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Abstract

A branch of the wearable sensor research focuses on monitoring the human body
joints movements to prevent injuries due to musculoskeletal disorders. Different
types of sensors and technologies are used as a core of a smart joint monitoring
system, one of these are optical fiber sensors.

Optical fiber sensors are used to monitor joint angles with the main advantages
to have a high resolution, a light-weight and to be flexible. For these reasons,
they can be integrated into stretchable skin-tight fabrics to create a wearable joint
monitoring system.

In this thesis, a prototype developed by Mitsui Chemicals has been tested. The
prototype is composed of a sleeve with five integrated optical fiber sensors placed
medially, laterally, inside-medially and inside-laterally than the knee and above the
patella. The purpose of this work is to evaluate the performance of the Mitsui’s
optical fiber sensors in predicting knee flexion-extension angular displacement.

The first step of the study is the creation of a dataset to train a machine learning
algorithm.

Twenty healthy participants have been selected to perform the data collection.
They have been requested to wear the prototype during ambulation on a treadmill
at different speeds while the voltage outputs and the knee angles have been recorded
using the Vicon Motion Capture system. Three sizes of the prototype have been
used during the data collection: for each subject, the size with a closer fit that
won’t create discomfort to the subject has been chosen.

An outlier detection algorithm has been developed to analyze the voltage outputs
to find possible outliers due to a not optimal fit of the sleeve. This algorithm rec-
ognizes as outliers signals with a low correlation value and large amplitude respect
the other signals of the sensor with the same position in the sleeve prototype.

The outliers are subsequently removed from the dataset by a custom replace-
ment algorithm. Demonstrating the high correlation among medially, laterally and
patella sensors, and inside-medially and inside-laterally sensors, it’s possible to re-
place outliers of one sensor with the data of the same correlated sensor.
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Two different types of models to predict the knee angle are used: one model
without memory, the Random forest (RF), and one model with memory, the Long
short-term memory (LSTM). The models are applied to the dataset with a leave-
one-subject-out (LOSO) cross-validation (CV) approach and their performances
are evaluated in terms of root-mean-squared error (RMSE). The overall RMSE
obtained for the RF model is 5.22° and the LSTM model is 4.56°. The average
error is similar, however, the LSTM performs better than the Random Forest in
80% of the subjects.
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Chapter 1

Introduction

1.1 Overview of musculoskeletal system

Figure 1.1: Musculoskeletal system. [1]

The musculoskeletal system (Figure 1.1) is an organ system with the primary
functions of supporting, providing stability and mobility to the body [2].
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1 – Introduction

It is primarily made up of [3]:

• Connective tissue: includes white fibrous tissue, this one has high tensile
strength and forms ligaments and tendons. The first ones pass from one bone
to another in the region of joints, connecting the bones and limiting joint
movements, the second ones attaching muscles to the bones;

• Skeletal tissues: has the main functions of give support to the body and to
absorb shock. It comprises cartilages and bones. The first ones cover the end
of bones to cushion impacts and to reduce friction inside a joint, the second
ones give stability to the body;

• Muscular tissue: is responsible for the generation of movement, giving sup-
port to the body and stability to the joints. It is composed of skeletal muscles,
these are connected directly or trough tendon to the bones and with their
contraction, they move bone and generate joint motion;

• Joints: are the locations where bones come together and movement occurs,
they permit and limit specific movements. Based on the structure and the
function of the joint they allow different types of movements and can be cate-
gorized into three classes: fibrous, cartilaginous and synovial, with increasing
mobility from the first one to the third one. Synovial joints (Figure 1.2) are a
class of freely mobile joints and the majority of the joints of the limbs belong
to this class. In this type of joint the articular surfaces of the bones are covered
by articular cartilage to enable them to move on each other with minimum
friction and to protect them from impact. Surrounding the joint there is a
connective tissue sleeve, the articular capsule, that held the bones together.
Lining the internal surface of the capsule there is the synovial membrane, that
covers all non-articular surfaces within the capsule. This membrane secret
synovial fluid into a space called joint cavity to lubricate and nourishing the
articular cartilage. There is a large number of synovial joints inside the body
and they can be subdivided into six groups based on their articular surfaces
and the movements possible at the joint (Figure 1.3). In particular, a hinge
joint is a type of synovial joint that allows movement about one axis only,
consequently the two articular surfaces fitting is usually good and the joint is
supported by strong collateral ligaments. One example of a hinge joint is the
knee joint. More precisely, it is a synovial modified hinge joint because due to
a poor fit of the articular surfaces it permits movement also about a second
axis.
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1 – Introduction

Figure 1.2: Synovial joint. [4]

Figure 1.3: Types of synovial joint. [4]
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1 – Introduction

1.1.1 Musculoskeletal disorders

Musculoskeletal disorders are clinical conditions that affect the components of the
musculoskeletal system and may range from minor physical disabilities to disease.
Examples of musculoskeletal disorder that involve the three main components of
the musculoskeletal system are [1]:

• Osteoporosis: is a condition that affects the bones. They become fragile and
brittle leading to a higher risk of fractures than in normal bone. In this case,
even a minor bump or accident can cause serious fractures (Figure 1.4);

• Sarcopenia: is a condition that affects skeletal muscles. Is characterized by
progressive and generalized loss of muscle mass and muscle strength with the
risk of an adverse outcome as physical disability and poor quality of life (Figure
1.5);

• Arthritis: groups of conditions affecting the joints. The joint tissue starts to
degenerate, resulting in pain, stiffness, and loss of mobility. This condition can
affect different parts of the joint and nearly every joint in the body (Figure
1.6).

Figure 1.4: Osteoporosis.
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1 – Introduction

Figure 1.5: Sarcopenia.

Figure 1.6: Arthritis.

