DEMOSOFC project data analysis: development of a Visual Basic tool for import, evaluation and visualization of plant parameters and performance indicators

Relatori
Massimo Santarelli
Marta Gandiglio

Candidato
Davide Medina
Table of contents

I. Nomenclature .. 4
II. Physical quantities ... 4
III. List of figures .. 5
IV. List of tables ... 6
1. Abstract .. 7
2. Introduction ... 8
 2.1. Plant description ... 8
 2.2. Toolkit scope ... 15
3. Materials and methodology .. 17
 3.1. Available data and import procedure ... 17
 3.2. Key Performance Indicators evaluation ... 19
 3.3. Operation modes and identification algorithm ... 25
 3.4. Data visualization, overview and report procedure .. 30
4. Results and discussion .. 36
 4.1. Operation mode analysis .. 36
 4.2. Electrical performance .. 40
 4.3. Thermal performance ... 45
 4.4. Plant performance ... 49
5. Conclusions ... 52
6. Reference .. 53
7. Acknowledgements .. 54
8. Appendix ... 55
 8.1. List of logged data ... 55
 8.1.1. Analogic data ... 55
 8.1.2. Digital data .. 57
 8.1.3. Electrical data .. 59
 8.1.4. Gas composition data .. 59
 8.2. List of auxiliary equipment ... 60
 8.3. VBA code .. 61
 8.3.1. Import procedure ... 61
 8.3.2. Key Performance Indicators evaluation ... 69
 8.3.3. Operation mode identification sub routines .. 79
 8.3.4. Data visualization ... 82
 8.3.5. Operation log .. 94
 8.3.6. General .. 100
I. Nomenclature

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWTP</td>
<td>Waste Water Treatment Plant</td>
</tr>
<tr>
<td>SOFC</td>
<td>Solid Oxide Fuel Cell</td>
</tr>
<tr>
<td>DEMOSOFC</td>
<td>Cogeneration plant based on three SOFC modules, with a biogas clean-up system and a heat recovery circuit</td>
</tr>
<tr>
<td>CONVION</td>
<td>Convion Ltd., Finnish provider of the SOFC modules</td>
</tr>
<tr>
<td>QUALVISTA</td>
<td>Qualvista Ltd, Finnish responsible for biogas constituents monitoring system</td>
</tr>
<tr>
<td>SMAT</td>
<td>Società Metropolitana Acque Torino S.p.A, Italian operator of the Collegno (TO) WWTP</td>
</tr>
<tr>
<td>BIOKOMP</td>
<td>Biokomp Srl, Italian supplier of the clean-up system</td>
</tr>
<tr>
<td>CKC</td>
<td>Activated carbons designed for hydrogen sulphide removal from biogas stream</td>
</tr>
<tr>
<td>C64</td>
<td>Activated carbons designed for siloxanes removal from biogas stream</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>HRU</td>
<td>Heat recovery unit</td>
</tr>
<tr>
<td>DST</td>
<td>Daylight Saving Time</td>
</tr>
<tr>
<td>CSV</td>
<td>Comma Separated Value file format</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptable power supply</td>
</tr>
<tr>
<td>STP</td>
<td>Standard temperature and pressure (T=0 [°C], P=1 [bar])</td>
</tr>
</tbody>
</table>

II. Physical quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane molecular weight</td>
<td>$MW_{CH_4} = 16.04 \frac{g}{mol}$</td>
</tr>
<tr>
<td>Carbon dioxide molecular weight</td>
<td>$MW_{CO_2} = 44.01 \frac{g}{mol}$</td>
</tr>
<tr>
<td>Sulphur molecular weight</td>
<td>$MW_S = 32.07 \frac{g}{mol}$</td>
</tr>
<tr>
<td>Silicon molecular weight</td>
<td>$MW_{Si} = 60.08 \frac{g}{mol}$</td>
</tr>
<tr>
<td>Octamethylcyclotetrasiloxane ($C_8H_{24}O_4Si_4$) molecular weight</td>
<td>$MW_{D_4} = 292.62 \frac{g}{mol}$</td>
</tr>
<tr>
<td>Glycol water mixture at 30 [%vol] specific heat capacity</td>
<td>$c_{p_{glycol\ water}} = 3.765 \frac{kJ}{kg \cdot K}$</td>
</tr>
<tr>
<td>Glycol water mixture at 30 [%vol] density</td>
<td>$\rho_{glycol\ water} = 1024 \frac{kg}{m^3}$</td>
</tr>
<tr>
<td>Water specific heat capacity</td>
<td>$c_{p_{water}} = 4.18 \frac{kJ}{kg \cdot K}$</td>
</tr>
<tr>
<td>Water density</td>
<td>$\rho_{water} = 999 \frac{kg}{m^3}$</td>
</tr>
<tr>
<td>Methane lower heating value</td>
<td>$LHV = 50,000 \frac{kJ}{kg}$</td>
</tr>
<tr>
<td>Specific CKC equivalent sulphur adsorption capacity</td>
<td>$q_{CKC} = 84 \frac{mg}{g}$</td>
</tr>
<tr>
<td>Specific C64 equivalent D4 adsorption capacity</td>
<td>$q_{C64} = 150 \frac{mg}{g}$</td>
</tr>
</tbody>
</table>
III. List of figures

Figure 1: Aerial view of the waste water treatment plant
Figure 2: Waste water treatment plant operation
Figure 3: Sludge heating system and DEMOSOFC integration
Figure 4: Layout of the clean-up system
Figure 5: Convion C50 module data sheet
Figure 6: Scheme of modules feed and external thermal recovery circuit
Figure 7: Electrical layout schematization
Figure 8: Custom tab and commands in Excel file ribbon
Figure 9: DEMOSOFC Programmable Logic Controller layout
Figure 10: Example for duplicate data user form
Figure 11: Key Performance Indicators user form - Example for the year 2019
Figure 12: Flowchart for "static" assumption logic
Figure 13: Flowchart for "dynamic" assumption logic
Figure 14: Data visualization user form - Example of outputs choice
Figure 15: Data visualization chart - Example for the previous outputs choice
Figure 16: Module 2 operation time overview for the previous example
Figure 17: Time dependant KPIs for the previous example
Figure 18: Operation log user form, example for the year 2019
Figure 19: 2019 - First start-up and nominal operation period
Figure 20: 2019 - March interruptions and low power output period
Figure 21: 2019 - Spring operation period, shutdown and test
Figure 22: 2019 - Operation after the second start-up until the end of the year
Figure 23: 2019 - Electrical performance and degradation
Figure 24: 2019 - Biogas feed for the module
Figure 25: 2019 - Auxiliary equipment consumptions
Figure 26: 2019 - Module thermal power recovered, thermal efficiency and ambient air temperature
Figure 27: 2019 - Thermal efficiency of heat exchange system with respect to ambient air temperature
Figure 28: 2019 - Thermal power exchanged on the two sides of the sludge heat exchanger HRU4
Figure 29: Sludge heat exchanger thermal power discrepancies
Figure 30: 2018 - Contaminants concentrations readings
Figure 31: 2019 - Contaminants concentrations readings

IV. List of tables
Table 1: Key Performance Indicators
Table 2: 2019 - Time periods with missing data (logging failure or intentionally disabled)
Table 3: 2019 - Operation mode summary
Table 4: 2019 - Electrical power and efficiency performance
Table 5: 2018-2019 Key Performance Indicators comparison
Table 6: Contaminants adsorption estimates according to QUALVISTA online measuring system
1. Abstract

The DEMOSOFc project, part of the Horizon 2020 research and innovation programme funded by the European Union, is the first example in Europe of a high-efficiency cogeneration plant revolving around medium size fuel cell modules fed by biogas.

The scope of this work has been to develop a user-friendly tool to be used by the plant operators to analyse the plant performance and extract raw data for maintenance and diagnostic activities. The tool is based on the Visual Basic for Applications environment implemented in the Microsoft Office suite. The tool comprises several routines and user interfaces integrated into an Excel file, with also a couple of Word files used as report templates.

The available commands are meant to be employed by the plant operators to automatically perform operations and manipulate the data files generated by the Programmable Logic Controller installed on site. Plant parameters collected therein can be imported, arranged and stored. From this information, Key Performance Indicators and the operation mode of each module can be evaluated. Other commands allow to visualize significant information over customizable time periods, both graphically and numerically, with the possibility to respectively export them as images or reports.

The designed tool will help plant operators and authorized personal that might want to monitor the performances of the main equipment of the project: the clean-up section, the fuel cell modules and the heat recovery system. It will expectantly provide useful information for the future improvement and employment of this kind of high-efficiency cogeneration system, both on a technical and economic point of view.
2. Introduction

2.1. Plant description

The DEMOSOFC project is part of the European Union’s Horizon 2020 research and innovation programme. It consists of a high efficiency cogeneration system based on the solid oxide fuel cells (SOFC) technology, fuelled by the biogas produced from the waste water treatment plant (WWTP) of Collegno, Piedmont, north-west of Italy. The partners are Società Metropolitana Acque Torino (SMAT) as owner of the WWTP and end-user of the energy produced, Convion Ltd (CONVION) as provider of the SOFC modules, VTT Technical Research Centre Of Finland Ltd for the analysis of the emissions and the Imperial College of Science Technology and Medicine for the business analysis. The project is coordinated by the Energy Department of Politecnico di Torino. Figure 1 presents an aerial view of the establishment, highlighting the main infrastructure related to the DEMOSOFC operation.

![Figure 1: Aerial view of the waste water treatment plant](image)

The waste water treatment plant receives from neighbouring municipalities around 1500 [m³/h] of wastewater from the sewers. The stream has to undergo several stages of filtering, deposition and microbiological treatment before reaching the physical, chemical and biological requirements prescribed by the “Testo unico ambientale” D.Lgs. 3/04/2006, n. 152: purified water can then be reused in nearby factories or discharged in the adjacent river Dora Riparia.
Around 250 [m3/d] of residues from the waste water treatment are collected in a stream of sludge and sent to a thickener that takes it up to ~2 [%] of solid fraction. Before being sent to the anaerobic digester, the sludge has to be heated to a temperature of ~38 [°C]: heat is required to maintain the content of the reactor between 30÷45 [°C], compensating for the thermal losses of the structure towards the environment. Temperature is one of the stability parameters of the biological processes taking place inside the digester, promoting the growth and the metabolic activity of specific bacterial populations. Consequently, the composition of the biogas produced by the anaerobic digestion changes.

Biogas is mainly a mixture of methane, carbon dioxide and water vapour. The digester management aims at maximizing the yield of methane, which currently settles between 57.4÷72.9 [%] with an average of 64.6 [%]. Biogas is stored in a water-sealed gasometer. It consists in an open bottom vessel that rises over a deep tank of water as the volume of the gas entering the structure increases. Water prevents the biogas from leaking into the environment: besides storing the gas, the tank’s design serves to establish the pressure of the gas system. Pressure is also the driving force of the cap movement, which is guided by helical runners placed on the lateral surface of the vessel. A flaring system can burn excess biogas if the gas volume exceeds the design limit of 1400 [m3]: this happens especially during summer, when the thermal demand of the digester is lowered by higher solar irradiance and higher ambient air temperature.

Digestate, the solid part resulting from the process, is centrifuged to separate the moisture from the solid fraction, which must be then disposed of as a special waste. Figure 2 summarizes the operation of the WWTP.

Figure 2: Waste water treatment plant operation
The heat required to sustain the process has been obtained from the combustion of methane (1) in two boilers, one fed with biogas and the other with natural gas bought from the national grid.

\[\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}_{(g)} \quad \Delta H_{(STP)} = -50 \frac{[\text{MJ}]}{[\text{kg}]} \] (1)

The integration of the SOFC modules allows to exploit part of the energy connected to methane oxidation to directly generate electrical power through electrochemical reactions, which is then self-consumed inside the plant. A heat recovery system ultimately transfers the sensible heat of the gaseous exhausts to the sludge. Figure 3 outlines the integration of the DEMOSOFC installation in the mass and energy flows of the WWTP.

Before being fed into the modules, biogas must undergo a thorough purification process to remove contaminants that are dangerous for the fuel cells performance, as they can clog or disable active reaction sites. Siloxanes, organic silicon compounds, do not take part in the electrochemical reaction but can deposit silica on the anode and electrolyte pores. Similarly, hydrogen sulphide (H\textsubscript{2}S) can be chemisorbed by the nickel catalyst typically employed in the anode with the formation of Ni\textsubscript{3}S\textsubscript{2}, disabling active sites.

The concentrations of these substances in the biogas are relatively low (around 4 [mg\textsubscript{Si}/m3] for silicon compounds and 35 [ppm] for hydrogen sulphide) with respect to the main gaseous species in the mixture, but they are nonetheless harmful. Therefore, a clean-up system provided by Biokomp Srl (BIOKOMP) has been installed near the modules in the DEMOSOFC area highlighted in Figure 1. The system is entirely fitted into an ATEX certified container, and it includes a chiller for the removal of water traces, a series of reactors containing activated carbons for the removal of contaminants, a compressor for increasing biogas pressure to operative conditions (around 4 [bar(g)]) and a metering system for biogas composition (Figure 4).
Clean-up adsorbents are provided by AirDep Srl. CKC is an activated carbon of mineral origin and it is particularly suitable for the removal of hydrogen sulphide (H$_2$S), low molecular weight mercaptans, acid gases and organic sulphurs. C64 is another activated carbon and it is suitable for the adsorption of volatile and incondensable compounds, such as siloxanes. Both sorbents have similar carbon contents with similar elemental composition, but different structures, specific surface areas, and micropore volumes. Both sorbents predicted adsorption capacity q has been assumed equal to the one found through screening tests performed in the presence of 0.1 [%] of O$_2$ [x]: oxygen availability in small quantities, in the range of 0.01÷0.33 [%], is confirmed by the laboratory analysis performed in the previous years [x].

$$q_{CKC} = 84 \left[\frac{mg}{g} \right]$$

$$q_{C64} = 150 \left[\frac{mg}{g} \right]$$

Predicted adsorption capacities are available in terms of equivalent sulphur and equivalent D4 respectively. Octamethylcyclotetrasiloxane ($C_8H_{24}O_4Si_4$), also called D4, is an organosilicon compound belonging to the cyclic dimethylsiloxane group. Together with D3 and D5, they are the most abundant siloxane species contained in the digester biogas [x].

The first two series of reactors operate in series in a lead-and-lag configuration, such that the leading reactors adsorb the majority of the contaminants: the configuration can be changed through valves, allowing to perform maintenance or to replace saturated carbons on each component individually. The last couple of reactors acts as “scavengers”, preventing any contaminants breakthrough from the previous system.
In the plant area dedicated to the DEMSOFC project, it was forecasted the installation of three SOFC modules, provided by CONVION. Modules are set in parallel and they are able to operate autonomously. As of March 2020, only two of them have been installed, but they have never been operated together. According to the project nomenclature, module №3 has been the first to be installed and operated. The relative data sheet is presented in Figure 5. It has a nominal electrical power of 58 [kW], while the second, module №2, has a nominal electrical power of 45 [kW]. The two modules have the same number of cells stacks but different nominal power since two different producers manufactured them. The three modules are expected to cover about 30 [%] of the plant total electrical needs.

<table>
<thead>
<tr>
<th>Performance</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net power output</td>
<td>58kW (3x400-440V AC 50/60Hz)</td>
</tr>
<tr>
<td>Energy efficiency (LHV)</td>
<td>> 53 %</td>
</tr>
<tr>
<td>Electrical (net, AC)</td>
<td>> 80 %</td>
</tr>
<tr>
<td>Total (exhaust 40°C)</td>
<td></td>
</tr>
<tr>
<td>Heat recovery</td>
<td></td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>650 kg/h</td>
</tr>
<tr>
<td>Exhaust gas temperature</td>
<td>222 °C</td>
</tr>
<tr>
<td>Emissions</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>< 2 ppm</td>
</tr>
<tr>
<td>Particulates (PM10)</td>
<td>< 0.09 mg/kWh</td>
</tr>
<tr>
<td>CO₂ (NG, nominal load)</td>
<td>354 kg/MWh</td>
</tr>
<tr>
<td>CO₂ (with heat recovery)</td>
<td>234 kg/MWh</td>
</tr>
<tr>
<td>Fuels</td>
<td>Natural gas, City gas, Biogas</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td></td>
</tr>
<tr>
<td>power unit</td>
<td>3,5 x 1,9 x 2,3 m</td>
</tr>
<tr>
<td>aux. equipment</td>
<td>2,4 x 0,6 x 2,2 m</td>
</tr>
<tr>
<td>Noise level</td>
<td>< 70 dB(A) at 1 m</td>
</tr>
<tr>
<td>Installation</td>
<td>Indoor / outdoor</td>
</tr>
<tr>
<td>Temperature</td>
<td>-20 – +40°C</td>
</tr>
</tbody>
</table>

![Figure 5: Convion C50 module data sheet](image)

Although the internal working of the modules is unknown, each of them is at least equipped with stacks of solid oxide fuel cells, an air blower, electrical resistances and a heat recovery unit (HRU). Each fuel cell is an electrochemical reactor: electrical power is generated exploiting the electronic transfer occurring in the redox reaction between the oxygen contained in the cathodic air stream and the hydrogen in the anodic stream (2a+2b).

\[
H_2 + \frac{1}{2} O_2 \rightarrow H_2O(g) + 2e^- \tag{2a}
\]

\[
\frac{1}{2} O_2 + 2e^- \rightarrow O_2^- \tag{2b}
\]

\[
H_2 + \frac{1}{2} O_2 \rightarrow H_2O(g) \quad \Delta H_{(STP)} = -286 \left[\frac{kJ}{mol_{H_2}}\right] \tag{2a+2b}
\]
Hydrogen is produced through reforming, either wet (3) or dry (4), of the methane fraction of biogas. Steam required for the reforming is usually obtained by recirculating part of the anodic exhaust stream. It is not known if the modules include a dedicated reforming reactor or if the reactions are carried out directly on the cells surface.

\[
CH_4 + CO_2 \rightarrow 2H_2 + 2CO \quad \Delta H_{\text{(STP)}} = +247 \left[\frac{kJ}{mol_{CH_4}} \right]
\]

(3)

\[
CH_4 + H_2O(g) \rightarrow 3H_2 + CO \quad \Delta H_{\text{(STP)}} = +206 \left[\frac{kJ}{mol_{CH_4}} \right]
\]

(4)

Carbon monoxide can also act as fuel like hydrogen, but the water gas shift reaction (5) has a faster kinetic and its contribution is therefore negligible \[^x\].

\[
CO + H_2O(g) \rightarrow CO_2 + H_2 \quad \Delta H_{\text{(STP)}} = -41 \left[\frac{kJ}{mol_{CO}} \right]
\]

(5)

The modules must be operated at high temperature, around 700÷800 [°C], to enable proper activity of the ceramic layers that make up the fuel cells. Although the overall process generates heat, the reforming reactions are endothermic, therefore high temperature helps to increase the kinetic. While the module temperature can be controlled by removing heat through air flow variation, during the start-up phase the module need to be initially heated by the electrical resistances, absorbing heat from the grid, at least until the reactions can sustain themselves.

Since the voltage difference that drives the hydrogen redox reaction also depends on the reactants concentration on the two electrodes surface, fuel flow is purposely set to have unspent reactants when leaving the stack, ensuring uniform performance of the cells. Modules are therefore usually equipped with an afterburner that carries out the mixing and the combustion of the excess fuel and air streams. The heat recovery unit (HRU) absorbs the heat from the gaseous exhaust, partially employing it within the module to pre-heat reactants flows. However, most of it is recovered by the external heat recovery circuit, releasing the exhaust in the atmosphere at 70÷80 [°C].

The external heat recovery circuit spans from the DEMOSOFC area to the pumps and sludge heat exchanger utility room (number 1 and 5 in Figure 1). The thermal fluid employed is a mono-ethylene glycol water mixture at 30 [%vol], whose data are provided by the producer Fimi S.p.A.

Glycol water mixture at 30 [%vol] specific heat capacity

\[c_{p_{\text{glycol water}}} = 3.765 \left[\frac{kJ}{kg \cdot K} \right] \]

Glycol water mixture at 30 [%vol] density

\[\rho_{\text{glycol water}} = 1024 \left[\frac{kg}{m^3} \right] \]

Each module internal heat exchanger (respectively identified as HRU1, HRU2, HRU3) is served by a branch of the circuit composed of a set of twin pumps, thermostats, a flow meter and a three-way valve for partial recirculation. The main piping then collect and carry the thermal fluid for more than 50 [m] on dedicated racks mounted outdoor to a tube in tube heat exchanger (HRU4). Here, heat is transferred to a mixture of sludge, pre-emptively uniformed in a macerator, and industrial water. Another set of twin pumps, thermostats and flow meter are installed on the glycol water side in the utility room. An hydraulic separator is installed near the branches serving the modules: this component puts in contact supply and return glycol water, exploiting the thermal stratification
between the two to balance pressure losses across the system, and avoiding flow in inactive modules. A scheme of the overall circuit is presented in Figure 6.

![Figure 6: Scheme of modules feed and external thermal recovery circuit]

In the dedicated DEMOSOFc area, besides the modules and the BIOKOMP container, there are other structures dedicated to the balance of plant components. A technical building hosts the hydraulic components of the glycol water circuit serving the modules mentioned before, together with a control room, containing the dashboard that acts as interface for the operator, and an electrical room. In the latter are installed the inverters, the electrical cabinets, medium-voltage switchgear, power meters and two electric sinks of 20 [kW] each. An uninterruptable power supply (UPS) with the dedicated batteries are installed in a smaller prefabricated just outside of the building. All of these equipment are connected among them and to the grid as in Figure 7.

Inverters convert the DC power output of the modules to medium voltage AC current. During the start-up of the modules, the grid supplies power to both the modules and the auxiliary equipment for several hours. While the operations are nominal, the grid powers the auxiliaries through the UPS main line and the module send their power to the WWTP line.

In case of failure of the external grid, a couple of relays can disconnect the system allowing the modules to work in island mode. In island mode, the modules reduce their power output in order to just maintain the auxiliaries operating through the UPS by-pass line, avoiding to switch off the entire system, which would need time and could damage the cells. In case more than one module is on, the excess of power is dissipated by the two electric sinks. The UPS role is to handle the transient condition, avoiding voltage drops and guaranteeing the stability of the power supply thanks to some stacks of batteries.
The auxiliaries include lights, electric sockets, the air conditioning systems of the technical building system, the dashboard transformer, all the pumps, the chiller, compressor and air conditioning of the clean-up container, the control panel, the macerator and the air compressor. The air compressor, which supplies the module with the air needed during start-up or anodic channels purge, mainly supplies the entire WWTP and can be manually loaded on the external grid or on the modules, through a specific switch. The compressor is usually loaded on the module to keep it operative during blackouts and relative island event.

In the same area there is also a prefabricated that holds technical gases tanks, namely nitrogen and a mixture of hydrogen and nitrogen (95% N\textsubscript{2}, 5% H\textsubscript{2}, abbreviated as NH\textsubscript{mix} for future reference). These are also used by the modules during emergency procedures to respectively purge the biogas piping of the clean-up container and keep the modules in hot standby. This last procedure is meant to keep the fuel cell stack at high temperature providing only a small amount of fuel, until operation can be safely restored.

2.2. Toolkit scope
The scope of this work has been to develop a user-friendly tool to be used by the plant operators to collect and organize all of the raw information made available by the Programmable Logic Controller (PLC) installed in the control room and to analyse the plant performance for maintenance and diagnostic activities.

The tool is based on the Visual Basic for Applications environment implemented in the Microsoft Office suite. The tool comprises several routines and user interfaces integrated into an Excel file, with also a couple of Word files used as report templates.
In a dedicated tab called "DEMOSOFC" added to the Excel file ribbon, four new commands have been implemented (Figure 8). All of them will prompt a specific user form, while to start the actual procedures some input from the user is required.

The "CSV Import" command allows the user to select one or more files at the same time. It is meant to work with the files produced by the PLC, generated with the .CSV extension. These files will be opened one at a time and the data contained within will be loaded in order in the workbook in the corresponding worksheet. A status bar in the bottom left corner keeps updating to show the procedure progress. User intervention will be required only if some duplicate data is found. When the procedure is over, a message box will appear signalling correct execution.

The "KPIs calculation" command allows the user to select a year for which Key Performance Indicators (KPIs) will be evaluated. The procedure is kept separated from the previous one as Excel processing may slow down when code is run for too long. These parameters are extremely useful in determining plant performance and operation issues and help with predictive maintenance. The results will again be saved in the corresponding worksheet. A status bar in the bottom left corner keeps updating to show the procedure progress. When the procedure is over, a message box will appear signalling correct execution.

