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Abstract 

Molecular docking is a computational screening approach in drug design able to predict the 

conformation of a protein-ligand complex. Docking algorithms provide an efficient and cost-

effective support to experimental techniques and high-throughput screening. Molecular docking 

is generally applied starting from the knowledge of the protein binding region. However, a 

precise information about the correct binding site is often missing and it becomes necessary to 

explore the entire protein surface by docking algorithms. In the present thesis, a new 

methodology to identify the experimental binding pose of small molecule ligands into protein 

structures where the real binding sites are unknown will be presented. The approach consists of 

carrying out ligand-protein docking separately in multiple fragmented boxes, shifting the 

location of the box step by step, in order to cover the entire surface of the protein. This 

fragmented docking has been compared with the blind docking performed by standard docking 

protocols on 116 protein-ligand complexes of Heat Shock Protein 90 – alpha and 176 of Human 

Immunodeficiency virus protease 1. The fragmented docking has demonstrated its ability to 

identify more accurate docking poses than blind docking performed by AutoDock-Vina. In order 

to improve the docking results Molecular-Mechanics/Generalized-Born-Surface-Area has been 

employed to re-score the docking outcomes. The results deriving from this rescoring show that 

MM/GBSA is able further increase the accuracy of the approach. The method is relived a good 

compromise between accuracy and computational effort. Future studies are needed to 

overcome the main limitation of the present algorithm, which is related to the conformational 

plasticity of the protein targets.  
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1 Introduction 

The current chapter introduces the present Master Thesis research, elucidating aims and 

objectives. 

Aim of the thesis 

The aim of the thesis is to develop a new methodology of protein-ligand docking able to improve 

the experimental binding modes and affinities of small molecules within the binding site of 

particular receptor targets when the binding site in unknown. Protein-ligand docking is the 

procedure performed to predict the position and orientation of a ligand when it is bound to a 

receptor.  

Organization of the thesis 

The present thesis is divided in sections briefly described as following: 

Chapter 1 is the present introductory part. 

Chapter 2 is devoted to illustrating the process leading to the discovery and development of 

new drugs. Since the affinity between a target and a drug has a crucial importance in order to 

find efficacy in vivo drugs, an explanation of physicochemical mechanisms underlying protein-

ligand binding is provided. Finally, the methods available for investigating protein–ligand binding 

affinity, including experimental and computational approaches are presented.  

Chapter 3 provides a theoretical overview of the methods employed in the present work. 

Concept of molecular modelling for investigating biological mechanisms is introduced. Then, 

molecular docking is discussed, focusing on search algorithm and energy scoring function for 

generating and evaluating ligand poses. Finally, Molecular Mechanics approach is introduced to 

provide a background on physical basis behind molecular modelling. 

Chapter 4 presents a novel protocol used to perform protein-ligand docking. Furthermore, the 

top discovered hits have been reported with a detailed discussion about the validity of the 

approach. 

Chapter 5 is devoted to general conclusions. 
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2 Rational Drug Discovery 

This chapter is devoted to illustrating the process leading to the discovery and development of 

new drugs. Since the affinity between a target and a drug has a crucial importance in order to 

find efficacy in vivo drugs, an explanation of physicochemical mechanisms underlying protein-

ligand binding is provided. Finally, the methods available for investigating protein–ligand binding 

affinity, including experimental and computational approaches are presented. 

2.1 Drug Discovery Pipeline 

Discovery and development of a new drug is generally known as a very complex process which 

requires a lot of time and resources. It has been estimated that each new drug employs 14 years 

to develop, costing about $800 million. In Figure 1 is presented the drug discovery process.  

The starting point is to select a relevant target. Target discovery is composed of three steps: the 

provision of disease models, target identification and target validation1. Target identification 

and validation can be achieved whit molecular and system approach. The molecular strategy 

employs techniques such as genomics, proteomics, genetic association, forward genetics and 

reverse genetics, whereas the systems strategy employs clinical and in vivo studies to identify 

potential targets. A genomics approach tries to identify the disease targets at the level of gene 

expression through the comparison of normal and diseased tissue. Proteomics measures protein 

expression, activity and interaction with other biological macromolecules in order to understand 

cellular function. Genetic association identifies relationship between mutations in genes in order 

to determine disease mechanism to target identification. Forward genetics seeks to find the 

genetic basis of a phenotype using cell and animal models, while reverse genetics proceeds in 

the opposite direction by analyzing the phenotypic effects of specific gene sequences obtained 

by DNA sequencing to discovering the function of a gene. These experimental methods are 

laborious and time consuming, then a series of computational tools have also been developed 

in order to improve target identification. Computational tools can be categorized into sequence-

based approach and structure-based approach. Sequence-based methods include sequence 

alignment for gene selection, prioritization of protein families, gene and protein annotation, and 

expression data analysis for microarray or gene chip. A method employed in structure-based is 

reverse docking, which consists of docking a compound with certain biological activities in the 

binding sites of all three-dimensional structures in a given protein database. The advantage of 
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reverse docking is in addition to identifying target candidates for active compounds, it is also 

possible to identify potential targets responsible for the toxicity or side effects of a drug. 

However, reverse docking still has some limitations because the proteins present in the Protein 

Data Bank2 (PDB) databases are not sufficient to cover all the protein information of disease and 

the approach does not consider protein flexibility during docking simulation. These two aspects 

and the inaccuracy of the scoring functions for reverse docking will produce false negatives.  

After identifying the target, it must be validated to demonstrate the functional role of the 

potential target in the disease phenotype. Target need to be considered druggable. It means 

that the protein should have a binding site which can contain a drug-like compound with 

sufficient affinity and specificity.  

The second step is hit generation. A hit is a compound that binds to the target and has the 

desired effect. In order to identify hits, it is needed screening a compound collection on the 

selected target. The compound collection consists of natural or synthesized products. The 

screening can be achieved with experimental or computational methods. High throughput 

screening (HTS) is an experimental method that involves screening the entire library of 

compounds on the target in complex laboratories and without a priori knowledge on the nature 

of the chemotype that could have activity on the target protein. A computational method is 

virtual screening that screens the large number of compounds on a target and measure 

compounds that exhibit activity at a set concentration. The hit identification phase lasts around 

6 months. The output of hit identification is a set of compounds whose chemical structures have 

been checked and which have reproducibility been shown to have activity.  

Before the lead optimization, the hits to leads phase establishes which compounds has the 

potential to be optimized into a drug candidate. According to the Lipinski Rule of Five3, a 

molecule to became drug should to have no more than 5 hydrogen bond donors, 10 hydrogen 

bond acceptors, a molecular weight less than 500 Daltons and the octanol-water partition 

coefficient (LogP) lower than 5. In this phase significant resources are spent in optimizing the 

properties of compounds which are re-synthesized. The aim is to establish preliminary structure-

activity relationships (SAR) to explore the physiochemical and ADMET properties of the 

compounds. ADMET refers what the body does to the drug in term of adsorption, distribution, 

metabolism and excretion. This phase lasts about 6 months. 

The lead optimization is the most resource-intensive phase in drug discovery. The main 

challenge is to develop one or more compound with sufficient affinity for the target, acceptable 
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drug-like properties and efficient to work in the cell. Lead optimization takes 18-30 months. The 

output is a set of compounds with in vivo efficacy in animal models and with acceptable 

pharmacokinetics properties. Pharmacokinetics refers the study of how an organism affects a 

drug. 

In preclinical trials the compounds are prepared in order to be tested in humans. This includes 

synthesis, formulation, toxicology and design of clinical trials. The synthesis and purification of 

compounds has a huge impact on the project cost.   

Clinical trials are the most expensive and time-consuming process in drug discovery. They can 

be divided in three separate stages. In phase I the drug’s safety is studied, in phase II drug’s 

efficacy is tested and in phase III the number of patients is increased in order to evaluate drug’s 

effectiveness, benefit and adverse reaction. If drug succeeds all phases successfully it is launched 

in the market. However, continued trials and monitoring is required4,5.  

 

Figure 1. Drug discovery process. Protein-ligand affinity is investigated with computational methods in hit generation and 

with experimental methods in lead optimization in order to produce drug candidates for preclinical and clinical trials from 

initial library of millions of compounds. 

2.2 Computer Aided Drug Design  

Many pharmaceutical companies employ Hight Throughput Screening (HTS) in hit genration 

phase. HTS can identify molecules with chemical novelty with no a priori knowledge of the drug 

binding site on the target protein. Compounds are screened in cell-based assays to test for a 

change in the activity of specific signaling pathways. However, HTS is very expensive, consuming 

large quantities of target and compounds and requiring significant investment in robotic 

screening device. On the other hand, employment of computer-aided drug discovery (CADD) 

techniques by pharmaceutical companies became essential for the preliminary stage of drug 

discovery to expedite the drug development process in a more cost-efficient way and to 

minimize failures in the final stage. CADD approaches allows to reduce biological tests, to reject 
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compound with poor quality, to supply drug-receptor interaction pattern, to let a faster and 

more cost-efficient lead discovery and to provide compounds with high success rates6,7.  

In particular, the computational drug design tools can be divided into ligand-based drug design 

(LBDD) and structure-based drug design (SBDD) (Figure 2). These two methods are dependent 

on the information available on the identified target. SBDD approach uses 3D structure of the 

target for the generation or screening of potential ligands followed by synthesis, biological 

testing, and optimization. In contrast, LBBD approach employs computational modeling 

methods to develop theoretical predictive models of molecules with diverse structures and 

known potency. In detail, SBDD design and evaluate ligands based on their predicted 

interactions with the protein binding site8. In SBDD 3D proteins structure can be downloaded 

from an online dataset, as for example the Protein Data Bank website2 (PDB). The protein 

structures usually are obtained with methods such as X-ray crystallography and nuclear 

magnetic resonance spectroscopy (NMR). However, not all the protein structures that the 

human genome can encode are disclosed. In this case, homology modeling9 permits to build 

new protein model by using templates (structures that are phylogenetically similar to the 

target). SBDD can be divided into two categories: de novo design and virtual screening. De novo 

design approach designs specific ligands for particular target based on the composition of the 

active site and the orientation of various amino acids at the binding site. Virtual screening 

approach uses available small molecules libraries to identify compounds with specific bioactivity 

for target biomolecules10. The aim of virtual screening is to rank active and inactive molecules. 

The commonly used strategy for virtual screening is molecular docking. Molecular docking 

models ligand-protein interaction in order to predict the ligand conformation in the active site 

(pose) and estimates the binding affinity.  

In case where 3D protein structure is lacking, LBDD method is employed. The information extract 

from a set of ligands active against a target can be used to identify significant structural and 

physicochemical properties (molecular descriptors) responsible for the observed biological 

activity. Quantitative structure activity relationship (QSAR) and pharmacophore-based methods 

are common technique employed in LBDD. QSAR can be used to derive a model that correlates 

molecular structures with features responsible of biological activities. In order to build the 

model, the number of compounds with activity to consider should be greater than 20 and they 

should be acquired using the same experimental protocol. Moreover, molecular descriptors 

should have no autocorrelation to avoid overfitting and the final model should to be validate. 
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Alternatively, a pharmacophore model can be generated. The model should be contain 

information of molecules that bind to the biological target of interest11. 

Both SBDD and LBDD are successfully utilized in drug discovery. Another solution is the 

integration of these two methods in a drug discovery study. It can provide better and more 

extensive information in the modeling of innovative drug candidates against various diseases12. 

 

Figure 2. Workflow of Computer Aided Drug Design (CADD). There are two major types of drug design. The first is referred 

to as ligand-based drug design (LBDD) and the second as structure-based drug design (SBDB). In LBDD the ligand is known, 

and the structure of the protein remains unknown. The ligand is used to derive a pharmacophore model that defines the 

minimum necessary structural characteristics that a molecule must possess in order to bind to the target. Alternatively, the 

quantitative structure-activity relationship (QSAR) can be used. It correlates chemical structures with biological activity in a 

dataset of chemicals. In SBDB ligand and target are both known. SBDD can be divided in de novo design and virtual 

screening. In first method ligands are specified designed for the target. In the second method a compounds library is used 

in order to identify drug candidates.  

