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Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that affects a con-
siderable number of people all over the world. Symptoms are the results
of the dopaminergic neurons death in the substantia nigra pars compacta
and the dopamine lack leads to the classical parkinsonian movements such
as tremor, irregular gait, paralysis and a low muscular strength.

Actually the disease is associated also to other symptoms that are not specif-
ically involved in the motor system and can precede the movements disorder.
Non-motor features are: olfactory dysfunction, fatigue, pain, psychiatric and
sleep disorders; they have an high impact on the quality of life.

This study is focused on the analysis of the electroencephalogram signals
(EEG) and the inertial signals, both of them collected during the night. Re-
garding EEG, three algorithms are implemented: one for distinguishing the
REM phases from the others and two for distinguishing all the sleep stages.
Features extraction and machine learning techniques are employed, reach-
ing an accuracy of 98.7%, regarding the REM-NREM differentiation, and an
accuracy of 93.1% for all the stages recognition. Wavelet transform is used
in the last algorithm for all stages identification; an accuracy of 93.5% is
obtained.

The second part is centred on the comparison between PD patient’s and
healthy subjects’ inertial signals. The effect of PD on sleep is undeniable:
the patient performs less and slower movements with respect to controls. For
evaluating these differences an activity index is calculated; moreover other
parameters are extracted: the number of turning in bed, the angular velocity
and the turning duration.

Since the EEG data come from an existing on-line database, the future im-
plementation of this work is to associate EEG and inertial data from the
same patient, in order to make an evaluation about his quantity of motion
in relation to the disease status.

Finally, two user interfaces are proposed for assuring an easier employment
of this work.



Chapter 1

General Introduction

1.1 Introduction

This Master thesis is focused on the study of sleep parameters in healthy
subjects and in a patient affected by Parkinson’s Disease.

Parkison’s Disease (PD) is one of the most spread diseases all over the world:
it affects 1% of the global population over 60 years old, not taking into ac-
count the juvenile cases [1]. PD is often recognizable by motor impairments
such as tremor, but there are also non-motor issues that are relevant as well.
Among non-motor symptoms there are sleep-related disorders that have an
high impact on the patients’ quality of life. Moreover these symptoms ap-
pear in the early stages of the disease and an immediate recognition could
be crucial for treating and slowing down the course of the illness.

For this reason, the research has centred on sleep parameters in order to give
our contribute to achieve a better understanding of the PD dynamics.
Sleeping is fundamental in everybody’s life; therefore, the approach begins
with a study of brainwaves during sleep. In particular, a method for dis-
tinguishing the sleep stages through just one electroencephalogram (EEG)
channel has been implemented. In addition to the EEG, data were collected
via an inertial sensor that recorded body accelerations and angular veloci-
ties. This device allowed to make a comparison between a healthy subject’s
sleep and a patient’s sleep; it was studied how much a disease as PD actually
affects a peaceful moment like sleep.

The choice of considering just one channel derives from the prospective of
a future applications in which both the electroencephalogram and inertial
signals will be collected from patients. A single channel is more comfortable
to keep all night long.



1 — General Introduction

Finally, it is hoped that the integration between signals will monitor patients
effectively, in order to give an idea about the quality of sleep in relation to
their disorders.

The thesis is organized in four chapters: the first chapter provides a gen-
eral view on sleep and PD through a physiology excursus. The state of art
section includes an explanation about the monitoring sleep current proce-
dures but also some new techniques.

In the second chapter details about materials and a focus on how the pro-
posed algorithms work are introduced.

The results appear in the third chapter: each algorithm outcomes are pre-
sented.

At the end, future developments and conclusions, in which we review the
entire work, are introduced. The acronyms list and the bibliography can be
found at the end of entire work.

1.2 Sleep physiology

Sleep is an almost unconscious state which is the complementary of the awake
state; it takes up about one third of a person’s life. During sleep, sensory
activity is inhibited, muscular tone is reduced and the interaction with the
external environment is nearly suppressed.

The main regulators of sleep are the brainstem and the hypothalamus: the
first one maintains wakefulness through the reticular activating system and
the sensory pathway activity [3], while hypothalamus preoptic nucleus are
supposed to initiate sleep through noradrenergic, cholinergic and serotoner-
gic systems. Other areas give a contribute to sleep modulation, for instance
the posterior hypotalamus with the histaminergic system and the basal fore-
brain with the cholinergic system.

When active, all of these systems promote wakefulness while their inhibition
promotes sleep. [5]

1.2.1 Sleep stages

The wake-sleep cycle is regulated by circadian rhythm and homeostatic pro-
cesses; in specific, the circadian rhythm determines the temporal distribution
of these two states while the homeostatic process determines the necessity and

10



1 — General Introduction

the proportion of sleep in relation to the previous wake period. In general, a
circadian cycle is an internal body clock that marks several mechanisms, such
as hormones production or body temperature and also wake-sleep sequence
by referring to light-dark cycle.

During sleep there is a succession of non-REM (non-rapid eye movement)
and REM (rapid eye movement) phases that results to be extremely differ-
ent. Non-REM sleep is characterized by a decrease in body temperature and
in heart rate; moreover the brain is consuming less energy than during the
wake state.

REM sleep is a limited portion of the total sleep time: in this phase, there
is the dream generation associated with rapid brain waves, ocular movement
and a complete loss of muscular tone.

It is possible to divide sleep in stages that are deeply related to the brain
waves within it as can be seen from the figure 1.1.

o Wake: when the subject is relaxed with closed eyes alpha rhythm is
present. The brainwaves are "sinusoids" with a bandwidth between §
and 12 Hertz. In these there are both slow and rapid eye movement and
the muscular tone is still present.

e Stage 1: normally it lasts a few minutes; the alpha rhythm decreases and
brainwaves in 3 —7 Hz bandwidth (theta rhythm) slowly take place. Eye
movements are still present but now are slow and circular. As regard
the muscle tone, the activity is present but in a lower level than during
the wake stage.

o Stage 2: brainwaves activity is mainly represented by the theta rhythm.
During this stage, K-complex waveforms and sleep spindles are recogniz-
able. A K-complex is a high voltage waveform (more than 100 pV) that
can be seen in the electroencephalogram (EEG) and it seems to perform
two important aims: the suppression of cortical excitation as a result of
stimuli that are not a danger signal and the promotion of sleep-based
memory consolidation.

Sleep spindles are bursts of activity which last around one seconds with
high frequencies, that are useful to inhibit unnecessary information elab-
oration.

o Stage 3: during this phase a delta rhythm is reached; the frequencies are
included in the 0.5 — 4 Hz band and the brainwaves amplitude is over
75 pV.

11



1 — General Introduction

Muscular tone is slightly decreased and there are almost no eye move-
ments. K-complex are sometimes distinguishable and sleep spindles can
occur.

Stage 4: the subject is experiencing a deep sleep with brainwaves mainly
in the delta rhythm.

Eye movement are absent and the muscle tonic activation is very low.
The metabolic brain activity is minimized.

REM stage: this stage is characterized by low voltage desynchronized
brainwaves and mixed frequencies; moreover this phase is combined with
an increase in heart rate, blood pressure and breathing rate. Due to this
similarities to the wake stage, REM sleep is also named the "paradoxical
sleep".

In this stage the body loses muscles tone completely and this event is
called "REM atonia". The beginning of the REM stage can be rec-
ognized from PGO waves (ponto-geniculo-occipital waves) since it is
demonstrated they precede other signals of REM sleep by 30-90 sec-
onds [2]. PGO waves are related to the act of dreaming; the signal to
noise ratio is greater in pre-REM epochs with respect to the REM ones,
and it seems to be the reason of the vivid imagery of that period.
Moreover these waves probably have a role in the structural growth and
brain development. [2]

In addition, it has been suggested that the brain uses the REM sleep
to wake itself up after experiencing a sufficient time in NREM sleep. In
fact, as the night progresses, the REM periods appear more frequently;
the awakening occurs usually after a REM period.

Generally NREM sleep is believed to be the period during which the brain

recovers itself to the prior wakefulness state. There is a correlation between
the amount of delta waves and the period of wakefulness that has preceded
it. Some studies suggested that the NREM waves are not only related to the
duration of wakefulness but also to the quality; when the subject experiences
stress there is an increase in the need of sleep [6].

1.2.2 Function of sleep

There are different theories regarding the function of sleep. One of the most
common theories concerns the energy conservation: during sleep the biolog-
ical functions are reduced so that energy can be conserved and used in the

12
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Figure 1.1: EEG sleep stages

awake period. Actually the amount of gathered energy is negligible and it
suggests that this is not the primary function of sleep. Moreover the presence
of REM sleep, in which the metabolic rate increases is in contradiction to
this theory.

Another theory is about the energy allocation based on the evolutionary
principle by which organisms have evolved to allocate energy in basic func-
tions such as growth, maintenance and reproduction in order to maximize
the reproductive output [8]. According to this, there are three allocation
strategies: sleep-wake cycle, torpor and continuous wakefulness. During the
sleep state, energy is reallocated in order to be used in the biological process
during the next period of wake.

It is possible to see sleep also as a process to stimulate the cellular repair
caused by the metabolic processes. In fact, it is proven that a consistent num-
ber of genes changes their expression during sleep and some sleep-associated
proteins are involved in intracellular transport and endo/exocytosis [29]. This
hypothesis can be extended to all organisms and tissues and it seems to be
helpful to fix cellular changes that occur during the wake stage.

Moreover some evidences suggest a decisive role of sleep in the learning and
memory process; sleep could be related to brain plasticity and it is helpful
to improve abilities in learning and remembering. Both REM and NREM
seem to be dedicated to different types of memories [10]. In fact, memory
activated in performing a task is improved and settled in REM sleep; the one

13



1 — General Introduction

which involves facts and ideas is improved during NREM sleep [11].

In conclusion, the theories briefly explained above, suggest the absolute ne-
cessity of sleep: sleep duration is related to many issues as strokes [12],
cardiovascular diseases [13], obesity [14] and carcinogenesis [15].

Therefore it is necessary to study and diagnose possible sleep diseases through
specific medical tests and procedures.

It is proved that sleeping a proper amounts of hours and eventually improv-
ing sleep quality is crucial for preventing diseases and generally for health
encouragement in the population.

1.3 State of art

As explained previously, in order to monitor the entire night and the stages
succession, a few parameters should be considered together for assigning the
proper sleep stage. For assessing that, a specific examination is performed:
the polysomnography (PSG). The PSG is a multiparametric exam in which
patients are continuously monitored overnight, physiological data are col-
lected and studied for making a diagnosis.