The "Data visualization" command allows the user to either create or edit an existing chart. Charts add up to the sheet list in the workbook but do not interfere with the other procedures. Two main types of graphics can be displayed: a wide selection of plant parameters and KPIs can either be plotted with respect to time as line charts or with respect to the same plethora of outputs as a scatter plot. Both can be displayed for a customizable time period, although it is limited within the same year for technical issues. Together with the chart, some overview parameters will be evaluated and shown inside the user form. These values are only temporary, and closing the user form will delete them: a dedicated page allows the user to export them and the chart itself as a brief Word report, which is based on a template saved in the same folder as the workbook. The chart may also be saved individually as a .PNG image. While the user form is open, interaction with the workbook is not permitted, but a dedicated button allows the user to freely modify the chart without losing overview data.

The "Operation log" command allows the user to see overview data for a selected year or for the entire lifetime of the plant (starting from 2018). Again, these can be exported into a similar Word report. The user form contains more information on nominal operation periods.

Aside from these new commands, the file is still an Excel workbook, so the operator may still create worksheets and make calculations on available data.
3. Materials and methodology

3.1. Available data and import procedure

The DEMOSOFC Programmable Logic Controller (PLC) collects information from various field sensors scattered across the plant and also receives data from CONVION PLC in Finland, which monitors the internal operation of the SOFC modules (Figure 9).

![DEMOSOFC Programmable Logic Controller layout](image)

Data is automatically logged by the software every ~10 minutes, divided into four categories:

- 91 analogic measures, of which:
 - 35 parameters about fluids and equipment controlled by SMAT (labelled as FIW)
 - 43 parameters about fluids and electrical measures related to the SOFC modules (labelled as ETH)
 - 5 parameters about the clean-up compressor
 - 8 values of the speed set-point for the pumps on the water-glycol circuit
- 29 electrical measures coming from the two electrical cabinets of DEMOSOFC plant and WWTP
- 125 binary digital signals related to commands and equipment status
- 5 biogas composition measures per 8 sample points, although only three of them are connected to the clean-up system at the same time

In the following sections, instead of employing the nomenclature used by the PLC, the aforementioned measures and signals will be recalled for simplicity with a letter according to the data category - A for analogic, E for electric, D for digital, G for biogas composition - and a number (e.g. A1 instead of FIW_512_AP01_PRESSURE_DeEPT003). The complete list of information can be found in Appendix 8.1.

These information can be extracted by the operator from the PLC internal memory as a series of Comma Separated Value (CSV) files. The first command of the toolkit allows the user to select these files and start an import procedure that will ultimately allow storing the data in a properly available form in the workbook itself.
Cycling through each CSV file, the algorithm will first detect the correct file category and year, assigning or creating the relative worksheet. The log is pre-emptively checked to remove any useless record due to disconnections or failed measurements. Then, for each date that is identified while cycling through the file, the corresponding data are moved in bulk to a new row into the worksheet. If the number of measures appear different from the standard values mentioned above, then the assignment is performed individually.

Any duplicate date which may be detected as already present in the worksheet will trigger a user form to appear, leaving to the operator the choice to either overwrite or ignore the record(s), or abort the import procedure entirely, closing the corresponding file (Figure 10). Duplicates due to Daylight Saving Time (DST) ending in October are accounted for, adding the suffix “DST” to the relative dates in the workbook.

![Figure 10: Example for duplicate data user form](image)

Biogas composition logs are checked beforehand to ensure that they contain useful data and are otherwise closed. Measures from different sample points also appear to be sometimes saved with a 1±2 seconds latency from one another and are therefore checked to determine whether the date has already been stored in the worksheet.

At every change in year or data category, the contents of the corresponding worksheet are ordered chronologically. Once the import procedure is over, worksheets are ordered alphabetically, and a message box will notify the user that it has been successfully completed. The complete routine is attached in Appendix 8.3.1.
3.2. Key Performance Indicators evaluation

The second command of the toolkit will prompt a user form (Figure 11) that recaps the number of records of each data category for the selected year and allows to perform the evaluation of the Key Performance Indicators (KPIs) for each time step. The number of KPIs that has already been calculated also appear in the list; therefore, the operator may choose to run the routine only for newly imported time steps.

![Figure 11: Key Performance Indicators user form - Example for the year 2019](image)

The routine (Appendix 8.3.2) performs the evaluation of 35 KPIs, handling missing data, divisions by zero and unreliable values of efficiencies. The analogic data category worksheet has been used as reference for the time steps, since all of the KPIs relate to one or more of its measures. KPIs are directly written in the corresponding cell as values, since the use of a high number of Excel formulas is not recommended due to the fallout on calculation speed and memory usage.

Another parameter which is evaluated is the elapsed time between one time step and the previous one; this will be used to determine whether the PLC failed to collect or to write data with its designed frequency. Again, this calculation accounts for DST changes, assigning the standard value of 10 minutes both in March and October.

The KPIs are listed and coded in Table 1 and described in the following paragraphs.
Key Performance Indicator	**Unit of measure**	**Code**
Biogas volumetric flow rate total | [Nm³/h] | K1
Biogas volumetric flow rate mod.1 | [Nm³/h] | K2
Biogas volumetric flow rate mod.2 | [Nm³/h] | K3
Biogas volumetric flow rate mod.3 | [Nm³/h] | K4
Methane mass flow rate mod.1 | [kg/h] | K5
Methane mass flow rate mod.2 | [kg/h] | K6
Methane mass flow rate mod.3 | [kg/h] | K7
Biogas power input mod.1 | [kW] | K8
Biogas power input mod.2 | [kW] | K9
Biogas power input mod.3 | [kW] | K10
Global power generation | [kW] | K11
Electrical efficiency mod.1 | [%] | K13
Electrical efficiency mod.2 | [%] | K14
Electrical efficiency mod.3 | [%] | K15
Thermal power removed from mod.1 | [kW] | K16
Thermal power removed from mod.2 | [kW] | K17
Thermal power removed from mod.3 | [kW] | K18
Thermal power removed from modules | [kW] | K19
Thermal power transferred from water/glycol to sludge | [kW] | K20
Thermal power received by sludge from water/glycol | [kW] | K21
Thermal efficiency of heat exchange system | [%] | K22
Thermal efficiency mod.1 | [%] | K23
Thermal efficiency mod.2 | [%] | K24
Thermal efficiency mod.3 | [%] | K25
Global efficiency mod.1 | [%] | K26
Global efficiency mod.2 | [%] | K27
Global efficiency mod.3 | [%] | K28
Auxiliary equipment power consumption | [kW] | K29
Net electrical power output of modules | [kW] | K30
Net electrical efficiency of plant | [%] | K31
Net thermal efficiency of plant | [%] | K32
Net global efficiency of plant | [%] | K33
Equivalent sulphur adsorption rate | [mg/h] | K34
Equivalent D4 adsorption rate | [mg/h] | K35

Table 1: Key Performance Indicators

Biogas volumetric flow rate
Starting from the biogas mass flow rate $m_{\text{biogas,mod}}$ being fed into each module (A60, A61, A62), available in [kg/h], the volumetric flow rate $V_{\text{biogas,mod}}$, expressed in [Nm³/h], is evaluated for each module (K1, K2, K3) as:

$$V_{\text{biogas,mod}} = m_{\text{biogas,mod}} \cdot \frac{22.414}{MW_{\text{biogas}}}$$ (6)

The molecular weight of the biogas stream MW_{biogas} is computed assuming that the gas is a mixture of methane and carbon dioxide, therefore overlooking the contributions due to oxygen or contaminants:

$$MW_{\text{biogas}} = \frac{\%_{\text{vol}}CH_4 \cdot MW_{\text{CH}_4}}{100} + \left(1 - \frac{\%_{\text{vol}}CH_4}{100}\right) \cdot MW_{\text{CO}_2}$$ (7)
Methane molecular weight

\[MW_{CH_4} = 16.04 \text{ \left[\frac{g}{mol} \right]} \]

Carbon dioxide molecular weight

\[MW_{CO_2} = 44.01 \text{ \left[\frac{g}{mol} \right]} \]

The measure of volumetric content of methane in the biogas \(\%_{vol,CH_4} \), available in [%], is taken from the ETH fast sensor (A91) managed by CONVION, but in case this data is missing the value from the DeFIT005 sensor (A26) managed by SMAT is used, lowered by 1.5 [%] according to previous reliability observations [x].

The sum of the three volumetric flow rates (K4) is also saved as an additional KPI.

Methane mass flow rate

The mass flow rate of methane \(\dot{m}_{CH_4,mod} \), being fed in each module (K5, K6, K7), expressed in [kg/h], is evaluated with the same assumptions previously declared as:

\[\dot{m}_{CH_4,mod} = \dot{m}_{biogas,mod} \cdot \frac{\%_{vol,CH_4}}{100} \cdot MW_{CH_4} \quad (8) \]

Biogas power input

The thermochemical power input \(P_{CH_4,mod} \), expressed in [kW], associated with the lower heating value of methane entering each module (K8, K9, K10) is evaluated from the corresponding mass flow rate as:

\[P_{CH_4,mod} = \frac{\dot{m}_{CH_4,mod} \cdot LHV}{3600} \quad (9) \]

Methane lower heating value

\[LHV = 50,000 \text{ \left[\frac{kJ}{kg} \right]} \]

Thermal power removed from module

The thermal power, expressed in [kW], recovered from the gaseous exhaust stream of each module \(P_{th,mod} \) (K16, K17, K18) is evaluated on the glycol water side of each HRU as:

\[P_{th,mod} = \frac{(c_p \cdot \rho)_{glycol \ water} \cdot (V \cdot (T_{out} - T_{in}))_{glycol \ water,mod}}{3600} \quad (10) \]

The fluid temperature increase \((T_{out} - T_{in})_{glycol \ water,mod} \) is evaluated according to the readings (A5-A4, A8-A7, A10-A9) of the thermometers installed before and after the corresponding internal heat exchanger of the modules. The glycol water volumetric flow rate \(V_{glycol \ water,mod} \) of each module (A18, A19, A20) is available in [m³/h]. The flow meters appear to display a fixed value of 0.3 [m³/h] when the pumps are inactive, most likely due to the instrument sensibility. These KPIs are therefore evaluated only if the pumps are operating and the temperature difference is positive.

The sum of the three thermal powers removed from the modules (K19) is also saved as an additional KPI.
Thermal power transferred from glycol water to sludge

Similarly $P_{th,hex,glycol}$ (K20), the thermal power actually delivered to the sludge through the heat exchanger HRU4, evaluated in [kW] on the glycol water side, is computed as:

$$P_{th,hex,glycol} = \left(\frac{c_p \cdot \rho}{}\right)_{glycol\ water} \cdot \left(\dot{V} \cdot (T_{in} - T_{out}) \right)_{glycol\ water,HRU4} \frac{3600}{3600} \quad (11)$$

The total glycol water volumetric flow rate $\dot{V}_{glycol\ water,HRU4}$, available in [m3/h], is measured by a dedicated flow meter (A34). Digital signals of the twin pumps located near the heat exchanger (D106, D107) are used to determine if at least one is active. This KPI is again evaluated only if the pumps are operating and the temperature difference (A28-A29) is positive.

Thermal power received by sludge from glycol water

$P_{th,hex,sludge}$ (K21), the thermal power transferred through the heat exchanger HRU4, evaluated in [kW], is computed on the sludge side as:

$$P_{th,hex,sludge} = \left(\frac{c_p \cdot \rho}{}\right)_{sludge\ water} \cdot \left(\dot{V} \cdot (T_{out} - T_{in}) \right)_{sludge\ water,HRU4} \frac{3600}{3600} \quad (12)$$

The flow rate $\dot{V}_{sludge\ water,HRU4}$, available in [m3/h], is measured by a flow meter (A35) placed after the collector joining sludge and industrial water. It has been assumed that the fluid equates to pure water, since most of the time the heat exchanger is fed with industrial water, and the treated sludge has a low solid fraction nonetheless.

Water specific heat capacity

$$c_p_{sludge\ water} = 4.18 \frac{kJ}{kg \cdot K}$$

Water density

$$\rho_{sludge\ water} = 999 \frac{kg}{m^3}$$

This KPI is evaluated only if the pumps on the glycol water side are operating and the temperature increase measured by the thermostats on the sludge side (A31-A30) is positive.

Global power generation

The global power generation $P_{el,gen}$ (K11), expressed in [kW], is evaluated as the sum of the electrical powers produced by the modules:

$$P_{el,gen} = \sum_{1 \ to \ 3} P_{el,mod} \ (if \ P_{el,mod} > 0) \quad (13)$$

Electrical power readings $P_{el,mod}$ of each module (A36, A37, A38) is accounted as production only if positive. Negative readings are possible during non-nominal operations, as the module can absorb power from the grid to feed its electrical components.

Global power exchange

The global power exchange $P_{el,ex}$ (K12), expressed in [kW], is evaluated as the sum of the electrical power produced or absorbed by the modules:

$$P_{el,ex} = \sum_{1 \ to \ 3} P_{el,mod} \quad (14)$$
Auxiliary equipment power consumption

Current and voltage readings from the power meter of electric panel Q2 (E28, E29), available in [A] and [V] respectively, allow to determine the auxiliary equipment power consumption \(P_{el,aux} \) (K29), expressed in [kW], as:

\[
P_{el,aux} = \frac{\sqrt{3} \cdot (V \cdot I)}{1000}
\]

The equipment connected to this electric panel is all part of the DEMOSOFCC installation. The main consumptions are related to the clean-up system, which include the chiller, the biogas blower and the biogas compressor. The major power absorber though, is the air compressor that provides compressed air to the WWTP. The pneumatic circuit has been extended to the modules, as compressed air is required during non-nominal operation to purge biogas from the anode channels. Despite the marginal utilization of the air compressor for the DEMOSOFCC project, its entire contribution can be accounted among the auxiliaries consumptions if charged on the electric panel Q2. A complete list of the auxiliaries equipment connected to the electric panel Q2 is available in Appendix 8.2.

Net electrical power generation

The net electrical power generation \(P_{el,net} \) (K30), expressed in [kW], is evaluated as difference between the global power exchange (K12) and the auxiliary equipment power consumption (K29) described above:

\[
P_{el,net} = P_{el,ex} - P_{el,aux}
\]

This KPI represents the amount of power made available by the modules for use inside the plant, already accounting for the equipment dedicated to the DEMOSOFCC project. When the value is negative, it represent the amount of power withdrawn from the national grid for the operation of modules and auxiliaries.

Electrical efficiency of module

Electrical efficiency \(\varepsilon_{el,mod} \), expressed in [%], is evaluated for each module (K13, K14, K15) as the ratio between the corresponding produced electrical power (A36, A37, A38) and the biogas power input (K8, K9, K10):

\[
\varepsilon_{el,mod} = \frac{P_{el,mod}}{P_{CH_4,mod}} \cdot 100
\]

These values are evaluated only when the corresponding module is producing power and there is fuel flow.

Thermal efficiency of module

Thermal efficiency \(\varepsilon_{th,mod} \), expressed in [%], is evaluated for each module (K22, K23, K24) as the ratio between the corresponding thermal power recovered (K16, K17, K18) and the biogas power input (K8, K9, K10):

\[
\varepsilon_{th,mod} = \frac{P_{th,mod}}{P_{CH_4,mod}} \cdot 100
\]

These values are evaluated only when there is fuel flow. They may exceed 100 [%] since the glycol water can still remove heat from a module exhaust even in the absence of fuel feed: in this scenario the value has been set to 100 [%].
Global efficiency of module
Global efficiency $\varepsilon_{gl,mod}$, expressed in [%], is evaluated for each module (K26, K27, K28) as the sum of the corresponding electrical (K13, K14, K15) and thermal (K22, K23, K24) efficiencies, therefore displaying how much of the thermochemical energy of the biogas stream has been recovered through the whole module:

$$\varepsilon_{gl,mod} = \varepsilon_{el,mod} + \varepsilon_{th,mod}$$ \hspace{1cm} (19)

Again, the same observation made for the module thermal efficiency applies for these KPIs.

Thermal efficiency of heat exchange system
The thermal efficiency of the entire heat exchange system $\varepsilon_{th,hex}$ (K22), expressed in [%], is evaluated as the ratio between the thermal power transferred in HRU4 evaluated on the water glycol side (K20) and the sum of the thermal power recovered from the three modules (K19):

$$\varepsilon_{th,hex} = \frac{P_{th,hex,glycol}}{\sum_{1 \text{ to } 3} P_{th,mod}} \cdot 100$$ \hspace{1cm} (20)

This KPI is complementary to the percentage thermal losses occurring at the hydraulic separator and along the piping connecting the modules to the utility room of the heat exchanger HRU4.

Net electrical efficiency of plant
Net electrical efficiency $\varepsilon_{el,net,plant}$ (K31), expressed in [%], is computed as the ratio between the net electrical power generation (K30) and the overall biogas power input (K8 + K9 + K10):

$$\varepsilon_{el,net,plant} = \frac{P_{el,net}}{\sum_{1 \text{ to } 3} P_{CH4,mod}} \cdot 100$$ \hspace{1cm} (21)

This value is evaluated only when the system is producing net power and there is fuel flow in at least a module.

Net thermal efficiency of plant
Net thermal efficiency $\varepsilon_{th,net,plant}$ (K32), expressed in [%], is computed as the ratio between the thermal power transferred in HRU4 evaluated on the water glycol side (K20) and the overall biogas power (K8 + K9 + K10):

$$\varepsilon_{th,net,plant} = \frac{P_{th,hex,glycol}}{\sum_{1 \text{ to } 3} P_{CH4,mod}} \cdot 100$$ \hspace{1cm} (22)

Again, the same observation made for the modules thermal efficiency applies for this KPI.

Net global efficiency of plant
Net global efficiency $\varepsilon_{gl,net,plant}$ (K33), expressed in [%], is computed as the sum of electrical (K31) and thermal (K32) net efficiencies, therefore displaying how much of the thermochemical energy of the biogas stream sent to the modules has been recovered through the whole system:

$$\varepsilon_{gl,net,plant} = \varepsilon_{el,net,plant} + \varepsilon_{th,net,plant}$$ \hspace{1cm} (23)
Equivalent sulphur adsorption rate [mg/h]
The adsorption rate of equivalent sulphur $m_{eq,S}$ (K34), expressed in [mg/h], which is captured by the lead-and-lag reactors containing CKC carbons is evaluated from the concentration of hydrogen sulphide χ_{H_2S} (G3), available in [ppm], of the total biogas stream sent to the modules (K1), measured before entering the clean-up system:

$$m_{eq,S} = \chi_{H_2S} \cdot \frac{MW_S}{22.414} \cdot \sum_{1 \to 3} \dot{V}_{biogas,mod} \quad (24)$$

Sulphur molecular weight \(MW_S = 32.07 \) [g mol\(^{-1}\)]

The assumption is that all of the contaminant is adsorbed: this hypothesis is supported by the data available from the QUALVISTA measuring system, which is less frequent but more accurate than the data logged by the PLC, especially for what concerns the following sample points. This KPI will be used to determine the loading rate of the reactors with respect to their predicted capacity.

Equivalent D4 adsorption rate
Similarly, the adsorption rate of equivalent D4 $m_{eq,D4}$ (K35), expressed in [mg/h], which is captured by the lead-and-lag reactors containing C64 carbons is evaluated from the concentration of silicon γ_{Si} (G5), available in [mg/m\(^3\)], of the total biogas stream sent to the modules (K1), measured before entering the clean-up system:

$$m_{eq,D4} = \gamma_{Si} \cdot \frac{MW_{D4}}{4 \cdot MW_{Si}} \cdot \sum_{1 \to 3} \dot{V}_{biogas,mod} \quad (25)$$

Silicon molecular weight \(MW_{Si} = 60.08 \) [g mol\(^{-1}\)]

Octamethylcyclotetrasiloxane (C\(_8\)H\(_{24}\)O\(_4\)Si\(_4\)) molecular weight \(MW_{D4} = 292.62 \) [g mol\(^{-1}\)]

The same assumption made for hydrogen sulphide adsorption have also been made for siloxanes.

3.3. Operation modes and identification algorithm
Once all the KPIs have been evaluated, the same routine proceeds to identify the operation mode of each module for each time step. The modalities considered are described here.

ON
For nominal operation: the module is fed with biogas and ambient air and power production is positive, according to the current set-point and the actual fuel utilization. Current set-point of the modules has been, for most of the time the system has been operative, remotely imposed by CONVION.

OFF
When modules are inactive: this mode is also assigned when the module is run remotely to perform tests without actually producing net power.
ISL
For island mode events: these are expected by the system, to avoid the shutdown of the module in case of external grid failures. The module keeps producing electricity to feed the essential auxiliaries. There is not always a complete disconnection from the grid.

HOT
For hot standby events: this procedure is meant to maintain fuel cells at high temperature by injecting NH_{mix} on the anode side. Meanwhile, biogas feed is cut off and the module stops producing electricity. Once it is over, the stack should be ready to resume nominal operation. This procedure can also be imposed by the operator to allow short-term maintenance on the clean-up section while one or more modules are running.

INT
For generic interruptions: electrical power output drops significantly, and may recover immediately or after some hours. These events are not expected by the system, and their cause is not univocal.

START
For the start-up procedure: before being able to feed the module under nominal operation, it has to be heated up from ambient temperature to around 700 [°C]. The whole procedure should take from 24÷48 hours, but it may actually require up to almost four days. In the first phase, the modules consume power from the grid to produce heat through electrical resistances. Ambient air is blown through the fuel cells cathodic side, acting as a thermal medium. Compressed air is later injected on the anodic side and, as the modules heat up, it is gradually substituted by the fuel, initiating the necessary thermal and chemical conditions in the system. Throughout this phase, the cathode air is maintained at a level capable of diluting fuel below the lower flammability limit at the afterburner, avoiding the accumulation of explosive gas mixture anywhere in the system.

SHUT
For the shutdown procedure: the current in the stack is lowered to zero, and the modules begins to cool down, aided by ambient air ventilation. Fuel flow is also stopped as compressed air injection purges the stack.

The operation mode identification procedure is carried out for each module individually.
Employed analogic readings distinct for each module are:

- Module electrical power output P_{el} [kW] (A36, A37, A38)
- Module compressed air flow intake \dot{m}_{CA} [m3/h] (A48, A49, A50)
- Module temperature T (A39, A40, A41)
- Module ambient air flow rate intake \dot{m}_{AA} [m3/h] (A45, A46, A47)

Employed digital data shared by all modules are:

- Active island mode event digital signal (D9)
- Air compressor operation digital signal (D11)
- Common fuel valve DeVG01 open digital signal (D37)
Through a series of logical checks, the operation mode of a module can either be directly identified or it has to be further investigated by controlling data of subsequent time steps through a specific sub-routine: the sub-routine identifies when a given operation mode ends, and assigns the output to the dedicated worksheet cells inbetween. Investigation stops beforehand if there is more than 30 minutes between one time step and the following one, or if the last available record is reached. Data and values employed in these procedures have been based on manual event analysis of the last two years of plant operation. The code for the overarching logical checks is written in Appendix 8.3.2, after the evaluation of KPIs. The aforementioned sub-routines code can be found in Appendix 8.3.3.

The identification of the operation mode is performed based on the continuity of available data. In case the elapsed time between a time step \(t \) and the previous one is longer than 10 minutes, the detection is based purely on data belonging to the corresponding time step \(t \). The logic of this “static” assumption is summarized in the flowchart of Figure 12.

![Figure 12: Flowchart for "static" assumption logic](image)

Here, failure or emergency modes such as ISL, HOT and INT have not been considered, as they cannot be properly identified without previous reference. Checks on electrical power output, compressed air flow and module temperature variation with time \((dT/dt) \) are used as control variables.

In case of positive power production, the module can either be starting-up or being already in nominal operation. The “Start-up or test” sub-routine investigates the consecutive 100 hours (~4 days) following time \(t \), searching for a time step with positive electrical power production, no compressed air flow and a module temperature of at least 700 [°C]. These conditions identify a module that has been successfully activated and is running on nominal conditions, although power output may have not yet reached its peak. If said time step is found, the output of the routine for time steps inbetween is START. If these conditions have not been met by the end of the timespan, then the module has undergone a remote test, and the routine keep searching into consecutive
time steps for the moment when the module returns inactive, with a temperature lower than 50 °C and close to none electric power and ambient air consumptions. The output in this scenario is OFF for the entire period.

The intensity of power absorption on the other hand, can identify whether the module is inactive or is performing a start-up (or test) or shutdown procedure. The evolution of temperature with time determines if the module is respectively heating up or cooling down.

The “Shut-down” sub-routine investigates the consecutive 360 hours (~2 weeks) following time t, searching for a time step when the module returns inactive, with a temperature lower than 50 °C and close to none electric power and ambient air consumptions. The output inbetween is SHUT.