2.3 Thermodynamics of Protein-Ligand Complexes 

Proteins research represent a primary interest in biomedical science. Proteins involve in 

structural, immune, transport and enzymatic functions. In order to exert this function, they have 

to bind other molecules such as peptides, nucleic acids and ligands. The knowledge of the 

interaction binding is needed to understand biochemical process13. In particular, proteins-ligand 

binding is investigated in drug design in order to develop new molecules with pharmacological 

activity.  
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A drug works only when bound to its target receptor. The strength of the binding interaction 

between a biomolecule and a ligand is known as binding affinity.  Quantify binding affinity allows 

to estimate the drug in vivo efficacy14.  

The region of the protein responsible of interaction with another molecule is known as binding 

pocket. Three different models have been proposed to explain the protein–ligand binding 

mechanisms. In Figure 3 the models of protein-ligand binding are displayed.  

The first model called “lock-key” model,  was introduced by Fisher15 in 1894. In this model the 

protein and the ligand are considered rigid. The binding pocket is thought as a lock in which only 

the correct ligand size (the key) can be insert. Multiple conformations are neglected. For this 

reason, it may lead to wrong evaluations16. The second model is the induced fit model which 

considers the conformational flexibility of the ligand binding site17. The conformational select 

model is the third model that takes into account dynamic interactions. Protein does not exist as 

a single, rigid conformation but rather as an ensemble of conformational states that coexist in 

equilibrium.  The ligand can bind selectively to the most suitable conformational state. 

 

Figure 3. The three different binding models of protein and ligand. (a) Lock and key model, (b) the induced fit model and (c) 

the conformational selection model. The protein is illustrated in blue and the ligand in orange. 

The ligand L and the protein P in the unbound states generate the complex LP after a chemical 

reaction as reported below:  

 

[1] 
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where PL represents the protein-ligand complex, kon and koff are the kinetic rate constants that 

explain the binding and unbinding reactions, respectively. The units of kon and koff are M-1 s-1 and 

s-1, respectively. 

Binding affinity is measured by the equilibrium binding constant Kb and dissociation constant Kd. 

In this context, smaller Kd values correspond to a greater binding affinity of the ligand for its 

target18.  

In simple terms, Kd corresponds to the drug concentration at which half of the receptor binding 

sites are occupied and is defined by the following concentration ratio of reactants and product: 

𝐾𝑏 =
𝑘𝑜𝑛

𝑘𝑜𝑓𝑓
=

[𝑃][𝐿]

[𝑃𝐿]
=

1

𝐾𝑑
 

the square brackets indicate the equilibrium concentration of protein [P], ligand [L] and protein-

ligand complex [PL]. 

Therefore, the fast binding rate accompanied by a slow dissociation rate will give a high binding 

constant and, hence, a high binding affinity16. 

The binding affinity is influenced by non-covalent intermolecular interactions such as hydrogen 

bonding, electrostatic interactions, hydrophobic and Van der Waals forces between the two 

molecules.  

Other important parameters useful to define affinity are IC50 or EC50, namely, the drug 

concentrations giving half-maximal inhibition or effect13.    

From an energetically point of view, binding affinity is calculated from the Gibbs free energy 

difference between the bound and unbound states. A helpful analytical way to calculate the 

binding free energy ΔG using the constant 𝐾𝑏 or 𝐾𝑑 is: 

∆𝐺 = −𝑅𝑇𝑙𝑛𝐾𝑏 = 𝑅𝑇𝑙𝑛𝐾𝑑 

where 𝑅 is the gas constant and T is the temperature at which the binding occurs. ∆𝐺 is a state 

function, it is completely determined by the initial and final state of the system, it does not rely 

from the path that connects the two states19. 

In Figure 4 the free energy difference between the bound and the unbound states is shown. 

[3] 

 

[2] 
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Figure 4. Free energy difference between the bound and the unbound states. P refers proteins, L ligand and PL the complex. 

TS is the transition state, Ea is the activation energy of the process, Gd is the difference between the free energy of the 

reactants and of the product. Gon is the free energy difference between the reactants and TS. Goff is the free energy 

difference between the product and the TS13. 

Alternatively, the Gibbs free energy ΔG can be definite as: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

where ΔH is the difference in enthalpy and ΔS is the difference in entropy of the system in the 

bound and unbound state.  

Enthalpy is a measure of the total energy of a thermodynamic system. It is the sum of the 

internal energies of the solute and solvent plus the product of its pressure and volume. In 

exothermic process ∆H is negative while in endothermic process ∆H is positive. Exothermic 

process refers the formations of the energetically favorable noncovalent interactions between 

atoms and the endothermic process refers the disruptions of the energetically favorable 

noncovalent interactions. For a binding process ∆H reflects the energy change of the system 

when the ligand binds to the protein. The enthalpy considers the changes in Van Der Waals, 

hydrogen, electrostatic, polar, and aromatic interaction.  

Entropy is a measure of how the heat energy is distributed over the thermodynamic system. The 

second law of thermodynamics determines that the heat always flows spontaneously from 

regions of higher temperature to regions of lower temperature. This reduces the degree of the 

order of the initial system, and, therefore, entropy could also be viewed as a measure of the 

disorder or randomness in atoms and molecules in a system. ∆S is a global thermodynamic 

property of a system, with its positive and negative signs indicating the overall increase and 

decrease in degree of the freedom of the system, respectively.  

[4] 
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There are a lot of experimental techniques available to determine binding affinity of a ligand 

protein complex that can be divided by categories: stability shift assay, mobility shift assay, 

spectroscopic assay and calorimetric techniques20.  

Stability shift assay 

These methods evaluate the ligand’s effect on protein stability. Stability is assessed by 

denaturing the protein using temperature, pressure or chemical agents. The change in stability 

can be related to Kb and therefore ΔG. The method is used only for single-domain and single-

binding site systems since the change of stability occurs independently in different domains, for 

this reason different signals produced can be difficult to interpret. An example is fluorescence 

thermal shift assay (FTSA)21 in which protein is denatured  increasing temperature at different 

ligand concentrations. The denaturation is evaluated by measuring the fluorescence of a dye 

molecule, which reports the regions of proteins unfolded. 

Mobility shift assay 

In this category the ligand is physically separate from the protein. The binding affinity is 

determined comparing bound fraction with target concentration. Molecule can be separated 

using force like centrifugal force in analytical ultracentrifugation method, electric field in 

electrophoresis and infrared laser-induced temperature gradients in microscale 

thermophoresis. Mobility shift assay are easy to use but the limit is that they cannot employed 

when the difference between free and bound and molecules is too irrelevant22.   

Spectroscopy assays 

Spectroscopy assays connect the change in spectroscopic properties when ligand bounds 

protein with binding affinity. Same spectroscopic methods are fluorescence, dynamic light 

scattering (DLS)23 and surface plasmon resonance (SPR)24. Fluorescence spectroscopy relates 

variation in fluorescence intensity with molecule binding. DLS detect the size of free and bound 

molecules in solution. Then, affinity is evaluated according with the ratio computed. In SPR 

affinity is obtained from the ratio between the binding rates kon and the dissociation rates koff.  

To calculate the constants, the protein is immobilized on the sensor surface and the ligand is 

free in solution, or conversely. The surface refractive index of the sensor changes when ligand 

bound the protein. The alteration is proportionally to the mass bound.  

Finally, also the nuclear magnetic resonance (NMR)25 is utilized to measure Kd. In NMR a 

magnetic field is applied to the compounds in the bound and unbound states. The magnetic field 
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affects the spins of the nuclei that release energy. The difference of energy between the two 

state is correlated to Kd.  

Calorimetric techniques 

Moreover, there are also calorimetric techniques such as Isothermal Titration Calorimetry (ITC) 

in order to study binding motive forces. ITC is the only approach to directly measure heat 

exchange during complex formation at constant temperature and has become the reference 

standard in determining the forces that guide the bonding process or stabilize intermolecular 

interactions. During an ITC experiment the ligand is inserted into a solution containing the 

protein of interest, the heat released or absorbed during their binding is measured in order to 

obtain the binding constant Kb. 

Therefore, there is a great variety of experimental methods to evaluate the ligand-protein 

binding affinity and the recommended techniques depend on the considered system. 

Binding free energy is an important feature of every receptor-ligand system useful to extract 

fruitful information on the complexation strength of the considered molecular system.  

In this framework, computational methodologies to calculate the binding free energy can prefer 

faster but less precise or slower but more accurate approaches. Firsts one, are referred to the 

docking algorithms, while seconds one, are based molecular dynamics (MD) and Monte Carlo 

(MC) simulations26.  

Figure 5 shows the quality/speed ratio of the free energy calculating methods using 

computational techniques.  

The category based on MD simulation can be divided into End Point Methods, Alchemical 

Modifications Method and Pathway Free Energy Methods. End Point Methods only require the 

bound and free states of the ligand. They include linear interaction energies (LIE)27, molecular 

mechanics Poisson−Boltzmann surface area (MM-PBSA)28, and molecular mechanics 

Generalized Born surface area (MM-GBSA)29. Alchemical Modifications Methods increase the 

accuracy of prediction by enhancing the sampling, including the free energy perturbation (FEP)30 

and thermodynamic integration (TI)31 methods. Pathway Free Energy Methods, such as 

Umbrella Sampling (US)32 and Steered MD33, reproduce the dissociation path starting from the 

bound protein–ligand complex until the ligand physically separated from the protein receptor34. 
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Figure 5: Methods to predict binding free energy can prefer speed or quality. Alchemical modifications and pathway free energy 

methods employ more computational time, but the result is more accurate than docking method which is faster but lower in 

quality. End point methods are a compromise between speed and quality. 

LIE calculates the absolute binding free energy without sampling any intermediate state 

between the initial and final states, offering a good compromise between speed and accuracy. 

It considers the electrostatic and the van der Waals interaction between the ligand and the 

solvent for ligand in solution e for ligand in protein binding site35. 

∆𝐺 = ∆𝐺𝑒𝑙𝑒 + ∆𝐺𝑣𝑑𝑤 =  a(〈𝐸𝑒𝑙𝑒
𝐿−𝑆〉𝑃𝐿 − 〈𝐸𝑒𝑙𝑒

𝐿−𝑆〉𝐿) + b(〈𝐸𝑣𝑑𝑤
𝐿−𝑆〉𝑃𝐿 −  〈𝐸𝑣𝑑𝑤

𝐿−𝑆〉𝐿) 

〈𝐸𝑒𝑙𝑒
𝐿−𝑆〉𝑃𝐿  and 〈𝐸𝑣𝑑𝑤

𝐿−𝑆〉𝑃𝐿  are ensemble averages of the electrostatic and van der Waals interaction 

energies between the ligand and the solvated protein from a molecular dynamics trajectory with 

ligand bound to protein. 〈𝐸𝑒𝑙𝑒
𝐿−𝑆〉𝐿  and 〈𝐸𝑣𝑑𝑤

𝐿−𝑆〉𝐿  are ensemble averages of the electrostatic and 

van der Waals interaction energies of ligand in water. α and β are two empirical parameters that 

account for the internal energy of the solvent and the protein. 

However, the method does not consider the energy of protein solvation and conformational 

entropy change of the ligand. Therefore, the best results are obtained when calculating the 

binding free energies for ligands with similar structures.   

MM/PBSA computes binding free energy in trajectories generated from MD simulation for free 

ligand, free protein and their complex. Three energetic terms taken into account are: a) the 

potential energy in the vacuum, that includes bonded terms such as bond, angle, and torsion 

energies and nonbonded terms such as van der Waals and electrostatic interactions; b) the polar 

and nonpolar solvation energy; c) the configurational entropy.  

