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Summary

Nowadays, Deep Neural Networks are widely used in medical image analysis, and
they are the state-of-the-art in many applications. However, performances are
often limited from the scarcity of labeled data since generating appropriated an-
notations requires medical experts and is very time-consuming. A large number
of techniques are used to tackle this problem, and one of the most popular is
to transfer learning from models pre-trained on ImageNet. Due to the different
characteristics of the natural and medical domain, this strategy may be subop-
timal. This thesis proposes three different colorization modules that learn how
to map gray-scale medical images to three-channels colorful ones exploiting the
classification loss generated during the training of a pre-trained model. Several
experiments have been conducted to compare different transfer learning strategies
from the RGB to the medical domain, with and without the proposed coloriza-
tion module. Experiments were conducted on different X-ray datasets, including
CheXpert, ChestX-ray14, and MURA. Results on the CheXpert dataset show that
the colorization modules can improve the results up to 8% when the pre-trained
model is frozen except for the last layer. This outcome suggests that the coloriza-
tion module effectively compensates for the differences between the ImageNet and
medical images. In general, fine-tuning the entire network obtains the best results,
with or without the colorization module. The proposed strategy is most effective
when the number of available samples is small (less than 512), whereas fine-tuning
the entire network is the most effective strategy for large scale datasets.
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Chapter 1

Introduction

Since it was possible to scan and load medical images into computers, researchers
have studied and built systems to perform automatic analysis. Until the 90s, medi-
cal image analysis exploited low-level pixel processing and mathematical modeling
to solve particular tasks. But, at the end of the same decade, supervised tech-
niques, that use training data to develop models, were becoming very popular in
this field. This marked the beginning of a shift from systems that are entirely de-
signed by humans to others trained by computers. Convolutional neural networks
(CNNs) are among the most successful models for image analysis to date. The
story of this type of architecture started at the beginning of 1980 with the works
of Fukushima et al.[1], while one of the first applications in medical image analysis
was in 1995 thanks to the work of Lo et al.[2] that uses CNN to detect nodules in
the lungs. However, convolutional neural networks gained popularity after the end
of 2012, when the model proposed by Krizhevsky et al.[3], called AlexNet, wons
the ImageNet competition by a large margin. In the last years, medical image
analysis has gained huge advantages from machine learning and deep learning. A
large number of various tasks are nowadays almost exclusively done by machine
learning methods, for instance, segmentation, in which each pixel is assigned to
different tissues or anatomical structures. Like other techniques, even if there are
enormous advantages, these methods bring some problems that must be tackled.
The scarcity of labeled data is one of the most frequent and critical obstacles
that machine learning methods have in medical image analysis, even when large
sets of unlabeled data are available. The demand for highly specialized work to
collecting annotations for medical images represents one of the primary reasons
for this lack. Moreover, manual labeling of the instances is a costly and time-
consuming process. Some approaches are used to tackle this problem as Transfer
Learning, Data augmentation, and Semi-supervised Learning. Transfer Learning
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has a central role in several works, and it is common to exploit models trained on
ImageNet to take higher results in small datasets. On the other hand, some recent
work shows that perform Transfer Learning from ImageNet does not help to reach
better outcomes than training from scratch. These results can be justified due to
the diversity between the two domains of natural and medical images. This thesis
aims to investigate how to learn a colorization method that helps to mitigate these
differences. Since standard deep learning colorization methods are not applicable
due to the lack of color references, it is proposed a technique that exploits the
classification loss generated from the pre-trained model frozen except for the last
layer. Moreover, it was examined which is the best strategy of learning, if the
best strategy changes when the number of samples in the dataset varies, and if the
colorization module proposed are transferable.

1.1 Structure of the document
The work of this thesis is so structured:

• Chapter 1 contains an introduction to the thesis.

• Chapter 2 aims to introduce the reader to the Machine Learning and Deep
Learning. This chapter is to consider only as a starting point for those who
don’t know these arguments.

• Chapter 3 reports a summary of Transfer Learning in medical image analysis
and principal techniques of colorization.

• In Chapter 4 are presented the datasets used, the architecture proposed, the
colorization modules and the pre-trained models chosen.

• Chapter 5 contains the description of all experiments over the different datasets
with the results obtained.

• In Chapter 6, the results are discussed and the conclusion are presented. At
the end, some possible future works are proposed.

2



Chapter 2

Background

This chapter aims to provide a brief introduction to machine learning techniques
related to deep learning and the principal CNN models.

2.1 Machine Learning algorithms

Machine learning algorithms are systems that learn how to solve a problem from
the data fed. One of the principal methods to categorize this kind of systems is
according to their way to learn:

• Supervised learning: The system learns a mapping between input values
and the target labels. So each training data must be a pair of an input object,
e.g. a vector or an image, and the desired output value. After the training, if
all the parameters chosen are "correct" the system should be able to predict
the correct class also for the unseen instances (Figure 2.1). The two main
supervised learning problems are:

Classification: It requires that the system predict a class label.

Regression: It requires that the system predict a numerical label.

MNIST is one of the most famous supervised learning problems, where the
inputs are handwritten digits (images) and the output is a class label for what
digit represents (numbers from 0 to 9).

3
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Figure 2.1: Supervised learning.

• Unsupervised learning: The system takes as input unlabelled data, and the
algorithm tries to find structures in the data. The most common unsupervised
learning problem is Clustering in which the algorithm attempts to separate
data into groups without the guidance of labels. Other common types of
unsupervised learning are Density Estimation, Visualization, and Projection.

• Semi-supervised learning: In this scenario, labeled data are few while
the unlabeled examples are in a large number. This approach lies between
unsupervised learning and supervised learning. To improve the performance
these two types of data are used.

• Reinforcement learning: The system learns by receiving feedback from
the environment. This means that there isn’t a fixed dataset but the system
must perform some steps and the environment gives back feedback about
performance toward the goal. An example is playing a game where the system
has the goal of winning or getting a high score. Each move performed by the
algorithm received a positive or negative score.

2.2 Neural Network
A subcategory of machine learning algorithms is neural networks. These kinds
of systems are inspired, not identical, to biological neural networks that consti-
tute the animal and human brain. The neural networks are composed of simple
computational units (called neurons) connected by link (called synapses).

A neuron can be generalized in:

• A group of inputs (Figure 2.2a).
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• A group of weighted links (Figure 2.2b).

• A linear combiner which computes the weighted sum of the inputs (Figure
2.2c).

• An activation function for limiting the output amplitude of the neuron (Figure
2.2d).

• An output (Figure 2.2e).

Figure 2.2: Neuron.[4]

A standard architecture is composed of:

• Input units.

• Hidden units (optional).

• Output units.

Classical neural networks have a high training cost and the training complexity
increases with the number of hidden layers (Figure 2.3). For this reason, for a
long time, neural networks with a large number of hidden layers and inputs, as for
image classification, were considered unfeasible.
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Figure 2.3: Example of a Neural Network.

2.3 Deep learning

Deep learning algorithms are based on neural networks and exploit a cascade of
hidden layers for feature extraction. Each level learns how to transform the in-
put data into a slightly more abstract and composite representation; in this way,
the model learns a hierarchical feature structure in which low layers extract local
features, like edges, and high layers extract global patterns. The most common
architectures are convolutional neural networks (CNN) and recurrent neural net-
works. In image analysis, CNNs are widely used.

2.3.1 CNN

The Convolutional Neural Networks are models that take inspiration from the or-
ganization of the Visual Cortex. Each neuron is sensitive to the Receptive Field
that is a small sub-region of the visual field. There are two principal differences be-
tween multi-layer neural networks (like multi-layered perceptron) and CNN:

1. While MLP is fully connected and each link has his weight, in CNN weights
are shared thanks to the convolutional layers that are the basis of this type
of architecture.

