteriore (PD) che comprende gli elettrodi P3, O1, P4, O2.

Nella tesi di Candusso (2019) è stata studiata un’ulteriore configurazione, 2x2x7, che è stata poi scartata in quanto si era costretti a considerare elettrodi singoli che non risultano particolarmente significativi.
Andando a ridurre le macro-aree considerate la variabile Area risulta ancora significativa (F[2,706]=72.484; p=.000; η²=.180), con una F chiaramente inferiore data dal fatto che la quantità di dati per ogni area si è ridotta. Risultano inoltre significative le interazioni Area*Condizione (F[2,706]=18.003; p=.000; η²=.014) ed Emisfero*Area (F[2,706]=4.563; p=.000; η²=.014).

Figura 23 - Interazione Area*Condizione nella configurazione 2x2x6

Anche in questo caso l’andamento complessivo risulta decrescente, ed è presente una maggiore diminuzione della potenza alpha nella condizione common passando dall’area Dorsale Frontale sino all’area Dorsale posteriore. È inoltre interessante
notare che nella condizione non comune i valori di TRP risultano sempre positivi, quindi la il cervello risulta globalmente sincronizzato. Lo stesso non si può dire per la condizione comune che invece evidenzia nelle aree Ventricolare Posteriore e Dorsale Posteriore valori di TRP negativi, associati ad una desincronizzazione relativa agli eventi.

3.4.6 Analisi sociodemografica

Oltre alle analisi Within-subjects, sono state implementate delle analisi between subjects su alcuni parametri sociodemografici: Genere, Corso di studi ed Età.

Partendo da una popolazione composta da 40 partecipanti, si è effettuata una scrematura dei soggetti secondo due parametri; sono stati trascurati i soggetti con scarsa qualità dei dati ed i soggetti con background diverso da Design ed Engineering, per un totale di 6 soggetti.

Effettuata la scrematura, si sono effettuate delle ANOVA a misure ripetute considerando come fattori within Area, Emisfero e Condizione e come fattori between le variabili demografiche sopracitate.

3.4.6.1 Corso di studi

Per il fattore Corso di studi sono stati identificati due livelli: (1) Ingegneri, composti da 18 partecipanti e (2) Designer, composti da 16 partecipanti. Data la somiglianza in termini numerici dei due gruppi, è stato possibile effettuare un confronto statistico efficace.

È stata effettuata una ANOVA a misure ripetute utilizzando come fattori within Area, Emisfero e Condizione e come fattore between Corso di studi. Si riportano in appendice A.3 gli output di SPSS relativi a tali analisi.

Entrando nel merito delle analisi, l’interazione Corso di studi*Emisfero è risultata significativa (F[2,706]=17.254; p=.000; η²=.005). Ovvero, la potenza delle onde
alpha risulta significativamente differente gli studenti di ingegneria e quelli di design.

![Bar chart showing estimated marginal means for Course of study by Hemisphere]

Figura 24 - Interazione Corso di studi * Emisfero

Come mostrato in Figura 24 vi è una differenza significativa nell’attivazione dei due emisferi cerebralì tra designer e ingegneri. I primi presentano una maggiore sincronizzazione alpha nell’emisféro sinistro, i secondi invece presentano un andamento opposto, ovvero la sincronizzazione alpha è maggiore nell’emisféro destro.

Anche l’interazione Area*Corso di studi risulta significativa, sia considerando 3 macro-aree ($F[2,706]=26.412; p=.000; \eta^2=.074$) che 6 macro-aree ($F[2,706]=7.326; p=.000; \eta^2=.101$).

![Bar chart showing estimated marginal means for Course of study by Area]

Figura 25 - Interazione Corso di studi*Area nella configurazione 2x2x3
La Figura 25 mostra una diminuzione della potenza alpha passando dall’area frontale sino a quella posteriore. Tale diminuzione risulta molto più accentuata per i designer rispetto agli ingegneri. Si nota anche che gli ingegneri presentano sempre valori positivi di TRP, da cui si deriva una sincronizzazione del cervello di questi soggetti.

Analogamente, in Figura 26 si nota un andamento decrescente della potenza alpha passando dall’area Ventricolare Frontale sino all’area Dorsale Posteriore. Tale andamento è più marcato per i designer rispetto agli ingegneri che presentano quasi sempre un andamento positivo, con un minimo nell’area Dorsale Centrale.

3.4.6.2 Età

I 34 soggetti, considerati nelle analisi, presentano una età compresa tra i 19 e i 32 anni. Identificando in 25 anni la mediana delle età, si è deciso di formare due gruppi, il primo di Under 25 formato da 18 soggetti, ed il secondo di Over 25 formato da 16 soggetti.

È stata effettuata una ANOVA a misure ripetute con fattori within Area, Emisero e Condizione e con fattore between l’Età dei partecipanti. L’interazione Età*Area è risultata significativa sia nella configurazione con 3 macro-aree (\(F[2,706]=32.098; \)
p = .000; $\eta^2 = .089$), sia nella configurazione con 6 macro-aree ($F[2,706] = 20.346$; $p = .000; \eta^2 = .058$).

*Figura 27 - Interazione Età*Area nella configurazione 2x2x3*

La Figura 27 mostra un andamento decrescente del TRP passando dall’area Frontale sino all’area Posteriore del cervello. In particolare, si nota che gli studenti con età inferiore ai 25 anni presentano un valore di TRP sempre positivo, mentre gli studenti con età superiore ai 25 anni presentano un picco negativo nell’area Posteriore.

*Figura 28 - Interazione Età*Area nella configurazione 2x2x6*

Analogamente, la Figura 28 mostra un andamento decrescente della potenza alpha passando dall’Area Ventricolare Frontale sino all’area Dorsale Posteriore. Anche in
questo caso gli studenti con età superiore ai 25 anni mostrano valori molto negativi di TRP nell’area Dorsale Posteriore, mentre gli studenti con età inferiore ai 25 anni presentano un picco negativo nell’area Dorsale Centrale.

3.5 Analisi dati Eye-tracker

Per quanto concerne le analisi registrate con l’eyetracker si è deciso di considerare due parametri principali: la dilatazione delle pupille e i movimenti oculi. Si è deciso innanzitutto di definire un’area di interesse (AOI). La scelta di tale area è stata condizionata dalla presenza di una croce al centro della schermata sia durante il periodo di riferimento, che durante il periodo di generazione delle idee.

![Figura 29 - Area d’interesse (AOI)](image)

Come mostrato in Figura 29, la schermata è stata suddivisa in 3 porzioni: due grandi rettangoli laterali di identica dimensione ed una striscia sottile, molto vicina alla croce centrale.

3.5.1 Dilatazione pupillare

Il database di partenza per questa analisi presentava una struttura del tipo:

<table>
<thead>
<tr>
<th>Soggetto</th>
<th>Condizione</th>
<th>Nome stimolo</th>
<th>Pupilla sinistra</th>
<th>Pupilla destra</th>
<th>Gaze AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome</td>
<td>C/U</td>
<td>Ref/Idea</td>
<td>Valore [u.m. arbitraria]</td>
<td>Valore [u.m. arbitraria]</td>
<td>CENTRO/-</td>
</tr>
</tbody>
</table>
Prima di procedere con le analisi si è deciso di implementare alcune correzioni:

- Sono stati trascurati tutti i valori di dimensione pupillare con Gaze AOI diverso da CENTRO. Tale assunzione si è resa necessaria poiché, nel determinare la dimensione della pupilla si sarebbe dovuto tener conto dell’angolo di incidenza dell’occhio sullo schermo. Infatti, quando l’angolo d’incidenza risulta diverso da zero, la dimensione della pupilla va automaticamente a ridursi.

- Una volta effettuata la media della dimensione delle due pupille per ogni stimolo si è reso necessario filtrarla per valori inferiori ai 2 milioni andando ad eliminare tutti i dati mancanti (-1) e tutti i dati non compatibili con la normale dimensione pupillare.

A questo punto, effettuata la media per stimolo per ogni soggetto, si è ottenuto un database presentante per ogni soggetto 40 stimoli e 40 riferimenti con i relativi dati di dimensione pupillare.

Nell’analisi è stata considerata la dilatazione pupillare nel periodo di riferimento e nel periodo di idea generation, effettuando una means comparison analysis con fattore between Condizione.

![Figure 30 - T-test Dilatazione Pupillare nel periodo di riferimento](image)
Il primo T-test effettuato, mostra durante il periodo di riferimento una dilatazione pupillare significativamente maggiore nella condizione non comune rispetto a quella comune ($F[2,706]=7.369; \ p=.007; \ t=-4.066$).

![Idea generation period](image)

Figura 31 – T-test Dilatazione pupillare nel periodo di Idea Generation

Analogamente, la Figura 31 mostra una dilatazione delle pupille maggiore nella condizione non comune, rispetto a quella nella condizione comune ($F[2,706]=1.626; \ p=.202; \ t=-4.002$).

Si è poi deciso di normalizzare la dimensione pupillare registrata durante il periodo di generazione dell’idea rispetto alla dimensione registrata durante il periodo di riferimento per verificare se fosse ancora significativa la differenza delle medie nelle due condizioni.

![Idea-ref](image)

Figura 32 - T-test Dilatazione pupillare normalizzata rispetto al riferimento
In effetti, la Figura 32 mostra che nella condizione non comune mediamente i soggetti abbiano una dilatazione pupillare maggiore rispetto alla condizione comune. E tale differenza nelle due condizioni risulta significativa (F[2,706]= 3.769; p=.052; t=-1.834).

Sono state inoltre effettuate delle analisi di dilatazione pupillare considerando come fattore between-subjects, oltre alla Condizione, gli occhiali. Sono stati identificati 16 soggetti che durante l’esperimento non indossavano gli occhiali, e 18 soggetti che invece li indossavano. Anche in questo caso si è effettuato il T-test sia durante il periodo di riferimento che durante quello di generazione delle idee.

Figura 33 - T-test Dilatazione pupillare con fattore between Glasses nel periodo di riferimento

La dilatazione pupillare risulta significativamente maggiore nei soggetti che indossano gli occhiali rispetto a quelli che non li indossano durante il periodo di riferimento (F[2,706]=0.886; p=.323; t=0.989).

Figura 34 - T-test Dilatazione Pupillare con fattore between Glasses nel periodo di idea generation
Anche durante il periodo di idea generation la dilatazione pupillare è significativamente maggiore nei soggetti portatori di occhiali (F[2,706]=2.386; p=.0433; t=2.022).

Andando poi a normalizzare, come fatto in precedenza, rispetto al periodo di riferimento si ottiene lo stesso risultato: coloro che indossano gli occhiali hanno una dilatazione pupillare significativamente maggiore rispetto ai soggetti senza occhiali (F[2,706]=2.759; p=.033; t=2.135).

![Graph](image)

Figura 35 - T-test Dilatazione Pupillare con fattore between Glasses normalizzato

Si è provato infine a verificare se vi fossero differenze significative nella dilatazione pupillare degli ingegneri e dei designer. Ciò che emerge è che le differenze risultano non significative sia durante il periodo di riferimento (F[2,706]=1.375; p=.444; t=.766) che nel periodo di generazione delle idee(F[2,706]=1.257; p=.824; t=.222).

3.5.2 Movimenti oculari

L’interesse nell’osservare i movimenti oculari risiede nel fatto che identificando dei pattern specifici, sia possibile associarli alle attivazioni cerebrali. In termini pratici si è andati a studiare il movimento oculare partendo dall’area d’interesse citata precedentemente e andando a vedere quante volte, per quanto tempo e con quale frequenza gli occhi del partecipante si siano mossi verso destra e verso sinistra.
Sono state effettuate delle analisi a fattori misti considerando come fattore within-subjects il Lato nei suoi due livelli Sinistra e Destra e come fattore between-subjects la Condizione nei suoi due livelli Common e Uncommon.

Le misure considerate per queste analisi sono: (1) Numero di Fissazioni, (2) Tempo di Fissazione, (3) Tempo speso [ms] e (4) Tempo speso [%].

Per quanto riguarda la variabile Numero di Fissazioni è risultata significativo sia il fattore Condizione (p=.019) che l’interazione Lato*Condizione (p=.018).

![Figura 36 - Analisi a fattori misti 2x2 (Lato*Condizione) della misura Numero di Fissazioni](image)

Come mostrato in Figura 36, i soggetti presentano un numero di fissazioni maggiore a sinistra rispetto a destra. Si nota inoltre che nella condizione Non comune il numero di fissazioni a sinistra risulta significativamente maggiore del numero di fissazioni a sinistra della condizione Comune. Per quanto riguarda invece il numero di fissazioni sul lato destro dello schermo non si notano significative differenze nelle due condizioni.

Per quanto riguarda la variabile Tempo Speso in % nei due lati dello schermo, risulta significativa l’interazione Lato*Condizione (p=.027).
Il t-test effettuato sulla variabile Time Spent (%) mostra che i soggetti nella condizione Non comune guardano per una quantità di tempo significativamente maggiore a sinistra rispetto che a destra. In questo caso però nella condizione Comune l’andamento della retta è opposto: ovvero i soggetti guardano una percentuale minore di tempo a sinistra rispetto che a destra.

Si riportano in appendice A.4 gli output relativi alle analisi sui dati raccolti tramite eye-tracker.
3.6 Rating

L’analisi di Rating effettuata in questo lavoro di tesi, si basa su 4 parametri individuati da Candusso (2019), tali da garantire una valutazione oggettiva delle risposte dei partecipanti all’esperimento ed un successivo confronto con i segnali cognitivi.

La metodologia proposta si pone l’obiettivo di soddisfare alcuni precisi requisiti (Candusso, 2019):

✓ Deve concentrarsi sulla valutazione della creatività a livello dell’idea;
✓ Deve considerare una prospettiva orientata al design, includendo quindi aspetti come la qualità delle idee generate;
✓ Deve essere adatta ad analizzare idee primitive caratteristiche delle fasi iniziali di sviluppo prodotto;
✓ Deve assicurare la replicabilità dei risultati.

Sono stati individuati 3 giudici, ai quali è stato fornito un file da leggere prima della valutazione nel quale sono spiegati in dettaglio i 4 parametri di valutazione delle risposte nonché la metrica da utilizzare per effettuare valutazioni oggettive. Si riporta in appendice A.5 il file fornito ai 3 giudici in fase preliminare.

I giudici sono andati ad esprimere, per ogni risposta data dai 40 soggetti, un voto da 1 a 4. I 4 parametri giudicati dai giudici sono: (1) Originality, (2) Paradigm Relatedness, (3) Effectiveness e (4) Feasibility.