The temperature variation with time (dT/dt) is evaluated through a dedicated sub-routine as the slope of the simple linear regression of the module temperature in the consecutive 24 hours following time t, ignoring any null values that may occur due to logging failures.

Successive time steps follow a “dynamic” assumption logic, as their possible operation modes are defined by the output of the previous one. Again, checks on electrical power output, compressed air flow and temperature variation with time are used as control variables. Figure 13 summarizes this logic. In case the procedure has identified a start-up or shutdown procedure, the obvious prosecution is respectively ON or OFF. In case the system is inactive, a significant power absorption identifies the beginning of a start-up or test procedure. In case the module is operating in nominal conditions, a check on the relative variation of power output between the two consecutive time steps $\Delta P_{el,\%}$ (26) helps in identifying significant power drops, related to a shutdown procedure or a failure or emergency mode: failure or emergency modes can happen in succession before the system manages to restore itself properly.

$$\Delta P_{el,\%} = \frac{P_{el,t} - P_{el,t-1}}{P_{el,t}} \cdot 100$$

(26)

The “Island mode” routine investigate the consecutive time steps following time t with positive electrical power production, searching for when the compressed air flow stops or when the dedicated digital signal (D9) changes from 0 to -1. The output inbetween is ISL.

The “Interruption or hot standby” routine investigate consecutive time steps following time t, searching for when electrical power production is restored: altogether, either there is no more compressed air flow, or the digital signal of the air compressor itself is -1. Then, if the digital signal of the main fuel valve changed throughout the event, the output inbetween is HOT. The analogic measure of the NH$_{mix}$ flow (A22) has shown some erratic behaviour and therefore it is not reliable as a hot-standby event indicator. If the previous condition is not met, then the output inbetween is INT.
Figure 13: Flowchart for "dynamic" assumption logic
3.4. Data visualization, overview and report procedure

Another command of the toolkit allows easily choosing and displaying the KPIs and some of the most relevant data logged by the PLC. The user can choose up to 8 outputs from 60 measures, plus time for the abscissa (an example is provided in Figure 14). Ordinate data can be shown on the primary or secondary axis. Axis labels are automatically updated to show the correct unit of measure based on the selected output.

![Figure 14: Data visualization user form - Example of outputs choice](image)
The time period to visualize is custom, but it is restricted within the same year, due to Excel data series inability to simultaneously refer to more than one worksheet. When plotting a chart versus time, time periods longer than 1 hour without any data, because of logging failures or data collecting purposefully disabled, are explicitly signalled. An example is provided in Figure 15.

![Data visualization chart - Example for the previous outputs choice](image)

As an additional feature, some overview data regarding the selected time period is displayed in the user form. For each of the selected outputs, maximum, minimum and average values are available to properly read the chart. For each module, a recap of the time spent in each operation mode, in detail and overall allows to crosscheck the outputs evolution with the events that have occurred (Figure 16).
Figure 16: Module 2 operation time overview for the previous example

Time periods with missing data due to logging failures or data collecting purposefully disabled are listed in a separate sheet. Another page (Figure 17) is devoted to displaying time dependant KPIs: most of these are evaluated as a Riemann sum (27) over the stated time period, hence with each measure assumed constant throughout the time step Δt of 10 minutes ($1/6$ of an hour).

$$S(x) = \sum_{i=t_1}^{t_2} x_i \cdot \Delta t = \sum_{i=t_1}^{t_2} \frac{x_i}{6}$$ \hspace{1cm} (27)
Electrical energy production E_{el}, expressed in [kWh], is evaluated from the corresponding electrical power production P_{el} (therefore only if positive) for each module (A36, A37, A38) and as net output (K30):

$$E_{el} = S(P_{el} \text{ if } P_{el} > 0) \quad (28)$$

Gross electrical energy production is computed as sum of the electrical energy production of the three modules.

Thermal energy production E_{th}, expressed in [kWh], is evaluated from the corresponding thermal power P_{th} removed from each module (K16, K17, K18), globally removed from the modules (K19) and actually transferred to the sludge (K20):

$$E_{th} = S(P_{th}) \quad (29)$$

The capacity factor CF, expressed in [%], of each module is defined as the ratio between the electrical energy produced during nominal operation $E_{el,ON}$ with respect to the energy that would have been produced in the same timespan t_{ON} at nominal power output $P_{el,N}$:

$$CF = \frac{E_{el,ON}}{P_{el,N} \cdot t_{ON}} \cdot 100 \quad (30)$$

Electrical energy produced during nominal operation is evaluated similarly to electrical energy production, with the additional requirement of the module operation mode being identified as ON for the corresponding time step. t_{ON} is the time, expressed in hours, the module has spent running in nominal operation within the stated time period. The nominal power output $P_{el,N}$ is assumed as the one associated with a set-point of 100 [%], therefore 58 [kW] for modules №1 (presumably) and №3, 45 [kW] for module №2, as the actual current set-point is not directly available from the imported data. The plant capacity factor $CF_{modules}$ is also evaluated by properly accounting each module contribution:

$$CF_{modules} = \frac{\sum_{1 \text{ to } 3} E_{el,ON,mod}}{\sum_{1 \text{ to } 3}(P_{el,N,mod} \cdot t_{ON,mod})} \cdot 100 \quad (31)$$

Carbon dioxide emissions m_{CO2}, expressed in [kg], is evaluated considering both the part already present in the biogas stream sent to the modules $\dot{V}_{biogas,total}$ (K1), available in [m3/h], and the part related to methane, assuming that the afterburner carries out the complete combustion of any of its traces:

$$m_{CO2} = \frac{MW_{CO2}}{22.414} \cdot S(\dot{V}_{biogas,total}) \quad (32)$$

Carbon dioxide molecular weight $MW_{CO2} = 44.01 \left[\frac{g}{mol} \right]$

Contaminants adsorbed in the stated time period are evaluated in absolute terms as [mg] of equivalent sulphur $m_{eq,S}$ and equivalent D4 $m_{eq,D4}$ from the corresponding adsorption rates $\dot{m}_{eq,S}$ and $\dot{m}_{eq,D4}$ (K34, K35), available in [mg/h]:

$$m_{eq,S} = S(\dot{m}_{eq,S}) \quad (33)$$

$$m_{eq,D4} = S(\dot{m}_{eq,D4}) \quad (34)$$
Contaminants adsorbed in the stated time period are also evaluated in relative terms as loading rates $LR_{eq,S}$ and $LR_{eq,D4}$, expressed in [%], with respect to the predicted adsorption capacity of a single reactor:

$$LR_{eq,S} = \frac{m_{eq,S}}{(q \cdot m)_{CKC}} \cdot 100$$ \hspace{1cm} (35)

$$LR_{eq,D4} = \frac{m_{eq,D4}}{(q \cdot m)_{C64}} \cdot 100$$ \hspace{1cm} (36)

Specific CKC equivalent sulphur adsorption capacity

$$q_{CKC} = 84 \frac{mg}{g}$$

Specific C64 equivalent D4 adsorption capacity

$$q_{C64} = 150 \frac{mg}{g}$$

Activated carbons weight of a single reactor

$$m_{CKC} = m_{C64} = 250 \text{ [kg]}$$

Figure 17: Time dependant KPIs for the previous example
Although most of the graphical adjustments are already implemented in the routine, the chart can also be manually modified by the operator. A couple of export commands allow to save the graph as a PNG picture or create a Word report based on a template file included in the folder, which will present all the previously evaluated information.

The operation log command performs a similar function, showing only overview data for a selected year or for the entire lifetime of the plant. These information are more quickly accessible as they are for the most part evaluated in a worksheet through cell formulas. For each module, average efficiencies are evaluated over the available ON periods and information on selected ON periods are provided in the user form (Figure 18). Again, an export procedure is available to save the desired information in a Word report based on a similar template file included in the folder.

![Operation Log User Form](image)

Figure 18: Operation log user form, example for the year 2019
4. Results and discussion

Data presented in this section is mainly dedicated to the year 2019, since previous years have already been discussed by other authors. During this year, only module №2 has been operative, therefore many of the KPIs related to overall plant performance are redundant. In the following, results obtained through the use of the toolkit are presented and discussed, while some further observations and analysis are carried out with additional information not available by the PLC.

4.1. Operation mode analysis

Module №2 (from here on out simply called “module” since it was the only one running during the year 2019) has been shut down on the 19th of December 2018, and it has been restarted on the 17th of February 2019. The imposed current set point is 25 [A], or 100 [%] on a scale where 12 [A] corresponds to 0 [%]: power production settles around the nominal power of 45 [kW]. The module runs until 19th March with only a couple of short interruptions (Figure 19). It can be observed that compressed air injection accompanies part of the start-up procedure and also interruptions. The latter are sometimes paired with a complete disconnection and reconnection with the electrical grid, during which the voltage reading of the modules electrical panel drops to zero.

![Data from 17.02.2019 00:06:29 to 19.03.2019 00:58:46](image)

Figure 19: 2019 - First start-up and nominal operation period
Then until the 24th of March the module appears to run at a low power level, with 11 interruptions throughout. During this period, the algorithm could not surmise a unanimous operation mode, as digital signals do not provide any insight on the cause of this behaviour. Whether the mode is considered as ON or ISL, the electrical power output averages around 26 [kW]: after the last interruption, this trend continues until the 27th of March, when the power of the system restores itself without further information (Figure 20).

Figure 20: 2019 - March interruptions and low power output period
Operation continues until the shutdown on the 2nd of June. Aside from a couple of short-term island events, the system experiences a similar low power output behaviour on the 5th of April, eventually restored after a complete disconnection and reconnection with the electrical grid, and a 7 hour-long interruption on the 19th of May, followed by a slow recovery of power production due to the stack cooling in the meantime. A few days after the shutdown has completed, the module is powered again, probably as a test, heating up to 668 [°C] before being left to freely cool down (Figure 21).
During summer, the module has been kept inactive: operation has been resumed at the beginning of September, with a current set point of 23.6 [A], corresponding to 89.2 [%]. Data logging resumed on the 12th of September, while the module was already running, therefore there are no information regarding the start-up procedure which actually occurred at the end of August: the relative data was lost due to human error at the plant site. Aside from a 3 hour-long interruption the module continued operation until the end of the year with only a couple of power drops throughout (Figure 22).

![Figure 22: 2019 - Operation after the second start-up until the end of the year](image)

Operation has continued at least until the 11th of February 2020, which is the last time data has been manually extracted from the PLC. In this period, the system has experienced some small power drops and two major interruptions.

Tables 2 and 3 summarize the time spent in each operation mode and the time periods without logged analogic data throughout the year 2019, as extracted from the corresponding Word report.

<table>
<thead>
<tr>
<th>Missing time periods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISS</td>
</tr>
</tbody>
</table>

Table 2: 2019 - Time periods with missing data (logging failure or intentionally disabled)
<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Time [h]</th>
<th>Time [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>1818.33</td>
<td>20.76</td>
</tr>
<tr>
<td>ON</td>
<td>5097.33</td>
<td>58.19</td>
</tr>
<tr>
<td>ISLAND</td>
<td>4.83</td>
<td>0.06</td>
</tr>
<tr>
<td>HOT STANDBY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>START UP</td>
<td>35.83</td>
<td>0.41</td>
</tr>
<tr>
<td>SHUT DOWN</td>
<td>72.5</td>
<td>0.83</td>
</tr>
<tr>
<td>INTERRUPTION</td>
<td>22</td>
<td>0.25</td>
</tr>
<tr>
<td>MISSING DATA</td>
<td>1709.05</td>
<td>19.51</td>
</tr>
</tbody>
</table>

Table 3: 2019 - Operation mode summary

The PLC failed to log data just 5 times, each skipping a single time step. The major missing data periods are those due to the logging routine being intentionally disabled during July and August, as the modules were scheduled to remain inactive, and the first days of September lost due to human error.

Only ~27 hours of nominal operation have been lost because of failure or emergency modes of operation. The module has worked as intended for more than 5097 hours (about 212 days).

4.2. Electrical performance

The module analysis can be split into two time periods, before and after the summer of 2019, to take into consideration the different set-points employed. Average values reported in Table 4 have been evaluated during nominal operation, with the exclusion of the aforementioned lower power output phases. There is no benchmark for the electrical efficiency as the available data sheet (Figure 5) refers to CONVION C50 module with 58 [kW] nominal power.

<table>
<thead>
<tr>
<th>Period I</th>
<th>Electrical power production [kW]</th>
<th>Electrical efficiency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 01/01/2019 to 01/07/2019</td>
<td>Maximum 44.68</td>
<td>51.79</td>
</tr>
<tr>
<td>Set-point: 100 [%]</td>
<td>Average 43.18</td>
<td>48.55</td>
</tr>
<tr>
<td>Period II</td>
<td>From 01/07/2019 to 31/12/2019</td>
<td>Maximum 40.25</td>
</tr>
<tr>
<td>Set-point: 89.2 [%]</td>
<td>Average 38.71</td>
<td>47.59</td>
</tr>
</tbody>
</table>

Table 4: 2019 - Electrical power and efficiency performance

In both periods, while maximum power production is compatible with the imposed set-point, the average is penalized by the effects of degradation that are easily noticeable in Figure 23. Electrical efficiency shares the same fate, with slightly underwhelming performances with respect to literature reference of 55±65 [%].
Fitting with a linear regression each data series on the two time periods with the same assumptions made before, it is possible to estimate said degradation as a percentage drop over 1000 hours of nominal operation [%/1000 h]:

\[D_{\text{pel}} = \frac{\Delta P_{\text{el LR,TON}}}{P_{\text{el,N}} \cdot I_{\text{set-point}}^{25}} \cdot 100 \cdot \frac{1000}{t_{\text{ON}}} \] (37)

\[D_{\text{eel}} = \frac{\Delta \varepsilon_{\text{el LR,TON}}}{t_{\text{ON}}} \cdot \frac{1000}{t_{\text{ON}}} \] (38)

\(\Delta P_{\text{el LR,TON}} \) and \(\Delta \varepsilon_{\text{el LR,TON}} \) are respectively the drop in power production, available in [kW], and electrical efficiency, already in [%], over the nominal operation time considered \(t_{\text{ON}} \), expressed in hours, estimated as differences of the two ends of the corresponding linear regressions. In equation (37), power production drop \(D_{\text{pel}} \) is evaluated in [%] dividing with respect to the expected power output for the given current set-point \(I_{\text{set-point}} \), expressed in [A], where \(P_{\text{el,N}} \) is the nominal power output of 45 [kW] of the module for the 25 [A] set-point.

In period I, power degradation is around 1.1 [%/1000 h], while electrical efficiency degradation is around 0.69 [%/1000 h]. As the slope in Figure 23 suggests, degradation in period II is more prominent, with a 3.13 [%/1000 h] drop for power production and 2.17 [%/1000 h] for electrical efficiency.
Fuel cell degradation in SOFC stacks is a known phenomenon, especially when fuels different from pure hydrogen is employed. Carbon associated with the different gaseous species in the biogas feed may cause solid depositions on the anodic interface, irreversibly reducing the available cell voltage. Likewise, the presence of hydrogen sulphide and siloxanes cause the same issue, but their presence in the modules should be negligible given the extensive clean-up system installed.

While recirculation from the anodic exhaust to the fuel feed introduces oxygen carriers counteracting carbon separation, it also lowers the partial pressure of hydrocarbons, reducing cell voltage. In addition, oxygen-leakage has a substantial effect on the actual fuel utilization, fuel sensitivity and voltage-current characteristics. Also, operating temperature can cause grains coarsening on the electrodes, affecting the available active surface size.

These phenomena may also be unevenly distributed among the cells composing the stack: the internal control system can reduce output current to maintain voltage over a minimum limit while trying to preserve degraded cells from working in possibly harmful conditions. From the outside, this kind of adjustment appears as a power drop. Therefore, the degradation on electrical power production and efficiency does not have a unanimous justification, as it may be simply due to internal regulations, which are inaccessible to the plant operators. The irreversible component of the degradation should be evaluated on the long run, comparing performances with the same set-point right after proper start-up procedures. The causes may eventually be identified when the stack will be taken apart for maintenance or replacement.
From Figure 24, changes in fuel utilization can be confirmed in period II, as the flow rate and power input of the biogas feed increase with time despite the reduction in electrical power output: consequently, this explains the reduction in efficiency. Also from Figure 24, it can be surmised that the odd behaviour of electrical efficiency right after logging resumed in September is due to the oscillating biogas flowmeter readings throughout the month, possibly related to the activation of the secondary digester for maintenance activity on the main one.

![Figure 24: 2019 - Biogas feed for the module](image-url)
Auxiliary consumptions show a distinct behaviour in the two periods as well. The air compressor is a major piece of equipment, as it mainly supplies the WWTP for normal operation. It can either be manually charged on the SOFC system, therefore being accounted for in the readings of the auxiliaries power meter, or directly on the grid. Charging on the SOFC system is a safety measure required to avoid the indirect halt of the modules induced by the control logic, as an alarm triggers when low pressure is detected in the compressed air circuit. While the average electrical consumptions of the auxiliaries listed in Appendix 8.2 settles around 10.17 [kW], the contribution of the air compressor can raise the power required up to 25.79 [kW]. Figure 25 suggests that the air compressor has been charged on the module only during period I, as auxiliaries consumptions are significantly lower in period II, even considering the lower biogas flow to be treated by the clean-up system due to the change in set-point.
4.3. Thermal performance

Regarding the thermal recovery from the module exhaust stream, during nominal operation the heat removed in period I has been on average 29.23 [kW], with an average efficiency with respect to the biogas power input of 33.88 [%]. In period II, the figures have been respectively 28.09 [kW] and 34.68 [%]. From Figure 26 it is possible to observe the different trends, comparing them to the yearly evolution of ambient air temperature.

![Figure 26: 2019 - Module thermal power recovered, thermal efficiency and ambient air temperature](image)

In period I, as ambient air temperature increases, less power is required to heat up the module to the fuel cell requirement. Also, thermal losses from the module itself towards the environment are reduced: these conditions translate into an increase of thermal performances with time. Viceversa, in period II the drop in ambient air temperature increases the power required from the biogas to heat up the cathodic air stream: this may contribute to the change in fuel utilization mentioned before.
Thermal efficiency of the entire heat exchange circuit while on nominal operation settles around 75.15 [%]. Figure 27 compares said efficiency with ambient air temperature throughout the year. Although a slight dependency on external temperature is present (around 0.156 [kW/°C]) due to losses in the lengthy insulated piping installed outdoor, the main thermal loss has to be attributed to the hydraulic separator. This component partially acts as a mixer heat exchanger in case the supply and return flow rates are different, which is very likely given the poor precision of the flow meters and pumps regulation.

![Data from 01.01.2019 00:08:15 to 31.12.2019 23:51:16](image)

Figure 27: 2019 - Thermal efficiency of heat exchange system with respect to ambient air temperature

Figure 28 shows the thermal powers computed on each side of the sludge heat exchanger. Flow rate measurements oscillations on the sludge side render the thermal power evaluation quite unreliable: this is why net thermal power produced has been evaluated on the glycol water side. Sludge employment in the heat recovery unit has actually been dismissed since residual strands tended to clog the piping due to their small diameter. Industrial water is withdrawn from a well with a highly fluctuating pressure, causing unstable readings.
In addition, thermal power on the sludge side is on average 1.59 [kW] higher than the one evaluated on the glycol water side. This may be due to a combination of measurements errors and a reduction in the heat capacity of the glycol water mixture (with respect to the one provided by the supplier).

Fluid composition, and therefore its physical properties, can change unpredictably over time. Prolonged exposure to high temperatures (above 104 [°C]) causes glycol degradation and the formation of organic acids [x]. Also the makeup water to adjust for pressure losses in the system causes a dilution in glycol concentration. Therefore, glycol has to be periodically reintegrated in the circuit to avoid reduction or potential removal of the freeze protection.

In Figure 29 the difference between the two computed thermal powers have been evaluated for all of the available data, and compared to the difference in case the glycol water mixture is equated to water (therefore with the two fluids having the same heat capacity). A linear regression for each data series is also shown to better visualize their behaviour.
Both trends slightly increase with time, corroborating the assumption that a combination of glycol degradation and dilution has been reducing the heat capacity of the fluid. While it appears that there is on average no difference in thermal power at HRU4 considering pure water properties on both sides, it is not safe to assume such a hypothesis in the KPIs evaluation, as the flow rate readings themselves are extremely fluctuating: thermal power on the glycol water side should be considered as an underestimation of the actual heat flow exchanged in each HRU. Glycol concentration can hardly be determined by the available measurements, and direct inspection of the fluid composition should be carried out periodically to avoid freezing issues.
4.4. Plant performance

Table 5 presents overall KPIs for the year 2019, compared to those of 2018 for a first comparison.

<table>
<thead>
<tr>
<th>Key Performance Indicators</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical energy production [MWh]</td>
<td>55.65</td>
<td>204.66</td>
</tr>
<tr>
<td>Capacity factor [%]</td>
<td>96.07</td>
<td>89.15</td>
</tr>
<tr>
<td>Thermal energy production [MWh]</td>
<td>36.05</td>
<td>145.62</td>
</tr>
<tr>
<td>Average (while ON) electrical efficiency [%]</td>
<td>48.95</td>
<td>48.02</td>
</tr>
<tr>
<td>Average (while ON) thermal efficiency [%]</td>
<td>34.73</td>
<td>34.29</td>
</tr>
<tr>
<td>Average (while ON) global efficiency [%]</td>
<td>83.82</td>
<td>82.31</td>
</tr>
<tr>
<td>MOD.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical energy production [MWh]</td>
<td>111.24</td>
<td>/</td>
</tr>
<tr>
<td>Capacity factor [%]</td>
<td>78.12</td>
<td>/</td>
</tr>
<tr>
<td>Thermal energy production [MWh]</td>
<td>69.85</td>
<td>/</td>
</tr>
<tr>
<td>Average (while ON) electrical efficiency [%]</td>
<td>47.98</td>
<td>/</td>
</tr>
<tr>
<td>Average (while ON) thermal efficiency [%]</td>
<td>30.8</td>
<td>/</td>
</tr>
<tr>
<td>Average (while ON) global efficiency [%]</td>
<td>78.76</td>
<td>/</td>
</tr>
<tr>
<td>PLANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas energy input [MWh]</td>
<td>289.53</td>
<td>427.37</td>
</tr>
<tr>
<td>Gross electrical energy production [MWh]</td>
<td>166.89</td>
<td>204.66</td>
</tr>
<tr>
<td>Net electrical energy production [MWh]</td>
<td>106.81</td>
<td>138.52</td>
</tr>
<tr>
<td>Capacity factor modules [%]</td>
<td>83.33</td>
<td>89.15</td>
</tr>
<tr>
<td>Gross thermal energy production [MWh]</td>
<td>105.9</td>
<td>145.62</td>
</tr>
<tr>
<td>Net thermal energy production [MWh]</td>
<td>89.22</td>
<td>110.52</td>
</tr>
<tr>
<td>Biogas treated volume [m³]</td>
<td>50472</td>
<td>65644</td>
</tr>
<tr>
<td>Carbon dioxide emissions [t]</td>
<td>99.1</td>
<td>128.89</td>
</tr>
<tr>
<td>Adsorbed equivalent sulphur [g]</td>
<td>1539.98</td>
<td>998.16</td>
</tr>
<tr>
<td>Adsorbed equivalent D4 [g]</td>
<td>268.66</td>
<td>125.27</td>
</tr>
<tr>
<td>CKC reactor loading rate [%]</td>
<td>7.61</td>
<td>4.99</td>
</tr>
<tr>
<td>C64 reactor loading rate [%]</td>
<td>0.72</td>
<td>0.36</td>
</tr>
</tbody>
</table>

In terms of efficiency, the module performed similarly to the previous year, with a lower capacity factor due to the time spent on an 89.2 [%] set-point in the second half of the year.

Regarding the plant as a whole, in 2019, 427.37 [MWh] of methane allowed to produce 204.66 [MWh] of electrical energy and recover 145.62 [MWh] of thermal energy. Respectively accounting for the consumptions of the auxiliaries and the thermal losses along the glycol water distribution circuit, the plant has reached a net electrical efficiency of 32.4 [%], a net thermal efficiency of 27.9 [%] and a net global efficiency of 59.3 [%]. This result, as it has been pointed out before, is penalized by consumptions related to the plant air compressor and the overall auxiliaries, whose contribution should be split among three modules.
The adsorption of contaminants appears to have decreased in 2019, despite the increase in treated biogas, from 50472 [m3] in 2018 to around 65644 [m3] in 2019. This is caused in the first place by the lack of data regarding biogas composition for the first half of 2019, and secondly by the lower readings of both contaminants with respect to 2018. Both of these issues can be observed in Figure 30 and Figure 31. To provide a reference, also readings from the QUALVISTA online monitoring system have been added to the charts since, despite being less frequent, they are logged regularly.