2. The second key difference is that CNN typically uses pooling layers that help
to reduce the number of parameters.

The architecture of a CNN can change in different ways but three layers are char-
acteristic of this type of network: Convolutional Layer, Non-Linear Layer, Pooling
Layer.
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Convolutional layer

This is the core layer of CNNs and consists of a set of filters (kernel) that are
convolved (Figure 2.4) across the input data creating a multidimensional feature
map. The network learns filters able to identify a specific type of feature over the
image. Weights are shared across neurons and this increases learning efficiency by
reducing the number of free parameters that must be learned. Moreover using this
type of layer, the model doesn’t require to learn different detectors for the same
feature that can occur in different parts of an image.

Figure 2.4: Convolution.[5]

Non-Linear Layer

Non-Linear Layer increases the non-linearity of the entire architecture without
affecting the receptive fields of convolutional layers and helps to reduce the ampli-
tude of parameters. There are different types of this kind of layers and the most
used are:

ReLU Figure 2.5a

f(x) = max(0, x)

Sigmoid Figure 2.5b

f(x) =
1

1 + e−x

Tanh Figure 2.5c

f(x) = tanh(x)

7
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(a) ReLU (b) Sigmoid (c) Tanh

Figure 2.5: Non-Linear function

Pooling Layer

The main purpose of this type of layer is to decrease the spatial size of the fea-
tures map. This aims to reduce the computational power required to process the
data through parameter reduction. Moreover, it is useful to extract features that
are invariant over position and rotation, thus promoting the generalization of the
model. Common pooling types are based on max and mean function:

• Max Pooling Layer: It returns the maximum value from the portion of the
matrix covered by the kernel and acts as a noise suppressant.

• Average Pooling Layer: It returns the mean value from the section of the
matrix covered by the kernel.

Figure 2.6: Pooling Layers.
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Fully Connected Layer

At the end of the model, one or more fully connected layers, like in regular machine
learning, are generally added, and in this section, the weights are no longer shared.
This kind of layer allows the model to learn a non-linear combination of features
extracted in previous layers.

2.3.2 Models

Several architectures have been submitted to the ImageNet[6] competition to reach
better performance. After the breakthrough in this challenge achieved by AlexNet,
other CNNs have obtained popularity. Between the most popular networks, it is
possible to find Inception, VGG, GoogLeNet, ResNet, and DenseNet. In this
thesis, the focus being on DenseNet and ResNet architectures.

ResNet

Deep convolutional neural networks are designed to extract from low to high-level
features and the number of stacked layers can improve the "levels" of features.
Consequently, the stacked layer is of primary importance. But when the networks
start to converge, the deeper ones are exposed to a degradation problem: with
the network depth increasing, accuracy gets saturated and then degrades rapidly.
(Figure 2.7a) This problem is not caused by overfitting and shows that not all
systems are easy to optimize. However, the deterioration of training accuracy can
be mitigated with the introduction of a new type of layer - The Residual Block
[7].

A ResBlock is defined as:

G(x) = F (x) + x

and can be achieved by feedforward neural networks with shortcuts connection that
skip one or more layers so that perform as identity mapping. (Figure 2.7b)

Residual networks solve many problems as:

• ResNets are easy to optimize.

• They can easily gain accuracy from greatly increased depth, producing results
that are better than previous networks.

To build the ResNet architecture, a plain structure, mainly inspired by the concept
of VGG nets, is created and shortcut connections are inserted to turn the network
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Figure 2.7: (Left) Degradation problem. (Right) Residual Block structure. [7]

into its counterpart residual version (Figure 2.8). The standard residual networks
are ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152. In this thesis,
the ResNet18 was used.

DenseNet

Dense Convolutional Network[8] is another widely used architecture that allows
achieving high accuracy and reducing the number of parameters compared with
ResNet. As seen previously, in ResNet, identity mapping is used to promote
gradient propagation and element-wise addition is used to combine output by
using ResBlock. Instead, DenseNet is composed of DenseBlock and these layers
are densely connected. Each layer input is the concatenation of all previous layers’
output (Figure 2.9). In this way, each layer receives knowledge from all preceding
layer and each layer has direct access to the gradient of the loss function. This
structure promotes "collective knowledge" and avoid to learn redundant feature
maps. DenseBlock can be described as:

x0 = input

x1 = concat(x0, F0(x0))

xi = concat(x0, F0(x0), .., Fi−1(xi−1))

i > 0

This architecture brings some advantages:

• Strong gradient flow: The error signal can be easily propagated directly
to earlier layers.

• Fewer parameters: For each layer, the number of parameters is directly
proportional to l× k× k, where k is the growth rate, differently from ResNet
where it is directly proportional to C×C. Since C >> k, DenseNet is smaller
than ResNet.

• No features redundancy: DenseNet tend to have richer patterns.

10
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• The classifier use features of all complexity level.

The standard dense convolutional networks are DenseNet121, DenseNet169, DenseNet201,
and DenseNet264. In this thesis, the DenseNet121 was used.

Figure 2.8: ResNet Architecture.[7]
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Figure 2.9: DenseNet structure.

2.4 Transfer Learning

One of the principal abilities of the human brain is the capacity to transfer knowl-
edge between different tasks, and, after the early years of our lives, rarely we learn
something from scratch. Instead, traditional machine learning and deep learn-
ing algorithms are designed to work in isolation and the models are rebuilt from
scratch every time that the features-spaces distribution and tasks change. Gen-
erally, models that solve complicated problems require a large amount of data to
gain high-grade performance but, for supervised models, retrieve a large amount
of labeled data can be costly and difficult since the labels often require specialized
human work. So the main idea of transfer learning is to exploit the previous knowl-
edge (features, weights) acquired to solve a problem, to tackle another related-task
that might have a smaller dataset or to help generalization (Figure 2.10).

Transfer learning can help in different situations:

• When the dataset used to learn a specific task is tiny, TL can help to avoid
overfittingand to improve generalization. It is one of the most used techniques
to take on the scarcity of labeled-data.

• To reduce the learning time ad cost.

• To improve performance.

2.4.1 Definition

In order to give a formal definition of transfer learning, we need to introduce some
formal notations and the definition of domain and task [9]. A domain is defined
as a two-element tuple:

D = {X , P (X)}

where:

12
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Figure 2.10: Transfer learning.

• Feature Space → X

• Marginal Probability Distribution → P (X), X = {x1, ..., xn}, xi ∈ X

Two domain are different if have a different feature space or/and different marginal
probability distribution.

Given a domain, D, a task is defined as:

T = {γ, f(·)} = {γ, P (Y |X)}, Y = {y − 1, ..., yn}, yi ∈ γ

where:

• Label Space → γ is the set of all labels, which is [True, False] for a classifi-
cation task, and yi can be True or False.

• Objective predictive function → f(·) that can be learned from training data
denoted as {xi, yi} and xi ∈ X , yi ∈ γ. The objective function can be written,
from a probabilistic point of view, as P (Y |X).

Given a source domain DS, a source task TS, a target domain DT , and a target
task TT , transfer learning aims to improve the learning of the target predictive
function, fT (·), in DT by exploiting the knowledge in DS and TS where DS /= DT

or TS /= TT .

2.4.2 Transfer Learning Scenarios
The possible transfer learning scenarios can be:

• Different source and target feature spaces:

XS /= XT

13
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e.g. The images are taken from different devices as radiographs and photos.

• The marginal probability distributions of DS and DT are different:

P (XS) /= P (XT )

e.g The images are taken at different hours of the day or anyway with different
illumination.