Musculoskeletal disorders rank fourth in total global death and disability burden
and are the top-ranked common cause of disability among older adults. Subjects
with these conditions have limitation in mobility that causes reduced ability to work
and participate in social life, with mental consequences for the subject and relevant
economic consequences on the society. The cost of treatment and healthcare services
are a major social and financial burden on society. To limit the impact of this
disorder, primary prevention, early detection and effective interventions for persons
at risk of musculoskeletal health issues are crucial. [4]
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1 – Introduction

1.2 Overview of knee joint
The knee joint is the largest and one of the most complex joints in the body. Its
complexity is due to an optimal interaction of bony structures such as femur, tibia,
patella, and fibula, as well as its ligament, muscles, and tendons. Generally, each
function of the knee is the result of the teamwork of several anatomical struc-
tures together. It carries a large portion of the body weight and allows a wide
flexion-extension and a small internal-external rotation. Since it permits mainly a
movement in one axis but also small mobility in a second axis it is considered a
modified hinge joint. [5]

It is composed of three articulations: medial tibiofemoral, lateral tibiofemoral
and patellofemoral. The first two linking the femur with the tibia, the second one
brings together the patella and the femur. The main components of the knee joint
are the following (Figure 1.7) [6].

• Femur (thigh bone): bone that run from the knee to the hip. Its end is
cover by articular cartilage and the round knobs on it are called condyles;

• Tibia (shin bone): bone that run from the ankle to the knee. Its top is
composed of two plateau covered by articular cartilage. Over them there are
two crescent-shaped shock-absorbing cartilages called menisci;

• Patella (kneecap): semi-flat and triangular bone that can move as the knee
bends. Its primary functions are to increase the force generated by the quadri-
ceps muscle during knee extension and protect the knee joint from trauma. The
patella fits inside the groove formed between the two femoral condyles;

• Fibula: thin bone that run along side the tibia from the ankle to the knee.
It give small support to the tibia in carrying the weight and serves as an
attachment for the biceps femoris and the lateral collateral ligament.

• Medial (or tibial) collateral ligament and lateral (or fibular) collat-
eral ligament: both attache the femur and the tibia, the first one medially
and the second one laterally, and limit sideways motion of the knee joint;

• Anterior cruciate ligament (ACL) and posterior cruciate ligament
(PCL): both attache the femur and the tibia, limit some rotation and sideways
motion of the knee joint and are positioned deep inside the knee one in front
each other. ACL limit forward motion of the tibia relative to the femur, vice-
versa PCL limits backward motion of the tibia relative the femur;

6



1 – Introduction

Figure 1.7: Main components of knee joint (front view).

• Patellar ligament (or tendon): attaches the patella to the tibia. It is more
a continuation of the quadriceps tendon than a ligament;

• Joint capsule: fibrous structure that surround the knee joint and inside it,
there is the synovial membrane that secretes synovial fluid to facilitate the
movement of the joint.

• Medial meniscus and lateral meniscus: two crescent shaped structure
made of fibrocartilage wich make them strong, rubbery and able to add addi-
tional stability to the knee;

7



1 – Introduction

• Quadriceps and hamstrings: two groups of muscles positioned around the
knee that help to keep the knee stable and allow knee joint motion. Quadriceps
are responsible for the knee extension and hamstrings are responsible for the
knee flexion;

• Quadriceps tendon: situed on the front of the knee and connects the quadri-
ceps muscles of the tight to the tibia via tha patella and patellar ligament. It
gives the strength necessary to straighten the knee.

The pair of collateral ligament and the pair of cruciate ligament, working to-
gether are the most important structures in controlling the stability of the knee.

1.2.1 Knee joint disorders

As the knee joint is composed of many structures, numerous problems can involve
him. These can be injury or pathological conditions. Regarding the second case,
the most common disease affecting the knee joint is arthritis. The major type of
arthritis that affects the knee is [7] (Figure 1.8):

• Osteoarthritis: is the most common arthritis in the knee. It is a type of
arthritis that involves the articular cartilage presents at the end of the bones
inside the joint. It consists in wear and tear of the articular cartilage due to
aging or to previous injury that accelerates the degenerative process. This loss
of cartilage protection results in an area of exposed bone and in bone-to-bone
rubbing that creates bone spurs around the joint. (Figure 1.9)

• Rheumatoid arthritis: is an autoimmune disease where the immune system
produces antibodies against joint tissue. This results in inflammation and
thickening of the joint capsule because the synovial membrane starts to swelling.

In general, the primary symptoms of arthritis are discomfort, swelling, stiffness,
and pain. With the progress of the disease, the pain can interfere with simple daily
activities like walking or climbing the stairs, limiting the mobility of the subject.

8
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Figure 1.8: Types of knee joint arthritis

Figure 1.9: Knee joint osteoarthritis. [7]
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Chapter 2

State of the Art

2.1 Joint monitoring
The worst outcome of musculoskeletal disorders is the loss of mobility that prevents
subjects to be independent, to work and to be an active part of society. For this
reason, prevention with monitoring of musculoskeletal parameters in subject at
risk is very important. Smart systems capable of monitor and record joint activity
can help physicians to evaluate the health status of the joint extracting useful
musculoskeletal parameter from the data acquired. In this way, the physician can
compare the parameter of his patient with the reference value and can make an
accurate diagnosis about the joint mobility status. [4]

Sensors used to create the device depends on the type of joint parameter it has
to detect and also on other factors related to performance, cost, calibration, and
service of the entire system. In general, the main focus on developing the joint
monitoring system is to make the system simple, easy-to-use, cost-effective, non-
invasive, wearable and with wireless communications. These characteristics are
essential to use the system in real-time to collect data during the daily activities of
the patients.

It is possible to investigate the health status of a joint measuring the range
of motion, the joint angle and the posture of the joint during the movements.
Therefore, a joint monitoring system has to record the activity of the joint in the
form of meaningful data for the physicians such as angle, range of motion (ROM)
and orientation. Techniques used to track the mechanics of joint during activities
can be categorized based on the following three key parameters:

• Joint angle: each movable joint has a physiological joint angle range for
specific activity or motion that depends on sex, age and other parameters of
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2 – State of the Art

the subject. It decreases with aging but also due to injuries or other muscu-
loskeletal disorders. Most joint angles measurement devices were mechanical
or electromechanical goniometers based on resistive potentiometers or strain
gauges. They had the disadvantages of being inflexible and of having a lower
accuracy than they were replaced by optical goniometers based on optical
fiber sensors. Other systems use textile-based conductive sensors or flex sen-
sors. However, to measure joint angles are now being increasingly used the
inertial measurement unit (IMU) because they have a small size, are low cost
and can measure 3D angle with high precision and accuracy.