PSG collects the electroencephalogram (EEG) signal, in order to follow the
brainwaves evolution, electrooculogram (EOG) signal, for understanding eyes
movements, electromyogram (EMG) signal, for measuring the skeleton mus-
cle activity overnight and electrocardiogram (ECG), for recording heart rate.
After the discovery of the sleep disorder sleep apnea, in which patients stop
breathing for a while, breathing functions, respiratory airflow, and respira-
tory effort indicators were added to PSG, plus a peripheral pulsi oximetry.
This exam is executed from technicians or specialized personnel.
Information as the sleep onset latency (SOL)(which is the time duration
to accomplish the transition from full wakefulness to sleep), the number of
awakenings during night, total sleep time (T'ST) and many other features are
directly extrapolated from the PSG data and they are determinant for many
diagnostics. Other information such as movements during night or respira-
tion, that are not directly related to sleep, are often used too, according to
the patients’ need.

Polysomnography is mainly used to find out or verify sleep disorders, as
instance: narcolepsy, periodic limb movement disorder (PLMD), REM be-
havior disorder (RBD), parasomnias, and sleep apnea.

14



1 — General Introduction

The PSG exam requires at least twelve channels with wires directly at-
tached to the patients; a minimum of three EEG channels are requested, then
one or two channels for recording airflow, chin muscle tone, one or more for
measuring leg movements, two EOG channels, one or two ECG electrodes
and one for the oxygen saturation. Moreover, there are two channels applied
on the belts that typically measure, through piezoelectric sensors, chest and
upper abdominal movements. All of these channels are wired from the pa-
tients to a central box that is connected to a computer system which records
and stores data and finally shows them on a display. Some laboratories sup-
port also a video camera thus it is possible to observe the patients during
the examination.

1.3.1 EEG

More in specific, as regards the EEG recording, normally six exploring elec-
trodes are placed in the frontal, central and occipital portions of the scalp
and two references electrodes, placed according to the international 10-20
system (Figure 2.2); these channels record the brain activity (which is the
electrical field produced by cortical pyramidal neurons) that will be scored
into the sleep stages, as explained above. Usually a conductive gel is inter-
posed between the electrode and the scalp. The EEG signal is then divided
in 30 second epochs and each epoch is scored following specific scoring rules.
The main scoring methods are the Rechtschaffen €& Kales (R&K) and the
guidelines from the American Academy of Sleep Medicine (AASM).

R&K is the first widely used sleep scoring manual and for approximately
forty years it was the only accepted rule. It divides sleep into seven discrete
stages: wake, stage 1 (S1), stage 2 (S2), stage 3 (S3), stage 4 (54), stage REM
and movement time [16]. The R&K scoring was then criticized because of
its subjectivity that consequently can results in different interpretations. In
addition to this problem, this scale was developed for young healthy adults
and its application to patients or elderly people could be uncertain. The
American Academy of Sleep Medicine suggested a new guideline by modify-
ing terminology, re-coding methods and scoring. Regarding the terminology
changes, sleep is divided in four main stages: N1, N2, N3 and REM (R). N3
stage includes S3 and S4 from the R&K and represents the slow wave sleep
and the movement time stage is abolished.

In summary, the new AASM guideline simplifies the R&K technique in the
scoring system as well as the whole PSG setting.

15



1 — General Introduction

1.3.2 EOG

The electrooculogram consists of two electrodes placed one 1 ecm above the
outer canthus of the right eye (ROC) and the other one is placed 1 cm below
the outer canthus of the left eye (LOC). In fact during the eye movement
there is a change in electrical potential: the cornea, positively charged, moves
toward one electrode while the retina, negatively charged, takes away, causing
a electropotential difference. When the eye is still, the change in position is
zero and there is no output signal. During the first sleep stages there is a
slow and circular eye movement that leads to long waves in the output signals
while in REM stage the signal is characterized by bursts that identify this
stage [17]. Blinking produces a rapid vertical movement.

In Figure 1.2 there is the representation of the electrodes positioning.

R L

@ ]H:m

— i om 1cm
1em —

Gaze to the right Gaze to the left

+ @O - -0+

E2-M2 m
E1-M2 Any
+
Figure 1.2: E1 is the LOC previously explained, E2 is the ROC, M2 is the
right mastoid electrode location [17]

1.3.3 EMG

EMG is recorded in order to measure the muscle tension and to assess the
sleep stages, considering that during sleep, movement is reduced. Especially
during REM sleep there is no movement at all, if the subject is healthy, oth-
erwise it can be symptom of disease.

Two electrodes are normally placed on the chin, one above and the other
below the jawline; other two electrodes are placed on the anterior tibialis in
order to detect leg movements.

16
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Sleep leads to relaxation, therefore it is expected the subject to have a muscle
tone that decreases during the night. The EMG channel measures the total
atonia during REM stage.

1.3.4 ECG

The electrocardiogram is normally made of ten electrodes but during PSG
only two or three electrodes are used. The aim is to monitor the electrical
signal produced by the heart when it pulses: three main waves are necessary
to be distinguished, the P wave, the QRS complex and the T wave.

The study of the heart behaviour during sleep is necessary to assess the sleep
stage in conjunction with the other signals and to evaluate heart pathologies.

1.3.5 Respiratory airflow and blood oxygenation

The respiratory flow, nasal and oral, is measured with pressure transducers
and thermocouples. Breathing rate is another characteristic useful to confirm
the sleep stage but the main application is in supervising and revealing sleep
apnea episodes. In addition, belts can be employed for measuring breathing
rate by exploiting the chest expansion.

Pulsioximetry detects blood oxygenation and it is directly related to respi-
ration issues. The pulse oximeter fits on an earlobe or over the fingertip.

1.3.6 Procedure

For executing the PSG the patient should go to the hospital or to a specific
clinic where a technician apply the electrodes and wires. The personnel in
charge will monitor the patient overnight through monitors that show the
recorded signals.

Some important feature are then extracted after the scoring procedure:

o Sleep stages: as explained above, the sleep stages are fundamental to
understand the phases the patient has gone through. The diagram that
represents the stages is called hypnogram.

o Sleep efficiency: it is calculated by dividing the number of minutes of
sleep by the number of minutes in bed.

17



1 — General Introduction

o Sleep onset latency: it is the onset of sleep from time the lights were
turned off.

o Arousals: the arousals are unexpected change in the EEG. This episodes
could be caused by different factors, for instance, leg movements, exter-
nal noises or breathing abnormalities.

e Breathing and cardiac abnormalities

e Leg movements

1.3.7 Other techniques

Despite its undisputed utility in the sleep diseases field, the PSG technique
has some drawbacks, such as its high cost, its short recording time (one
or two nights, while daytime recording is complicated) and the amount of
cables. For all these reasons alternative techniques to PSG are sought. In
particular, non-traditional modalities for instance actigraphy, audio, video
and temperature recording are becoming increasingly important: the goal is
to achieve a comparable results to PSG without its complications.

e Audio: Audio recording is a useful method for monitoring sleep. It is not
invasive because the microphone does not touch the patient: this allows
not to disturb the patient’s natural sleep. It is also not expensive. Audio
recordings are used to identify snoring, normal breathing or obstructive
events.

The study of sleep by audio is carried out using speech analysis tech-
niques: in order to generate the elements of the speech, the vocal tract
changes form; in particular the created sounds are shaped in the fre-
quency domain by the frequency response of the vocal tract itself [19].
This kind of change occurs less noticeably in snoring; therefore a fre-
quency analysis, useful to identify sleep disorders, such as the Obstruc-
tive Sleep Apnea (OSA), can be carried out.

e Video: by recording the patients it is possible to monitor a lot of param-
eters without disturbing the subject. The video recording is often used
in combination to PSG for understanding patients disorders. In fact it is
possible to observe patients’ position, respiratory and body movements;
moreover the cost associated to it is not excessive, even if a specialist
has to watch the video recordings.

Limb movements and apneas event can be confirmed with this technique.

18
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One drawback is that often the patient is covered by bed sheet; therefore
most of the body is obscured and the light level is normally low. In order
to solve this problem, infrared lights or infra-red-sensitive cameras can
be employed [19].

Actigraphy: also known as actimetry or accelerometry, it is a non-
invasive method exploiting wearable sensors. Actigraphy is easy-to-use
and has been validated for estimating parameters of night-time sleep and
circadian rythms.

The actigraph allows to measure accelerations and subjects’ movements.
Moreover, it allows to determine if it is a phase of waking or sleep. In
the simplest view, sleep is assigned when the sensor does not detect any
movement.

The use of actigraphy is preferred to PSG in case of long-term sleep/wake
monitoring or in some specific situations, such as with children when
EEG waves are not fully formed yet. However, accelerometry is less spe-
cific (less than 50%) than PSG in identifying the waking state.

The actigraph has multiple fields of application in addition to the deter-
mination of sleep-wake phases and sleep stages; examples can be found
in the study of physical activity, in the sport context or in rehabilitation.
Moreover, it is often used in Parkinson’s disease studies, especially for
detecting episodes of akinesias and hypokinesias.

Temperature: body temperature changes during the course of the night,
therefore it can be a good marker to be monitored. In fact, temperature
is regulated by circadian systems as well as sleep. The core body tem-
perature (CBT), the distal skin temperature (DIST) and the proximal
skin temperature (PROX) are often used as indicators. Together with
the termo-regulatory model and with the melatonin hormon influence,
sleep can be monitored.

CBT trend decreases during night and increases during arousals; this
value is correlated to PROX and it is anti-phase with DIST. Surely the
sensor placement has a role in the obtained values.

During PSG, the environment in which the patient has to sleep in, is often felt
as uncomfortable and unfamiliar, leading to problems in recording reliable
data during the test. This is known as the first night effect (FNE) [18]. As a
results the sleep onset latency is longer and the sleep efficiency is lower. On
the other hand, there is the possibility that patients could sleep better than

19



1 — General Introduction

usual, resulting in the reverse first night effect (RFNE). A solution can be
found in the "serial night PSG".

1.4 Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder that is rather com-
mon in our society nowadays. The first description dates back to two cen-
turies ago when James Parkinson published an essay where he reported cases
of this disease, describing patients with a continuous tremor, irregular gait,
paralysis and a low muscular strength; the complete picture of this disorder
is still evolving today.