Mentre i primi due parametri, Originalità e Paradigma di Relazione, compongono il macro-criterio di Novità, i parametri Efficacia e Fattibilità sono associati al macro-criterio Qualità.
<table>
<thead>
<tr>
<th>Macro-criterio</th>
<th>Criterio</th>
<th>Definizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novelty</td>
<td>Originality</td>
<td>Il grado in cui l’idea non è solo rara, ma è anche geniale, fantasiosa o sorprendente.</td>
</tr>
<tr>
<td></td>
<td>Paradigm Relatedness</td>
<td>Il grado in cui un’idea sta preservando il paradigma (PP) o modificando il paradigma (PM). Le idee di PM sono talvolta radicali o trasformazionali.</td>
</tr>
<tr>
<td>Quality</td>
<td>Effectiveness</td>
<td>Il grado in cui l’idea risolverà il problema senza tener conto della fattibilità.</td>
</tr>
<tr>
<td></td>
<td>Feasibility</td>
<td>Un’idea è fattibile se può essere facilmente implementata e non viola i vincoli noti</td>
</tr>
</tbody>
</table>

3.6.1 Analisi di coerenza

Per validare il modello proposto da Candusso (2019) si è effettuata sulle risposte dei 3 rater un’analisi di coerenza. L’analisi in questione consente di determinare tramite il calcolo di un indicatore statistico chiamato Alpha di Cronbach. Tale indicatore è una misura dell’attendibilità delle risposte e tiene conto della varianza dell’item per il campione di individui in esame. Valori di Alpha maggiori di 0,7 sono significativi di una buona attendibilità delle risposte.

In questa sede sono stati calcolati i valori di Alpha di Cronbach per i 4 parametri:

<table>
<thead>
<tr>
<th>Criteri</th>
<th>Alpha di Cronbach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originality</td>
<td>.902</td>
</tr>
<tr>
<td>Paradigm Relatedness</td>
<td>.840</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>.736</td>
</tr>
<tr>
<td>Feasibility</td>
<td>.660</td>
</tr>
</tbody>
</table>
Come si nota dalla tabella sopra riportata i parametri Originality, Paradigm Relatedness ed Effectiveness presentano Alpha di Cronbach maggiori di 0,7 e quindi una buona affidabilità nelle risposte dei rater. L’unico parametro leggermente inferiore al limite di accettabilità è la Feasibility.

3.6.2 Analisi criteri

Per quanto concerne i singoli criteri, sono stati effettuati una serie di T-test con fattore between-subjects la Condizione e come misura i punteggi assegnati dai 3 giudici ai 4 parametri Originality, Paradigm Relatedness, Effectiveness e Feasibility.

(1) Originality

Il parametro Originality risulta significativamente maggiore nella condizione Uncommon rispetto alla condizione Common per tutti e tre i giudici. Questo implica che qualora si chieda al soggetto una risposta non convenzionale, la risposta risulti oggettivamente rispetto originale, rara e imprevedibile. Questo risultato consente di validare l’ipotesi iniziale che associata alla condizione Uncommon risposte dei soggetti più creative rispetto alla condizione Common.
(2) Paradigm Relatedness

Per quanto riguarda il parametro Paradigm Relatedness l’andamento è analogo al precedente. Si nota infatti come nella condizione Uncommon i soggetti tendano a modificare maggiormente il paradigma rispetto alla condizione Common. Anche questo risultato conferma l’ipotesi iniziale: per trovare soluzioni non convenzionali i soggetti tendono ad essere più creativi andando a distruggere o modificare il rapporto tra i componenti di un oggetto.

(3) Effectiveness
Per quanto concerne l’efficacia delle idee proposte nelle due condizioni, si evince dal grafico sopra riportato che la condizione Uncommon presenti mediamente valori inferiori rispetto alla condizione Common.

(4) Feasibility

![Diagram showing T-test between Condition - Feasibility](image)

Dal grafico si evince che nella condizione Uncommon la fattibilità sia inferiore rispetto alla condizione Common. Ciò non implica necessariamente che le idee non convenzionali generale siano di scarsa qualità, ma semplicemente risultano meno fattibili rispetto alle idee convenzionali.

Dalle analisi sui 4 criteri di valutazione delle risposte, si evince che il grado di Novità di una idea sia strettamente correlato alla tipologia di compito assegnato. Nello svolgere un task non convenzionale, i soggetti utilizzano una forma di pensiero divergente andando a sfruttare maggiormente la creatività.

Inoltre, si evince che non sia semplice generare idee creative, rare e straordinarie di buona qualità. La maggior parte delle risposte dei partecipanti nella condizione non comune risulta infatti originale, ma spesso non semplice da implementare ed efficace.
4. Protocollo sperimentale

L’esperimento di Colombo (2019) consente, partendo da un task creativo AUT, di individuare pattern di attivazione cognitiva specifici. Tale esperimento però, si colloca nell’ambito della micro-progettazione: fornito ai soggetti un item casuale in input, si richiede loro in un tempo molto ridotto (30 secondi) di generare un uso convenzionale e non convenzionale. Lo scopo dell’ultimo capitolo di questa tesi è quello di espandere i risultati cognitivi ottenuti alla macro-progettazione.

4.1 Introduzione

Il grado di strutturazione dello strumento di supporto alla progettazione promuove pensieri intuitivi e consente la rimozione di incongruenze e vincoli nella generazione delle idee in ambito di conceptual design (Gero J. S., 2013). Per verificare questa affermazione, il protocollo proposto analizza e confronta l’attivazione cerebrale durante l’utilizzo di 3 strumenti di supporto alla progettazione: Brainstorming, Analisi Morfologica e TRIZ. Le tre tecniche scelte sono rappresentanti delle 3 categorie di strumenti: Non strutturati, Parzialmente strutturati e Strutturati.

Le research questions alla base di questo studio sono le seguenti:

RQ 1: L’utilizzo di strumenti di progettazione più o meno strutturati può impattare sulle performance di un task design?

RQ 2: Esiste una correlazione tra l’attività cognitiva e lo strumento di progettazione utilizzato?

L’interesse di questo studio è proprio quello di identificare una correlazione tra l’attivazione cerebrale, in termini di potenza alpha, e il grado di strutturazione dello strumento di supporto alla progettazione utilizzato.
Le ipotesi alla base del protocollo sperimentale proposto risultano le seguenti:

Ipotesi 1: nasce dall’idea che lo strumento di supporto alla progettazione possa impattare le performance di un task design. Si vuole capire se l’utilizzo di strumenti più o meno strutturati possa stimolare percorsi cognitivi correlati al pensiero divergente, andando ad incrementare nei soggetti la capacità di svolgere compiti di progettazione innovativi.

Ipotesi 2: nasce dall’idea che usando EEG in combinazione con strumenti di supporto alla progettazione differenti sia possibile determinare quali aree del cervello si attivino andando a studiare la potenza delle onde alpha.

4.2 Metodo

Si è deciso di replicare uno dei compiti descritti in Alexiou et al. (2019) ampliando i loro risultati nel dominio temporale tramite l’utilizzo dell’elettroencefalografia. L’insieme delle attività è preceduto da una attività preliminare che consenta ai partecipanti di familiarizzare con l’interfaccia visiva.

4.2.1 Set-up sperimentale

Lo strumento utilizzato per l’analisi delle attività cognitive è l’EEG. È uno strumento che consente, tramite l’apposizione di elettrodi capacitivi sullo scalpo, di ottenere un’elevata risoluzione temporale. Oltre all’elettroencefalogramma, saranno presenti delle telecamere che vadano a riprendere le espressioni facciali del soggetto e i suoi eventuali movimenti. Poiché l’ampiezza dei segnali cerebrali è di molto inferiore all’ampiezza dei segnali muscolari, è molto importante che il soggetto stia il più fermo possibile.

Nella fase preliminare al soggetto saranno posizionati gli elettrodi sullo scalpo secondo il sistema di coordinate internazionale 10-20. Il soggetto è seduto di fronte ad una scrivania, sulla quale è posizionato uno schermo tramite il quale si andrà a
svolgere il task di progettazione. Il soggetto ha a disposizione un mouse, che gli
servirà nella fase operativa dell’esperimento, fase nella quale andrà a spostare gli
oggetti di arredamento.

Ogni soggetto svolgerà lo stesso task utilizzando 3 diversi strumenti di supporto: 1)
Brainstorming individuale (non strutturato), 2) Analisi Morfologica (parzialmente
strutturato), 3)TRIZ (strutturato). Gli strumenti di supporto saranno randomizzati
in modo tale da non alterare i risultati ottenuti.

Il compito si svolgerà in 2 fasi:

1. Pianificazione/ideazione: fase nella quale il soggetto potrà pensare una o più
soluzioni per svolgere il task.

2. Esecuzione: dopo aver ragionato sull’idea, il soggetto andrà a svolgere
praticamente il compito assegnato.

4.2.2 Partecipanti

La sessione consiste in 40 studenti: 20 femmine e 20 maschi, di età compresa tra i
22 e i 26 anni. Sono tutti studenti iscritti ai corsi magistrali di Product Design
Innovation e ingegnerie. In particolare:

- 20 partecipanti (gruppo d’indagine) frequentano il corso di studi Product
 Design Innovation
- 20 partecipanti (gruppo di controllo) frequentano il corso di Ingegneria
 Meccanica.

Tutti i partecipanti, prima di sottoporsi all’esperimento, devono leggere delle
instructions precise sui 3 metodi di supporto alla progettazione, in modo tale da
uniformare il più possibile la conoscenza degli strumenti. Questa fase di
preparazione preliminare è molto importante per garantire la corretta applicazione
dei 3 strumenti di supporto e per questa ragione non vi sono limiti di tempo entro cui completarla.

4.2.3 Task

Si propone un unico task di progettazione da risolvere utilizzando i 3 strumenti di supporto alla progettazione in modo tale da verificare se al variare della strutturazione dello strumento, possa variare la soluzione generata. Il task in questione prevede la disposizione degli oggetti di arredamento garantendo le seguenti condizioni (Alexiou, 2009; Gero, 2019):

- La stanza è funzionale;
- La stanza è comoda;
- La stanza ha almeno 1 letto, 1 armadio e 1 scrivania.

Gli oggetti d’arredamento proposti sono: Divano, Scrivania, Sedia, Armadio, Letto, Libreria, Televisore e Tavolo. Tali oggetti andranno posizionati all’interno di un rettangolo, che rappresenta una stanza, caratterizzato da una porta ed una finestra. Il soggetto potrà decidere se arredare la stanza con tutti o soltanto con alcuni degli oggetti forniti. L’importante è che la stanza risulti funzionale, comoda e che siano almeno presenti i 3 oggetti fondamentali (letto, armadio e scrivania).

Figura 38 - Design Task Arredamento
Il task è scomposto in due parti: una prima parte, della durata di 10 minuti, in cui il soggetto dovrà pensare a possibili soluzioni per risolvere il task assegnato; una seconda parte nella quale il soggetto avrà un massimo di 5 minuti per disporre praticamente gli oggetti all’interno dell’area rettangolare. Ai partecipanti è stato chiesto di cliccare il tasto END posto sullo schermo una volta terminata la fase esecutiva del task.

Al termine dell’esperimento l’informazione riguardante il numero di oggetti inseriti all’interno della stanza potrebbe essere correlata all’attivazione cognitiva registrata tramite EEG. L’attività di progettazione richiede la definizione del problema e lo spazio della soluzione: richiede la creazione ed interpretazione di una serie di mosse nonché la creazione di una serie di criteri per la valutazione della soluzione.

L’attività di progettazione in questione richiede non solo la generazione di soluzioni, ma anche l’interpretazione dei requisiti del problema e la definizione dei criteri per la valutazione la soluzione. La distinzione tra i metodi di supporto alla progettazione dovrebbe dare risultati diversi sia in termini di soluzioni generate che in termini di definizione dei criteri. Oltre alla differenza qualitativa ci si aspetta una differente attivazione cognitiva nell’utilizzo dei 3 strumenti.

Al termine delle 3 sessioni si chiederà ai partecipanti di compilare un questionario esprimendo le proprie opinioni circa l’adeguatezza dei compiti scelti e del livello di difficoltà e del tempo concesso.

4.3 Protocollo

L’esperimento proposto è strutturato come segue:

- **Pre-task**, preliminare all’esperimento, durante il quale i partecipanti possono familiarizzare con l’uso del software andando a muovere liberamente gli oggetti tramite l’utilizzo del mouse. Questo pre-task funge anche da
riferimento per la registrazione del segnale EEG e dei movimenti posturali e facciali tramite telecamere.

- **Fase 1**: sullo schermo posto di fronte al soggetto compaiono le istruzioni operative. Il soggetto non ha un limite di tempo in questa fase, poiché è molto importante che comprenda come l’esperimento è strutturato e quali siano i principi fondamentali dei tre strumenti di supporto da utilizzare.

- **Fase 2**: segue la presentazione preliminare e consiste nella presentazione del task da svolgere. Il soggetto avrà un minuto per leggere e comprendere il compito dopodiché inizierà la progettazione vera e propria.

- **Fase 3**: è la fase di generazione delle idee ed ha una durata massima di 10 minuti. Il soggetto in questa fase dovrà applicare i principi alla base dei diversi metodi di supporto alla progettazione e generare delle possibili soluzioni.

- **Fase 4**: è la fase esecutiva ed ha una durata massima di 5 minuti. In questa fase il soggetto avrà la possibilità di disporre, tramite il puntatore del mouse, gli oggetti di arredamento assegnati all’interno del rettangolo.

![Diagram](image)

Figura 39 - Protocollo sperimentale

Terminata la prima sessione di esperimento, il soggetto avrà a disposizione 30 minuti di pausa, nei quali potrà riposarsi o mangiare qualcosa. Trascorsi i 30 minuti il soggetto ripeterà lo stesso task utilizzando il secondo metodo di progettazione.

Terminato l’esperimento, composto da un totale di 3 sessioni, sarà richiesto ad ogni partecipante di compilare un questionario.
4.4 Design of Experiment

Utilizzando l’output dell’ispezione visiva, Power Spectral Density (PSD), viene calcolata la potenza correlata alle diverse bande d’onda del segnale elettroencefalografico.

La potenza alfa può essere quindi calcolata per ciascun elettrodo che utilizza la Task Related Power (TRP), secondo la formula (Colombo, 2019):

\[TRP = \log(\text{power}_{\text{activation}}) - \log(\text{power}_{\text{reference}}) \]

La variabile d’interesse Task Related Power viene studiata in questo contesto tramite i seguenti fattori within:

- Strumento di supporto: presenta 3 livelli (NS, PS e S). Il livello NS (Non Strutturato) è rappresentato dal Brainstorming, il livello PS (Parzialmente Strutturato) è rappresentato dall’Analisi Morfologica e il livello S (Strutturato) è rappresentato da TRIZ.
- Emisfero: presenta 2 livelli (Left e Right).
- Area: presenta 3 livelli (Frontale, Centrale e Posteriore) o 6 livelli (FD, FV, CD, CV, PD, PV).

4.4.1 Strumento di Supporto

Nel protocollo sperimentale si propongono 3 strumenti di supporto differenti:

1) Brainstorming: tecnica non strutturata, che consiste nel generare il maggior numero di idee possibili, andando anche a ricombinarle tra loro.

2) Analisi morfologica: strumento parzialmente strutturato che prevede una decomposizione del problema in componenti sub-funzionali.