• Joint motion: the physiological motion of the joint describes its movement
from the center of joint locations. Joint movements are flexion (bending), ex-
tension (straightening), adduction (movement towards the center of the body),
abduction (movement away from the center of the body) and rotations (inward
and outward movements) (Figure 2.1). The ROM of a joint is the full move-
ment it can make considering both amplitude and direction than to measure it
both angle and orientation should be known. Joint monitoring systems based
on goniometers, optical fiber sensors or flex sensors cannot be used because
they are capable of measuring only single-axis movements as angles, while joint
monitoring systems based on 3D IMU sensors can be used because they are
able of measuring the 3D motion of a joint. However, the technique usually
applied is imaging or video-based tracking where the joint motion is estimated
from images or videos using image processing techniques. The results ob-
tained with it are reliable and well-established but it has the disadvantage to
require a pre-equipped environment and setup that prevents using it during
normal daily activities. As the knee angle, the ROM can be reduced as the
consequences of some health problems or injuries.

• Skeletal tracking: is a technique used to build a skeletal model detecting
the position of various joints on a human form. It helps to obtain human pose
for different activities that can be used as a comparison to identified physical
disabilities. The majority of the skeletal tracking system is based on images
acquired by a single camera or a network of multiple cameras and complicated
image processing techniques. Due to the complexity of this technique, new
simple systems based on IMU sensors placed on different joint locations on a
human body are being developed.

In joint monitoring system sensors play an essential role in key parameter de-
tection, however, their outputs should be stored and processed to obtain the final
data that can be useful for the doctor to analyze the health status of the joint.
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2 – State of the Art

Figure 2.1: Types of joint movements. [4]

Three are the essential steps that a smart joint monitoring device must include
(Figure 2.2):

1. Acquisition and processing of the data from the sensors;

2. Feature extraction and feature selection;

3. Creation of a model based on learning from the extracting features and to the
expert knowledge to perform detection, prediction and decision making.

First of all the raw sensor data are acquired and pre-processed. The pre-
processing is a fundamental step that consists of a first cleaning of the dataset
to mitigate noise, motion artifact and sensor errors with the most suitable types of
filtering techniques and if the system is composed of multiple sensors of data for-
matting, normalization, and synchronization. Subsequently, the feature extraction
process is applied to the pre-processed data considering both the time domain and

12
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Figure 2.2: Flow diagram of a generic joint monitoring system. [4]

the frequency domain to construct the features of the dataset that are the individ-
ual measurable properties or characteristics of the data. Then, the feature selection
process is used to select the most discriminative features among those extracted.
At this point, the dataset is cleaned for the second time with a proper analysis
method to make sense of the data and to retrieve meaningful information. The
last step is the construction of the machine learning model based on the dataset
obtained and expert knowledge. The type of model used depends on the type of
the problem it has to solve: for classification and regression problems are used su-
pervised algorithm, for clustering problems are used unsupervised algorithms. The
first ones learning to classify or predict the data both from the input data they
received and their outputs, the second ones learning to associate each data to a
certain group that they created from the characteristics and patterns of the input
data.

2.1.1 Optical fiber sensors
A fiber optic sensor uses fiber optic technology as a transducer or as a means of
conveying information. The optical fibers are made of glass or polymeric materials
that allow the conduction of light inside them. The outermost part of a fiber optic
is called coating. This is a protective sheath that allows isolating the fiber from
disturbing factors. The innermost part of the fiber, the core, is the area where the
light wave propagation takes place. This area is surrounded by cladding. The core
is characterized by a refractive index slightly greater than that of the cladding so
as to be able to guide the rays inside. In Figure 2.3 is shown the general scheme
of an optical fiber and how these are generally organized inside a normal cable.
Generally, the light wave used in the optical fibers is in the infrared band and
therefore with wavelengths between 1300 and 1600nm.
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2 – State of the Art

Figure 2.3: Schematic of an optical fiber. [8]

The success of fiber optics is due to the possibility, taking advantage of differ-
ent characteristics of the propagation of the light beam, to measure and monitor
different types of quantities such as strain, temperature, pressure, current/voltage,
rotation, vibration, torsion, displacement, etc. The main advantages of these types
of sensors are:

• the very low invasiveness required for the measurements;

• immunity to electromagnetic disturbances;

• no power supply in the measuring zone;

• measures implemented in space;

• a long time of life;

• high chemical and mechanical stability;

• small space occupy and light weight;

• compatible with biomedical sterilization techniques.

In the biomechanical field, fiber optics are becoming an increasingly effective
alternative to make wearable devices to monitor joint angles, for example, the knee
(Figure 2.4). In this type of application, the optical fiber is used as an optical
strain gauge in order to evaluate the angular variations. This sensor exploits the
correlation between the elastic deformation and the variation in the propagation of
light of the fiber, using a Bragg grating structure.

A Bragg fiber-optic grid (FBG) is a periodic variation of the refractive index
of the core of a fiber segment that allows reflection only of certain wavelengths,
transmitting all the others. The operating mechanism is schematized in Figure
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2.5. A fiber deformation causes a variation of the Bragg grid pitch and thus the
wavelength of the reflected wave. The distributed change in the refractive index of
the fiber core is achieved using photosensitive fibers.

Using this principle, the fiber optic sensors used for joint monitoring, provide
a voltage output proportional to the variation of the wavelength of the reflected
wave and thus to the physical deformation of the fiber. The wavelength reflected by
the Bragg grating also varies with temperature. This, in the biomechanical field,
is not a problem because the variation of temperature is not such to generate a
disturbance in the measurement of the joint angles.

Figure 2.4: Knee monitoring using optical fiber. [9]

Figure 2.5: A Optical Fiber Bragg grating structure. [10]
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2.1.2 Vicon motion capture system

The most widely used technology, in the biomedical field, for the instrumental
analysis of motion is the Vicon optoelectronic system. This is an indoor system
that, through the use of a certain number of cameras, can reconstruct the trend
in time of the position taken by the markers placed on the subject to be analyzed.
The number of cameras depends on the size of the analysis area. Vicon cameras
work in the infrared field (wavelength between 780nm and 820nm). These record
the reflections generated by the markers, which are usually spheres or semi-spheres
(0.8-1.6cm in diameter) covered with reflector material. The markers are placed on
the anatomical landmarks of the area that needs to be studied.