Symptoms are the results of the death of dopaminergic neurons in the sub-
stantia nigra pars compacta (SNpc) (Figure 1.3); in fact, the dopamine lack
leads to the classical parkinsonian movements [20]. Actually the disease is
associated to other symptoms that are not specifically involved in the motor
system and can precede the movements disorder by more than a decade.

Corpus callosum  Nigro-striatal
projection

Cingulate gyrus \

Mesolimbic
Striatum projection

Frontal

Nucleus
accumbans

Hypothalamus -

Mesocortical
projection

? Ventral
tegmental ’ Pons

arda ' Medulla

! Substantia
nigra

Figure 1.3: Brain anatomy

The classical motor dysfunctions, as described by Parkinson, are mainly:
bradykinesia, muscle rigidity, rest tremor, and gait and postural impairment
[20]. It is important to highlight that not all the patients show the same
characteristics; therefore, two subclasses of the disease has been described
with empirical observations: tremor-dominant Parkinson’s disease and non
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tremor-dominant Parkinson’s disease. In the first category, subjects show
mainly tremor without other symptoms, with a slower progression and a
lesser disability [22], while in the second category akinetic-rigid syndrome
and postural instability gait disorder are included [20].

Non-motor characteristics are: olfactory dysfunction, psychiatric symp-
toms, fatigue, pain and sleep disorders; they have an high impact on the
quality of life [23]. The pathogenic pathway that leads to PD is thought
to be in progress during the pre-motor phase involving the nervous system
and the SNpc; this period can be used for adjusting the therapy in order
to get the progression of the disease slower. In fact, over the course of
time there is a worsening of the motor skills that can be managed with long
term therapies that have drawbacks too. Patients in the late-stage become
medications-resistant and motor and non-motor features are noticeable, for
instance freezing of gait (FOG), speech dysfunctions and dyskinesia. In Fig-
ure 1.4 there is a scheme of typical symptoms evolution.

Pre-motor/prodromal period Parkinson’s disease diagnosis

Early Advanced/late
Complications

Psychosis

Fluctuations
Dyskinesia Motor

Dysphagia

Degree of disability

Postural instability
Bradykinesia Freezing of gait
Rigidity Falls
Tremor
EDS Pain Urinary symptoms

Hyposmia Fatigue Orthostatic hypotension
Constipation RBD Depression mcl Dementia

T T T T T
-20 -10 0 10 20
Time (years)

Figure 1.4: Symptoms of Parkinson’s disease over years [20]

As anticipated, PD main features are due to the dopaminergic neurons
loss in the SNcp, specifically in the ventrolateral tier, which includes neurons
that project to the dorsal putamen of the striatum [20], but also in the nu-
cleus basalis of Meynert, amygdala, dorsal motor nucleus of the vagus and in
the pedunculopontine nucleus [24]. The microscopical alterations can be ob-
served in the melanin pigmentation in the substantia nigra and in the other
regions.
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Another distinctive characteristic of PD is the Lewy pathology, which pro-
vides for a anomalous aggregation of a protein, the a—synuclein. In fact, it
has been discovered a mutation in the a—synuclein gene, SNCA, that causes
a mendelian form of this illness [25]. This protein, in a misfolded state, is
insoluble and it accumulates in neurons provoking inclusions called "Lewy
bodies".

Lewy pathology is suggested to progress always in the same manner; Braak
proposed a PD classification based on the pathological picture: Lewis bodies
appear first in the peripheral nervous system and in the olfactory system,
then, with the progress of the disease, the aggregations spread in the central
nervous system [26]. In addition, another feature is the neuroinflammation,
which is mediated by resident astrocytes and microglia designated to the
clearance of the extracellular detritus [27]. When the microglia is activated,
there is a trophic factors release, but also dangerous reactive nitrogen and
oxygen species and cytokines are produced. This process is still under study
in order to understand the real effect on neurons [28].

1.4.1 Risks factors

During the last decade researches has been done on the genetics of Parkin-
son’s disease. The first gene related to the illness is the SNCA, that codifies
a—synuclein: mutation to SNCA lead to autosomal dominant parkinson-
ism. Other genes involved are parkina (PRKN), dardarin (LRRK2), PTEN-
induced kinase 1 (PINK1), DJ-1 e ATP13A2 [29].

Several risks factors has been proposed through the years:

o Gender: there is a ratio male-to-female of about 3:2 [30].

o Ethnicity: In the USA the most affected are the Hispanic people, fol-
lowed by non-Hispanic Whites, Asians and Blacks [31].

e Heredity: Having many relatives with Parkinson’s disease increases the
chances of a genetic disease. Generally, juvenile (atypical) cases have a
genetic origin.

o Age: the incidence of PD is higher as the age increases [32].

o Environmental exposure: it has been demonstrated that insecticides and
herbicides have a role in the PD risk [33].

Although there are also factors related to a decreased risk, as instance:
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« Tobacco smoking [34]
« Coffee drinking [34]
o Calcium channel blocker use [34]

Therefore there is an interaction between genes and environmental factors
that should be taken into account as shown in Figure 1.5.

Environmental risk factors Genetic risk factors

Increased risk (OR >1) Increased risk (OR >1)
Pesticide exposure GBA (OR >5) VPS13C
Prior head injury INPPSF DDRGK1
Rural living STK39 GPNMB
Beta-blocker use LRRK2 CcbCe62
Agricultural occupation SIPA1L2 MIR4697
Well water drinking Interactions BST1 BCKDK-STX1B
RAB7L1-NUCKS1
Decreased risk (OR <1)
Tobacco smoking Decreased risk (OR <1)
Coffee drinking SNCA GCH1
NSAID use MAPT RIT2
Calcium channel blocker use TMEM175-GAK-DGKQ FAM47E-SCARB2
Alcohol consumption HLA-DQB1 FGF20
MCCC1 SREBF1-RAI1

ACMSD-TMEM163

Figure 1.5: Interaction between risks factors, where OR is the odd ratio [20]

1.4.2 Diagnosis

Regarding the Parkinson’s disease diagnosis, the presence of the main fea-
ture of the illness, such as bradykinesia, rigidity and tremor, are clinically
evaluated; in any case the gold standard is the neuropathological assessment.
The UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic Crite-
ria are the most broadly used, but recently a new set of diagnostic criteria
was proposed by the International Parkinson and Movement Disorder Soci-
ety (MDS) in order to improve the diagnostic accuracy.

Tomographic cerebral scansion can be used to discriminate and possibly ex-
clude pathologies with similar symptoms. Positron emission tomography
(PET) or single photon emission computed tomography (SPECT) are used
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to estimate the reduction of the dopaminergic terminals; one of the advan-
tages of this methods is the non-invasiveness, on the other hand they are not
specific in distinguishing from other disorders associated with SNpc neurode-
generation.

Different biomarkers has been identified for investigation and they can be
divided in clinical, pathological, imaging, genetic and biochemical. In Figure
1.6 some of them are depicted; the combination is likely to be useful for a
precise diagnosis. The Lewis body observation during autopsy is considered
the final proof that the patient suffered from Parkinson’s Disease.

0
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RBD

(eg, polysomnography)
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(eg, a-synuclein, DJ-1, tau,
B-amyloid, B-glucocerebrosidase)
Saliva

(no known biomarkers)
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(eg, uricacid, glutathione, other
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(eg, gene sequencing, MLPA)
Next-generation sequencing
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(ie, a-synuclein staining)
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(ie, a-synuclein staining)
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Figure 1.6: Biomarkers useful for parkinson’s disease diagnosis [20]

1.4.3 Medications

At the moment, a definitive cure does not exist, pharmacological treatments
and surgery can only alleviate symptoms.

Since the dopamine loss causes motor symptoms, the neurotransmitter should
be re-integrated. Dopamine does not cross the blood-brain barrier, but a pre-
cursor of dopamine, levodopa, can. Levodopa, after going through the barrier,
is converted in dopamine and it reduces for a short period motor symptoms.
Not all the levodopa crosses the barrier, most of it is metabolized elsewhere
and it causes some side effects like orthostatic hypotension and nausea.
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Other medications can be used in combination to levodopa: carbidopa and
benserazide; they are dopa-decarboxylase inhibitors that reduce the conver-
sion of levodopa to dopamine outside the brain.

In the long term, the use of these medications can cause dyskinesias and
fluctuations in the efficacy of treatments; over the course of time the body
get used to this medications, consequently making them less effective; this
issue is called "wearing off".

Alternatives to levodopa are some dopamine agonists which bind to the
dopamine receptors [35]; Initially these medications were used as a ther-
apy for patients that showed levodopa complications, but right now are more
used as therapy before starting levodopa in order to delay the use of this
latter and therefore its side-effects. Some of the dopamine agonists are per-
golide, ropinirole, bromocriptine, cabergoline and apomorphine.

As regards surgery, thanks to the great improvements in this field, PD pa-
tients whom medications are no more sufficient (or they experience mainly
dyskinesia and motor fluctuations) undergo to an operation. There are two:
deep brain stimulation (DBS) and lesional surgery. DBS is used in patients
that suffer from the disease in a moderate to a severe state. The targeted
area for both the surgical techniques is the subthalamic nucleus or the globus
pallidus [20]. In the deep brain stimulation a neurostimulator is implanted:
it is a medical device that sends electrical impulses to the zone in which is
placed. It can significantly improve quality of life in Parkinson’s patients
by blocking the abnormal nerve signals that cause the main symptoms such
as tremors, rigidity, bradykinesia, and postural instability. Especially rest-
ing tremor is suppressed within seconds, while relief from bradykinesia takes
minutes, improvements in gait and posture can require continuous stimula-
tion from hours to days before achieving a maximum effect.

The DBS implantation occurs on average 13 years after the beginning of the
disease. It would be optimal to implant the device at an earlier disease-stage
to prevent psychosocial decline and to maintain quality of life for a longer
period of time[21]. In Figure 1.7 there is an illustration of DBS positioning.

1.4.4 Disease evaluation

It is fundamental to evaluate the disease stage of progress for every single
patient. For this reason a specific scale has been introduced: the unified
Parkinson’s disease rating scale (UPDRS).
It has fours parts as reported in the table 1.1.

A revised version of UPDRS named MDS-UPDRS was then introduced:
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electrode

Figure 1.7: Electrode and device used for deep brain stimulation [37]

UPDRS

UPDRS-I  Regards the nonmotor aspects of daily life

UPDRS-II  Regards the motor aspects of daily life

UPDRS-III Motor subscale: concretely assigns specific parkinsonian marks,
such as tremor, rigidity, bradykinesia and gait impairments.