• The label spaces of the two task are different:

γS /= γT

e.g. Images need to be assigned different labels in the target task.

• There is a difference in the conditional probability distributions between the
two task:

P (YS|XS) /= P (YT |XT )

e.g. Source and target data are unbalanced about their classes. Often tech-
niques, as oversampling and undersampling, are used since this scenario is
quite common.

2.5 Transfer Learning Strategies
It is possible to categorize transfer learning strategies on the type of machine
learning algorithm used [9]. Then, Transfer Learning can be divided in:

• Inductive Transfer Learning: This strategy aims to help improve the
learning in the DT using knowledge in DS and TS, where Ts /= Tt. In this
scenario, labeled data are available in the target domain, and depending upon
if the source domain contains labeled data or not, this can be divided into
two other subcategories.

• Transductive Transfer Learning: This setting requires that the TS and
the TT are similar, but the domains may be different. This setting requires
that the TS and the TT are the same, but the domains may be different.
Additionally, some unlabeled data of DT must be available at training time.
If domains are different, this strategy takes the name of Domain Adaptation.

• Unsupervised Transfer Learning: No labeled data are presented in both
domains, and the TS /= TT .

14



Background

Figure 2.11: Transfer Learning Strategies [9]

2.6 How to perform transfer learning
A common way to perform transfer learning in the deep learning field is composed
of these steps:

1. A pre-trained source model is selected from models available. Generally,
models pre-trained on ImageNet are used. It is also possible to build and
train a model over a large dataset.

2. The model for the current task is built. Then, the weights of the parts of
the pre-trained model that are in common between the two networks are
transferred.

3. The model obtained is finetuned on the target data.

Figure 2.12: Example of Transfer Learning

15



Background

2.7 Data Augmentation
State of the art deep networks have in the order of millions of parameters to be
tuned, and they are profoundly dependent on big data to avoid overfitting. More-
over, a large dataset is also extremely important to obtain a good ability of general-
ization. Data Augmentation techniques try to solve the problem of data lacking in
domains in which obtain more data is not feasible or too costly, e.g in medical im-
age analysis. For instance, if the input data are images, to obtain, approximately,
an infinite dataset, it is just needed to make some random transformations to our
existing dataset as rotations and flips. Furthermore, Data Augmentation is also
used to create CNNs that are invariant to illumination, translation, size, point of
view or a combination of these transformations. This technique doesn’t require
that the transformations must be done beforehand, but it is possible to perform
them on the fly. Common transformations are:

Flip: It’s possible to flip images horizontally or vertically. It can increase the size
of the dataset up to 4 times.

Rotation: It is possible to rotate the images randomly of an angle between −α
and α.

Translation This operation helps the models to learn that the object to classify
can be in different positions.

Noise For various reason is possible that some images can be affected by noise.
To create a model resistant to the noise is possible to add it to some instance
of the dataset generated through data augmentation.

Data augmentation is a powerful tool but requires some attention. Indeed, it is
necessary to use only transformations that are useful in the target domain to avoid
to generate images that the network would never see when deployed. Further, the
transformations need to not alter the mapping function, i.e., exclusively transfor-
mations that not modify the labels should be applied. In Figure 2.13, C10+ and
C100+ columns are the error rates achieved by using data augmentation, and they
show that this technique achieves better results.
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Figure 2.13: Error rates of popular neural networks on the Cifar 10 and Cifar
100 datasets. Source [8]

17



Chapter 3

Related Work

This chapter introduces some recent works related to this thesis. The chapter
contains a survey on transfer learnig in medical image analysis, on colorization
methods, and few-shot learning.

3.1 Transfer Learning in Medical Image Analysis
In the last years in medical image analysis, there was a shift from systems designed
entirely by humans to others based on machine learning. While in the past, the
researcher needed to extract relevant features from data to solve problems, in the
last years, this work is increasingly delegated to systems that can automatically
perform this. Nowadays, the actual most powerful type of deep learning models
is CNN. Even if this type of architecture achieves the top performance in most
medical image analysis competitions, they present many challenges. One of these
challenges is the lack of large labeled datasets. Indeed the number of medical
images growing more and more, but the acquisition of appropriate annotations for
these images is costly and requires specialized human effort. For these reasons,
learning efficiently on a small dataset and create models robust to the noise of the
labels is a crucial area of research. One of the solutions to the scarcity of labeled
data is to reusing information learned from another task or different domains to
improve the performance of the models, and this technique is known as transfer
learning. According to the work of Cheplygina et al.[10], more than 50 different
papers that use transfer learning have been published from 2012 to 2017. Menegola
et al.[11] conducted some experiments in which compared training from scratch
to fine-tuning models pre-trained on ImageNet or a dataset of retina images[12].
The dataset used was the Seven-Point Checklist Dermatology Dataset[13], and
the results show that using transfer learning gives better results when a small
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dataset is used. These experiments were performed over a too small scale to allows
generalization. Raghu et al.[14] took too on this problem, and their work shows
that transfer learning from ImageNet to medical image analysis offers only little
benefit to performance and simple, lightweight models achieve comparable results
to ImageNet architecture. According to their paper, on medical image analysis,
transfer learning leads to convergence speedups (Figure3.1). Their experiments
were conducted on two datasets: CheXpert[15] and a dataset of retina data[16].
In the work of Menegola et al., source and target dataset are composed of images
in the RGB domain, while in Raghu et al.’s work the target dataset is composed
of grayscale images. It may possible that the features learned on a different color
space dataset are not useful to the new task. This may happen due to grayscale
images in the RGB domain have the same data replicated on each channel, while
colorful RGB images bring different information for each channel.

Figure 3.1: Convergence speedups with transfer learning. (a-b) Retina Dataset.
(c) CheXpert Dataset. [14]

3.2 Image colorization

Since the difference between grayscale and colorful images may not help to use
Transfer Learning among ImageNet dataset and grayscale medical ones, in this
section, I’ll go to talk about different techniques that are related to image col-
orization. These methods create a 3-channels picture from a 1-channel image,
more known as grayscale. A quite common goal of these methods is to produce a
plausible colorization, while for our aim, a colorization that can improve the perfor-
mance of a pre-trained model. In the last years, the popularity of the colorization
task is growing very quickly and various approaches and works were published,
given us some incredible results (Figure 3.2). In

This problem was handled by different strategies:

• Manual approach: The colorization of the whole image is performed man-
ually. This is costly because require specialized human work.
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Figure 3.2: Example of colorization task.[17]

• Manual human annotation: This technique requires that a user puts some
hints over the image. As for the method proposed by Levin et al.[18] that
is based on the assumption that «neighboring pixels in space-time that have
similar intensities should have similar colors» and they used a quadratic cost
function. In Figure 3.3 is possible to see what steps this technique requires
and that the number of hints to be given is high.

• Automatic color transfer: These methods expect the user to provide extra
inputs as one or multiple images that the algorithm uses as a reference for
colorization. An example of this approach is proposed by Gupta et al.[19] in
which the user needs to supply a reference image that is semantically related
to the target image. They extract features from the images chosen and exploit
these features to perform the colorization process (Figure 3.4).

• CNN based: All the previous methods require human assistance that in-
creases the time to generate the final image and the cost, while CNN based
approaches aim to create a fully automatic method that can hallucinate a
plausible colorization.

Since in this thesis, the target images are of a medical type, the focus has been on
the last method that not require human interaction.