![Figure 30: 2018 - Contaminants concentrations readings](image-url)
More complete figures can be obtained by averaging the readings obtained from the QUALVISTA online monitoring system and referring them to the overall treated biogas (Table 6): results are more comparable between them than the ones obtained through the toolkit, but the difference in contaminants concentration is an issue that is more likely related to the measuring system itself.

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas treated volume [m³]</td>
<td>50472</td>
<td>65644</td>
</tr>
<tr>
<td>Weighted average for H2S concentration [ppm]</td>
<td>36.08</td>
<td>25.91</td>
</tr>
<tr>
<td>Weighted average for silicon concentration [mg/m³]</td>
<td>4.21</td>
<td>3.34</td>
</tr>
<tr>
<td>Adsorbed equivalent sulphur [g]</td>
<td>2605.37</td>
<td>2433.94</td>
</tr>
<tr>
<td>Adsorbed equivalent D4 [g]</td>
<td>258.82</td>
<td>267.03</td>
</tr>
<tr>
<td>CKC reactor loading rate [%]</td>
<td>12.41</td>
<td>11.59</td>
</tr>
<tr>
<td>C64 reactor loading rate [%]</td>
<td>0.69</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 6: Contaminants adsorption estimates according to QUALVISTA online measuring system

Despite the lack and uncertainty of data, the values of loading rates can still be useful in determining when a reactor, presumably the leading one if no changes were made in the meantime, is reaching its predicted capacity. In this scenario, the corresponding activated carbons should be replaced or regenerated.
5. Conclusions

The toolkit proved to be a valuable asset in simplifying data management and in speeding up the analysis of plant performance. Nonetheless, due to the nature of the DEMOSOFC project, monitoring and control of the plant are split among the different partners: some key information has to be shared with each other to be able to carry out an effective and complete diagnostic.

Enhancements to the actual code may furtherly help in tackling unexpected logging errors, like missing or extra commas, and correctly identify complex events chains, for example emergency shut down procedures. Some improvements could be implemented also according to the plant operators’ feedback, for instance a monthly subdivision of KPIs to help the energy manager in estimating the thermal and electrical coverage of the digester, with the corresponding economic savings.

Hopefully this work will contribute to the continuous improvement and optimization of the modules and the plant itself, providing valuable and easily accessible information to promote the establishment of this cogeneration system in the energy market.
6. Reference

[7] SMAT Analysis on Digester CA 3033 and CA 3034, 2012

7. Acknowledgements

I want to dedicate this achievement to the unfailing support of my family, my parents and my better half, without whom this journey would not have been possible. I am extremely thankful for the sacrifices they made for me and for the support they gave me throughout these years.

I want to thank my supervisors, Dr. Gandiglio and Prof. Santarelli for their help and great disposition during these months.

I am also grateful to all my friends, for they are an irreplaceable source of happiness.

This accomplishment would not have been possible without all of them.

From the bottom of my hearth,
Thank you.
8. Appendix

8.1. List of logged data

8.1.1. Analogic data

<table>
<thead>
<tr>
<th>PLC denomination</th>
<th>Description</th>
<th>Unit of measure</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIW_512_AP01_PRESSURE_DeEPT003</td>
<td>Vessel air pressure</td>
<td>mbar</td>
<td>A1</td>
</tr>
<tr>
<td>FIW_514_AP02_PRESSURE_DeEPT004</td>
<td>-</td>
<td>-</td>
<td>A2</td>
</tr>
<tr>
<td>FIW_516_HE57_TEMPERATURA_DeTT205</td>
<td>Water temperature after the mix valve HRU2</td>
<td>°C</td>
<td>A3</td>
</tr>
<tr>
<td>FIW_518_HE01_TEMPERATURA_DeTT103</td>
<td>Water inlet temperature HRU1</td>
<td>°C</td>
<td>A4</td>
</tr>
<tr>
<td>FIW_520_HE02_TEMPERATURA_DeTT104</td>
<td>Water outlet temperature HRU1</td>
<td>°C</td>
<td>A5</td>
</tr>
<tr>
<td>FIW_522_HE58_TEMPERATURA_DeTT305</td>
<td>Water temperature after the mix valve HRU3</td>
<td>°C</td>
<td>A6</td>
</tr>
<tr>
<td>FIW_524_HE03_TEMPERATURA_DeTT203</td>
<td>Water inlet temperature HRU2</td>
<td>°C</td>
<td>A7</td>
</tr>
<tr>
<td>FIW_526_HE04_TEMPERATURA_DeTT204</td>
<td>Water outlet temperature HRU2</td>
<td>°C</td>
<td>A8</td>
</tr>
<tr>
<td>FIW_528_HE05_TEMPERATURA_DeTT303</td>
<td>Water inlet temperature HRU3</td>
<td>°C</td>
<td>A9</td>
</tr>
<tr>
<td>FIW_530_HE06_TEMPERATURA_DeTT304</td>
<td>Water outlet temperature HRU3</td>
<td>°C</td>
<td>A10</td>
</tr>
<tr>
<td>FIW_532_HE07_TEMPERATURA_DeTT001</td>
<td>Water temperature on hot side inlet of hydraulic separator</td>
<td>°C</td>
<td>A11</td>
</tr>
<tr>
<td>FIW_534_HE08_TEMPERATURA_DeTT002</td>
<td>Water temperature on cold side outlet of hydraulic separator</td>
<td>°C</td>
<td>A12</td>
</tr>
<tr>
<td>FIW_536_HE09_TEMPERATURA_DeTT003</td>
<td>Water temperature on hot side outlet of hydraulic separator</td>
<td>°C</td>
<td>A13</td>
</tr>
<tr>
<td>FIW_538_HE10_TEMPERATURA_DeTT004</td>
<td>Water temperature on cold side inlet of hydraulic separator</td>
<td>°C</td>
<td>A14</td>
</tr>
<tr>
<td>FIW_540_HE16_PRESSURE_DeEPT013_BIOGAS</td>
<td>Biogas pressure after clean-up</td>
<td>mbar</td>
<td>A15</td>
</tr>
<tr>
<td>FIW_542_HE18_PRESSURE_DePT005_H2O</td>
<td>Water pressure on hot side inlet of hydraulic separator</td>
<td>bar</td>
<td>A16</td>
</tr>
<tr>
<td>FIW_544_HE56_TEMPERATURA_DeTT105</td>
<td>Water temperature after the mix valve HRU1</td>
<td>°C</td>
<td>A17</td>
</tr>
<tr>
<td>FIW_548_DeDAT010_WaterFlow</td>
<td>Water flow HRU1</td>
<td>m³/h</td>
<td>A18</td>
</tr>
<tr>
<td>FIW_550_DeDAT020_WaterFlow</td>
<td>Water flow HRU2</td>
<td>m³/h</td>
<td>A19</td>
</tr>
<tr>
<td>FIW_552_DeDAT030_WaterFlow</td>
<td>Water flow HRU3</td>
<td>m³/h</td>
<td>A20</td>
</tr>
<tr>
<td>FIW_560_GT34_FLOW_METER_GAS_N</td>
<td>N₂ flow</td>
<td>l/min</td>
<td>A21</td>
</tr>
<tr>
<td>FIW_562_GT35_FLOW_METER_GAS_NHmix</td>
<td>NHmix flow</td>
<td>l/min</td>
<td>A22</td>
</tr>
<tr>
<td>FIW_576_SG01_LIVELLO_GASOMETRO_DeLT001</td>
<td>Gasometer biogas level</td>
<td>m</td>
<td>A23</td>
</tr>
<tr>
<td>FIW_578_SG02_PORTATA_DeFIT005</td>
<td>Biogas flow extracted from the gasometer</td>
<td>m³/h</td>
<td>A24</td>
</tr>
<tr>
<td>FIW_580_SG03_PRESIONE_FIT005_DePT012</td>
<td>Biogas pressure after extraction from gasometer</td>
<td>mbar</td>
<td>A25</td>
</tr>
<tr>
<td>FIW_582_SG04_CH4_DeFIT005</td>
<td>Methane content of biogas</td>
<td>%</td>
<td>A26</td>
</tr>
<tr>
<td>FIW_584_SG05_TEMPERATURA_DeFIT005</td>
<td>Biogas temperature after extraction from gasometer</td>
<td>°C</td>
<td>A27</td>
</tr>
<tr>
<td>FIW_586_HE11_TEMPERATURA_DeTT005</td>
<td>Water inlet temperature HRU4</td>
<td>°C</td>
<td>A28</td>
</tr>
<tr>
<td>FIW_588_HE12_TEMPERATURA_DeTT006</td>
<td>Water outlet temperature HRU4</td>
<td>°C</td>
<td>A29</td>
</tr>
<tr>
<td>FIW_590_HE13_TEMPERATURA_DeTT007</td>
<td>Sludge inlet temperature HRU4</td>
<td>°C</td>
<td>A30</td>
</tr>
<tr>
<td>FIW_592_HE14_TEMPERATURA_DeTT008</td>
<td>Sludge outlet temperature HRU4</td>
<td>°C</td>
<td>A31</td>
</tr>
<tr>
<td>FIW_594_HE15_PRESSURE_DeEPT001_FANGO</td>
<td>Sludge pressure HRU4</td>
<td>bar</td>
<td>A32</td>
</tr>
<tr>
<td>FIW_596_HE17_PRESSURE_DeEPT014_H2O</td>
<td>Water pressure HRU4</td>
<td>bar</td>
<td>A33</td>
</tr>
<tr>
<td>FIW_602_HE19_FLOW_METER_DeFIT001</td>
<td>Water flow HRU4</td>
<td>m³/h</td>
<td>A34</td>
</tr>
<tr>
<td>FIW_604_HE20_FLOW_METER_DeFIT002</td>
<td>Sludge flow HRU4</td>
<td>m³/h</td>
<td>A35</td>
</tr>
<tr>
<td>ETH_SC_101_POWER_OUT_1</td>
<td>Electrical power output mod.1</td>
<td>kW</td>
<td>A36</td>
</tr>
<tr>
<td>ETH_SC_102_POWER_OUT_2</td>
<td>Electrical power output mod.2</td>
<td>kW</td>
<td>A37</td>
</tr>
<tr>
<td>ETH_SC_103_POWER_OUT_3</td>
<td>Electrical power output mod.3</td>
<td>kW</td>
<td>A38</td>
</tr>
<tr>
<td>ETH_SC_104_STACK_TEMPERATURE_1</td>
<td>Temperature mod.1</td>
<td>°C</td>
<td>A39</td>
</tr>
<tr>
<td>ETH_SC_105_STACK_TEMPERATURE_2</td>
<td>Temperature mod.2</td>
<td>°C</td>
<td>A40</td>
</tr>
<tr>
<td>ETH_SC_106_STACK_TEMPERATURE_3</td>
<td>Temperature mod.3</td>
<td>°C</td>
<td>A41</td>
</tr>
<tr>
<td>ETH_SC_107_LOADING HOURS_1</td>
<td>Loading hours mod. mod.1</td>
<td>h</td>
<td>A42</td>
</tr>
<tr>
<td>ETH_SC_108_LOADING_HOURS_2</td>
<td>Loading hours mod. 2</td>
<td>h</td>
<td>A43</td>
</tr>
<tr>
<td>ETH_SC_109_LOADING_HOURS_3</td>
<td>Loading hours mod. 3</td>
<td>h</td>
<td>A44</td>
</tr>
<tr>
<td>ETH_SC_110_AMBIENT_AIR_CONSUMPTION_1</td>
<td>Ambient air consumption mod. 1</td>
<td>kg/h</td>
<td>A45</td>
</tr>
<tr>
<td>ETH_SC_111_AMBIENT_AIR_CONSUMPTION_2</td>
<td>Ambient air consumption mod. 2</td>
<td>kg/h</td>
<td>A46</td>
</tr>
<tr>
<td>ETH_SC_112_AMBIENT_AIR_CONSUMPTION_3</td>
<td>Ambient air consumption mod. 3</td>
<td>kg/h</td>
<td>A47</td>
</tr>
<tr>
<td>ETH_SC_113_CMP_AIR_CONSUMPTION_1</td>
<td>Compressed air consumption mod. 1</td>
<td>kg/h</td>
<td>A48</td>
</tr>
<tr>
<td>ETH_SC_114_CMP_AIR_CONSUMPTION_2</td>
<td>Compressed air consumption mod. 2</td>
<td>kg/h</td>
<td>A49</td>
</tr>
<tr>
<td>ETH_SC_115_CMP_AIR_CONSUMPTION_3</td>
<td>Compressed air consumption mod. 3</td>
<td>kg/h</td>
<td>A50</td>
</tr>
<tr>
<td>ETH_SC_116_EXHAUST_inlet_TEMP_1_DeTT102</td>
<td>Exhaust gas inlet temperature mod. 1</td>
<td>°C</td>
<td>A51</td>
</tr>
<tr>
<td>ETH_SC_117_EXHAUST_inlet_TEMP_2_DeTT202</td>
<td>Exhaust gas inlet temperature mod. 2</td>
<td>°C</td>
<td>A52</td>
</tr>
<tr>
<td>ETH_SC_118_EXHAUST_inlet_TEMP_3_DeTT302</td>
<td>Exhaust gas inlet temperature mod. 3</td>
<td>°C</td>
<td>A53</td>
</tr>
<tr>
<td>ETH_SC_119_EXHAUST_outlet_TEMP_1_DeTT101</td>
<td>Exhaust gas outlet temperature mod. 1</td>
<td>°C</td>
<td>A54</td>
</tr>
<tr>
<td>ETH_SC_120_EXHAUST_outlet_TEMP_2_DeTT201</td>
<td>Exhaust gas outlet temperature mod. 2</td>
<td>°C</td>
<td>A55</td>
</tr>
<tr>
<td>ETH_SC_121_EXHAUST_outlet_TEMP_3_DeTT301</td>
<td>Exhaust gas outlet temperature mod. 3</td>
<td>°C</td>
<td>A56</td>
</tr>
<tr>
<td>ETH_SC_125_REACTIV_POWER_OUT_1</td>
<td>Reactive power mod. 1</td>
<td>kVAR</td>
<td>A57</td>
</tr>
<tr>
<td>ETH_SC_126_REACTIV_POWER_OUT_2</td>
<td>Reactive power mod. 2</td>
<td>kVAR</td>
<td>A58</td>
</tr>
<tr>
<td>ETH_SC_127_REACTIV_POWER_OUT_3</td>
<td>Reactive power mod. 3</td>
<td>kVAR</td>
<td>A59</td>
</tr>
<tr>
<td>ETH_SC_128_FUEL_FLOW_RATE_1</td>
<td>Fuel flow rate mod. 1</td>
<td>kg/h</td>
<td>A60</td>
</tr>
<tr>
<td>ETH_SC_129_FUEL_FLOW_RATE_2</td>
<td>Fuel flow rate mod. 2</td>
<td>kg/h</td>
<td>A61</td>
</tr>
<tr>
<td>ETH_SC_130_FUEL_FLOW_RATE_3</td>
<td>Fuel flow rate mod. 3</td>
<td>kg/h</td>
<td>A62</td>
</tr>
<tr>
<td>ETH_SC_131_FUEL_INLET_PRESSURE_1</td>
<td>Fuel inlet pressure mod. 1</td>
<td>mbar</td>
<td>A63</td>
</tr>
<tr>
<td>ETH_SC_132_FUEL_INLET_PRESSURE_2</td>
<td>Fuel inlet pressure mod. 2</td>
<td>mbar</td>
<td>A64</td>
</tr>
<tr>
<td>ETH_SC_133_FUEL_INLET_PRESSURE_3</td>
<td>Fuel inlet pressure mod. 3</td>
<td>mbar</td>
<td>A65</td>
</tr>
<tr>
<td>ETH_SC_134_FUEL_INLET_TEMPERATURE_1</td>
<td>Fuel inlet temperature mod. 1</td>
<td>°C</td>
<td>A66</td>
</tr>
<tr>
<td>ETH_SC_135_FUEL_INLET_TEMPERATURE_2</td>
<td>Fuel inlet temperature mod. 2</td>
<td>°C</td>
<td>A67</td>
</tr>
<tr>
<td>ETH_SC_136_FUEL_INLET_TEMPERATURE_3</td>
<td>Fuel inlet temperature mod. 3</td>
<td>°C</td>
<td>A68</td>
</tr>
<tr>
<td>ETH_SC_137_AMBIENT_TEMPERATURE</td>
<td>Ambient air temperature</td>
<td>°C</td>
<td>A69</td>
</tr>
<tr>
<td>ETH_SC_138_AMBIENT_PRESSURE</td>
<td>Ambient air pressure</td>
<td>mbar</td>
<td>A70</td>
</tr>
<tr>
<td>ETH_SC_139_AMBIENT_HUMIDITY</td>
<td>Ambient air humidity</td>
<td>%</td>
<td>A71</td>
</tr>
<tr>
<td>ETH_SC_140_HRU_WATER_INLET_1</td>
<td>Water inlet temperature mod. 1</td>
<td>°C</td>
<td>A72</td>
</tr>
<tr>
<td>ETH_SC_141_HRU_WATER_INLET_2</td>
<td>Water inlet temperature mod. 2</td>
<td>°C</td>
<td>A73</td>
</tr>
<tr>
<td>ETH_SC_142_HRU_WATER_INLET_3</td>
<td>Water inlet temperature mod. 3</td>
<td>°C</td>
<td>A74</td>
</tr>
<tr>
<td>ETH_SC_143_HRU_WATER_OUTLET_1</td>
<td>Water outlet temperature mod. 1</td>
<td>°C</td>
<td>A75</td>
</tr>
<tr>
<td>ETH_SC_144_HRU_WATER_OUTLET_2</td>
<td>Water outlet temperature mod. 2</td>
<td>°C</td>
<td>A76</td>
</tr>
<tr>
<td>ETH_SC_145_HRU_WATER_OUTLET_3</td>
<td>Water outlet temperature mod. 3</td>
<td>°C</td>
<td>A77</td>
</tr>
<tr>
<td>Modbus_Signals_Clean_UP_MB_CORRENTE_MOTORE</td>
<td>Clean-up compressor power current</td>
<td>A</td>
<td>A78</td>
</tr>
<tr>
<td>Modbus_Signals_Clean_UP_MB_PRESSIONE_MANDATA</td>
<td>Clean-up compressor power discharge pressure</td>
<td>bar</td>
<td>A79</td>
</tr>
<tr>
<td>Modbus_Signals_Clean_UP_MB_POTENZA</td>
<td>Clean-up compressor power</td>
<td>kW</td>
<td>A80</td>
</tr>
<tr>
<td>Modbus_Signals_Clean_UP_MB_TEMPERATURA_POMPANTE</td>
<td>Clean-up compressor temperature</td>
<td>°C</td>
<td>A81</td>
</tr>
<tr>
<td>Modbus_Signals_Clean_UP_MB_VELOCITA</td>
<td>Clean-up compressor velocity</td>
<td>rpm</td>
<td>A82</td>
</tr>
<tr>
<td>Pump_DePR01_A_SetPoint_Speed_Out</td>
<td>Set point pump A HRU4</td>
<td>%</td>
<td>A83</td>
</tr>
<tr>
<td>Pump_DePR01_B_SetPoint_Speed_Out</td>
<td>Set point pump B HRU4</td>
<td>%</td>
<td>A84</td>
</tr>
<tr>
<td>Pump_PR101_A_SetPoint_Speed_Out</td>
<td>Set point pump A HRU1</td>
<td>%</td>
<td>A85</td>
</tr>
<tr>
<td>Pump.PR301_B_SetPoint_Speed_Out</td>
<td>Set point pump B HRU3</td>
<td>%</td>
<td>A86</td>
</tr>
<tr>
<td>Pump.PR101_B_SetPoint_Speed_Out</td>
<td>Set point pump A HRU1</td>
<td>%</td>
<td>A87</td>
</tr>
<tr>
<td>Pump.PR201_A_SetPoint_Speed_Out</td>
<td>Set point pump A HRU2</td>
<td>%</td>
<td>A88</td>
</tr>
<tr>
<td>Pump.PR301_A_SetPoint_Speed_Out</td>
<td>Set point pump A HRU3</td>
<td>%</td>
<td>A89</td>
</tr>
<tr>
<td>Pump.PR201_B_SetPoint_Speed_Out</td>
<td>Set point pump B HRU2</td>
<td>%</td>
<td>A90</td>
</tr>
<tr>
<td>ETH_SC_161_%CH4</td>
<td>Methane content of biogas (fast sensor)</td>
<td>%</td>
<td>A91</td>
</tr>
</tbody>
</table>
Digital data

