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POLITECNICO DI TORINO

Abstract
Department of Mechanical and Aerospace Engineering

Master of Science in Mechanical Engineering

Porosity Optimization in Nanoporous materials via Machine
Learning

by Marco Diez

Nanomaterials have acquired a great importance in technological progress
due to their tunable biological, chemical and physical properties such
as electrical and thermal conductivity, with improved performance over
their bulk counterparts. Materials at nanoscale have different properties
than at macroscale and these properties can be managed and exploited
in a wide variety of fields such as in information technologies, manu-
facturing processes, energy production and storage, medicine, sport, en-
vironmental applications and thermoelectric applications. In particular
for the latter one, this work and the research done behind it are dedi-
cated in terms of understanding and trying to find a method to improve
the properties involved in the thermal transport at nanoscale. To this
aim, this Thesis has been conducted by investigating the phonon thermal
transport in nanostructured porous materials and by applying machine
learning algorithms based on Bayesian theory to optimize the porosity
of the nanostructure materials under study in order to achieve a specific
target thermal conductivity value.

The work, after a brief introduction to nanotechnology and thermoelec-
tric applications topic, is developed on 5 Chapters, starting with an in-
troduction in Chapter 1 about renewable energy current and near-future
scenarios, to highlight the important role played by nanomaterials with
their relative properties. Chapter 2 describes the kinetic theory on which
the used phonon thermal transport solver is based for the computation
of the thermal conductivity, including the thermal equations and calcu-
lus methods adopted. Chapter 3 detailes the OpenBTE heat transport
solver used for all the simulations carried out in this work as a tool for
achieving the goal of this Thesis. The work proceeds by illustrating the
machine learning algorithms used in the optimization processes and the
related theory behind them in Chapter 4. Chapter 5 presents how the
phonon transport simulations are carried out by applying machine learn-
ing together with the thermal transport solver OpenBTE to optimize the
porosity in the material nanostructures and steer the effective thermal
conductivity to the target value.
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Introduction

As the devices and structures dimension has become smaller reaching
the nanoscale, the physical laws and principles governing their operation
change substantially.

One key component of nanotechnology is information processing, which
includes data transmission, storage and processing. Since devices are
becoming increasingly compact, heat generation density increases and
thermal management is a major topic to focus on, for various industry
sectors.

The ability of a material to conduct heat is given by the thermal con-
ductivity. In information technology, in order to dissipate heat, such a
quantity needs to be as large as possible. However, materials for thermal
energy conversion must conduct heat poorly. In fact, a thermoelectric
material must have low thermal conductivity and high-electrical conduc-
tivity.

Thermoelectric (TE) materials have several applications, ranging from
space technologies, wearable devices and waste heat recovery. However,
despite their potentials, TE materials still have low efficiency due to
fact that, generally, good electrical conductors have also good thermal
proprierties.

Nanostructures are a promising candidates for thermal energy conversion
because they are able to decouple the eletrical and thermal properties. In
fact, at the nanoscale the particle picture of heat, encoded by phonons,
leads to a deviation of heat transport from Fourier’s law. As this effect
is less significant for electrons, at a given lengthscales, nanostructuring
can lead to an incrase in the thermoelectric efficiency [1].

Recent studies have shown that the geometry of the material have a
strong influence on the thermal conductivity [2]. However, due to the
large number of possible configurations, engineering a nanostructure is
actually challenging.

In this context the thesis has been conducted to investigate the thermal
conductivity in nanoporous structures and to determine its minima by

1C. Vineis, A. Shakouri, A. Majumdar, and M. Kanatzidis, ”Nanostructured ther-
moelectrics: Big efficiency gains from small features,” Current Opinion in Solid State
and Materials Science, vol. 22, pp. 3970-3980, 09 2010.

2G. Romano and C. J. Grossman, ”Toward phonon-boundary engineering in
nanoporous materials,” Applied Physics Letters, vol. 105, no. 3, p. 033116, 2014.



2 List of Source Codes

applying machine learning algorithms based on Bayesian theory and to
obtain the corresponding optimum porous material structure.
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Chapter 1

Nanoporous Materials

1.1 Renewable energy

With the increasing global interest for sustainable energy, resource and
environment protection, a constant research for new material technologies
is an essential necessity. Design of innovative materials has proven to
serve a great improvement in the last twenty years on the sustainable
energy field supply and applications, which is fundamental to solve the
shortage of resource problem and to lower the negative impact on the
environment, such as the well known pollution problem.

Today, fossil fuels contribute for 90% of the world’s energy consump-
tion, and their use will peak around 2050. The extensive use of fossil
fuels leads to increasingly serious environmental problems, with related
climate changes, therefore the long-term availability limits of crude oil
is pushing to develop a suite of sustainable energy sources and energy-
storage materials with low environmental impact. The focus on the con-
version of environmentally friendly energy sources leads to the develop-
ment of several devices which can result in new materials for already
developed devices. In particular, the study and synthesis of novel func-
tional nanomaterials with well-controlled sizes, shapes, structures, and
porosity are crucial for breakthroughs in sustainable energy technologies
progress.
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1.2 Nanotechnology

Nanotechnology deals with devices and materials with characteristic lengths
in the range from 1 nm to 100 nm where quantum phenomena and size
effects are involved. Nanoscience and nanotechnology have influenced
many research areas, as shown by the crossing points in Figure 1.1 [3].

Figure 1.1: Nanotechnology curve development

1.2.1 Size matters on the nanoscale

It is widely known that the properties of matter change significantly when
size shrinks from macroscale to nanoscale for which macroscopic descrip-
tions of heat transfer become invalid. The size effect occurs when wave-
length or mean-free-path (i.e. the average distance that a gas molecule
travels between successive collisions) of a given particle (or quasi-particle)
gets close to or even larger than the size of the system.

Size effects, which are well known for gases, can also be found for electrons
and phonons, since both can be considered as gases existing within solids.
When the phonons and electrons mean free paths become closer to or
larger than a device’s characteristic length, heat conduction in solids can
diverge remarkably from the prediction of the diffusive law. Thermal
conductivity of nanowires is no longer simply a material property but it
depends also on the wire diameter or on the film thickness in case of thin
films.

3M. Zach, ”Nanoscience and nanotechnology for advanced energy system,” Current
Opinion in Solid State and Materials Science, vol.10, pp. 132-143, 2006.
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The thermal conductivity curve of silicon nanowires as function of wire
core-diameter is shown in Figure 1.2 [4].

Figure 1.2: Room-temperature thermal conductivity data for silicon
nanowires as a function of wire core-diameter

It is observed a remarkable reduction in thermal conductivity from its
bulk value by reducing the nanowire cross-section. Figure 1.3 shows the
thermal conductivity of silicon film layers near room temperature as a
function of film thickness [5].

Figure 1.3: Room-temperature thermal conductivity data for silicon
film layers as a function of film layer thickness

The experimental observations plotted in Fig. 1.3 highlight that the sil-
icon film layers thermal conductivity reduce in value by decreasing the
film thickness. In addition, the deviation of the thermal conductivity

4P. Ferrando Villalba, L. D’Ortenzi, G.G. Dalkiranis, E. Cara, A.F. Lopeandia,
Ll Abad, R. Rurali, X. Cartoixa, N. De Leo, Z. Saghi, M. Jacob, N. Gambacorti, L.
Boarino, and J. Rodriguez Viejo, ”Impact of pore anisotropy on the thermal conduc-
tivity of porous Si nanowires,” in Scientific Reports, 2018

5W. Liu and M. Asheghi, ”Phonon-boundary scattering in ultrathin single-crystal
silicon layers,” Applied Physics Letters, vol. 84, no. 19, pp. 3819-3821, 2004.
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with respect to the bulk value takes a substantial drop as the film thick-
ness shrinks beyond 300 nm, corresponding to the order of magnitude of
the phonon mean free path in silicon at room temperature. The Fourier
heat conduction equation is not capable to describe the thickness de-
pendency of thermal conductivity in silicon material. The prediction of
phonon boundary scattering influence on thermal conductivity is feasible
by applying the Boltzmann Transport Equation (BTE), with the result
that it agrees remarkably well with the experimental data [6].

Heat carriers such as electrons and phonons are also material waves ac-
cording to quantum mechanics. The size of the system can alter the wave
characteristics and influence the energy transport such as creating new
modes that do not exist in bulk material and forming standing waves.
For instance, electrons in thin films can be approximated as standing
waves inside a potential well of finite height as shown in Figure 1.4.

Figure 1.4: Standing waves in a quantum well

The condition for the formation of such standing waves is that the wave-
length λ satisfies the following relation expressed by 1.1:

nλ

2 = L (n = 1, 2, 3, ...) (1.1)

Where L is the width of the potential well.

6W. Liu and M. Asheghi, ”Phonon-boundary scattering in ultrathin single-crystal
silicon layers,” Appl. Phys. Lett., vol. 84, p.3819, 2004.
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Given the electron wavelength, its momentum can be calculated accord-
ing to the de Broglie relation as shown in 1.2 between wavelength λ and
momentum p,

p = h

λ
(1.2)

Where h is the Planck constant (h = 6.6 · 10−34 Js). The energy of the
electron is then defined as E = p2

2m and expressed in 1.3,

En = h2

8m

[
n

L

]2
(n = 1, 2, 3, ...) (1.3)

For a free electron, m = 9.1 ·10−31 kg, and L = 1µm, En = 5.9 ·10−25n2J,
so that the energy separation between the n = 1 and n = 2 levels is
1.8 · 10−24J. At room temperature, this energy separation is too small
compared to the thermal fluctuation energy κBT = 41.6 · 10−22J to be
distinguishable from thermal fluctuation. In addition, the electron mean
free path at room temperature is usually much smaller than 1µm. Scat-
tering of electrons destroys the condition for forming standing waves,
making equation 1.1 inapplicable. However, as the film size is further re-
duced, say to L ≈ 100Å, scattering is negligible and energy quantization
becomes observable in comparison with thermal fluctuation.

1.2.2 Time matters on the nanoscale

Alongside size effects, also transport at short time scales may differ sig-
nificantly from that at longer time scales. This difference is due to the
fact that classical laws are derived for time scales much longer than the
time scales of microscopic processes. The average time interval τ between
successive collisions of phonons can be determined as in 1.4

τ = Λ
v

(1.4)

where Λ is the phonon mean free path and v the average phonon velocity.
For numerous materials, τ is of the order 10−12 to 10−10 s, while a laser
pulse can be as short as a few femtoseconds (1 fs = 10−15 s). For processes
shorter than the relaxation time, the classical Fourier diffusion law is not
valid anymore, since the diffusion process is established by considering
the multiple collisions of the heat carriers such that their motion can be
considered as random. Besides the relaxation time, other time scales need
to be considered, such as the time characterizing the energy exchange
between electrons and phonons.
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In Table 1.1 are summarized the basic characteristics of energy carriers
and the relative statistics they obey.

Molecules Phonons Free Electrons Photons

Source Atoms Lattice Free from
nucleic bonding

Electron and
atom motion

Propagation
media

In vacuum
or media In media In vacuum

or media
In vacuum
or media

Statistics Boltzmann Bose-Einstein Fermi-Dirac Bose-Einstein
Frequency or
energy range 0-infinite Debye cutoff 0-infinite 0-infinite

Velocity (m/s) 102 103 106 108

Table 1.1: Basic characteristics of energy carriers

The transport of energy carriers can be classified into different regimes
depending on the characteristic length compared to the mean free path,
the phase-breaking length and the coherence length as shown in Table
1.2:

Important Length Scales Regimes

Coherence length, lc
Phase-breaking length, lp

Wave regime D <O(lp)
D <O(lc)

Transition regime D ∼ O(lp)
D ∼ O(lc)

Men free path, Λ Particle regime
D >O(lp), D >O(lc)

D <O(Λ)
ballistic

D ∼ O(Λ)
quasi-diffusive

D >O(Λ)
diffusive

lc for photon: µm - km
lc for phonon: 10 Å
lc for electron: 100 Å
lp & Λ
Λ for photon: 100 Å - 1 km
Λ for phonon: 100 - 1000 Å
Λ for electron: 100 - 1000 Å

Table 1.2: Transport regimes of energy carriers
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The different regimes are defined as follow:

• Wave regime, where the phase information of the energy carriers is
considered and the transport is coherent;

• Particle regime, where phase information can be neglected and the
transport is incoherent;

• Transition regime, in between the first two regimes, is the par-
tially coherent transition regime from wave description to particle
description.

The coherence length lc measures the distance beyond which waves from
the same source can be superimposed without considering the phase in-
formation. The phase-breaking lp length is the distance needed to com-
pletely destroy the phase of the heat carriers for various collision processes
such as phonon-phonon collision and phonon-electron collision, and it is
usually of the same order of the mean free path. The overlapping length
scale in Table 1.2 highlights the complexity in judging when to treat the
heat carriers as waves and when to treat them as particles [7], which be-
comes clearer with the understanding of the wave and particle size effects
described in the next chapter.

7G. Chen, Nanoscale energy transport and conversion : a parallel treatment of
electrons, molecules, phonons, and photons. Oxford University Press, 2005.
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Chapter 2

Kinetic Theory

The heat transport simulations of nanoporous materials realized in this
work have been performed employing an innovative space-dependent Boltz-
mann transport equation solver for phonons implemented in the tool
OpenBTE, which is treated and described more specifically in the next
chapter. The kinetic theory on which OpenBTE is based on is detailed
in the following paragraphs starting from the classical size-dependent ef-
fects and going through the equations used for solving the nanoscale heat
transport along with the boundary conditions and the limits considered.

2.1 Phonon classical size effects

Size effects on phonon transport have been modeled through Casimir’s
pioneering work, which assumes that all phonons scatter diffusely at the
boundaries. However, to actually design thermal transport in arbitrary
shapes and structures, a more accurate model of heat transport is re-
quired. Many studies make use of the Boltzmann Transport Equation
(BTE) to compute phonon transport. The simplest BTE model uses the
phonon mean free path (MFP) and the gray medium approximation, that
is, the MFP is independent of frequency. Even though the gray model
has been helpful for understanding the thermal transport trends in many
nanostructured materials, it has a poor predictive power, particularly
for materials having wide MFP distributions [8]: for instance, in silicon,
it has been predicted that the heat is carried by phonons having MFP
spanning in between 100 nm to more than 1µm [9], and half of the heat
is carried by phonons with the latter length. Recent studies have faced
this challenge by including the whole phonon distribution by solving the

8K. Esfarjani, G. Chen, ”Heat transport in silicon from first-principles calcula-
tions,” Phys. Rev. B, vol. 84, p. 085204, 2011.