3) TRIZ: strumento strutturato nel quale i designers devono pensare sia ai problemi che alle soluzioni usando una conoscenza di base predefinita.
Ogni soggetto svolgerà 3 volte lo stesso task utilizzando 3 metodi di supporto differenti. I 3 metodi di supporto si differenziano per grado di complessità e strutturazione.

Per non condizionare i soggetti, si è deciso di assegnare gli strumenti di supporto ai diversi soggetti in maniera randomizzata:

<table>
<thead>
<tr>
<th>Brainstorming</th>
<th>Analisi Morfologica</th>
<th>TRIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analisi Morfologica</td>
<td>TRIZ</td>
<td>Brainstorming</td>
</tr>
<tr>
<td>TRIZ</td>
<td>Brainstorming</td>
<td>Analisi Morfologica</td>
</tr>
<tr>
<td>Brainstorming</td>
<td>TRIZ</td>
<td>Analisi Morfologica</td>
</tr>
<tr>
<td>Analisi Morfologica</td>
<td>Brainstorming</td>
<td>TRIZ</td>
</tr>
<tr>
<td>TRIZ</td>
<td>Analisi Morfologica</td>
<td>Brainstorming</td>
</tr>
</tbody>
</table>

4.4.2 Area

Il fattore Area viene suddiviso in tre e in sei livelli e viene indagato nell’interazione Area*Strumento di supporto per verificare se risulti significativo.

![Figura 40 - Fattore within Area nei suoi 3 e 6 livelli](image)
4.4.3 Emisfero

Il fattore Emisfero è studiato anche nella sua interazione Emisfero*Strumento di Supporto per verificare se sia significativa.

![Figure 41 - Fattore within Emisfero nei suoi 2 livelli](image)

4.5 Session output

4.5.1 Questionario

I soggetti dovranno rispondere alle seguenti domande:

1) Quale stanza da te creata ti sembra migliore in termini di aderenza ai requisiti?

 | 1 | 2 | 3 |

2) Quale dei tre strumenti hai preferito nello svolgere il task di progettazione?

 | 1 | 2 | 3 |
3) Dai un giudizio ai seguenti parametri:

- Difficoltà del task: Alta, Media, Bassa
- Tempo a disposizione: Non Sufficiente, Sufficiente, Più che sufficiente

Avresti preferito avere la possibilità di scrivere durante la fase di generazione delle idee? SI, NO

4.5.2 Analisi dei criteri

Per valutare la creatività, oltre alla misura del TRP, si potranno utilizzare 5 parametri chiave (Candusso, 2019):

1. Originality: “The degree to which the idea is not only rare, but is also ingenious, imaginative or surprising” (Dean, 2006).

2. Effectiveness: “The degree to which an idea is paradigm preserving (PP) or paradigm modifying (PM). PM ideas are sometimes radical or transformational” (Dean, 2006).

3. Paradigm Relatedness: “The degree to which the idea will solve the problem” (Dean, 2006).

4. Feasibility: “An idea is feasible if it can be easily implemented and does not violate known constraints” (Dean, 2006).

5. Variety: “A measure that explored the solution space generated during the idea generation process” (Shah, 2000).

Poiché tali variabili non sono misurabili oggettivamente, avremo bisogno di almeno 3 giudici che possano esprimere la loro preferenza su una scala da 1 a 4.
Conclusioni

Le fasi precedenti alla raccolta dei dati sperimentali sono state progettate nella tesi di laurea di Colombo (2019). L’esperimento era una replica di quello proposto da Jauk et al. (2012) con qualche lieve modifica convalidata dal dipartimento di neuroscienze dell’Università di Torino. Sono stati coinvolti nell’esperimento 40 studenti ai quali sono stati presentati 40 stimoli in ordine casuale. Gli item sono stati presentati attraverso una serie di diapositive divise in due blocchi, uno per la condizione comune e l’altro per la condizione non comune. I due blocchi sono stati intervallati da una pausa di due minuti tale da consentire ai partecipanti di mantenere lo stesso mindset passando da un paradigma creativo ad uno non creativo. La richiesta fatta ai partecipanti era quella di trovare un singolo uso per l’item proposto sia nella condizione comune che in quella non comune. Le principali
differenze rispetto all'esperimento proposto da Jauk et al. (2012) erano: il numero di oggetti presentati ai partecipanti (40 vs 20), la suddivisione in due distinti blocchi direttamente associabili alle condizioni dell'esperimento (non presente nell'esperimento di Jauk et al.) e la raccolta dei dati personali dei partecipanti (età, sesso, corso di studi etc.).

Per la presentazione degli stimoli, sono state utilizzate 5 diapositive: (1) schermata vuota per 5 secondi, (2) croce statica al centro dello schermo per 5 secondi (utilizzata poi come riferimento nelle analisi sul movimento oculare), (3) item per ½ secondo, (4) croce fissa al centro dello schermo per una durata massima di 30 secondi (tempo di idea generation), (5) uno speech balloon (tempo a disposizione dei partecipanti per verbalizzare l’idea). Alla fine dell’esperimento, i partecipanti hanno compilato un rapido questionario inserendo le loro impressioni circa l’esperimento condotto. Le fasi di pre-elaborazione e post-elaborazione dei segnali cognitivi sono state validate dal Dipartimento di Ingegneria Biomedica del Politecnico di Torino.

Per quanto riguarda l’analisi dei dati raccolti tramite EEG, partendo dall’output ottenuto dalla post-elaborazione del segnale neurologico, il TRP, sono stati definiti alcuni fattori within: (1) Area caratterizzata rispettivamente da 3 e da 6 livelli (Frontale vs Centrale vs Posteriore; Frontale Dorsale vs Frontale Ventricolare vs Centrale Dorsale vs Centrale Ventricolare vs Posteriore Dorsale vs Posteriore Ventricolare), (2) Emisfero caratterizzato da 2 livelli (Sinistro vs Destro) e (3) Condizione caratterizzata da 2 livelli (Comune vs Non comune).

Il task related power (TRP) è una misura della potenza dell’onda alpha e tipicamente valori positivi di tale parametro sono indicativi di una inibizione dell’area cerebrale. Il soggetto infatti durante il processo creativo tende ad inibire gli stimoli esterni a favore di quelli interni. I processi interni maggiormente coinvolti
nella fase di generazione delle idee sono la ricerca nella memoria, l’attenzione interna e la creazione di immagini mentali (vedi paragrafo 2.3).

Per quanto concerne le analisi sui dati raccolti tramite eyetracker sono stati condotti T-test sulla misura Dilatazione Oculare, andando a confrontare la dilatazione della pupilla nello svolgimento di compiti comuni e non comuni. Sono stati inoltre effettuati T-test, con fattore within il Lato dell’area d’interesse, sulle seguenti misure: (1) Numero di Fissazioni, (2) Tempo di Fissazione, (3) Tempo speso [ms] e (4) Tempo speso [%].

È stata effettuata una review della letteratura circa i principali strumenti di supporto alla progettazione, andando ad evidenziare le differenze tra metodi più o meno strutturati. Le informazioni raccolte sono state poi selezionate ed implementate in un nuovo protocollo sperimentale. Il protocollo proposto estende la durata del task, scomponendolo in due parti, la prima di generazione delle idee (durata 10 minuti) e la seconda di esecuzione vera e propria (durata 5 minuti). Il task risulta più articolato rispetto a quello proposto da Colombo (2020) e prevede l’utilizzo di 3 strumenti di supporto alla progettazione: il Brainstorming (non strutturato), l’Analisi Morfologica (parzialmente strutturato) e TRIZ (strutturato). Il protocollo proposto cerca, tramite l’ausilio dei 3 metodi di supporto alla progettazione, di rispondere alle seguenti domande: (1) L’utilizzo di strumenti di
progettazione più o meno strutturati può impattare sulle performance di un task design? e (2) Esiste una correlazione tra l’attività cognitiva e lo strumento di progettazione utilizzato?

Il Design of Experiment del protocollo proposto prevede l’utilizzo di 3 fattori within: (1) Area considerata nei suoi 3 e 6 livelli (Frontale vs Centrale vs Posteriore; Frontale Dorsale vs Frontale Ventricolare vs Centrale Dorsale vs Centrale Ventricolare vs Posteriore Dorsale vs Posteriore Ventricolare); (2) Emisfero considerato nei suoi 2 livelli (Sinistro vs Destro) e (3) Strumento di Supporto considerato nei suoi 3 livelli (Non Strutturato vs Parzialmente Strutturato e Strutturato).

Dall’analisi dei TRP tramite ANOVA a misure ripetute si sono ottenuti i seguenti risultati: (1) il TRP è maggiore nelle aree frontali e diminuisce passando dall’area centrale sino a quella posteriore; (2) il TRP ha un andamento monotono decrescente nelle due condizioni; (3) i valori di TRP sono maggiori nella condizione Common rispetto a quella Uncommon nelle aree Frontali e sono minori nelle aree Posteriori. Sono state inoltre effettuate delle ANOVA between-subjects andando a verificare se alcuni parametri demografici fossero significativi in termini di potenza alpha. I fattori analizzati sono: Genere, Età e Corso di Studi. Il fattore genere e le sue interazioni (Genere*Area, Genere*Emisfero e Genere*Condizione) non sono risultati significativi. Il fattore Età e la sua interazione Età*Area sono risultati significativi ed in particolare i soggetti con una età superiore ai 25 anni presentano un andamento di TRP decrescente con valori negativi nelle aree posteriori, mentre i soggetti con età inferiore ai 25 anni presentano anche nelle aree posteriori TRP sempre positivi.

Il fattore Corso di Studi e le sue interazioni Corso di Studi*Emisfero e Corso di Studi*Area sono risultate significative. In particolare, si nota che gli ingegneri
presentano valori di TRP più elevati nella condizione non comune rispetto ai designers, mentre i designers presentano valori di TRP maggiori nella condizione comune. Questo risultato sembra dipendere dalla diversa educazione delle materie, permettendo ai progettisti di eseguire con più facilità compiti divergenti (attivazione alfa inferiore) rispetto a quelli convergenti e agli ingegneri l’esatto opposto.

Dalle analisi sulla Dilatazione oculare emergono alcune evidenze: (1) La dilatazione delle pupille nella condizione Uncommon è maggiore rispetto alla condizione Common; (2) La pupilla è maggiormente dilatata nei soggetti che indossano gli occhiali rispetto a quelli che non li indossano. La dilatazione della pupilla è solitamente associata al grado di concentrazione degli individui, per cui durante lo svolgimento di compiti non convenzionali i soggetti tendono a sforzarsi di più andando a dilatare maggiormente le pupille.

Dalle analisi sul movimento oculare risultano significative le misure Numero di Fissazioni e Tempo speso %. Le analisi a fattori misti effettuate su tali misure evidenziano che il numero di fissazioni sul lato sinistro è risultato significativamente maggiore nella condizione Uncommon rispetto alla condizione Common ed inoltre il numero di fissazioni a sinistra è risultato maggiore nelle due condizioni rispetto al numero di fissazioni a destra. Tale evidenza mostra che nello svolgere compiti non convenzionali i soggetti cercano di essere più creativi e per fare ciò tendono inconsciamente a guardare più a sinistra rispetto a destra.

Effettuando delle analisi a fattori misti con fattore within-factors la Condizione è stata confermata l’idea secondo la quale le risposte verbalizzate dai soggetti nella condizione Uncommon siano oggettivamente più creative rispetto alle risposte verbalizzate nella condizione Common. Infatti, i parametri Originality e Paradigm Relatedness presentano nella condizione Non comune valori significativamente
maggiori rispetto alla condizione Comune. Questo risultato va a confermare l’ipotesi iniziale secondo cui nella condizione non comune i soggetti diano risposte più creative rispetto alla condizione comune.

Al fine di approfondire ulteriormente l’esperimento si propongono ulteriori analisi che tengano in considerazione: (1) il fattore fatica/stress evidenziando le differenze di prestazioni nelle fasi iniziali e finali dell’esperimento; (2) l’attivazione delle altre componenti del segnale elettroencefalografico (in particolare delle onde beta); (3) la suddivisione della banda alpha nelle sue componenti superiori ed inferiori.

Sicuramente sarebbe interessante implementare un sistema di rilevazione del battito cardiaco e della sudorazione per andare a misurare il livello di stress a cui il soggetto è sottoposto.

Nel passare da un ambito di micro-progettazione ad uno di macro-progettazione potrebbe risultare interessante verificare se la memoria abbia ancora un ruolo preponderante, o se vi siano altri fattori preponderanti durante la fase di idea generation. L’estensione dell’ambito di ricerca potrebbe inoltre indurre i ricercatori a scartare l’elettroencefalogramma come sistema di rilevazione dei segnali cerebrali. L’utilizzo dell’EEG infatti limita significativamente i movimenti del soggetto, costringendolo a restare fermo per tutta la registrazione del segnale. Chiaramente, se il task ha una durata di 30 secondi il soggetto non avrà problemi a rimanere fermo. Ma per task di durate maggiori potrebbe risultare utile l’implementazione di sistemi di rilevazione dei segnali cerebrali come la fNIRS, che consentirebbe al soggetto di pensare ad alta voce, camminare o più semplicemente prendere appunti.
Appendice

A.1 Istruzioni operative

Please read carefully the following instructions.
Only when you see the following icon in the bottom it means that you have to press the space bar. If you don’t see it, you don’t have to press any button, just wait.
You will not be able to go back to the previous slide, so, before pressing space bar to move on, be sure to have completely understood the present slide.

Please switch off all the devices that you have with you that could produce noise or distraction.

Introduction

You are going to test your creativity.
This is a game, and you simply have to play.
Just know that there is no correct answer to any question.

The game requires finding an use for each object name that will be displayed.
The objects are everyday objects and their names will be displayed one at a time.

The game is divided in two blocks.
Each block comprises 20 objects.

You will have to find a highly common use for all the objects presented in one of the blocks.
You will also have to find a highly uncommon use for all the objects presented in the other block.
Before the start of each block, a slide will tell you which kind of use ("common" or "uncommon") you are required to find for the subsequent objects.

The two blocks are separated by a 2 minutes pause.

The appearance order of the blocks is randomized, so you will discover which block you will start with only before the game begins.

The randomization of the two blocks means that you will have only one of the two following possibilities:

1. If you start with the "common" Block, then the second will be the "uncommon" Block.
2. If you start with the "uncommon" Block, then the second will be the "common" Block.

Let’s see an example. Consider that the object’s name that has been displayed is:

key

If you are in the "common" block, then you could think that a highly common way in which you could use a key is to "open a door".

Instead, if you are in the "uncommon" block, then you could think that a highly uncommon way in which you could use a key is "as a little saw".

For example, if the word is "pencil", it wouldn’t make any sense thinking that you could use it "to fly" (when you are thinking of using it as a clothespin on an airplane, for example), but you could think that a pencil could be used "to dig a hole".

You don’t have to think how to realize your idea in detail, nevertheless the idea you generate should be somehow feasible and useful.