UPDRS-IV  Regards motor complications.

Table 1.1: UPDRS stages

it still maintains the same 4 parts structure of UPDRS, but it solves some
problems identified in the original version such as some PD-related issues
that were poorly expressed [38].
The Hoen and Yahr scale is another rating scale that has five stages related
to which part of the body the disease is mostly affecting, at which level and
if it affects the balance too.
Moreover, Schwab and England scale is procedure for assessing abilities of
impaired patients; it exploits percentages in order to evaluate the complica-
tions patients experience for completing daily life activity and if they need
support for carrying out them.

All these criteria refer to the main PD manifestations as a result of nigros-
triatal damage, such as bradykinesia, tremor and rigidity. PD diagnosis is
generally made when these symptoms begin to appear, during the so called
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motor stage.

Bradykinesia occurs when one body part is affected by a progressive decrease
in speed and amplitude of movements. This is the primary consequence re-
lated to dopamine decrease and what specialists seek to quantify in order to
diagnose parkinsonism and, as a consequence, optimize the therapy.
Typical parkinsonian tremor is an intermittent oscillatory movement which
is mainly present on the limbs. Generally, the rest tremor (frequency 4-6 Hz)
is inhibited by movement and may reappear a few seconds after a position
change. On the contrary to what is commonly thought, not all PD patients
exhibit tremor since the disease manifests itself more in other ways (bradyki-
nesia or gait problems).

Rigidity is the resistance of any body part to the passive mobilization be-
cause of an increased tone. Rigidity can affect head, trunk and lower or
upper limbs.

1.4.5 Parkinson’s disease sleep disorders

As already introduced, PD patients suffer from non-motor disorders that
have a high impact on everyday life and reduce life quality.

These disorders include for instance insomnia, restless leg syndrome (RLS),
excessive daytime sleepiness (EDS), rapid eye movement sleep behaviour (RBD)
and sleep fragmentation. The majority of sleep issues are experienced in the
late stages of PD but RDB and EDS can be observed also in the early stage,
and even in the premotor phase [39]. There are three main categories that
explain the abnormal behaviour during sleep that can happen during day
and night, as shown in Table 1.2

Category Sleep issue

REM parasomnias (as instance RBD)

Parasomnias NREM parasomnias (as instance sleepwalking)

Sleep difficulties Insomnia (initial, maintenance and terminal insomnia)

Sleepiness EDS

Table 1.2: Main sleep disorders in Parkinson’s disease

Parasomnias are undesired behaviours that happen not only the first
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phases of sleep, but also during the awakening (REM and NREM).
Rapid eye movement sleep disorder

This disorder is very common in PD patients, affecting a percentage from
20 to 72% [40]. Normally during REM sleep muscles tone is almost sup-
pressed. People who suffer of RBD have dream-related vocalizations and are
able to move; they shout, talk, scream, have complex motor movements like
kicking or punching. Surely this is a problem for themselves, because they
can be walking into injuries and for the people who sleep with the patients.
RBD often appears years before the parkinsonian motor symptoms. It is
related to some feature like gender, cognition, age, disease severity, disease
duration and medications.

The disorder diagnosis is performed with a clinical manifestations or ques-
tionnaire: however, a history of vocalizations and motor behaviours in REM
sleep is relevant for diagnosing. The PSG can measure an abnormal chin
muscle tone in the EMG during the REM phase but it is not mandatory for
the clinical diagnosis.

Regarding the pathophysiology, RBD is related to the structures that provide
the atonia by inhibiting the motor neurons of the spinal cord, the pedunculo-
pontine nucleus (PPN) and the medullary magnocellular reticular formation
[40]; the degeneration of the neural structures makes difficult to control the
tone.

Usually two kinds of medication are used in this cases: melatonin and clon-
azepam. The first one is commonly used in patients that suffer from mental
impairment or sleep apnea. The mechanism by which melatonin works is still
not clear; it has some side effects though, like headache or daytime excessive
sleepiness. On the other hand clonazepam can worsen sleep apnea symptoms
and mental disorders.

Insomnia

Insomnia can be seen as a difficulty in beginning sleep, in maintaining it
or in early awakenings. Insomnia can occur alone or in association to mental
or systemic illnesses and it is related to female gender and the PD duration.
Sleep fragmentation happens when the patient cannot maintain the sleep in-
tegrity and he wakes up many times during the night.

The diagnosis of this disorder is derived from the patients’ clinical history
and it is necessary for making a medication plan. The most used drugs are
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hypnotics or sedating anti-depressant, used for maintaining sleep longer [40].
One of the causes of insomnia is the restless leg syndrome: in fact the pa-
tients, perceiving an unconformable feeling at legs, need to move them for
making it goes away. This continuous movement does not let the patients
get to sleep.

Sleep-Related Movement Disorders - RLS and PLMD

Restless legs syndrome (RLS) and periodic limb movement disorders (PLMD)
are two sleep-related movement disorders. The first refers to unpleasant or
uncomfortable feelings in legs and an urge to move them; while PLMD is
characterized by periodic limb movements during sleep. Both disorders are
due to dopamine dysfunction and respond well to dopamine medication.

Excessive daytime sleepiness

It is a chronic sleepiness that occurs during the day, and can be the results
of different causes such as depression, anxiety, changes in sleeping habits and
in the circadian rhythms. Sleepiness is related to the deterioration of the
normal night sleep but also to the degeneration of the sleep-wake control
centre and to the medications side effects.

A specific scale is used for evaluating the level of EDS: the Epworth Sleepi-
ness Scale (ESS). It has statements that can be scored to a maximum of 3
points; the higher is the score, the higher is the sleepiness level [40].

Nocturnal hypokinesia

It is a very common condition in which patients are impaired or totally
enabled to move during the night, to turn over in bed or to get out of bed.
This could be cause of immobilization that can lead to additional problems,
for instance predisposition to aspiration pneumonia, pressure ulcers or as-
phyxia [50]. In literature this problem has been often pointed out and it is
characterized by few episodes of turning in bed that results to be very slow.
Sometimes, this disorder can be associated to the wearing off effect but also
to an ageing process.
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1.5 Purpose of this thesis

As suggested in the previous section, PD is a disabling disease not only in-
volving the motor system. In fact, sleeping is highly affected by disorders,
derived from PD, that make it difficult to pursue.

This disorders are often underestimated but they have an important role in
the everyday life. The diagnose comes from the PSG exam which is expensive
and not always guarantees the desired results. Cables and electrodes do not
make the patient’s sleep comfortable and relaxed, moreover the unfamiliar
environment makes sleep even more complicated.

In PD patient, hypokinetic events are frequent and it is not easy to recognize
them from the PSG; patients are not able to move during the night resulting
in long periods of immobilization.

This thesis is focused on two main fronts, a study on the EEG signals and
the inertial signals processing.

The aim is in finding a simple method for revealing sleeping issues with a
compact and easy-to-wear system. With the EEG it is possible to distinguish
and characterize every sleep stage, while with inertial signals an amount of
movement quantification can be done. Therefore, an idea of the patients’
behaviour during the night is obtainable from the combination of these two
signals.

In particular, hypokinesia can be easily pointed out because accelerometer
and gyroscope data return all the changes in position. Another disorder
that the union of the two signals identifies, is RBD; in fact, during the REM
stages, muscles are supposed to be atonic but if movements are detected then
a disorder could be revealed.

The solution proposed in this study is a simple way for monitoring the pa-
tient’s sleep without the complications given by a full PSG exam. This ad-
ditional information extracted by signals can be helpful for doctors to have
a complete medical picture. In this thesis we could not join the two signals
for testing our idea on patients but we hope in future implementation.
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Chapter 2

Materials and methods

2.1 Materials

In this work, both EEG and inertial data has been processed. In particular,
the EEG data belonged to an existing dataset, the PhysioNet database, while
the inertial data have been collected from a patient and from healthy subjects,
through the SensorTile.box.

2.1.1 PhysioNet database

In order to understand how the biological signals behave during the night,
PSGs from an existing database have been used. Since most of the papers in
literature uses the Sleep-EDF' Database Expanded database uploaded on the
PhysioNet website, it has been employed here too.

This database contains a total of 197 recorded polysomnographies, including
EEG signals (from Fpz-Cz and Pz-Oz electrode positions), EOG signal, chin
EMG and event markers. Only some of the records have respiration signals
and body temperature.

The epochs have been scored by technicians following the Rechtschaffen and
Kales rules. In fact, the stages present in the annotation columns are:

W — Wake

R — REMSleep

1 — Stagel

2 — Stage?2
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3 — Stage3

4 — Staged

M — Movement time

e 7 — Not scored

Signals are in .EDF format while hypnograms appear in the .EDF+ format;
they have an header that defines the patients in a anonymous way; in par-
ticular only gender and age are codified.

The 197 recordings are named as SCssNEO-PSG.edf, in order: Sleep Cas-
sette (SC), ss which is the patient number and N which is the number of the
night.

All files belong to a study dated between 1987-1991 of healthy Caucasians,
from 25 to 101 years old and not assuming any sleep-related medication.
The EEG and EOG signals are sampled at 100 Hz; the EMG signal is elec-
tronically filtered with an high pass filter, rectified and filtered again with a
low-pass filter therefore the envelope is in pV root mean square and sampled
at 1 Hz.

2.1.2 SensorTile.box

SensorTile.box is an evaluation system assembled by STMicroelectronics
which contains ST MEMS devices, in specific a six axis inertial measure-
ment unit (IMU), a temperature sensor, a magnetometer, a pressure sensor,
a microphone and a humidity sensor. It is closed in a rigid plastic casing.
As regards the energy source, this box contains a Li-Ion rechargeable battery:
it provides 3.7 V and 500 mAh with a dimension of 35.5x25.5mm. All the
sensors are managed thanks to a low power microcontroller STM32L4R9.
It exploits a Bluetooth connection for communicating with its app on the
smartphone but all the data are stored in an 8 Gb SD card. The app allows
the user to create a personalized application by selecting the sensors to be
used, the frequencies and full scale range; then it is easily uploaded on the
device.

In this work, the used application consists on a desired output with date,
time, accelerations, gyroscopes and magnetic field sensor.