Figure 2.6: Vicon Nexus 2.0 main panel. [11]

Vicon provides the Nexus 2.0 software (Figure 2.6) needed to perform both the
recording and processing of data. This software is developed on three steps:

• Calibration of the optoelectronic system: the calibration phase of the cameras
is essential before proceeding with the acquisition. In this step, the software
reconstructs the 3D coordinates of each marker.

• Labeling and marker tracking: this second step is responsible for the recogni-
tion and labeling of the markers (partly automatic and partly manual). The
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tracking consists instead in the reconstruction of the trajectory between one
frame and the successive one.

• Data processing and modeling: in this last step, the 3D reconstruction of the
subject is realized. In this way, the kinematic variables of interest, joint angles,
velocities and accelerations of the body segments can be measured.

2.1.3 Random forest
Random Forest ([12],[13]) is a supervised learning algorithm mostly used for clas-
sification and regression. It is based on an ensemble model that uses the decisional
tree as an individual model and the bagging method.

• Decisional Trees: the decision tree is a very intuitive classifier type. The
classification may be represented in terms of test sequence involving one or
more attributes. In graphical terms, this classifier can be schematized as in
Figure 2.7.

Figure 2.7: Decision Tree generic structure.

The path followed is the classification of the object. Each circle (node) indi-
cates a test carried out on one or more attributes. Depending on the outcome,
it is possible to follow a certain path in the chart (branch). So starting from
the instance, the path depends on the test results. The classification ends in
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a square (leaf) that indicates the class of the instance. Each node has an at-
tribute but the number of paths that can be followed depends on the number
of values that the attribute can take. To determine the class, it is not always
necessary to analyze all the attributes of the element.
One of the most used methods to realize a decision tree uses a top-down
approach (from the instant to the leaves of the decision tree). In this case, the
classes within the training set are analyzed. If all the elements of the training
set belong to the same class it is not necessary to do tests and there will be
only a leaf with that class. Generally, however, the training set has several
classes and therefore the easiest way to proceed is to test each attribute. Time
by time, the most informative attribute is selected and the tests are carried
out, to generate several possible paths equal to the number of possible values
that can assume that attribute. Once the path is identified, it is important
to understand if all the elements that have the same value of that attribute
belong to the same class. In this case, a leaf is created. Otherwise, another
attribute will be considered and proceed iteratively.

• Bagging: the bootstrap aggregation (bagging) is a simple and very pow-
erful ensemble method. An ensemble method is a technique that combines
predictions of multiple machine learning algorithms to make more accurate
predictions than any single model. So base-learned or individual classifiers are
trained with different training set bootstraps and the output with majority
voting is selected.
This technique is effective if the learned base is very unstable, for example in
the case of decision trees that depend very much on the training set (over-
fitting); different data sets are provided to each classifier and so, different
decision trees will be generated. In this way, very different classifiers will be
obtained to obtain a more correct classification. These different datasets are
generated by resampling the initial dataset. So, for this reason, decision trees
are excellent candidates for ensemble approaches.

Then, the Random Forest takes advantage of a set of decision trees (Forest),
promoting the diversity of classifiers by increasing the level of randomness in the
generation of decision trees (Random). Each tree, inside a Random Forest, is made
and trained from a random subset of the original training set data. For each node,
the absolute best attribute is no longer selected, but the best attribute is selected
from a random set of attributes. Random is a factor that aims to increase diversity
and decrease the correlation between the various decision trees. The final result
returned by Random Forest is the average of the results returned by the different

18



2 – State of the Art

trees in the case of a regression, or the class returned by the largest number of trees
in the case of classification. An example of the graphical structure of the Random
Forest is shown in Figure 2.8.

Figure 2.8: Random Forest generic structure [14]

2.1.4 Long short-term memory

A long short-term memory network (LSTM) [15] is a type of recurrent neural net-
work (RNN) used in deep learning. LSTMs are used more in learning and classify-
ing long data sequences. This type of network manages to consider long-term data
dependencies.

The classic RNN networks are trained using time backpropagation. This causes
the problem of the vanishing gradients: the information relative to previous phases
decays. So short-term parameters are considered more. The reverse problem (ex-
ploding gradients) can also occur, causing the drastic growth of the error.

LSTM can overcome the problems of the vanishing, or exploding, gradients by
using intermediate states to selectively store only useful information and forgetting
relevant information. To do this, this type of structure uses feedback connections.
An LSTM network consists of cells (LSTM blocks) chained together.

19



2 – State of the Art

The architecture of a generic block of LSTM, shown in Figure 2.9, is tipically
composed of:

• Cell state (ct): this is the output state of the cell;

• Hidden state (ht): this acts as working memory and is similar to the latent
state of RNN structures;

• Input data (xt): new input data of the LSTM block;

• Input gate (i): defines the measurement of how a new value flows into the
cell;

• Memory cell (g): this block handles the current memory of the cell, which
will be propagated at the next instant of time ;

• Forget gate (f): this element is not present in traditional RNN. This serves
to implement the reset function of the cell as it determines the extent by which
the current value remains in the cell;

• Output gate (o): defines how much the value will be considered to calculate
the output state of the LSTM block.

Figure 2.9: Long Short-Term Memory generic block structure [16]

A gate performs a series of matrix operations. Its state is managed by sigmoidal
functions in the range [0, 1], where 0 indicates inhibition and 1 the activation. Each
gate has its weight matrix which must be trained to determine the working mode.
In conclusion, the LSTM cell works like a mini neural network.
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The LSTM network is composed by cascading several blocks, as shown in the
Figure 3.13.This diagram shows the flow of a series of X data with C channels of
length S within an LSTM network. The first block of the network uses only the
initial data to determine the output and to generate the hidden state data. The
block at time t, instead, uses both current state and current data to calculate the
output. At each time pass, new information is added or removed based on the gates
of the current level.