Remember: if you are in the "uncommon" condition you have to think the most original use you can think of.

Do not necessarily stop at the first idea that pops up in your mind.

Keep in mind: the word will be displayed in your mother tongue, and it will stay on the screen for half a second.

Don’t worry! This is a long enough time for you to read it and keep it in mind.

After the word is displayed, you have 30 seconds to find the common/uncommon use. As soon as you have thought of a way to use that object, you have to press the space bar.
Soon a speech balloon will signal that you can speak aloud to express your idea.

When you express your idea, please do it in English.
If you do not find a translation that satisfies you, you can express your ideas in your mother tongue and in the end of the experiment you will explain it to the researchers.

We are not assessing your English, thus for the game it is better a good solution in your mother tongue, than a good translation of a bad solution.

Remember: during the task you don't have to look away from the screen, if you want you can look away from the cross while you think, but you have to keep your eyes inside the screen's perimeter.

Press the space bar when you are ready.

After you verbalised your idea, you have to press the space bar to move on to the next object.

Please note: the idea generation period and the vocalizing period are different phases.
It is very important for us that while you are thinking about your solution, you do not worry about translating it.
After you press the space bar you can take all the time you need to translate and verbalise your idea.

The sensors you wear are very sensitive to your movements.
For this reason, it is very important that during the task you avoid any body movement. Your arms, your legs and even your face have to stay relaxed.
Please avoid even any little movement that could affect the data recorded by the sensors.

Before proceeding we need to record two minutes of EEG signal.
In the next slides you will be asked to rest one minute with open eyes and one minute with closed eyes, please follow the instructions.
Please, now for one minute you have to stay with closed eyes. You can open your eyes only when you will hear an acoustic signal.

When you are ready, press the space bar and close your eyes.

Reading for a minute

Open your eyes

Press the space bar to move on.

Time to try

Please read carefully the following instructions:

Only when you see the following icon 🕒 in the bottom it means that you have to press the space bar. If you don't see it, you don't have to press any button, just wait.

You are going to try how to play.

Block 1/9

You will first see the number of the block.

After 5 seconds the next slide will appear.

Then you will see a brief recap of the instructions.

You will have to press the space bar to go on.

Block 3/7

Next, a slide will tell you which type of use you will have to find for all the subsequent objects:

- “Common” for highly common uses
- “Uncommon” for highly uncommon uses

After 10 seconds the trial will start.

During the rest game the icon 🕒 will not be displayed, thus we show you a recap of the slide where you have to wait or press the space bar.
The screen will be blank for a while.

Then the word will appear in the center of the screen for half a second. It will be displayed in your mother tongue.

When the speech balloon is displayed, you can translate and vocalize your idea in English or in your mother tongue. After you have vocalized your idea, press the space bar to continue, then next trial will start.

A small cross will appear in the center of the screen. Remember: you will have to stare at it.

A cross will again appear on the screen. You have a maximum of 30 seconds to think a solution and press the space bar.

Remember: if you are in the "uncommon" condition you have to think of the most original use you can think of.

During the real game the icon will not be displayed, thus now we show you a recap about the slides where you have to wait or press the space bar.

The game will take about 30 minutes.
Before the beginning of the experiment you will see a circular shape moving. Follow it with your eyes and try to focus on the middle of it, without moving the head.

Introduction completed.

Before starting the real game, you are going to perform 4 simple tasks. They will last about 5 minutes.

If you don't have any questions, press the space bar when you are ready.

Find a comfortable position.

It is better for the sensors if you don't need to look at the space bar. The arms should lie on the table and one hand should be close to the space bar so that you have to move only fingers to press it.

Remember:
- You don't have to talk during the experiment, except when you see the speech button, after that you have pressed the space bar;
- You don't have to move and you should also avoid smaller movements;
- You don't need to look away from the screen;
- You can express your solution also in your mother tongue, if you can't find the proper translation.

If you don't have any question, press the space bar now to start a brief simulation.

Block 1

In the next slide you will see which one (highly common or highly uncommon) you have to find for the next 20 trials.

Press the space bar when you are ready.

common
End of Block 1.
Pause.
Remember:
- in the real experiment you will have two minutes of pause and Block 2 will begin automatically after a 3 seconds count down;
- in the test experiment the sequence of the two blocks (common and uncommon) is randomized.
Press the space bar to start Block 2.

Block 2

In the previous block you found common uses for the objects.
In the next block you will have to find uncommon uses for the following objects.
Press the space bar when you are ready.
Good!
The simulation is over.
When you are ready, you can start the game.
Test di effetti entro soggetti

Misura: TRP 2x2x3

<table>
<thead>
<tr>
<th>Origine</th>
<th>Sfericità presunta</th>
<th>Somma dei quadrati di tipo III</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sfericità presunta</td>
<td>0,173</td>
<td>1</td>
<td>0,173</td>
<td>0,423</td>
<td>0,516</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>0,423</td>
<td>0,516</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>0,423</td>
<td>0,516</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>0,423</td>
<td>0,516</td>
</tr>
<tr>
<td>Hemisphere</td>
<td>Sfericità presunta</td>
<td>0,035</td>
<td>1</td>
<td>0,035</td>
<td>0,833</td>
<td>0,362</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,035</td>
<td>1,000</td>
<td>0,035</td>
<td>0,833</td>
<td>0,362</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,035</td>
<td>1,000</td>
<td>0,035</td>
<td>0,833</td>
<td>0,362</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,035</td>
<td>1,000</td>
<td>0,035</td>
<td>0,833</td>
<td>0,362</td>
</tr>
<tr>
<td>Area</td>
<td>Sfericità presunta</td>
<td>20,393</td>
<td>2</td>
<td>10,197</td>
<td>110,756</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>20,393</td>
<td>1,388</td>
<td>14,695</td>
<td>110,756</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>20,393</td>
<td>1,392</td>
<td>14,653</td>
<td>110,756</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>20,393</td>
<td>1,000</td>
<td>20,393</td>
<td>110,756</td>
<td>0,000</td>
</tr>
<tr>
<td>Condition * Hemisphere</td>
<td>Sfericità presunta</td>
<td>0,045</td>
<td>1</td>
<td>0,045</td>
<td>0,998</td>
<td>0,318</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,045</td>
<td>1,000</td>
<td>0,045</td>
<td>0,998</td>
<td>0,318</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,045</td>
<td>1,000</td>
<td>0,045</td>
<td>0,998</td>
<td>0,318</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,045</td>
<td>1,000</td>
<td>0,045</td>
<td>0,998</td>
<td>0,318</td>
</tr>
<tr>
<td>Condition * Area</td>
<td>Sfericità presunta</td>
<td>2,583</td>
<td>2</td>
<td>1,291</td>
<td>24,727</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>2,583</td>
<td>1,245</td>
<td>2,075</td>
<td>24,727</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>2,583</td>
<td>1,247</td>
<td>2,071</td>
<td>24,727</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>2,583</td>
<td>1,000</td>
<td>2,583</td>
<td>24,727</td>
<td>0,000</td>
</tr>
<tr>
<td>Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,138</td>
<td>2</td>
<td>0,069</td>
<td>3,730</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,138</td>
<td>1,493</td>
<td>0,093</td>
<td>3,730</td>
<td>0,037</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,138</td>
<td>1,498</td>
<td>0,092</td>
<td>3,730</td>
<td>0,037</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,138</td>
<td>1,000</td>
<td>0,138</td>
<td>3,730</td>
<td>0,054</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,019</td>
<td>2</td>
<td>0,010</td>
<td>0,857</td>
<td>0,425</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,019</td>
<td>1,547</td>
<td>0,012</td>
<td>0,857</td>
<td>0,400</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,019</td>
<td>1,553</td>
<td>0,012</td>
<td>0,857</td>
<td>0,400</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,019</td>
<td>1,000</td>
<td>0,019</td>
<td>0,857</td>
<td>0,355</td>
</tr>
<tr>
<td>Test di effetti entro soggetti</td>
<td>Misura: TRP 2x2x6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origine</th>
<th>Somma dei quadrati di tipo III</th>
<th>gl</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,548</td>
<td>1</td>
<td>0,548</td>
<td>0,672</td>
<td>0,413</td>
<td>0,002</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,548</td>
<td>1,000</td>
<td>0,548</td>
<td>0,672</td>
<td>0,413</td>
<td>0,002</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,548</td>
<td>1,000</td>
<td>0,548</td>
<td>0,672</td>
<td>0,413</td>
<td>0,002</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,548</td>
<td>1,000</td>
<td>0,548</td>
<td>0,672</td>
<td>0,413</td>
<td>0,002</td>
</tr>
<tr>
<td>Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,281</td>
<td>1</td>
<td>0,281</td>
<td>3,064</td>
<td>0,081</td>
<td>0,009</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,281</td>
<td>1,000</td>
<td>0,281</td>
<td>3,064</td>
<td>0,081</td>
<td>0,009</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,281</td>
<td>1,000</td>
<td>0,281</td>
<td>3,064</td>
<td>0,081</td>
<td>0,009</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,281</td>
<td>1,000</td>
<td>0,281</td>
<td>3,064</td>
<td>0,081</td>
<td>0,009</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>33,635</td>
<td>5</td>
<td>6,727</td>
<td>72,484</td>
<td>0,000</td>
<td>0,180</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>33,635</td>
<td>2,741</td>
<td>12,273</td>
<td>72,484</td>
<td>0,000</td>
<td>0,180</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>33,635</td>
<td>2,766</td>
<td>12,161</td>
<td>72,484</td>
<td>0,000</td>
<td>0,180</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>33,635</td>
<td>1,000</td>
<td>33,635</td>
<td>72,484</td>
<td>0,000</td>
<td>0,180</td>
</tr>
<tr>
<td>Condition * Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,155</td>
<td>1</td>
<td>0,155</td>
<td>1,557</td>
<td>0,213</td>
<td>0,005</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,155</td>
<td>1,000</td>
<td>0,155</td>
<td>1,557</td>
<td>0,213</td>
<td>0,005</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,155</td>
<td>1,000</td>
<td>0,155</td>
<td>1,557</td>
<td>0,213</td>
<td>0,005</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,155</td>
<td>1,000</td>
<td>0,155</td>
<td>1,557</td>
<td>0,213</td>
<td>0,005</td>
</tr>
<tr>
<td>Condition * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>4,468</td>
<td>5</td>
<td>0,894</td>
<td>18,003</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>4,468</td>
<td>2,695</td>
<td>1,658</td>
<td>18,003</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>4,468</td>
<td>2,720</td>
<td>1,643</td>
<td>18,003</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>4,468</td>
<td>1,000</td>
<td>4,468</td>
<td>18,003</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Hemisphere * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,508</td>
<td>5</td>
<td>0,102</td>
<td>4,563</td>
<td>0,000</td>
<td>0,014</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,508</td>
<td>3,275</td>
<td>0,155</td>
<td>4,563</td>
<td>0,003</td>
<td>0,014</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,508</td>
<td>3,312</td>
<td>0,154</td>
<td>4,563</td>
<td>0,002</td>
<td>0,014</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,508</td>
<td>1,000</td>
<td>0,508</td>
<td>4,563</td>
<td>0,033</td>
<td>0,014</td>
</tr>
</tbody>
</table>

Condition * Hemisphere * Area

Sfericità presunta	0,059	5	0,012	0,700	0,624	0,002
Greenhouse-Geisser	0,059	3,332	0,018	0,700	0,567	0,002
Huynh-Feldt	0,059	3,370	0,017	0,700	0,568	0,002
Limite inferiore	0,059	1,000	0,059	0,700	0,403	0,002
A.3 Analisi dati EEG Between Factors

A.3.1 Corso di Studi

<table>
<thead>
<tr>
<th>Origine</th>
<th>Sfericità presunta</th>
<th>Somma dei quadrati di tipo III</th>
<th>gl</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td>0,427</td>
<td>1</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td>Condition * Age25</td>
<td></td>
<td>0,379</td>
<td>1</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td>Hemisphere</td>
<td></td>
<td>0,010</td>
<td>1</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td>Hemisphere * Age25</td>
<td></td>
<td>0,020</td>
<td>1</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td>23,398</td>
<td>2</td>
<td>11,699</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23,398</td>
<td>1,386</td>
<td>16,881</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23,398</td>
<td>1,394</td>
<td>16,782</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23,398</td>
<td>1,000</td>
<td>23,398</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td>Area * Age25</td>
<td></td>
<td>5,401</td>
<td>2</td>
<td>2,701</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,401</td>
<td>1,386</td>
<td>3,897</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td>Condizione *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,044</td>
<td>1</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,044</td>
<td>1,000</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,044</td>
<td>1,000</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,044</td>
<td>1,000</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
<td>0,003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condizione *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sfericità presunta</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
</tr>
<tr>
<td>Limite inferiore</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condizione *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sfericità presunta</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
</tr>
<tr>
<td>Limite inferiore</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condizione *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sfericità presunta</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
</tr>
<tr>
<td>Limite inferiore</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condizione *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sfericità presunta</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area * Age25</td>
</tr>
<tr>
<td>Sfericità presunta</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
</tr>
<tr>
<td>Limiti inferiori</td>
</tr>
</tbody>
</table>