The device is equipped with three leds on the front side, a blue one, that
start flashing when a Bluetooth connection is available, a red led that flashes
when connected to an energy source and a green led that turns out by when
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a new firmware is uploaded.
The main structure of this device is in Figure 2.1.
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Figure 2.1: Sensortile.box by STMicroelectronics

2.2 Methods

In this section the implemented algorithms will be explained; all the codes
has been written in MATLAB R2019b.

2.2.1 Exploring EEG signal

Three main algorithms regarding the EEG signal have been implemented: the
first one is a recognition algorithm that can distinguish the REM stages from
the NREM ones. It uses specific features extracted from the signal and it
reaches promising results. Since the EEG contains a lot of information, an all-
stages recognition has been attempted. For exploring this path, two methods
have been used: a first one in which specific features have been extracted,
and a second one in which the wavelet transform has been implemented.
Both of them exploit machine learning techniques.

The Physionet database provides two EEG channels, but for this work only
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one channel is used: Fpz-Cz. This channel position (Figure 2.2) is chosen
because it is easier to reach and more comfortable for the patient when data
are going to be collected.

70>
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Figure 2.2: Ten-twenty system for EEG electrodes positioning [36]

REM-NREM epochs recognition

In this first phase an algorithm for recognizing REM epochs has been imple-
mented.

Since the data have different extensions, it is necessary to convert the hypno-
gram files into a compatible extension. In fact, the .EDF+ format is not di-
rectly importable, therefore these files are transferred through a free software
called Polyman and converted into .csv files which are easier to process.

A selection of the total number of patients is considered: 45 out of 197
recordings are taken into account, because not all the data presented suitable
characteristics and correct annotations; moreover, since the computational
cost is already quite high, by increasing the number of patients it would be
unbearable for the supplied personal computers.

The annotation vector has been done following the REK rules, but, in order
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to decrease the number of stages to classify, it is changed into the more ob-
jective AASM classification. Moreover, since there were not many not-scored
epochs, they were not taken into account.

The aim of this algorithm is to extract features that can easily identify the
REM phase.

A summary of the method is depicted in Figure 2.3, a flow chart is proposed;
then each part is described in detail below.
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Figure 2.3: General flow chart of the implemented algorithm

Part I:

After uploading the data in the proper way, a preliminary processing of
the signal is performed. The EEG signal is filtered with a pass band filter;
the cut-off frequencies are 0.16Hz and 60Hz. The pass band filter has been
realized with a combination of a high pass filter (Figure 2.4(a)) and a low
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pass filter (Figure 2.4(b)). With these filters the continuous frequency is re-
moved and then the band is limited up to 60Hz, because the EEG content
does not extent beyond.

Originally the sampling frequency was 100Hz but the signal has been re-
sampled at 256Hz to improve the accuracy.
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Figure 2.4: Filters composition for the EEG preprocessing

Most of the recordings in the dataset begins during the afternoon but,
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since only the EEG during sleep is necessary, the signal is cut; all wake
epochs at the beginning of the signal are removed while the wake epochs
at the end are maintained. This step is important also because it helps in
balancing the dataset used in the second part of machine learning.

Part 1II:

The signal is divided into 30 seconds epochs, as the state of art dictates.
The epochs are not overlapped.
The difficulty in distinguishing NREM and REM stages is mainly due to
the similarities in frequency of N1 and REM, specifically in the bandwidth
13-17Hz [41]. The bandwidth 10-13Hz seems to be helpful for dividing REM
and N1 while the bandwidth 12-16Hz is helpful for discriminating REM from
other stages. Following the work [41], the range chosen for understanding
better the different stages is 8-16Hz, that includes the two bands expressed
before.

Every 30 seconds epoch is divided again into 2 seconds epochs, non-
overlapped. In order to move from the time domain to the frequency domain,
the fast Fourier transform (FFT) is applied:

+o00

X(f) = / (1) =92 gt (2.1)

—o0

Theoretically the Fourier transform is expressed from —oo to 400, but in
practical signals are multiplied by a rectangular window that limits in time
the signal.
The resolution of this transform is given by:

df = ; (2.2)

Where T is the length in time of the segment that is 2s, consequently there
is a 0.5Hz resolution.

From this result two main feature are extracted: the spectral edge at 50%
(from now on called SEF50), and the spectral edge at 95% (SEF95) in the
interval of 8 — 16Hz.

The SEF is the specific frequency below which a certain amount of signal
power is retained; in SEF50 what is looked for is the frequency below which
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there is half of the spectral power. This calculation is the same as calculating
the median frequency, from the FFT coefficient the frequency is extracted
using this method [42]:

3" |magi|* = 0.50 x Y |mag;|? (2.3)
1=1 i=1
SEF50 = freq(x) (2.4)

N is the number of the FFT coefficients while x is the index that it is looked
for. The x-th frequency from the FFT vector is required.

Behind this equation there is the assumption that the signal in 2 two seconds
window is wide sense stationary (WSS). By doing the quadratic modulus of
the Fourier transform the direct method of the spectral power calculation is
applied. If the process is WSS and ergodic, which means the process will
not change its statistical features in time and these can be deduced from a
single, long enough sample, then the following equality holds:

2

booes

This means that the spectral power is equal to the statistical average of
the quadratic modulus of the discrete time Fourier transform (DTFT) of the
windowed signal and divided for the window length when the latter tends to
infinity.

- ]
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SEF95 is defined as:

3 Imagi)? = 0.95 x Y |mag;|* (2.6)
1=1 i=1

The output is the frequency below which there is the 95% of the spectral
power.

Since every 30s epoch is divided into 2s epoch, at the end of every loop
15 measures of SEF50 and SEF95 are obtained; therefore, these values are
averaged and then, for every epoch, there will be just one output.

The last extracted feature is the difference between SEF95 and SEF50, called
SEFd. For every epoch e, SEFd is calculated as follows:

15
SEFd = 115 X S (SEF95[sen] — SEF50[se,]) (2.7)

1=1
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Where 7 is the subepoch while n is its index. The signal is then smoothed
for flattening its variability.
In Figure 2.5 is shown the SEFd and the correspondent hypnogram. It can
be noticed that SEFd values are higher in the REM phases and that is why
it could be a good discriminant feature from other phases. Also during some
awake stages there is an high SEFd, but still lower than REM in most of the
cases. This pattern appears because of the high values of SEF95 and low
values of SEF50 in REM stages.
The numeric codes assigned at every epoch stage in this work are:

e N1 — 1

N2 — 2

N3 — 3

REM — 5

WAKE — 6
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Figure 2.5: SEFd during the epochs of the first patients; REM stage is iden-
tified with the value 5, wake is 6
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The explanation underneath Figure 2.5 is given by the fact that power
changes between REM and NREM stages; in particular, powers are similar
at around 8Hz then the NREM power increases: the SEF50 of the REM
stages is expected to be lower than NREM. After 15Hz the trend changes
and the power of the REM stage starts increasing. Therefore SEF95 will be
higher in the REM stages. The Figure 2.6 is taken from the signal of the
first patient and it shows briefly the explained concept.

«10° Spectral power - First patient

REM
71 NREM | -

6 |

I

51 /ﬁ, /

/ | ]
| ]
N/ ”\ / k// \/ |
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|

7 8

2 13 17

Frequency (Hz)

Figure 2.6: Difference between the spectral power of a REM epoch and a
NREM epoch

Due to the fact that some epochs are not well distinguished with only the
SEFd, especially the wake ones, other characteristics have been extracted for
improving the differentiation.

The absolute power (AP) is calculated with the Fourier coefficients of the
signal between two selected frequency, in our case 8 and 16 Hz.

n(f2)

AP =20 x log ( > (|magi\)> (2.8)
i=n(f1)

AP has been calculated for every sub-epoch and then averaged for every

epoch. During REM stages the AP exhibits the lowest values as shown in

Figure 2.7.
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Figure 2.7: AP evolution during the epochs in the first patient

The last used characteristic is the relative power (RP), that is evaluated
as:

n(f2

)
Yicn mag;
RP =20 x log < _n(fl)(| .g |)>
i=1(Imag;|)

Where n(f1) and n(f2) are again 8 and 16 Hz. RP does not have a par-
ticular behaviour in REM and NREM epochs but it is useful since it can
stabilize the recognizing process [42].

All the data has been normalized before starting the machine learning process
following the min-max scaling:

(2.9)

S T min(z)

(2.10)

-~ max(x) — min(x)
Part III:
After the feature extraction process, we obtained three long arrays contain-

ing all the SEFd, AP and RP calculations for every epoch of every patient.
Then AP and RP are smoothed for removing variability.
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The annotation array has been organized so that the NREM epochs has been
set to 0 while the REM epochs to 5.

In order to perform machine learning algorithms, the MATLAB Machine
Leaner App and the Statistics and Machine Learning Toolbox have been
used. After a search on the best learning method proposed in literature
and a test of which one gave the best performances, the Ensemble Learning
method has been chosen.

The ensemble learning method is based on the idea that it uses multiple
learning algorithms for reaching the best prediction level. It is a supervised
method, which means that the input dataset is given with the column of the
correspondent responses, in this case the belongings to the REM or NREM
stage. The algorithm extracts a space of hypothesis in order to find the suit-
able one for making the best prediction. By constructing more decision trees
from the same data set, every tree will follow a different reasoning method,
therefore they could achieve a different prediction. For making a decision the
algorithm consults every decision tree and then it chooses the answer that
has resulted most times. The decision trees are made through the Boostrap
aggregating: dataset is divided in sub-dataset randomly chosen (Figure 2.8).
Every tree is estimated on each sub-dataset and yields to a classification. As
said before the final prediction is chosen as the most represented between
the trees. Following this path the stability and accuracy of the algorithm is
promoted.

| Training set
B
e O T
\ | / /
Classificati
motels G G Cr
Vo } |
Predictions P P, e b
Voo } |
Voting
&
Final prediction P,

Figure 2.8: Bagging method, adapted from [43]
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K-fold cross validation method is applied (Figure 2.9); it consists on a
division of the total dataset in k equal parts and every loop each k-th part
is used as validation dataset while the remaining part is used for training.
This avoids the model overfitting.

| Data Set ‘

Training Folds Test Fold

— — — -

Iteration 1 | | ‘ | ‘ ‘ % — E \
Iteration 2 | l ] | [ % ‘ —>E

|

Iteration k % | ‘ | | [ |I:>E i )

Figure 2.9: K-fold cross-validation method [44]

Therefore the main steps are:
1. Partition into k not intersected folds.
2. For each fold:

e Train the ensemble model on the out-of-fold observations

e Test the model on the in-fold data

3. Calculation of the average test error over all the chosen folds.

All stages recognition

Following the approach of the REM-NREM epoch recognition, all stages
recognition is attempted.