9G. Romano and C. J. Grossman, ”Heat Conduction in Nanostructured Materials
Predicted by Phonon Bulk Mean Free Path Distribution,” Journal of Heat Transfer,
vol. 137, 07 2015.
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BTE frequency-dependent (FD-BTE) for the transient case and for the
steady-state case [10, 11, 12].

The novel approach of the steady-state BTE is implemented in OpenBTE
phonon transport solver, for computing the nanoscale heat transport with
the advantage of using as input parameter only the bulk MFP distribu-
tion, that can be experimentally measured, however the FD-BTE accu-
racy is preserved. The method, namely MFP-BTE is coupled with the
ballistic BTE and the Fourier model to include, respectively, the ballistic
effect and the diffusive effect in a consistent way.

2.2 Frequency dependent BTE (FD - BTE)

Nanoscale heat transport is described as shown in 2.1 by the intensity of
phonons I,

I(r, s, ω, p) = v(ω, p)~ωf(ω, p)D(ω, p)
4π (2.1)

where:

• r is the spatial coordinate

• s is the direction of phonon transport within a unit solid angle

• ω and p are respectively the phonon frequency and polarization

• v(ω,p) is the velocity magnitude of the phonon group

• ~ is the reduced Planck’s constant

• f (ω,p) is the nonequilibrium phonon distribution

• D(ω,p) is the states phonon density

The FD-BTE original formulation describes the intensity of phonon I
under the relaxation time approximation as shown in 2.2 [13]:

1
v

∂I

∂t
+ s · ∇I = I0(TL)− I

vτ
(2.2)

10A. J. Minnich, G. Chen, S. Mannor, and B. Yilbas, ”Quasiballistic heat transfer
studied using the frequency-dependent boltzmann transport equation,” Phys. Rev.
B, vol. 84, p. 234207, 2011.

11T.-Y- Hsieh, H. Lin, T.-J. Hsieh, and J.-C. Huang, ”Thermal conductivity mod-
eling of periodic porous silicon with aligned cylindrical pores,” Journal of Applied
Physics, vol. 111, p. 124329, 2012.

12J. Loy, J. Murthy, and D. Singh, ”A fast hybrid fourier-boltzmann transport
equation solver for nongray phonon transport,” Journal of Heat Transfer, vol 135, p.
011008, 2012.

13A. Majumdar, ”Microscale heat conduction in dielectric thin films,” Journal of
Heat Transfer, vol. 115, pp. 7-16, 1993.
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where τ is the scattering time and I0(TL) is the isotropic intensity equal
to:

I0(TL) = v(ω, p)~ωf 0(ω, TL)D(ω, p)
4π (2.3)

with f 0(ω, TL) being the parametrization by the Bose-Einstein distribu-
tion at a given local effective temperature TL(r) expressed by 2.4[14, 15]:

f 0(ω, TL) =
[
exp

(
~ω
κBTL

)
− 1

]−1

(2.4)

To compute the phonon thermal conductivity, a temperature difference
∆T is applied across a simulation domain with length L and the thermal
flux is calculated from the hot contact to the cold contact. The thermal
flux J(r) is computed by 2.5,

J(r) = 4π
∑
p

ˆ ωpM

0
〈Is〉dω (2.5)

where 〈x〉 = 1
4π

´
4π xdΩ represents the angular average over the solid

angle 4π, and ωpM defines the frequency cut-off for a given polarization.
Considering the steady-state BTE, ∂I

∂t
≈ 0, the term I0(r, s, ω, p) can be

computed by applying the continuity equation to the heat flux (∇·J(r) =
0) to Equation 2.5, resulting in 2.6:

∑
p

ˆ ωpM

0

I0(T )
vτ

dω =
∑
p

ˆ ωpM

0

〈I〉
vτ
dω (2.6)

Both I0(ω, p, T ) and I(ω, p) are frequency dependent, hence the scatter-
ing times and the phonon dispersion curve knowledge are required.

14J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in
Solids. OUP, Oxford, 2001

15N. Mingo, D. A. Broido, L. Lindsay, and W. Li, Ab initio Thermal Transport.
Springer, New York, 2014
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2.3 Mean free path dependent BTE (MFP
- BTE)

The BTE version considered in this work is developed by starting from
Equations 2.2, 2.5 and 2.6, requiring only the bulk phonon MFP distri-
bution as input [8].

K(Λ) = −Λ
3
∑
p

Csv

(
dΛ
dω

)−1

(2.7)

In Equation 2.7, Cs(ω) is the spectral heat capacity (i.e., the product be-
tween the volumetric heat capacity and the phonon density of states) and
Λ(ω, p) = v(ω, p)τ(ω, p) is the MFP. If the applied temperature gradient
is small enough, it is reasonable to assume that all the material prop-
erties are constant throughout the simulation domain, and the variable
can be defined as T̃ computed by Equation 2.8,

T̃ = Tω,p − T0

∆T = 4πI − I0(T0)
Csv∆T (2.8)

which represents the effective temperature Tω,p with departure from T0
associated with a given polarization, phonon frequency, and direction
normalized by ∆T . For simplicity, the simulations are performed by
imposing ∆T = 1 and T0 = 0. Including the first-order Taylor expansion
of I0(ω, p, TL) involved in Equation 2.6 it stands:

I0(ω, p, TL) = I0(ω, p, T0) + ( 1
4π )Cs(ω, p)v(ω, p)(TL − T0) (2.9)

It follows the 2.10:

Λs · ∇T̃ + T̃ = γ

ˆ ∞
0

K

Λ′2
〈
T̃
〉
dΛ′ (2.10)

where it is considered I0(T0) to be isotropic and spatially independent,
γ =

[´∞
0

(
K
Λ2

)
dΛ
]−1

is a material property, which for silicon is equal to
γSi = 2.2739 · 10−17m3W−1K. The right-hand side of Equation 2.10 is
equal to T̃L(r) =

(
TL(r)−T0

∆T

)
, which is the normalized temperature. For

Equation 2.10, only the bulk MFP distribution is required as input, so
that we can refer to it as MFP dependent BTE (MFP - BTE).

8G. Romano and J. Grossman, ”Heat conduction in nanostructured materials pre-
dicted by phonon bulk mean mean free path distribution,” Journal of Heat Transfer,
vol. 137, p. 071302, 2015.
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2.4 Boundary conditions

The periodic boundary conditions for the frequency dependent (FD) BTE
have to be applied from the equilibrium condition to the departure of the
phonon intensity. Being P the periodicity vector, it stands the 2.11:

I(r + P, s, ω, p)− I0(r + P, ω) = I(r, s, ω, p)− I0(r, ω) (2.11)

It is relevant to note that following the MFP - BTE approach it is suf-
ficient to apply ∆T̃ = 1. In 2.12 is expressed the application of the
partially diffusive boundary conditions on a surface, with normal n, by
stating:

T̃ (r, s) = (1− p) 1
π

ˆ
s′·n>0

T̃ (r, s′)s′ · ndΩ + pT̃ (r, si) (2.12)

where:

• si = s− 2|s ·n|n is the specular direction with normal n associated
to the surface;

• p is the specularity parameter, that is function of the surface rough-
ness [16].

In conclusion, by forcing T̃ = Tp, an arbitrary temperature Tp can be
considered in the boundary conditions.

2.5 Effective thermal conductivity

Considering the MFP - BTE approach, the thermal flux can be evaluated
by 2.13:

J = 3∆T
ˆ ∞

0

(
K(Λ)

Λ

)
〈T̃ (Λ)〉sdΛ (2.13)

Once Equation 2.10 converges, the phonon thermal conductivity can be
computed by combining Equation 2.5 with Fourier’s Law obtaining the
following

κeff = 3L
A

ˆ
Γ

ˆ ∞
0

K

Λ 〈T̃s · n〉dΛdS (2.14)

where Γ represents the cold contact or the hot contact, and A is its area.
In Equation 2.14 is used 〈I0s〉 = 0, because I0 is considered isotropic.

16J. M. Ziman, Electrons and Phonons: The THeory of Transport Phenomena in
Solids. OUP, Oxford, 2001
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It is important to mark the fact that Equations 2.10 and 2.14 do not
require the use of ∆T parameter. The phonon suppression function is
defined as in 2.15:

S(Λ) = 3L
ΛA

ˆ
Γ
〈T̃s · n〉dS (2.15)

which led to a straightforward formula for the phonon thermal conduc-
tivity written as 2.16:

κeff =
ˆ ∞

0
K(Λ)S(Λ)dΛ (2.16)

Denoting the MFP distribution in the nanostructures material asKnano(Λ),
the phonon suppression fuction can be formally defined by 2.17:

S(Λ) = KnanoΛ
K(Λ) (2.17)

2.6 Ballistic limit of the MFP - BTE

The ballistic limit of the MFP - BTE is derived based on a parameter
called Knudsen number which is defined as the ratio of the mean free
path to the characteristic length of the material as expressed by 2.18:

Kn = Λ
L

(2.18)

Phonons tend to travel mostly ballistically in nanostructures where the
Knudsen number Kn � 1 and in particular their effective mean free paths
get closer to the characteristic length of the material. With regards to this
condition, it is demonstrated that the mode temperature distributions are
mean free path independent. Taking this consideration, 2.10 turns into
2.19:

Λs · ∇T̃ + T̃ = const (2.19)

The above equation is defined as the ballistic BTE equation. The posi-
tive result is that 2.19 is computationally less expensive with respect to
the MFP-BTE (2.10) since phonons with different mean free paths are
decoupled from each other.
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2.7 Diffusive limit of the MFP - BTE

In this section is described how the diffusive limit of the MFP - BTE can
be realized. This is done by considering the first spherical expansion of
S̃(r, s). Assuming a small perturbation Φ(r) · s in the s direction, the
inclusion of the spherical expansion of T̃ (r, s) = 〈T̃ (r, s)〉 + Φ(r) · s into
2.10, results in 2.20,

T̃ = γ

ˆ ∞
0

K

Λ′2
〈
T̃
〉
dΛ′ − Λ∇ · 〈sT̃ 〉 (2.20)

where is applied ∇ · Φ � Λ∇ · 〈sT̃ 〉. It is noticed that the heat flux
correlated J = −K3∆T∇〈T̃ 〉, is made diffusive after accomplishing the
following mathematical steps:

• multiplying both sides of 2.20 by (3∆TK
Λ )s

• integrating both sides of 2.20 over the solid angle

The continuity equation for the thermal flux is then derived and expressed
by Equation 2.21.

∇ · J = 3∆TK
Λ2

(
γ

ˆ ∞
0

K

Λ′2 〈T̃ 〉dΛ′ − 〈T̃ 〉
)

(2.21)

Combining equation 2.20 and equation 2.21 the diffusive equation is fi-
nally obtained and formulated in 2.22.

Λ2∇2〈T̃ 〉 − 〈T̃ 〉 = γ

ˆ ∞
0

K

Λ′2 〈T̃ 〉dΛ′ (2.22)

The energy balance between different phonon modes is embedded on the
right-hand side which represents an effective heat source. Equation 2.22
is denoted as the modified Fourier Equation (MFE).
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2.8 Fourier/BTE Coupling

It is necessary a discretization about the domain simulation into a mesh
for solving Equation 2.10. The mesh should have a characteristic size
at least small as the smallest mean free path. This lead an expensive
computation calculation in materials with wide mean free path distribu-
tions. The answer for solving this numerical problem is found in setting a
threshold in the Knudsen number KnD , below which phonons are solved
making use of the MFE. Equation 2.22 appears less expensive from com-
putational point of view with respect to the MFP-BTE when defined
directly in term of 〈T̃ 〉, but with the approximation of neglecting scat-
tering between material boundaries and phonons. The phonon modes are
decoupled between each other just like in the ballistic case and Equation
2.19 is calculated only once.

The energy conservation between all phonons modes, related to each
other by means of TL(r), is guaranted by applying an iterative method
in solving the equations 2.10, 2.19 and 2.22. The iterations are performed
starting with a first guess for TL(r) derived by Fourier’s simulation. The
conventional approach for selecting the transition points between differ-
ent regimes is to start by considering a fairly good estimation for the
Knudsen number KnD = KnB = 1. It follows the tuning of both pa-
rameters, KnD towards lower values and KnB towards higher value, until
reaching the convergence in the heat flux [17].

17G. Romano and J. Grossman, ”Heat conduction in nanostructured materials pre-
dicted by phonon bulk mean mean free path distribution,” Journal of Heat Transfer,
vol. 137, p. 071302, 2015.
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Chapter 3

OpenBTE

OpenBTE is an open-source tool to compute heat transport in nanostruc-
tured materials with arbitrary shape and dimensions. The code takes into
account the material’s Brillouin zone and diffuse boundaries for solving
the space-dependent BTE.

3.1 OpenBTE Overview

OpenBTE is interfaced with two first-principle solvers: ShengBTE and
TDEP. ShengBTE [18] is a package for solving the BTE for phonons with
the main purpose of computing the lattice contribution to the thermal
conductivity of bulk crystalline solids. TDEP [19] is a package collection
of tools for finite temperature lattice dynamics. The features included
are temperature dependent phonon frequencies, anharmonic free energy
and lattice thermal conductivity. The finite element mesh generator
used for building up the mesh is Gmsh [20].

As shown in Figure 3.1, given the material properties and geometry pa-
rameters as input, BTE/Fourier solver implemented in OpenBTE uses
the First-principles and the mesh generator to provide the following out-
puts:

• Temperature and Thermal Flux;

• Effective Thermal Conductivity;

• Phonon Suppression Function;

• Directional Phonon Mean Free Path Distribution .

18W. Li, J. C. Montana, N. Katcho, and N. Mingo, ”ShengBTE: A solver of the
Boltzmann transport equation for phonons,” Computer Physics Communications, vol.
185, pp. 1747-1758, 2014.