Figure 2.10: Long Short-Term Memory generic structure [16]

2.2 Mitsui’s prototype

In this thesis, a joint monitoring system prototype developed by Mitsui Chemicals
has been tested. The purpose of the thesis is to evaluate the performance of Mitsui’s
optical fiber sensor measuring knee flexion-extension angular displacement during
ambulation. Vicon Motion Capture system is employed during data collection to
record the output voltage of the sensor and to extract the knee angle used as
references.
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Mitsui Chemicals prototype is a knee sleeve with five optical fiber sensors inte-
grated inside tight pockets. The sensors are positioned medially, laterally, inside-
medially, inside-laterally than the knee and above the patella, each one of this is
associated with one output channel from 1 to 5 respectively (Figure 2.11). Each
optical fiber sensor is connected through a USB connector to the Mitsui box (Figure
2.12) used to drive the voltage output of the sensors to the Vicon Motion Capture
system.

Figure 2.11: (a) Position and number of channel of the sensors integrated into the
Mitsui Chemicals prototype; (b) Mitsui Chemicals prototype.

Figure 2.12: Mitsui box.
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It is assumed that the output of multiple sensors positioned around the knee gives
more information about the knee angular displacement, however, from a biomechan-
ical point of view, the information gave by the sensors positioned medially, laterally
and above the patella is similar and also the one gave by sensors positioned inside-
medially and inside-laterally. During the stance phase of the gait cycle, the first
group of sensors is stretched and the second group is bent, vice-versa, during the
swing phase of the gait cycle the first group of the sensor is bent and the second
group is stretched. As a consequence, voltage outputs of the first group of the
sensors have a decrease during the swing phase, whereas, the second group has a
decrease during the stance phase (Figure 2.13).

Figure 2.13: Example of the voltage output of the five sensors considering only one gait
cycle. The vertical red line represents the toe-off event, before that there is the stance
phase of the gait cycle and after that there is the swing phase of the gait cycle.
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Chapter 3

Materials and Methods

3.1 Data collection

The data collection protocol of this thesis is the same used for the previous ver-
sions of the Mitsui prototype. It consists of walking on a treadmill at different
speeds while the output of the sensors and the motion of the subject are recorded
simultaneously by the Vicon motion capture system. Using the position of the
markers recorded by the Vicon system is possible to extract the knee angle during
the ambulation and utilized it as a reference to evaluated the knee angle that will
be predicted with the voltage output of the sensors.

Twenty healthy subjects are involved in the data collection. First of all, demo-
graphic information such as age, mass, and height of the subjects are recorded,
then the self-selected (SS) walking speed of each subject is evaluated. To do this,
the subject gets on the treadmill and the speed is changed to find the SS speed
without permitting him to know the speed value. Starting from 0 km/h the speed
is increased and when the subject thinks the one reached is his normal one to walk
the first speed estimate is founded. The speed continues to be increased until to
reach a fast walking and then start to be decreased. For the second time, the sub-
ject has to say when he thinks his normal speed is reached to find the second speed
estimate. The two estimates are averaged and the value of the SS speed is the
closest one that divides by two is pair. The SS speed is called the normal speed,
the slow speed is the SS speed minus its 50% and the fast speed is the SS speed
plus its 50%. (Table 3.1)

24



3 – Materials and Methods

Table 3.1: Subjects involved in data collection.

Subject Age Sex Height Mass Normal speed Slow speed Fast speed
(m) (kg) (km/h) (km/h) (km/h)

1 32 M 1.8 76 4 2 6
2 24 F 1.7 54 4.4 2.2 6.6
3 30 F 1.66 68 4 2 6
4 24 M 1.74 68 4.4 2.2 6.6
5 24 M 1.93 95 4.4 2.2 6.6
6 33 M 1.93 92 4 2 6
7 28 F 1.63 64 4 2 6
8 30 M 1.83 78 4 2 6
9 26 M 1.78 83 4.4 2.2 6.6
10 25 F 1.69 65 4 2 6
11 25 M 1.76 69 4.8 2.4 7.2
12 38 M 1.80 91 3.6 1.8 5.4
13 26 M 1.81 75 4 2 6
14 25 M 1.80 74 4.8 2.4 7.2
15 25 M 1.80 84 3.6 1.8 5.4
16 23 F 1.77 58 4 2 6
17 25 F 1.68 57 4 2 6
18 24 M 1.75 64 4 2 6
19 24 F 1.67 53 4 2 6
20 26 F 1.60 55 4 2 6

At this point, the trials without the sleeve prototype are executed, therefore, a
19 retro-reflective lower limb marker set is positioned on the subject. The locations
of the markers are (Figure 3.1):

• 4 on pelvis (2 on both left and right PSIS and ASIS);

• A cluster of 4 on thigh;

• 2 on lateral and medial knee epicondyles;

• A cluster of 4 on shank;

• 2 on lateral and medial ankle malleoli;

• 3 on shoe (1 on heel, 2 on first and fifth metatarsal heads).
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Figure 3.1: Lower limb marker set positioning.

The trials are performed with the subject on the treadmill and in order of exe-
cution are:

• Static trial: the subject remains firm for some seconds, with slightly apart legs
and open arms;

• Functional hip trial: the subject perform three complete rotation anticlockwise
and three clockwise with the pelvis;

• Functional knee trial: the subject perform three shallow squats;

• Knee ROM trial: the subject, holding to the treadmill, stand on one leg and
execute three flexion-extension of the knee with full ROM.

Subsequently, the trials with the sleeve prototype have to be executed. The
Mitsui Chemicals have realized three sizes of the prototype and for each subject,
the more appropriate size must be chosen. To do this, the subject should wear
the sleeve, thus the two markers on the knee, the cluster of four markers on the
shank and the two markers on the ankle are detached and the shoe is removed.
The subject wears the different size of the prototype and the one tighter which
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doesn’t create discomfort is chosen. Before to start the trials the sensors have to
be calibrated with the sleeve unloaded than the subject have to take off the sleeve,
the Mitsui box is connected to the Vicon system and the sensors can be calibrated
at 3.5 V. At this time, the subject wear again the sleeve, the cluster of four marker
on the shank is reattached on the same position and the shoe is worn, then the
setup to execute the trials is ready (Figure 3.2).

Figure 3.2: Setup of trials with Mitsui prototype.