In fact, the structure of the algorithm is essentially the same but new features
have been extracted from the signal, since every sleep stage has its own
characteristics.

SEFd, AP and RP are maintained since presented a good discriminant power
for REM phases.

Below, a list of all the feature extracted is shown that have been studied in
literature; each of them will be explained in detail later.

« SEFd
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« AP

« RP

e Mean value

 Standard deviation (STD)
o Mean frequency (MNF)

e Spectral power in 0 band
e Spectral power in @ band
e Spectral power in 6 band
e Spectral power in # band
o Fractal dimension

e Shannon entropy

Statistics features:

The main statistic features have been calculated. For every epoch the
mean value of the EEG is extracted with the expression:

u::lx (éx) (2.11)

Then standard deviation is calculated; it yields the amount of dispersion or
variation of a dataset. When the standard deviation is low, it means the
data are close to the mean value, otherwise they are spread in a wider range.
It is extracted as:

5= <Z?_1 o M> (2.12)

n

Feature extracted in frequency domain:

During the sub-epochs loop, after the Fourier transform, some feature are
calculated. Mean frequency: since different EEG stages are characterized by
a bandwidth, in every epoch the mean frequency is extracted because it can
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give a contribution in the machine learning phase.
It is calculated from the statistic definition which expresses that, given a
random variable x with a variability distribution of f,(x) then:

i P fu(x)da
a 1

m (2.13)

where m/ is the statistic moment of the iy, order and it is divided by the area
of the distribution which is 1.
From this the equation used in the algorithm is directly obtainable:

J~ £ P(fdf)
N P(f)df

Where P is the spectral power, f is the frequency array and fy is the Nyquist
frequency.

MNF = (2.14)

Then, the power in each EEG distinctive bandwidth has been extracted;
more in specific, 6 bandwidth has been selected from 0.5Hz to 3.5Hz and it
represents the state of a very deep sleep, 6 bandwidth between 3.5Hz and
THz and it shows up deep sleep, a bandwidth between 7THz and 14Hz when
the subject is relaxed and the last $ bandwidth between 14Hz and 21Hz in
the other states.

Each of them has been calculated on every sub-epoch and then averaged on
the entire epoch.

Entropy and complexity features:

Fractal dimension (FD) and Shannon entropy have been calculated on
every epoch and every sub-epoch respectively: Shannon entropy has been
averaged then on the entire epoch.

In fractal geometry, a fractal dimension is a ratio that provides an index
of the signal complexity; in fact, it statistically measures how well a fractal
matches the data at different scales [45]. A fractal is a geometrical object
that presents homothety, that is a geometrical transformation in space that
dilates or contracts objects maintaining the angles unchanged. FD is very
used in the EEG studies in order to distinguish physiological state phases.
There are many methods for estimating the fractal dimension and one of
them is the Higuchi’s method that exhibits high accuracy and robustness
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[46]. In fact, Higuchi’s method can be suitable for estimating FD of short
signals or for signals that are not stationary because of its moving window
approach; therefore, it divides the long signal into short parts that can be
considered stationary [47].

The signal epoch is given by a sequence of samples y(1),y(2), y(3)...y(N).
In the Higuchi’s algorithm a division in sub-epochs is computed generating
k new sub-epochs, defined as [47]:

gt = {y(m)+y(m+k)+y(m+2k),..,y(m+ME)},m =123, ..k (2.15)

where m is an integer that indicates the initial time and k is another integer

that represents the interval time. Moreover M = M

For each sub-epoch y* an average length L,,(k) as is computed:

Lalk) = 1 |y vtm +i8) = y(m + i = D) (2.16)

21 is a normalization factor. The epoch length L(k) is extracted by doing

the average on all the k for the different m values [47]:

k
L(k) = Y Lu(k) (2.17)
m=1

Therefore if L(k) is proportional to k=, the curve which describes the epoch
shape could be represented with fractal of dimension D.
By plotting in a double logarithmic scale what should appear is a straight
line with slope D as shown in Figure 2.10

This feature is included under the hypothesis that the signal complexity is
higher in the wake and REM stages while lower during deep sleep. In order
to show this general behaviour the average FD for the sleep stages has been
plotted in Figure 2.11

The trend of this feature is inferable from the picture even if the difference
between the stages is not very consistent. This could be due to the fact that
data are taken from patients that had an acquisition system with a specific
sampling rate that can lead to uncertainty.

The last feature is the Shannon entropy (SE).
The study of the entropy is important in order to understand the signal
complexity. If the signal has high entropy, it means that it has a low pre-
dictability.
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Figure 2.10: Fractal dimension of one epoch belonging to the last subject

FRACTAL DIMENSION

N1 N2 N3 REM W

Figure 2.11: The average values of fractal dimension divided by stages

The spectral entropy has been adapted to the Shannon entropy definition;
there are two main steps, first the spectral power is normalized on the total
area, second the equation for calculating the entropy value is applied.

__P[f]
plf] = ST (2.18)
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SE =) plf] x log(}ﬁ) (2.19)

This feature is expected to have a similar behaviour as the previous one,
since the complexity of the signal decreases with the sleep depth, as shown

in Figure 2.12.

REM W

SHANNON ENTROPY

N1 N2 N3

Figure 2.12: Average Shannon entropy during the stages

At the end of this features extraction process, before using features in the
machine learning, they have been normalized through the min-max scaling.

The machine learning process is the same as the previous model, that is
the ensemble learning method, with K-fold cross validation.

All stages recognition through wavelet transform

Another path has been followed in order to recognize all sleep stages. Since
in literature the wavelet transform use is very common, this approach has
been tested too. In fact, EEG is a dynamic signal, mostly non-stationary,
and this technique can provide details that other techniques could not give.

Wavelet transforms represent the signal through a finite oscillating wave
form that is scaled and shifted in order to adapt to the input signal. This
transformation is based on the scalar product between the signal and a
mother wavelet, that is allowed to change only in time extension but not
in shape. The continuous wavelet transform (CWT) permit to take advan-
tage of a larger window for analysing the low frequencies of the signal and
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a narrower one for analysing the high frequencies. Therefore there are two
important parameters: the scaling variable and the shifting variable.

(W f1(a,b) \/_/ (t - b) (2.20)

This is the scalar product between the signal and a set of wavelets scaled
and shifted by the parameters a and b respectively, called daughter wavelets.

bap(t) = \/—zﬁ(t — b) (2.21)

With the CWT, signal is analysed in a continuous way through functions

that are a continuously modified versions of the mother wavelets; a certain
level of redundancy is entailed, namely not all the results are useful for recon-
structing the original signal. Since a and b are discrete, the level of sampling
allows different degrees of redundancy. As a consequence, a discrete wavelet
tranform is applied (DWT).
Through a dyadic sampling (Figure 2.13) all the basis functions are needed
to reconstruct the signal. This means that every decomposition level is built
by filtering the signal in a way that half of the input bandwidth is on the
output.

a=2" (2.22)
b= m2" (2.23)
Ynn(t) = =7 ¢<t — 2 ) (2.24)

Through this process the signal is analysed at different resolutions, there-
fore it is called a Multiresolution analysis.
In order to approach to this procedure and consequently understanding the
algorithm that has been used, it is important to specify a chain of nested
spaces (Figure 2.14) that are defined approzimation spaces, as instance V11 C
Vi CViq1.
Every space gives additional information with respect to the previous one of
Wii1 = Vi\Viy1 where W, is the space of details.
A function included in a space can be written as the direct sum of a detail
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Figure 2.13: Dyadic sampling of a and b

space and an approximation one, for instance:
Vi
—
Vi=VWweW,=Vie W, eW... (2.25)

(s
(-

Figure 2.14: Nested spaces adapted from [48]

Therefore the approximation spaces are constructed on scaled and shifted
versions of a wavelet called father wavelet, while the detail spaces are built
on the versions of the mother wavelet. In particular:

V; = 2792277t — n) (2.26)

and

W, = 279/2(277t — n) (2.27)
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Considering the father wavelet in the Vj space, it is also included in the V_;
space; from this assumption it can be decomposed as a basis of V_q:

6(t) = VEY hath(2t —n) (2.28)

The mother wavelet is included in W therefore can be seen as before, be-
longing to V_y:

O(t) = V23~ ga0(2t —n) (2.29)

It results that the coefficients h, can be expressed as a low-pass filter while
gn as a high-pass filter.

Every decomposition level is therefore composed by a the application of a
low pass filter, a high-pass filter followed by a down-sampling, Figure 2.15

b= = | > D,
(/2 1.2 i i
x[n] : 2 |C l2 _:_) DCz
VL2 £l :
A\ 12 = !
[0, 7./4] i i
L [0.f/8] i
Level 1 Level 2

Figure 2.15: Bank of filters

Therefore, for each epoch and for every patient, some features directly
extracted from the results of this transform are calculated.
In particular, the epochs are decomposed in seven levels and, by knowing the
corresponding bands of each decomposition, the coefficients are consequently
gathered in order to reproduce the classic EEG bandwidth splits (0, §, «, 3,
7).
For this procedure MATLAB provide a wavelet packet and the "db2" wavelet
is used, from the Daubechies wavelet family.
The feature extracted are:
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Energies in every band: after the division in band the associated energy
is calculated through the coefficients (Fay, Fas, Fa3, Eay, Eas).

Total energy: the sum of all the energies in the levels is considered (E7).

Ratio between each band on the others: for example the first ratio cal-
culated is energy in o band on 0 and § (E8, E9, E10).

Mean value: it is calculated for every band (m1l, m2, m3, m4, m5b).

Standard deviation: it is calculated for every every band too (stl, st2,
st3, std, stb).

Spectral spread: this feature returns the spectral spread of the epoch
over time (spread).

Spectral flatness: this feature returns the spectral flatness of the epoch
over time and can be used for understanding how noisy the epoch is [49]
(flatness)

Spectral slope: it returns the slope of the spectral shape and how fast
the spectrum goes towards high frequencies (slopet).

Spectral centroid: it returns the spectral centroid as the weighted mean
of frequencies in the signal (centroid).

Spectral entropy: it returns the spectral entropy derived from the cal-
culated coefficients (entropy).

This features have been normalized through the min-max scaling tech-

nique and then used in the same machine learning model known as ensemble
learning method, and then validated through the K-fold validation.