3.2.1 Colorful Image Colorization

In this paper, Zhang et al. [17] propose a fully automatic approach that produces
«vibrant and realistic colorization». They trained their architecture (Figure 3.5)
over ImageNet dataset in which images were converted to the Lab color space.
The Lab color space is composed of three channels as the RGB format but the
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(a) Input (b) Hints (c) Result

Figure 3.3: Example proposed in Colorization Using Optimization.[18]

(a) Input (b) Reference (c) Result

Figure 3.4: Example proposed in Image Colorization Using Similar Images.[19]

color information is encoded in this way:

• The L channel contains information about lightness intensity.

• The a channel encodes green and red.

• The b channel encodes blue and yellow.

By using this color space is possible to use the L channel as a grayscale image
and the model must learn to predict only the other two channels. They treat the
problem as a multinomial classification and quantize the ab output space with a
grid size 10. After this step, only 313 ab pairs are used. At the end of the model,
the two predicted channels ab are combined with the L channel to create the final
output and the predicted image is compared to the ground truth, which is the
original image in Lab color space. The image obtained can be reconverted to the
RGB format.

3.2.2 ColorUNet

In their paper Billaut et al.[21] propose a lightweight architecture inspired by U-
Net that, in general, is widely used in image segmentation. Similarly to Zhang et
al. work, they approach the colorization problem as a classification task, working
with a limitate set of colors (only 32). They work on the YUV color space that
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Figure 3.5: Architecture proposed by Zhang et al.[17]

(a) Input (b) Output

Figure 3.6: Example of an image generated from the architecture proposed by
Zhang et al.[20]

allows separating the luminance information (Y channel) from the other chromi-
nance components (U and V channels). The transformation between RGB and
YUV color space is linear. Moreover working in this color space allows using the Y
channel as a grayscale image and the model must predict only the chrominance
components UV. Their architecture achieves quite good results (Figure 3.7) con-
sidering the limited number of colors that the model can predict.

3.2.3 (DE)2CO: Deep Depth Colorization

The previous papers train the networks by comparing the predicted images with
the colorful version of the grayscale images. Since that is not possible with the
medical images, because there is not a colorful version of them, other approaches
have been searched. A possible solution was found in the work of Carlucci et al.
[22]. They try to find an optimal colorization mapping for a given pre-trained
architecture by connecting their colorization module to a standard CNN model
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(a) Input (b) Prediction (c) Ground Truth

Figure 3.7: ColorUNet output.[21]

pre-trained over ImageNet. They train the colorization module freezing the pre-
trained model and in this way, the model learns a good colorization that improves
the performance (Figure 3.8). The main benefit of this work is that colorization is
learned only by using labels.

Figure 3.8: (DE)2CO results.[22]

3.2.4 Colorization in the medical domain

In medical image analysis, some studies use no-handcrafted colorization to improve
performance. For instance, Teare et al.[23] have found that it is possible to signif-
icantly improve the classification accuracy of a network pre-trained on ImageNet
by using genetic algorithms to discover an optimal set of preprocessing transfor-
mations for mammography false color enhancement. In the case of CT scans,
pseudocolor images can be generated by applying different windows/level settings
on each channel, similar to the process employed by radiologists to enhance the
contrast of different tissues[24].
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3.3 Few-Shot Learning
Few-Shot Learning (FSL) is a technique in which a model is fed with a small
amount of data, which is the opposite of a standard machine learning approach.
A variety of methods was proposed to tackle the few-shot learning task, that is
possible to approximately divide into:

• Meta-learning methods: To generalize over new unseen tasks, these meth-
ods introduce a meta-learning paradigm to learn an across-task meta-learner.
Commonly, Recurrent Neural Networks are used. Some example of these
methods are proposed by Fin et al.[25], Lee et al.[26], and Jamal et al.[27]

• The Metric-learning methods use a simpler architecture to learn an em-
bedding space in which the instances of the same category are close together.
For instance, Wertheimer et al.[28], and Lifchitz et al.[29] work.

• Data Augmentation methods: The main idea is to learn a data augmen-
tation to generate more examples from the few available. As the methods
proposed by Chen et al.[30] and Zhang et al.[31].

• The Semantics-based methods use extra semantic information as category
labels, attributes, and natural language description. For example, the method
proposed by Schwartz et al.[32].
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Chapter 4

Methods and materials

In this chapter, I’ll describe the type of modules that were used, what experiments
were done, and which datasets we have focused our attention on.

4.1 Datasets
An important aspect of this thesis has been to choose what datasets use.. In
the beginning, I focused my attention on datasets of medical images with a quite
large number of samples and some previous related works to compare our results
with theirs. Later, the attention was shifted on some smaller datasets of various
anatomy regions.

4.1.1 CheXpert
The first dataset selected was the CheXpert[15] that is a large public dataset for
chest radiograph interpretation, consisting of 224,316 chest radiographs for the
training and 234 for the validation. Each grayscale image is the version scaled
of the original radiograph to have the smaller side equal to 320px. The images
were labeled for the presence of 14 different observations as positive, negative, and
uncertain. The labels are not mutually exclusive and the 14 observation are:

• No Finding

• Enlarged Cardiom.

• Cardiomegaly

• Lung Lesion

• Lung Opacity

• Edema

• Consolidation

• Pneumonia

• Atelectasis

• Pneumothorax

• Pleural Effusion

• Pleural Other

• Fracture

• Support Devices
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As the current competition on this dataset, this thesis is focused only on five of
this observation: Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleural
Effusion.

Labels policy

Since each observation can be uncertain, the paper related to the dataset[15] pro-
vides 5 different approaches to these labels:

• Ignoring: All images that have uncertain labels are ignored. (U-Ignore)

• Binary mapping: Each uncertain label is substituted with:

– 0, in this way this image is considered negative. (U-Zeros)

– 1, in this way this image is considered positive. (U-Ones)

• Self-training: This policy is used as an unsupervised technique. More in
detail, before convergence this policy work as U-Ignore, after each uncertain
label was substituted by the model prediction and the model is still trained.
(U-SelfTrained)

• U-MultiClass: Uncertain labels are considered as an additional class. (U-MultiClass)

To simplify our work has been selected, for each observation, one policy between
U-Zeros and U-Ones considering the best result obtained on the dataset paper.
The policies chosen in this way are reported in Table 4.1.

Atelectasis Cardiomegaly Consolidation Edema PleuralEffusion
Policy U-Ones U-Zeros U-Zeros U-Ones U-Ones

Table 4.1: Labels policies chosen for CheXpert.

4.1.2 MURA

MURA [33] is a dataset of musculoskeletal radiographs consisting of 40,561 multi-
view radiographic images from about 12,000 patients. The dataset is subdivided
into seven different radiographic study types:

• Elbow

• Finger

• Forearm

• Hand

• Humerus

• Shoulder

• Wrist
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Each study was manually labeled as normal or abnormal by board-certified radi-
ologists from Stanford Hospital.

4.1.3 ChestX-ray14

The ChestX-ray14[34] is a Chest X-ray dataset that contains about 112,000 X-ray
images with the label for 15 different findings. The classes that describe each
image are:

• Atelectasis

• Consolidation

• Infiltration

• Pneumothorax

• Edema

• Emphysema

• Fibrosis

• Effusion

• Pneumonia

• Pleural Thickening

• Cardiomegaly

• Nodule Mass

• Hernia

• No Finding

These labels have been extracted from the radiological report associated with the
image by using Natural Language Processing. For this reason, the labels could
be erroneous but the estimate accuracy is over 90%. Each image has a size of
1024× 1024, and for our purpose, they were scaled to 320× 320 to fit the size of
the images of the CheXpert dataset. Furthermore, only 5 diseases were used and
that are Atelectasis, Cardiomegaly, Consolidation, Edema, and Effusion. These
classes were chosen to match the observation chosen in the CheXpert dataset to
work on a similar task.