<table>
<thead>
<tr>
<th>PLC denomination</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDIO.FIO_0_SC01_EMERGENCY_SHUTDOWN</td>
<td>D1</td>
</tr>
<tr>
<td>FDIO.FIO_1_SC02_MAINS_PROTECTION</td>
<td>D2</td>
</tr>
<tr>
<td>FDIO.FIO_2_SC03_GRID_PARALLEL_MODE_BY_PLC</td>
<td>D3</td>
</tr>
<tr>
<td>FDIO.FIO_3_SC04_INTERLOCKING_MAINS_PROTECTION</td>
<td>D4</td>
</tr>
<tr>
<td>FDIO.FIO_4_SC05_REMOTE_MODE_ENABLED</td>
<td>D5</td>
</tr>
<tr>
<td>FDIO.FIO_5_SC06_REMOTE_MODE_ENABLED</td>
<td>D6</td>
</tr>
<tr>
<td>FDIO.FIO_6_SC07_REMOTE_MODE_ENABLED</td>
<td>D7</td>
</tr>
<tr>
<td>FDIO.FIO_7_SC18_HOT_IDLE_ACTIVE</td>
<td>D8</td>
</tr>
<tr>
<td>FDIO.FI1_0_SC19_ISLAND_MODE_ACTIVE</td>
<td>D9</td>
</tr>
<tr>
<td>FDIO.FI1_1_SC20_RUN_ACTIVE_1</td>
<td>D10</td>
</tr>
<tr>
<td>FDIO.FI1_2_SC21_RUN_ACTIVE_2</td>
<td>D11</td>
</tr>
<tr>
<td>FDIO.FI1_3_SC22_RUN_ACTIVE_3</td>
<td>D12</td>
</tr>
<tr>
<td>FDIO.FI1_4_SC23_FAILURE_ACTIVE_1</td>
<td>D13</td>
</tr>
<tr>
<td>FDIO.FI1_5_SC24_FAILURE_ACTIVE_2</td>
<td>D14</td>
</tr>
<tr>
<td>FDIO.FI1_6_SC25_FAILURE_ACTIVE_3</td>
<td>D15</td>
</tr>
<tr>
<td>FDIO.FI10_0_GT20_DeVG01_2_OPEN</td>
<td>D16</td>
</tr>
<tr>
<td>FDIO.FI10_1_GT21_DeVG01_2_CLOSE</td>
<td>D17</td>
</tr>
<tr>
<td>FDIO.FI10_2_GT22_DeVG01_2_PURGE_OPEN</td>
<td>D18</td>
</tr>
<tr>
<td>FDIO.FI10_3_GT23_DeVG01_2_PURGE_CLOSE</td>
<td>D19</td>
</tr>
<tr>
<td>FDIO.FI10_4_GT24_DeVG02_2_PURGE_OPEN</td>
<td>D20</td>
</tr>
<tr>
<td>FDIO.FI10_5_GT25_DeVG02_2_PURGE_CLOSE</td>
<td>D21</td>
</tr>
<tr>
<td>FDIO.FI11_2_GT30_DeVG08_2_PURGE_OPEN</td>
<td>D22</td>
</tr>
<tr>
<td>FDIO.FI11_3_GT31_DeVG08_2_PURGE_CLOSE</td>
<td>D23</td>
</tr>
<tr>
<td>FDIO.FI2_0_QCS02_STATO</td>
<td>D24</td>
</tr>
<tr>
<td>FDIO.FI2_1_QCS04_AUTO</td>
<td>D25</td>
</tr>
<tr>
<td>FDIO.FI2_2_QCS05_BYPASS_MAN</td>
<td>D26</td>
</tr>
<tr>
<td>FDIO.FI2_3_QCS07_STATO</td>
<td>D27</td>
</tr>
<tr>
<td>FDIO.FI2_6_QCS09_AUTO</td>
<td>D28</td>
</tr>
<tr>
<td>FDIO.FI2_7_QCS10_BYPASS_MAN</td>
<td>D29</td>
</tr>
<tr>
<td>FDIO.FI20_0_AP03_ALIMENTAZIONE_QL5</td>
<td>D30</td>
</tr>
<tr>
<td>FDIO.FI20_1_AP04_ALIMENTAZIONE_QS_SOFC</td>
<td>D31</td>
</tr>
<tr>
<td>FDIO.FI20_2_AP06_EV_ISLAND_MODE_STATUS_DeVAM001</td>
<td>D32</td>
</tr>
<tr>
<td>FDIO.FI20_3_AP08_EV_RING_MODE_STATUS_DeVAM001</td>
<td>D33</td>
</tr>
<tr>
<td>FDIO.FI20_4_HE48_DePR01_A_PUMP_STATUS</td>
<td>D34</td>
</tr>
<tr>
<td>FDIO.FI20_5_HE52_DePR01_B_PUMP_STATUS</td>
<td>D35</td>
</tr>
<tr>
<td>FDIO.FI20_6_HE63_DePR01_POMPA_FANGO_STATUS</td>
<td>D36</td>
</tr>
<tr>
<td>FDIO.FI22_0_GT20_DeVG01_1_OPEN</td>
<td>D37</td>
</tr>
<tr>
<td>FDIO.FI22_1_GT21_DeVG01_1_CLOSE</td>
<td>D38</td>
</tr>
<tr>
<td>FDIO.FI22_2_GT22_DeVG01_1_PURGE_OPEN</td>
<td>D39</td>
</tr>
<tr>
<td>FDIO.FI22_3_GT23_DeVG01_1_PURGE_CLOSE</td>
<td>D40</td>
</tr>
<tr>
<td>FDIO.FI22_4_GT24_DeVG02_1_PURGE_CLOSE</td>
<td>D41</td>
</tr>
<tr>
<td>FDIO.FI22_5_GT25_DeVG02_1_PURGE_CLOSE</td>
<td>D42</td>
</tr>
<tr>
<td>FDIO.FI22_6_GT26_DeVG02_1_PURGE_CLOSE</td>
<td>D43</td>
</tr>
<tr>
<td>FDIO.FI22_7_GT27_DeVG02_1_PURGE_CLOSE</td>
<td>D44</td>
</tr>
<tr>
<td>FDIO.FI3_0_QCS12_STATO</td>
<td>D45</td>
</tr>
<tr>
<td>FDIO.FI3_2_QCS14_AUTO</td>
<td>D46</td>
</tr>
<tr>
<td>FDIO.FI3_3_QCS15_BYPASS_MAN</td>
<td>D47</td>
</tr>
<tr>
<td>FDIO.FI3_4_QCS17_STATO</td>
<td>D48</td>
</tr>
<tr>
<td>FDIO.FI3_6_QCS19_AUTO</td>
<td>D49</td>
</tr>
<tr>
<td>FDIO.FI3_7_QCS20_BYPASS_MAN</td>
<td>D50</td>
</tr>
<tr>
<td>FDIO.FI30_0_CE06_PRESENZA_TENSIONE_1</td>
<td>D51</td>
</tr>
<tr>
<td>FDIO.FI30_1_CE07_PRESENZA_TENSIONE_2</td>
<td>D52</td>
</tr>
<tr>
<td>FDIO.FI30_2_CE08_PRESENZA_TENSIONE_3</td>
<td>D53</td>
</tr>
<tr>
<td>FDIO.FI30_3_CE09_PRESENZA_TENSIONE_4</td>
<td>D54</td>
</tr>
<tr>
<td>FDIO.FI30_4_CE10_KM1_STATUS</td>
<td>D55</td>
</tr>
<tr>
<td>FDIO.FI30_5_CE11_KM2_STATUS</td>
<td>D56</td>
</tr>
<tr>
<td>FDIO.FI6_1_QCS39_UPS_COMMUTATORE_POS_A</td>
<td>D57</td>
</tr>
<tr>
<td>FDIO.F6.2_QCS40_UPS_COMMUTATORE_POS_B</td>
<td>D58</td>
</tr>
<tr>
<td>FDIO.F6.3_CU03_ALLARME_GENERICO</td>
<td>D59</td>
</tr>
<tr>
<td>FDIO.F6.4_CU04_PRE_ALLARME_GENERICO</td>
<td>D60</td>
</tr>
<tr>
<td>FDIO.F6.5_CU05_MACCHINA_IN_FUNZIONE</td>
<td>D61</td>
</tr>
<tr>
<td>FDIO.F6.6_CU06_ALLBASSA_PRESSIONE_ASPIRAZIONE_COMP</td>
<td>D62</td>
</tr>
<tr>
<td>FDIO.F6.7.HE21.PR101_A_PUMP_STATUS</td>
<td>D63</td>
</tr>
<tr>
<td>FDIO.F7.0.HE25.PR101_B_PUMP_STATUS</td>
<td>D64</td>
</tr>
<tr>
<td>FDIO.F7.1.HE29.PR201_A_PUMP_STATUS</td>
<td>D65</td>
</tr>
<tr>
<td>FDIO.F7.2.HE33.PR201_B_PUMP_STATUS</td>
<td>D66</td>
</tr>
<tr>
<td>FDIO.F7.3.HE37.PR301_A_PUMP_STATUS</td>
<td>D67</td>
</tr>
<tr>
<td>FDIO.F7.4.HE41.PR301_B_PUMP_STATUS</td>
<td>D68</td>
</tr>
<tr>
<td>FDIO.F8.2_GT10_DeVG09_6_OPEN</td>
<td>D69</td>
</tr>
<tr>
<td>FDIO.F8.3_GT11_DeVG09_6_CLOSE</td>
<td>D70</td>
</tr>
<tr>
<td>FDIO.F8.4_GT10_DeVG03_2_OPEN</td>
<td>D71</td>
</tr>
<tr>
<td>FDIO.F8.5_GT11_DeVG03_2_CLOSE</td>
<td>D72</td>
</tr>
<tr>
<td>FDIO.F8.6_GT10_DeVG03_1_OPEN</td>
<td>D73</td>
</tr>
<tr>
<td>FDIO.F8.7_GT11_DeVG03_1_CLOSE</td>
<td>D74</td>
</tr>
<tr>
<td>FDIO.F9.0_GT12_DeVG04_1_OPEN</td>
<td>D75</td>
</tr>
<tr>
<td>FDIO.F9.1_GT13_DeVG04_1_CLOSE</td>
<td>D76</td>
</tr>
<tr>
<td>FDIO.F9.2_GT14_DeVG05_1_OPEN</td>
<td>D77</td>
</tr>
<tr>
<td>FDIO.F9.3_GT15_DeVG05_1_CLOSE</td>
<td>D78</td>
</tr>
<tr>
<td>FDIO.F9.4_GT16_DeVG06_1_OPEN</td>
<td>D79</td>
</tr>
<tr>
<td>FDIO.F9.5_GT17_DeVG06_1_CLOSE</td>
<td>D80</td>
</tr>
<tr>
<td>FDIO.F9.6_GT18_DeVG07_1_OPEN</td>
<td>D81</td>
</tr>
<tr>
<td>FDIO.F9.7_GT19_DeVG07_1_CLOSE</td>
<td>D82</td>
</tr>
<tr>
<td>FDIO.FQ0.0_SC08_RUN_COMMAND</td>
<td>D83</td>
</tr>
<tr>
<td>FDIO.FQ0.1_SC09_RUN_COMMAND</td>
<td>D84</td>
</tr>
<tr>
<td>FDIO.FQ0.2_SC10_RUN_COMMAND</td>
<td>D85</td>
</tr>
<tr>
<td>FDIO.FQ0.3_SC11_FORCE_STOP_COMMAND</td>
<td>D86</td>
</tr>
<tr>
<td>FDIO.FQ0.4_SC12_FORCE_STOP_COMMAND</td>
<td>D87</td>
</tr>
<tr>
<td>FDIO.FQ0.5_SC13_FORCE_STOP_COMMAND</td>
<td>D88</td>
</tr>
<tr>
<td>FDIO.FQ0.6_SC14_HOT_STANDBY_COMMAND</td>
<td>D89</td>
</tr>
<tr>
<td>FDIO.FQ1.0_QCS01_COMANDO</td>
<td>D90</td>
</tr>
<tr>
<td>FDIO.FQ1.1_QCS06_COMANDO</td>
<td>D91</td>
</tr>
<tr>
<td>FDIO.FQ1.2_QCS11_COMANDO</td>
<td>D92</td>
</tr>
<tr>
<td>FDIO.FQ1.3_QCS16_COMANDO</td>
<td>D93</td>
</tr>
<tr>
<td>FDIO.FQ1.4_QCS38_UPS_COMMUTATORE_COMANDO_MAN</td>
<td>D94</td>
</tr>
<tr>
<td>FDIO.FQ1.5_CU01_START</td>
<td>D95</td>
</tr>
<tr>
<td>FDIO.FQ1.6_CU02_STOP</td>
<td>D96</td>
</tr>
<tr>
<td>FDIO.FQ1.7.HE22.PR101_A_PUMP_COMMAND</td>
<td>D97</td>
</tr>
<tr>
<td>FDIO.FQ2.1.HE26.PR101_B_PUMP_COMMAND</td>
<td>D98</td>
</tr>
<tr>
<td>FDIO.FQ2.3.HE30.PR201_A_PUMP_COMMAND</td>
<td>D99</td>
</tr>
<tr>
<td>FDIO.FQ2.4.HE34.PR201_B_PUMP_COMMAND</td>
<td>D100</td>
</tr>
<tr>
<td>FDIO.FQ2.5.HE38.PR301_A_PUMP_COMMAND</td>
<td>D101</td>
</tr>
<tr>
<td>FDIO.FQ2.6.HE42.PR301_B_PUMP_COMMAND</td>
<td>D102</td>
</tr>
<tr>
<td>FDIO.FQ4.0.AP05_EV_ISLAND_MODE_COMMAND_DeVAM001</td>
<td>D103</td>
</tr>
<tr>
<td>FDIO.FQ4.1.AP07_EV_RING_MODE_COMMAND_DeVAM001</td>
<td>D104</td>
</tr>
<tr>
<td>FDIO.FQ4.2.HE49.DePR01_A_PUMP_COMMAND</td>
<td>D105</td>
</tr>
<tr>
<td>FDIO.FQ4.3.HE53.DePR01_B_PUMP_COMMAND</td>
<td>D106</td>
</tr>
<tr>
<td>FDIO.FQ4.4.HE62_DeP01_POMPA_FANGO_COMMAND</td>
<td>D107</td>
</tr>
<tr>
<td>FDIO.FQ4.5_GT01_DeVG01_1_COMMAND_OPEN</td>
<td>D108</td>
</tr>
<tr>
<td>FI4.0_QF14_KA1_CIRCOLATOREDePR101A</td>
<td>D109</td>
</tr>
<tr>
<td>FI4.1_QF15_KA2_CIRCOLATOREDePR101B</td>
<td>D110</td>
</tr>
<tr>
<td>FI4.2_QF16_KA3_CIRCOLATOREDePR201A</td>
<td>D111</td>
</tr>
<tr>
<td>FI4.3_QF17_KA4_CIRCOLATOREDePR201B</td>
<td>D112</td>
</tr>
<tr>
<td>FI4.4_QF18_KA5_CIRCOLATOREDePR301A</td>
<td>D113</td>
</tr>
<tr>
<td>FI4.5_QF19_KA6_CIRCOLATOREDePR301B</td>
<td>D114</td>
</tr>
<tr>
<td>FI4.6_QF20_KA7_CIRCOLATOREDePR01A</td>
<td>D115</td>
</tr>
<tr>
<td>FI4.7_QF21_KA8_CIRCOLATOREDePR01B</td>
<td>D116</td>
</tr>
</tbody>
</table>
8.1.3. Electrical data

<table>
<thead>
<tr>
<th>PLC denomination</th>
<th>Unit of measure</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_POWER_FACTOR</td>
<td>-</td>
<td>E1</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_COSF</td>
<td>-</td>
<td>E2</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_APPARENT_POWER</td>
<td>A</td>
<td>E3</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_COSF</td>
<td>kW</td>
<td>E4</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_ACTIVE_POWER</td>
<td>kW</td>
<td>E6</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_APPARENT_POWER</td>
<td>kVA</td>
<td>E7</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_ACTIVE_ENERGY</td>
<td>MWh</td>
<td>E8</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_CURRENT</td>
<td>A</td>
<td>E9</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_POWER_FACTOR</td>
<td>-</td>
<td>E10</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_ACTIVE_ENERGY</td>
<td>MWh</td>
<td>E11</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_VOLTAGE</td>
<td>Hz</td>
<td>E12</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_VOLTAGE</td>
<td>V</td>
<td>E13</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_VOLTAGE</td>
<td>kW</td>
<td>E14</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_VOLTAGE</td>
<td>kVAR</td>
<td>E15</td>
</tr>
<tr>
<td>POWER_Q_CABINA_ELETTRICA_3_PHASE_SYSTEM_VOLTAGE</td>
<td>kWh</td>
<td>E16</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_VOLTAGE</td>
<td>kWh</td>
<td>E17</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_VOLTAGE</td>
<td>kWh</td>
<td>E18</td>
</tr>
<tr>
<td>POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_VOLTAGE</td>
<td>Hz</td>
<td>E19</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E20</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E21</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E22</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E23</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E24</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E25</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E26</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E27</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E28</td>
</tr>
<tr>
<td>MB_485_Var POWER_METER_Q1_2_3_PHASE_SYSTEM_VOLTAGE</td>
<td>A</td>
<td>E29</td>
</tr>
</tbody>
</table>

8.1.4. Gas composition data

<table>
<thead>
<tr>
<th>PLC denomination</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4_S0</td>
<td>G1</td>
</tr>
<tr>
<td>CO_S0</td>
<td>G2</td>
</tr>
<tr>
<td>H2S_S0</td>
<td>G3</td>
</tr>
<tr>
<td>O2_S0</td>
<td>G4</td>
</tr>
<tr>
<td>Si_S0</td>
<td>G5</td>
</tr>
<tr>
<td>CH4_S1</td>
<td>G6</td>
</tr>
<tr>
<td>CO_S1</td>
<td>G7</td>
</tr>
<tr>
<td>H2S_S1</td>
<td>G8</td>
</tr>
<tr>
<td>O2_S1</td>
<td>G9</td>
</tr>
<tr>
<td>Si_S1</td>
<td>G10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLC denomination</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4_S4</td>
<td>G21</td>
</tr>
<tr>
<td>CO_S4</td>
<td>G22</td>
</tr>
<tr>
<td>H2S_S4</td>
<td>G23</td>
</tr>
<tr>
<td>O2_S4</td>
<td>G24</td>
</tr>
<tr>
<td>Si_S4</td>
<td>G25</td>
</tr>
<tr>
<td>CH4_S5</td>
<td>G26</td>
</tr>
<tr>
<td>CO_S5</td>
<td>G27</td>
</tr>
<tr>
<td>H2S_S5</td>
<td>G28</td>
</tr>
<tr>
<td>O2_S5</td>
<td>G29</td>
</tr>
<tr>
<td>Si_S5</td>
<td>G30</td>
</tr>
</tbody>
</table>
8.2. List of auxiliary equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light UPS room</td>
<td>QF2</td>
</tr>
<tr>
<td>Light dashboard room</td>
<td>QF3</td>
</tr>
<tr>
<td>External light</td>
<td>QF4</td>
</tr>
<tr>
<td>Spare</td>
<td>QF5</td>
</tr>
<tr>
<td>Router socket dashboard room</td>
<td>QF6</td>
</tr>
<tr>
<td>Wall socket control room</td>
<td>QF7</td>
</tr>
<tr>
<td>Air conditioning UPS room</td>
<td>QF8</td>
</tr>
<tr>
<td>Air conditioning dashboard room</td>
<td>QF9</td>
</tr>
<tr>
<td>Air conditioning control room</td>
<td>QF10</td>
</tr>
<tr>
<td>Spare</td>
<td>QF11</td>
</tr>
<tr>
<td>Spare</td>
<td>QF12</td>
</tr>
<tr>
<td>Dashboard PLC transformer room</td>
<td>QF13</td>
</tr>
<tr>
<td>Pump DePR101A</td>
<td>QF14</td>
</tr>
<tr>
<td>Pump DePR101B</td>
<td>QF15</td>
</tr>
<tr>
<td>Pump DePR201A</td>
<td>QF16</td>
</tr>
<tr>
<td>Pump DePR201B</td>
<td>QF17</td>
</tr>
<tr>
<td>Pump DePR301A</td>
<td>QF18</td>
</tr>
<tr>
<td>Pump DePR301B</td>
<td>QF19</td>
</tr>
<tr>
<td>Pump DePR01A</td>
<td>QF20</td>
</tr>
<tr>
<td>Pump DePR01B</td>
<td>QF21</td>
</tr>
<tr>
<td>Spare</td>
<td>QF22</td>
</tr>
<tr>
<td>Extractor fan of dashboard room</td>
<td>Extra</td>
</tr>
<tr>
<td>DeP01 sludge pump</td>
<td>QF23</td>
</tr>
<tr>
<td>Bio-Komp container</td>
<td>QF24</td>
</tr>
<tr>
<td>External service socket</td>
<td>QF25</td>
</tr>
<tr>
<td>Bio-Komp chiller and blower</td>
<td>QF26</td>
</tr>
<tr>
<td>Glycol water line valves</td>
<td>QF27</td>
</tr>
<tr>
<td>Sludge line valves</td>
<td>QF28</td>
</tr>
<tr>
<td>Socomec motor</td>
<td>QF29</td>
</tr>
<tr>
<td>Spare</td>
<td>QF30</td>
</tr>
<tr>
<td>Compressed air dessicator</td>
<td>QF31</td>
</tr>
<tr>
<td>Convion operator panel</td>
<td>QF32</td>
</tr>
<tr>
<td>Sludge macerator</td>
<td>QF33</td>
</tr>
<tr>
<td>PLC dashboard sludge room</td>
<td>QF34</td>
</tr>
<tr>
<td>PLC dashboard control room</td>
<td>QF35</td>
</tr>
<tr>
<td>Air compressor</td>
<td>QF36</td>
</tr>
<tr>
<td>Heater</td>
<td>QF37</td>
</tr>
<tr>
<td>Heater</td>
<td>QF38</td>
</tr>
<tr>
<td>Spare</td>
<td>QF39</td>
</tr>
<tr>
<td>Spare</td>
<td>QF40</td>
</tr>
<tr>
<td>Switches dashboard auxiliaries</td>
<td>QF41</td>
</tr>
</tbody>
</table>
8.3. VBA code
8.3.1. Import procedure

```vba
Public Ovw, ex As Boolean

Public Sub Callback1(control As IRibbonControl)
Dim ToolkitName As String
ToolkitName = "DEMOsofc - Data analysys toolkit.xlsm"
Dim ofcount As Integer
Dim oWB As Excel.Workbook
Dim CSVsh As Worksheet
Dim CSVName As String

'Opening File dialog box
With Application.FileDialog(msoFileDialogOpen)
  .AllowMultiSelect = True
  .Filters.Clear
  If .show = True Then
    For ofcount = 1 To .SelectedItems.Count
      'Opening selected file
      Set oWB = Workbooks.Open(Filename:=.SelectedItems(ofcount), _
                               AddToMRU:=False, Local:=True)
      CSVName = Mid(oWB.Name, InStrRev(oWB.Name, "\") + 1)
      Call CSV_Import(CSVName)
    Next

    'Order sheets and confirm data writing
    Dim ShCount As Long
    Windows(ToolkitName).Activate
    ShCount = Sheets.Count
    For i = 1 To ShCount - 1
      For j = i + 1 To ShCount
        If UCase(Sheets(j).Name) < UCase(Sheets(i).Name) Then
          Sheets(j).Move before:=Sheets(i)
        End If
      Next
    Next
    MsgBox "Import procedure completed.", vbInformation, "Done"
  Else
    MsgBox "No file selected.", vbInformation, "Sorry!"
    Exit Sub
  End If
End With
End Sub
```
Public Sub CSV_Import(CSVName As String)
oldStatusBar = Application.DisplayStatusBar
Application.DisplayStatusBar = True

'Assign workbooks names to variables
Dim ToolkitName As String
ToolkitName = "DEMOSOFC - Data analaysis toolkit.xlsm"
Dim CSVsh As Worksheet
If Workbooks(CSVName).Sheets(1).Type = xlWorksheet Then
 Set CSVsh = Workbooks(CSVName).Sheets(1)
Else
 GoTo InputErrorHandle
End If

Windows(ToolkitName).Activate
Application.ScreenUpdating = False

'Clean log errors
Dim del1 As String: del1 = "RT_OFF"
Dim del2 As String: del2 = "RT_DIS"
Dim del3 As String: del3 = "RT_COUNT"
Call CleanLog(del1, CSVsh)
Call CleanLog(del2, CSVsh)
Call CleanLog(del3, CSVsh)

'Find data type and number
Dim CSVType, SheetType As String
Dim ProcessNumber, LogVarNumber, LogVarSize, LogVarNumberClassic As Long
Dim rng As Range
Dim notstand As Boolean

With CSVsh
 CSVType = .Range("A2").Value
 notstand = False
 Select Case CSVType
 Case "FIW 512_AP01_PRESSURE_DeEPT003"
 SheetType = "Analogic"
 LogVarNumberClassic = 91
 Case "FDIO.FI0_0_SC01_EMERGENCY_SHUTDOWN"
 SheetType = "Digital"
 LogVarNumberClassic = 125
 Case "POWER_Q_SALA_CONTROLLO_3_PHASE_SYSTEM_POWER_FACTOR"
 SheetType = "Electric"
 LogVarNumberClassic = 29
 Case Else
 If CSVType Like "CH4_S#" Then
 SheetType = "Gas"
 LogVarNumberClassic = 5
 Else
 Set rng = Workbooks(ToolkitName).Worksheets("
2019 - Analogic").Range("A1").EntireRow.Find(_, CSVType, , xlValues, xlWhole)
 If Not rng Is Nothing Then
 SheetType = "Analogic"
 LogVarNumberClassic = 91
 notstand = True
 Else
 Set rng = Workbooks(ToolkitName).Worksheets("
2019 - Digital").Range("A1").EntireRow.Find(_, CSVType, , xlValues, xlWhole)
 End If
End Select
End With

InputErrorHandle:
oldStatusBar = True
Application.DisplayStatusBar = False
Debug.Print "There are no workbooks"
If Not rng Is Nothing Then
 SheetType = "Digital"
 LogVarNumberClassic = 125
 notstand = True
Else
 Set rng = Workbooks(ToolkitName).Worksheets("2019 - Electric").Range("A1").EntireRow.Find(CSVType, , xlValues, xlWhole)
 If Not rng Is Nothing Then
 SheetType = "Electric"
 LogVarNumberClassic = 29
 notstand = True
 Else
 Set rng = Workbooks(ToolkitName).Worksheets("2019 - Gas").Range("A1").EntireRow.Find(CSVType, , xlValues, xlWhole)
 If Not rng Is Nothing Then
 SheetType = "Gas"
 LogVarNumberClassic = 5
 notstand = True
 Else
 InputErrorHandle:
 MsgBox "File " & CSVName & " not recognized as Analogic, Digital, " & "Electrical or Gas data log." & Chr(13) & "The file will be closed.", vbInformation
 GoTo CloseLine
 End If
 End If
End If
End If
End If
End Select
ProcessNumber = WorksheetFunction.CountIf(.Range("A:A"), CSVType)
LogVarSize = (CSVsh.Range("A1").End(xlDown).Row - 1)
LogVarNumber = WorksheetFunction.Ceiling_Precise(LogVarSize / ProcessNumber)
End With

'Variables setting
Dim shfound, miss, force, dstbool As Boolean
Dim ws, TKsh As Worksheet
Dim id1, id2, rng1, rng2, rng3 As Range
Dim unusedrow, i, j, k, col, year As Long
year = 0
col = 2
Dim dstind As String: dstind = "0"
dstbool = False
ex = False
UF_Duplicate.CB_Check.Value = False

'Preemptive exit for empty Gas logs
If SheetType = "Gas" Then
 col = col + 5 * Right(CSVsh.Range("A2"), 1)
 If WorksheetFunction.Sum(CSVsh.Range("C:C")) = 0 Then GoTo CloseLine
End If
'Warnings for forcing correct detection of odd logs
Set id2 = CSVsh.Range("A2")
If notstand Then
 force = True
 result = MsgBox("The data outputs appear to be in a different order " &
 "with respect to the most recent setup." & Chr(13) & Chr(13) &
 "Select OK for forcing automatic detection of correct data " &
 "output (This will require more processing time)." & Chr(13) &
 Chr(13) & "Select CANCEL to abort the import procedure.",".
 vOKCancel + vExclamation, "Warning")
 Select Case result
 Case vbOK
 force = True
 Case vbCancel
 GoTo CloseLine
 End Select
Else
 If LogVarNumber = LogVarNumberClassic Then
 force = False
 Else
 result = MsgBox("The number of identified data outputs (" &
 LogVarNumber & ") is different from the most recent setup (" &
 & LogVarNumberClassic & ") for the " & SheetType &
 " data type." & Chr(13) & Chr(13) &
 "Select YES for forcing automatic detection of correct data" &
 "output (This will require more processing time)." & Chr(13) &
 Chr(13) & "Select CANCEL to abort the import procedure.",".
 vOKCancel + vExclamation, "Warning")
 Select Case result
 Case vbOK
 force = True
 Case vbCancel
 GoTo CloseLine
 End Select
 End If
End If