The obtained results has been similar to the previous algorithm, but after

a feature selection the accuracy has been improved.

In fact, MATLAB provides several feature selection functions and the chosen
one uses the neighbourhood component analysis in order to understand the
input feature relevance with respect to the response vector.
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2.2.2 Exploring inertial signals

After studying the EEG signal taken from an already existing dataset, a
study on inertial signals is begun; this time we collected the data.

In fact, inertial signals during sleep can give further information about the
subject health status. In particular, a combination of an EEG and an inertial
system could give an idea about the sleep phases the subject goes through
and the related movement he does.

We will present some features that can be studied by employing the Sensor-
Tile.box on healthy people and on a PD patient.

Healthy subject signals

In order to understand how PD patients sleep in comparison to controls,
inertial signals from both have been collected.

A group of 6 healthy subjects, between 23 and 25 years old, was selected.
The recordings started when the subject laid down in bed before sleeping
and stopped in the morning, with an average of eight hours of sleep.

The SensorTile.box is inserted in an elastic band and applied on the chest.
The axis are oriented as the Figure 2.16 represents.

X

Figure 2.16: Sensor axis

The sensor is connected through app for smartphones (ST BLE sensor)
via Bluetooth; for beginning the recordings a start button is pressed. At
the end, the recorded data were transferred to a personal computer and pro-
cessed using Matlab.
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]

Figure 2.17: Sensor positioning

The obtained data are in .csv format: they include date, time, acceleration
and angular speed on the three axis.

From these signals an activity index is calculated, a number of turning in
bed and the velocity is extracted.

In Figure 2.18 there are the accelerations from an healthy subject, recorded
at home through the SensorTile IoT app.

The first step was determining from the accelerometers the patient posi-
tion in bed. This algorithm is based on thresholds.
The sensor is positioned with the x axis on the longitudinal axis of the body,
therefore the z axis and the y axis will be taken into account for assessing
the position.
The position is assigned depending on the acceleration each axis feels; for ex-
ample, when the subject is supine, on the z axis there is all the contribution
of the gravitational acceleration.
The accelerometer signal is divided into 60 seconds epochs and the z compo-
nent is checked first, then the y component. If the z and the y has a similar
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Figure 2.18: Accelerations from an healthy subject

value, the position is assigned based on which one has a bigger modulus.
In Figure 2.19 the implemented flowchart is represented.

At the end of this process, each epoch has its position, codified as a num-
ber.
The second step is to understand when the subject has turned in bed. By
making the difference between the elements in the position vector, when the
difference is not zero, the patient has turned. We only considered all the
changes in position that has last, at least, five minutes, since it is reported
in literature.
In order to make a double check on the turning in bed moments the angular
velocity is extracted too. When the patient changes position there is a peak
in the angular velocity: this value helps to confirm the event and to calculate
time for turning and the maximum velocity the patient has done. In this
case, since the subject rotates on his longitudinal axis, the x axis is taken
into account (Figure 2.20).
The accelerometer is divided in one-minute epochs while the velocity in 5
seconds epochs, in order to have a better resolution. When the peak in the
angular velocity is searched, this difference in epoch length has been taken
into account.

The final value calculated is the activity index.
Since most of the activity indexes are not publicly available because are used
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in commercial devices, we implemented a new method taken from literature
[51].

It exploits the variance of the raw accelerometry data for calculating the
proposed index.

Each velocity is divided into 60 seconds epochs, and for every epoch the
variance is extracted; a systematic noise variance is calculated when the
sensor is not moving, ;. Then is applied the following equation for every
epoch:

N (Rt RN ORI e

The proposed Al is easy to implement and presents characteristics as ad-
ditivity and rotational invariance, which means that it summarize the mag-
nitude of movement over three axes regardless the device orientation.

Patient signal

The patient was hospitalized at Molinette hospital, in Turin, in order to un-
dergo the DBS implantation and agreed to participate to this project. The
subject suffered from PD since 2011 and wearing off symptoms were impair-
ing. Other reported symptoms are limbs pain and difficulties in moving.
The SensorTile.box has been inserted in an elastic band and applied on the
chest in the same way as on controls.

In order to have a validation from the data extracted, all patient’s movements
have been observed and annotated during the night. Moreover the patient
has been also given a diary in which she could write when she woke up and
got up.

The recordings begin at 22:26 in the night and are stopped at 3:57am.

The accelerometers data are plotted in Figure 2.21.

The z axis (yellow) measures a positive acceleration since it detects the
gravitational acceleration (g); then the blue signal is the x axis while the red
one is the y signal.

As can be seen from the graph, the patient basically does not move during
the night remaining in a supine position. This is inferable also by the anno-
tations that has been done. Since most of the PD patients show a difficulty
in moving and turning in bed, this could be one of those cases.

More in specific, the first three oscillations in the plot corresponds to two
coughing episodes and a moment in which the subject was drinking water,
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always maintaining the same position.

Another remarkable event is at about 3:50am in which the patient stood up,
as can be seen in the x axis, that perceived a negative gravitational acceler-
ation.

In fact, the subject never turns in bed, but has just some brief moments
in which slightly moves.
Therefore just the activity inder can be extracted in order to evaluate the
amount of movement the patient has done.
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Figure 2.21: Patient’s accelerometers data
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Chapter 3

Results

In this section the results of the algorithms that has been tested are going
to be presented.

The accuracies reached with the EEG algorithms have been promising; the
study on inertial signals has been interesting too, since the obtained results
match what read in literature and what observed during the night in the
hospital.

3.1 REM-NREM epochs recognition results

The results of this algorithm have been satisfactory since the number of
features used is restricted but very focused on the problem.

Here below in Figure 3.1 it is shown the confusion matrix after the k-fold
cross validation, therefore the prediction is made on the test set.

The rows express the true class while the columns are the predicted class.
Green cells are where the classifier has performed well, on the diagonal there
are cells where the true class and the prediction match.

Percentages of true classification and misclassification are also calculated
(Figure 3.2).

Less then 1% is incorrectly classified as NREM while 9% is misclassified
as REM. This can be explainable also because the algorithm has more pos-
sibilities to train on NREM than on REM epochs.

Since it is a binary recognition, some values can be expressed in terms of
sensibility, specificity and accuracy.

TP 7078
TP+ FN 7078 + 734

60
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Confusion matrix

417

True class

5 734 7078

Predicted class

Figure 3.1: Confusion matrix in the REM and NREM recognition algorithm

TN 86053
Specificity = — — 0.9951 — 99.51 3.2
pectiClty = TN TP~ 86053 + 417 = 9951%  (32)
TP+ TN 93131
Accuracy = + = = (0.9878 — 98.78%  (3.3)

TN +FN+FP+TP 94282
Where:

o TP= A true positive is when the epoch is classified as REM and it
actually is.

o FP= A false positive is when it is classified as REM when is not.

o TN= A true negative is when the epoch is classified as NREM and it
actually is.

o FN= A false negative is when it is classified as NREM when is not.

Sensibility expresses the algorithm ability of recognizing the REM epochs
while the specificity gives the ability in recognizing the NREM epochs. By
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Figure 3.2: Confusion matrix with percentages

using this two values the receiver operating curve (ROC curve) can be ex-
tracted, Figure 3.3.

The AUC is the area under the curve that gives an overall quality of the
classifier.

3.2 All stages epochs recognition results

The results of this second algorithm have been encouraging too; in fact, a
high accuracy has been reached. The confusion matrix is reported in Figure
3.4.

Here again there are the true classifications on the rows and the predicted
classifications on the columns. The percentages of true classification are
showed too in Figure 3.5.

As can be seen from the values the worst classification is given on the N1
stage. This can be explained because the frequencies of this first phase are
similar to the N2 and also can be misunderstood as REM. In fact, a measure
of movement could be essential for given a precise classification for the REM
phase, since the presence of muscle atonia.

Moreover the N1 epoch are less than all the other stages, therefore the model
has a lower number of epochs to be trained on (Table 3.1)
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Figure 3.3: ROC curve in the REM-NREM algorithm

N1 N2 N3 REM AWAKE
Epochs Number 3165 18870 5695 7812 58740

Table 3.1: Number of epochs per stage

Under these hypothesis, a measure of movements and an higher number
of N1 epochs could increase the recognition rate.

Also in this case, the sensibilities and specificities for every stage can be cal-
culated (Table 3.2).

The total accuracy has been calculated as the corrected classification di-
vided by the sum of the entire matrix.
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Figure 3.4: Confusion matrix of the all stages recognition algorithm

N1 N2 N3 REM AWAKE

Sensibility 37,441% 90,859% 87,129% 84,204%  98,526%
Specificity 66,949% 86,608% 88,292% 78,892%  98,496%

Table 3.2: Sensibilities and specificities for every stage

87744

Accuracy = ——— = 0.9307 — 93.1% (3.4)

94282

The ROC curves for each stage are shown below, in a unique figure (Figure
3.6).

The best AUC is obtained for the awake stage as expected.
The worst classification is on the N1 stage and it reflects on the ROC

curve, in fact it is the one that is closer to the bisector. All the AUC are

presented in the Table 3.3.
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Classification rates
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Figure 3.5: Confusion matrix with classification rates in the REM-NREM
recognition algorithm

AUC

N1 0.9443
N2 0.9867
N3 0.9934
REM  0.9862

AWAKE 0.9977

Table 3.3: Area under the curves for every stage

3.3 All stages epochs recognition through
wavelet transform results

From the ensemble learning method, by including all the features explained

in the 2.2.2 section, good results have been achieved. The correspondent
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Figure 3.6: ROC curves for every stage

confusion matrix is reported in Figure 3.7.

Here again the most problematic stage to be classified is N1, since it is
misclassified as N2 or REM.
The accuracy of the model reaches the 91.6% and the correct classification
rates for each stage are in Table 3.4.

N1 N2 N3 REM AWAKE
32% 89% 86%  T5% 98%

Table 3.4: Correct classification rate

Since it has been noticed that the relevance of SEFd, AP and RP have a
high weight in the model performances, they have been included again in the
final model.

The ensemble learning method, with all the features, yielded a model accu-
racy of 93.2%. The confusion matrix with the number of classifications and
the percentages are shown in Figure 3.8 and in Table 3.5.