4.1.4 CheXpert subsets

To see how the performance change over different dataset sizes, some datasets
have been created from the CheXpert dataset. The subsets have sizes of 10%,
5%, 1%, 0.5%, 0.2%, and 0.1% compared to the original one. For each dimension,
three datasets were created by choosing randomly the images from the source
dataset. Eighteen different datasets were built, and in Table 4.2 are reported their
composition.
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Size Random seed Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion
223414 (100%) - 67115 27000 14783 65230 97815
22341 (10%) 8 6647 2770 1509 6519 9796
22341 (10%) 8829 6665 2691 1437 6624 9684
22341 (10%) 2901 6698 2641 1535 6520 9682
11171 (5%) 8 3296 1415 788 3281 4874
11171 (5%) 8829 3338 1400 727 3330 4873
11171 (5%) 2901 3346 1346 793 3273 4925
2234 (1%) 8 664 289 154 654 986
2234 (1%) 8829 680 286 143 641 1004
2234 (1%) 2901 675 289 179 655 999
1117 (0.5%) 8 335 146 67 337 498
1117 (0.5%) 8829 348 144 79 324 501
1117 (0.5%) 2901 326 144 95 315 502
447 (0.2%) 8 131 57 30 118 202
447 (0.2%) 8829 134 53 28 148 193
447 (0.2%) 2901 144 58 41 124 213
223 (0.1%) 8 65 31 12 62 105
223 (0.1%) 8829 63 25 15 72 95
223 (0.1%) 2901 76 32 14 68 105

Table 4.2: Composition of CheXpert subsets. For each observation, the number
of positive labels is reported.

Figure 4.1: Schematic representation of architecture used.
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4.2 Architecture

Intending to analyze different modules with diverse pre-trained models, I created
a modular architecture that can be divided into two main parts (Figure 4.1):

1. Colorization module: The first one contains the module that learns how
to transform the input gray-scale images to three-channels images.

2. Pre-trained model: The second part is designed so that it can contain any
kind of model that accepts as input a three-channel image.

4.3 Colorization modules

As I just said previously, this thesis aim to create some modules that can trans-
form medical images from grayscale to another domain so that they improve the
performance of most-used pre-trained models. To achieve this result we have cre-
ated and tested more than 20 different modules inspired by previous works. In
this thesis, I’ll describe the most interesting.

4.3.1 DECO

Since this thesis has been strongly inspired by the work of Carlucci et al.[22]
because it is a technique that not requires a colorful reference during the training,
I recreated and tested the model proposed in their paper. From their architecture,
I have created three different modules that share the features extractor part, but
use different up-sampling techniques. More in detail, the first part of the modules
is equal to the (DE)2CO module (Figure 4.2), while the up-sampling layer changes
across modules.

Three different up-sampling approaches were tested:

1. Transpose convolution (Deconvolution): It is very similar to the convo-
lution operation, only that the convolution matrix is transposed (Figure 4.3).
Therefore the result is that the output grows instead of reducing. Unfortu-
nately, deconvolution can easily have an uneven overlap, and in particular
when the kernel size is not divisible by the stride. In principle, the network
could learn weights to bypass this behavior, but in practice, neural networks
have difficulties to avoid it completely. This problem may generate some
artifacts on a variety of scales, called Checkerboard Artifacts (Figure 4.4).
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Figure 4.2: (DE)2CO colorization network. On the left, there is the overall
architecture; on the right, there are the details of the residual block.[22].

Figure 4.3: Deconvolution operation.[35]
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Figure 4.4: Examples of checkerboard artifacts [36].

2. Resized Convolution: This technique is similar to the previous one but
the up-sampling to a higher resolution and convolution are separated. Thus,
the low-resolution image is up-sampled by using an interpolation algorithm,
like nearest-neighbor interpolation, to become bigger than the original image,
and after, the image is convolved [36].

3. Pixel shuffle: While the previous approach is based on the idea of generating
a high-resolution image from a low-resolution one (low to high), this procedure
uses the multi-layer feature map to recreate the image at the original size (map
to high) (Figure 4.5). So the last part of the module takes an input of shape
H ×W × C · r2 which is rearranged to rH × rW × C. Where:

H = height
W = width

C = number of output channel
r = resize factor

This approach is used for high-resolution image generation and helps to re-
move checkerboard artifacts [37].
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Figure 4.5: Pixel shuffle technique.[37]

4.3.2 U-Net

Since U-Net architectures in image colorization are widely used, in this thesis a
module based on this architecture was created. Our module was mainly inspired
by the work of V. Billaut et al.[21] because of their architecture is smaller than
others and requires a comparable training time with other modules. The main
components of our architecture are three (Figure 4.6):

1. DownLayer: Used in the first half of the module and is composed of Convo-
lution, LeakyReLU, and BatchNorm. It aims to extract feature and reduce
the spatial dimensionality.

2. UpLayer: Used in the second half of the module and is composed of Trans-
pose Convolution, LeakyReLU, and BatchNorm. It gets as input the output
of the previous UpLayer if exist, and from the DownLayer that is placed at
the same high. Its purpose is to up-sampling the inputs.

3. OutLayer: Similar to the UpLayer and its goal is to create the output image.
It doesn’t use BatchNorm layers.

The blocks described above were used to create the final architecture of the ColorU
module and Figure 4.7 shows how they were combined.

4.4 Pre-Trained models

The modules previously described are followed by a pre-trained model. In this
thesis, two from the most widely used CNN architectures have been taken into
consideration to see how different models interact with modules. The architectures
used are ResNet18 and DenseNet121.

32



Methods and materials

Figure 4.6: Components of the ColorU module.

Figure 4.7: Structure of the ColorU module.
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4.5 Training and evaluation
At the beginning of this thesis, a series of tests have been planned to reach our
aim, and two different learning phases have been defined. To know how good are
results is essential to have a baseline. In this thesis, the baselines are generated by
finetuning the pre-trained models without colorization modules either by freezing
all layers except the last one or by unfreezing all layers. The first part of the tests
has been focused on training modules over the CheXpert dataset, and over how
the performance change from the baseline and between the different modules. So
the learning phase was divided into two main steps. In the first one, the module is
trained while the pre-trained model is frozen except for the last layer (Figure 4.8a).
Following the initial hypothesis, this phase should allow the module to learn how to
convert a grayscale image to a three-channel image that improves the performance
of the pre-trained model. Instead, in the second learning phase, all the architecture
is trained after cleaning the last layer (Figure 4.8b), i.e., after reinitializing the
weights of the last layer. Cleaning the last layer is helpful to escape from local
minima. In the second part of the experiments, different transfer learning strategies
were tested. So, the modules were tested on MURA and ChestX-ray14 datasets.
In this stage, a new training strategy was introduced in which all the architecture
was frozen except for the last layer (Figure 4.8c). Below, the experiments were
reported in detail, while in Appendix B the parameters for replicate the results
are reported.

4.5.1 Experiments on CheXpert

In this dataset, each input image can hold more than one positive observation.
Consequently, it is possible to handle this problem by training one model for each
disease as a binary classification task or, how it was done in this thesis, as a multi-
label classification task by using as loss function the BCEWithlogitsLoss[38]. This
loss is a combination of Sigmoid layer and the BCELoss and is defined as:

l(x, y) = mean(L) = {l1, . . . , lN},
ln = −wn[yn · logσ(xn) + (1− yn) · (1− σ(xn))]

The last layer of the pre-trained model was substituted for a fully connected layer
of five outputs (Figure 4.9). The tests on this dataset were conducted to find an
answer to two questions:

1. What is the strategy that performs better?

2. Is the best strategy depending on the size of the dataset?

The experiments performed were:

34



Methods and materials

(a) Colorization module (b) All

(c) Last layer

Figure 4.8: Learning strategies.