Test di effetti entro soggetti

<table>
<thead>
<tr>
<th>Origine</th>
<th>Somma dei quadrati di tipo III</th>
<th>gl</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,499</td>
<td>1</td>
<td>0,499</td>
<td>0,616</td>
<td>0,433</td>
<td>0,002</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,499</td>
<td>1,000</td>
<td>0,499</td>
<td>0,616</td>
<td>0,433</td>
<td>0,002</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,499</td>
<td>1,000</td>
<td>0,499</td>
<td>0,616</td>
<td>0,433</td>
<td>0,002</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,499</td>
<td>1,000</td>
<td>0,499</td>
<td>0,616</td>
<td>0,433</td>
<td>0,002</td>
</tr>
<tr>
<td>Condition * Corsoofstudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>2,555</td>
<td>1</td>
<td>2,555</td>
<td>3,157</td>
<td>0,077</td>
<td>0,010</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>2,555</td>
<td>1,000</td>
<td>2,555</td>
<td>3,157</td>
<td>0,077</td>
<td>0,010</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>2,555</td>
<td>1,000</td>
<td>2,555</td>
<td>3,157</td>
<td>0,077</td>
<td>0,010</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>2,555</td>
<td>1,000</td>
<td>2,555</td>
<td>3,157</td>
<td>0,077</td>
<td>0,010</td>
</tr>
<tr>
<td>Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,254</td>
<td>1</td>
<td>0,254</td>
<td>2,906</td>
<td>0,089</td>
<td>0,009</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,254</td>
<td>1,000</td>
<td>0,254</td>
<td>2,906</td>
<td>0,089</td>
<td>0,009</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,254</td>
<td>1,000</td>
<td>0,254</td>
<td>2,906</td>
<td>0,089</td>
<td>0,009</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,254</td>
<td>1,000</td>
<td>0,254</td>
<td>2,906</td>
<td>0,089</td>
<td>0,009</td>
</tr>
<tr>
<td>Hemisphere * Corsoofstudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>1,509</td>
<td>1</td>
<td>1,509</td>
<td>17,254</td>
<td>0,000</td>
<td>0,050</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>1,509</td>
<td>1,000</td>
<td>1,509</td>
<td>17,254</td>
<td>0,000</td>
<td>0,050</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>1,509</td>
<td>1,000</td>
<td>1,509</td>
<td>17,254</td>
<td>0,000</td>
<td>0,050</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>1,509</td>
<td>1,000</td>
<td>1,509</td>
<td>17,254</td>
<td>0,000</td>
<td>0,050</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>34,142</td>
<td>5</td>
<td>6,828</td>
<td>76,468</td>
<td>0,000</td>
<td>0,189</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>34,142</td>
<td>2,831</td>
<td>12,062</td>
<td>76,468</td>
<td>0,000</td>
<td>0,189</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>34,142</td>
<td>2,866</td>
<td>11,911</td>
<td>76,468</td>
<td>0,000</td>
<td>0,189</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>1,000</td>
<td>34,142</td>
<td>76,468</td>
<td>0,000</td>
<td>0,189</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Area * Corseofstudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>34,142</td>
<td>1,000</td>
<td>34,142</td>
<td>76,468</td>
<td>0,000</td>
<td>0,041</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>6,240</td>
<td>2,831</td>
<td>2,204</td>
<td>13,976</td>
<td>0,000</td>
<td>0,041</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>6,240</td>
<td>2,866</td>
<td>2,177</td>
<td>13,976</td>
<td>0,000</td>
<td>0,041</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>6,240</td>
<td>1,000</td>
<td>6,240</td>
<td>13,976</td>
<td>0,000</td>
<td>0,041</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,154</td>
<td>1</td>
<td>0,154</td>
<td>1,544</td>
<td>0,215</td>
<td>0,005</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,154</td>
<td>1,000</td>
<td>0,154</td>
<td>1,544</td>
<td>0,215</td>
<td>0,005</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,154</td>
<td>1,000</td>
<td>0,154</td>
<td>1,544</td>
<td>0,215</td>
<td>0,005</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,154</td>
<td>1,000</td>
<td>0,154</td>
<td>1,544</td>
<td>0,215</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere * Corseofstudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,002</td>
<td>1</td>
<td>0,002</td>
<td>0,022</td>
<td>0,882</td>
<td>0,000</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,002</td>
<td>1,000</td>
<td>0,002</td>
<td>0,022</td>
<td>0,882</td>
<td>0,000</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,002</td>
<td>1,000</td>
<td>0,002</td>
<td>0,022</td>
<td>0,882</td>
<td>0,000</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,002</td>
<td>1,000</td>
<td>0,002</td>
<td>0,022</td>
<td>0,882</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>4,491</td>
<td>5</td>
<td>0,898</td>
<td>18,143</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>4,491</td>
<td>2,680</td>
<td>1,676</td>
<td>18,143</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>4,491</td>
<td>2,712</td>
<td>1,656</td>
<td>18,143</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>4,491</td>
<td>1,000</td>
<td>4,491</td>
<td>18,143</td>
<td>0,000</td>
<td>0,052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition * Area * Corseofstudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,455</td>
<td>5</td>
<td>0,091</td>
<td>1,839</td>
<td>0,102</td>
<td>0,006</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,455</td>
<td>3,293</td>
<td>0,170</td>
<td>1,839</td>
<td>0,145</td>
<td>0,006</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,455</td>
<td>3,341</td>
<td>0,151</td>
<td>1,839</td>
<td>0,144</td>
<td>0,006</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,455</td>
<td>1,000</td>
<td>0,504</td>
<td>4,641</td>
<td>0,032</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemisphere * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,504</td>
<td>5</td>
<td>0,101</td>
<td>4,641</td>
<td>0,000</td>
<td>0,014</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,504</td>
<td>3,293</td>
<td>0,153</td>
<td>4,641</td>
<td>0,002</td>
<td>0,014</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,504</td>
<td>3,341</td>
<td>0,151</td>
<td>4,641</td>
<td>0,002</td>
<td>0,014</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,504</td>
<td>1,000</td>
<td>0,504</td>
<td>4,641</td>
<td>0,032</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemisphere * Area * Corseofstudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>1,027</td>
<td>5</td>
<td>0,205</td>
<td>9,451</td>
<td>0,000</td>
<td>0,028</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>1,027</td>
<td>3,293</td>
<td>0,312</td>
<td>9,451</td>
<td>0,000</td>
<td>0,028</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>1,027</td>
<td>3,341</td>
<td>0,307</td>
<td>9,451</td>
<td>0,000</td>
<td>0,028</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>1,027</td>
<td>1,000</td>
<td>1,027</td>
<td>9,451</td>
<td>0,002</td>
<td>0,028</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,061</td>
<td>5</td>
<td>0,012</td>
<td>0,736</td>
<td>0,597</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,061</td>
<td>3,334</td>
<td>0,018</td>
<td>0,736</td>
<td>0,544</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,061</td>
<td>3,383</td>
<td>0,018</td>
<td>0,736</td>
<td>0,546</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,061</td>
<td>1,000</td>
<td>0,061</td>
<td>0,736</td>
<td>0,392</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area * Corsoofstudy</td>
<td>Sfericità presunta</td>
<td>0,181</td>
<td>5</td>
<td>0,036</td>
<td>2,173</td>
<td>0,055</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,181</td>
<td>3,334</td>
<td>0,054</td>
<td>2,173</td>
<td>0,083</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,181</td>
<td>3,383</td>
<td>0,054</td>
<td>2,173</td>
<td>0,082</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,181</td>
<td>1,000</td>
<td>0,181</td>
<td>2,173</td>
<td>0,141</td>
</tr>
<tr>
<td>Origine</td>
<td>Sfericità presunta</td>
<td>Somma dei quadrati di tipo III</td>
<td>gl</td>
<td>Media quadratica</td>
<td>F</td>
<td>Sign.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>--------------------------------</td>
<td>----</td>
<td>-----------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Condition</td>
<td>0,427</td>
<td>1</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,427</td>
<td>1</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,427</td>
<td>1,000</td>
<td>0,427</td>
<td>1,043</td>
<td>0,308</td>
<td>0,003</td>
</tr>
<tr>
<td>Condition * Age25</td>
<td>0,379</td>
<td>1</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,379</td>
<td>1</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,379</td>
<td>1,000</td>
<td>0,379</td>
<td>0,926</td>
<td>0,337</td>
<td>0,003</td>
</tr>
<tr>
<td>Hemisphere</td>
<td>0,010</td>
<td>1</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,010</td>
<td>1</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,242</td>
<td>0,623</td>
<td>0,001</td>
</tr>
<tr>
<td>Hemisphere * Age25</td>
<td>0,020</td>
<td>1</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,020</td>
<td>1</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>1,000</td>
<td>0,020</td>
<td>0,470</td>
<td>0,493</td>
<td>0,001</td>
</tr>
<tr>
<td>Area</td>
<td>23,398</td>
<td>2</td>
<td>11,699</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td>23,398</td>
<td>1,386</td>
<td>16,881</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td>23,398</td>
<td>1,394</td>
<td>16,782</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td>23,398</td>
<td>1</td>
<td>11,699</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td>23,398</td>
<td>1,000</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
<td></td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>23,398</td>
<td>2</td>
<td>11,699</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td>23,398</td>
<td>1,386</td>
<td>16,881</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td></td>
<td>23,398</td>
<td>1,394</td>
<td>16,782</td>
<td>139,051</td>
<td>0,000</td>
<td>0,297</td>
</tr>
<tr>
<td>Area * Age25</td>
<td>5,401</td>
<td>1</td>
<td>2,701</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1,386</td>
<td>3,897</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1,394</td>
<td>3,874</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1</td>
<td>2,701</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1,000</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
<td></td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>5,401</td>
<td>1</td>
<td>2,701</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1,386</td>
<td>3,897</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1,394</td>
<td>3,874</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1</td>
<td>2,701</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td></td>
<td>5,401</td>
<td>1,000</td>
<td>32,098</td>
<td>0,000</td>
<td>0,089</td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere</td>
<td>Sfericità presunta</td>
<td>0,044</td>
<td>1</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,044</td>
<td>1,000</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,044</td>
<td>1,000</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,044</td>
<td>1,000</td>
<td>0,044</td>
<td>0,967</td>
<td>0,326</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition * Hemisphere * Age25</th>
<th>Sfericità presunta</th>
<th>0,002</th>
<th>1</th>
<th>0,002</th>
<th>0,046</th>
<th>0,831</th>
<th>0,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,002</td>
<td>1,000</td>
<td>0,002</td>
<td>0,046</td>
<td>0,831</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,002</td>
<td>1,000</td>
<td>0,002</td>
<td>0,046</td>
<td>0,831</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,002</td>
<td>1,000</td>
<td>0,002</td>
<td>0,046</td>
<td>0,831</td>
<td>0,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition * Area</th>
<th>Sfericità presunta</th>
<th>2,750</th>
<th>2</th>
<th>1,375</th>
<th>26,446</th>
<th>0,000</th>
<th>0,074</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>2,750</td>
<td>1,245</td>
<td>2,208</td>
<td>26,446</td>
<td>0,000</td>
<td>0,074</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>2,750</td>
<td>1,251</td>
<td>2,197</td>
<td>26,446</td>
<td>0,000</td>
<td>0,074</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>2,750</td>
<td>1,000</td>
<td>2,750</td>
<td>26,446</td>
<td>0,000</td>
<td>0,074</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition * Area * Age25</th>
<th>Sfericità presunta</th>
<th>0,263</th>
<th>2</th>
<th>0,132</th>
<th>2,534</th>
<th>0,080</th>
<th>0,008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,263</td>
<td>1,245</td>
<td>0,212</td>
<td>2,534</td>
<td>0,104</td>
<td>0,008</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,263</td>
<td>1,251</td>
<td>0,211</td>
<td>2,534</td>
<td>0,104</td>
<td>0,008</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,263</td>
<td>1,000</td>
<td>0,263</td>
<td>2,534</td>
<td>0,112</td>
<td>0,008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemisphere * Area</th>
<th>Sfericità presunta</th>
<th>0,680</th>
<th>2</th>
<th>0,340</th>
<th>21,954</th>
<th>0,000</th>
<th>0,063</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,680</td>
<td>1,566</td>
<td>0,434</td>
<td>21,954</td>
<td>0,000</td>
<td>0,063</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,680</td>
<td>1,577</td>
<td>0,431</td>
<td>21,954</td>
<td>0,000</td>
<td>0,063</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,680</td>
<td>1,000</td>
<td>0,680</td>
<td>21,954</td>
<td>0,000</td>
<td>0,063</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemisphere * Area * Age25</th>
<th>Sfericità presunta</th>
<th>2,036</th>
<th>2</th>
<th>1,018</th>
<th>65,765</th>
<th>0,000</th>
<th>0,167</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>2,036</td>
<td>1,566</td>
<td>1,300</td>
<td>65,765</td>
<td>0,000</td>
<td>0,167</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>2,036</td>
<td>1,577</td>
<td>1,291</td>
<td>65,765</td>
<td>0,000</td>
<td>0,167</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>2,036</td>
<td>1,000</td>
<td>2,036</td>
<td>65,765</td>
<td>0,000</td>
<td>0,167</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition * Hemisphere * Area</th>
<th>Sfericità presunta</th>
<th>0,010</th>
<th>2</th>
<th>0,005</th>
<th>0,434</th>
<th>0,648</th>
<th>0,001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,010</td>
<td>1,548</td>
<td>0,006</td>
<td>0,434</td>
<td>0,597</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,010</td>
<td>1,559</td>
<td>0,006</td>
<td>0,434</td>
<td>0,598</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,434</td>
<td>0,511</td>
<td>0,001</td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,009</td>
<td>2</td>
<td>0,004</td>
<td>0,398</td>
<td>0,672</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere * Area * Age25</td>
<td>Greenhouse-Geisser</td>
<td>0.009</td>
<td>1.548</td>
<td>0.006</td>
<td>0.398</td>
<td>0.619</td>
<td>0.001</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0.009</td>
<td>1.559</td>
<td>0.006</td>
<td>0.398</td>
<td>0.620</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Limiti inferiore</td>
<td>0.009</td>
<td>1.000</td>
<td>0.009</td>
<td>0.398</td>
<td>0.529</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test di effetti entro soggetti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misura: Età 2x2x6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origine</th>
<th>Sfericità presunta</th>
<th>Somma dei quadrati di tipo III</th>
<th>gl</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità</td>
<td>0,860</td>
<td>1</td>
<td>0,860</td>
<td>1,054</td>
<td>0,305</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,860</td>
<td>1,000</td>
<td>0,860</td>
<td>1,054</td>
<td>0,305</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,860</td>
<td>1,000</td>
<td>0,860</td>
<td>1,054</td>
<td>0,305</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Limiti inferiore</td>
<td>0,860</td>
<td>1,000</td>
<td>0,860</td>
<td>1,054</td>
<td>0,305</td>
<td>0,003</td>
<td></td>
</tr>
</tbody>
</table>

Condition * Age25							
--------------------	--------------------	--------------------------------	----	------------------	-----	-------	
Sfericità	0,341	1	0,341	0,418	0,519	0,001	
Greenhouse-Geisser	0,341	1,000	0,341	0,418	0,519	0,001	
Huynh-Feldt	0,341	1,000	0,341	0,418	0,519	0,001	
Limiti inferiore	0,341	1,000	0,341	0,418	0,519	0,001	

Hemisphere							
--------------------	--------------------	--------------------------------	----	------------------	-----	-------	
Sfericità	0,274	1	0,274	2,982	0,085	0,009	
Greenhouse-Geisser	0,274	1,000	0,274	2,982	0,085	0,009	
Huynh-Feldt	0,274	1,000	0,274	2,982	0,085	0,009	
Limiti inferiore	0,274	1,000	0,274	2,982	0,085	0,009	

Hemisphere * Age25							
--------------------	--------------------	--------------------------------	----	------------------	-----	-------	
Sfericità	0,014	1	0,014	0,152	0,697	0,000	
Greenhouse-Geisser	0,014	1,000	0,014	0,152	0,697	0,000	
Huynh-Feldt	0,014	1,000	0,014	0,152	0,697	0,000	
Limiti inferiore	0,014	1,000	0,014	0,152	0,697	0,000	

Area							
--------------------	--------------------	--------------------------------	----	------------------	-----	-------	
Sfericità	37,346	5	7,469	85,199	0,000	0,206	
Greenhouse-Geisser	37,346	2,811	13,288	85,199	0,000	0,206	
Huynh-Feldt	37,346	2,846	13,123	85,199	0,000	0,206	
Limiti inferiore	37,346	1,000	37,346	85,199	0,000	0,206	