The trials are performed, as the ones conducted without sleeve, with the subject
on the treadmill and in order of execution are:

• Knee ROM trial: it’s the same executed without sleeve;

• Six walking trials: the subject walks on the treadmill at different speeds for
three minutes. Two trials for each speed prevoiusly detected are executed with
a random order;

• Knee ROM trial: it’s the same executed without sleeve;

With the last knee ROM trial, the data collection is concluded. The data
recorded by the Vicon system are processed with two software, Nexus and Vi-
sual3D, and exported on a .mat file.
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3.2 Data pre-processing

During the data collection, different types of trial are executed but the ones useful
for the next steps are only the walking trials. For each one of these, the data saved
in the .mat file are the voltage signal obtained as output of the sensors and the knee
angle signal, the heel-strike events, and the toe-off events computed by the position
of the marker recorded by the Vicon system (Figure 3.3). Thus, since there are
six trials for each subject and twenty subjects took part in the data collection the
complete dataset is composed of 120 elements, each one with five features that are
the voltage signals of the five channels of the prototype and one reference that is
the knee angle signal.

Figure 3.3: Example of the signals obtained from the data collection. The orange signal
is the voltage output of the sensors, the light blue signal is the knee angle, the red lines
are the heel-strike events and the blue lines are the toe-off events.

The voltage signals are the raw output of the sensors, then they have to be
pre-processed before using them. First of all, they are filtered with a Butterworth
low-pass filter of order 8 with a cut-off frequency of 4 Hz to remove the small
fluctuations (Figure 3.4). Subsequently, a Butterworth high-pass filter of order 7
and cut-off frequency of 0.3 Hz is applied to remove the drift present in voltage
signals of some subjects (Figure 3.5).
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Figure 3.4: Example of the effect of the low-pass filtering. The yellow signal is the
voltage signal before the low-pass filtering and the light blue signal is the voltage signal
after the low-pass filtering.

Figure 3.5: Example of the effect of the high-pass filtering. The figure on the top is the
entire voltage signal of a walking trial before high-pass filtering and with the presence
of the drift, the figure below is the same signal after the high-pass filtering and without
drift.
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In conclusion, because the range of voltage signals across the subjects sometimes
is very different they have been normalized using the voltage values at 10 and 40
degrees, an angle range present in all the elements of the dataset (Figure 3.6).
These values are extracted for each element averaging the value of voltage at 10
and 40 degrees of the representative gait cycles that composes them. The formula
used to normalize the voltage signals is

signaln = signal − signal10

signal40 − signal10

where

• signaln is the voltage signal after the normalization;

• signal is the the voltage signal before the normalization;

• signal10 is the voltage value of the signal considered at 10 degree;

• signal40 is the voltage value of the signal considered at 40 degree.

Figure 3.6: Example of the effect of the normalization in channel 2 of subject 4 and
subject 8. Before the normalization, the range of the voltage signals of subject 8 is smaller
than the one of subject 4, after the normalization the voltage range of the two subjects is
much the same. The six signals in the four plots are the voltage signals of the six trials.
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3.3 Outlier detection algorithm

During the pre-processing phase, in some voltage signals of the dataset an unusual
behavior has been noticed. This consists of signals with a very different shape
respect the one that was expected and signals with an excessive amplitude than
that of the other signals. The voltage signals with these uncommon behaviors are
called outliers and two algorithms are developed to identify them, one based on a
correlation analysis to detect ambiguity in the shape and one based on an amplitude
analysis to detect ambiguity in the amplitude.

3.3.1 Correlation analysis

The first type of voltage signals considered as outliers is the one with a very different
shape compared to the shape expected for their channel of belonging. To find them
the signals after the filtering stage are considered and are divided by channel and by
the speed of the element to which they belong. Considering the dataset is composed
of 120 elements and each element is composed of 5 channels, in total there are 600
voltage signals; if they are divided by 5 channels and by 3 types of speed they can
be split into 15 groups, each one composed of 40 signals. (Table 3.2)

Table 3.2: Voltage signals of the dataset divided by channels and by speed.

channel 1 channel 2 channel 3 channel 4 channel 5
fast speed 40 signals 40 signals 40 signals 40 signals 40 signals

normal speed 40 signals 40 signals 40 signals 40 signals 40 signals
slow speed 40 signals 40 signals 40 signals 40 signals 40 signals

The behavior of each voltage signal of the dataset is extracted averaging the
gait cycle that composes it. The average signals obtained for those of the same
group are averaged to find the representative voltage signal of the group. At this
point, it is assumed that signals belonging to the same group have to be correlated
because the sensors used during the data collection are always the same and the
subject involved in the study are healthy subjects than the output of the sensors
have to be similar during the ambulation for the same channel and the same speed.
Thus, the correlation coefficient (CC) between the representative voltage signals of
each group and the average signals belonging to its group is computed. Those who
result anticorrelated are considered outliers. (Figure 3.7)
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Figure 3.7: Example of correlation analysis carried out for the voltage signals belonging
to the group of channel 1 and fast speed. In the figure on the left, the light blue gait
cycles are the average signals extracted from all the voltage signals of this group, the red
gait cycle is the representative signal of the group obtained averaging the light blue gait
cycles. In the figure on the right, the red gait cycle is still the representative signal of the
group, the blue gait cycle represents a high correlated signal (CC 0.96), the green gait
cycle represents a medium correlated signal (CC 0.25), the orange gait cycle represents
an anticorrelated signal (CC -0.75).

3.3.2 Amplitude analysis

The second type of signals considered as outliers is the one with an excessive ampli-
tude compared to the amplitude of the other signals belonging to the same channel.
The increase of amplitude is subsequent to the normalization and happens because
the denominator of the formula used to normalize becomes very small since the
voltage values at 10 and 40 degree are very similiar. To find these type of outliers
the voltage signals of the dataset are grouped by channel and, as in the correlation
analysis algorithm, the behavior of each signal is extracted averaging the gait cy-
cles which composes it. Then, the amplitude of the average signals is computed by
subtracting their minimum value from their maximum value. It is assumed that
the distribution of the amplitude of each channel can be considered as a normal
distribution, then the signals with an amplitude which is 3 standard deviations
(SD) away from the mean of the distribution are considered outliers. (Figure 3.8)
(Figure 3.9)
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Figure 3.8: Normal distribution.