19O. Hellman, ”TDEP”, https://ollehellman.github.io, 2018.
20C. Geuzaine and J.-F. Remacle, ”Gmsh: A 3-d finite element mesh generator

with built-in pre- and post-processing facilities,” International Journal for Numerical
Methods in Engineering, vol. 79, pp. 1309 - 1331, 09 2009.
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Figure 3.1: OpenBTE Structure

3.2 OpenBTE Model

OpenBTE main elements are the modules Material, Geometry, Solver
and Plot.

3.2.1 Geometry

Within the Geometry block, flexible models are available to create porous
geometries. It is possible to generate aligned configurations with square
or circle lattice of length on x-, y-, z-direction, with the temperature
gradient assumed to be applied along the x-direction. If the length along
z-direction is not specified, the sample is considered as infinite along
z and only a two-dimensional simulation is performed. The boundary
conditions are assumed to be periodic along both x- and y-direction.

OpenBTE Geometry
openbte -g -type=porous/square\_lattice -shape=circle -porosity=0.25 -lx=10 -ly=10

Source Code 3.1: OpenBTE Geometry

The command in Source Code 3.1 generates the file geometry.hdf5. It is
possible to set an arbitrary pore shape and configuration using the type
“porous/custom” as shown in Source Code 3.2,

OpenBTE Arbitrary Pore Shape Geometry
echo -2.5 2.5 2.5 2.5 2.5 -2.5 -2.5 -2.5 >polygons.dat
openbte -g -type=porous/custom -polyfile polygons.dat -lx=10 -ly=10

Source Code 3.2: Arbitrary Pore Shape Geometry
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and in that case the pores are given in a file with the following allowed
format:

x0_a y0_a x1_a y1_a x2_a y2_a x3_a y3_a
x0_b y0_b x1_b y1_b x2_b y2_b x3_b y3_b
...

In the case a pore lies on the unit-cell boundary it will appear in mul-
tiple locations. Only the full description of the pore intersecting any of
the boundary is needed and any periodic repetition will be performed
internally.

Moreover, a bulk system can be created by using the type “bulk” as in
Source Code 3.3.

OpenBTE Bulk System
openbte -g -type=bulk -lx=10 -ly=10 -step=1

Source Code 3.3: OpenBTE Bulk System

The geometry can be plotted by means of Source Code 3.4 with the
output plot shown in Figure 3.2.

OpenBTE Geometry Plot
openbte -p -variable=map/geometry

Source Code 3.4: OpenBTE Geometry Plot

Figure 3.2: Geometry Plot
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3.2.2 Material

Within the MFP - BTE, a material can be simply specified by the bulk
MFP distribution. The model for a nongray material is model=nongray
and the material file can be specified with filename. When the path is not
specified, the file is taken from the examples provided with OpenBTE.
The file format is the following:

mfp_1 kappa_1
mfp_2 kappa_2
...

The MFPs are given in meters. The BTE is solved in MFP as well as
angular space. The grid is specified by the options n mfp (mean free
paths number), n theta (azimuthal angle) and n phi (polar angle: x-y
plane) that must be given, as in Source Code 3.5.

OpenBTE Material
openbte -m -model=nongray -n\_mfp=30 -n\_phi=48 -n\_theta=16 -matfile=Si-300K.dat

Source Code 3.5: OpenBTE Material

With “model=gray” and mfp (in meters) it is possible to specify a single
MFP to be used in the material, considering a gray material, as shown
in Source Code 3.6.

OpenBTE Gray Material
openbte -m -model=gray -n\_phi=48 -n\_theta=16

Source Code 3.6: OpenBTE Gray Material

To convert data from ShengBTE to OpenBTE format the following com-
mand is required,

ShengBTE to OpenBTE Conversion
shengbte2openbte

Source Code 3.7: ShengBTE to OpenBTE Conversion

from the directory containing the file BTE.cumulative kappa scalar. The
output file is named mat.dat.
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3.2.3 Solver

The BTE solver in OpenBTE is iterative. The number of iterations is
set with max bte iter = 10 as shown in Source Code 3.8. In case of
zero iteration, the solver will simply perform a standard heat diffusion
simulation.

OpenBTE Solver
openbte -s -multiscale -max\_bte\_iter = 10

Source Code 3.8: OpenBTE Solver

Once the simulation is finished, the file solver.hdf5 is created.

3.2.4 Plot

Once the simulation is over it is possible to plot relevant results by means
of the module Plot. The possible plots are:

• suppression: Phonon suppression function in the MFP space;

• map\fourier flux|thermal flux|fourier temperature|bte temperature:
Map of a given variable. Currently it works only in 2D. In case of
a flux, it is also possible to specify either the Cartesian axis or the
magnitude;

• vtk: the output.vtk is created with all the relevant variables. It is
recommended using Paraview. It is to be noted that for both map
and vtk options, it is possible to repeat the unit-cell in x and y di-
rection with repeat x and repeat y, respectively. OpenBTE handles
the cell-to-node conversion internally, also including the periodicity.

The plot of heat flux magnitude is given by the Source Code 3.9 and
shown in Figure 3.3.

OpenBTE Heat Flux Magnitude Plot
openbte -p -variable=map/bte\_flux/magnitude

Source Code 3.9: OpenBTE Heat Flux magnitude Plot

Figure 3.3: Heat Flux Magnitude Plot
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The pseudotemperature is plotted by means of Source Code 3.10 and
shown in Figure 3.4

OpenBTE Pseudotemperature Plot
openbte -p -variable=map/temperature\_bte

Source Code 3.10: OpenBTE Pseudotemperature Plot

Figure 3.4: Pseudotemperature Plot

The mean free path (MFP) distribution in the porous material is plotted
making use of Source Code 3.11 and shown in Figure 3.5 [21].

Figure 3.5: MFP Distribution Plot

OpenBTE MFP Distribution Plot
openbte -p -variable=distribution

Source Code 3.11: OpenBTE MFP Distribution Plot

21G. Romano, ”OpenBTE: A Multiscale Solver for the Phonon Boltzmann Trans-
port Equation,” in APS March Meeting Abstracts, vol. 2019 of APS Meeting Abstracts,
p. T70.321, Jan. 2019.
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3.3 OpenBTE code optimization

The porosity optimization in the material nanostructures to steer the
effective thermal conductivity, computed by the phonon transport solver
OpenBTE, to a target value, is the main goal of this thesis. Given the
input parameters, through the OpenBTE modules described in the pre-
vious sections, the thermal conductivity function κ has been calculated,
for different sample porosity configurations. Input parameters are used
for building up the sample model geometry and its configuration modeled
as a grid. They are reported as follow:

• Material model;

• Mean free path length: mfp [nm];

• Mean free path number: nmfp;

• Sample length: L [nm];

• Sample slices number: N ;

• Pores number: NP.

The optimization process is carried out following an inverse design model
which consists of defining a target thermal conductivity value κ0 and min-
imizing the deviation of the effective thermal conductivity κ, computed
by OpenBTE solver, from the target one:

min|κ− κ0| (3.1)

The deviation |κ− κ0| is embedded in a function called myfun to let be
minimized by the optimizator and coded as shown in Source Code 3.12.

Objective function
from openbte import Material,Solver,Geometry
Material(model='gray',mfp=[10.0],n_mfp = 40) # Material model
L = 10 # Sample length
N = 10 # Sample slices number
NP= 10 # Pores number within the sample
kappa0 = 0.3 # Target thermal conductivity
def myfun(x):

grid = np.zeros((N,N))
for n in range(int(len(x)/2)):

i = x[n*2]
j = x[n*2+1]
grid[i,j] = 1

geo = Geometry(model='porous/random_over_grid',
lx = L,ly = L, nx = N, ny = N, np = NP,
mesh = True, manual = True,
grid = grid,
step = L/10,
automatic_periodic = False)

sol = Solver(max_bte_iter = 5,multiscale=False)
kappa = dd.io.load('solver.hdf5')['kappa'][-1]
objective=abs(kappa-kappa0) # Output to minimize
return objective

Source Code 3.12: Objective function
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Chapter 4

Bayesian Optimization of
Machine Learning Models

4.1 Bayesian optimization

Bayes Theorem is the basis of Bayesian Optimization and a fundamen-
tal result of probability theory. The main features are recalled in what
follows.

• Marginal Probability P (A): the probability of an event irrespective
of the outcome of other random variables;

• Joint Probability P (A,B): the probability of two (or more) simul-
taneous events;

• Conditional Probability P (A|B): the probability of one (or more)
event given the occurrence of another event. It can be calculated
using the joint probability:

P (A|B) = P (A,B)
P (B) (4.1)

Another way to calculate the conditional probability is by using the other
conditional probability. This approach is useful either when the joint
probability is challenging to calculate or when the reverse conditional
probability is available or easy to calculate. This alternative approach is
referred to as Bayes Rule or Bayes Theorem and it is summarized in the
following formula:

P (A|B) = P (B|A)P (A)
P (B) (4.2)

The theorem puts the posterior probability P (A|B) of a hypothesis as
a product of the probability of the data given the hypothesis (likeli-
hood) P (B|A), multiplied by the probability of the hypothesis P (A)
(prior probability), divided by the probability of seeing the data P (B)
(evidence).
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The unknown objective is considered as a random function (a stochastic
process) on which we place a prior, capturing the beliefs about the func-
tion behaviour. The function evaluations are treated as data and used
to update the prior to form the posterior distribution over the objective
function.

The optimization problem corresponds to find the input value or the
input set of values of an objective function that yields the lowest (or
highest) output value. For simple functions in low dimensions, the op-
timum can be found by trying many input values and determine which
is the best looking at the value of the objective function. For example
a of input values can be created (Grid Search), alternatively input val-
ues can be picked randomly (Random Search). These algorithms might
be suitable as long as the evaluations of the objective function are not
computationally expensive.

For complex objective functions, a way to limit the number of calls of
evaluation function is necessary. Random Search algorithm is actually
more efficient than Grid Search algorithm for high dimensions problems,
but it is still an uniformed method where the search does not use the
previous results to guess the next input values to try.

The concept of using previous results for building a probabilistic model
of the objective function, is implemented in Bayesan optimization, also
called Sequential Model Based Optimization (SMBO), where the input
parameters are mapped to a probability of loss. The probability model
usually named surrogate model, has the facility to be easier to opti-
mize compared to the actual objective function. The surrogate model in
Bayesian methods differs depending on the criteria on which it is based,
for choosing the next input values to evaluate, such as Lower Confidence
Bound, Expected Improvement or Probability of Improvement.

Bayesian reasoning means updating a model based on new evidence, and
after each evaluation, the surrogate model is calculated to the latest infor-
mation of the actual objecive function. Bayesian Optimization methods
differ also in how the surrogate function is built: common choices include
Gradient Boosted Regression Trees, Gaussian Processes, Random Forest
Regression.
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4.2 Scikit-Optimize

In machine learning and deep learning there is an important distinction
between parameters and hyperparameters. The first define the configu-
ration variables that are internal to the model and the latter one define
variables that are external to the model. Typically, hyperparameter val-
ues are assigned manually.

However, the architectural complexity of deep learning models involves a
larger number of hyperparameters that need to be optimized in attempt
to get the predictions previously made.

Manual search requires a strong experience, intuition and understanding
of the model, and is typically an extremely time consuming task. In ad-
dition, the hyperparameter values may involve continuous values, which
will have an indetermined number of possibilities. Therefore, hyperpa-
rameter optimization may appear discouraging. Luckily nowadays we
can take advantage of several open source optimization libraries. One of
such libraries, Scikit-Optimize [22], has been used in this work.

There are several different optimization algorithms that have been used
extensively in recent years and most of them are implemented in the
library used: Scikit-Optimize also includes Grid Search and Random
Search to make a comparison. Grid Search consists in an exhaustive
search of every combination of every setting of the parameters. This
method allows to find the best settings in the discrete version of the
space, but it is simply computationally expensive for large parameter
spaces. Random Search, instead, is a method that samples from the full
grid. Clearly it does not guarantee the same results as Grid Search, but
it has been shown to be extremely effective [23] .

It has been extensively demonstrated that SMBO approaches like Bayesian
Optimization are the most suitable in finding a global optimum of black-
box functions, which can be also noisy and non-differentiable.

Scikit-Optimize, or Skopt, is indeed a user-friendly and efficient library
used to minimize very expensive and noisy black-box functions. The
library is built on top of the main libraries NumPy-SciPy and Scikit-
Learn [24].
As mentioned in the previous section, Bayesian optimization process is

based on finding a posterior distribution as the function to be optimized
during the parameter optimization, then an acquisition function (e.g.
Expected Improvement) is used to sample from the posterior, to find the
next set of parameters to be explored.

22G. Louppe, ”Bayesian optimization with Scikit-Optimize”, PyData Amsterdam,
2017.

23J. Bergstra and Y. Bengio, ”Random search for hyper-parameter optimization”,
Journal of machine learning research, vo. 13, pp. 281-305, Feb 2012

24F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot and E. Duchesnay, ”Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
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Since Bayesian optimization determines the next points based on the
available data, it is expected to carry out better configurations compared
to parameter optimization approaches such as Random Search in a rela-
tively fast fashion. In this work, Skopt has been applied and adapted to
OpenBTE in all the simulations performed and described in next chap-
ters, with the aim of minimizing the objective function, represented by the
deviation from the target thermal conductivity κ0 following the ”inverse
design model” 1.

The optimization problem we are interested in solving is the following:

x∗ = argmin
x
f(x) (4.3)

The objective is to minimize a function f(x), thus to find the value x at
which the function is minimum, under the following constraints:

• f is a black box function, so that any close form of the function is
unknown;

• f is very expensive to evaluate;

• only noisy observation of f may be available.

The porosity optimization problem in nanoporous materials deals with
all these features, hence Bayesian Optimization is a proper approach for
this problem.

In general, the first step of the optimization process is to start with a
few observations of the function, i.e. few values corresponding to the red
dots shown in Figure 4.1, where the red dashed line represents the true
function that is unknown and the red band is the uncertainty.