It is important to underline that, as suspected, the correct classification

of REM phases has increased from 75% to 83%.
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Figure 3.7: Confusion matrix of the all stages recognition algorithm through
wavelet transform

N1 N2 N3 REM AWAKE
40% 91% 87%  83% 99%

Table 3.5: Correct classification rate

As anticipated, the last step has been understanding the feature relevance
in relation to the response and, potentially, removing some of them in order
to achieve the best performance. The neighbourhood components analysis
has been used and the feature relevance has been plotted in Figure 3.9.

The relevance of SEFd, AP and RP has been pointed out to remark their
importance.

Therefore, after this identification, the feature that has weight in amount of
zero has been removed, in particular: the energies and the total energy, the
ratio 6/(d+6), the standard deviation of the bandwidth containing noise and
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Figure 3.8: Confusion matrix with the addiction of SEFd, AP and RP
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~v and the o rhythm standard deviation.
The accuracy of the ensemble model has increased up to 93.5% after this
procedure (Figure 3.10).

Classification rates
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Figure 3.10: Confusion matrix with percentages after the feature selection

In this case the best results in the N1 recognition is reached with a 44%
of corrected classified, but also the other stages identification improve.
The ROC curves are represented below too in Figure 3.11.

3.4 Inertial signals algorithm results

Six subjects has been recorded during six nights in order to understand their
movements during sleep. In Table 3.6 the main features are presented: min-
utes in each position, number of turns, average time for turning in bed,
average maximum velocity and the maximum activity index reached during
the night.

In Table 3.7 there are the patient data. By comparing the two tables, it is
possible to understand the patient barely moved during the night, with only
one turn in bed. Healthy subjects turn, on average, twelve times per night
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ROC CURVES

1[]]]

Figure 3.11: ROC curves after the features selection

and they take half the time for doing it.

As we observed during the night in the hospital, the patient remained al-
most all the time in a supine position; the proposed algorithm recognizes 325
supine one-minute-epochs as well.

The only turn in bed results at the end of the recording, when the subject is
waking up.

The activity index confirms this behaviour too, since the maximum Al reached
by the patient is 200 while the other subjects reached, at least, a double value.
A comparison between the activity indexes is proposed in Figure 3.12(b) and
3.12(a); even if the duration of the recordings is different the amount of
movement in the patients is clearly reduced. This impairment can be seen
also in the trend shown in Figure 3.13 that demonstrate how the patient
slowly stops moving as the hours pass, probably confirming the theory of
hypokinesia. The trend has been extracted by taking thirty minutes epochs
in the AI calculation.

Moreover the total sleep duration of the patient is lower then the healthy
subjects: PD patients have difficulties in maintaining sleep for many hours.

The third subject reported back pain during the day before the recording:
this information can be observed in the activity index that results lower than
the other healthy subjects.
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Subject R L SUP PRO n TURNS TIME VEL Al

min  min - mun . min s rad/s
1 37 173 206 52 13 10.69  0.27 527
2 190 61 92 99 9 13.61 0.26 566
3 75 201 170 13 11 13.44  0.24 533
4 198 18 198 25 13 12.84  0.19 417
5 159 76 128 102 9 12.03  0.26 572
6 130 227 139 52 14 1294  0.29 575

Table 3.6: Values from healthy subjects

Subject R L SUP PRO n TURNS TIME VEL Al

min  min  min - min s rad/s

1 6 0 325 0 1 23.58 0.076 164

Table 3.7: Values from the patient
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(b) Patient activity index

Figure 3.12: Comparison between activity indexes
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Figure 3.13: Evolution of the patient’s movement every 30 min

3.5 User interface

This work is aimed to help and make PD patients’ clinical picture more com-
plete. Therefore an user interface is often a tool for visualizing data in a
easier and faster way, especially for doctors and clinicians.

MATLAB allows to design interfaces for presenting results.

An interface is proposed for displaying inertial data (Figure 3.14(a)): ac-
celerometer data plot can be obtained by pressing the correspondent button.
Another button, if pressed, shows the activity index plot and the main fea-
tures already reported in Table 3.6 (Figure 3.14(b)).

A help button is available in order to explain briefly the depicted data and
the values (Figure 3.14(c)).
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Figure 3.14: Comparison between activity indexes
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Chapter 4

Conclusions

4.1 Future developments

The study we pursued lays the foundation for a more detailed research, in
order to have a complete vision about sleep disorders in Parkinson’s disease.
Some improvements will be presented in this section.

First of all, a higher number of patients has to be investigated: we presented
only one patient. Some features can already be seen from the only patient
we had but it could be interesting to enlarge the study and generalize re-
sults. Moreover a statistical study requires a high number of data to reach
meaningful conclusions.

In fact, the study on EEG is centred on discriminating sleep stages in healthy
subjects: it does not take into account disorders and medication effects on
sleep. For this reason, collecting EEG and inertial signals from the same sub-
jects during the night could complete the research. In this way, more features
could be added for assessing a correct sleep stage and eventually disorders
can be detected. In particular, we focused on hypokinesia but disorder as
RBD or PLMD are likely to be recognized.

Independently from PD, other disorders can be observed with this system:
insomnia and somnambulism are two of them.

It is important to underline that normally more than one EEG channel is
used: many channels allow to have signals from different parts of the scalp
and consequently more information. Since the system is wanted to be main-
tained minimally invasive and easily usable, even at home, EEG electrodes
can be inserted in a flexible band to promote comfort.

The last proposal in terms of comfortability involves the Sensortile.box cas-
ing: a flexible case instead of a plastic one could adapt better to the patient’s
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body.
Here again, a user interface is proposed for making data visualization imme-
diate and it is reported in Figure 4.1.

SLEEP PARAMETERS

HYPNOGRAM

PLOT

SLEEP STAGES
e
>

VELOCITY (radls) 0 0 0.2 0.4 0.6 0.8 1
TIME (hours)

ACCELERATION
TIME (s) 0

PLOT
n_TURNS 0

0 0.2 04 08 08 1
TIME (hours)

ACTIVITY INDEX

PLOT
HELP

0 0.2 0.4 0.6 0.8 1
TIME (hours)

Figure 4.1: User interface layout for all the collected signals

4.2 Conclusions

Behind this work, an intense research on the state of art has been conducted:
Parkinson’s disease is a widely spread neurodegenerative disease that is still
not completely comprehended on every aspect. Non-motor symptoms such
as pain, olfactory dysfunction and sleep disorders are relevant in patient’s
life as well as the most visible and commonly recognized motor-symptoms.
Sleep is particularly disturbed and, for this reason, it is the main focus of
this thesis; for deepening this topic, a further research has been pursued.

Since sleep can be observed through changes in brainwaves, EEG signal is
investigated. The first step has been to distinguish sleep stages because some
PD sleep disorders are related to the stage the patient is going through. An
already existing database is used: the Sleep-EDF-Database-Expanded con-
tains PSG recordings with relative hypnograms. In the first place, a REM-
NREM discrimination has been investigated; specific features are extracted
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from the signal and a supervised machine learning algorithm is implemented.
The accuracy showed by this algorithm is promising (98.7%): the designated
features are based on the Fourier coefficient extracted in every epoch. The
algorithm works better in finding the NREM epochs; this is explainable be-
cause the dataset presents more NREM epochs than REM, therefore the
algorithm has more possibilities on training on NREM epochs.

In the second place, an all-stages recognition is attempted: two path have
been explored. One algorithm exploits characteristics found in literature
that comprehend statistics, frequency, entropy and complexity features. The
reached accuracy is 93.1%. The other, through the wavelet transform, ex-
tracts time-frequency features. The final accuracy is 93.5%. The common
thread of all these algorithm is the use of three features that allowed a sig-
nificant increase in accuracy: SEFd, AP and RP.

The used machine learning technique is the ensemble learning with a K-fold
validation.

In literature sleep is explored from different point of views: a technique which
recently is taking hold is the inertial signals study. SensorTile box has been
used to collect data from a PD patient who was hospitalized. To quantify
the amount of movements some specific values are calculated: firstly, an algo-
rithm for understanding the patient’s position is written. From the position
vector it has been extracted the number of turns in bed, the turning maxi-
mum velocity and the time for turning. Healthy subjects has been recorded
too in order to make a comparison. The results suggest an evident difference
between the two categories: the patient turns in bed just one time while
healthy subjects do it on average twelve times. This is a clear sign that pa-
tient barely moves during the night as can be seen also by the activity index.
The activity index allows to have a general idea on how much the subject
has moved in every epoch.

By cross-checking EEG and inertial signals, information on the patient’s
night can be obtained; this is further step that can be realized by collecting
inertial and EEG signals from the same patient.

The results obtained in this thesis are encouraging and can be a starting

point for future studies projected to improve Parkinson’s Disease patients
life.
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Acronyms

AASM American Academy of Sleep Medicine
ADL Activities of Daily living

AT Activity index

AP Absolute power

AUC Area Under the Curve

CBT Core Body Temperature

CWT Continuous Wavelet Transform
DBS Deep Brain Stimulation

DIST Distal Body Temperture

DTFT Discrete Time Fourier Transform
DWT Discrete Wavelet Tranform

ECG Electrocardiogram

EDS Excessive daytime sleepiness

EEG Electroencephalogram

EMG Electromiogram

EOG ELectrooculogram

ESS Epworth Sleepiness Scale

FD Fractal Dimension

FFT Fast Fourier Transform

FN False Negative

FNE First Night Effect

FOG Freezing of gait

FP False Positive

IMU Inertial Mearsurement Unit

LOC Left Outer Canthus

MNF Mean Frequency

N1, N2, N3 Sleep stages according to AASM
NREM Non-Rapid Eye Movement
OSA Ostructive Sleep Apnea

PD Parkinson’s Disease

PET Positron Emission Tomography
PGO Ponto-Geniculo-Occipital

PLMD Periodic Limb Movement Disorder
PPN Pedunculopontine nucleus

PRX Proximate Body Temperature
PSG Polysomnography

R&K Rechtschaffen & Kales
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RBD REM Behaviour Disorder

REM Rapid Eye Movement

RFNE Reverse first eye Effect

RLS Restless Leg Movement

ROC Right Outer Canthus

ROC Receiver Operating Characteristic

RP Relative Power

S1, S2, S3, S4 Sleep Stages accordig to REK
SE Shannon Entropy

SEF Spectral Edge Frequency

SNpc Substantia Nigra pars compacta

SOL Sleep Onset Latency

SPECT Single Positron Emission Tomography
ST Standard Deviation

TN True Negative

TP True Positive

TST Total Sleep Time

UPDRS Unified Parkinson’s Disease Rating Scale
WSS Wide Sense Stationary
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