Figure 3.9: Example of the amplitude of outliers found on channel 4 and channel 5.
The red bar represents the value of the mean + 3 standard deviations, the blue bars
represent the amplitude of the signals identified as outliers. In this case, both the outliers
of channels 4 and 5 are voltage signals of the same subject, respectively of subject 21 and
subject 23.
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3.4 Outlier replacement algorithm

After the detection of the outliers inside the dataset a strategy to deal with them
has been developed. Since the following machine learning algorithms will use as
predictors the voltage signals of the five channels of the Mitsui’s prototype an
algorithm to substitute the outliers with other appropriate signals is implemented.

As explained inside the section "Mitsui’s prototype" of the second chapter, it is
expected that voltage signals of the five channels can be divided into two sets based
on the similarity of their output: the first one is composed by the channels 1, 2 and
5 and the second one by the channels 3 and 4. The first step of this algorithm is to
demonstrate that the correlation among the voltage signals belonging to the same
set is high enough to substitute the outliers of one channel with the voltage signals
of the correlated channel. To do this, the dataset is divided into the same 15 groups
described in the previous algorithm (Table 3.2). Also in this case, the behavior of
all the voltage signals of the dataset is extracted averaging the gait cycles which
compose them. Subsequently, the extracted signals belonging to the same group
and that are not classified as outliers are averaged and a new representative voltage
signal for each group is found. At this point, for each speed is computed the CC
among the representative signals of the five channels (Figure 3.10).

Figure 3.10: Example of the extraction of the correlation coefficients among the five
channels of the normal speed. In the figure on the left, the gait cycles are the representa-
tive voltage signals for the five channels of the normal speed. In the figure on the right,
there are the CC computed among the gait cycles on the figure on the left.
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The CC computed separately for the three speeds are averaged and the results
obtained confirmed the original assumption: the CC calculated between signals
belonging to channels of the same set is very high, around 0.98 - 0.99, on the
contrary, the signals belonging to channels of different sets result anticorrelated,
with a CC from -0.90 to -0.96. (Figure 3.11)

Figure 3.11: Correlation coefficients of the five channels averaged on the three speeds.

These results allow to proceeds with the second step of the algorithm that is the
replacement. This is carried out as listed below:

• Channel 2 does not have outliers, then, the ones of channels 1 and channel 5
are replaced with its voltage signals;

• The outliers of channel 3 are replaced with the voltage signals of channel 4
and vice-versa;

• The replacement of an outlier in one element is extended to all the other
elements of the subject using for each one the respective voltage signals. This
is done because also if the CCs between correlated channels are very high the
signals are not completely the same. It could be confusing for the machine
learning algorithm to have for the same subject different patterns inside one
channel. (Figure 3.12)
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Figure 3.12: Example of outliers replacement. It is shown a subject with 3 outliers in
channel 1 of the first, second and fourth element. Appling the replacement algorithm the
voltage signals of channel 1 of all the elements are replaced with the voltage signals of
channel 2 of the respective elements.

3.5 Machine learning algorithm
Subsequently to the outliers replacement step, it is possible to construct the ma-
chine learning model to predict the knee angle from the voltage signals of the five
sensors. The model has to solve a multiple regression problem where the predictor
variables are the five voltage signals and the forecast variable is the knee angle. Two
types of machine learning algorithms are used: one without memory, the Random
forest (RF) and one with memory, the Long short-term memory (LSTM). They are
applied to the dataset with a leave-one-subject-out (LOSO) cross-validation (CV)
approach. This means that for both the algorithms are created 20 models, one per
subject, and for each model, all the subjects minus one are used as a training set
and the excluded one is used as a test set. The performances are evaluated on each
subject in terms of root-mean-squared error (RMSE).

RMSE =
⌜⃓⃓⎷ n∑︂

i=1

(ŷi − yi)2

n
(3.1)

where

• ŷ is the predicted value;

• y is the observed value;

• n is the number of observations.
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3.5.1 Random Forest
The training set is created concatenating the five voltage signals of all the subjects
minus one and the test set is created concatenating the five voltage signals of the
remaining subject. The Random forest model is designed and trained with the
function TreeBagger of Matlab.

Two parameters are tuned:

• Number of trees: 20;

• Minimum leaf size: 20.

The training is repeated with these two parameters set. The testing is executed
with the function predict of Matlab. The predicted knee angles is obtained and is
compared with the reference one to extract the RMSE value of the current subject.

3.5.2 Long short-term memory
Twenty consecutive steps are extracted from each element of the dataset. The
training set is created by grouping the steps of all the subjects minus one and the
test set is created by grouping the steps of the remaining subject. The steps of
both the two sets are sorted by length. For each of the five channels of the two sets,
the mean and the standard deviations across the steps are computed. The data are
normalized with the formula

xn = x − mean

SD

where

• xn is the data after the normalization;

• x is the data before the normalization;

• mean is the mean computed for one of the five channels;

• SD is the standard deviation computed for one of the five channels.

The LSTM model is designed and trained with the function trainNetwork of
Matlab. The architecture of the LSTM network created is (Figure 3.13):

• Sequence input layer with dimension 5;

• LSTM layer with 100 hidden units;
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• Fully connected layer with dimension 50;

• Dropout layer with dropout probability 0.5;

• Fully connected layer with dimension 1;

• Regression layer.

The parameters of the LSTM network chosen and tuned are:

• Number of epochs: 50;

• Mini batch size: 32;

• Learning rate: 0.001;

• Optimizer: adam.

The network is trained with these parameters set. The testing is executed with
the function predict of Matlab using a mini-batch size of 1. The predicted knee
angles is obtained and is compared with the reference one to extract the RMSE
value of the current subject.

Figure 3.13: LSTM network designed.
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Chapter 4

Results

4.1 Outlier detection algorithm

The outliers identified with the correlation analysis and with the amplitude analysis
are shown respectively in Figure 4.4 and 4.5. The total number of outliers identified
inside the dataset using both analysis techniques is 54, which is 9% of the voltage
signals of the dataset (Figure 4.6). The outliers are distributed across subjects,
speeds and channels respectively as shown in Figure 4.1, 4.2 and 4.3.