Figure 4.1: Step 1

1For the sake of clarity, in this work we are not tuning any hyperparameter. We
are rather tuning the input parameters of the objective function.
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The second step is to build a probabilistic model for the objective func-
tion f. For instance, a Gaussian Process regression is used to approximate
the true unknown function by generating a family of functions as a dis-
tribution, shown by the green band in Figure 4.2, i.e., the uncertainty or
the variance, of all the possible functions under the distribution.

Figure 4.2: Step 2

The probabilistic model is therefore a distribution of functions and some
properties can be evaluated, for example the mean of the distribution,
represented by the green line in Figure 4.2. Once the probabilistic model
is determined, a cheap utility function is considered, called acquisition
function, that will guide the decision process of sampling the next point
to evaluate. In particular, the utility function should be designed to al-
low the exploration of regions in the space where the probabilistic model
is very uncertain: this process is called exploration. In regions where
the uncertainty is large, some weight will be assigned in sampling those
regions, but also a trade-off is necessary between exploration and ex-
ploitation, which means to sample also in regions where the minimum of
the function is really located.

Once the utility function is determined, the gradient based method can
be used as well to optimize the function.
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Figure 4.3: Step 3

Figure 4.4: Step 4

As shown in the example in Figure 4.3, the utility function asks to eval-
uate the expected function (in blue mark), and the output will be the
corresponding evaluation of the function represented by the red mark in
Figure 4.4 at the same x-coordinates.

In an iteratively way it is therefore possible to evaluate further points,
until reaching the point where a location very close to the minimum (or
maximum) of the function is found.
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Bayesian optimization loop For t = 1 : T

1. Given observations (xi, yi = f(xi)) for i = 1 : t, build a probabilistic
model for the objective f. Integrate out all possible true functions,
using a surrogate model (e.g. Gaussian Process regression).

2. Optimize a cheap acquisition/utility function u based on the pos-
terior distribution for sampling the next point.

xt+1 = argmin
x
u(x) (4.4)

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation yt+1 at xt+1.

Acquisition functions

Acquisition functions u(x) specify which sample x should be tried next:

• Expected improvement (default):
−EI(x) = −E[f(x)− f(x+

t )]

• Lower confidence bound:
LCB(x) = µGP (x) + κσGP (x)

• Probability of improvement:
−PI(x) = −P (f(x) ≥ f(x+

t ) + κ)

Where x+
t is the best point observed so far. In most cases, acqui-

sition functions provide knobs(e.g., k) for controlling the exploration-
exploitation trade-off. Search in regions where µGP (x) is high (exploita-
tion) and probe regions where uncertainty σGP (x) is high (exploration).

In the Skopt library, the function f is assumed to take as input a 1D
vector x represented as an array-like and to return a scalar f(x). Then,
the Bayesian optimization based on different surrogate moldels is imple-
mented and carried out as follow:

Bayesian Optimization
from skopt import gp_minimize

res = gp_minimize(f, # function to minimize
[(-2.0, 2.0)], # bounds on each dimension of x
acq_func="EI", # acquisition function
n_calls=15, # number of function evaluations
n_random_starts=5, # number of random initialization points
noise=0.1**2, # noise level (optional)
random_state=1234) # the random seed

Source Code 4.1: Bayesian optimization

In Source Code 4.1, the optimization with one of the surrogate model
implemented in Skopt and used in this work is shown, which is based
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on Gaussian Process regression, called as gp minimize. For analyzing
the results of the optimization process, attributes of the res named tuple
provide the following information:

• x [float]: location of the minimum;

• fun [float]: function value at the minimum;

• models: surrogate models used for each iteration;

• x iters [array]: location of the function evaluation for each iteration;

• func vals [array]: function value for each iteration;

• space [Space]: the optimization space;

• specs [dict]: parameters passed to the function.

These attributes have been used in the simulations of this work to visu-
ally analyze the results of the minimization, such as the very intuitive
convergence trace shown in Figure 4.5, as output of Source Code 4.2 :

Figure 4.5: Convergence Plot

Convergence Plot
from skopt.plots import plot_convergence
plot_convergence(res);

Source Code 4.2: Convergence Plot
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4.3 Surrogate models used for optimiza-
tion

In numerous applications the objective function is expensive to evaluate.
In these cases, the general approach is to create a simpler surrogate model
of the objective function which is cheaper to evaluate and it will be used
instead to solve the optimization problem. In addition, due to the high
cost of evaluating the objective function, it is suggested to use an iterative
approach. Iterative optimizers work by iteratively requesting evaluations
of the function at a sequence of points in the domain x1, x2, x3, ... ∈ X.
Through these evaluations the optimizer is able to build up an image of
the function. At any time, the iterative optimizer will be able to state
its best approximation to the true value of the points in the domain.
Bayesian Optimization uses a prior model on the space of possible target
functions:

f = (f1, f2, ..., fN) (4.5)
At points:

XN = (x1, x2, ..., xN) (4.6)

The surrogate model is trained using N known evaluations of the function
f at any point XN .

There are many approaches used for building up the surrogate model
such as Neural Networks, Random Forest and Gaussian Processes.

The surrogate models used in this work for the optimization process are
the following:

• Gaussian process;

• Gradient boosted regression trees;

• Tree based regression.
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4.3.1 Random search

A Random Search algorithm may be called a Monte Carlo method or
a stochastic algorithm. Random Search algorithms are useful for ill-
structured global optimization problems, where the objective function is
eventually nonconvex, nondifferentiable, and possibly discontinuous over
a continuous, discrete, or mixed continuous-discrete domain. A global
optimization problem with continuous variables may contain several local
optima or stationary points. A problem with discrete variables, such as
the case study object of this thesis, falls into the category of combinatorial
optimization.

In contrast to deterministic methods, which typically guarantee asymp-
totic convergence to the optimum, Random Search algorithms ensure
convergence in probability. The tradeoff is in terms of computational
effort. These algorithms are used because they can provide a relatively
good solution quickly and easily. Random Search methods have been
shown to have a potential to solve large scale problems efficiently in a
way that is not possible for deterministic algorithms [23].

Another advantage of Random Search methods is that they are relatively
easy to implement on complex problems with black-box function evalu-
ations, because they usually only rely on function evaluations, rather
than gradient. They can be coded quickly, and applied to a broad class
of global optimization problems. A disadvantage of these algorithms is
that they are customized to each specific problem largely through trial
and error.

Different classifications have been advocated for Random Search algo-
rithms including the ”two-phase method”, where a global search phase
and a local search phase are defined. The global phase is conceived as an
exploration phase pointed at exploring the whole feasible region, while
the local phase is pointed at exploiting local information, hence identified
as an exploitation phase.

Another classification is based on grouping algorithms between instance-
based and model-based, where instance-based methods address the for-
mulation of new candidate points based on the current point or popula-
tion of points. Model-based methods instead, rely on an explicit sampling
distribution and update parameters of the probability distribution [25].

23J. Bergstra and Y. Bengio, ”Random search for hyper-parameter optimization”,
Journal of machine learning research, vo. 13, pp. 281-305, Feb 2012

25Z. B. Zabinsky, ”Random Search Algorithms”. American Cancer Society, 2011
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The global optimization problem is defined as,

min
x∈X

f(x) (4.7)

where x is a vector of n decision variables in a n-dimensional feasible
region X. The goal is to find a value for x that minimizes f. The global
optimal solution to the global optimization problem is denoted by (x∗, y∗)
where:

x∗ = argmin
x
f(x) and y∗ = f(x∗) = min

x
f(x) (4.8)

Being the optimization problem of this work a discrete problem, and the
feasible set X is nonempty and finite, a global solution exists. The exis-
tence of a unique minimum at x∗ is not required. When multiple optimal
minima exist, x∗ is assumed to be an arbitrary fixed global minimum. A
generic random search algorithm is characterized by a sequence of iterates
Xk, on iteration k = 0, 1, ..., N, which may depend or not on previous
points. The current iterate Xk represents a sequence of discrete values.
The Generic Random Search Algorithm is articulated in the following
steps:

1. Perform an algorithm initialization parameters, initial points x0 ⊂
X with iteration index k = 0.

2. Generate a sequence of candidate points wk+1 ⊂ X according to a
sampling distribution.

3. Update xk+1 points based on the candidate points wk+1 and the al-
gorithm parameters. Strictly improving algorithm has a simple pro-
cedure of updating the current points only if the candidate points
are improving:

xk+1 =
 wk+1 if f(wk+1) < f(xk)

xk otherwise
(4.9)

4. Stop the iteration process, otherwise update k and return to Step
1.

The Generic Random Search Algorithm is based on two procedures: the
initialization in Step 2 that creates the candidate points and the update
process in Step 3.
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For the optimization of the objective function myfun with Skopt using
Random Search, the user has to call the function dummy minimize. An
example of its application in the optimizing process is shown in Source
Code 4.3.

Optimization using Random Search model
from skopt import dummy_minimize
from skopt.plots import plot_convergence
from skopt import expected_minimum
from skopt import callbacks
from skopt.callbacks import CheckpointSaver
input_list = [[0,N-1]]*2*NP # Input vector dimension
res_dummy = dummy_minimize(myfun, # Objective function to minimize

input_list, # Bounds on each dimension
n_calls=100, # Number of myfun evaluations
callback=[checkpoint_saver]) # Callbacks list

plot_convergence(res_dummy) # Convergence plot

Source Code 4.3: Random search - dummy minimize

where the parameters function are defined as follow:

• myfun: the function to minimize. It takes a single list of parameters
and return the objective value;

• input list: the list of search space dimensions. It is defined as
(lower bound, upper bound);

• n calls: the number of calls to myfun to find the minimum;

• callback: the result is called after each call to myfun.
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4.3.2 Gaussian Processes

One of the approaches used for building up the surrogate model is the
Gaussian Processes (GPs). GPs provide a rich and flexible class of non-
parametric statistical models over function spaces with domains that can
be continuous, discrete, mixed, or even hierarchical in nature. Further-
more, the GPs provides not just information about the expected value
of f, but importantly also about the uncertainty around that value. The
idea behind Gaussian Processes is to approximate the cost function for
a set of observed values at some points Xk, assuming the function values
following a multivariate Gaussian Process with a prior distribution.
The latter is given by Equation 4.10:

p(x;µ,Σ) = 1
(2π)n2 |Σ|

1
2
e(− 1

2 (x−µ)τΣ−1(x−µ)) (4.10)

|Σ| is the determinant of the covariance matrix Σ with coefficients ex-
pressed in terms of a correlation function (kernel) Kmn = K(xm, xn, θ),
so that the covariance of the function values are given by GP kernel be-
tween the parameters. The hyperparameters θ of the kernel are calibrated
according to a maximum likelihood principle. The covariance matrix is
chosen to reflect a prior assumption of the function and therefore the
choice of the kernel will have a significant impact on the correctness of
the regression. Then a smart choice regarding the next parameter to
evaluate can be made by the acquisition function which is much quicker
to evaluate.

The total number of evaluations (n calls) are performed in two ways: if x0
is provided but not f(x0), the elements of x0 are first evaluated, followed
by a number of random starts evaluations (n random starts). Finally,
(n calls - len(x0) - n random starts) evaluations are made guided by the
surrogate model. If x0 and f(x0) are both provided, then a number of
random starts evaluations are first made, then (n calls - n random starts)
subsequent evaluations are made guided by the surrogate model.

Bayesian Optimization using Gaussian Processes is performed by incor-
porating a GPs prior model on the domain of possible target functions f.
By updating the model, a function evaluation is reported, and a Bayesian
optimization routine keeps a posterior model of the target function f.
Through mathematical transformations and using the conditional prob-
ability rule it is possible to estimate the posterior distribution P (xk + 1)
and express f(xk + 1) as a function of f(xk) and Σ with an uncertainty.
This posterior model is the Gaussian Process surrogate model for the
function f.
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The pseudo code for a Bayesian Optimization routine with a GPs prior
is:

Initialisation:

1. Place a GPs prior on f ;

2. Observe f at n0 points according to an initial space-filling experi-
mental design;

3. Set n at n0.

While n ≤ N do:

4. Update the posterior probability distribution on f using all avail-
able data;

5. Identify the maximizer xn of the acquisition function over X, where
the acquisition function is calculated using the current posterior
distribution;

6. Observe fn = f(xn);

7. Increment n.

End while
Return either the point evluated with the largest f(x) or the point with
the largest posterior mean.

Assuming the noisy function example in Figure 4.6,

Figure 4.6: GP True function

Bayesian optimization based on gaussian process regression is carried out
assuming a standard acquisition function used in the simulations: the Ex-
pected Improvement Criterion (EI). It is considered for the improvement,
for any given point in x ∈ X, the value of f at x over the best value of f
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yet seen, given that the function f at x is indeed lowerer than the best
value of f yet seen. When finding the maxima of f, EI can be written as:

EI(x) = E(max(f(x)− f ∗, 0)) (4.11)

The GP optimization process is implemented in Skopt optimizer and
called by gp minimize as shown in Source Code 4.5.

Bayesian optimization Gaussian Processes
from skopt import gp_minimize

res = gp_minimize(f, # the function to minimize
[(-2.0, 2.0)], # the bounds on each dimension of x
acq_func="EI", # the acquisition function
n_calls=15, # the number of evaluations of f
n_random_starts=5, # the number of random initialization points
noise=0.1**2, # the noise level (optional)
random_state=1234) # the random seed

Source Code 4.4: Gaussian Process - gpminimize

Figure 4.7 illustrates the evolution of the surrogate model and its first
5 interactions. The acquisition function improves its knowledge after
each iteration of the underlying function that it is trying to minimize,
following the 5 random points.

Figure 4.7: An illustration of the BO procedure over 5
iterations [Osborne, M.A., 2010]
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The first column displays the following:

• The true function;

• The approximation of the true function by the GP model;

• The confidence of the GP about the true function.

In the second column are reported the acquisition function values after
every fitting performed by the surrogate model. Depending on the min-
imizer used to minimize the acquisition function, potentially the global
minimum will not be chosen, but a local minimum instead. In the neigh-
borhood points of the points previously evaluated, the variance drop
down to zero. Finally, by increasing the number of points evaluated, the
GP model tends to improve the approximation of the true function. The
final few points are clustered around the minimum because the GP does
not gain anything more by further exploration, as shown in Figure 4.8.

Figure 4.8: Gaussian Process - Optimization results

An example of its application in the optimizing process performed in this
work is shown in Source Code 4.5.