'Data identification, copy and paste, ordering, sheet creations
For i = 1 To ProcessNumber
 Application.StatusBar = ("Processing " & CSVName & ", data " & i &
 " of " & ProcessNumber & ")
 Set id1 = id2
 If i = ProcessNumber Then
 Set id2 = CSVsh.Range("A" & LogVarSize + 2)
 Else
 Set id2 = CSVsh.Range("A:A").Find(CSVType, id1, xlValues, xlWhole)
 End If
 If id2.Row - id1.Row = LogVarNumber Then
 miss = False
 Else
 miss = True
 End If
 Set rng1 = CSVsh.Range("B" & id1.Row)

 'Check for October daylight saving time change
 If Val(Mid(rng1, 4, 2)) = 10 And (Not i = 1) Then
 If dstbool = False Then
 Set rng2 = CSVsh.Range("B" & id1.Row - 1)
 dt = deltat(rng1, rng2)
 If dt < 0 Then
rng1.Value = rng1.Value & " DST"
dstind = rng2.Value
dstbool = True
End If
Else
dt = deltat(rng1, dstind)
If dt < 0.003 Then
 rng1.Value = rng1.Value & " DST"
Else
 dstbool = False
End If
End If
End If

'Sheet ordering if year changes
If Not year = 0 Then
 If Not Val(Mid(rng1, 7, 4)) = year Then
 Call SheetOrder(year, ToolkitName, SheetType)
 Application.StatusBar = "Processing data " & (i + 1) & " of " & _
 ProcessNumber & " (%" & Round((i + 1) / (ProcessNumber) * 100) & _
 "%)"
 End If
End If

'Find or create correct worksheet for data addition
year = Val(Mid(rng1, 7, 4))
shfound = False
With Workbooks(ToolkitName)
 For j = 1 To .Worksheets.Count
 If .Worksheets(j).Name = (year & " - " & SheetType) Then
 shfound = True
 Exit For
 End If
 Next
 If Not shfound = True Then
 Set ws = .Worksheets.Add(Type:=xlWorksheet)
 ws.Name = (year & " - " & SheetType)
 ws.Range("A1")
 If SheetType = "Analogic" Then
 .Worksheets(year - 1 & " - " & SheetType).Range("A1").End(_
 xlDown).Copy ws.Range("A2")
 End If
 End If
End With

'Search for pre-existing date
Set TKsh = .Worksheets(year & " - " & SheetType)
Set rng2 = TKsh.Range("A:A").Find(rng1.Value, , xlValues, xlWhole)
If rng2 Is Nothing Then
 'Check for Gas similar data
 If SheetType = "Gas" Then
 Set rng3 = TKsh.Range("A:A").Find(Mid(rng1.Value, 1, 16), , _
 xlValues, xlPart)
 If Not rng3 Is Nothing Then
 If Not ((rng3.Value Like "*DST") Xor _
 (rng1.Value Like "**DST")) Then
 Set rng2 = rng3
 GoTo GasBypass1
 Else
 'Your code here
 End If
 Else
 'Your code here
 End If
 Else
 'Your code here
 End If
End If
If rng1.Value Like "^DST" Then
 Set rng3 = _
 TKsh.Range("A" & rng3.Row + 1 & ":A"
 rng3.Row + 12).Find(Mid(rng1.Value, 1, 16), , _
 xlValues, xlPart)
 If Not rng3 Is Nothing Then
 Set rng2 = rng3
 GoTo GasBypass1
 End If
End If
End If
End If
End If
End If

'No duplicate: copy and paste date and data on last line
unusedrow = _
 TKsh.Cells.SpecialCells(xlCellTypeLastCell).Off
set(1, 0).Row
CSVsh.Range("B" & id1.Row).Copy _
 TKsh.Range("A" & unusedrow)
If miss Or force Then
 For j = id1.Row To id2.Row - 1
 Set rng3 = _
 j).Value, , xlValues, xlWhole)
 If Not rng3 Is Nothing Then
 CSVsh.Range("C" & j).Copy _
 TKsh.Cells(unusedrow, rng3.Column)
 Else
 CSVsh.Range("A" & j).Copy _
 TKsh.Range("A1").End(xlToRight).Offset(0, 1)
 CSVsh.Range("C" & j).Copy _
 TKsh.Cells(unusedrow, TKsh.Range(_
 "A1").End(xlToRight).Column)
 End If
 Next
Else
 CSVsh.Range("C" & id1.Row & ":C" & id2.Row - 1).Copy _
 Operation:=xlNone, SkipBlanks:=False, Transpose:=True
End If

Else
GasBypass1:
 If SheetType = "Gas" And WorksheetFunction.CountA(_
 rng2.Row, col + 4))) = 0 Then GoTo GasBypass2

 'Duplicate: open userform, overwrite or ignore
 If UF_Duplicate.CB_Check.Value = False Then
 UF_Duplicate.OVLabel.Caption = _
 ("Data for the date " & Chr(13) & rng1.Value & Chr(13) & _
 " is already present." & Chr(13) & _
 "Do you want to overwrite it or ignore it?")
 Call closeButtonSettings(UF_Duplicate, False)
 Else
 End If
Else
End If
If ex = True Then GoTo CloseLine
If Ovw = True Then
 unusedrow = rng2.Row
 If SheetType = "Gas" Then
 Else
 TKsh.Rows(unusedrow).ClearContents
 CSVsh.Range("B" & id1.Row).Copy _
 TKsh.Range("A" & unusedrow)
 End If
 If miss Or force Then
 For j = id1.Row To id2.Row - 1
 Set rng3 =
 TKsh.Range("A1").EntireRow.Find(_
 CSVsh.Range("A" & j).Value, , _
 xlValues, xlWhole)
 If Not rng3 Is Nothing Then
 CSVsh.Range("C" & j).Copy
 TKsh.Cells(unusedrow, rng3.Column)
 Else
 CSVsh.Range("A" & j).Copy _
 TKsh.Range("A1").End(xlToRight).Offset(0, 1)
 CSVsh.Range("C" & j).Copy
 TKsh.Cells(unusedrow, TKsh.Range(_
 "A1").End(xlToRight).Column)
 End If
 Next
 End If
GasBypass2:
 unusedrow = rng2.Row
 CSVsh.Range("C" & id1.Row & ":" & "C" & id2.Row - 1).Copy
 TKsh.Cells(unusedrow, col).PasteSpecial _
 Paste:=xlPasteAll, Operation:=xlNone, _
 SkipBlanks:=False, Transpose:=True
End If
End If
End With

Next
'Sheet ordering
Call SheetOrder(year, ToolkitName, SheetType)

Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar
'MsgBox "Data correctly loaded from selected file." & Chr(13) & _
"The file will now be closed.", vbInformation, CSVName & _
" file import completed"

'Close CSV
CloseLine:
Windows(CSVName).Close savechanges:=False
Application.ScreenUpdating = True
Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar

End Sub
Public Sub SheetOrder(year As Long, ToolkitName, SheetType As String)
 'Imported sheet ordering
 Application.StatusBar = "Ordering data for the worksheet " & year & " - " & SheetType & ""
 Dim i, j, k, p As Long
 Dim x As Boolean
 x = False

 With Workbooks(ToolkitName).Worksheets(year & " - " & SheetType)
 .Range("B:B").Insert
 .Range("B1") = "Month"
 For k = 2 To .Range("A1").End(xlDown).Row
 .Range("B" & k) = Mid(.Range("A" & k), 4, 2)
 Next
 .Sort.SortFields.Clear
 Order:=xlAscending, DataOption:=xlSortNormal
 Order:=xlAscending, DataOption:=xlSortNormal
 .Sort.SetRange .UsedRange
 .Sort.Header = xlYes
 .Sort.MatchCase = False
 .Sort.Orientation = xlTopToBottom
 .Sort.Apply
 .Range("B:B").Delete

 Set rngd = .Range("A:A").Find("DST", , xlValues, xlPart, , xlPrevious)
 If Not rngd Is Nothing Then
 Set rngc = .Range("A" & rngd.Row + 1)
 dt = deltat(rngd, rngc)
 If Abs(dt) < 0.003 Then
 Set rngd = _
 .Range("A:A").Find("DST", , xlValues, xlPart, , xlPrevious)
 End If
 j = 0
 For i = rngd.Row - 1 To rngd.Row - 12 Step -1
 If .Range("A" & i) Like '*' & "DST" Then
 If Not i = rngd.Row - 1 - j Then
 .Range("A" & i).EntireRow.Cut
 shift:=xlShiftDown
 j = j + 1
 End If
 End If
 Next
 Set rngd = .Range("A:A").Find(year - i, , xlValues, xlPart)
 End With
End Sub
8.3.2. Key Performance Indicators evaluation

```vba
Public Sub KPIsub(year As Long)
    UF_KPI.Hide
    oldStatusBar = Application.DisplayStatusBar
    Application.DisplayStatusBar = True
    Application.ScreenUpdating = False

    'Identify Digital and Electric worksheets names for the same year
    Dim ToolkitName As String
    ToolkitName = "DEMOSOF - Data analysis toolkit.xlsm"
    Dim dig, ele, gas As String
    dig = year & " - Digital"
    ele = year & " - Electric"
    gas = year & " - Gas"
    With Workbooks(ToolkitName).Worksheets(year & " - Analogic")
        Application.StatusBar = _
        "Evaluating key performance indexes for the year " & year
    End With

    'Identify last row for analogic worksheet
    Dim lastrow, i, j, x, mw, f1, f2, f3, fp, Tdiff, module, b, eps, z, si As Long
    Dim rng As Range
    lastrow = .Range("A2").End(xlDown).Row
    For i = 3 To lastrow
        Application.StatusBar = "Evaluating KPIs for the year " & year & ", " & _
        Round(i / lastrow * 100) & "%"
        'Evaluate elapsed time
        If UF_KPI.OptionButton1.Value = True Or IsEmpty(.Range("DA" & i)) Then
            .Range("DA" & i) = deltat(.Range("A" & i), .Range("A" & i - 1))
            If .Range("DA" & i) < 0 Or
            (Round(.Range("DA" & i), 3) = 1.167 And
            (Mid(.Range("A" & i), 5, 1) = 3 Or
            Mid(.Range("A" & i), 5, 1) = 4)) Then
            .Range("DA" & i) = 1 / 6
        End If
        'Thermal info
        Set rng = Workbooks(ToolkitName).Worksheets(dig).Range("A:A").Find(_
            .Range("A" & i), , xlValues, xlWhole)
        If Not rng Is Nothing Then
            j = rng.Row
            Workbooks(ToolkitName).Worksheets(dig).Range("J" & j & ", AL" & _
            j & ", BJ" & j).Copy
            SkipBlanks:=False
            'Info on thermal mod.1
            If IsEmpty(.Range("F" & i)) Or IsEmpty(.Range("E" & i)) Or _
            IsEmpty(.Range("S" & i)) Then
                .Range("DQ" & i).Clear
                .Range("DX" & i).Clear
                .Range("EA" & i).Clear
            Else
                Tdiff = .Range("F" & i) - .Range("E" & i)
                If Tdiff > 0 And Not .Range("S" & i) = 0.3 Then
                    .Range("DQ" & i) = Round(1.071 * .Range("S" & i) + Tdiff, 3)
                Else
                    .Range("DQ" & i) = 0
                End If
            End If
        End If
    Next i
End Sub
```
'Info on thermal mod.2
If IsEmpty(.Range("I" & i)) Or IsEmpty(.Range("H" & i)) Or _
IsEmpty(.Range("T" & i)) Then
 .Range("DR" & i).Clear
Else
 Tdiff = .Range("I" & i) - .Range("H" & i)
 If Tdiff > 0 And Not .Range("T" & i) = 0.3 Then
 .Range("DR" & i) = Round(1.071 * .Range("T" & i) * Tdiff, 3)
 Else
 .Range("DR" & i) = 0
 End If
End If

'Info on thermal mod.3
If IsEmpty(.Range("K" & i)) Or IsEmpty(.Range("J" & i)) Or _
IsEmpty(.Range("U" & i)) Then
 .Range("DS" & i).Clear
Else
 Tdiff = .Range("K" & i) - .Range("J" & i)
 If Tdiff > 0 And Not .Range("U" & i) = 0.3 Then
 .Range("DS" & i) = Round(1.071 * .Range("U" & i) * Tdiff, 3)
 Else
 .Range("DS" & i) = 0
 End If
End If

'Info on sludge heat exchanger (glycol side)
If IsEmpty(.Range("AC" & i)) Or IsEmpty(.Range("AD" & i)) Or _
IsEmpty(.Range("AI" & i)) Then
 .Range("DU" & i).Clear
Else
 Tdiff = .Range("AC" & i) - .Range("AD" & i)
 If Tdiff > 0 And _
 (Workbooks(ToolkitName).Worksheets(dig).Range("DB" & j) = -1 Or _
 Workbooks(ToolkitName).Worksheets(dig).Range("DC" & j) = -1) Then
 .Range("DU" & i) = Round(1.071 * .Range("AI" & i) * Tdiff, 3)
 Else
 .Range("DU" & i) = 0
 End If
End If

'Info on sludge heat exchanger (sludge side)
If IsEmpty(.Range("AF" & i)) Or IsEmpty(.Range("AE" & i)) Or _
IsEmpty(.Range("AJ" & i)) Then
 .Range("DV" & i).Clear
Else
 Tdiff = .Range("AF" & i) - .Range("AE" & i)
 If Tdiff > 0 And _
 (Workbooks(ToolkitName).Worksheets(dig).Range("DB" & j) = -1 Or _
 Workbooks(ToolkitName).Worksheets(dig).Range("DC" & j) = -1) Then
 .Range("DV" & i) = Round(1.156 * .Range("AJ" & i) * Tdiff, 3)
 Else
 .Range("DV" & i) = 0
 End If
End If
'Total thermal power removed
If IsEmpty(.Range("DQ" & i)) Or IsEmpty(.Range("DR" & i)) Or _
IsEmpty(.Range("DS" & i)) Then
 .Range("DT" & i).Clear
Else
 .Range("DT" & i) = _
 WorksheetFunction.Sum(.Range("DQ" & i & ":DS" & i))
End If

'Thermal efficiency of heat exchange system
If IsEmpty(.Range("DU" & i)) Or IsEmpty(.Range("DT" & i)) Then
 .Range("DW" & i).Clear
Else
 If .Range("DT" & i) = 0 Then
 .Range("DW" & i) = 0
 Else
 Call eff(year, i, "DU", "DT", "DW")
 End If
End If
Else
 .Range("DQ" & i & ":DW" & i).Clear
End If

'Info on biogas methane content
If IsEmpty(.Range("CN" & i)) And IsEmpty(.Range("AA" & i)) Then
 .Range("DB" & i).Clear
Else
 If IsEmpty(.Range("CN" & i)) Then
 x = .Range("AA" & i) - 1.5
 If x < 0 Then x = 0
 Else
 x = .Range("CN" & i)
 End If
 .Range("DB" & i) = (x / 100) * 16.04 + (1 - (x / 100)) * 44.01
End If
If IsEmpty(.Range("DB" & i)) Then
 .Range("DB" & i & ":DK" & i).Clear
 .Range("DN" & i & ":DF" & i).Clear
 .Range("DX" & i & ":EC" & i).Clear
 .Range("EF" & i & ":EH" & i).Clear
Else
 mw = .Range("DB" & i)

'Info on flow rate to mod.1
If IsEmpty(.Range("BI" & i)) Then
 .Range("DC" & i).Clear
 .Range("DF" & i).Clear
 .Range("DI" & i).Clear
 .Range("DN" & i).Clear
 .Range("DX" & i).Clear
 .Range("EA" & i).Clear
Else
 f1 = .Range("BI" & i)
 .Range("DC" & i) = Round(f1 * 22.414 / mw, 3)
 .Range("DF" & i) = Round(f1 * (x / 100) * 16.04 / mw, 3)
 .Range("DI" & i) = Round((50 / 3.6) * .Range("DF" & i), 3)

'Info on power from mod.1
If f1 = 0 Then
 .Range("DN" & i) = 0
 .Range("DX" & i) = 0
 .Range("EA" & i) = 0
Else
If IsEmpty(.Range("AK" & i)) Then
 .Range("DN" & i).Clear
 .Range("EA" & i).Clear
Else
 Call eff(year, i, "AK", "DI", "DN")
End If
If IsEmpty(.Range("DQ" & i)) Then
 .Range("DX" & i).Clear
 .Range("EA" & i).Clear
Else
 Call eff(year, i, "DQ", "DI", "DX")
End If
If IsEmpty(.Range("DN" & i)) Or IsEmpty(.Range("DX" & i)) Then
 .Range("EA" & i).Clear
Else
 .Range("EA" & i) = .Range("DN" & i) + .Range("DX" & i)
 If .Range("EA" & i) > 100 Then .Range("EA" & i) = 100
End If
End If
End If

'Info on flow rate to mod.2
If IsEmpty(.Range("BJ" & i)) Then
 .Range("DD" & i).Clear
 .Range("DG" & i).Clear
 .Range("DJ" & i).Clear
 .Range("DO" & i).Clear
 .Range("DY" & i).Clear
 .Range("EB" & i).Clear
Else
 f2 = .Range("BJ" & i)
 .Range("DD" & i) = Round(f2 * 22.414 / mw, 3)
 .Range("DG" & i) = Round(f2 * (x / 100) * 16.04 / mw, 3)
 .Range("DJ" & i) = Round((50 / 3.6) * .Range("DG" & i), 3)
End If
End If

'Info on power from mod.2
If f2 = 0 Then
 .Range("DO" & i) = 0
 .Range("DY" & i) = 0
 .Range("EB" & i) = 0
Else
 If IsEmpty(.Range("AL" & i)) Then
 .Range("DO" & i).Clear
 .Range("EB" & i).Clear
 Else
 Call eff(year, i, "AL", "DJ", "DO")
 End If
 If IsEmpty(.Range("DR" & i)) Then
 .Range("DY" & i).Clear
 .Range("EB" & i).Clear
 Else
 Call eff(year, i, "DR", "DJ", "DY")
 End If
 If IsEmpty(.Range("DO" & i)) Or IsEmpty(.Range("DY" & i)) Then
 .Range("EB" & i).Clear
 Else
 .Range("EB" & i) = .Range("DO" & i) + .Range("DY" & i)
 If .Range("EB" & i) > 100 Then .Range("EB" & i) = 100
 End If
End If
End If
'Info on flow rate to mod.3
If IsEmpty(.Range("BK" & i)) Then
 .Range("DE" & i).Clear
 .Range("DH" & i).Clear
 .Range("DK" & i).Clear
 .Range("DP" & i).Clear
 .Range("DZ" & i).Clear
 .Range("EC" & i).Clear
Else
 f3 = .Range("BK" & i)
 .Range("DE" & i) = Round(f3 * 22.414 / mw, 3)
 .Range("DH" & i) = Round(f3 * (x / 100) * 16.04 / mw, 3)
 .Range("DK" & i) = Round((50 / 3.6) * .Range("DH" & i), 3)
'Info on power from mod.3
If f3 = 0 Then
 .Range("DP" & i) = 0
 .Range("DZ" & i) = 0
 .Range("EC" & i) = 0
Else
 If IsEmpty(.Range("AM" & i)) Then
 .Range("DP" & i).Clear
 .Range("EC" & i).Clear
 Else
 Call eff(year, i, "AM", "DK", "DP")
 End If
 If IsEmpty(.Range("DS" & i)) Then
 .Range("DZ" & i).Clear
 .Range("EC" & i).Clear
 Else
 Call eff(year, i, "DS", "DK", "DZ")
 End If
 If IsEmpty(.Range("DP" & i)) Or IsEmpty(.Range("DZ" & i)) Then
 .Range("EC" & i).Clear
 Else
 .Range("EC" & i) = .Range("DP" & i) + .Range("DZ" & i)
 If .Range("EC" & i) > 100 Then .Range("EC" & i) = 100
 End If
End If
End If

'Total biogas volumetric flow rate
If Not (IsEmpty(.Range("DC" & i)) Or IsEmpty(.Range("DD" & i)) Or _
 IsEmpty(.Range("DE" & i))) Then
 .Range("DB" & i) = _
 WorksheetFunction.Sum(.Range("DC" & i & ":DE" & i))
 pf = WorksheetFunction.Sum(.Range("DI" & i & ":DK" & i))
Else
 .Range("DB" & i).Clear
End If
End If
'Global powers, auxiliaries, modules current and voltage, efficiencies
If IsEmpty(.Range("AK" & i)) Or IsEmpty(.Range("AL" & i)) Or _
IsEmpty(.Range("AM" & i)) Then
 .Range("DL" & i).Clear
 .Range("DM" & i).Clear
Else
 .Range("DL" & i) = _
 WorksheetFunction.SumIf(.Range("AK" & i & ":AM" & i), ">0")
 .Range("DM" & i) = _
 WorksheetFunction.Sum(.Range("AK" & i & ":AM" & i))
End If

Set rng = Workbooks(ToolkitName).Worksheets(ele).Range("A:A").Find(_
 .Range("A" & i), , xlValues, xlWhole)
If Not rng Is Nothing Then
 j = rng.Row
 If IsEmpty(Workbooks(ToolkitName).Worksheets(ele).Range("AC" & j)) Or _
 IsEmpty(Workbooks(ToolkitName).Worksheets(ele).Range("AD" & j)) Then
 .Range("ED" & i & ":EF" & i).Clear
 Else
 .Range("ED" & i) = Round(Sqr(3) *
 Workbooks(ToolkitName).Worksheets(ele).Range("AC" & j) *
 Workbooks(ToolkitName).Worksheets(ele).Range("AD" & j) / 1000, 3)
 If IsEmpty(.Range("DM" & i)) Then
 .Range("EE" & i & ":EF" & i).Clear
 Else
 .Range("EE" & i) = .Range("DM" & i) - .Range("ED" & i)
 End If
 End If
Else
 .Range("EI" & i) = _
 Workbooks(ToolkitName).Worksheets(ele).Range("D" & j)
 .Range("EJ" & i) = _
 Workbooks(ToolkitName).Worksheets(ele).Range("T" & j)
Else
 .Range("ED" & i & ":EF" & i).Clear
 .Range("EI" & i & ":EJ" & i).Clear
End If

If IsEmpty(.Range("DB" & i)) Then
 .Range("EF" & i & ":EH" & i).Clear
Else
 If pf = 0 Then
 .Range("EF" & i & ":EH" & i) = 0
 Else
 If IsEmpty(.Range("EE" & i)) Then
 .Range("EF" & i).Clear
 Else
 Call eff2(year, i, "EE", pf, "EF")
 End If
 If IsEmpty(.Range("DU" & i)) Then
 .Range("EG" & i).Clear
 Else
 Call eff2(year, i, "DU", pf, "EG")
 End If
 If IsEmpty(.Range("EF" & i)) Or IsEmpty(.Range("EG" & i)) Then
 .Range("EH" & i).Clear
 Else
 .Range("EH" & i) = .Range("EF" & i) + .Range("EG" & i)
 If .Range("EH" & i) > 100 Then .Range("EH" & i) = 100
 End If
 End If
End If
End If
'Loading of clean-up reactors
If Len(.Range("A" & i)) = 19 Then
 Set rng = Workbooks(ToolkitName).Worksheets(gas).Range("A:A").Find(_
 Mid(.Range("A" & i), 1, 15), , xlValues, xlPart)
Else
 v = Application.Match(Mid(.Range("A" & i), 1, 15) & "*" & "DST", _
 Workbooks(ToolkitName).Worksheets(gas).Range("A:A"), 0)
 If Not IsError(v) Then
 Set rng = Workbooks(ToolkitName).Worksheets(gas).Range("A" & v)
 Else
 Set rng = Nothing
 End If
End If

If (Not rng Is Nothing) And (Not IsEmpty(.Range("DB" & i))) Then
 j = rng.Row
 z = 0
 si = 0
 x = 0
 For k = 0 To 7
 If Not WorksheetFunction.CountBlank(_
 Workbooks(ToolkitName).Worksheets(gas).Range(_
 Workbooks(ToolkitName).Worksheets(gas).Cells(j, 2 + k * 5), _
 Workbooks(ToolkitName).Worksheets(gas).Cells(j, 6 + k * 5))) = 5 _
 Then
 z = Workbooks(ToolkitName).Worksheets(gas).Cells(j, 4 + k * 5)
 si = Workbooks(ToolkitName).Worksheets(gas).Cells(j, 6 + k * 5)
 Exit For
 End If
 Next
 If z > 0 Then
 .Range("EN" & i) = z * 1.43058 * .Range("DB" & i)
 Else
 .Range("EN" & i).Clear
 End If
 If si > 0 Then
 .Range("EO" & i) = si * 1.21763 * .Range("DB" & i)
 Else
 .Range("EO" & i).Clear
 End If
Else
 .Range("EN" & i & ":" & "EO" & i).Clear
End If