• Baseline 1: The pre-trained models without colorization modules were trained
by taking frozen al the architecture except for the last layer.

• Baseline 2: All the layers of pre-trained networks without colorization mod-
ules were finetuned.

• A series of experiments in which only the colorization modules and the last
layer was trained.

• A series of tests in which all architecture trained in the previous experiment
were finetuned after cleaning the last layer.
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Figure 4.9: Changes to the pre-trained model.

4.5.2 Experiments on MURA
This dataset is composed of images of different body regions and with different
tasks than CheXpert. The target choice is the shoulder, and the task is to iden-
tify the status of this body part (normal or not). Since it is a classical binary
classification problem, the Cross-Entropy Loss was used [38].

loss(x, class) = −x[class] + log(
X
j

x[j])

On Mura was tested if it can be transferred the colorization knowledge learned on
CheXpert to a smaller dataset with images in a different domain.

• The same experiments done on CheXpert were re-proposed on this dataset.

• A test in which networks composed of a colorization module trained on CheX-
pert and a ResNet18 model trained on ImageNet was taken frozen except for
the last layer.

• A test in which networks composed of a colorization module trained on CheX-
pert and a ResNet18 model trained on ImageNet was taken frozen except for
the last layer and the colorization modules.

• An experiments in which all architecture trained in the previous experiment
were finetuned after cleaning the last layer.

4.5.3 Experiments on ChestX-ray14
Also, on ChestX-ray14 dataset was tested what type of improvements can be
brought by transferring the colorization module pre-trained on CheXpert. Since
the target domain and the Label Space is the same as the source dataset, the
loss function used, and the last layer of the architectures are the same as used for
CheXpert. Three different tests were conducted:
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• The baseline in which only the last layer of a ResNet18 model pre-trained on
ImageNet was finetuned.

• A test in which a network composed of a colorization module trained on
CheXpert and a ResNet18 model trained on ImageNet was taken frozen except
for the last layer.

• An experiment in which the architecture was composed of a module and
a model pre-trained on CheXpert. Only the last layer of the network was
finetuned.

4.5.4 Data augmentation and experimental setup
Each experiment was done by applying the same data augmentation that is com-
posed in this way (Figure 4.11):

• Random Crop: Images that are not square was randomly cropped to a
square form.

• Resize: If an image has a size greater of 320x320 it is scaled to this size.

• Random Rotation: Each image is rotated with a probability of 0.75 by an
angle choose randomly between -10° and 10°.

• Random Zoom: Each image is scaled with a probability of 0.75 by a factor
randomly choose between 1.0 and 1.1.

Other common parameters used were:

• Each image was normalized by using statistics calculated over the CheXpert
dataset. Mean = 0.5028, std = 0.2902.

• The SGD was used as optimizer combined with a learning strategy called
One Cycle Policy. In the policy proposed by Leslie et al.[39], the learning rate
and the momentum vary over the training time, as reported in Figure 4.10.

• AUC was the metric chosen for comparing the various result. Since it is a
binary metric and there are more label classes in the datasets chosen, for each
observation was calculated the AUC and the mean of AUCs so obtained was
used.

• Each experiment was done three times to observe how much the non-deterministic
initialization influences the final result.

• Each N iterations the model is saved (The number of iteration changes across
datasets. See AppendixB for details).

• The AUC reported is the best one over checkpoints.
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The number of trainable parameters for different training strategies is reported in
Table 4.3.

Figure 4.10: Example of learning rate and momentum by using One Cycle Policy.

Model Colorization Module Training Strategies Trainable parameters
ResNet18 No Last layer 2565 (0.02%)
ResNet18 DECONV Colorization Module 599176 (5.36%)
ResNet18 PixelShuffle Colorization Module 602005 (5.39%)
ResNet18 ColorU Colorization Module 195224 (1.75%)
ResNet18 No All 11179077 (100%)
ResNet18 DECONV All 11775688 (105.34%)
ResNet18 PixelShuffle All 11778517 (105.36%)
ResNet18 ColorU All 11371736 (101.72%)

DenseNet121 No Last layer 5125 (0.07%)
DenseNet121 DECONV Colorization Module 601736 (8.65%)
DenseNet121 PixelShuffle Colorization Module 604565 (8.69%)
DenseNet121 ColorU Colorization Module 197784 (2.84%)
DenseNet121 No All 6958981 (100%)
DenseNet121 DECONV All 7555592 (108.57%)
DenseNet121 PixelShuffle All 7558421 (108.61%)
DenseNet121 ColorU All 7151640 (102.77%)

Table 4.3: The number of trainable parameters on different training strategies.
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(a) Input
(b) Example 0 (c) Example 1

(d) Example 2 (e) Example 3 (f) Example 4

(g) Example 5 (h) Example 6

Figure 4.11: Examples of data augmentation.
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Chapter 5

Results

In this chapter, I’ll describe the results of each test showing how the different
modules modify the performance of the architecture.

5.1 Training modules over CheXpert

The first pre-trained model used was ResNet18 and in Table 5.1 are reported the
result of tests (Figure 5.5). Experiments marked in blue are baselines and from
these is possible to observe that when only the last layer is trained the model can
not reach a high result. These could be provoked by the difference between the
chest X-Ray images used and the standard images of ImageNet on which the model
was trained. Instead by training entirely the model, it produces results that are
better than 6.2-18.5% over observations and an increment of 12.8% over the mean.
The results show that using colorization modules, the performance of the entire
network increases by modifying the spatial domain of the input images. By using
modules proposed in this thesis is possible to reach an increment of performance
of about 6-7% compared to training only the last layer of the pre-trained model
without colorization modules. This part of the tests aims to teach the modules
on how to transform the one-channel input images into three-channels images.
The output of the colorization modules was extracted to see what the colorization
modules had learned.
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CheXpert
Model Colorization Module Transfer strategy AUC
ResNet18 No Last layer 0.784 ± 0.005
ResNet18 DECONV Module 0.840 ± 0.003
ResNet18 PixelShuffle Module 0.834 ± 0.004
ResNet18 ColorU Module 0.839 ± 0.008
ResNet18 No All 0.896 ± 0.002
ResNet18 DECONV All 0.889 ± 0.003
ResNet18 PixelShuffle All 0.889 ± 0.002
ResNet18 ColorU All 0.893 ± 0.003

DenseNet121 No Last layer 0.786 ± 0.002
DenseNet121 DECONV Module 0.835 ± 0.003
DenseNet121 PixelShuffle Module 0.843 ± 0.008
DenseNet121 ColorU Module 0.839 ± 0.005
DenseNet121 No All 0.898 ± 0.002
DenseNet121 DECONV All 0.892 ± 0.002
DenseNet121 PixelShuffle All 0.896 ± 0.001
DenseNet121 ColorU All 0.897 ± 0.003

Table 5.1: Tests over CheXpert using ResNet18 and DenseNet121.

In Figure5.1 these outputs are reported and more precisely:

(a) It is the one-channel input image that enters in the architecture.

(b) It is the three-channels image that exits from the DECONV modules.

(c) It is the three-channels image that exits from the Pixel Shuffle modules.

(d) It is the three-channels image that exits from the ColorU modules.