Optimization using GPs model
from skopt import gp_minimize
from skopt.plots import plot_convergence
from skopt import expected_minimum
from skopt import callbacks
from skopt.callbacks import CheckpointSaver
input_list = [[0,N-1]]*2*NP # Input vector dimension
res_gp = gp_minimize(myfun, # Objective function to minimize

input_list, # Bounds on each dimension
acq_func="EI", # Acquisition function
n_calls=100, # Number of myfun evaluations
callback=[checkpoint_saver]) # Callbacks list

plot_convergence(res_gp) # Convergence plot

Source Code 4.5: Gaussian Process - gp minimize
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4.3.3 Ensemble methods

Ensemble methods combine the predictions of several base estimators
built with a given learning algorithm in order to improve generalizability
or robustness over a single estimator. Ensemble methods are usually
distinguished in two families [26]:

• Averaging methods: where the driving principle is to build several
estimators independently and then to average their predictions. On
average, the combined estimator is usually better than any of the
single base estimator because its variance is reduced. Examples are
Bagging methods anf Forests of randomized trees.

• Boosting methods: where the base estimators are built sequentially
and one tries to reduce the bias of the combined estimator. The
motivation is to combine several weak models to produce a power-
ful ensamble. Examples are Gradient boosted regression trees and
Random forest.

4.3.4 Gradient boosted regression trees

Gradient Tree Boosting or Gradient Boosted Regression Trees is a gener-
alization of boosting to arbitrary differentiable loss functions. Gradient
Boosting of Regression Trees (GBRT), was initially developed by Fried-
man (2001) [27], for estimating the car-following model, and it is actu-
ally used in a variety of areas including Web search ranking and ecology.
GBRT is an accurate and effective off-the-shelf procedure that can be
used for both regression and classification. The key goal in the algorithm
is to, at each step, fit a regression tree to the difference between the
observed response and the aggregated prediction of all learners grown
previously. As indicated by the name of the algorithm, the decision trees
algorithm with a fixed size is chosen as base learner, usually called weak
learner.

In boosting methods algorithms, weak learners are trained iteratively and
in a stage-wise fashion so as to find a model that reduces the bias and
variance of prediction. In each iteration, a strength weight is assigned
to the weak learner that implies its prediction error rate. Meanwhile,
each training instance is reweighted by how incorrectly it was classified.
The method of weighting training data and base learners distinguishes
between boosting algorithms such as the adaptive boosting, and gradient
boosting. The final model is the sum of the weighted weak learners. It
is a surrogate model used to evaluate the expensive function.

26Scikit-learn developers, ”Ensamble methods”. https://scikit-
learn.org/stable/modules/ensemble.html, 2019.

27J. H. Friedman, ”Greedy function approximation: A gradient boosting machine,”
The Annals of Statistics, vol. 29, pp. 1189-1232, 10 2001.
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The model is improved by sequentially evluating the expensive function
at the next best point, finding the minimum of the cost function with as
few evaluations as possible.

The advantages of GBRT are:

• Possibility to manage heterogeneous data;

• Robustness to anomalous values in output space;

• Predictive capacity.

The disadvantages of GBRT are:

• Scalability (due to the sequential nature of boosting it can hardly
be parallelized);

• Experience required in tuning;

• Time consuming in training.

The module Skopt used in this work provides methods for both classi-
fication and regression via gradient boosted regression trees. The latter
one is used for optimizing the objective function in the inverse design
model.

GBRT considers additive models of the following form [26]:

f(x) =
K∑
k=1

γkhk(x) (4.12)

Where hk(x) are the basis functions which are usually called weak learn-
ers in the context of boosting. Gradient Tree Boosting uses decision trees
of fixed size as weak learners. Decision trees have a number of abilities
that make them valuable for boosting, namely the ability to handle data
of mixed type and the ability to model complex functions.

Similar to other boosting algorithms, GBRT builds the additive model
in a greedy fashion expressed by Equation 4.13,

fk(x) = fk−1(x) + γkhk(x), (4.13)

where the newly added tree hk tries to minimize the loss L, given the
previous ensemble fk−1:

hk = arg min
h

n∑
i=1

L(yi, fk−1(xi) + h(xi)) (4.14)

26Scikit-learn developers, ”Ensamble methods”. https://scikit-
learn.org/stable/modules/ensemble.html, 2019.
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The initial model f0 is problem specific. For least-square regression is
usually chosen the mean of the target values. GBRT attempts to solve
this minimization problem numerically via steepest descent. The steepest
descent direction is the negative gradient of the loss function evaluated
at the current model Fm−1 which can be calculated for any differentiable
loss function:

fk(x) = fk−1(x)− γk
n∑
i=1
∇fL(yi, fk−1(xi)) (4.15)

Where the step length γk is chosen using line search:

γk = arg min
γ

n∑
i=1

L(yi, fk−1(xi)− γ
∂L(yi, fk−1(xi))

∂fk−1(xi)
(4.16)

The algorithms for regression and classification only differ in the concrete
loss function used.

For regression, the loss functions supported are the following:

• Least squares (’ls’): the natural choice for regression due to its
superior computational properties. The initial model is given by
the mean of the target values.

• Least absolute deviation (’lad’): a robust loss function for regres-
sion. The initial model is given by the median of the target values.

• Huber (’huber’): another robust loss function that combines least
squares and least absolute deviation; it is used alpha to control the
sensitivity with regards to outliers.

• Quantile (’quantile’): a loss function for quantile regression. The
quantile is specified by alpha in between 0 < α < 1. This loss
function can be used to create prediction intervals.

In the sequential optimization using GBRT, the total number of evalua-
tions (n calls) are performed in two ways: if x0 is provided but not f(x0),
the elements of x0 are first evaluated, followed by a number of random
starts evaluations (n random starts).
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Finally, (n calls - len(x0) - n random starts) evaluations are made guided
by the surrogate model. If x0 and f(x0) are both provided, a number of
random starts evaluations are first made, then (n calls - n random starts)
subsequent evaluations are made guided by the surrogate model.

An example of its application in the optimizing process performed in this
work is shown in Source Code 4.6.

Optimization using Gradient boosted regression trees model
from skopt import gbrt_minimize
from skopt.plots import plot_convergence
from skopt import expected_minimum
from skopt import callbacks
from skopt.callbacks import CheckpointSaver
input_list = [[0,N-1]]*2*NP # Input vector dimension
res_gbrt = gbrt_minimize(myfun, # Objective function to minimize

input_list, # Bounds on each dimension
acq_func="EI", # Acquisition function
n_calls=100, # Number of myfun evaluations
callback=[checkpoint_saver]) # Callbacks list

plot_convergence(res_gbrt) # Convergence plot

Source Code 4.6: GBRT - gbrt minimize

4.3.5 Forests of randomized trees

It is a sequential optimization using decision trees. The Skopt module
includes two averaging algorithms based on randomized decision trees
[28].

A tree based regression model is used to sequentially evaluate the expen-
sive function at the next point. The base estimator is the regressor to
use as surrogate model. It can be either:

• Random Forest Trees (RF);

• Extremely Randomized Trees (ET, as default in Scikit-Optimize).

Both algorithms are perturb-and-combine techniques [29] specifically de-
signed for trees. Either of these regressors are tested for the optimization
goal of this work.

In Random Forest Trees, each tree in the ensemble is built from a sample
drawn with replacement (i.e., a bootstrap sample) from the training set.
In addition, when splitting a node during the construction of the tree,
the split that is chosen is no longer the best split among all features
(or a random subset of features). Instead, the split that is picked is the
best split among a random subset of the features. As a result of this
randomness, the bias of the forest usually slightly increases (with respect

28Scikit-learn developers, ”Forests of randomized trees”. https://scikit-
learn.org/stable/modules/ensemble.html#forests-of-randomized-trees, 2019.

29L. Breiman, ”Arcing classifier (with discussion and a rejoinder by the author),”
The Annals of Statistics, vol. 26, pp. 801-849, 06 1998.
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to the bias of a single non-random tree) but, due to averaging, its variance
also decreases, usually more than compensating for the increase in bias,
hence yielding an overall better model.

An example of its application in the optimizing process done in this work
is shown in Source Code 4.7.

Optimization using Random Forest Trees model
from skopt import forest_minimize
from skopt.plots import plot_convergence
from skopt import expected_minimum
from skopt import callbacks
from skopt.callbacks import CheckpointSaver
input_list = [[0,N-1]]*2*NP # Input vector dimension
res_forestRF = forest_minimize(myfun, # Objective function to minimize

input_list, # Bounds on each dimension
base_estimator="RF", #Surrogate model regressor
acq_func="EI", # Acquisition function
n_calls=100, # Number of myfun evaluations
callback=[checkpoint_saver]) # Callbacks list

plot_convergence(res_forestRF) # Convergence plot

Source Code 4.7: Random Forest Trees - forestRF minimize

In Extremely Randomized Trees, randomness goes one step further in the
way splits are computed. As in random forests, a random subset of can-
didate features is used, but instead of looking for the most discriminative
thresholds, thresholds are drawn at random for each candidate feature
and the best of these randomly-generated is picked as the splitting rule.
This usually allows to reduce the variance of the model a bit more, at
the expense of a slightly greater increase in bias.

An example of its application in the optimizing process realized in this
work is shown in Source Code 4.8.

Optimization using Extremely Randomized Trees model
from skopt import forest_minimize
from skopt.plots import plot_convergence
from skopt import expected_minimum
from skopt import callbacks
from skopt.callbacks import CheckpointSaver
input_list = [[0,N-1]]*2*NP # Input vector dimension
res_forestET = forest_minimize(myfun, # Objective function to minimize

input_list, # Bounds on each dimension
base_estimator="ET", #Surrogate model regressor
acq_func="EI", # Acquisition function
n_calls=100, # Number of myfun evaluations
callback=[checkpoint_saver]) # Callbacks list

plot_convergence(res_forestET) # Convergence plot

Source Code 4.8: Extremely Randomized Trees - forestET minimize
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Chapter 5

Inverse Design Model

5.1 Phonon transport across nano-constriction

In this section is reported the analysis of phonon transport across nano-
constriction performing digital simulations with the aid of OpenBTE
solver. The study is concerned in particular with 2-D simulations phonon
transport, in x-y dimensions, carried out on a gray material sample of
square shape with dimensions equal to 40 nm along x-direction and 40 nm
along y-direction, considering periodic boundary conditions applied. A
nano-constriction exists within the sample, due to the presence of poros-
ity, generated by a fixed number of pores placed on two opposite ends
of the sample. Having set the necessary input parameters, the output
produced by the simulation process consists in the ratio K between the
BTE coefficient and the Fourier coefficient, which is the parameter that
gives the information about the phonon effects in the sample. The aim is
to obtain and observe how the phonon transport phenomenon behaves by
reducing its transit through the nano-constriction, in the way of decreas-
ing the distance d between the two pores batches but keeping constant
the total porosity density, starting from the initial sample configuration
shown in Figure 5.1.

Figure 5.1: Nano-constriction initial configuration (d = 22 nm)
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The material enclosed within the distance d is reduced until the trivial
configuration of a pores junction is obtained leading to a material non-
continuity. The unit cells that assemble the sample, given the input
dimensions previousy mentioned, are 400 in number with a single cell
measuring 4 square nanometer. The number of pores considered is equal
to 99, representing the total porosity of the tested specimen leading to
a porosiy density of about 0.25 (0.2475). In Figure 5.2 is shown the
starting configuration analyzed, represented by the mesh of the sample
(top-left), the thermal flux behaviour (top-right) and the resuling plot
of the two merged together (bottom). In the starting configuration, the
gap between the two pores batches is equal to d = 22 nm.

Figure 5.2: Mesh geometry and thermal flux plot (d = 22 nm)

Further simulations are performed by decreasing the starting distance d
from 22 nm up to a material non-continuity, as listed in the following
steps:

• d = 22 nm: starting configuration;

• d = 18 nm;

• d = 14 nm;

• d = 10 nm;

• d = 6 nm;

• d = 2 nm;

• d = 0 nm: materialy non-continuity configuration.
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In Figure 5.3 some of the configurations tested are shown, represented
by the thermal flux plots merged with the geometry meshes.

Figure 5.3: Thermal flux plots (from left, d = 18 nm, d = 10 nm,
d = 6 nm, d = 2 nm, d = 0 nm)

It is expected that the reduction of the distance d leads to a decrease of
the thermal ratio K. This is confirmed by the results of the simulations
performed and summarized in Table 5.1.

Simulation step Nano-constriction
d [nm]

Thermal ratio
K

1 22 0.5020
2 18 0.4455
3 14 0.3832
4 10 0.3159
5 6 0.2301
6 2 0.1162
7 0 0

Table 5.1: Thermal ratio as function of nano-constriction d

The results can be visualized in Figure 5.4, where is plotted the thermal
ratio as a function of the nano-constriction d.

Figure 5.4: Thermal ratio as a function of nano-constriction d
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It is observed a continuous reduction in the thermal ratio K from a
value of 0.5020 related to the starting configuration up to a zero value
associated to a material discontinuity in the sample, which represent the
trivial condition.

In Figure 5.4, together with the thermal ratio are plotted the coeffi-
cients defining its value, namely BTE coefficient and Fourier coefficient;
respectively the numerator and the denominator of the ratio. The plot-
ted results of the nano-constriction simulations exhibit an evident differ-
ent evolution for the two coefficients curves while decreasing the nano-
constriction distance d. In this case it is possible to appreciate the dif-
ference between the two thermal regimes for which the BTE coefficient
converges to zero faster than the Fourier coefficient and this is mainly
due to the classical size effect described in Section 2.1.

The BTE coefficient curve in Figure 5.4 exhibits a linear decrease starting
from a lower value with respect to the Fourier coefficient curve, until the
null value is reached. The same linear decrease is shown by the Fourier
coefficient curve but for low distance d values the slope of the curve
increases, towards the non-continuity condition due to the generation of
an infinite pores column.

In Table 5.2 are detailed the values assumed by the two coefficients de-
pending on the nano-constriction distance d.