∆𝐺 =  𝐺𝑃𝐿 − (𝐺𝑃 + 𝐺𝐿) 

𝐺 = 〈𝐸𝑀𝑀〉 + 〈𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛〉 − 𝑇𝑆 

[5] 

 

[6] 

 
[7] 
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〈𝐸𝑀𝑀〉 is the average standard molecular mechanics potential energy, 〈𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛〉 is the polar 

and non-polar contributions to the solvation free energies and the last term is the absolute 

temperature T multiplied by the entropy, S. It is computed for protein (P), ligand (L) and protein-

ligand complex (PL). 

Electrostatics and van der Waals interactions are modeled using respectively a Coulomb and 

Lennard-Jones (LJ) potential function. The free energy of solvation is the energy required to 

transfer a solute from vacuum into the solvent. The polar contribution is obtained by solving the 

Poisson-Boltzmann (PB) equation, whereas the non-polar term is estimated from a linear 

relation to the solvent accessible surface area (SASA) or solvent accessible volume (SAV). 

Entropy is estimated by a normal-mode analysis of the vibrational frequencies. 

It represents a middle ground between the fast but very inaccurate docking and the accurate 

but time expensive FEP.  

A major problem with MM-PBSA is the poor precision. Such a poor precision makes the method 

useless when comparing ligands with similar affinities or when comparing results obtained with 

different approaches or by different groups36. MM-PBSA is used to compare the binding free 

energy between different ligands towards the same target. 

MM/GBSA, despite the MM/PBSA, uses the generalized Born (GB) model to compute the polar 

contribution to the free energy. The GB is an approximation which speeds up the treatment of 

the Poisson-Boltzmann equation37. Many studies have proved that GB calculation is much faster 

than the PB calculation but gives a less accurate result38. 

FEP computes relative binding free energy between two or more ligands toward one protein 

employing a thermodynamic cycle. In the thermodynamic cycle is displayed in Figure 6. There is 

ligand A and ligand B in the water and ligand A and ligand B bounded to the same protein. The 

relative binding free energy is calculated considering the difference between the free energy of 

transforming ligand A to ligand B in the protein and the free energy of transforming ligand A to 

ligand B in the solvent. 

∆𝐺 = ∆𝐺𝑏𝑖𝑛𝑑
𝐵 − ∆𝐺𝑏𝑖𝑛𝑑

𝐴 = ∆𝐺1
𝐴→𝐵 − ∆𝐺2

𝐴→𝐵 

The advantage of FEP is high accuracy (in the order of 1 kcal/mol). On the other hand, if the 

binding mode is not known, is not possible to apply this method. Furthermore, it can be used 

only if there are very structurally similar ligands26. 

[8] 
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Figure 6. The thermodynamic cycle used to calculate the relative binding free energy in FEP method. In Process 1 the free energy 

of transforming ligand A to ligand B in the protein in estimated; in process 2 the free energy of transforming ligand A to ligand B 

in the solvent in obtained. The relative binding free energy is the difference between the free energies computed from process 1 

and 2 and it is related to the relative binding free energy difference between the two ligands. Protein is shown as gray cartoon, 

ligands are represented as red licorice and the water solvent as cyan surface. 

TI applies the alchemical transformation to turn from the bound state into the unbound using a 

coupling parameter λ that varies from 0 to 1. 0 refers the initial state and 1 the final state.  

The final free energy is given by the sum of all the transformations between different states.  

ΔG = ∫ 〈
𝜕𝐻(𝜆)

𝜕𝜆
〉

1

0

 𝑑𝜆 

TI is accurate but computationally challenging because it requires an extensive sampling of 

intermediate states39. 

US computes binding free energy from the potential mean force (PMF). An external bias 

potential is applied to the system to drive the ligand from the bound to unboned state. The 

system is forced to sample regions of conformational space that would not otherwise be 

accessible. Subsequently, the pulling trajectory is divided in a series of windows, which cover 

the entire pathway and a bias restrained MD calculation is performed in each window.  The 

result is a series of histograms, which contain the biased distribution of the reaction coordinate 

from each window. There histograms are then unbiased and combined usually with the aid of 

[9] 
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the weighted histogram analysis method (WHAM).  The PMF is calculated by the WHAM 

equations40. 

Steered MD is a MD simulation in which is applied a force to the ligand in order pull it out from 

the binding site of the protein. The PMF and the binding free energy are computed with the 

Jarzynski nonequilibrium work theorem41. In practice, it is possible to compute the difference 

binding free energy computing the work done. The averaged work in pulling trajectory is related 

to the difference binding free energy42.   
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3 Materials and Methods  

This chapter provides a theoretical overview of the methods employed in the present work. 

Concept of molecular modelling for investigating biological mechanisms is introduced. Then, 

molecular docking is discussed, focusing on search algorithm and energy scoring function for 

generating and evaluating ligand poses. Finally, Molecular Mechanics approach is introduced to 

provide a background on physical basis behind molecular modelling. 

 

3.1 Introduction to Molecular Modelling 

Molecular modelling includes all theoretical methods and computational techniques used to 

model and mimic the complex behavior of molecular systems. Molecular systems are composed 

by a huge number of molecules therefore is not trivial to analytically evaluate the properties of 

the system. In order to address this issue, systems can be studied using numerical methods. 

Thanks to the increasing power of computers, it is possible to simulate biological systems with 

millions of atoms in a reasonable amount of time. 

The most detailed analysis of a biological system is at the quantum level, where each electron-

electron interaction is considered. This accurate representation is obtained by solving the 

Schrödinger equation. However, it is not feasible solve Schrödinger equation for any system 

containing more than one hundred atoms because the complex nature of the interactions  

and for the long times it would require. For this reason, a simplified molecular description of the 

system is taken into consideration. The system is defined in terms of interaction between atoms 

and it is governed by Newton’s laws. The forces depend to the deformation of chemical bonds, 

hydrogen bonding, electrostatics, and van der Waals interactions. 

In contrast to the quantum level, simulations of relatively large dynamic systems are possible at 

the molecular level in a reasonable time. 

If the system contains a large number of atoms and is required to be simulated for a significant 

length of time, Coarse Grained (CG) method can be used. In CG, the number of degrees of 

freedom in the system is reduced by treating groups of particles as single entities, allowing 

longer simulations with the same computational effort, but with a reduction in the accuracy of 

the results.  
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Therefore, molecular modeling techniques are employed to understand biological systems that 

are often challenging to obtain with laboratory analysis, besides experiments in biological field 

are expensive in both money and time. For example, computational techniques play a valuable 

role in pharmaceutical research. In general, some common MD applications are in protein 

folding/unfolding, drug delivery, polymers chains analysis, transport and diffusion properties, 

protein free energies, polymer aggregation, multiscale modelling and much more. 

3.2 Molecular Docking 

Molecular docking is one of the most well-known SBDD methods employed in discovery and 

design of new drugs. The aim of molecular docking is to predict the experimental binding mode 

and affinity of a small molecule within the binding site of the receptor target of interest. A search 

algorithm and an energy scoring function are the basic tools of a docking methodology for 

generating and evaluating the ligand conformations. 

3.2.1 Ligand-Protein Docking 

Molecular docking includes protein-protein or ligand-protein interactions43. Ligand-protein 

docking (Figure 7) is a computational method used to predict the best fit orientation of a ligand 

that binds to a receptor. Most docking programs can rank the activity of each compound by 

analyzing the different ligand-target interactions and estimating the binding affinity of the 

complex44,45.  

 

Figure 7.  Elements involved in Molecular Docking: protein, ligand and the complex. Protein is represented in cyan and ligand in 

red. 
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In order to perform a docking procedure, the target structure can be download from Protein 

Data Bank website. Crystal structures with high resolution have to be chosen. It is suggested a 

resolution value less than 2Å44.  

Models of ligands are available on database such as ZINC1546, PubChem47, DrugBank48. If the 

structure are not present in the databases is possible design the small molecule using a design 

software such as Avogadro49, ChemDraw50. Another possibility is to employ protein structure 

crystallized with the ligand already inserted in the correct pose. 

The above-mentioned solution is useful to validate the performance of the docking algorithm 

since the correct position of the ligand is known. 

Before executing docking procedure, the protein and the ligand have to be prepared. The basics 

steps consist of calculating the protonation states and assign atomic partial charges51.  

Furthermore, if the binding site is already known, it must be selected and delimited, otherwise 

the whole protein’s surface will investigate, burning a lot of computation time.  

Docking can be of two types: rigid docking and flexible docking. In particular it is possible to 

consider both ligand and protein rigid, flexible ligand and rigid protein or both ligand and protein 

flexible. The rigid docking is based on the lock-and-key assumption proposed by Fischer. Both 

the ligand and the receptor cannot change their spatial shape, new conformations are not 

generated. It is allowed only its rotation and translation. Protein-ligand affinity is directly 

proportional to a geometric fit between their shapes52. In the flexible docking bond angles, bond 

lengths and torsion angles of the components are modified. It is based on the induced-fit theory 

proposed by Koshland 53. 

The success of docking algorithms is normally measured in terms of the root-mean-square 

deviation (RMSD) between the coordinates of experimentally ligand conformation and the 

predicted by the algorithm. A good performance is usually considered when the RMSD is less 

than 2Å51. 

In general, the aims of docking studies are to identify the ligand pose in the active site and to 

estimate the correct affinity value. Serval search algorithm are been developed to achieve the 

first purpose, and several scoring functions for the second (Figure 8). 
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3.2.2 Search Algorithm 

The aim of the search is to identify ligand pose with the lowest energy. The search space consists 

in all possible binding modes between protein and ligand. However, it is impossible to explore 

the whole conformational space, but only a small amount of it can be sampled. 

Three main search methods may be identified: systematic, stochastic or by using simulation 

methods as Molecular Dynamic (MD) and Monte Carlo (MC). In systematic search all rotatable 

ligand bonds are gradually rotated in order to cover all possible combinations among the 

dihedral angles. Systematic algorithms can be divided into two classes: exhaustive search and 

fragmentation algorithms. The first method ideally rotates all possible ligand bonds to explore 

all the possible conformations. The second approach divides the ligand into several fragments 

that are separately docked in the receptor site. For example DOCK54, FLOG55 and LUDI56 software 

uses the fragmentation algorithms. Using systematic method is more likely that the algorithm 

converges to the local minimum rather than the global minimum. To overcome this issue, it is 

preferable to start from different conformations, rather than use the same starting position.  

Stochastic exploration samples the conformational space of a ligand by generating random 

variations in the orientation of all rotatable bonds and in some cases random translations for 

the whole ligand within the binding site. The algorithm is more suitable for large molecules, 

where the degrees of freedom are too high for an efficient systematic search. It is more probable 

to find a global minimum, but on the other hand the computational cost increases45.  

Some common algorithms that apply stochastic approach are Monte Carlo (MC), Simulated 

annealing (SA)57 and Genetic Algorithms (GA)58. MC method generates ligand-protein complexes 

by performing random changes in the ligand conformation. Each obtained complex is 

energetically analyzed, and the most favorable state is selected. Unfortunately, it tends to be 

trapped in local minimum, therefore simulated annealing has been applied to avoid this issue. 

MCDOCK59 is a program that utilizes MC method. 

In SA the temperature is varied during the run for each conformation in order to better explore 

the conformational state. AutoDock60 uses simulated annealing approach for more accurate 

conformation exploration. GA performs the search taking a cue from evolutionary processes. 

Different translations, orientations and conformations of the ligand are encoded as binary 

strings called genes. These genes compose the ‘chromosome’ which represents the pose of the 

ligand. An initial population of chromosomes are generated in order to cover a wide area of the 
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energy landscape. Genetic operators, like mutations and crossovers, are applied to the 

population to obtain new ligand structure. New structures will be assessed by scoring function, 

and the ones that survived can be used for the next generation. This enables evolution of optimal 

solutions that represents the correct binding mode. Genetic algorithms have been successfully 

used in molecular docking programs such as Gold61 and AutoDock62. 

Simulation methods like MD are more accurate but at the same time computationally 

demanding. Indeed, these methods are not the best choice to analyze a huge number of 

compounds. MD samples the conformational space in order to obtain statistically relevant 

macroscopic information from the ensemble. However, MD are often unable to cross high 

energy barriers, which results in sampling only the local minima derived from the starting 

conditions. Different strategies can overcome this issue, for example by using simulated 

annealing or Metadynamics63. DOCK perform a minimization step after each fragment addition.  