At first, it may seem that only the Pixel Shuffle module can convert the input image
to a correct RGB image, but even if a CNN is based on how the mammal visual
cortex work it doesn’t "see" in the same way in which we are used to observing
the world. Indeed looking at the AUCs after this first step, the DECONV module
reaches the best performance even if it generates images that seem to be useless
for human reading at first look. The last part of these experiments was focused on
finetuning the entire architecture trained previously after cleaning the last layer.
This is an important step since it allows the model to modify the weights learned on
ImageNet that could be not the right one for this task. The results obtained from
these tests show that after this step the whole architecture reaches slightly worst
result comparing to training only the pre-trained model. As before the output of
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(a) Input (b) DECONV (c) Pixel Shuffle (d) ColorU

Figure 5.1: Outputs of colorization modules after first training mode. (ResNet18)

(a) Input (b) DECONV (c) Pixel Shuffle (d) ColorU

Figure 5.2: Outputs of colorization modules after finetuning all the
architecture. (ResNet18)

the modules has been saved and reported in Figure 5.2. Comparing the outputs
of the modules before and after the last finetuning is possible to notice that the
images produced contain more visual information. While the ColorU’s output now
is very similar to the input image, in the Pixel Shuffle the details over the ribcage
are increased. Moreover, it is possible to notice that different parts of the images
that share the same material have similar colorization, for example, regions filled
with air.

After completing the experiments over ResNet18, it was tested how the results
change by using a different pre-trained model. So the previous tests have been
replicated by substituting the ResNet18 model with the DenseNet 121 one. Table
5.1 and Figure 5.6 contains the results that have been obtained and the behavior of
this new architecture is comparable to the previous. Also by observing the output
images (Figure 5.1 and Figure 5.3, Figure 5.2 and Figure 5.4), it is not possible to
notice significant differences between the two architectures. It is quite interesting
to notice that not only a random initialization leads to different final results, as
expected, but also how it changes the final colorization. In Figure 5.7 is possible
to observe this effect over the Pixel Shuffle module. In Appendix A is possible to
find the results in detail, while in Figure 5.8 the ROC curves are reported.
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(a) Input (b) DECONV (c) Pixel Shuffle (d) ColorU

Figure 5.3: Outputs of colorization modules after first training mode.
(DenseNet121)

(a) Input (b) DECONV (c) Pixel Shuffle (d) ColorU

Figure 5.4: Outputs of colorization modules after finetuning all the
architecture. (DenseNet121)

Figure 5.5: AUCs by using different modules. (ResNet18)
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Figure 5.6: AUCs by using different modules. (DenseNet121)

Pre-trained model ResNet18

(a) Test1 (b) Test2 (c) Test3

Pre-trained model DenseNet121

(d) Test1 (e) Test2 (f) Test3

Figure 5.7: Outputs of Pixel Shuffle modules from different initialization.
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Colorization Module

(a) No module (b) DECONV

(c) PixelShuffle (d) ColorU

All

(e) No module (f) DECONV

(g) PixelShuffle (h) ColorU

Figure 5.8: Roc curves of tests with ResNet18.
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5.2 Experiments over MURA

Over this dataset, it was tested how the modules perform over a smaller dataset
and if it is possible to transfer the information for colorization learned on a different
body region to another one. The same tests performed on CheXpert were redone
and the results can be found in Table 5.2. The outcomes show the same trend
seen in the CheXpert experiment, but when the network is not frozen, the results
become worst. This behavior could happen due to the smaller dataset.

MURA
Model Colorization Module Transfer strategy AUC
ResNet18 No Last Layer 0.730 ± 0.011
ResNet18 DECONV (Scratch) Colorization Module 0.735 ± 0.009
ResNet18 PixelShuffle (Scratch) Colorization Module 0.746 ± 0.012
ResNet18 ColorU (Scratch) Colorization Module 0.765 ± 0.013
ResNet18 No All 0.824 ± 0.004
ResNet18 DECONV (MURA) All 0.792 ± 0.006
ResNet18 PixelShuffle (MURA) All 0.790 ± 0.006
ResNet18 ColorU (MURA) All 0.803 ± 0.007

Table 5.2: Tests over MURA using ResNet18 model (Baseline + Modules from
scratch)

After this step, the architecture with modules pre-trained on CheXpert was tested
by taking frozen all the architecture except the last layer and, after, by freezing
all the layers except the output one (Table 5.3).

MURA
Model Colorization Module Transfer strategy AUC
ResNet18 DECONV (CheXpert) Last Layer 0.709 ± 0.020
ResNet18 PixelShuffle (CheXpert) Last Layer 0.671 ± 0.013
ResNet18 ColorU (CheXpert) Last Layer 0.675 ± 0.039
ResNet18 DECONV (CheXpert) All 0.790 ± 0.007
ResNet18 PixelShuffle (CheXpert) All 0.775 ± 0.005
ResNet18 ColorU (CheXpert) All 0.800 ± 0.013

Table 5.3: Tests over MURA using ResNet18 model with colorization modules
pre-trained on CheXpert (Last layer and All).
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The last set of experiments on this dataset is similar to the tests performed on
CheXpert, but with modules pre-trained on CheXpert (Table 5.4). These tests
seem to confirm that performing transfer learning from a dataset of a different
body region not help to obtain better outcomes. Indeed, there aren’t significant
differences between results obtained by using colorization modules from scratch
and pre-trained on CheXpert. Also, when a frozen pre-trained module was used,
the worst outcomes were obtained, proving that the knowledge learned on the
source dataset was not helpful.

MURA
Model Colorization Module Transfer strategy AUC
ResNet18 DECONV (CheXpert) Colorization Module 0.745 ± 0.013
ResNet18 PixelShuffle (CheXpert) Colorization Module 0.752 ± 0.011
ResNet18 ColorU (CheXpert) Colorization Module 0.762 ± 0.010
ResNet18 DECONV (MURA) All 0.781 ± 0.005
ResNet18 PixelShuffle (MURA) All 0.796 ± 0.016
ResNet18 ColorU (MURA) All 0.802 ± 0.004

Table 5.4: Tests over MURA using ResNet18 model with colorization modules
pre-trained on CheXpert (Colorization Module and All).

5.3 Testing over ChestX-ray14

The following experiments have been focused on a smaller dataset than CheXpert
but with a common task. On the ChestX-ray14 was tested if modules and archi-
tectures trained on CheXpert are transferable. For these experiments, the model
chosen was the ResNet18, and the colorization module was the PixelShuffle. The
outcomes (Table 5.5) show that the knowledge between datasets of the same body
region can be transferred. Indeed, differently than what see on the MURA dataset,
also reusing the colorization module frozen helps to achieve better results. How-
ever, transfer only the module leads to slightly worst performance when all layers
are finetuned.

5.4 Effect of training set size

These experiments were done to see how the performance change over different
dataset sizes. The subsets size chosen are 10%, 5%, 1%, 0.5%, 0.2%, and 0.1%
of the original size. For each dimension, three different subsets have been created
randomly. All these experiments were done by using ResNet18 as the pre-trained
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Figure 5.9: AUCs of networks over ChestX-ray14.

Table 5.5: Results of training different networks over the ChestX-ray14 dataset.

ChestX-ray14
Model Colorization Module Transfer strategy AUC

ResNet18 (ImageNet) No Last layer 0.669 ± 0.00
ResNet18 (ImageNet) PixelShuffle (CheXpert) Last layer 0.683 ± 0.01
ResNet18 (CheXpert) PixelShuffle (CheXpert) Last layer 0.773 ± 0.01
ResNet18 (ImageNet) PixelShuffle (Scratch) Colorization Module 0.729 ± 0.01
ResNet18 (ImageNet) No All 0.799 ± 0.00
ResNet18 (ImageNet) PixelShuffle (CheXpert) All 0.794 ± 0.00
ResNet18 (CheXpert) PixelShuffle (CheXpert) All 0.810 ± 0.00
ResNet18 (ImageNet) PixelShuffle (ChestX-ray14) All 0.792 ± 0.00

model and PixelShuffle as the colorization module. As for the original dataset,
four different experiments were performed:

• The first baseline in which there is not colorization module and the pre-trained
model is frozen except the last layer.