Simulation step Nano-constriction
d[nm]

BTE coefficient
[W/m/K]

Fourier coefficient
[W/m/K]

1 22 0.3067 0.6110
2 18 0.2415 0.5421
3 14 0.1826 0.4765
4 10 0.1272 0.4026
5 6 0.0666 0.2894
6 2 0.0154 0.1325

Table 5.2: BTE coefficient and Fourier coefficient - nano-constriction d

In Source Code 5.1 is reported the first step body code of the simulation
carried out with d = 22 nm.
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Nano-constriction simulation body code
#------------------------INPUT PARAMETERS----------------------------#
L = 40
N= 20
NP = 99
#----------------------------BODY CODE-------------------------------#
def myfun(x):

grid = np.zeros((N,N))

for n in range(int(len(x)/2)):
i = x[n*2]
j = x[n*2+1]
grid[i,j] = 1

geo = Geometry(model='porous/random_over_grid',
lx = L,ly = L,
nx = N, ny = N,np=NP,
mesh = True,
manual = True,
grid = grid,
step = L/10,
automatic_periodic = True)

sol = Solver(max_bte_iter = 5,multiscale=False)
kappa = dd.io.load('solver.hdf5')['kappa'][-1]

return kappa
#---------------------------FIRST STEP-------------------------------#
x1 = [5,0,6,0,7,0,8,0,9,0,10,0,11,0,12,0,13,0,14,0,15,0,\

5,19,6,19,7,19,8,19,9,19,10,19,11,19,12,19,13,19,14,19,15,19,\
5,1,6,1,7,1,8,1,9,1,10,1,11,1,12,1,13,1,14,1,15,1,\
5,18,6,18,7,18,8,18,9,18,10,18,11,18,12,18,13,18,14,18,15,18,\
5,2,6,2,7,2,8,2,9,2,10,2,11,2,12,2,13,2,14,2,15,2,\
5,17,6,17,7,17,8,17,9,17,10,17,11,17,12,17,13,17,14,17,15,17,\
5,3,6,3,7,3,8,3,9,3,10,3,11,3,12,3,13,3,14,3,15,3,\
5,16,6,16,7,16,8,16,9,16,10,16,11,16,12,16,13,16,14,16,15,16,\
5,4,6,4,7,4,8,4,9,4,10,4,11,4,12,4,13,4,14,4,15,4]

d1 = 22
y1 = myfun(x1)

Source Code 5.1: Nano-constriction simulation body code



54 Chapter 5. Inverse Design Model

5.2 Inverse Design Optimization

The inverse design model approach adopted is based on setting in ad-
vance for the simulation process a desired output target value, and by
tuning the paramters involved in the computation, to obtain a resulting
output as much closer to the target one. In particular, since the pur-
pose of this work is investigating the phonon transport across porous
nanostructures, the output of the simulations performed is the effective
thermal conductivity κ computed by the use of OpenBTE solver and its
deviation from thr target thermal conductivity defined as κ0.

The thermal conductivity is influenced by the porosity density present
in the material sample, and in particular by the shape of the pores, their
dimensions and the positions they occupy within the material, together
with the sample dimensions.

It is easily intuitive to expect an infinite number of possible combinations
that can be found by manually varying each of these parameters resulting
in infinite possible geometric configurations. For this reason it comes in
handy the use of Bayesian Optimization algorithms for the simulation
processes performed in this work.

In particular, following the inverse design approach, the objective func-
tion is defined as the module of the difference between the thermal con-
ductivity κ and the target thermal conductivity κ0. The minimization of
this module is the goal behind this work, which means computing a ther-
mal conductivity κ as much closer to the κ0 value chosen as the desired
one. In this way is possible to get the proper geometry configuration for
every value of thermal conductivity given any input parameter such as
the number of pores within the material, the shape of the pores and the
sample dimensions.

The minimization process under the purpose of this Thesis is carried out
by applying some Bayesian optimization algorithms, provided by Scikit-
optimize library, to the thermal conductivity computation performed by
OpenBTE, with |κ− κ0| representing the cost function.

The minimization of the cost function is identified as optimization pro-
cess, which is formulated under the Equation 5.1.

f = min|κ− κ0| (5.1)



5.2. Inverse Design Optimization 55

Three different screnarios, listed in Table 5.3, have been investigated
starting from three different value of a target thermal conductivity κ0
with a fixed porosity value equal to 0.1.

Scenario κ0 Porosity

1 0.3 0.1

2 0.2 0.1

3 0.1 0.1

Table 5.3: Inverse design model scenarios

The total porosity parameter defined as Φ is a function of the number of
pores and the unit cells that assemble the material sample, as expressed
by 5.2,

Φ = np

nx · ny
(5.2)

where, np is the pores number within the sample while nx and ny indicate
respectively the unit cells in x- and y-direction.

The same input parameters are considered for every scenario, letting
the opportunity of comparison between the three by only tuning the
target thermal conductivity as reported in the last paragraph of this
section. In this way is possible to analyze the tendence of the pores in
positioning within the material for generating the proper configuration
for that particular thermal conductivity.

The input parameters assumed for the simulations are the following:

• Mean free path: mfp = [10.0];

• Mean free path number: n mfp = 40;

• Sample length in x-direction: Lx = 10 nm;

• Sample length in y-direction: Ly = 10 nm;

• Pores number: NP = 10;

• Unit cells in x-direction: nx = 10;

• Unit cells in y-direction: ny = 10.

The Bayesian optimization algorithms used in the simulation work are
5 different algorithms based on the 5 main functions available in the
Scikit-Optimize library already described in the previous Chapter of this
Thesis. They all have been applied to OpenBTE thermal conductivity
computation to minimize the objective function |κ − κ0|. In terms of
number of iterations, a hundred of calls are performed for each one of
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the five algorithms used for minimizing the cost function. The three
scenarios are analyzed in detail in the next section.

To notice that, the pores combination selected by each algorithm is ex-
pressed by a series of couples of discrete values between 0 and 9 within
square brackets, which identify the x- and y-coordinate of each pore
within the sample.

A representative example is given in Table 5.4 where is given a pores
combination between square brackets and evidenced the specific coordi-
nates for each pore which all together generate the MIT Logo by means
of 18 pores on a material sample as shown in Figure 5.5.

Porosity
configuration [1,3, 1,4, 1,5, 1,6, 2,5, 2,6, 3,3, 3,4, 3,5, 3,6, 5,3, 5,4, 5,6, 7,3, 7,4, 7,5, 7,6, 8,6]

Pore 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Coordinates
(x,y) 1,3 1,4 1,5 1,6 2,5 2,6 3,3 3,4 3,5 3,6 5,3 5,4 5,6 7,3 7,4 7,5 7,6 8,6

Table 5.4: Pores position combination Table

Figure 5.5: Pores position configuration example - MIT Logo
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5.3 Pores configurations by tuning κ0

5.3.1 Scenario 1 - κ0 = 0.3

In the first scenario, the target thermal conductivity value κ0 has been
set to 0.3 W

m·K , given the input parameters previously mentioned.

In Table 5.5 are summarized the relevant results generated by the opti-
mization processes.

κ0 = 0.3
Surrogate model of the function Optimum pores configuration Optimum

objective function
Gaussian Process
’gp minimize’ [0,3, 4,0, 8,8, 6,0, 9,9, 9,9, 1,7, 0,0, 5,4, 3,0] 0.000207813

Random Search
’dummy minimize’ [5,3, 5,8, 8,3, 9,6, 5,6, 2,1, 2,7, 7,6, 7,3, 1,2] 0.000437959

Decision Trees w/randomized regressor
’forestET minimize’ [3,6, 9,6, 5,1, 8,7, 7,7, 3,9, 7,6, 1,5, 7,5, 0,8] 0.000854115

Decision Trees w/random forest regressor
’forestRF minimize’ [9,2, 9,6, 5,6, 1,2, 8,9, 8,0, 4,6, 9,6, 8,0, 5,3] 0.00197337

Gradient Boosted Regression Trees
’gbrt minimize’ [5,3, 9,6, 6,6, 3,2, 9,4, 3,0, 1,1, 6,0, 5,0, 1,1] 0.00223101

Table 5.5: Scenario 1 Results - κ0 = 0.3

In the first column are listed the Scikit-optimize surrogate models used
for the optimization of the objective function in order of best convergence.
The second column evidences the pores positions within the sample, be-
tween the square brackets, defining its porosity configuration. The third
column gives the corresponding optimum output value reached by the
optimization process obtained after having performed 100 iterations for
each of the model used.

In Figure 5.6 is shown the convergence plot of the objecive function min-
imization |κ− κ0| with a zoom of the latter calls region.

Figure 5.6: Objective function minimization for κ0 = 0.3
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It is observed that all the function models show a good convergence to the
objective function, ranging between about 0.0022 and 0.0002, with the
latter value reached by the Gaussian Process minimization model. This
denotes that the sample configurations selected by the optimizer lead to
have a thermal conductivity κ really close to the target one κ0 equal to
0.3 W

m·K , with the highest deviation being lower than 1% given by the
Gradient Boosted Regression Trees. The algorithm that best converges
the objecive function, achieving a thermal conductivity κ closer to the
target one κ0, is the one based on the Gaussian Process model. Moreover,
all the algorithms manifest a remarkably fast and good convergence just
after few calls, proving to be a powerful tool for the purpouse object of
this Thesis.

In Figure 5.7 is possible to visualize the thermal fluxes with the geometry
meshes merged together related to the optimized sample configurations
generated by means of all the algorithms tested.

Figure 5.7: Geometry meshes and thermal flux merged plots for each
function model tested with κ0 = 0.3

It is observed that in general the pores tend to occupy disordered posi-
tions in the sample preferably along the periodic borders with a lesser
tendency of positioning themselves around the geometric center. In all
the cases studied the thermal flux cross the nanostructure along the x-
direction.

5.3.2 Scenario 2 - κ0 = 0.2

The second scenario analyzed consists in repeating all the simulations
performed in the first scenario with the same input parameters and tuning
only the target thermal conductivity κ0 which is now set to the value
of 0.2 W

m·K . By this considerations, the direction of this work is the
one of analyze how the phonon thermal transport varies by requiring to
the optimizer to reach a lower thermal conductivity while maintaining a
constant initial porosity densityl. In this way it can be examined which
are the specific pores configurations that better try to restrict the phonon
thermal transport across the nanostructure. The Table 5.6, as done for
scenario 1, outlines the results of the optimization by applying the five
Scikit-optimize algorithms.
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κ0 = 0.2
Surrogate model of the function Optimum pores configuration Optimum

objective function
Gaussian Process
’gp minimize’ [0,7, 0,3, 9,3, 9,5, 1,9, 4,7, 0,1, 7,9, 0,9, 9,0] 0.000565067

Gradient Boosted Regression Trees
’gbrt minimize’ [4,2, 0,0, 2,7, 0,3, 1,6, 3,3, 9,4, 9,6, 5,0, 0,2] 0.00163097

Decision Trees w/randomized regressor
’forestET minimize’ [3,4, 3,0, 2,3, 7,9, 1,7, 0,1, 7,5, 7,3, 1,6, 0,8] 0.00163225

Decision Trees w/random forest regressor
’forestRF minimize’ [3,8, 8,2, 9,4, 0,7, 9,1, 5,4, 3,0, 8,0, 1,6, 0,4] 0.00324764

Random Search
’dummy minimize’ [9,7, 5,2, 9,4, 3,1, 8,9, 9,0, 9,5, 0,1, 2,2, 4,9] 0.00518854

Table 5.6: Scenario 2 Results - κ0 = 0.2

The results in the table are listed, as for scenario 1, in order of which
function model better converges the objective function.

Also in this case the algorithm which best converges to the target thermal
conductivity is the one based on the Gaussian Process model. The op-
timization performed has dispensed a minimum objective function value
for the different algorithms ranging between approximately 0.0052 and
0.0006, realizing a deviation from the target thermal conductivity of 2.6%
and 0.3% respectively. In Figure 5.8 is shown the convergence plot of the
objective function for κ0 = 0.2 W

m·K , with a zoom of the latter calls region.

Figure 5.8: Objective function minimization for κ0 = 0.2

It is evident a slowdown of the optimization process in converging to
the target thermal conductivity, as shown by the behaviour of the curves
plotted, that reach a minimum objective function value higher with re-
spect to those observed in the previous scenario where κ0 = 0.3 W

m·K .
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In Figure 5.9 is possible to appreciate the geometry meshes merged with
the corresponding thermal flux for each one of the five pores combinations
listed in Table 5.6.

Figure 5.9: Geometry meshes and thermal flux plots
for each function model performed with κ0 = 0.2

It is observed that the pores tend to position themselves along the pe-
riodic borders away from the geometric center, exhibiting a tendence to
group with eachother creating a sort of block to the phonon thermal
transport due to the will of decrease the thermal conductivity from the
value of 0.3 to the value of 0.2 W

m·K without increasing the porosity den-
sity. Regardless to the slowdown of the converging process with respect
to the scenario 1 analyzed previously, the optimization is still producing
optimum results with an error lower than 2.6%.

5.3.3 Scenario 3 - κ0 = 0.1

In this section is analyzed the third and last scenario about the target
thermal conducivity tuning while keeping constant the input parameters.
In this case the target thermal conductivity κ0 is set to 0.1 W

m·K . The
results of the optimization process are listed in Table 5.7.

κ0 = 0.1
Surrogate model of the function Optimum pores configuration Optimum

objective function
Gaussian Process
’gp minimize’ [9,5, 0,2, 9,7, 9,3, 9,9, 0,1, 1,9, 5,0, 0,0, 0,4] 0.00197179

Decision Trees w/randomized regressor
’forestET minimize’ [7,5, 4,4, 9,0, 9,8, 0,4, 5,2, 9,7, 8,9, 8,6, 9,1] 0.0390348

Gradient Boosted Regression Trees
’gbrt minimize’ [8,2, 9,2, 0,0, 0,5, 9,9, 3,9, 8,8, 8,6, 8,3, 9,7] 0.0528188

Decision Trees w/random forest regressor
’forestRF minimize’ [7,6, 4,9, 3,2, 0,4, 1,3, 1,5, 6,5, 1,9, 4,1, 0,8] 0.0892143

Random Search
’dummy minimize’ [1,2, 5,7, 3,8, 4,0, 3,9, 9,7, 6,2, 0,5, 1,3, 1,6] 0.0978718

Table 5.7: Scenario 3 Results - κ0 = 0.1

Even in this scenario with κ0 = 0.1 W
m·K , as for the previous two scenar-

ios, the model function based on Gaussian Process is confirmed to be the
one that best minimizes the objective function |κ − κ0|. The minimum
objective function value ranges between around 0.0979 and 0.002 for the
five algorithms used for the minimization. It is evident that these results
lead to an higher deviation of the thermal conductivity κ from the desired
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one κ0, with respect to the previous two scenarios investigated. In partic-
ular, only the Gaussian Process surrogate model produce an acceptable
convergence with a deviation from the target thermal conductivity κ0
of about 2%. All the other algorithms instead, show a high deviation
ranging between 30% to 90% from the desired κ0 value, with the worst
one being the Random Search algorithm.