3.2.3 Scoring Function 

The scoring functions are mathematical methods that rank ligand poses in order to predict 

binding affinity, quantifying several ligand-protein interaction types such as hydrogen bond, 

electrostatics, van der Waals’s forces and hydrophobic interactions. There are three main types 

of scoring functions: Force field-based methods, Empirical scoring functions and Knowledge-

based scoring functions. 

Force-field based method estimates the binding energy considering the contribution of bonded 

(bond stretching, angle bending and dihedral variation) and non-bonded terms (electrostatics 

and van der Waals interaction). It has some limitations because it does not consider solvation 

and entropic contributions. Moreover, it needs to include a cut-off distance to treat non-bonded 

interaction64 which leads in a loss of accuracy. 

Empirical scoring functions computes the binding energy summing energetic factors that 

concerned in ligand-receptor complex formation. They are hydrogen bonds, ionic interactions, 

hydrophobic and entropic effects, etc. The energetic factors are multiplied by a rescaling 

coefficient obtained from a linear regression analysis of a training set of complexes with known 

binding affinities. This method is faster than force-field-based method but its limitation is that 

the result strongly rely on the training set used 45. 

Knowledge-based scoring functions generates a function considering pairwise potentials derived 

from known ligand-receptor complexes. These potentials are calculated considering the 
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frequency of two different atoms that are found within a given distance in the structural dataset. 

The final score is the sum of these interactions. The main advantage of using knowledge-based 

functions is the computational simplicity, which can be applied to easily screen huge compound 

libraries. However, some limitations are inherent in the limited training sets of protein–ligand 

complex structures65.  

Consensus scoring is a procedure that combines information from different approach in order 

to reduce limitation of each method.  

Lately, a new approach has been developed to improve the performance of the above-

mentioned scoring function. This is the Machine-learning-based scoring functions which are 

used for rescoring purposes, in order to enhance the accuracy. Machine-learning-based scoring 

functions employ machine-learning algorithms, such as support vector machine, random forest, 

neural network, deep-learning, etc64. 

 

Figure 8: Docking protocol. It can be described as a combination of a search algorithm and a scoring function. Searching functions 

can be divided in systematic search stochastic search and search by using simulation methods. Scoring function are force field 

based, empirical and consensus.   

3.2.4 Docking Software 

Today, there are at least 60 docking programs commercially (or freely) available with different 

force fields, conformational sampling algorithms and a variety of scoring functions52. 

The most commonly used programs are AutoDock60, GOLD61, Glide66, DOCK54, AutoDock Vina67 

ICM68 and FlexX69. A more exhaustive list is shown in Table 1 and in  
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Table 2. The subdivision has been made according to the conformational search method and the 

implemented scoring function.  

Table 1: Docking software listed according to the conformational search method. 

Systematic search Stochastic search 

SLIDE70 PLANTS71 

DOCK54 EADock72 

FlexX69 MOE_Dock73 

FRED74 Gold61 

GLIDE66 ICM68 

EUDOC75 LigandFit76 

Surflex-Dock77 PRO_LEADS78 

Hammerhead79 CDocker80 

Flog55 GlamDock81 

ADAM82 MolDock83 

eHiTS84 AutoDock60 

 

Table 2: Docking software listed according to the implemented scoring function. 

Force-Field-Based Empirical Knowledge-Based 

Gold61 GLIDE66 PMF_Score85 

DOCK54 LUDI86 MotifScore87 

AutoDock60 ChemScore88 PoseScore89 

LigandFit76 LigScore90 DrugScore91 

MedusaScore92 HYDE93 SMoG94 

ICM68 PLP95 PESD_SVM96 

AutoDock4 is docking software which uses a Lamarckian genetic algorithm (LGA) to generate 

multiple poses of a ligand in a pocket. AutoDock4 docking performs many independent LGA runs 



 28 

followed by clustering based on the root mean square deviation (RMSD) of the resulting poses 

to identify the most populated portion of the conformational space of the ligand. The AutoDock4 

scoring function is an empirical scoring function which computes the non-bonded interaction 

potential including van der Waals contribution, hydrogen bon term, electrostatic interaction and 

desolvation potential. Each term is multiplied by an empirical coefficient obtained from a 

calibration of a training dataset of bound complexes with known binding affinities. The total 

score of a binding pose is obtained by adding the difference of intra-molecular energies between 

the protein-ligand bound and unbound forms, then subtracting the difference of inter-molecular 

energies. Finally, a simple entropic term is introduced to consider the variation of the entropy 

of the system. The success rate of AutoDock4 is around 53% in reproducing crystallographic 

poses.  

Another popular docking software is DOCK. DOCK uses fragment-based algorithm to generate 

ligand poses in a binding site, where the ligand is placed in the pocket and the flexible branches 

are sequentially grown around them. DOCK applies a force-field based scoring function which 

models non-bonded interactions between ligand and protein atoms as a sum of Lennard-Jones 

12-6 and electrostatic terms. The pose success rate is around 73%. 

Glide is a docking software based on an exhaustive systematic search algorithm used to sample 

the ligand conformational space, followed by a minimization step. The scoring method is a 

combination of a force-field-based function, an empirical function and the strain energy of the 

ligand conformation. The success rate of Glide is around 66%.  

A well-known tool for protein-ligand docking is AutoDock Vina (Vina). Vina uses an iterated local 

search global optimizer searching method to generate poses of the ligand within the binding 

site. The scoring function employed by Vina combines aspects from knowledge-based and 

empirical potentials considering steric, hydrophobic, hydrogen bonding and entropic terms. 

The scoring function is: 

𝑐 = ∑ 𝑓𝑡𝑖𝑡𝑗
(𝑟𝑖𝑗)

𝑖<𝑗

 

where the summation is over all atoms separated by three consecutive covalent bonds. A type 

ti and a set of interaction function 𝑓𝑡𝑖𝑡𝑗
  of the interatomic distance 𝑟𝑖𝑗 is assigned to each atom.  

The value is given by a sum of intermolecular and intramolecular contributions. Empirical 

information from both the conformational preferences of the receptor-ligand complexes and 

the experimental affinity measurements are extracted. The values of experimental affinity 

[10] 
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measurements are derived from the PDBbind97 dataset. The optimization of Vina algorithm 

consists of uses not only the value of the scoring function but also its gradient. The gradient is 

obtained by deriving the scoring function with respect to the position, orientation, and torsions 

of active rotatable bonds of ligand. Vina outperforms AutoDock4 in both accuracy and speed. 

Indeed, it is able to identify the correct binding pose in 78% of the cases98,99. 

3.3 Molecular Mechanics 

The term Molecular Mechanics refers the application of classical mechanic to determinations of 

molecular equilibrium structures. The structures studied vary from small molecules to large 

biological system.  

Molecular systems are modelled by Newtonian mechanics with a series of approximations in 

order to reduce the complexity of the system. In this context, according to the Born-

Oppenheimer approximation100, atoms are treated as spheres and bonds are considered as 

springs, neglecting the electronic motions.  

3.3.1 Potential Energy Function 

The potential energy of the systems is estimated using a set of equations and parameters known 

as force field (FF). The total potential energy is the sum of the potential energy of binding and 

the potential energy of non-binding interaction: 

𝑉 = 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑   

The bonded interactions consider the variation of bond lengths, angles and dihedrals. Instead, 

the non-bonded interactions are given by the van der Waals potential and Coulomb electrostatic 

potential. 

𝑉𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑏𝑜𝑛𝑑𝑠 + 𝑉𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 

𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑉𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠  

 

3.3.2 Treatment of Bond and Non-Bond Interactions 

The potential energy function for a molecular system composed of N atoms identified by a 

vector position 𝑟𝑖 can be described as (Figure 9): 

[11] 

 

[12] 

 
[13] 
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𝑉(𝑟1, 𝑟2, … , 𝑟𝑁)

= ∑
1

2
𝑘𝑙(𝑙 − 𝑙0)2 +

𝑏𝑜𝑛𝑑𝑠

∑
1

2
𝑘𝜃(𝜃 − 𝜃0)2 +

𝑎𝑛𝑔𝑙𝑒𝑠

∑ 𝑘𝜑(1 + cos(𝑛𝜑 − 𝛿))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]) +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
]

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

The first term refers the covalent bond between two atoms. Bonds are modelled as a harmonic 

interaction, where 𝑘 is the force constant, 𝑙0 is the reference bond length (the length when all 

the other FF terms are zero) and 𝑙 is the bond length (length at the equilibrium minimum 

when all the terms are considered). The second term indicates the interactions between three 

atoms, modelled as a harmonic interaction. 𝑘𝜃  is the force constant, 𝜃0 is the reference bond 

angle (the angle assumed when all the other FF term are zero) and 𝜃 is the bond angle (the angle 

at the equilibrium minimum when all the terms are considered). 

The third term is for dihedral angles which originates between four atoms. The energy related 

to the dihedral angle is modelled as a series of cosines, where 𝑘𝜑  is the energy cost related to 

the dihedral angle deformation, 𝑛 is the number of energetic minima along a complete rotation 

and 𝛿 is the minimum position for the torsional angle. Dihedrals can be divided into proper and 

improper dihedrals. First refers when full rotation is allowed, second when the rotation is 

limited.  

The last term defines the non-bonded interaction, modelled as functions inversely proportional 

to the distance between two atoms. This term includes Van der Waals forces and Coulomb 

electrostatic interactions. 

Van der Waals potential is the weakest intermolecular force and occur among atoms with no 

net electrostatic charge. Van der Waals forces are modelled with Lennard-Jones (L-J) equation: 

𝑉𝐿−𝐽 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] 

 is the collision diameter, the minimum distance with the interaction potential equal to zero, 

and  is the well depth, the interaction potential energy minimum. The term raised to twelfth 

refers the interactions that act at long range as attractive force. The component raised to the 

sixth describes the short-range interaction that play a role as repulsive force in order to avoiding 

the overlap between atom.  

Electrostatics interaction develop among pairs of non-bonds charged atoms. This force is 

described by Coulomb’s law:  

[14] 

 

[15] 
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𝑉𝑒 =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
 

𝜀0 is the vacuum electrical permittivity, 𝑟𝑖𝑗 is the distance between the charge 𝑞𝑖 of the atom 𝑖 

and the charge 𝑞𝑗 of the atom 𝑗. 

This interaction is definite as long-range interaction because the energy decreases as the 

distance between two atoms is reduced. 

Calculation of non-bonded interactions requires an expansive computational effort. To reduce 

this problem, the non-bond interactions are computed by applying a cutoff distance. It allows to 

compute the interaction only if the distance between atoms is smaller than the cutoff. 

 

Figure 9. Potential energy function for molecular interactions. The first term represents the non-bond interaction of Van der 

Waals force, the second the non- bond interaction of Coulomb force and the last three terms describe the bond interactions of 

bond, angles and dihedral respectively.  

3.3.3 Periodic Boundary Conditions 

All the system atoms are contained in a three-dimensional box filled with implicitly or explicitly 

model of water. Several possible boxes are cubic, parallelepiped, hexagonal prism, octahedron 

and dodecahedron. Box boundaries are a crucial issue for MD simulations which may strongly 

affect the properties of the whole system. The implementation of periodic boundary conditions 

(PBC) allow avoiding side effect. The system is surrounded by a number of identical boxes. In 

[16] 

 



 32 

this manner, the particles near the boundary of the main box can feel the interactions with the 

particles in the next periodic box. The number of particles in the main box remains constant 

because if a molecule leaves the box during the simulation it is replaced by its own periodic 

image that comes into the box from a neighbor (Figure 10). 

 

Figure 10. Periodic boundary conditions. The first box is in center and then it is surrounded by copy of itself.  

3.3.4 Potential Energy Minimization 

The Potential Energy surface (PES) is a complicated multidimensional function of the molecular 

system coordinates. PES is characterized by stationary and saddles points. Firsts are local or even 

global minima and refer the more stable states of the system. The second are the highest point 

between minima and belong to the transition state. The aim of energy minimization is to find an 

arrangement of atoms that corresponds to the local minimum energy of the system. 