<p>| Area * Age25 | | | | | | | |
|--------------------|--------------------|--------------------------------|----|------------------|-----|-------| |
| Sfericità | 8,919 | 5 | 1,784 | 20,346 | 0,000 | 0,058 | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Sfericità presunta</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition * Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,919</td>
<td>2,811</td>
<td>3,173</td>
<td>20,346</td>
<td>0,000</td>
<td>0,058</td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,919</td>
<td>2,846</td>
<td>3,134</td>
<td>20,346</td>
<td>0,000</td>
<td>0,058</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,919</td>
<td>1,000</td>
<td>8,919</td>
<td>20,346</td>
<td>0,000</td>
<td>0,058</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,155</td>
<td>1</td>
<td>0,155</td>
<td>1,562</td>
<td>0,212</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,155</td>
<td>1,000</td>
<td>0,155</td>
<td>1,562</td>
<td>0,212</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,155</td>
<td>1,000</td>
<td>0,155</td>
<td>1,562</td>
<td>0,212</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,155</td>
<td>1,000</td>
<td>0,155</td>
<td>1,562</td>
<td>0,212</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere * Age25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,010</td>
<td>1</td>
<td>0,010</td>
<td>0,100</td>
<td>0,751</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,100</td>
<td>0,751</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,100</td>
<td>0,751</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,010</td>
<td>1,000</td>
<td>0,010</td>
<td>0,100</td>
<td>0,751</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Condition * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,354</td>
<td>5</td>
<td>0,871</td>
<td>17,563</td>
<td>0,000</td>
<td>0,051</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,354</td>
<td>2,700</td>
<td>1,613</td>
<td>17,563</td>
<td>0,000</td>
<td>0,051</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,354</td>
<td>2,733</td>
<td>1,593</td>
<td>17,563</td>
<td>0,000</td>
<td>0,051</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,354</td>
<td>1,000</td>
<td>4,354</td>
<td>17,563</td>
<td>0,000</td>
<td>0,051</td>
<td></td>
</tr>
<tr>
<td>Condition * Area * Age25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,338</td>
<td>5</td>
<td>0,068</td>
<td>1,365</td>
<td>0,235</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,338</td>
<td>2,700</td>
<td>0,129</td>
<td>1,365</td>
<td>0,254</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,338</td>
<td>2,733</td>
<td>0,124</td>
<td>1,365</td>
<td>0,254</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,338</td>
<td>1,000</td>
<td>0,338</td>
<td>1,365</td>
<td>0,243</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Hemisphere * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,618</td>
<td>5</td>
<td>0,324</td>
<td>15,941</td>
<td>0,000</td>
<td>0,046</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,618</td>
<td>3,502</td>
<td>0,462</td>
<td>15,941</td>
<td>0,000</td>
<td>0,046</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,618</td>
<td>3,555</td>
<td>0,455</td>
<td>15,941</td>
<td>0,000</td>
<td>0,046</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,618</td>
<td>1,000</td>
<td>1,618</td>
<td>15,941</td>
<td>0,000</td>
<td>0,046</td>
<td></td>
</tr>
<tr>
<td>Hemisphere * Area * Age25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,366</td>
<td>5</td>
<td>0,673</td>
<td>33,151</td>
<td>0,000</td>
<td>0,092</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,366</td>
<td>3,502</td>
<td>0,961</td>
<td>33,151</td>
<td>0,000</td>
<td>0,092</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,366</td>
<td>3,555</td>
<td>0,947</td>
<td>33,151</td>
<td>0,000</td>
<td>0,092</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,366</td>
<td>1,000</td>
<td>3,366</td>
<td>33,151</td>
<td>0,000</td>
<td>0,092</td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere * Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,009</td>
<td>5</td>
<td>0,002</td>
<td>0,103</td>
<td>0,991</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,009</td>
<td>3,338</td>
<td>0,033</td>
<td>0,103</td>
<td>0,968</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition * Hemisphere * Area * Age25</td>
<td>0,009</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,145</td>
<td>3,387</td>
<td>0,009</td>
<td>0,103</td>
<td>0,969</td>
<td>0,000</td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,145</td>
<td>3,338</td>
<td>0,043</td>
<td>1,731</td>
<td>0,153</td>
<td>0,005</td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,145</td>
<td>3,387</td>
<td>0,043</td>
<td>1,731</td>
<td>0,152</td>
<td>0,005</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,145</td>
<td>1,000</td>
<td>0,145</td>
<td>1,731</td>
<td>0,189</td>
<td>0,005</td>
</tr>
</tbody>
</table>
Test di effetti entro soggetti

Misura: Genere 2x2x3

<table>
<thead>
<tr>
<th>Origine</th>
<th>Sfericità presunta</th>
<th>Somma dei quadrati di tipo III</th>
<th>gl</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,042</td>
<td>1</td>
<td>0,042</td>
<td>0,103</td>
<td>0,749</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,042</td>
<td>1,000</td>
<td>0,042</td>
<td>0,103</td>
<td>0,749</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,042</td>
<td>1,000</td>
<td>0,042</td>
<td>0,103</td>
<td>0,749</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,042</td>
<td>1,000</td>
<td>0,042</td>
<td>0,103</td>
<td>0,749</td>
<td>0,000</td>
</tr>
<tr>
<td>Condition * Gender</td>
<td>Sfericità presunta</td>
<td>1,688</td>
<td>1</td>
<td>1,688</td>
<td>4,161</td>
<td>0,142</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,688</td>
<td>1,000</td>
<td>1,688</td>
<td>4,161</td>
<td>0,142</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,688</td>
<td>1,000</td>
<td>1,688</td>
<td>4,161</td>
<td>0,142</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,688</td>
<td>1,000</td>
<td>1,688</td>
<td>4,161</td>
<td>0,142</td>
<td>0,012</td>
</tr>
<tr>
<td>Hemisphere</td>
<td>Sfericità presunta</td>
<td>0,019</td>
<td>1</td>
<td>0,019</td>
<td>0,449</td>
<td>0,503</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,019</td>
<td>1,000</td>
<td>0,019</td>
<td>0,449</td>
<td>0,503</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,019</td>
<td>1,000</td>
<td>0,019</td>
<td>0,449</td>
<td>0,503</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,019</td>
<td>1,000</td>
<td>0,019</td>
<td>0,449</td>
<td>0,503</td>
<td>0,001</td>
</tr>
<tr>
<td>Hemisphere * Gender</td>
<td>Sfericità presunta</td>
<td>0,005</td>
<td>1</td>
<td>0,005</td>
<td>0,108</td>
<td>0,742</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,005</td>
<td>1,000</td>
<td>0,005</td>
<td>0,108</td>
<td>0,742</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,005</td>
<td>1,000</td>
<td>0,005</td>
<td>0,108</td>
<td>0,742</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,005</td>
<td>1,000</td>
<td>0,005</td>
<td>0,108</td>
<td>0,742</td>
<td>0,000</td>
</tr>
<tr>
<td>Area</td>
<td>Sfericità presunta</td>
<td>16,066</td>
<td>2</td>
<td>8,033</td>
<td>87,101</td>
<td>0,000</td>
<td>0,209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16,066</td>
<td>1,385</td>
<td>11,599</td>
<td>87,101</td>
<td>0,000</td>
<td>0,209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16,066</td>
<td>1,393</td>
<td>11,531</td>
<td>87,101</td>
<td>0,000</td>
<td>0,209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16,066</td>
<td>1,000</td>
<td>16,066</td>
<td>87,101</td>
<td>0,000</td>
<td>0,209</td>
</tr>
<tr>
<td>Area * Gender</td>
<td>Sfericità presunta</td>
<td>0,076</td>
<td>2</td>
<td>0,038</td>
<td>0,412</td>
<td>0,663</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,076</td>
<td>1,385</td>
<td>0,055</td>
<td>0,412</td>
<td>0,587</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,076</td>
<td>1,393</td>
<td>0,055</td>
<td>0,412</td>
<td>0,589</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,076</td>
<td>1,000</td>
<td>0,076</td>
<td>0,412</td>
<td>0,521</td>
<td>0,001</td>
</tr>
<tr>
<td>Condition * Hemisphere</td>
<td>Sfericità presunta</td>
<td>0,008</td>
<td>1</td>
<td>0,008</td>
<td>0,177</td>
<td>0,674</td>
<td>0,001</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,008</td>
<td>1,000</td>
<td>0,008</td>
<td>0,177</td>
<td>0,674</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,008</td>
<td>1,000</td>
<td>0,008</td>
<td>0,177</td>
<td>0,674</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,008</td>
<td>1,000</td>
<td>0,008</td>
<td>0,177</td>
<td>0,674</td>
<td>0,001</td>
</tr>
<tr>
<td>Condition * Hemisphere * Gender</td>
<td>Sfericità presunta</td>
<td>0,052</td>
<td>1</td>
<td>0,052</td>
<td>1,144</td>
<td>0,286</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,052</td>
<td>1,000</td>
<td>0,052</td>
<td>1,144</td>
<td>0,286</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,052</td>
<td>1,000</td>
<td>0,052</td>
<td>1,144</td>
<td>0,286</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,052</td>
<td>1,000</td>
<td>0,052</td>
<td>1,144</td>
<td>0,286</td>
<td>0,003</td>
</tr>
<tr>
<td>Condition * Area</td>
<td>Sfericità presunta</td>
<td>2,450</td>
<td>2</td>
<td>1,225</td>
<td>23,458</td>
<td>0,000</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>2,450</td>
<td>1,242</td>
<td>1,972</td>
<td>23,458</td>
<td>0,000</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>2,450</td>
<td>1,249</td>
<td>1,962</td>
<td>23,458</td>
<td>0,000</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>2,450</td>
<td>1,000</td>
<td>2,450</td>
<td>23,458</td>
<td>0,000</td>
<td>0,067</td>
</tr>
<tr>
<td>Condition * Area * Gender</td>
<td>Sfericità presunta</td>
<td>0,112</td>
<td>2</td>
<td>0,056</td>
<td>1,069</td>
<td>0,344</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,112</td>
<td>1,242</td>
<td>0,090</td>
<td>1,069</td>
<td>0,317</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,112</td>
<td>1,249</td>
<td>0,089</td>
<td>1,069</td>
<td>0,317</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,112</td>
<td>1,000</td>
<td>0,112</td>
<td>1,069</td>
<td>0,302</td>
<td>0,003</td>
</tr>
<tr>
<td>Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,033</td>
<td>2</td>
<td>0,017</td>
<td>0,906</td>
<td>0,405</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,033</td>
<td>1,473</td>
<td>0,023</td>
<td>0,906</td>
<td>0,378</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,033</td>
<td>1,482</td>
<td>0,022</td>
<td>0,906</td>
<td>0,378</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,033</td>
<td>1,000</td>
<td>0,033</td>
<td>0,906</td>
<td>0,342</td>
<td>0,003</td>
</tr>
<tr>
<td>Hemisphere * Area * Gender</td>
<td>Sfericità presunta</td>
<td>0,171</td>
<td>2</td>
<td>0,085</td>
<td>4,656</td>
<td>0,010</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,171</td>
<td>1,473</td>
<td>0,116</td>
<td>4,656</td>
<td>0,018</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,171</td>
<td>1,482</td>
<td>0,115</td>
<td>4,656</td>
<td>0,018</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,171</td>
<td>1,000</td>
<td>0,171</td>
<td>4,656</td>
<td>0,032</td>
<td>0,014</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,073</td>
<td>2</td>
<td>0,036</td>
<td>3,319</td>
<td>0,037</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,073</td>
<td>1,558</td>
<td>0,047</td>
<td>3,319</td>
<td>0,049</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,073</td>
<td>1,568</td>
<td>0,046</td>
<td>3,319</td>
<td>0,049</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,073</td>
<td>1,000</td>
<td>0,073</td>
<td>3,319</td>
<td>0,069</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>Sfericità presunta</td>
<td>0,152</td>
<td>2</td>
<td>0,076</td>
<td>6,926</td>
<td>0,001</td>
<td>0,021</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area * Gender</td>
<td>Greenhouse-Geisser</td>
<td>Huynh-Feldt</td>
<td>Limite inferiore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,152</td>
<td>0,152</td>
<td>0,152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,558</td>
<td>1,568</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,098</td>
<td>0,097</td>
<td>0,152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,926</td>
<td>6,926</td>
<td>6,926</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,003</td>
<td>0,003</td>
<td>0,009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,021</td>
<td>0,021</td>
<td>0,021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test di effetti entro soggetti

Misura: Età 2x2x6

<table>
<thead>
<tr>
<th>Origine</th>
<th>Sfericità presunta</th>
<th>Somma dei quadrati di tipo III</th>
<th>gl</th>
<th>Media quadratica</th>
<th>F</th>
<th>Sign.</th>
<th>Eta quadrato parziale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,175</td>
<td>1</td>
<td>0,175</td>
<td>0,219</td>
<td>0,640</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,175</td>
<td>1,000</td>
<td>0,175</td>
<td>0,219</td>
<td>0,640</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,175</td>
<td>1,000</td>
<td>0,175</td>
<td>0,219</td>
<td>0,640</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,175</td>
<td>1,000</td>
<td>0,175</td>
<td>0,219</td>
<td>0,640</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>5,929</td>
<td>1,000</td>
<td>5,929</td>
<td>7,419</td>
<td>0,107</td>
<td>0,022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>5,929</td>
<td>1,000</td>
<td>5,929</td>
<td>7,419</td>
<td>0,107</td>
<td>0,022</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>5,929</td>
<td>1,000</td>
<td>5,929</td>
<td>7,419</td>
<td>0,107</td>
<td>0,022</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>5,929</td>
<td>1,000</td>
<td>5,929</td>
<td>7,419</td>
<td>0,107</td>
<td>0,022</td>
</tr>
<tr>
<td>Hemisphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,084</td>
<td>1</td>
<td>0,084</td>
<td>0,922</td>
<td>0,338</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,084</td>
<td>1,000</td>
<td>0,084</td>
<td>0,922</td>
<td>0,338</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,084</td>
<td>1,000</td>
<td>0,084</td>
<td>0,922</td>
<td>0,338</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,084</td>
<td>1,000</td>
<td>0,084</td>
<td>0,922</td>
<td>0,338</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>1,889</td>
<td>0,170</td>
<td>0,006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>1,889</td>
<td>0,170</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>1,889</td>
<td>0,170</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,173</td>
<td>1,000</td>
<td>0,173</td>
<td>1,889</td>
<td>0,170</td>
<td>0,006</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,069</td>
<td>5</td>
<td>5,614</td>
<td>60,524</td>
<td>0,000</td>
<td>0,155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,069</td>
<td>2,735</td>
<td>10,256</td>
<td>60,524</td>
<td>0,000</td>
<td>0,155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,069</td>
<td>2,768</td>
<td>10,139</td>
<td>60,524</td>
<td>0,000</td>
<td>0,155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,069</td>
<td>1,000</td>
<td>28,069</td>
<td>60,524</td>
<td>0,000</td>
<td>0,155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,552</td>
<td>5</td>
<td>0,110</td>
<td>1,190</td>
<td>0,312</td>
<td>0,004</td>
<td></td>
</tr>
</tbody>
</table>