End If
Next
'Evaluation of operation mode
'Common variables
tim = "DA"
comp = "FC"
isl = "FA"
fuel = "FB"
b = 0

For module = 1 To 3
 Select Case module
 Case 1
 pow = "AK"
 temp = "AN"
 air_n = "AT"
 air_c = "AW"
 op = "EK"
 Case 2
 pow = "AI"
 temp = "AO"
 air_n = "AU"
 air_c = "AX"
 op = "EL"
 Case 3
 pow = "AM"
 temp = "AP"
 air_n = "AV"
 air_c = "AY"
 op = "EM"
 End Select

For i = 3 To lastrow
 If UF_KPI.OptionButton1.Value = True Or IsEmpty(.Range(op & i)) Then
 Application.StatusBar = "Evaluating module " & module & "; " & "operation mode for the year " & year & " - " & Round(i / lastrow * 100) & "; "
 If IsEmpty(.Range(op & i - 1)) Or .Range(tim & i) > 0.17 Then
 'Static assumption: mode can be ON, OFF, START UP, SHUT DOWN
 If .Range(pow & i) > 0 Then
 If .Range(air_c & i) < 1 Then
 .Range(op & i) = "ON"
 Else
 Call op_start_up(year, i, tim, comp, isl, fuel, _
 pow, temp, air_n, air_c, op, b, lastrow)
 End If
 Else
 If .Range(pow & i) <= 0 And .Range(pow & i) > -1 Then
 .Range(op & i) = "OFF"
 Else
 Call op_temp_grad(year, i, tim, comp, isl, fuel, _
 pow, temp, air_n, air_c, op, b, lastrow)
 If b < 0 Then
 Call op_shut_down(year, i, tim, comp, isl, fuel, _
 pow, temp, air_n, air_c, op, b, lastrow)
 Else
 Call op_start_up(year, i, tim, comp, isl, fuel, _
 pow, temp, air_n, air_c, op, b, lastrow)
 End If
 End If
 End If
 Else
 End If
 Else
 Else
'Dynamic assumption: based on previous timestep
Select Case .Range(op & i - 1)
 Case "OFF"
 If .Range(pow & i) < -1 Then
 Call op_start_up(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 Else
 .Range(op & i) = "OFF"
 End If
 Case "ON"
 If ((.Range(pow & i - 1) - .Range(pow & i)) / _
.Range(pow & i - 1)) > 0.25 Then
 Call op_temp_grad(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 If b < -1 Then
 Call op_shut_down(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 Else
 If .Range(pow & i) > 0 Then
 Call op_island(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 Else
 Call op_hot_int(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 End If
 End If
 Else
 .Range(op & i) = "ON"
 End If
 Case "ISL", "HOT", "INT"
 If .Range(pow & i) > 0 Then
 If WorksheetFunction.CountIf(_
.Range(air_c & i & ":" & air_c & i + 2), ">1") = 3 Then
 Call op_island(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 Else
 .Range(op & i) = "ON"
 End If
 Else
 Call op_hot_int(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
 End If
 Case "SHUT"
 .Range(op & i) = "OFF"
 Case "START"
 .Range(op & i) = "ON"
End Select
End If
End If
Next
'Copy operation mode of last record to start of next year
For j = 1 To Workbooks(ToolkitName).Worksheets.Count
 If Workbooks(ToolkitName).Worksheets(j).Name = _
 (year + 1 & " - " & Analogic) Then
 Set nws =
 Workbooks(ToolkitName).Worksheets(year + 1 & " - Analogic")
 .Range(op & lastrow).Copy nws.Range(op & 2)
 Exit For
 End If
Next

'Delete copied digital values
.Range("FA:FC").Delete
End With

'Create summary
With Workbooks(ToolkitName).Worksheets("-INFO-"
 x = year - 2018
 .Range("E1:H48").Copy .Cells(1, 5 + x * 6)
 .Cells(1, 6 + x * 6) = year
End With

'Restore interface
Application.ScreenUpdating = True
Application.StatusBar = False
Application.DisplayStatusBar = oldStatusBar
MsgBox "Evaluation of KPIs and modules operation mode has been carried out for the selected year.", vbOKOnly, "Done"
End Sub

Sub eff(y, i, nom, denom, cell)
 ToolkitName = "DEMOSOF - Data analysis toolkit.xlsm"
 With Workbooks(ToolkitName).Worksheets(y & " - Analogic")
 If .Range(denom & i) = 0 Then
 .Range(cell & i).Clear
 Else
 eps = .Range(nom & i) / .Range(denom & i)
 If eps < 0 Or eps > 1 Then
 .Range(cell & i).Clear
 Else
 .Range(cell & i) = Round(eps * 100, 2)
 End If
 End If
 End With
End Sub

Sub eff2(y, i, nom, denom, cell)
 ToolkitName = "DEMOSOF - Data analysis toolkit.xlsm"
 With Workbooks(ToolkitName).Worksheets(y & " - Analogic")
 eps = .Range(nom & i) / denom
 If eps < 0 Or eps > 1 Then
 .Range(cell & i).Clear
 Else
 .Range(cell & i) = Round(eps * 100, 2)
 End If
 End With
End Sub
8.3.3. Operation mode identification sub routines

'--- ISLAND MODE ---'
Sub op_island(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
ToolkitName = "DEMO SOFC - Data analysis toolkit.xlsm"
With Workbooks(ToolkitName).Worksheets(year &
 " - Analogic")
 identification sub routines

 j = i + 1
 Do While .Range(tim & j) < 0.5 And j <= lastrow And .Range(pow & j) > 0
 If (.Range(isl & j - 1) = -1 And .Range(isl & j) = 0) Or _
 .Range(air_c & j) < 1 Then
 Exit Do
 End If
 j = j + 1
 Loop
 .Range(op & i & ":" & op & j - 1) = "ISL"
 i = j - 1
End With
End Sub

'--- HOT STANDBY or INTERRUPTION ---'
Sub op_hot_int(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
ToolkitName = "DEMO SOFC - Data analysis toolkit.xlsm"
With Workbooks(ToolkitName).Worksheets(year &
 " - Analogic")
 identification sub routines

 j = i + 1
 Do While .Range(tim & j) < 0.5 And j <= lastrow
 If .Range(pow & j) > 0 And _
 (.Range(comp & j) = -1 Or .Range(air_c & j) < 1) Then
 Exit Do
 End If
 j = j + 1
 Loop
 If Not WorksheetFunction.Sum(_
 .Range(fuel & i & ":" & fuel & j)) = -(j - i + 1) Then
 .Range(op & i & ":" & op & j - 1) = "HOT"
 Else
 .Range(op & i & ":" & op & j - 1) = "INT"
 End If
 i = j - 1
End With
End Sub

'--- SHUT DOWN ---'
Sub op_shut_down(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
ToolkitName = "DEMO SOFC - Data analysis toolkit.xlsm"
With Workbooks(ToolkitName).Worksheets(year &
 " - Analogic")
 identification sub routines

 j = i + 1
 Do While .Range(tim & j) < 0.5 And lapse < 360 And j <= lastrow
 If (.Range(pow & j) <= 0 And .Range(pow & j) > -1) And _
 .Range(air_n & j) < 10 And _
 (.Range(temp & j) < 50 And Not .Range(temp & j) = 0) Then
 Exit Do
 End If
 lapse = lapse + .Range(tim & j)
 j = j + 1
 Loop
 .Range(op & i & ":" & op & j - 1) = "SHUT": i = j - 1
End With
End Sub
'--- START UP or TEST (OFF) ---
Sub op_start_up(year, i, tim, comp, isl, fuel, _
pow, temp, air_n, air_c, op, b, lastrow)
ToolkitName = "DEMO SOFC - Data analysis toolkit.xlsm"
With Workbooks(ToolkitName).Worksheets(year & "$" - Analogic)
found = False
lapse = 1 / 6
j = i + 1
Do While .Range(tim & j) < 0.5 And lapse < 100 And j <= lastrow
 If .Range(pow & j) > 0 And .Range(air_c & j) < 1 And _
 .Range(temp & j) > 700 Then
 found = True
 Exit Do
 End If
 lapse = lapse + .Range(tim & j)
 j = j + 1
Loop
If found Then
 .Range(op & i & ":" & op & j - 1) = "START"
i = j - 1
Else
 j = i + 1
 Do While .Range(tim & j) < 0.5 And j <= lastrow
 If (.Range(pow & j) <= 0 And .Range(pow & j) > -1) And _
 .Range(air_n & j) < 10 And _
 (.Range(temp & j) < 50 And Not .Range(temp & j) = 0) Then
 Exit Do
 End If
 j = j + 1
 Loop
 .Range(op & i & ":" & op & j - 1) = "OFF"
i = j - 1
End If
End With
End Sub
--- TEMPERATURE GRADIENT (SIMPLE LINEAR REGRESSION)---

Sub op_temp_grad(year, i, tim, comp, isl, fuel, pow, temp, air_n, air_c, op, b, lastrow)
 ToolkitName = "DEMOSTC - Data analysis toolkit.xlsm"
 With Workbooks(ToolkitName).Worksheets(year & " - Analogic")
 lapse = 0
 j = i
 x = 0
 xx = 0
 xy = 0
 y_m = 0
 x_m = 0
 n = 0
 b = 0
 j = j + 1
 Do While .Range(tim & j) < 0.5 And lapse < 24 And j <= lastrow
 x = x + 1
 If Not .Range(temp & j) = 0 Then
 xx = xx + x * x
 xy = xy + x * .Range(temp & j)
 y_m = y_m + .Range(temp & j)
 x_m = x_m + x
 n = n + 1
 End If
 lapse = lapse + .Range(tim & j)
 j = j + 1
 Loop
 x_m = x_m / n
 y_m = y_m / n
 b = (xy - n * x_m * y_m) / (xx - n * x_m * x_m)
 End With
End Sub
8.3.4. Data visualization

```
Public Sub Callback3(control As IRibbonControl)
    ' Set years for dates selection
    UF_Graph_2.ComboBox1.Style = fmStyleDropDownCombo
    UF_Graph_2.ComboBox1.Clear
    With Workbooks("DEMO:SOFC - Data analysis toolkit.xlsm")
        For j = 1 To .Worksheets.Count
            For i = 0 To UF_Graph_2.ComboBox1.ListCount
                If Val(Mid(.Worksheets(j).Name, 1, 4)) > 2000 And Val(Mid(.Worksheets(j).Name, 1, 4))) < 2100 Then
                    If i = UF_Graph_2.ComboBox1.ListCount Then
                        UF_Graph_2.ComboBox1.AddItem Mid(.Worksheets(j).Name, 1, 4)
                        Exit For
                    Else
                        If UF_Graph_2.ComboBox1.list(i) = Mid(.Worksheets(j).Name, 1, 4) Then
                            Exit For
                        End If
                    End If
                End If
            Next
        Next
    End With
    UF_Graph_2.ComboBox1.ListIndex = -1
    UF_Graph_2.ComboBox1.Style = fmStyleDropDownList

    ' Set existing graphics list
    UF_Graph_1.TextBox1.Text = ""
    UF_Graph_1.ComboBox1.Style = fmStyleDropDownCombo
    UF_Graph_1.ComboBox1.Clear
    With Workbooks("DEMO:SOFC - Data analysis toolkit.xlsm")
        For j = 1 To .Charts.Count
            UF_Graph_1.ComboBox1.AddItem .Charts(j).Name
        Next
    End With
    UF_Graph_1.ComboBox1.ListIndex = -1
    UF_Graph_1.ComboBox1.Style = fmStyleDropDownList
    UF_Graph_1.show
End Sub
```
'Build graphic button
Sub CommandButton1_Click()
Dim ToolkitName As String: ToolkitName = "DEMOSOFC - Data analysis toolkit.xlsm"
Dim ws As Worksheet
Dim row1, row2 As Long
Dim rng As Range
Dim kpist(18), t1(8), t2(8), t3(8), avex As Variant
Dim rng1, rng2, rng3 As Range
Dim a, b, c, i, j, ax1, ax2, year As Long
Dim rarea, rcell As Range
Dim boolout, booldate As Boolean
boolout = True
booldate = False

'Check for input content (output variables and dates)
For i = 10 To 17
 If Not Controls("ComboBox" & i).Value = "" Then
 boolout = False
 Exit For
 End If
Next
For i = 1 To 7
 If Controls("ComboBox" & i).Value = "" Then
 booldate = True
 Exit For
 End If
Next
If boolout Then
 MsgBox "Select at least one variable to plot.", vbOKOnly, _
 "Error in output variables"
Else
 If booldate Then
 MsgBox "Fill every date input before plotting.", vbOKOnly, _
 "Error in date input"
 Else
 date_start = ComboBox3.Text & "/" & ComboBox2.Text & "/" & _
 ComboBox1.Text & ComboBox4.Text
 date_end = ComboBox6.Text & "/" & ComboBox5.Text & "/" & _
 ComboBox1.Text & "/" & ComboBox7.Text
 year = ComboBox1.Value
 Set ws = Workbooks(ToolkitName).Worksheets(year & " - Analogic")
 If (24 * (DateValue(Mid(date_end, 1, 10)) - _
 DateValue(Mid(date_start, 1, 10))) + _
 Val(ComboBox7.Text) - Val(ComboBox4.Text)) <= 0 Then
 MsgBox "The ending date must be set after the starting date.", vbOKOnly, _
 "Error in date input"
 Else
 'First search attempt: exact match
 row1 = 1
 row2 = 1
 date_start_c = Mid(date_start, 1, 10)
 date_end_c = Mid(date_end, 1, 10)
 Set rng1 = ws.Range("A:A").Find _
 (todot(date_start), , xlValues, xlPart)
row1 = rng1.Row
GoTo End_Check
Else
 'Second search attempt: day by day
 Do Until date_start_c = date_end_c
 Set rng1 = ws.Range("A:A").Find
 (todot(date_start_c), , xlValues, xlPart)
 If Not rng1 Is Nothing Then
 row1 = rng1.Row
 GoTo End_Check
 Else
 date_start_c = Format(DateValue(date_start_c) + 1, "dd/mm/yyyy")
 End If
 Loop
End If
End_Check:
 'First search attempt: exact match
 Set rng2 = ws.Range("A:A").Find
 (todot(date_end), , xlValues, xlPart, , xlPrevious)
 If Not rng2 Is Nothing Then
 row2 = rng2.Row
 Else
 'Second search attempt: day by day
 Do Until date_start_c = date_end_c
 Set rng2 = ws.Range("A:A").Find
 (todot(date_end_c), , xlValues, xlPart, , xlPrevious)
 If Not rng2 Is Nothing Then
 row2 = rng2.Row
 Exit Do
 Else
 date_end_c = Format(DateValue(date_end_c) - 1, "dd/mm/yyyy")
 End If
 Loop
 End If
End If
If row1 = row2 Then
 MsgBox "There is no available data for the time period" & _
" selected.", vbOKOnly, "No data available"
Else
 If WorksheetFunction.CountBlank(_
 ws.Range("DA" & row1 & ":DA" & row2)) > 0 Then
 MsgBox "KPIs have not been yet evaluated for some " & _
" of the dates selected." & Chr(13) & _
"Use the dedicated tool before plotting.", vbOKOnly, _
"Missing KPIs for the requested time period"
Else

 'Series addition and overview evaluation
 Application.ScreenUpdating = False
 UF_Graph_2.MultiPage1.Pages(2).Enabled = True
 UF_Graph_2.MultiPage1.Pages(3).Enabled = True
 UF_Graph_2.CommandButton2.Enabled = True
 UF_Graph_2.MultiPage1.Value = 2
 chartn = ActiveChart.Name
 Application.DisplayAlerts = False
 Charts(chartn).Delete
 Application.DisplayAlerts = True
 Set nc = Workbooks(ToolkitName).Sheets.Add(Type:=xlChart)
nc.ChartArea.ClearContents
nc.Name = chartn
nc.Activate
pvs = vars(Controls("ComboBox" & 9).ListIndex, 1)
ax1 = 0
ax2 = 0
j = 1
For i = 10 To 17
 If Not Controls("ComboBox" & i) = "" Then
 'New series
 If Controls(_
 "OptionButton" & ((i - 9) * 2)).Value = True Then
 ax1 = ax1 + 1
 Else
 ax2 = ax2 + 1
 End If
 col = vars(_
 Controls("ComboBox" & i).ListIndex + 2, 1)
 Set ns = Charts(chartn).SeriesCollection.NewSeries
 ns.Name = Controls("ComboBox" & i).Value
 'Complete range selection and
 'overview data evaluation
 Set rng1 = ws.Range(col & row1 & ":" & col & row2)
 Set rng2 = ws.Range(pvs & row1 & ":" & pvs & row2)
 If j = 1 Then Set rng3 = _
 ws.Range("DA" & row1 & ":" & "DA" & row2)
 Charts(chartn).SeriesCollection(j).Values = rng1
 Charts(chartn).SeriesCollection(j).XValues = rng2
 avex = WorksheetFunction.IfError(_
 WorksheetFunction.AverageIf(rng1, ">"), "/")
 maxx = WorksheetFunction.Max(rng1)
 minx = WorksheetFunction.Min(rng1)
 'Final evaluation and writing of:
 'Overview data
 UF_Graph_2.MultiPage3.Pages(j - 1).Enabled = True
 Controls("Frame" & j & 0).Caption = _
 Controls("ComboBox" & i).Value
 Controls("ListBox" & j & 1).Clear
 Controls("ListBox" & j & 1).AddItem Round(maxx, 2)
 Controls("ListBox" & j & 2).Clear
 Controls("ListBox" & j & 2).AddItem Round(minx, 2)
 Controls("ListBox" & j & 3).Clear
 If Not avex = "/" Then
 Controls("ListBox" & j & 3).AddItem Round(avex, 2)
 End If
 If j = 1 Then
 'Operation mode lengths
 For b = 0 To 8
 t1(b) = 0
 t2(b) = 0
 t3(b) = 0
 Next
 For a = 1 To 7
 t1(a) = 0
 t2(a) = 0
 t3(a) = 0
 Next
 For a = 1 To 7
 t1(a) = 0
 t2(a) = 0
 t3(a) = 0
 Next
 End If
 End If
End For
Select Case a
Case 1
w = "OFF"
Case 2
w = "ON"
Case 3
w = "ISL"
Case 4
w = "HOT"
Case 5
w = "START"
Case 6
w = "SHUT"
Case 7
w = "INT"
End Select

Next

t1(a) = WorksheetFunction.CountIf(ws.Range("EK" & row1 & ":" & "EK" & row2), w) / 6

t2(a) = WorksheetFunction.CountIf(ws.Range("EL" & row1 & ":" & "EL" & row2), w) / 6

t3(a) = WorksheetFunction.CountIf(ws.Range("EM" & row1 & ":" & "EM" & row2), w) / 6

Next

t1(8) = WorksheetFunction.SumIf(ws.Range("DA" & row1 & ":" & "DA" & row2), ">0.17") - WorksheetFunction.CountIf(ws.Range("DA" & row1 & ":" & "DA" & row2), ">0.17") / 6

t2(8) = t1(8)
t3(8) = t1(8)
t1(0) = WorksheetFunction.Sum(t1)
t2(0) = WorksheetFunction.Sum(t2)
t3(0) = WorksheetFunction.Sum(t3)

For b = 1 To 9
Controls("ListBox" & 11 & b).Clear
Controls("ListBox" & 11 & b).AddItem Round(t1(b - 1), 2)
Controls("ListBox" & 12 & b).Clear
Controls("ListBox" & 12 & b).AddItem Round(t1(b - 1) / t1(0) * 100, 2)

Controls("ListBox" & 21 & b).Clear
Controls("ListBox" & 21 & b).AddItem Round(t2(b - 1), 2)
Controls("ListBox" & 22 & b).Clear
Controls("ListBox" & 22 & b).AddItem Round(t2(b - 1) / t2(0) * 100, 2)

Controls("ListBox" & 31 & b).Clear
Controls("ListBox" & 31 & b).AddItem Round(t3(b - 1), 2)
Controls("ListBox" & 32 & b).Clear
Controls("ListBox" & 32 & b).AddItem Round(t3(b - 1) / t3(0) * 100, 2)

Next
'Time dependant KPIs
For a = 0 To 18
 kpist(a) = 0
Next
kpist(0) = WorksheetFunction.SumIf(ws.Range(_
 "AK" & row1 & ":" & "AK" & row2), ">0") / 6
kpist(1) = WorksheetFunction.SumIf(ws.Range(_
 "AL" & row1 & ":" & "AL" & row2), ">0") / 6
kpist(2) = WorksheetFunction.SumIf(ws.Range(_
 "AM" & row1 & ":" & "AM" & row2), ">0") / 6
kpist(3) = kpist(0) + kpist(1) + kpist(2)
kpist(4) = WorksheetFunction.SumIf(ws.Range(_
 "EE" & row1 & ":" & "EE" & row2), ">0") / 6
kpist(5) = WorksheetFunction.SumIfs(ws.Range(_
 "AK" & row1 & ":" & "AK" & row2), ws.Range("AK" & row1 & ":" & "AK" & row2), _
 ">0", ws.Range(_
 "EK" & row1 & ":" & "EK" & row2), "ON") / 6
kpist(6) = WorksheetFunction.SumIfs(ws.Range(_
 "AL" & row1 & ":" & "AL" & row2), ws.Range(_
 "AL" & row1 & ":" & "AL" & row2), ">0", _
 ws.Range(_
 "EL" & row1 & ":" & "EL" & row2), "ON") / 6
kpist(7) = WorksheetFunction.SumIfs(ws.Range(_
 "AM" & row1 & ":" & "AM" & row2), _
 ws.Range(_
 "AM" & row1 & ":" & "AM" & row2), ">0", _
 ws.Range(_
 "EM" & row1 & ":" & "EM" & row2), "ON") / 6
If (t1(2) + t2(2) + t3(2)) = 0 Then
 kpist(8) = "/"Else
 kpist(8) = (kpist(5) + kpist(6) + kpist(7)) / (58 * (t1(2) + t3(2)) + 45 * t2(2)) * 100
End If
kpist(9) = WorksheetFunction.SumIf(ws.Range(_
 "DQ" & row1 & ":" & "DQ" & row2), ">0") / 6
kpist(10) = WorksheetFunction.SumIf(ws.Range(_
 "DR" & row1 & ":" & "DR" & row2), ">0") / 6
kpist(11) = WorksheetFunction.SumIf(ws.Range(_
 "DS" & row1 & ":" & "DS" & row2), ">0") / 6
kpist(12) = kpist(9) + kpist(10) + kpist(11)
kpist(13) = WorksheetFunction.SumIf(ws.Range(_
 "DV" & row1 & ":" & "DV" & row2), ">0") / 6

kpist(14) = WorksheetFunction.SumIf(ws.Range("DB" & row1 & ":" & "DB" & row2), ">0") / 6 * 44.01 / 22.414

kpist(15) = WorksheetFunction.Sum(ws.Range("EN" & row1 & ":" & "EN" & row2)) / 6

kpist(16) = WorksheetFunction.Sum(ws.Range("EO" & row1 & ":" & "EO" & row2)) / 6

If kpist(15) = 0 Then
 kpist(15) = "/"
 kpist(17) = "/"
Else
 kpist(17) = kpist(15) / (80 * 250000) * 100
End If

If kpist(16) = 0 Then
 kpist(16) = "/"
 kpist(18) = "/"
Else
 kpist(18) = kpist(16) / (140 * 250000) * 100
End If

If t1(2) = 0 Then
 kpist(5) = "/"
Else
 kpist(5) = kpist(5) / (58 * t1(2)) * 100
End If

If t2(2) = 0 Then
 kpist(6) = "/"
Else
 kpist(6) = kpist(6) / (45 * t2(2)) * 100
End If

If t3(2) = 0 Then
 kpist(7) = "/"
Else
 kpist(7) = kpist(7) / (58 * t3(2)) * 100
End If

For c = 1 To 19
 Controls("ListBoxK" & c).Clear
 If Not kpist(c - 1) = "/" Then
 kpist(c - 1) = Round(kpist(c - 1), 2)
 Controls("ListBoxK" & c).AddItem kpist(c - 1)
 End If
Next