Figure 5.10: Objective function minimization for κ0 = 0.1

In Figure 5.10 is shown the convergence plot for the different surrogae
models used to minimize the objective function |κ− κ0|.

In this scenario the slowdown and the deviations of the curves in the
convergence of the objective function is more pronunced compared to
the previous scenario (for which κ0 = 0.2 W

m·K ), with the exception of the
model function based on Gaussian Process which still lead to a thermal
conductivity value κ almost equal to the desired value of 0.1.

The geometry meshes merged together with the corresponding thermal
flux results of the optimization process are pictured in Figure 5.11.

Figure 5.11: Geometry meshes and thermal flux plots for each function
model performed with κ0 = 0.1

It is relevant to remark the differences between the algorithms about the
pores positions within the sample which can be easily visualized from the
meshes in Figure 5.11. All the function models which lead a worst con-
vergence, except to the Gaussian Process one, exhibit a disordered pores
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configurations, however with the pores tendency to place in the neighbor-
hood or along the periodic border. On the contrary, the function model
based on Gaussian Process which gives the proper minimization results,
shows an ordered pores configuration with most of the pores positioned
along one border of the sample. This trend can be explained by the
fact that since the target thermal conductivity κ0 equal to 0.1 W

m·K is
apparently low despite of an evidently low porosity density, therefore the
pores align along the y-axis on the sample border to obstruct the phonon
thermal transport that cross the material through the x-direction. In con-
clusion an ordered pores configuration is necessary to achieve a thermal
conductivity value equal to 0.1 W

m·K with the porosity input parameter
represented by 10 pores.
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5.4 Scenarios comparison by tuning the poros-
ity density

In this section is illustrated the work done referred to the comparison
between the scenarios previously analyzed with the additional change of
tuning the porosity density, which was previously kept fixed to the value
of 0.1. It is indeed carried out a simulations process of the cases exposed
in Table 5.8.

Case κ0 [ W
m·K ] Porosity density

1 0.1
0.1
0.2
0.3

2 0.2
0.1
0.2
0.3

3 0.3
0.1
0.2
0.3

Table 5.8: Scenarios comparison tuning the porosity density

The results for all thee three cases related to porosity density equal to 0.1
are already known because coincide with those reported in the previous
section, so that the further phonon thermal transport simulations are
carried out considering a porosity density of 0.2 and 0.3 for the 3 cases
mentioned above.

The input parameters, are the same considered for the simulations per-
formed in the three scenarios presented in the previous section with the
exception of the number of pores which is here the tuned parameter.
They are listed below:

• Mean free path: mfp = [10.0];

• Mean free path number: nmfp = 40;

• Sample length in x-direction: Lx = 10 nm;

• Sample length in y-direction: Ly = 10 nm;

• Unit cells in x-direction: nx = 10;

• Unit cells in y-direction: ny = 10;

• Pores number Case 1: NP = 10;

• Pores number Case 2: NP = 20;

• Pores number Case 3: NP = 30.
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5.4.1 Tuning porosity density keeping κ0 = 0.1 fixed

Here is described the first case, for which the target thermal conductivity
κ0 is set to be equal to 0.1 W

m·K . This value is kept fixed for all the Scikit-
optimize algorithm used, while is tuned the porosity density between the
values of 0.1, 0.2, and 0.3. The number of iterations carried out for the
minimization process with every function model is equal to 100. Below,
are shown the results obtained.

Optimum cost function values for κ0 = 0.1

Surrogate model of the function Porosity density
0.1 0.2 0.3

Random Search
’dummy minimize’ 0.097871 0.000322 0.000326

Gaussian Process
’gp minimize’ 0.001971 0.001025 0.000051

Gradient Boosted Regression Trees
’gbrt minimize’ 0.052818 0.000230 0.004709

Decision Trees w/randomized regressor
’forestET minimize’ 0.039034 0.000237 0.000270

Decision Trees w/random forest regressor
’forestRF minimize’ 0.089214 0.000042 0.002140

Table 5.9: Case 1 - Porosity comparison results for κ0 = 0.1 (100 calls)
From Table 5.9 is possible to understand how the optimization perfor-
mance varies depending on the value of porosity density with fixed κ0
equal to 0.1 W

m·K . In particular, the function model based on Gaussian
Process is the one which exhibits in general the best results in term of
minimizing the objective function |κ − κ0| producing the lowest output
divergence for porosity level of 0.1 and 0.3. For a porosity value of 0.2,
the Decision Trees with Random Forest Regressor (ForestRF) is the one
which yields the best optimization result. Comparing the three porosity
levels outputs for this Case 1 analyzed, it is noted a better convergence
with the intermediate porosity density value, which leads to suppose that
for the sample dimensions considered, the number of pores equal to 20 is
the quantity that better manage the thermal conductivity κ = 1 W

m·K .

Figure 5.12: Decision trees w/random forest regressor plot convergence for
different porosity densities with κ0 = 0.1
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In Figure 5.12 is plotted the objective function convergence plot for the
different porosity densities related to ForestRF model function. It is
evident a different converging trend between the lowest porosity density
and the higher porosity density, with the first one showing an higher
deviation. The reason already mentioned in the previous section, is in
the complexity of obstruct the phonon thermal transport to produce a low
κ value equal to 0.1 W

m·K by considering a relatively low pores number. In
Figure 5.13 are shown the optimum geometry meshes merged with the
thermal flux generated by the model function based on Decision trees
w/random forest regressor, for different level of porosity, by keeping fixed
κ0 = 0.1 W

m·K .

Figure 5.13: Geometry meshes and thermal flux obtained by Decision trees
w/random forest regressor function for different porosity densities with fixed

κ0 = 0.1

With the lowest porosity density, on the left picture, the pores occupy
mostly the positions along the border on the y-direction, in trying to
contain the phonon thermal transport. By increasing the porosity level
the pores tend to spread toward the geometric center of the sample,
trying to line upe together to generate a sort of two channels for the
thermal flux with the aim of managing the desired thermal conductivity
κ0. It is interesting to note that for the case of porosity density equal
to 0.3, it is startig to appear a pores overlapping phenomenon, because
probably all the 30 pores in the sample are excessive and would have lead
to a relevant divergence from the target thermal conductivity, leading to
lowering κ with respect to the target one.
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5.4.2 Tuning porosity density keeping κ0 = 0.2 fixed

Here is described the second case, for which the target thermal conduc-
tivity κ0 is set to be equal to 0.2 W

m·K . This value is kept fixed for all
the Scikit-optimize algorithm used, while is tuned the porosity density
between the values of 0.1, 0.2, and 0.3. The number of iterations carried
out for the minimization process with every function model is equal to
100. Below, are shown the results obtained.

Optimum cost function values for κ0 = 0.2

Surrogate model of the function Porosity density
0.1 0.2 0.3

Random Search
’dummy minimize’ 0.005188 0.008812 0.072236

Gaussian Process
’gp minimize’ 0.000565 0.001365 0.000642

Gradient Boosted Regression Trees
’gbrt minimize’ 0.001630 0.013436 0.087245

Decision Trees w/randomized regressor
’forestET minimize’ 0.001632 0.003629 0.104861

Decision Trees w/random forest regressor
’forestRF minimize’ 0.003247 0.007799 0.084249

Table 5.10: Case 2 - Porosity comparison results for κ0 = 0.2 (100 calls)

From Table 5.10 it is observed the minimum objective function value
|κ−κ0| to be dispensed by the Gaussian Process model based, for all the
porosity levels tested considering a target thermal conductivity equal to
0.2 W

m·K .

It is evident that with respect to the Case 1 where a lowest phonon
thermal transport was requested, here the porosity densities that better
lead to the desired κ0 are those with lower pores number. This lies in
the fact that the increasing of the target thermal conductivity value,
involves a higher phonon thermal transport phenomenon and this is in
contrast with the presence of high number of pores within the sample.
It is important to note that the optimal value of 0.000642 produced by
Gaussian Process model based with the corresponding porosity density
of 0.3 it is not truthful, because as shown in the mesh configurations
a strong overlapping phenomenon occurs, bringing the porosity to be
reduced from 0.3 to 0.1. This demonstrate the initial hypothesis for
which a porosity level lower than 0.3 is necessary to achieve a thermal
conductivity κ = 0.2 W

m·K .
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In Figure 5.14 is plotted the objective function convergence plot for the
different porosity densities related to GPs model function.

Figure 5.14: Gaussian Process plot convergence for different porosity densi-
ties with κ0 = 0.2

Here it is observed a different converging trend between the highest poros-
ity density and the lowest porosity densities, with the first one showing
an higher deviation for the first 40 calls, due to what detailed previously
in analyzing Table 5.10. The jumps visible on the porosity curve related
to the highest porosity value, and the final convergence to the other two
curves it is powered by the overlapping phenomenon. Each jump is a
direct consequence of an increase in the overlapped pores number to fi-
nally end up to the amount of 15 pores (i.e. porosity value of 0.15)
within the sample, starting from 30. The same phenomenon happens for
the porosity level of 0.2 as perceived from the jump after around 10 calls,
guiding an overlapping phenomenon although weaker than the one with
the higher porosity density.

Figure 5.15: Geometry meshes and thermal flux obtained by Gaussian Pro-
cess function for different porosity densities with fixed κ = 0.2

In Figure 5.15 are shown the optimum geometry meshes merged with
the thermal flux generated by the model functiong based on Gaussian
Process, for different porosity densities, by keeping fixed κ0 = 0.2 W

m·K .
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It can be appreciated the overlapping pores phenomenon for the porosity
density value of 0.3, and a less pronunced one for porosity density of 0.2,
since it is expected a corresponding pores number equal to 30 and 20,
when only 15 and 16 are respectively present.

With respect to the previous Case 1 studied for which κ0 = 0.1 W
m·K

is considered, here the pores show a weaker tendency on canalizing the
phonon thermal transport, with the optimizator orienting the pores to
position along the border on y-direction without forming porosity conti-
nuity or in a sparse manner around the geometric center of the sample.
The overlapping phenomenon holds within itself important information
about the bounds of the porosity density value for reaching a determined
thermal conductivity. In this Case 2 here analyzed, the results obtained
suggest that given the input parameters assumed, it could be not a feasi-
ble task reaching a thermal conductivity κ = 0.2 with a porosity higher
than 0.2 W

m·K , so that the overlapping phenomenon advises a reduction
of pores number to around 15 pores.

5.4.3 Tuning porosity density keeping κ0 = 0.3 fixed

Here is described the Case 3, for which the target thermal conductivity
κ0 is set to be equal to 0.3 W

m·K . This value is kept fixed for all the Scikit-
optimize algorithm used, while is tuned the porosity density between the
values of 0.1, 0.2, and 0.3. The number of iterations carried out for the
minimization process with every function model is equal to 100. Below,
are shown the results obtained.

Optimum cost function values for κ0 = 0.3

Surrogate model of the function Porosity density
0.1 0.2 0.3

Random Search
’dummy minimize’ 0.000437 0.118357 0.181427

Gaussian Process
’gp minimize’ 0.000207 0.000906 0.049376

Gradient Boosted Regression Trees
’gbrt minimize’ 0.002231 0.090412 0.174201

Decision Trees w/randomized regressor
’forestET minimize’ 0.000854 0.074937 0.184580

Decision Trees w/random forest regressor
’forestRF minimize’ 0.001973 0.010945 0.180542

Table 5.11: Case 3 - Porosity comparison results for κ0 = 0.3 (100 calls)

From Table 5.11 it is observed the minimum objective function value
|κ− κ0| to be supplied by the Gaussian Process model based, for all the
porosity densities tested. In general all the function models reach a better
minimization of the objective function with the lowest porosity density
of 0.1. However, the minimum value obtained by the GP model based do
not reflect the real output because of the overlapping pores phenomenon,
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as visualized in the previous Case 2, but in this Case all the simulations
are affected. In Figure 5.16 is plotted the objective function convergence
plot for the different porosity values related to GPs model function.

Figure 5.16: Gaussian Process plot convergence for different porosity
densities with κ0 = 0.3

All the curves exhibit jumps in the convergence between the very first to
around the 10 calls, where the pores overlapping phenomenon appears.
In Figure 5.17 are shown the optimum geometry meshes merged with
the thermal flux generated by the model functiong based on Gaussian
Process, for different porosity densities, by keeping fixed κ0 = 0.3 W

m·K .

Figure 5.17: Geometry meshes and thermal flux obtained by Gaussian Pro-
cess function for different porosity densities with fixed κ0 = 0.3

Despite to the Case 2, here whatever the porosity value, a strong pores
overlapping phenomenon is present, leading, in any case, to a reduction of
pores number. It is relevant to observe that for the porosity density of 0.2
and 0.3, 10 pores are present within the sample when the expected pores
number are respectively 20 and 30, therefore the related configurations
undergo to a severe overlapping pores experience. This is due to the fact
that, since the sample dimensions are constrained to a relatively small
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size, the target thermal conductivity of κ0 equal to 0.3 W
m·K is theoretically

impossible to reach by considering more than 10 pores in the structure,
otherwise leading to a significant divergence from the target thermal
conductivity.