There are several algorithms that are able to perform an energy minimization in order to identify 

the minimum point of the PES: the derivative and the non-derivative methods.  

An example of non-derivative method is the simplex101 algorithm. On the other hand, derivative 

methods can be divided into first-order methods such as Steepest Descent and Conjugate 

Gradient and second-order methods such as Newton-Raphson102 and L-BFGS. In general, first-

order approaches use the direction of the first derivate of the energy (the gradient) to indicate 

where the minimum lies. Whereas second-order approaches use both first and second 

derivatives. The second derivative gives information on the curvature of the PES hence 
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predicting where the function will change direction. These methods have a main common 

limitation: they can only go downhill on the PES, thus they will find the closest minimum from 

the starting point that could be a local minimum.  
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4 Improving Accuracy of Blind Protein-Ligand Docking by 

Fragmented Docking Method 

This chapter presents a novel protocol used to perform protein-ligand docking. Protein-ligand 

docking is the procedure able to predict the position and orientation of a ligand when it is bound 

to a receptor. Furthermore, the top discovered hits have been reported with a detailed discussion 

about the validity of the approach. 

4.1 Introduction 

Discovery and development of a new drug is generally known as a very complex process which 

requires a lot of time and resources. The main goal of drug discovery is to obtain compounds 

that powerfully interact with therapeutic targets10. Computer Aided Drug Design (CADD) 

approaches are widely used to increase the efficiency of the drug design. CADD techniques are 

essential for the preliminary stage of drug discovery to expedite the drug development process 

in a more cost-efficient way and to minimize failures in the final stage. In particular, 

computational drug design tools can be divided into ligand-based drug design (LBDD) and 

structure-based drug design (SBDD). The choice between these two methods dependents on the 

identified biological target information available. SBDD approach uses 3D structure of the target 

for the generation or screening of potential ligands. In contrast, LBBD approach is employed 

where 3D protein structure is lacking and it utilizes computational modeling methods to develop 

theoretical predictive models of molecules with diverse structures and known potency8. 

In this framework, molecular docking is one of the most powerful techniques of SBDD. The aim 

of molecular docking is to predict the experimental binding mode and affinity of a small 

molecule within the binding site of the selected target receptor. A search algorithm and an 

energy scoring function are the basic tools of a docking methodology for generating and 

evaluating the ligand conformations. Most applications of docking are performed by knowing 

the protein binding region. In this case, a small docking box is selected around the protein 

binding site in order to facilitate the docking by focusing sampling of the translational, rotational, 

and torsional degrees of freedom of the ligand. However, there are situation in which the 

information about binding site is missing and it becomes necessary to explore the entire protein 

surface by docking algorithms. Several methods have been developed to overcome the problem 
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of not recognizing the binding site. AutoDock Vina (Vina)67 is a docking software efficient when 

the binding site is known. When the protein binding pocket is unidentified, Vina can execute the 

so-called blind docking (BD). In BD, the target is included into a single research box and the 

correct pose of the ligand is sought on the entire surface of the protein. This method has many 

limitations because it is improbable to exhaustively sample the whole energy landscape in a 

fixed number of steps to find the best ligand conformation103. Another approach to address the 

above-mentioned issue consists in reducing the search space, focusing only in some areas of the 

protein. The method employs the SiteHound algorithm to predict the location of potential 

binding site and after that, it carries out multiple independent docking procedures on smaller 

boxes centered on predicted binding sites104. The results show that the docking focused on a 

small number of predicted binding sites reduces the computational time required to obtain the 

solution and generates results more accurate in terms of correct pose prediction in comparison 

to BD. However, if the real binding site is not included in the boxes in which the docking is carried 

out, the procedure could lead to an incorrect result. In overall, the main problems highlighted 

by the two analyzed methods consist in a too inaccurate sampling box for the BD method and 

uncertain prediction of the binding pocket for the SiteHound algorithm. In this work, a 

fragmented docking method (FD) has been developed to improve the performance of the 

previously discussed methods. The idea is to slice the docking box into multiple smaller boxes 

and then to merge all the results. Ligand-protein docking is carried out separately in each box 

with Vina, shifting the location of the box step by step, in order to cover the entire surface of 

the protein. The partition in several boxes allows the systematically exploration of the whole 

protein surface, which improves the discovering of ligand conformations adopted within each 

examined box. In addition, the complete investigation of the whole protein structure, 

intrinsically leads to discover of the real binding site. 

The molecular docking calculations has been performed whit FD method on 116 crystal 

structures of Heat Shock Protein 90 – alpha (Hsp90) and 176 of Human Immunodeficiency virus 

protease 1 (HIV-1 PR).  

The developed method shows better performances than the standard methods employed to 

overcome the problem of not recognizing the binding site. 
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4.2 Material and Methods 

4.2.1 Proteins Dataset  

The two proteins employed in docking are Heat Shock Protein 90 – alpha (Hsp90) and Human 

Immunodeficiency virus protease 1 (HIV-1 PR). 

Heat Shock Protein is a chaperone protein that assists other proteins to fold correctly and allows 

cells to survive in extremely heat conditions. It is able to preserve the integrity of the cells if they 

are exposed to high temperatures by regulating the flux of calcium ions, maintaining the 

chromosomal stability and safeguarding the endoplasmic reticulum proteins homeostasis. In 

particular, Hsp90 indicates Hsp protein with a weight of roughly 90 kilodaltons. If on the one 

hand, Hsp90 aid the human body to survive at elevate temperature, on the other hand, is able 

to stabilize the proteins necessary for tumor growth. For this reason, Hsp90 inhibitors are mainly 

investigated as anti-cancer drugs105. Hsp90 is an isoform of Hsp and it is located in the 

cytoplasm of the eukaryotic cells. Hsp90 is a globular protein and contains secondary 

structures as alpha helixes, beta sheets and random coils. It consists of four structural domains: 

N-terminal domain, middle region, C-terminal domain and a linker region that connect the first 

two domains. The binding pocket is situated in the N-terminal domain, which is predominantly 

constituted by hydrophobic residue. The pocket is a binding site for many molecules included 

antibiotics like radicicol and geldanamycin, which have anti-tumor activity. Furthermore, it 

shows a high affinity for ATP106,107.  

HIV-1 PR is a retroviral aspartyl protease, an enzyme which acts in peptide bond hydrolysis in 

retroviruses, which is necessary for the life cycle of the retrovirus HIV that causes AIDS.  

HIV-1 PR is constituted from 99 amino acid and exists as a homodimer with only one active site. 

The binding pocket is located between the identical subunits. Each monomer consist of a wide 

β-sheet region (a loop of glycine) which partly constitutes the binding site of the substrate and 

one of the two fundamental residues of aspartyl, Asp-25 and Asp-25’ which are at the bottom 

of the cavity108,109. The HIV-1 PR enzyme activity can be inhibited from HIV protease inhibitors 

by blocking the active site of the protease.  



 37 

4.2.2 Dataset Preparation 

FD and BD methods have been carried out on the same set of complexes extracted from the 

Protein Data Bank (PDB)2. The dataset of Hsp90 is composed of 116 crystal structures, while 

the dataset of HIV-1 PR is composed of 176 crystal structures. As normal procedure, all the 

waters molecules have been removed from each PDB entry. Missing residues and atoms have 

been added to the protein chain utilizing the program Modeller110. The particular cases where 

the protein or ligand have a PDB record of double spatial positions of the atoms have been 

treated selecting only one of the positions pair. Hydrogens and Gasteiger charges have been 

added both the ligand and the protein employing python script prepare_ligand4.py and 

prepare_receptor4.py from MGLTools60,111. 

4.2.3 Docking procedure   

Docking procedure has been performed using the software Vina with FD and BD method. Ligand 

and protein have been separated and prepared as described earlier for both approaches. In BD 

protocol a single docking experiment has been carried out on the whole protein surface, 

whereas in FD protocol multiple smaller docking experiment has been performed. The choice of 

the boxes number depends on the size of the protein and the respective ligand. In detail, the 

dimension of each box has been chosen twice the maximum ligand length and the overlap 

between different boxes has been set to fifty percent. Several docking operations have been 

performed in each box, which has been shifted step by step along the surface of the protein. 

Ten different ligand conformations have been generated from each docking process. 

Results of FD and BD methods have been compared by root mean squared deviation (RMSD) of 

ligand heavy atoms of the solution for FD and DB with respect to the experimental ligand 

structures. In literature a value of RMSD lower or equal to 0.2 nm is recommended as a limit 

value for a good pose reproduction112,113,114,115,116.  

The RMSD comparison has been made employing the ligand configuration to which Vina 

attributed as the best in the affinity value ranking.  

4.2.4 MM/GBSA rescoring  

Docking programs generate binding poses of compounds in the active site of a target and 

evaluate the protein-ligand binding affinity by means of scoring functions. However, docking 
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scores and experimental binding affinities usually do not correlate, because screening large 

numbers of compounds in a reasonable time requires the use of approximate scoring function. 

Hence, docking results can be improved employing post-docking processing strategies. The 

MM/GBSA methods based on binding free energy estimations has been utilized to rescoring the 

docking results. MM/GBSA calculations were performed using MMPBSA.py117 program, 

selecting the pairwise GB model developed by Hawkins et al. (GBHCT; igb = 1 in Amber’s 

terminology)118. The calculation has been performed in ten energy minimized ligand-protein 

complexes. Structures refer proteins bounded with the top scored docking ligand poses. 

Predicted binding free energies were compared with docking affinity results. To obtain a 

successful rescoring, it is necessary that the complex which the MM/GBSA attributes as the best 

due to the highest affinity value is the same in which the RMSD between the generate ligand 

and the original one is less than 0.2 nm. 

4.3 Results 

In this section are presented the results regarding the FD and BD docking procedures, comparing 

the performance of both methods. As pointed out before and illustrated in Figure 11, the main 

idea behind the FD method is to divide the exploration of the protein surface into smaller 

independent docking boxes.  The advantage that result from using the slice and shift method to 

identify the original binding mode of a ligand will be shown below.  

 

Figure 11. Main idea of FD: a docking procedure is performed in each box which moves on the whole protein surface. Protein 

is represented in blue, ligand in yellow.   
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4.3.1 Fragmented Docking versus Blind Docking  

The first step to compare BD and FD method is to determine whether the docking results 

identified the correct binding mode of the ligands in the crystal structures. The poses with the 

lowest docking energy have been selected and the RMSD between the heavy atoms of docked 

ligand and the heavy atoms of the ligand in the crystal structure has been calculated. This 

measures the ability of the docking protocol to identify the correct ligand binding site in the 

target structure. In addition, it is also helpful to verify if the docking methods select the correct 

ligand conformation pose, once the binding site location is found. Successful docking is achieved 

if the RMSD between the docking pose and the ligand in the crystal structure will be lesser or 

equal to 0.2 nm.  

The tables with the calculated RMSD values using FD and BD method of 116 Hsp90 and 176 

HIV-1 PR proteins with co-crystallized ligands are reported in Supporting Information (Table S 

1,Table S 2).  

4.3.1.1 Protein-Ligand Complexes of Hsp90 

The first structure analysed is Hsp90 by performing a docking procedure on 116 different 

ligand-protein complexes. In Figure 12 are presented Hsp90 protein and 3 different ligands: 

radicicol, geldanamycin and ATP. In particular, the illustration aims to highlight the main 

interactions between the ligand and the active site of the protein. The above-mentioned ligands 

own a high affinity for the target protein. In this context, geldanamycin or radicicol are 

pharmacological inhibition of Hsp90. 
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Figure 12. (a) NewCartoon structures of the Hsp90 with red surf of pocket binding site in N terminal domain. Alpha helixes 

are painted in cyan, 310 helixes in blue, beta sheets in yellow, turns in orange, random coils in silver; (b) Ligplot diagram 

interactions between Hsp90 and geldanamycin (PDB: 1a4h); (c) Ligplot diagram interactions between Hsp90 and ADP 

(PDB: 1amw); (d) Ligplot diagram interactions between Hsp90 and radicicol (PDB: 1bgq). Dashes represent hydrogen 

bound between protein residue and ligand. The other protein residues mentioned are responsible for hydrophobic 

interactions. 