124
<table>
<thead>
<tr>
<th>Condition * Hemisphere</th>
<th>Sfericità presunta</th>
<th>0,007</th>
<th>1</th>
<th>0,007</th>
<th>0,072</th>
<th>0,788</th>
<th>0,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,007</td>
<td>1,000</td>
<td>0,007</td>
<td>0,072</td>
<td>0,788</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,007</td>
<td>1,000</td>
<td>0,007</td>
<td>0,072</td>
<td>0,788</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,007</td>
<td>1,000</td>
<td>0,007</td>
<td>0,072</td>
<td>0,788</td>
<td>0,000</td>
</tr>
<tr>
<td>Condition * Hemisphere * Gender</td>
<td>Sfericità presunta</td>
<td>0,364</td>
<td>1</td>
<td>0,364</td>
<td>3,696</td>
<td>0,055</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,364</td>
<td>1,000</td>
<td>0,364</td>
<td>3,696</td>
<td>0,055</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,364</td>
<td>1,000</td>
<td>0,364</td>
<td>3,696</td>
<td>0,055</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,364</td>
<td>1,000</td>
<td>0,364</td>
<td>3,696</td>
<td>0,055</td>
<td>0,011</td>
</tr>
<tr>
<td>Condition * Area</td>
<td>Sfericità presunta</td>
<td>3,773</td>
<td>5</td>
<td>0,755</td>
<td>15,210</td>
<td>0,000</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>3,773</td>
<td>2,683</td>
<td>1,406</td>
<td>15,210</td>
<td>0,000</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>3,773</td>
<td>2,715</td>
<td>1,389</td>
<td>15,210</td>
<td>0,000</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>3,773</td>
<td>1,000</td>
<td>3,773</td>
<td>15,210</td>
<td>0,000</td>
<td>0,044</td>
</tr>
<tr>
<td>Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,159</td>
<td>5</td>
<td>0,032</td>
<td>1,443</td>
<td>0,206</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,159</td>
<td>3,262</td>
<td>0,049</td>
<td>1,443</td>
<td>0,226</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,159</td>
<td>3,309</td>
<td>0,048</td>
<td>1,443</td>
<td>0,225</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,159</td>
<td>1,000</td>
<td>0,159</td>
<td>1,443</td>
<td>0,231</td>
<td>0,004</td>
</tr>
<tr>
<td>Hemisphere * Area * Gender</td>
<td>Sfericità presunta</td>
<td>0,504</td>
<td>5</td>
<td>0,101</td>
<td>4,571</td>
<td>0,000</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,504</td>
<td>3,262</td>
<td>0,154</td>
<td>4,571</td>
<td>0,003</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>Huynh-Feldt</td>
<td>0,504</td>
<td>3,309</td>
<td>0,152</td>
<td>4,571</td>
<td>0,002</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>Limite inferiore</td>
<td>0,504</td>
<td>1,000</td>
<td>0,504</td>
<td>4,571</td>
<td>0,033</td>
<td>0,014</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area</td>
<td>Sfericità presunta</td>
<td>0,281</td>
<td>5</td>
<td>0,056</td>
<td>3,420</td>
<td>0,004</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>Greenhouse-Geisser</td>
<td>0,281</td>
<td>3,383</td>
<td>0,083</td>
<td>3,420</td>
<td>0,013</td>
<td>0,010</td>
</tr>
<tr>
<td>Condition * Hemisphere * Area * Gender</td>
<td>Huynh-Feldt</td>
<td>0,281</td>
<td>3,433</td>
<td>0,082</td>
<td>3,420</td>
<td>0,013</td>
<td>0,010</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,281</td>
<td>1,000</td>
<td>0,281</td>
<td>3,420</td>
<td>0,065</td>
<td>0,010</td>
<td></td>
</tr>
<tr>
<td>Sfericità presunta</td>
<td>0,670</td>
<td>5</td>
<td>0,134</td>
<td>8,175</td>
<td>0,000</td>
<td>0,024</td>
<td></td>
</tr>
<tr>
<td>Greenhouse-Geisser</td>
<td>0,670</td>
<td>3,383</td>
<td>0,198</td>
<td>8,175</td>
<td>0,000</td>
<td>0,024</td>
<td></td>
</tr>
<tr>
<td>Huynh-Feldt</td>
<td>0,670</td>
<td>3,433</td>
<td>0,195</td>
<td>8,175</td>
<td>0,000</td>
<td>0,024</td>
<td></td>
</tr>
<tr>
<td>Limite inferiore</td>
<td>0,670</td>
<td>1,000</td>
<td>0,670</td>
<td>8,175</td>
<td>0,005</td>
<td>0,024</td>
<td></td>
</tr>
</tbody>
</table>
A.4 Analisi dati eye-tracker

A.4.1 Dilatazione Pupilla

- Database Dilatazione Pupilla durante idea generation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Idea</th>
<th>Mean_pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>idea-1</td>
<td>2871590,102</td>
</tr>
<tr>
<td>C</td>
<td>idea-2</td>
<td>2871808,812</td>
</tr>
<tr>
<td>C</td>
<td>idea-3</td>
<td>2871813,165</td>
</tr>
<tr>
<td>C</td>
<td>idea-4</td>
<td>2871765,53</td>
</tr>
<tr>
<td>C</td>
<td>idea-5</td>
<td>2871818,216</td>
</tr>
<tr>
<td>C</td>
<td>idea-6</td>
<td>2871989,682</td>
</tr>
<tr>
<td>C</td>
<td>idea-7</td>
<td>2872017,429</td>
</tr>
<tr>
<td>C</td>
<td>idea-8</td>
<td>2872091,535</td>
</tr>
<tr>
<td>C</td>
<td>idea-9</td>
<td>2872172,639</td>
</tr>
<tr>
<td>C</td>
<td>idea-10</td>
<td>2872560,21</td>
</tr>
<tr>
<td>C</td>
<td>idea-11</td>
<td>2872599,712</td>
</tr>
<tr>
<td>C</td>
<td>idea-12</td>
<td>2872680,748</td>
</tr>
<tr>
<td>C</td>
<td>idea-13</td>
<td>2872699,129</td>
</tr>
<tr>
<td>C</td>
<td>idea-14</td>
<td>2872714,178</td>
</tr>
<tr>
<td>C</td>
<td>idea-15</td>
<td>2872854,383</td>
</tr>
<tr>
<td>C</td>
<td>idea-16</td>
<td>2873028,462</td>
</tr>
<tr>
<td>C</td>
<td>idea-17</td>
<td>2873289,155</td>
</tr>
<tr>
<td>C</td>
<td>idea-18</td>
<td>2873385,387</td>
</tr>
<tr>
<td>C</td>
<td>idea-19</td>
<td>2873759,707</td>
</tr>
<tr>
<td>C</td>
<td>idea-20</td>
<td>2874197,093</td>
</tr>
<tr>
<td>C</td>
<td>idea-21</td>
<td>2736779,528</td>
</tr>
<tr>
<td>C</td>
<td>idea-22</td>
<td>2736636,144</td>
</tr>
<tr>
<td>C</td>
<td>idea-23</td>
<td>2736536,123</td>
</tr>
<tr>
<td>C</td>
<td>idea-24</td>
<td>2746299,157</td>
</tr>
<tr>
<td>C</td>
<td>idea-25</td>
<td>2736422,054</td>
</tr>
<tr>
<td>C</td>
<td>idea-26</td>
<td>2736055,566</td>
</tr>
<tr>
<td>C</td>
<td>idea-27</td>
<td>2735843,741</td>
</tr>
<tr>
<td>C</td>
<td>idea-28</td>
<td>2735636,531</td>
</tr>
<tr>
<td>C</td>
<td>idea-29</td>
<td>2735506,368</td>
</tr>
<tr>
<td>C</td>
<td>idea-30</td>
<td>2735412,516</td>
</tr>
<tr>
<td>C</td>
<td>idea-31</td>
<td>2735112,3</td>
</tr>
<tr>
<td>C</td>
<td>idea-32</td>
<td>2734924,565</td>
</tr>
<tr>
<td>C</td>
<td>idea-33</td>
<td>2734699,45</td>
</tr>
<tr>
<td>C</td>
<td>idea-34</td>
<td>2734500,282</td>
</tr>
<tr>
<td>C</td>
<td>idea-35</td>
<td>2734273,957</td>
</tr>
<tr>
<td>C</td>
<td>idea-36</td>
<td>2734193,664</td>
</tr>
<tr>
<td>C</td>
<td>idea-37</td>
<td>2734072,268</td>
</tr>
<tr>
<td>C</td>
<td>idea-38</td>
<td>2733915,282</td>
</tr>
<tr>
<td>C</td>
<td>idea-39</td>
<td>2733749,793</td>
</tr>
<tr>
<td>C</td>
<td>idea-40</td>
<td>2733561,475</td>
</tr>
</tbody>
</table>

<p>| U | idea-1 | 2815241,848 |
| U | idea-2 | 2814990,289 |
| U | idea-3 | 2814665,778 |
| U | idea-4 | 2814522,11 |
| U | idea-5 | 2814387,102 |
| U | idea-6 | 2814000,726 |
| U | idea-7 | 2813907,815 |
| U | idea-8 | 2813755,264 |
| U | idea-9 | 2813724,553 |
| U | idea-10| 2813442,877 |
| U | idea-11| 2813198,098 |
| U | idea-12| 2813010,97 |
| U | idea-13| 2812816,071 |
| U | idea-14| 2812498,684 |
| U | idea-15| 2812196,122 |
| U | idea-16| 2811727,045 |
| U | idea-17| 2811462,883 |
| U | idea-18| 2819123,963 |
| U | idea-19| 2811175,893 |
| U | idea-20| 2815385,602 |
| U | idea-21| 2810771,168 |
| U | idea-22| 2812487,857 |
| U | idea-23| 2813001,623 |
| U | idea-24| 2814075,433 |
| U | idea-25| 2815371,343 |
| U | idea-26| 2816644,689 |
| U | idea-27| 2817482,271 |
| U | idea-28| 2817894,133 |
| U | idea-29| 2819175,801 |
| U | idea-30| 2820245,815 |
| U | idea-31| 2821000,59 |
| U | idea-32| 2821453,366 |
| U | idea-33| 2822640,471 |
| U | idea-34| 2823819,445 |
| U | idea-35| 2824512,542 |
| U | idea-36| 2825272,919 |
| U | idea-37| 2826494,862 |
| U | idea-38| 2828024,369 |
| U | idea-39| 2828647,562 |
| U | idea-40| 2829205,396 |</p>
<table>
<thead>
<tr>
<th>Condition</th>
<th>Ref</th>
<th>Mean_pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>C ref-1</td>
<td>2871502,688</td>
<td></td>
</tr>
<tr>
<td>C ref-2</td>
<td>2871674,363</td>
<td></td>
</tr>
<tr>
<td>C ref-3</td>
<td>2871766,179</td>
<td></td>
</tr>
<tr>
<td>C ref-4</td>
<td>2871642,558</td>
<td></td>
</tr>
<tr>
<td>C ref-5</td>
<td>2871694,396</td>
<td></td>
</tr>
<tr>
<td>C ref-6</td>
<td>2871774,822</td>
<td></td>
</tr>
<tr>
<td>C ref-7</td>
<td>2871851,771</td>
<td></td>
</tr>
<tr>
<td>C ref-8</td>
<td>2871938,227</td>
<td></td>
</tr>
<tr>
<td>C ref-9</td>
<td>2872067,922</td>
<td></td>
</tr>
<tr>
<td>C ref-10</td>
<td>2872405,752</td>
<td></td>
</tr>
<tr>
<td>C ref-11</td>
<td>2872430,141</td>
<td></td>
</tr>
<tr>
<td>C ref-12</td>
<td>2872508,445</td>
<td></td>
</tr>
<tr>
<td>C ref-13</td>
<td>2872616,78</td>
<td></td>
</tr>
<tr>
<td>C ref-14</td>
<td>2872606,187</td>
<td></td>
</tr>
<tr>
<td>C ref-15</td>
<td>2872740,961</td>
<td></td>
</tr>
<tr>
<td>C ref-16</td>
<td>2873029,407</td>
<td></td>
</tr>
<tr>
<td>C ref-17</td>
<td>2873287,265</td>
<td></td>
</tr>
<tr>
<td>C ref-18</td>
<td>2873239,312</td>
<td></td>
</tr>
<tr>
<td>C ref-19</td>
<td>2873611,847</td>
<td></td>
</tr>
<tr>
<td>C ref-20</td>
<td>2873985,991</td>
<td></td>
</tr>
<tr>
<td>C ref-21</td>
<td>2737081,794</td>
<td></td>
</tr>
<tr>
<td>C ref-22</td>
<td>2736705,969</td>
<td></td>
</tr>
<tr>
<td>C ref-23</td>
<td>2736507,127</td>
<td></td>
</tr>
<tr>
<td>C ref-24</td>
<td>2746467,352</td>
<td></td>
</tr>
<tr>
<td>C ref-25</td>
<td>2736562,495</td>
<td></td>
</tr>
<tr>
<td>C ref-26</td>
<td>2736131,646</td>
<td></td>
</tr>
<tr>
<td>C ref-27</td>
<td>2735907,144</td>
<td></td>
</tr>
<tr>
<td>C ref-28</td>
<td>2735655,992</td>
<td></td>
</tr>
<tr>
<td>C ref-29</td>
<td>2735559,725</td>
<td></td>
</tr>
<tr>
<td>C ref-30</td>
<td>2735401,522</td>
<td></td>
</tr>
<tr>
<td>C ref-31</td>
<td>2735253,669</td>
<td></td>
</tr>
<tr>
<td>C ref-32</td>
<td>2735029,656</td>
<td></td>
</tr>
<tr>
<td>C ref-33</td>
<td>2734848,483</td>
<td></td>
</tr>
<tr>
<td>C ref-34</td>
<td>2734591,005</td>
<td></td>
</tr>
<tr>
<td>C ref-35</td>
<td>2734354,209</td>
<td></td>
</tr>
<tr>
<td>C ref-36</td>
<td>2734236,053</td>
<td></td>
</tr>
<tr>
<td>C ref-37</td>
<td>2734105,063</td>
<td></td>
</tr>
<tr>
<td>C ref-38</td>
<td>2733948,875</td>
<td></td>
</tr>
<tr>
<td>C ref-39</td>
<td>2741950,19</td>
<td></td>
</tr>
<tr>
<td>C ref-40</td>
<td>2733628,971</td>
<td></td>
</tr>
<tr>
<td>U ref-1</td>
<td>2742712,059</td>
<td></td>
</tr>
<tr>
<td>U ref-2</td>
<td>2742044,55</td>
<td></td>
</tr>
<tr>
<td>U ref-3</td>
<td>2757402,048</td>
<td></td>
</tr>
<tr>
<td>U ref-4</td>
<td>2741662,289</td>
<td></td>
</tr>
<tr>
<td>U ref-5</td>
<td>2741308,178</td>
<td></td>
</tr>
<tr>
<td>U ref-6</td>
<td>2740657,472</td>
<td></td>
</tr>
<tr>
<td>U ref-7</td>
<td>2740145,257</td>
<td></td>
</tr>
<tr>
<td>U ref-8</td>
<td>2739317,227</td>
<td></td>
</tr>
<tr>
<td>U ref-9</td>
<td>2739077,785</td>
<td></td>
</tr>
<tr>
<td>U ref-10</td>
<td>2738581,562</td>
<td></td>
</tr>
<tr>
<td>U ref-11</td>
<td>2738262,726</td>
<td></td>
</tr>
<tr>
<td>U ref-12</td>
<td>2752825,731</td>
<td></td>
</tr>
<tr>
<td>U ref-13</td>
<td>2737733,102</td>
<td></td>
</tr>
<tr>
<td>U ref-14</td>
<td>2737531,404</td>
<td></td>
</tr>
<tr>
<td>U ref-15</td>
<td>2751121,791</td>
<td></td>
</tr>
<tr>
<td>U ref-16</td>
<td>2751048,389</td>
<td></td>
</tr>
<tr>
<td>U ref-17</td>
<td>2750619,99</td>
<td></td>
</tr>
<tr>
<td>U ref-18</td>
<td>2737512,443</td>
<td></td>
</tr>
<tr>
<td>U ref-19</td>
<td>2737290,226</td>
<td></td>
</tr>
<tr>
<td>U ref-20</td>
<td>2830252,465</td>
<td></td>
</tr>
<tr>
<td>U ref-21</td>
<td>2874227,655</td>
<td></td>
</tr>
<tr>
<td>U ref-22</td>
<td>2874653,705</td>
<td></td>
</tr>
<tr>
<td>U ref-23</td>
<td>2875313,219</td>
<td></td>
</tr>
<tr>
<td>U ref-24</td>
<td>2875664,756</td>
<td></td>
</tr>
<tr>
<td>U ref-25</td>
<td>2876475,214</td>
<td></td>
</tr>
<tr>
<td>U ref-26</td>
<td>2876678,302</td>
<td></td>
</tr>
<tr>
<td>U ref-27</td>
<td>2877242,298</td>
<td></td>
</tr>
<tr>
<td>U ref-28</td>
<td>2877990,328</td>
<td></td>
</tr>
<tr>
<td>U ref-29</td>
<td>2878770,346</td>
<td></td>
</tr>
<tr>
<td>U ref-30</td>
<td>2879385,133</td>
<td></td>
</tr>
<tr>
<td>U ref-31</td>
<td>2880199,544</td>
<td></td>
</tr>
<tr>
<td>U ref-32</td>
<td>2880699,964</td>
<td></td>
</tr>
<tr>
<td>U ref-33</td>
<td>2881351,726</td>
<td></td>
</tr>
<tr>
<td>U ref-34</td>
<td>2880984,344</td>
<td></td>
</tr>
<tr>
<td>U ref-35</td>
<td>2880379,487</td>
<td></td>
</tr>
<tr>
<td>U ref-36</td>
<td>2880082,797</td>
<td></td>
</tr>
<tr>
<td>U ref-37</td>
<td>2879897,687</td>
<td></td>
</tr>
<tr>
<td>U ref-38</td>
<td>2879589,829</td>
<td></td>
</tr>
<tr>
<td>U ref-39</td>
<td>2879244,536</td>
<td></td>
</tr>
<tr>
<td>U ref-40</td>
<td>2879076,814</td>
<td></td>
</tr>
</tbody>
</table>
- Database Dilatazione Pupille Normalizzazione