The result of the simulations performed emphisize the importance of
balancing the dimensions of the sample, the number of pores, together
with the target thermal conductivity κ0 to be achieved. The simulations
process adopted in this work for studying the inverse design model can be
a powerful tool, once set the desiderable thermal property of a structure,
for understandig in advance the proper number of pores to place within
the material and the proper coordinates of them.
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5.4.4 Pores overlapping visualization

For a better visualization of the resulting configurations, a python script
for visualizing the pores overlapping has been created and implemented
within this work. The bidimensional sample is placed in a tridimensional
plane x-y-z assuming negligible the sample’s thickness, where x and y are
the spatial sample coordinates and z is the overlapped pores coordinate,
indicating the number of pores located in every point of the sample.
The previous optimum geometry meshes merged with the thermal flux
obtained by the Gaussian Process surrogate model are shown by the plots
in Figure 5.18.

Figure 5.18: Pores overlapping with porosity density 0.1 and κ0 = 0.3

Making use of this tool, the pores overlapping phenomenon is made easily
evident and it is represented by the height of the 3-dimensional columns.
The higher the column in a specific x,y coordinates, the more severe is
the pores overlapping phenomenon experienced by that individual unit
cell of the sample. This is more relevant in the case with porosity Φ equal
to 0.2 and 0.3, as shown respectively in Figure 5.19 and 5.20.

In addition, it is supposed that if a unit cell is subjected to pores overlap-
ping phenomenon more than other unit cells, it means that its position
is more critical to the achievement of the target thermal conductivity
value.
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Following this procedure, it would be possible to understand what are
the best pores coordinates in order of importance for placing the maxi-
mum number of pores within a nanomaterial sample. It is proposed to
consider a sort of overlapping index that identifies the magnitude of pores
overlapping phenomenon that a specific unit cell undergoes.

Figure 5.19: Pores visualization sample with porosity density 0.2 and κ0 =
0.3

Figure 5.20: pores visualization sample with porosity density 0.3 and κ0 =
0.3
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5.5 Optimization with κ0 = 0 tuning the
porosity density

In this section is illustrated the work behind the simulations referred to
the optimizing objective function |κ − κ0|, imposing a target thermal
conductivity κ0 = 0 and tuning the porosity density value between 0.1,
0.2 and 0.3. It is indeed carried out a simulations process as for the
cases exposed in Table 5.8. The simulations described in the following
subsections, will incur sooner or later to a trivial solution, since a null
phonon thermal transport is possible only if a material non-continuity is
present within the sample.

5.5.1 Trivial solution with κ0 = 0 and 0.1 porosity
density

Table 5.12 outlines the results of the optimization by applying the five
Scikit-optimize algorithms having set a null target thermal conductivity
and a porosity density of 0.1.

κ0 = 0
Surrogate model of the function Optimum pores configuration Optimum

objective function
Gaussian Process
’gp minimize’ [9,1, 8,2, 9,3, 9,9, 9,9, 8,0, 5,6, 0,4, 9,0, 9,5] 0.173585

Decision Trees w/randomized regressor
’forestET minimize’ [0,0, 1,5, 8,3, 0,4, 0,8, 2,1, 1,1, 9,9, 2,3, 3,2] 0.168029

Boosted Regression Trees
’gbrt minimize’ [5,6, 6,5, 6,3, 9,0, 4,9, 7,7, 7,0, 5,8, 3,2, 6,1] 0.185042

Decision Trees w/random forest regressor
’forestRF minimize’ [0,2, 9,5, 1,6, 1,9, 0,9, 0,1, 2,8, 1,7, 9,6, 1,5] 0.168607

Random Search
’dummy minimize’ [4,6, 9,0, 8,9, 5,5, 7,6, 8,8, 9,1, 9,2, 5,5, 7,7] 0.186378

Table 5.12: Trivial solution - κ0 = 0 and porosity density 0.1

From the resulting objective function values it can be noticed that any
of them does not lead a good covergence to the target value κ0. The
deviation spans between the values of 0.168 to 0.186 which means that
with the porosity density of 0.1 considered, it was not possible to reach
a null κ0 value. The lowest thermal conductivity value achieved for κ is
equal to 0.168 W

m·K after performing 100 calls.
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In Figure 5.21 is shown the convergence plot related to all the five Scikit-
optimize algorithms used in the minimization of the objective function.

It is observed the significant general deviation from the zero target ther-
mal conductivity for all the surrogate models testes. The deviation is the
consequence of the low porosity level which does not allow a strong de-
crease of the phonon thermal transport oriented to the trivial condition
of the null value, and this would also happen by increasing the number
of calls even if it would lead to relative better converging curves.

Figure 5.21: Objective function minimization for κ0 = 0 and porosity
density 0.1

In Figure 5.22 are shown the optimum geometry meshes merged with the
thermal flux generated by the model function based on Gaussian Process,
for porosity density of 0.1, by keeping fixed κ0 = 0.

Figure 5.22: Geometry meshes and thermal flux plots for each function
model performed with κ0 = 0 and porosity density 0.1

From the pictured meshes it is easily visualized the tendency of he pores
to align and form a line along the y-direction to try in this way to handle
the obstruction of the phonon thermal transport.
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5.5.2 Trivial solution with κ0 = 0 and 0.2 porosity
density

Table 5.13 outlines the results of the optimization by applying the five
Scikit-optimize algorithms having set a null target thermal conductivity
and a porosity density of 0.2.

κ0 = 0
Surrogate model of the function Optimum pores configuration Optimum

objective function
Gaussian Process
’gp minimize’

[1, 1, 8, 0, 6, 1, 9, 5, 4, 5, 7, 0, 8, 8, 9, 2, 8, 1, 6, 7,
2, 4, 1, 2, 9, 7, 3, 0, 8, 3, 9, 9, 5, 6, 9, 7, 8, 5, 4, 3] 0.062588

Decision Trees w/randomized regressor
’forestET minimize’

[7, 8, 5, 3, 2, 8, 8, 3, 9, 9, 2, 6, 9, 1, 1, 9, 9, 2, 0, 0,
3, 0, 9, 6, 3, 7, 9, 4, 4, 3, 3, 0, 0, 9, 6, 6, 1, 7, 0, 9] 0.068837

Boosted Regression Trees
’gbrt minimize’

[2, 0, 4, 0, 8, 5, 7, 1, 4, 3, 4, 0, 9, 7, 7, 0, 5, 7, 7, 2,
4, 6, 8, 1, 1, 3, 9, 6, 7, 4, 9, 2, 3, 9, 8, 3, 4, 8, 6, 2] 0.059284

Decision Trees w/random forest regressor
’forestRF minimize’

[3, 3, 8, 8, 1, 8, 2, 5, 8, 6, 6, 5, 9, 4, 8, 1, 0, 9, 3,
6, 2, 1, 1, 2, 4, 5, 1, 5, 1, 4, 1, 1, 9, 9, 2, 7, 7, 7, 7, 3] 0.071300

Random Search
’dummy minimize’

[6, 9, 7, 1, 2, 5, 2, 1, 4, 1, 5, 9, 0, 3, 0, 9, 4, 7, 0, 7,
3, 8, 3, 6, 3, 0, 8, 6, 0, 5, 9, 4, 8, 4, 4, 1, 1, 2, 6, 9] 0.042257

Table 5.13: Trivial solution - κ0 = 0 and porosity density 0.2

The outcomes in terms of optimum objective function from Table 5.13
describe an improvement in reaching the null target thermal conductivity
value by means of increasing the porosity density with respect to the
previous case. In particular the lowest deviation has drop down from
0.168 to 0.042. In Figure 5.23 is shown the convergence plot related to
all the five Scikit-optimize algorithms used in the minimization of the
objective function.

Figure 5.23: Objective function minimization for κ0 = 0 and porosity
density 0.2

The curves exhibit a better converging trend compared to those with
lower porosity density, just after few calls performed, with the exception
of Random Search based algorithm. However an important improvement
is observed, the convergence is still not close to the ideal one for which



76 Chapter 5. Inverse Design Model

stands a null phonon thermal transport. In Figure 5.24 are shown the
optimum geometry meshes merged with the thermal flux generated by
the model function based on Gaussian Process, for porosity density of
0.2, by keeping fixed κ0 = 0.

Figure 5.24: Geometry meshes and thermal flux plots for each function
model performed with κ0 = 0 and porosity density 0.2

The improvement in the minimizing the objective function |κ − κ0| is
clearly detectable by the larger amount of pores within the sample, that
to impede the phonon thermal transport across the material, are orga-
nized in a sort of arrow-like arrangement in most of the resulting meshes
or by grouping together to form a large porosity block. In particular, the
mesh generated by the ForestRF based model shows the pores placed to
form two opposite arrows generating a x shape.

5.5.3 Trivial solution with κ0 = 0 and 0.3 porosity
density

Table 5.14 outlines the results of the optimization by applying the five
Scikit-optimize algorithms having set a null target thermal conductivity
and a porosity density value to 0.3.

κ0 = 0
Surrogate model of the function Optimum pores configuration Optimum

objective function
Gaussian Process
’gp minimize’

[3, 7, 0, 9, 4, 3, 0, 8, 9, 7, 0, 9, 0, 5, 9, 5, 0, 0, 0, 1, 9, 0, 0, 6, 2, 4, 1, 8, 5, 1,
4, 2, 0, 0, 0, 0, 1, 9, 8, 2, 0, 6, 9, 1, 0, 2, 2, 0, 9, 5, 4, 4, 1, 4, 0, 9, 0, 3, 2, 1] 0

Decision Trees w/randomized regressor
’forestET minimize’

[4, 7, 5, 3, 7, 9, 1, 8, 1, 4, 9, 9, 6, 3, 0, 7, 2, 9, 4, 2, 0, 1, 8, 6, 0, 2, 9, 6, 0, 3,
9, 4, 5, 4, 7, 4, 5, 6, 3, 0, 8, 0, 5, 7, 8, 2, 9, 1, 7, 5, 5, 3, 8, 7, 7, 2, 4, 2, 3, 3] 0

Boosted Regression Trees
’gbrt minimize’

[6, 8, 5, 0, 3, 9, 8, 1, 1, 7, 1, 8, 1, 0, 7, 8, 9, 7, 3, 4, 7, 2, 2, 7, 2, 4, 6, 9, 8, 5,
8, 3, 4, 6, 1, 7, 8, 4, 8, 6, 9, 2, 0, 6, 2, 7, 6, 1, 8, 8, 6, 0, 2, 5, 6, 3, 0, 7, 9, 0] 0

Decision Trees w/random forest regressor
’forestRF minimize’

[6, 8, 5, 0, 3, 9, 8, 1, 1, 7, 1, 8, 1, 0, 7, 8, 9, 7, 3, 4, 7, 2, 2, 7, 2, 4, 6, 9, 8, 5,
8, 3, 4, 6, 1, 7, 8, 4, 8, 6, 9, 2, 0, 6, 2, 7, 6, 1, 8, 8, 6, 0, 2, 5, 6, 3, 0, 7, 9, 0] 0

Random Search
’dummy minimize’

[9, 8, 0, 4, 7, 1, 1, 5, 0, 1, 1, 2, 0, 2, 3, 1, 1, 8, 9, 6, 4, 5, 7, 0, 8, 1, 9, 0, 9, 3,
9, 5, 6, 8, 9, 9, 9, 3, 0, 1, 9, 6, 0, 7, 6, 7, 3, 2, 0, 4, 5, 1, 9, 6, 6, 3, 8, 3, 1, 6] 0

Table 5.14: Trivial solution - κ0 = 0 and porosity density 0.3

All the function models converge to the objective function reaching a
thermal conductivity κ = 0 as shown in the optimum objective function
column. The zero value has been reached because of the increse of the
porosity density to 0.3, together with keeping the same starting geometry
dimension and input paramenters. This led to a pores arrangement to
generate a material non-continuity within the sample, which is indeed
the trivial solution.
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Figure 5.25: Objective function minimization for κ0 = 0 and porosity
density 0.3

In Figure 5.25 is shown the convergence plot related to all the five Scikit-
optimize algorithms used in the minimization of the objective function.

All the function models, except for the Random Search and Gaussian
Process based algorithms, show a convergence to the zero value just after
few calls, but sooner or later any of them will converge to zero before
the 100 calls. In Figure 5.24 are shown the optimum geometry meshes
generated by the model function based on Gaussian Process, for porosity
density of 0.3, by keeping fixed κ0 = 0.

Figure 5.26: Geometry meshes for each function model performed
with κ0 = 0 and porosity density 0.3

As anticipated all the meshes involve a material discontinuity which im-
plies the absence of the phonon thermal transport across the samples.
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Chapter 6

Conclusions

In this Thesis we presented a procedure for porosity optimization of
nanoporous material.

Part of the work has been spent in studying the heat transport of nanos-
trucures supporting a nano-constriction, providing the difference between
the BTE and Fourier thermal regime. The BTE thermal coefficient is
proved to decrease faster than the Fourier coefficient by shrinking the
nano-constriction.

Afterward, the phonon transport solver OpenBTE has been interfaced
with machine learning algorithms within a Bayesian framework. Follow-
ing an inverse design approach, we determined nanoporous structured
with a given thermal conductivity value and a desired porosity density
within the material.

The optimization process has been performed considering three porosity
densities experimentally realizable for different target thermal conduc-
tivity values. At the state of the art of this work, since no constraints
have been imposed in the computation of the phonon thermal transport,
a target thermal conductivity value is set as objective purpose. Possible
constraints to consider in future progress of the research and to imple-
ment in the optimization process are the mechanical stability and electric
conductivity. A remarkable feature has been analyzed when increasing
the porosity density, defined as porosity overlapping, which is shown to be
more evident at high thermal conductivity values. This phenomenon can
be addressed in the optimization process to build a powerful tool, once
set a desiderable thermal conductivity, to obtain in advance the max-
imum porosity density for a nanostructure that is the maximum pores
number for which the pores overlapping vanishes.

In addition, we tested different Bayesian machine learning algorithms
and compared their performances, once applied to the heat transport
solver. It has been observed that for the optimization problem, among
all the Bayesian algorithms, the one that exhibited in general for all the
scenarios the lowest divergence from the target function is the one based
on Gaussian processes.
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The results obtained by all the simulations carried out in this work offer
interesting insights for observing and analyzing the phonon transport
and the nanoporous structures generated after the optimization process.
Moreover, as highlighted at the end of the work, the approach used would
be an innovative one, for several engineering applications, to provide the
exact structure porosity density and the proper pores coordinates within
the material.
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