As described in the previous sections, ten different ligand poses have been generated from each 

docking procedure. Therefore, the total number of ligands configuration produced are ten 

multiplied the number of boxes. Taken together all the docked configuration, the pose 

considered for the validation is the one which Vina has attributed the maximum affinity value 

with the protein. Since RMSD is the parameter used for the validation, a value of 0.2 nm is 

selected as threshold that distinguishes the correctly predicted poses from the wrong ones. 

Figure 13 shows several examples of generated ligand poses overlapped with the ligands in the 

crystal structures. In detail, the figure represents three examples of successful docking and three 
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examples of failed docking. In particular, the RMSD value are 0.02 nm, 0.09 nm, 0.16 nm, 0.23 

nm, 0.32 nm, and 0.51 nm, respectively.  

 

Figure 13. Comparison between generated by Vina and original ligand conformation. Original pose is in cyan and output 

pose is in red. (A) PDB: 3vha. RMSD computed is 0.02 nm; (B) PDB: 2ykb. RMSD computed is 0.09 nm; (c) PDB: 2brc. RMSD 

computed is 0.16 nm; (D) PDB: 4eft. RMSD computed is 0.23 nm; (E) PDB: 5fnd. RMSD computed is 0.32 nm; (F) PDB: 2qg2. 

RMSD computed is 0.51 nm. 

The RMSD between the generated ligand configurations and the ligands in the crystal structures 

were calculated in order to compare the performance of FD and BD methods. In order to have 

a clear picture of the FD and BD performance, pie chart is selected as graphical tool to highlight 

the accuracy of both methods. The pie chart in Figure 14 shows the percentages of generated 

ligand poses with RMSD value lesser and greater than 0.2 nm in comparison to the original ligand 

conformation. Considering the output configuration with greatest affinity, BD finds the correct 

pose prediction in only 26.7% of attempts, while FD finds the correct prediction in the 62.1% of 

attempts.  
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Figure 14. Percentage of poses generated with RMSD lesser and greater than 0.2 compared the original pose using the FD 

and BD method. The comparison has been made considering the poses with the maximum affinity value. Results of FD 

methods are shown in the pie chart on the left and results of BD method are shown in the pie chart on the right. Red indicates 

the correct configuration found and blue the wrong ones. An accurate ligand configuration has been discovered in 62.1% of 

cases using FD method and 27.6% using BD method.  

From another point of view, Figure 15 shows a histogram of the distributions RMSD values. The 

size of bins is set to 0.2 nm and the frequency refers to the number of ligand conformation with 

that particular value of RMSD. As shown by the histogram, the interval between 0 and 0.2 nm 

contains the greatest number of outcomes for FD method: 72 are the correct poses predicted. 

While, the greatest number of outcomes for BD method are in the interval between 0.2 and 0.4 

nm. The number of correct poses predicted with BD are 32. From these first results, it is possible 

consider that the FD method is able to produce ligand poses that are more accurate than those 

produced by BD. 

 

Figure 15. Histogram shows the distribution of the computed RMSD value between the output ligands with best affinity and 

the original. In FD method most of the generated configurations belong at the range between 0 and 0.2 nm. They are 72. In 

BD method most of the generated configurations belong at the range between 0.2 and 0.4 nm. They are 32.  
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The ligand conformation which Vina assigns the greatest affinity is not always the one that 

closest to the real pose of the ligand. In this framework, the first ten configurations have been 

selected and the RMSD analysis between them and the original ligand has been computed. The 

hypothesis is to find the pose with the lowest RMSD value between the first 10 records of Vina’s 

output configurations. To complete the picture,  Figure 16 shows the pie chart percentages of 

the obtained results considering the pose with lowest RMSD between the first 10 poses. 

Interestingly, an improvement in the performance is notable for both FD and BD methods. In 

detail, FD finds in 91.4% of times the poses with RMSD value lower than 0.2nm, while BD 

discovers in 43.1% of times the correct configuration.  

      

Figure 16. Percentage of poses generated with RMSD lesser and greater than 0.2 compared the original pose using the box 

and blind method. The comparison has been made considering the poses with the best RMSD value between first 10 with 

the maximum affinity value. Results of FD methods are shown in the pie chart on the left and results of BD method are 

shown in the pie chart on the right. Red indicates the correct configuration found and blue the wrong ones. An accurate 

ligand configuration has been discovered in 91.4% of cases using FD method and 43.1% using BD method. 

As pointed out in the previously analysis, the distribution of RMSD values is shown in Figure 17. 

Compared to the previous case, the number of conformations belonging to the first interval has 

increased, indicating that is the correct poses have been predicted, as expected. The maximum 

frequency is 106 in FD and 50 in BD.  
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Figure 17. Histogram shows the distribution of the computed RMSD value considering the ten poses generated with greater 

affinity. In both method most of the generated configurations belong at the range between 0 and 0.2 nm. They are 106 in 

FD method and 50 in BD method. 

In Figure 18 the relationship between the improving in performance with the increase in the 

number of poses considered is exhibited. The affinity ranking has been made including 1, 3, 5, 

10, 20, 40, 70, 100 ligands configurations. The curve significantly rises from 1 to 10 poses 

considered, as expected. This suggests that Vina does not always attribute the highest affinity 

to the pose that closest to the real pose of the ligand. For this reason, a rescoring procedure has 

been performed in order to evaluate if MM/GBSA is able to attribute the best affinity value to 

the configuration with the lowest RMSD value. The results of aforementioned rescoring 

procedure will be discussed in 4.3.2 section.  

 

Figure 18. The curve underlines how the performances vary as the number of poses to consider calculating the RMSD 

increases. The greatest growth of the curve occurs when it goes from 0 to 10 in FD methods and from 0 to 5 in BD method. 

Red curve refers the FD method, black curve to BD method.  
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4.3.1.2 Protein-ligand complexes of HIV-1 PR 

The second structure considered for the Vina FD and BD method is HIV-1 PR protein. In this 

context, the docking procedure has been performed 176 different ligand-protein complexes. 

Figure 19 shows HIV-1 PR protein and 3 different ligands: saquinavir, indinavir and ritonavir 

inhibitors. In particular, the illustration aims to highlight the main interactions between the 

ligand and the active site of the protein. The above-mentioned ligands are shown due to their 

high affinity for the target protein. 

 

Figure 19. (a) NewCartoon structures of the HIV-1 PR with red surf of pocket binding site. Alpha helixes are painted in cyan, 

310 helixes in blue, beta sheets in yellow, turns in orange, random coils in silver; (b) Ligplot diagram interactions between 

HIV-1 PR and ritonavir (PDB: 1hxw); (c) Ligplot diagram interactions between HIV-1 PR and saquinavir (PDB: 2nnp); (d) 

Ligplot diagram interactions between HIV-1 PR and indinavir (PDB: 1c6y). Dashes represent hydrogen bound between 

protein residue and ligand. The other protein residues mentioned are responsible for hydrophobic interactions. 
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As applied before for the Hsp90 protein, ten different ligand poses have been generated from 

each docking procedure. Therefore, the total number of ligands configuration produced are ten 

multiplied the number of boxes. Taken together all the docked configuration, the pose 

considered for the validation is the one which Vina has attributed the maximum affinity value 

with the protein. Since RMSD is the parameter used for the validation, a value of 0.2 nm is 

selected as threshold that distinguishes the correctly predicted poses from the wrong ones. 

Figure 20 shows several examples of generated ligand poses overlapped with the ligands in the 

crystal structures. In detail, the figure represents three examples of successful docking and three 

examples of failed docking. In particular, the RMSD value are 0.03 nm, 0.1 nm, 0.19 nm, 0.22 

nm, 0.46 nm and 1 nm, respectively.  

 

Figure 20. Comparison between generated by Vina and original ligand conformation. Original pose is in cyan and output 

pose is in red. (A) PDB: 1mrx. RMSD computed is 0.03 nm; (B) PDB: 3ekx. RMSD computed is 0.1 nm; (C) PDB: 1vik. RMSD 

computed is 0.19 nm; (D) PDB: 1hpx. RMSD computed is 0.22 nm; (E) PDB: 1bv9. RMSD computed is 0.46 nm; (F) PDB: 3ekv. 

RMSD computed is 1 nm. 

The RMSD between the generated ligand configurations and the ligands in the crystal structures 

were calculated in order to compare the performance of FD and BD methods. The pie chart in 

Figure 21 shows the percentages of generated ligand poses with RMSD value lesser and greater 

than 0.2 nm in comparison to the original ligand conformation. Considering the output 

configuration with greatest affinity, BD finds the correct pose prediction in only 31.3% of 

attempts, while FD finds the correct prediction in the 64.8 % of attempts.  
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Figure 21. Percentage of poses generated with RMSD lesser and greater than 0.2 compared the original pose using the box 

and blind method. The comparison has been made considering the poses with the maximum affinity value. Results of FD 

methods are shown in the pie chart on the left and results of BD method are shown in the pie chart on the right. Red indicates 

the correct configuration found and blue the wrong ones. An accurate ligand configuration has been discovered in 64.8% of 

cases using FD method and 31.3% using BD method. 

From another point of view, Figure 22 shows a histogram of the distributions RMSD values. The 

size of bins is set to 0.2 nm and the frequency refers to the number of ligand conformation with 

that particular value of RMSD. As shown by the histogram, the interval between 0 and 0.2 nm 

contains the greatest number of outcomes: 114 are the correct poses predicted with FD and 55 

with BD. From these first results, it is possible consider that the FD method is able to produce 

ligand poses that are more accurate than those produced by BD. 

 

Figure 22. Histogram shows the distribution of the computed RMSD value between the output ligands with best affinity and 

the original. In FD method most of the generated configurations belong at the range between 0 and 0.2 nm. They are 114. 

In BD method most of the generated configurations belong at the same range between 0 and 0.2 nm. They are 55. 
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Considering also this second dataset, the ligand conformation which Vina assigns the greatest 

affinity is not always the one that closest to the real pose of the ligand. In this framework, the first 

ten configurations have been selected and the RMSD analysis between them and the original ligand 

has been computed. The hypothesis is to find the pose with the lowest RMSD value between the 

first 10 records of Vina’s output configurations. Figure 23 shows the pie chart percentages of the 

obtained results considering the pose with lowest RMSD between the first 10 poses. There is an 

improvement in the performance for both box and blind methods. In detail, FD finds in 84.7% of 

times the poses with RMSD value lower than 0.2nm, while BD discovers in 41.5%. of times the 

correct configuration.  

      

Figure 23. Percentage of poses generated with RMSD lesser and greater than 0.2 compared the original pose using the box 

and blind method. The comparison has been made considering the poses with the best RMSD value between first 10 with 

the maximum affinity value. Results of FD methods are shown in the pie chart on the left and results of BD method are 

shown in the pie chart on the right. Red indicates the correct configuration found and blue the wrong ones. An accurate 

ligand configuration has been discovered in 84.7% of cases using FD method and 41.5% using BD method. 

The distribution of RMSD values is shown in Figure 24. Compared to the previous case, the 

number of conformations belonging to the first interval has increased. The maximum frequency 

is 149 in boxes and 73 in BD method. 
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Figure 24. Histogram shows the distribution of the computed RMSD value considering the ten poses generated with greater 

affinity. In both method most of the generated configurations belong at the range between 0 and 0.2 nm. They are 149  in 

FD method and 73 in BD method. 

In Figure 25 the relationship between the improving in performance with the increase in the 

number of poses considered is exhibited. The affinity ranking has been made including 1, 3, 5, 

10, 20, 40, 70, 100 ligands configurations. The curve significantly rises from 1 to 5 poses 

considered. This suggests that Vina does not always attribute the highest affinity to the pose 

that closest to the real pose of the ligand. 