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean_pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>87,41466213</td>
</tr>
<tr>
<td>C</td>
<td>134,4495428</td>
</tr>
<tr>
<td>C</td>
<td>46,98634976</td>
</tr>
<tr>
<td>C</td>
<td>122,9722154</td>
</tr>
<tr>
<td>C</td>
<td>134,4495428</td>
</tr>
<tr>
<td>C</td>
<td>214,8601099</td>
</tr>
<tr>
<td>C</td>
<td>165,6579139</td>
</tr>
<tr>
<td>C</td>
<td>153,3078688</td>
</tr>
<tr>
<td>C</td>
<td>104,7175431</td>
</tr>
<tr>
<td>C</td>
<td>154,4582431</td>
</tr>
<tr>
<td>C</td>
<td>169,5704797</td>
</tr>
<tr>
<td>C</td>
<td>172,3032397</td>
</tr>
<tr>
<td>C</td>
<td>82,34862326</td>
</tr>
<tr>
<td>C</td>
<td>107,9905023</td>
</tr>
<tr>
<td>C</td>
<td>113,4222868</td>
</tr>
<tr>
<td>C</td>
<td>179,0549012</td>
</tr>
<tr>
<td>C</td>
<td>1,889603845</td>
</tr>
<tr>
<td>C</td>
<td>146,075227</td>
</tr>
<tr>
<td>C</td>
<td>147,8597592</td>
</tr>
<tr>
<td>C</td>
<td>193,1022692</td>
</tr>
<tr>
<td>C</td>
<td>302,664864</td>
</tr>
<tr>
<td>C</td>
<td>69,82548415</td>
</tr>
<tr>
<td>C</td>
<td>28,99622119</td>
</tr>
<tr>
<td>C</td>
<td>168,1952485</td>
</tr>
<tr>
<td>C</td>
<td>140,440704</td>
</tr>
<tr>
<td>C</td>
<td>76,07981419</td>
</tr>
<tr>
<td>C</td>
<td>63,40354712</td>
</tr>
<tr>
<td>C</td>
<td>19,46077843</td>
</tr>
<tr>
<td>C</td>
<td>53,3572112</td>
</tr>
<tr>
<td>C</td>
<td>10,99365599</td>
</tr>
<tr>
<td>C</td>
<td>141,3699074</td>
</tr>
<tr>
<td>C</td>
<td>105,0907279</td>
</tr>
<tr>
<td>C</td>
<td>149,0324837</td>
</tr>
<tr>
<td>C</td>
<td>90,72278565</td>
</tr>
<tr>
<td>C</td>
<td>80,25245541</td>
</tr>
<tr>
<td>C</td>
<td>42,38902104</td>
</tr>
<tr>
<td>C</td>
<td>32,79497488</td>
</tr>
<tr>
<td>C</td>
<td>33,59320509</td>
</tr>
<tr>
<td>C</td>
<td>8200,397775</td>
</tr>
<tr>
<td>C</td>
<td>67,4951765</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean_pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>72529,78896</td>
</tr>
<tr>
<td>U</td>
<td>72945,73958</td>
</tr>
<tr>
<td>U</td>
<td>57263,73047</td>
</tr>
<tr>
<td>U</td>
<td>72859,82064</td>
</tr>
<tr>
<td>U</td>
<td>73078,92431</td>
</tr>
<tr>
<td>U</td>
<td>73343,25377</td>
</tr>
<tr>
<td>U</td>
<td>73762,55848</td>
</tr>
<tr>
<td>U</td>
<td>74438,037</td>
</tr>
<tr>
<td>U</td>
<td>74646,76816</td>
</tr>
<tr>
<td>U</td>
<td>74861,31564</td>
</tr>
<tr>
<td>U</td>
<td>74935,37136</td>
</tr>
<tr>
<td>U</td>
<td>60185,23876</td>
</tr>
<tr>
<td>U</td>
<td>75082,96902</td>
</tr>
<tr>
<td>U</td>
<td>74967,28012</td>
</tr>
<tr>
<td>U</td>
<td>61074,33111</td>
</tr>
<tr>
<td>U</td>
<td>60678,65558</td>
</tr>
<tr>
<td>U</td>
<td>60842,89221</td>
</tr>
<tr>
<td>U</td>
<td>81611,5203</td>
</tr>
<tr>
<td>U</td>
<td>73885,66714</td>
</tr>
<tr>
<td>U</td>
<td>14866,86341</td>
</tr>
<tr>
<td>U</td>
<td>63456,48703</td>
</tr>
<tr>
<td>U</td>
<td>62165,84756</td>
</tr>
<tr>
<td>U</td>
<td>62311,59619</td>
</tr>
<tr>
<td>U</td>
<td>61589,32279</td>
</tr>
<tr>
<td>U</td>
<td>61103,87097</td>
</tr>
<tr>
<td>U</td>
<td>60033,61307</td>
</tr>
<tr>
<td>U</td>
<td>59760,02694</td>
</tr>
<tr>
<td>U</td>
<td>60096,19482</td>
</tr>
<tr>
<td>U</td>
<td>59594,5456</td>
</tr>
<tr>
<td>U</td>
<td>59139,31743</td>
</tr>
<tr>
<td>U</td>
<td>59198,95435</td>
</tr>
<tr>
<td>U</td>
<td>59416,59816</td>
</tr>
<tr>
<td>U</td>
<td>58711,25465</td>
</tr>
<tr>
<td>U</td>
<td>57164,89886</td>
</tr>
<tr>
<td>U</td>
<td>55866,94495</td>
</tr>
<tr>
<td>U</td>
<td>54809,87818</td>
</tr>
<tr>
<td>U</td>
<td>53402,82557</td>
</tr>
<tr>
<td>U</td>
<td>51565,46056</td>
</tr>
<tr>
<td>U</td>
<td>50596,97439</td>
</tr>
<tr>
<td>U</td>
<td>49871,41818</td>
</tr>
</tbody>
</table>
• T-test Dilatazione Pupille
<table>
<thead>
<tr>
<th>Varianze uguali presunte</th>
<th>Varianze uguali non presunte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferiore</td>
<td>Superiore</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-1082,776</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>5976,140</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -22685,395, Superiore: 759,843</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test di Levene per l'uguaglianza delle varianze</th>
<th>Test t per l'uguaglianza delle medie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean_pupils</td>
<td></td>
</tr>
<tr>
<td>Varianze uguali presunte</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3,769</td>
</tr>
<tr>
<td>Sign.</td>
<td>0,052</td>
</tr>
<tr>
<td>t</td>
<td>-1,834</td>
</tr>
<tr>
<td>gl</td>
<td>1479</td>
</tr>
<tr>
<td>Sign. (a due code)</td>
<td>0,067</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-1082,776</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>5976,140</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -22685,395, Superiore: 759,843</td>
</tr>
<tr>
<td>Varianze uguali non presunte</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-1,832</td>
</tr>
<tr>
<td>Sign.</td>
<td>1449,113</td>
</tr>
<tr>
<td>t</td>
<td>0,067</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-1082,776</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>5960,270</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -22713,302, Superiore: 787,751</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test di Levene per l'uguaglianza delle varianze</th>
<th>Test t per l'uguaglianza delle medie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean_pupils</td>
<td></td>
</tr>
<tr>
<td>Varianze uguali presunte</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1,626</td>
</tr>
<tr>
<td>Sign.</td>
<td>0,202</td>
</tr>
<tr>
<td>t</td>
<td>-4,002</td>
</tr>
<tr>
<td>gl</td>
<td>1476</td>
</tr>
<tr>
<td>Sign. (a due code)</td>
<td>0,000</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-72318,860</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>18071,819</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -107768,034, Superiore: 36869,686</td>
</tr>
<tr>
<td>Varianze uguali non presunte</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-4,002</td>
</tr>
<tr>
<td>Sign.</td>
<td>1476,414</td>
</tr>
<tr>
<td>t</td>
<td>0,000</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-72318,860</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>18071,819</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -107768,035, Superiore: 36869,686</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test di Levene per l'uguaglianza delle varianze</th>
<th>Test t per l'uguaglianza delle medie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean_pupils</td>
<td></td>
</tr>
<tr>
<td>Varianze uguali presunte</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7,369</td>
</tr>
<tr>
<td>Sign.</td>
<td>0,007</td>
</tr>
<tr>
<td>t</td>
<td>-4,066</td>
</tr>
<tr>
<td>gl</td>
<td>1478</td>
</tr>
<tr>
<td>Sign. (a due code)</td>
<td>0,000</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-66588,623</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>16378,417</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -98716,041, Superiore: 34461,205</td>
</tr>
<tr>
<td>Varianze uguali non presunte</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-4,066</td>
</tr>
<tr>
<td>Sign.</td>
<td>1469,477</td>
</tr>
<tr>
<td>t</td>
<td>0,000</td>
</tr>
<tr>
<td>Differenza della media</td>
<td>-66588,623</td>
</tr>
<tr>
<td>Differenza errore standard</td>
<td>16378,417</td>
</tr>
<tr>
<td>Intervallo di confidenza della differenza di 95%</td>
<td>Inferiore: -98716,193, Superiore: 34461,053</td>
</tr>
</tbody>
</table>

131
A.5 Metodo per la valutazione delle risposte

- Alpha di Cronbach

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Deviazione std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originality_J1</td>
<td>1,61</td>
<td>0,957</td>
</tr>
<tr>
<td>Originality_J2</td>
<td>1,91</td>
<td>1,055</td>
</tr>
<tr>
<td>Originality_J3</td>
<td>2,21</td>
<td>1,349</td>
</tr>
<tr>
<td>Alpha di Cronbach</td>
<td>0,902</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Deviazione std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paradigm Relatedness_J1</td>
<td>1,26</td>
<td>0,608</td>
</tr>
<tr>
<td>Paradigm Relatedness_J2</td>
<td>1,48</td>
<td>0,790</td>
</tr>
<tr>
<td>Paradigm Relatedness_J3</td>
<td>1,82</td>
<td>1,088</td>
</tr>
<tr>
<td>Alpha di Cronbach</td>
<td>0,736</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Deviazione std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness_J1</td>
<td>3,48</td>
<td>0,871</td>
</tr>
<tr>
<td>Effectiveness_J2</td>
<td>3,38</td>
<td>0,814</td>
</tr>
<tr>
<td>Effectiveness_J3</td>
<td>3,38</td>
<td>1,028</td>
</tr>
<tr>
<td>Alpha di Cronbach</td>
<td>0,84</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Deviazione std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility_J1</td>
<td>3,78</td>
<td>0,540</td>
</tr>
<tr>
<td>Feasibility_J2</td>
<td>3,52</td>
<td>0,745</td>
</tr>
<tr>
<td>Feasibility_J3</td>
<td>3,63</td>
<td>0,880</td>
</tr>
<tr>
<td>Alpha di Cronbach</td>
<td>0,66</td>
<td></td>
</tr>
</tbody>
</table>
• Originality

![Graph showing Originality_Judge 1]

![Graph showing Originality_Judge 2]

![Graph showing Originality_Judge 3]
• Paradigm Relatedness

Paradigm Relatedness_Judge 1

Paradigm Relatedness_Judge 2

Paradigm Relatedness_Judge 3
Effectiveness

Effectiveness_Judge 1

Effectiveness_Judge 2

Effectiveness_Judge 3
Feasibility

Feasibility_Judge 1

Feasibility_Judge 2

Feasibility_Judge 3
Bibliografia

Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). *Alpha power increases in right parietal cortex reflects focused internal attention.*