Figure 4.1: Percentage of outliers detected for each channel relative to the maximum
number of voltage signals belonging to each channel, which is 120.
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Figure 4.2: Percentage of outliers detected for each speeds relative to the maximum
number of voltage signals belonging to each speed, which is 100.

Figure 4.3: Percentage of outliers detected for each subject relative to the maximum
number of voltage signals belonging to each subject, which is 30.
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4.2 Outlier replacement algorithm

After the outliers replacement, the subjects with 1 or 2 outliers inside their channels
will have respectively 2 or 4 of 5 equal channels (Figure 4.7). The subjects involved
in the replacement are 9 of 20, of which 7 have 2 equal channels and 2 have 4 equal
channels (Table 4.1).

Table 4.1: Channels replacements made across subjects

Subject Channel outliers Equal channels
3 ch1 [ch1,ch2]
4 ch1 [ch1,ch2]
5 ch1 [ch1,ch2]
12 ch3 [ch3,ch4]
15 ch4 [ch3,ch4]
17 ch4 [ch3,ch4]
18 ch4 [ch3,ch4]
19 ch4,ch5 [ch2,ch5],[ch3,ch4]
20 ch4,ch5 [ch2,ch5],[ch3,ch4]

4.3 Machine learning algorithm

The general results obtained in terms of RMSE for the Random forest and the
LSTM are shown in the following Table 4.2. The results obtained in terms of
RMSE, for each subject, are shown in Figure 4.8.

Table 4.2: RMSE

mean (°) SD (°) min (°) max (°)
RF 5.22 1.94 2.51 9.29

LSTM 4.56 1.74 2.28 8.21
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4.4 Discussion
Considering the distribution of outliers identified inside the dataset it is possible to
notice that:

• they are distributed differently across the channels, in particular, channel 2 is
the only one without outliers and channel 4 is the one with the highest number
of outliers (Figure 4.1);

• they are almost equally distributed across speeds (Figure 4.2);

• they are distributed primarily on two groups of subjects, one at the beginning
of the dataset, subject 3, 4 and 5, and one at the end of the dataset, subject
17, 18, 19, and 20 (Figure 4.3). Moreover, all the subjects of the first group
have an outlier in channel 1 and all the subjects of the second group have an
outlier in channel 4 (Figure 4.6);

It can be deduct from these three observations that the presence of outliers is
not correlated with the walking speed but with a factor involving both the subjects
and the channels. Giving that during the data collection different sizes of the sleeve
are used and sometimes sensors are substituted due to their malfunctioning, the
outliers could be related both to an inappropriate size of the sleeve or of failure
relative to some specifical sensors used for subjects in a row. Also, since channel 2
is the only one without outliers identified it could be considered the most robust
channel.

Considering the results in terms of RMSE achieved with the two machine learn-
ing models designed it is possible to notice that:

• the averaged RMSE obtained with the LSTM is smaller than the one obtained
with the RF but of only 0.66° (Table 4.2). However, looking at the resulting
values of RMSE for each subject the LSTM obtains a small value of RMSE
for 80% of the subjects (Figure 4.8);

• subjects with replaced channels allow obtaining both a small or large value of
RMSE respect to the average RMSE. For example, subjects 3, 4 and 5 permits
to achieve RMSE values comparable with the ones of subjects without channels
replaced, on the contrary, subject 17 is one of the subjects with the highest
value of RMSE;

• for the subjects 18, 19, and 20 the RF obtains the highest values of RMSE,
instead, the LSTM gets values around the average RMSE. In particular, for
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subject 20, one of the two subjects with 2 channels replaced, it achieves an
RMSE value under the average RMSE;

• the subject with the highest value of RMSE is a subject without outliers and
then without replaced channels.

These results confirming that a machine learning model with memory is capable
to better manage the time series prediction respect to a model without memory.
The fact that subjects with replaced channels permit to have a small value of RMSE
means that not all the five channels are necessary to achieve a good prediction, but
what it is needed is at least have two good channels between the two groups of 1,
2 and 5 and 3 and 4 (as it happens in subject 20). Having 5 good channels can
lead to reaching a value of RMSE around 2-3°. The presence of subjects without
outliers but with a large value of RMSE is due to the fact that they have uncommon
signals in their channels that are not recognized by the outlier detection algorithms
implemented.
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Chapter 5

Conclusions

This thesis has aimed to demonstrate the feasibility of the use of the Mitsui’s optical
fiber sensors to measure the knee flexion-extension angle during ambulation. The
Mitsui Chemicals has provided a sleeve prototype with five sensors integrated to
collect the data. The work done for this purpose can be resumed in four steps:

• Acquisition of the data: 20 healthy subjects are involved in a data collection
procedure to capture the output of the sensors and the knee angle to use as a
reference;

• Analysis of the data: the data acquired are pre-processed, then two algorithms
to identified and manage uncommon data considered as outliers are developed
and applied;

• Knee angle prediction: two machine learning models are designed and applied
to the data to predict the knee angle from the voltage output of the Mitsui
sensors;

• Analysis of results: the knee angle predictions obtained from the two machine
learning models are compared and evaluated in terms of RMSE.

Considering the knee angle predictions achieve it is possible to say that in general
with the voltage outputs of at least two channels of the prototype it is possible to
obtain good results and that using all the five channels the results are improved.
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5 – Conclusions

At the end of the work, some of its improvements can be suggested. The more
important are lead to:

• Sensors resistance: during the data collection often happened that after us-
ing sensors for some subjects they have to be changed due to malfunctions.
Then, their resistance has to be increased to use them continuously during
ambulation;

• Sensors calibration: the calibration of the sensors is done with the sleeve
unloaded but it would be better done it with the sleeve worn by the subject.
In this way, it is possible to associate a certain angle to the same value of
voltage for all the subjects and this value can be used to normalize the signals;

• Dataset enlargement: the dataset is composed of 20 subjects and some of them
have reported signals with uncommon behavior respect to the general behavior
of the dataset. It would be useful to record other subjects to realize a more
consistent normal behavior of the voltage signals of each channel and to give
to the machine learning algorithm more information to predict the knee angle;

Other improvements can be obtained using different algorithms for outliers de-
tection and management and using different types of models to predict the knee
angle.
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