 

Figure 25. The curve underlines how the performances vary as the number of poses to consider calculating the RMSD 

increases. The greatest growth of the curve occurs when it goes from 0 to 5 in FD and BD method. Red curve refers the FD 

method, black curve to BD method. 

4.3.2 MM/GBSA Rescoring  

The evaluation of Vina's pose made considering the RMSD as principal parameter for the 

ranking, pointed out that the pose with the lowest RMSD does not always correspond to the one 
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with greater affinity. In order to address this issue, a rescoring protocol on outgoing poses has 

been accomplished. Binding free energy has been calculated using the MM/GBSA method on 

the first ten protein-ligand complex whose affinity is the highest calculated by Vina. The number 

of protein-ligand complex has been set to ten for the reason that this threshold shows the 

greatest improvement of finding the correct pose, as highlighted in Figure 18 and Figure 25. In 

Figure 26 the rescoring results for Hsp90 and HIV-1 PR structures are represented. In 75.7% of 

cases the greatest binding affinity estimated with MM/GBSA corresponds to ligand pose with a 

RMSD lesser than 0.2 nm compared the ligand in the crystal structure. The percentage of correct 

poses prediction is higher comparing the results with the case in which the ranking is done with 

the affinity estimated by Vina.In HIV-1 PR the performance is about the same as that obtained 

by considering the docking affinities.  

 

Figure 26 .Rescoring results. The percentage of the poses generated with RMSD lesser and greater than 0.2 nm. compared 

the original pose using FD method are shown for Hsp90 and HIV-1 PR structures. Results of Hsp90 are shown in the pie 

chart on the left and results of HIV-1 PR are shown in the pie chart on the right. Green indicates the correct configuration 

found and orange the wrong ones. An accurate ligand configuration has been discovered in 75.7% of cases in Hsp90 and 

62.9% in HIV-1 PR. 

4.4 Discussion 

Protein–ligand docking is a powerful tool in drug discovery to predict binding modes and 

affinities of ligand. The blind docking is a common strategy employed when the binding site of a 

target is unknown119,120. However, blind docking requires great computational resources and the 

results obtained are often not accurate104,121. Several methods have been developed to 

overcome these critical issues. The strategies proposed in the literature usually employ specific 

software to find the active site in the target and then docking the ligands into the discovered 

binding site104,122,123,124. These alternative methods show that the blind docking results without 
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the aid of methodologies that identify the binding site are characterized by a very low 

percentage of successful runs121. However, if the real binding site is not included in the boxes in 

which the docking is carried out, the procedure could lead to an incorrect result. A different 

approach examined in protein-peptide docking is to perform a blind docking and then a re-

docking focused in the binding site, proving that the binding site information reduces searching 

space drastically obtaining a fast e more precise results in re-docking. The performance of all the 

docking methods improved during the re-docking study125. Despite a slight increase in accuracy, 

the computation cost of this procedure is higher and the issue of finding the right binding site 

may remain, resulting in a useless the re-docking procedure if the binding pocket is not matched. 

In this work, a new docking procedure has been performed on Hsp90 and HIV-1 PR protein-

ligand complexes employing a protocol that performs multiple smaller docking run along the 

surface of the protein in order to compare the performance with the blind method. The outputs 

of multiple box docking algorithm are several poses of ligand which bind protein in different 

sites. The main goal of performing the docking procedure dividing the protein surface in small 

boxes, is to allow the scan of the entirely protein surface which intrinsically implies the correct 

finding of the real binding site. The parameter used for validation is the RMSD, since the 

experimental ligand conformation coordinates are known. The RMSD has been calculated 

between the ligand conformations predicted by the Fragmented Docking (FD) and Blind Docking 

(BD) algorithm and the experimental one. The values obtained in FD and BD methods have been 

compared. A first comparison has been carried out between the RMSD values obtained 

considering only the ligand pose with the lowest docking energy. As can be seen from the pie 

charts shown above, the performances obtained with the FD method are better than the BD 

method in both protein-ligand complexes analyzed. The method of preforming the research in 

several boxes that translate on the protein has proven to be a winning strategy in finding the 

binding site on the protein and the relative ligand configuration.  

A second analysis has been accomplished in order to evaluate the performance of Vina's scoring 

function, as done before in literature126,127. Docking algorithms, like Vina, have been developed 

with the goal to screening large numbers of compounds in a reasonable time, for this reason, 

they use approximate scoring functions. It is reasonable to hypothesis that the best pose, 

namely the one with the minimum RMSD from experimental data, is not always the first in the 

rank. Indeed, it has become general opinion that docking results should be improved by means 

of more rigorous post-docking processing strategies128,129,127. In literature several works have 
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evaluated the ability of molecular mechanics combined with the Poisson–Boltzmann surface 

area (MM-PBSA) and molecular mechanics combined with generalized Born surface area to 

predict binding affinities and compared the accuracy of these predictions to that of docking 

scores. A study on Protein kinase proved that the correlation between calculated binding free 

energies with MM/GBSA and MM/PBSA methods and experimental values is higher than using 

docking scores130. However, the results depend on the dataset used. For example, in a set of β-

Amyloid Cleaving Enzyme 1 (BACE-1) the re-scoring docking poses using MM-GBSA did not 

improve the correlation with experimental affinities due to the ligand dataset131. BACE-1 ligands 

dataset consisted of macrocycles which have multiple flexible bonds that generate a large 

conformational space and for this reason require a more accurate MM/GBSA protocol131. In 

recent literature, the performance of MM/PBSA and MM/GBSA rescoring have been evaluated 

in protein-protein docking showing that MM/GBSA may be a good choice for predicting the 

binding affinities and identifying correct binding structures132.  Following the aforementioned 

rescoring suggestion, in this work the rescoring strategy adopted involves the use of the 

MM/GBSA method. The binding affinity has been recalculated for the top ten poses with the 

greater docking energy. The results deriving from this rescoring show that MM/GBSA is able 

most of the time to attribute least energy to the pose with an RMSD lower than 0.2 nm. In 

literature, the same procedure of MM/GBSA rescoring has been applied to the three top scored 

docking poses showing that the results have improved compared the case in which only the best 

scored docking pose is considered133,134. The method is a good compromise between efficiency 

and speed since it has been applied on minimized protein-ligand complexes. Further challenge 

could be accomplished by calculating the affinity in MD simulated complexes or with more 

rigorous methods such as FEP with the disadvantage of a more computational time. 
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5 Conclusion and Future Developments 

The docking protocol developed in this thesis has demonstrated its ability to address the 

protein-ligand docking where the binding sites are not known a priori. The algorithm is a simple 

and fast method that shifts the searching box on the protein surface in order to predict the 

correct binding sites. The presented results have demonstrated how this methodology improves 

the accuracy both in terms of binding site identification and of RMSD of the lowest energy 

docked pose with respect to the experimental solution. Moreover, the idea of performing a 

rescoring on the results generated by the docking algorithm employing methods of estimating 

the free binding energy proved to be a good solution for improvement.  

In general, molecular docking has proven to be an efficient method to predict the experimental 

ligand conformation adopted in the target binding site. However, standard docking protocols 

employ only one structure to represent the protein, neglecting the changes in the geometry of 

the binding pocket induced by the ligand binding. Standard docking is carried out between the 

protein and the ligand extracted from the same crystallography. If a ligand is docked on another 

structure of the same protein (cross-docking) the results may be not always optimal. In these 

cases, it may happen that the internal cavity of the binding pocket does not have enough space 

to accommodate another ligand. Possible solutions provide to keep protein flexible during the 

docking procedure, but this requires higher computational effort. Future studies are needed to 

overcome this limit, by explicitly considering the protein conformational plasticity, which is 

sometimes a key point to estimate the drug selectivity/specificity for a protein target. 
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Supporting Information 

Table S 1. RMSD value between the coordinates of experimentally ligand conformation and the predicted by the algorithm for Hsp90. 

First column refers the name of PDB protein-ligand complex and the ligand selected; the second and third column refer RMSD value 

considering the predicted ligand pose with best affinity value in FD and BD, respectively; the fourth and fifth column refer RMSD value 

considering the poses with the best RMSD value between first ten with the maximum affinity in FD and BD, respectively; 

PDB - LIGAND FD_RMSD_1[nm] BD_RMSD_1[nm] FD_RMSD_10[nm] BD_RMSD_10[nm] 

1A4H-GDM 0,037 1,548 0,036 1,095 

1AMW-ADP 0,342 0,342 0,179 0,216 

1BGQ-RDC 0,051 0,331 0,049 0,331 

1UY6-PU3 0,069 0,066 0,067 0,066 

1UY7-PU4 0,438 0,439 0,152 0,146 

1UY8-PU5 0,405 0,405 0,128 0,141 

1UY9-PU6 0,336 0,338 0,124 0,127 

1UYC-PU7 0,343 0,345 0,067 0,126 

1UYD-PU8 0,322 0,388 0,164 0,311 

1UYE-PU9 0,421 0,462 0,169 0,356 

1UYF-PU1 0,695 0,684 0,194 0,338 

1UYH-PU0 0,662 0,666 0,066 0,083 

1UYI-PUZ 0,402 0,685 0,143 0,505 

1UYM-PU3 0,086 0,084 0,084 0,084 

1YC1-4BC 0,097 0,090 0,097 0,090 

1YC4-43P 0,037 0,037 0,036 0,036 

1YET-GDM 0,028 2,543 0,028 1,289 

2BRC-CT5 0,158 0,498 0,157 0,191 

2BYH-2D7 0,115 0,373 0,110 0,373 

2BYI-2DD 0,094 0,389 0,093 0,388 

2CCS-4BH 0,060 0,501 0,059 0,501 

2CCU-2D9 0,139 0,126 0,139 0,125 

2FWY-H64 0,167 0,855 0,142 0,542 

2FWZ-H71 0,097 0,781 0,091 0,621 

2IWS-NP4 0,028 0,278 0,028 0,278 
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2IWU-NP5 0,049 0,277 0,048 0,277 

2IWX-M1S 0,053 0,259 0,052 0,258 

2QG0-A94 0,726 1,783 7,368 0,546 

2QG2-A91 0,517 0,514 0,198 0,212 

2UWD-2GG 0,105 0,104 0,512 0,514 

2VCI-2GJ 0,169 2,241 0,056 0,103 

2VCJ-2EQ 0,113 2,091 0,168 1,424 

2VWC-BC2 0,061 1,529 0,106 1,505 

2WEQ-GDM 0,071 1,221 0,061 1,395 

2WI1-ZZ2 0,407 0,377 0,070 1,221 

2WI3-ZZ3 0,303 0,304 0,074 0,078 

2WI4-ZZ4 0,524 0,546 0,109 0,268 

2WI5-ZZ5 0,532 0,533 0,184 0,331 

2WI6-ZZ6 0,058 0,373 0,356 0,532 

2WI7-2KL 0,795 0,696 0,057 0,372 

2XDK-XDK 0,414 0,312 0,280 0,513 

2XDL-2DL 0,033 0,553 0,398 0,274 

2XDX-WOE 0,395 0,489 0,033 0,480 

2XHR-C0P 0,426 0,495 0,238 0,280 

2XHT-C0Y 0,035 0,103 0,110 0,426 

2XHX-T5M 0,088 0,091 0,034 0,103 

2XJG-XJG 0,024 0,026 0,088 0,090 

2XJX-XJX 0,303 0,303 0,024 0,025 

2XX4-13I 0,045 0,617 0,131 0,153 

2XX5-13N 0,647 0,595 0,044 0,414 

2YGA-GDM 0,047 0,762 0,093 0,414 

2YGE-GDM 0,063 0,068 0,046 0,762 

2YGF-GDM 0,739 1,651 0,062 0,067 

2YI0-YI0 0,058 0,816 0,633 1,138 

2YI5-YI5 0,513 0,397 0,058 0,777 

2YI7-BZ8 0,116 0,576 0,107 0,329 

2YJW-YJW 0,510 0,383 0,114 0,519 
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2YJX-YJX 0,029 0,028 0,243 0,383 