For a = 1 To 3
 Controls("ListBoxMOD" & a).Clear
 Call oplog(UF_Graph_2, ws, row1, row2,
 a, "ListBoxMOD" & a, "ListBoxM")
Next

j = j + 1
If ax1 = 0 Or ax2 = 0 Then
 'All on main axis, one title only
 Charts(chartn).Axes(xlValue, xlPrimary).HasTitle = False
 Charts(chartn).SetElement (_msoElementPrimaryValueAxisTitleAdjacentToAxis)
 Charts(chartn).Axes(xlValue, xlPrimary).HasTitle = True
 Charts(chartn).Axes(xlValue, xlPrimary).AxisTitle.Text = "AX1"
 j = 1
 For i = 10 To 17
 If Not Controls("ComboBox" & i) = "" Then
 Charts(chartn).SeriesCollection(j).AxisGroup = 1
 uni = Mid(Charts(chartn).SeriesCollection(j).Name, InStr(Charts(chartn).SeriesCollection(j).Name, "["))
 If Charts(chartn).Axes(xlValue, xlPrimary).AxisTitle.Text = "AX1" Then
 Charts(chartn).Axes(xlValue, xlPrimary).AxisTitle.Text = uni
 Else
 If InStr(Charts(chartn).Axes(xlValue, xlPrimary).AxisTitle.Text, uni) = 0 Then
 Charts(chartn).Axes(xlValue, xlPrimary).AxisTitle.Text = uni
 End If
 End If
 End If
 j = j + 1
 Next
Else
 'Move on right axis, then add two titles
 j = 1
 For i = 10 To 17
 If (Not Controls("ComboBox" & i) = "") Then
 If Controls("OptionButton" & ((i - 9) * 2)).Value = True Then
 Charts(chartn).SeriesCollection(j).AxisGroup = 1
 Else
 Charts(chartn).SeriesCollection(j).AxisGroup = 2
 End If
 j = j + 1
 End If
 Next
 Charts(chartn).Axes(xlValue, xlPrimary).HasTitle = False
 Charts(chartn).Axes(xlValue, xlSecondary).HasTitle = False
 Charts(chartn).SetElement (_msoElementPrimaryValueAxisTitleAdjacentToAxis)
Charts(chartn).SetElement (_
 msoElementSecondaryValueAxisTitleAdjacentToAxis)
Charts(chartn).Axes(xlValue, xlPrimary)_
 .HasTitle = True
Charts(chartn).Axes(xlValue, xlSecondary)_
 .HasTitle = True
Charts(chartn).Axes(xlValue, xlPrimary)_
 .AxisTitle.Text = "AX1"
Charts(chartn).Axes(xlValue, xlSecondary)_
 .AxisTitle.Text = "AX2"
Charts(chartn).Axes(xlValue, xlPrimary)_
Charts(chartn).Axes(xlValue, xlSecondary)_
Charts(chartn).Axes(xlValue, xlPrimary)_
 .TickLabels.Font.Size = 12
Charts(chartn).Axes(xlValue, xlSecondary)_
 .TickLabels.Font.Size = 12
j = 1
For i = 10 To 17
 If Not Controls("ComboBox" & i) = "" Then
 uni = Mid(Charts(chartn).SeriesCollection(j)_
 .Name, InStr(Charts(chartn) _
 .SeriesCollection(j).Name, "\"))
 If Charts(chartn).SeriesCollection(j)_
 .AxisGroup = 1 Then
 If Charts(chartn).Axes(xlValue, _
 xlPrimary).AxisTitle.Text = "AX1" Then
 Charts(chartn).Axes(xlValue, _
 xlPrimary).AxisTitle.Text = uni
 Else
 If InStr(Charts(chartn).Axes(xlValue, _
 xlPrimary).AxisTitle.Text, uni) = 0 Then
 Charts(chartn).Axes(xlValue, _
 xlPrimary).AxisTitle.Text = uni
 Else
 Charts(chartn).Axes(xlValue, _
 xlPrimary).AxisTitle.Text & _
 ", " & uni
 End If
 End If
 Else
 If Charts(chartn).Axes(xlValue, _
 xlSecondary).AxisTitle.Text = "AX2" Then
 Charts(chartn).Axes(xlValue, _
 xlSecondary).AxisTitle.Text = uni
 Else
 If InStr(Charts(chartn).Axes(_
 xlValue, xlSecondary).AxisTitle_
 .Text, uni) = 0 Then
 Charts(chartn).Axes(xlValue, _
 xlSecondary).AxisTitle.Text = uni
 Else
 Charts(chartn).Axes(xlValue, _
 xlSecondary).AxisTitle.Text & _
 ", " & uni
 End If
 End If
 End If
j = j + 1
Next
End If
'Graphical changes based on X axis: X axis title, series type, missing data periods
If Not Controls("ComboBox9").Value = "Time" Then
 Charts(chartn).Axes(xlCategory).HasTitle = True
 Charts(chartn).SetElement (_
 msoElementPrimaryCategoryAxisTitleAdjacentToAxis)
 Charts(chartn).Axes(xlCategory).AxisTitle.Text = _
 Controls("ComboBox9").Value
 For i = 1 To j - 1
 Charts(chartn).SeriesCollection(i).ChartType = _
 xlXYScatter
 Charts(chartn).SeriesCollection(i).MarkerSize = 3
 Charts(chartn).Axes(xlCategory).AxisTitle.Text = _
 Controls("ComboBox9").Value
 Charts(chartn).SeriesCollection(i).ChartType = _
 xlLine
 Charts(chartn).SeriesCollection(i)._ _
 Format.Line.Weight = 1.5
 Next
Else
 Charts(chartn).Axes(xlCategory).HasTitle = False
 For i = 1 To j - 1
 Charts(chartn).SeriesCollection(i).ChartType = _
 xlLine
 Charts(chartn).SeriesCollection(i)._ _
 Format.Line.Weight = 1.5
 Next
'Add empty data series for each missing data period
Charts(chartn).Axes(xlValue, xlPrimary)_
 .MaximumScaleIsAuto = True
Charts(chartn).Axes(xlValue, xlPrimary)_
 .MinimumScaleIsAuto = True
maxx = Charts(chartn).Axes(xlValue, xlPrimary)_
 .MaximumScale
minx = Charts(chartn).Axes(xlValue, xlPrimary)_
 .MinimumScale
If Abs(maxx) > Abs(minx) Then
 avex = maxx
Else
 avex = minx
End If
sizx = rng2.Count
counter = 0
For Each rcell In rng3
 counter = counter + 1
 If rcell.Value > 0.17 And Not counter = 1 Then
 For c = 1 To j - 1
 Charts(chartn).SeriesCollection(c)_
 msoFalse
 Next
 If rcell.Value > 1 Then
 Set ns = Charts(chartn)_
 .SeriesCollection.NewSeries
 With Workbooks(ToolkitName)_
 .Worksheets("-INFO-")
 ns.Values = Union(.Range(.Cells(1, 1), _
 .Cells(counter - 1, 1)), .Range("E49"), _
 .Range(.Cells(counter + 1, 1), _
 Cells(sizx, 1)))
 End With
 ns.XValues = rng2
 ns.ChartType = xlXYScatter
 ns.ErrorBar Direction:=xlY,
Include:=xlBoth, Type:=xlFixedValue, _
Amount:=Abs(avex)
ns.ErrorBars.EndStyle = xlNoCap
ns.MarkerStyle = -4115
msolLineSysDash
ns.ErrorBars.Format.Line.Weight = 1.5
RGB(0, 0, 0)
ns.Format.Fill.ForeColor.RGB = _
RGB(0, 0, 0)
ns.Format.Fill.Solid
ns.Format.Line.ForeColor.RGB = _
RGB(0, 0, 0)
ns.Name = "Missing: " & _
Mid(ws.Range(_
"A" & rcell.Row - 1), 1, 5) & _
Mid(ws.Range(
"A" & rcell.Row - 1), 11, 6) & _
Mid(ws.Range(_
"A" & rcell.Row - 1), 20, 4) & " - " & _
Mid(ws.Range("A" & rcell.Row), 1, 5) & _
Mid(ws.Range("A" & rcell.Row), 11, 6) & _
Mid(ws.Range("A" & rcell.Row), 20, 4)
ns.AxisGroup = 1
End If
End If
Next

If sizx > 12 Then
Charts(chartn).Axes(xlCategory).TickLabelSpacing _
= WorksheetFunction.RoundDown(sizx / 12, 0)
Chart
Chartn).Axes(xlCategory).TickMarkSpacing _
= WorksheetFunction.RoundDown(sizx / 12, 0)
End If
Charts(chartn).Axes(xlCategory).TickLabels_
.Orientation = xlHorizontal
Charts(chartn).Axes(xlCategory).TickLabels_
.Orientation = -45

' Restore axis
Charts(chartn).Axes(xlValue, 1).MaximumScale = maxx
Charts(chartn).Axes(xlValue, 1).MinimumScale = minx
End If
'Common graphical design
Charts(chartn).SetElement (msoElementChartTitleAboveChart)
Charts(chartn).ChartTitle.Text = "Data from " & _
ws.Range("A" & row1) & " to " & ws.Range("A" & row2)
Charts(chartn).SetElement (msoElementLegendBottom)
Charts(chartn).Axes(xlCategory).TickLabelPosition = xlLow
Charts(chartn).SetElement (_
msoElementPrimaryCategoryGridLinesMajor)

ActiveWindow.Zoom = 100
Application.ScreenUpdating = True
End If
End If
End If
End If
End Sub
8.3.5. Operation log

Private Sub ComboBox1_Change()
Dim ToolkitName As String
ToolkitName = "DEMOSEOFC - Data analysys toolkit.xlsm"
Dim ws, wsinf As Worksheet
Set wsinf = Workbooks(ToolkitName).Worksheets("-INFO-"
Dim a, b, c, x, dt, t, lastrow, y As Long
Dim str, t1, t2 As String
Dim v(13, 4) As Variant

ListBox1.Clear
ListBoxM.Clear
If ComboBox1.Value = "Lifetime" Then

'Clear
For a = 1 To 3
 Controls("ListBoxOF" & a).Clear
 For b = 2 To 9
 Controls("ListBox" & a & 1 & b).Clear
 Controls("ListBox" & a & 2 & b).Clear
 Next
For b = 1 To 9
 Controls("ListBoxK" & a & b).Clear
Next
For b = 1 To 3
 Controls("ListBoxKO" & a & b).Clear
Next
Next
For b = 1 To 12
 Controls("ListBoxF" & b).Clear
Next
For a = 1 To 4
 For b = 1 To 13
 v(b, a) = 0
 Next
Next

'Evaluate
x = 0
Do While (Not IsEmpty(wsinf.Cells(1, 6 + x * 6)))
y = 2018 + x
Set ws = Workbooks(ToolkitName).Worksheets(y & " - Analogic")
For a = 1 To 3
 col = 5 + a + x * 6
 'Time
 For b = 1 To 7
 v(b, a) = v(b, a) + wsinf.Cells(b + 5, col)
 Next
 'KPIs
 For b = 8 To 13
 If b = 8 Or b = 10 Then
 v(b, a) = v(b, a) + wsinf.Cells(b + 21, col)
 Else
 v(b, a) = v(b, a) + wsinf.Cells(b + 21, col) * _
 wsinf.Cells(7, col)
 End If
 Next
Call oplog(UF_OpLog, ws, 3, ws.Range("A1").End(xlDown).Row, _
a, "ListBoxOP" & a, "ListBoxM")
Next
'Plant
For b = 1 To 12
 If b = 3 Then
 v(b, 4) = v(b, 4) + wsinf.Cells(b + 36, 7 + x * 6) * _
 (58 * wsinf.Cells(7, 6 + x * 6)) + _
 (45 * wsinf.Cells(7, 7 + x * 6)) + _
 (58 * wsinf.Cells(7, 8 + x * 6))
 Else
 v(b, 4) = v(b, 4) + wsinf.Cells(b + 36, 7 + x * 6)
 End If
Next
x = x + 1
Loop

'Assign
For a = 1 To 3
 'Time
 For b = 2 To 8
 Controls("ListBox" & a & 1 & b).AddItem Round(v(b - 1, a), 2)
 Controls("ListBox" & a & 2 & b).AddItem _
 Round(v(b - 1, a) / dt * 100, 2)
 Next
 Controls("ListBox" & a & 19).AddItem Round(y, 2)
 Controls("ListBox" & a & 29).AddItem Round(y / dt * 100, 2)
'SKPIs
For b = 1 To 3
 If b = 2 Then
 If Not v(2, a) = 0 Then
 Controls("ListBoxK" & a & b).AddItem _
 Round(v(b + 7, a) / v(2, a), 2)
 Else
 Controls("ListBoxK" & a & b).AddItem 0
 End If
 Else
 Controls("ListBoxK" & a & b).AddItem Round(v(b + 7, a), 2)
 End If
Next
Next
'Plant
For b = 1 To 12
 If b = 3 Then
 Controls("ListBoxP" & b).AddItem Round(v(b, 4) / ((58 * v(2, 1)) + (45 * v(2, 2)) + (58 * v(2, 3))), 2)
 Else
 Controls("ListBoxP" & b).AddItem Round(v(b, 4), 2)
 End If
Next
Else
 Set ws = Workbooks(ToolkitName).Worksheets(_ ComboBox1.Value & " - Analogic")
t1 = ws.Range("A2").Value
t2 = ws.Range("A1").End(xlDown).Value
ListBox1.AddItem "From " & t1 & " to " & t2
x = ComboBox1.Value - 2018
For a = 1 To 3
 col = 5 + a + x * 6
 'Time
 For b = 2 To 9
 Controls("ListBox" & a & 1 & b).Clear
 Controls("ListBox" & a & 1 & b).AddItem Round(wsinf.Cells(b + 4, col).Value, 2)
 Controls("ListBox" & a & 2 & b).Clear
 Controls("ListBox" & a & 2 & b).AddItem Round(wsinf.Cells(b + 16, col).Value, 2)
 Next
 'KPIs
 For b = 1 To 3
 Controls("ListBoxK" & a & b).Clear
 Controls("ListBoxK" & a & b).AddItem Round(wsinf.Cells(b + 28, col).Value, 2)
 Controls("ListBoxKO" & a & b).Clear
 Controls("ListBoxKO" & a & b).AddItem Round(wsinf.Cells(b + 31, col).Value, 2)
 Next
 For b = 4 To 9
 Controls("ListBoxK" & a & b).Clear
 Next
 Controls("ListBoxOP" & a).Clear
 Call oplog(UF_OpLog, ws, 3, ws.Range("A1").End(xlDown).Row, _ a, "ListBoxOP" & a, "ListBoxM")
Next
'Plant
For b = 1 To 12
 Controls("ListBoxP" & b).Clear
 Controls("ListBoxP" & b).AddItem Round(wsinf.Cells(b + 36, 7 + x * 6), 2)
Next
End If
End Sub
Sub ON_details(a As Long)
Dim ToolkitName As String
ToolkitName = "DEMOPOFC - Data analysis toolkit.xlsm"
Dim ws As Worksheet
Dim rng1, rng2 As Range
For i = 0 To Controls("ListBoxOP" & a).ListCount - 1
If Controls("ListBoxOP" & a).Selected(i) And _
Mid(Controls("ListBoxOP" & a).list(i), 1, 2) = "ON" Then
 t1 = Mid(Controls("ListBoxOP" & a).list(i), _
 InStr(Controls("ListBoxOP" & a).list(i), "From ") + 5, 19)
 t2 = Mid(Controls("ListBoxOP" & a).list(i), _
 InStr(Controls("ListBoxOP" & a).list(i), "to ") + 3, 19)
 dt = deltat(t2, t1)
 y = Mid(t2, 7, 4)
 Set ws = Workbooks(ToolkitName).Worksheets(y & " - Analogic")
 Set rng1 = ws.Range("A:A").Find(t1, , xlValues, xlWhole)
 Set rng2 = ws.Range("A:A").Find(t2, , xlValues, xlWhole)
 If ws.Range("DA" & rng1.Row) < 0.17 And Not rng1.Row = 2 Then
 Set rng1 = ws.Range("A" & rng1.Row + 1)
 End If
 Controls("ListBoxK" & a & 4).AddItem _
 Round(WorksheetFunction.Average(_
 ws.Range(ws.Cells(rng1.Row, a + 36), _
 ws.Cells(rng2.Row, a + 36))), 2)
 Controls("ListBoxK" & a & 5).AddItem _
 Round(WorksheetFunction.Average(_
 ws.Range(ws.Cells(rng1.Row, a + 120), _
 ws.Cells(rng2.Row, a + 120))), 2)
 Controls("ListBoxK" & a & 6).AddItem _
 Round(WorksheetFunction.Average(_
 ws.Range(ws.Cells(rng1.Row, a + 117), _
 ws.Cells(rng2.Row, a + 117))), 2)
 Controls("ListBoxK" & a & 7).AddItem _
 Round(WorksheetFunction.Average(_
 ws.Range(ws.Cells(rng1.Row, a + 127), _
 ws.Cells(rng2.Row, a + 127))), 2)
 Controls("ListBoxK" & a & 8).AddItem _
 Round(WorksheetFunction.Average(_
 ws.Range(ws.Cells(rng1.Row, a + 130), _
 ws.Cells(rng2.Row, a + 130))), 2)
 Call degradation(a, rng1, rng2, dt, y)
 Exit For
Else
 If Not Controls("ListBoxK" & a & 4).ListCount = 0 Then
 For b = 4 To 9
 Controls("ListBoxK" & a & b).Clear
 Next
 End If
End If
Next
End Sub
Private Sub CommandButton1_Click()
x = TextBoxR.Text
If x = "" Then
 MsgBox "Please insert a name for the Word report.", _
vbOKOnly, "Invalid name!"
Else
 If InStr(x, "\") = 0 And InStr(x, "/") = 0 And InStr(x, "?") = 0 And _
 InStr(x, "*") = 0 And InStr(x, ":") = 0 And InStr(x, ",") = 0 And _
 InStr(x, ">") = 0 And InStr(x, "<") = 0 And InStr(x, ":") = 0 Then
 'Export overview data
 ChDrive ActiveWorkbook.Path
 ChDir ActiveWorkbook.Path

 Dim objWord As Object
 Dim wname As String
 Set objWord = CreateObject("Word.Application")
 objWord.Visible = True
 wname = ActiveWorkbook.Path & "\DEMOSOFRC_ReportDefault2.docx"
 Set wd = objWord.Documents.Open(wname)

 'Time period
 t = Controls("ListBox1").list(0)
 Call findandreplace(t, wd)

 'Elapsed time
 t1 = Mid(t, InStr(t, "From ") + 5, 19)
 t2 = Mid(t, InStr(t, "to ") + 3, 19)
 dt = deltat(t2, t1)
 Call findandreplace(Round(dt, 2) & " [h]", wd)

 'Missing time periods
 If UF_OpLog.ListBoxM.ListCount = 0 Then
 Call findandreplace("None.", wd)
 Else
 Call findandreplace(UF_OpLog.ListBoxM.list(0) & Chr(11), wd)
 For i = 1 To UF_OpLog.ListBoxM.ListCount - 1
 wd.Application.Selection = UF_OpLog.ListBoxM.list(i) & Chr(11)
 wd.Application.Selection.Collapse wdCollapseEnd
 Next
 End If

 'Modules
 For a = 1 To 3
 For i = 1 To 3
 Call findandreplace(Controls("ListBoxK" & a & i).list(0), wd)
 Next
 For i = 1 To 3
 Call findandreplace(Controls("ListBoxKO" & a & i).list(0), wd)
 Next
 For i = 2 To 9
 Call findandreplace(Controls(_"ListBox" & a & 1 & i).list(0), wd)
 Call findandreplace(Controls(_"ListBox" & a & 2 & i).list(0), wd)
 Next
 Call findandreplace(Controls(_"ListBoxOP" & a).list(0) & Chr(11), wd)
 Next
 End If
For i = 1 To Controls("ListBoxOP" & a).ListCount - 1
wd.Application.Selection = Controls(_
"ListBoxOP" & a).list(i) & Chr(11)
wd.Application.Selection.Collapse wdCollapseEnd
Next
Next

'Plant KPIs
For i = 11 To 12
 Call findandreplace(Controls("ListBoxP" & i).list(0), wd)
Next
For i = 1 To 10
 Call findandreplace(Controls("ListBoxP" & i).list(0), wd)
Next

'Pie charts
a = 1
For Each shp In wd.InlineShapes
 If shp.HasChart Then
 Set ws = shp.Chart.ChartData.Workbook.Sheets(1)
 For i = 2 To 9
 ws.Cells(i, 2).Value = Val(Controls(_
 "ListBox" & a & 1 & i).list(0))
 Next
 shp.Chart.SetSourceData Source:="='Foglio1'!A1:B9"
 a = a + 1
 End If
Next
wd.SaveAs (ActiveWorkbook.Path & "\" & x & ".docx")
wd.Close
objWord.Quit
MsgBox "Export completed.", vbInformation, "Done."
Else
 MsgBox "Special characters as \, /, ?, *, :, |, ., <, > can" & _
 " not be used.", vbOKOnly, "Invalid name!"
End If
End If
End Sub

Sub degradation(a, rng1, rng2, dt, year)
Dim ToolkitName As String
ToolkitName = "DEMSOFC - Data analysys toolkit.xlsm"
Set ws = Workbooks(ToolkitName).Worksheets(year & " - Analogic")
Dim x, y, d As Variant
Dim m, b As Long
y = Application.Transpose(ws.Range(ws.Cells(rng1.Row, a + 36),
ws.Cells(rng2.Row, a + 36)))
ReDim x(1 To UBound(y))
For k = 1 To UBound(y)
 x(k) = k
Next
m = WorksheetFunction.slope(y, x)
d = (m * (1 - x(UBound(x))) * 100 * 1000) / (WorksheetFunction.Max(y) * dt)
If d < 0 Then d = 0
Controls("ListBoxK" & a & 9).AddItem d
End Sub
8.3.6. General

```vba
Sub oplog(uf, ws, r1, r2, a, listb, listm)
    'Operation log
    With uf
        For c = r1 To r2
            s = ws.Cells(c, 140 + a).Value
            If ws.Range("DA" & c) > 0.17 Then
                t1 = ws.Range("A" & c)
            Else
                t1 = ws.Range("A" & c - 1)
            End If
            c = c + 1
            Do While ws.Range("DA" & c) < 0.17 And ws.Cells(c, 140 + a).Value = s _
                And c <= r2
                c = c + 1
            Loop
            t2 = ws.Range("A" & c - 1)
            dt = deltat(t2, t1)
            If dt < 1 Then
                .Controls(listb).AddItem (s & " | " & Round(dt * 60) & _
                " [min] | From " & t1 & " to " & t2)
            Else
                .Controls(listb).AddItem (s & " | " & Round(dt) & _
                " [h] | From " & t1 & " to " & t2)
            End If
            If ws.Range("DA" & c) > 0.17 And a = 1 Then
                'Missing data
                t1 = ws.Range("A" & c - 1)
                t2 = ws.Range("A" & c)
                dt = ws.Range("DA" & c) - 1 / 6
                If dt < 1 Then
                    .Controls(listm).AddItem ("MISS | " & Round(dt * 60) & _
                    " [min] | From " & t1 & " to " & t2)
                Else
                    .Controls(listm).AddItem ("MISS | " & Round(dt) & _
                    " [h] | From " & t1 & " to " & t2)
                End If
            End If
            c = c - 1
        Next
    End With
End Sub
```

```vba
Public Sub CloseButtonSettings(frm As Object, show As Boolean)
    Dim windowHandle As Long
    Dim menuHandle As Long
    windowHandle = FindWindowA(vbNullString, frm.Caption)
    If show = True Then
        menuHandle = GetSystemMenu(windowHandle, 1)
    Else
        menuHandle = GetSystemMenu(windowHandle, 0)
        DeleteMenu menuHandle, SC_CLOSE, 0&
    End If
End Sub
```
Public Sub CleanLog(del As String, sh As Worksheet)
Dim rng As Range
With sh
 Set rng = .Range("A:A").Find(del, , xlValues, xlWhole)
 Do Until rng Is Nothing
 rng.EntireRow.Delete
 Set rng = .Range("A:A").Find(del, , xlValues, xlWhole)
 Loop
End With
End Sub

Public Function deltat(rng1, rng2)
 deltat = 24 * (DateValue(Mid(rng1, 1, 2) & "/" & Mid(rng1, 4, 2) & "/" & Mid(rng1, 7, 4)) -
 DateValue(Mid(rng2, 1, 2) & "/" & Mid(rng2, 4, 2) & "/" & Mid(rng2, 7, 4)) +
 TimeValue(Mid(rng1, 12, 8)) - TimeValue(Mid(rng2, 12, 8)))
End Function

Sub findandreplace(t, wd)
 wd.Application.Selection.Find.Text = "XYZ"
 wd.Application.Selection = t
 wd.Application.Selection.Collapse wdCollapseEnd
End Sub