2YK9-YK9 0,745 0,124 0,028 0,027 

2YKB-YKB 0,086 0,088 0,123 0,124 

2YKC-YKC 0,030 0,025 0,086 0,088 

2YKE-YKE 0,032 0,034 0,025 0,025 

2YKI-YKI 0,022 1,111 0,031 0,033 

3B24-B2J 0,205 0,204 0,020 0,806 

3B25-B2K 0,058 0,051 0,197 0,203 

3B27-B2T 0,043 0,043 0,053 0,050 

3BM9-BXZ 0,048 0,600 0,032 0,043 

3BMY-CXZ 0,182 0,390 0,048 0,574 

3D0B-SNX 0,316 0,316 0,182 0,389 

3FT5-MO8 0,066 0,234 0,062 0,070 

3NMQ-7PP 0,182 0,396 0,066 0,080 

3OW6-MEX 0,042 0,045 0,078 0,366 

3OWB-BSM 0,055 0,053 0,041 0,045 

3OWD-MEY 0,745 0,068 0,054 0,052 

3QDD-94M 0,068 0,332 0,067 0,068 

3QTF-05S 0,054 0,054 0,068 0,332 

3R4M-WOE 0,414 0,438 0,051 0,054 

3R91-06H 0,038 0,037 0,065 0,219 

3R92-06J 0,041 0,502 0,032 0,036 

3RKZ-06T 0,050 0,055 0,040 0,502 

3VHA-VHA 0,020 0,018 0,050 0,054 

3VHC-VHC 0,031 0,926 0,020 0,017 

4AS9-4QS 0,061 0,073 0,031 0,569 

4B7P-9UN 0,366 0,367 0,060 0,072 

4BQG-50Q 0,147 0,437 0,148 0,149 

4CE1-7FK 0,077 0,255 0,144 0,436 

4CE2-BO5 0,053 0,273 0,076 0,254 

4CE3-L4V 0,104 0,234 0,053 0,272 

4CWF-H05 0,411 0,411 0,035 0,233 
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4CWN-6LV 0,706 0,759 0,184 0,191 

4CWO-T62 0,125 0,126 0,038 0,057 

4CWP-TV2 0,697 0,695 0,124 0,126 

4CWQ-W2D 0,036 0,032 0,027 0,029 

4CWR-HAJ 0,723 0,724 0,031 0,032 

4CWS-G3R 0,151 0,078 0,015 0,348 

4CWT-IK9 0,251 0,253 0,151 0,078 

4EEH-HH6 0,676 0,629 0,105 0,164 

4EFT-EFT 0,237 0,233 0,032 0,033 

4EFU-EFU 0,115 0,115 0,047 0,232 

4EGH-0OY 0,066 0,083 0,114 0,114 

4EGK-RDC 0,026 0,329 0,064 0,083 

4FCQ-2N6 0,490 0,494 0,025 0,329 

4FCR-0TM 0,034 0,354 0,048 0,493 

4LWE-FJ2 0,854 0,365 0,034 0,354 

4LWH-FJ5 0,049 0,035 0,113 0,365 

4LWI-FJ6 0,092 0,098 0,038 0,035 

4O04-2Q8 0,131 1,838 0,091 0,097 

4O07-FGH 0,033 1,742 0,130 0,765 

4O09-2R6 0,036 1,878 0,031 0,772 

4O0B-2QA 0,032 0,810 0,034 0,792 

4W7T-3JC 0,652 0,304 0,031 0,708 

4XIP-40W 0,087 0,712 0,121 0,124 

4XIT-40Z 0,099 0,581 0,086 0,640 

5FNC-IEE 0,368 0,378 0,087 0,580 

5FND-IQ5 0,378 0,322 0,298 0,229 

5FNF-TQL 0,712 0,715 0,373 0,321 
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Table S 2 RMSD value between the coordinates of experimentally ligand conformation and the predicted by the algorithm for HIV-1 

PR. First column refers the name of PDB protein-ligand complex and the ligand selected; the second and third column refer RMSD 

value considering the predicted ligand pose with best affinity value in FD and BD, respectively; the fourth and fifth column refer RMSD 

value considering the poses with the best RMSD value between first ten with the maximum affinity in FD and BD, respectively; 

PDB - LIGAND FD_RMSD_1[nm] BD_RMSD_1[nm] FD_RMSD_10[nm] BD_RMSD_10[nm] 

1A94-0Q4 1,029 1,5038 1,029 1,079 

1A9M-U0E 1,216 1,1161 0,158 1,116 

1AAQ-PSI 0,144 1,0876 0,117 0,570 

1AJV-NMB 0,091 0,6471 0,091 0,639 

1AJX-AH1 0,156 2,1078 0,119 1,827 

1B6K-PI5 0,060 0,0525 0,060 0,052 

1B6L-PI4 0,055 0,9737 0,054 0,881 

1BDL-IM1 1,119 1,1058 1,106 1,105 

1BDQ-IM1 0,962 0,9560 0,078 0,120 

1BDR-IM1 0,104 0,1390 0,104 0,139 

1BV7-XV6 0,868 0,7191 0,712 0,478 

1BV9-XV6 0,461 1,9819 0,461 1,199 

1C6Y-MK1 0,119 0,1198 0,119 0,119 

1C70-L75 0,101 0,0713 0,091 0,071 

1D4H-BEH 0,040 1,0941 0,040 1,070 

1D4I-BEG 1,077 0,0297 0,030 0,029 

1DIF-A85 0,093 0,1103 0,093 0,110 

1DMP-DMQ 0,062 1,6519 0,062 1,554 

1EBY-BEB 0,034 1,0183 0,034 0,948 

1EBZ-BEC 0,078 0,0787 0,078 0,078 

1EC0-BED 1,053 0,4611 0,023 0,411 

1EC1-BEE 0,054 0,9135 0,054 0,833 

1G2K-NM1 0,131 1,0711 0,131 1,071 

1G35-AHF 0,056 0,7779 0,056 0,777 

1HBV-GAN 1,107 0,3733 0,123 0,373 

1HEG-PSI 2,088 0,6046 0,608 0,574 

1HIV-1ZK 1,092 0,5346 0,363 0,534 
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1HPO-UNI 1,095 1,0690 0,063 0,852 

1HPX-KNI 0,220 0,2190 0,220 0,081 

1HSG-MK1 0,051 0,0478 0,051 0,047 

1HTE-G23 0,700 0,7001 0,128 0,135 

1HTF-G26 0,655 0,6559 0,655 0,641 

1HVI-A77 0,086 0,0906 0,086 0,090 

1HVJ-A78 0,091 0,0910 0,091 0,091 

1HVK-A79 0,039 0,0399 0,039 0,039 

1HVL-A76 0,056 0,1023 0,056 0,102 

1HVR-XK2 0,104 1,2842 0,104 1,265 

1HVS-A77 0,101 0,0748 0,101 0,074 

1HXW-RIT 0,360 1,0514 0,106 0,632 

1IIQ-0ZR 0,575 1,1699 0,468 0,980 

1IZI-Q50 1,192 1,1900 0,146 0,137 

1KZK-JE2 0,078 1,0639 0,078 0,885 

1MES-DMP 0,918 0,9187 0,038 0,043 

1MET-DMP 0,083 0,0771 0,081 0,077 

1MEU-DMP 0,114 0,0774 0,112 0,077 

1MRW-K57 0,076 0,0294 0,042 0,029 

1MRX-K57 0,028 0,0284 0,028 0,028 

1MSM-JE2 0,079 0,6209 0,079 0,620 

1MSN-JE2 0,028 2,0794 0,028 1,271 

1MTR-PI6 0,576 0,7233 0,328 0,588 

1ODY-LP1 1,246 2,1549 0,668 0,818 

1OHR-1UN 0,077 0,5936 0,026 0,593 

1PRO-A88 0,037 1,9590 0,037 0,916 

1QBR-XV6 0,567 0,5706 0,551 0,570 

1QBS-DMP 0,920 1,1523 0,057 0,964 

1SBG-IM1 0,387 0,3803 0,125 0,124 

1SDT-MK1 0,076 0,0845 0,076 0,084 

1SDU-MK1 0,078 0,0782 0,078 0,078 

1SDV-MK1 0,080 0,0803 0,039 0,080 
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1SGU-MK1 0,370 0,1136 0,266 0,113 

1SH9-RIT 1,269 0,8536 0,428 0,474 

1TCX-IM1 0,050 0,0961 0,050 0,096 

1VIJ-BAY 0,497 0,4649 0,447 0,254 

1VIK-BAY 1,487 0,1883 0,189 0,188 

1W5V-BE3 0,029 1,0181 0,029 1,018 

2AOD-2NC 0,154 1,1826 0,154 0,709 

2BBB-HH1 0,105 2,0355 0,105 1,664 

2BPV-1IN 0,382 0,3828 0,152 0,216 

2BPX-MK1 0,066 0,0678 0,066 0,067 

2BPY-3IN 0,172 0,1726 0,162 0,172 

2BQV-A1A 0,100 1,0110 0,067 0,863 

2CEJ-1AH 0,073 0,9293 0,073 0,912 

2HB3-GRL 0,086 0,0839 0,086 0,083 

2I0A-MUI 0,143 1,0915 0,143 0,479 

2I0D-MUT 0,601 0,4569 0,092 0,347 

2I4D-QFI 0,154 0,1344 0,139 0,134 

2I4U-DJR 0,069 0,9847 0,069 0,858 

2I4V-DJR 0,061 1,0066 0,061 0,486 

2I4X-KGQ 0,771 0,7988 0,193 0,779 

2O4L-TPV 1,169 0,5825 0,128 0,576 

2O4N-TPV 0,087 0,6831 0,087 0,670 

2O4P-TPV 0,125 0,7930 0,125 0,736 

2P3B-3TL 1,319 1,8149 0,376 1,814 

2PQZ-G0G 0,164 0,6561 0,085 0,448 

2PSU-MUU 0,127 1,9719 0,100 1,653 

2PSV-MUV 0,521 1,8822 0,161 1,183 

2PWC-G3G 0,118 0,1584 0,116 0,158 

2PWR-G4G 0,918 0,8773 0,174 0,741 

2Q54-MU1 1,088 0,4916 0,149 0,161 

2Q55-MU0 0,048 0,0869 0,048 0,086 

2Q5K-AB1 0,076 1,0620 0,076 0,798 
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2Q64-1UN 0,080 0,0803 0,080 0,080 

2QHY-MZ1 0,047 0,3782 0,047 0,378 

2QHZ-MZ2 0,112 1,5432 0,112 1,543 

2QI0-MZ3 0,147 0,1646 0,117 0,164 

2QI1-MZ4 0,080 0,0831 0,080 0,083 

2QI3-MZ5 0,341 0,3386 0,336 0,169 

2QI4-MZ6 0,148 2,5044 0,119 1,571 

2QI5-MZ7 0,093 1,7563 0,093 1,707 

2QI6-MZ8 0,122 0,1055 0,062 0,105 

2QNP-QN2 0,066 1,0016 0,066 0,548 

2QNQ-QN3 0,697 0,7183 0,495 0,696 

2R38-G4G 0,096 0,9014 0,096 0,882 

2R3T-G4G 0,092 0,0926 0,092 0,092 

2R3W-G3G 0,111 0,1115 0,110 0,111 

2R43-G3G 0,111 0,1556 0,111 0,155 

2UPJ-U02 0,145 0,1433 0,145 0,143 

2UY0-HV1 0,098 0,4785 0,098 0,478 

2ZGA-YDP 1,826 0,8701 0,815 0,764 

3AID-ARQ 0,778 0,4357 0,411 0,159 

3BGB-LJG 0,881 0,8310 0,105 0,657 

3BGC-LJH 0,927 0,6303 0,089 0,255 

3BXS-DRS 0,536 0,4522 0,062 0,452 

3CKT-YDP 0,103 0,1026 0,103 0,102 

3EKP-478 0,448 0,5138 0,135 0,505 

3EKQ-ROC 1,083 1,3264 0,064 1,184 
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