• The first test in which there is the colorization module and only the pre-
trained model is frozen except for the last layer.

• The second baseline in which all the model is trained.

• The second test in which the architecture trained in the first test was finetuned
in mode 2.

• In the last experiment, the colorization module was trained from scratch.

While results are summarized in Table 5.6, Figure 5.10 reports how the AUC

48



Results

changes across different dataset sizes, and Figure 5.11 shows the difference between
AUCs of different networks and modality took into consideration. The outcomes
show that when the number of instances in the dataset decreases, training all the
network or only the colorization module leads to better performance than training
the architecture without the module.

Figure 5.10: AUCs over different dataset size.
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Figure 5.11: Difference between AUCs of different networks and training
regime over subsets of CheXpert.
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Table 5.6: Experiments over subsets of CheXpert. (ResNet18)

CheXpert
Size Model Colorization Module Transfer strategy AUC
100% ResNet18 No Last layer 0.784 ± 0.005
100% ResNet18 No All 0.896 ± 0.002
100% ResNet18 PixelShuffle Colorization Module 0.834 ± 0.004
100% ResNet18 PixelShuffle All 0.889 ± 0.001
10% ResNet18 No Last layer 0.760 ± 0.008
10% ResNet18 No All 0.868 ± 0.008
10% ResNet18 PixelShuffle Colorization Module 0.823 ± 0.007
10% ResNet18 PixelShuffle All 0.843 ± 0.013
5% ResNet18 No Last layer 0.735 ± 0.008
5% ResNet18 No All 0.850 ± 0.008
5% ResNet18 PixelShuffle Colorization Module 0.817 ± 0.004
5% ResNet18 PixelShuffle All 0.839 ± 0.005
1% ResNet18 No Last layer 0.695 ± 0.017
1% ResNet18 No All 0.820 ± 0.014
1% ResNet18 PixelShuffle Colorization Module 0.798 ± 0.004
1% ResNet18 PixelShuffle All 0.809 ± 0.004
0.5% ResNet18 No Last layer 0.645 ± 0.004
0.5% ResNet18 No All 0.782 ± 0.006
0.5% ResNet18 PixelShuffle Colorization Module 0.765 ± 0.010
0.5% ResNet18 PixelShuffle All 0.782 ± 0.009
0.2% ResNet18 No Last layer 0.624 ± 0.019
0.2% ResNet18 No All 0.753 ± 0.020
0.2% ResNet18 PixelShuffle Colorization Module 0.758 ± 0.019
0.2% ResNet18 PixelShuffle All 0.766 ± 0.005
0.1% ResNet18 No Last layer 0.644 ± 0.016
0.1% ResNet18 No All 0.710 ± 0.008
0.1% ResNet18 PixelShuffle Colorization Module 0.709 ± 0.004
0.1% ResNet18 PixelShuffle All 0.733 ± 0.016
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Discussion

The experiments proposed aim to answer three main questions, and they were
conducted over three different datasets. On the largest (CheXpert), it was tested
what is the best strategy, and if it changes when the dataset sizes vary. Over the
other datasets, it was tested if the modules and the architectures are transferable.
From the experiments conducted on the CheXpert dataset is possible to assert
that the colorization modules proposed can adapt the gray-scale inputs to exploit
better the features learned on ImageNet. By looking at the architectures that
use ResNet18 as the pre-trained model frozen, the module that reaches the best
result is the DECONV one, while for the architectures that utilize DenseNet121,
is the PixelShuffle module. However, the variation from the results obtained by
the different modules is small. When the entire network is trained, the difference
between using or not the modules decreases in a meaningful way. After this phase,
the module that performs best is ColorU, and in combination with the DenseNet
model, obtains the higher AUC over all experiments done. The outcomes of our
baseline are slightly less to the results obtained by Irvin et al. [15], but they use
an ensemble technique that could explain this difference.

The experiments performed on the MURA dataset, in which the number of samples
is about 8,000, confirm the behavior seen on the CheXpert dataset. However,
the best approach to train the model on this dataset is to training only the pre-
trained model without the colorization module. When the modules are pre-trained
on CheXpert, and only the last layer was finetuned, the outcomes obtained are
the worst. Furthermore, there are no differences between results obtained when
modules from scratch and pre-trained are finetuned. This behavior confirms the
work of Romero et al., which shows that using models pre-trained on different body
regions not help to get better results. Reusing module or the whole architecture
that was trained over the same anatomy region leads to better outcomes. The tests
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over ChestX-ray-14 confirm these results; the improvements are of about 5% when
only the module was transferred, and around to 16% when all the architecture was
reused.

The series of tests conducted on subsets of CheXpert show that, when the size of
the dataset decreases, the performance using the colorization modules reach higher
results. If the number of samples is less than 512, training all the architecture with
the colorization modules leads to achieving better results, with an improvement of
about 3%. Moreover, training only the module allows reaching the same, or slightly
performance better than finetuning all layers of the pre-trained model.

The images generated from the modules proposed are very different between them.
The most colorful ones are the images that the PixelShuffle module produces. Each
of these modules inserts some artifacts into the images as is possible to see in Figure
6.1. Since the purpose of these modules is to obtain a new representation of images
that helps the pre-trained network, and not to generate realistic images, there may
be different explanations for these artifacts:

• Some layers used can introduce this type of artifact, for instance, the Trans-
pose Convolution Layers.

• It could indicate that some information as lost in the process.

(a) DECONV (b) PixelShuffle (c) ColorU

Figure 6.1: Artifacts generated by the modules.

6.1 Future works
At the end of this work, some future improvements are possible to perform. In
this thesis, only two different pre-trained models were tested, but this work can
be extended to other popular pre-trained networks, for instance, VGG. Moreover,
due to the lack of time, only three different colorization modules have been chosen
on which perform the experiments, but more than 20 modules were created. Also,
different initialization for the modules could improve the results, for instance, by
introducing a step in which the module is trained on ImageNet. An interesting
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scenario could be to take advantage of the images created from the modules to help
the radiologist interpretation. In Figure 6.2 some examples of the combination of
output and input to achieve this purpose are reported.

Figure 6.2: Examples of colorization for human work.
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Appendix A

Chexpert Results

In this chapter are reported all the result obtained by training over the Chexpert
dataset.

The modes are:

• Mode 1: The module, if present, and the last layer are trained.

• Mode 2: All layers are trained.

• Mode 3: only the last layer is finetuned.

A.1 ResNet18

Below are reported the result, in detail, of all experiments on the CheXpert dataset
using the ResNet18 model:

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
No 1 0.744 0.714 0.823 0.870 0.798 0.790
No 1 0.750 0.700 0.800 0.863 0.790 0.781
No 1 0.754 0.700 0.793 0.870 0.794 0.782

Mean 0.749 0.705 0.805 0.868 0.794 0.784
Std 0.005 0.008 0.016 0.004 0.004 0.005

Table A.1: Results of training the ResNet18 model without the colorization
module by freezing all the architecture except the last layer over the CheXpert
dataset.
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Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
No 2 0.857 0.928 0.912 0.836 0.940 0.895
No 2 0.824 0.859 0.942 0.920 0.930 0.895
No 2 0.854 0.844 0.937 0.926 0.931 0.898

Mean 0.845 0.877 0.930 0.894 0.934 0.896
Std 0.018 0.045 0.016 0.050 0.006 0.002

Table A.2: Results of training the ResNet18 model without the colorization
module over the CheXpert dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
DECONV 1 0.802 0.783 0.901 0.852 0.860 0.840
DECONV 1 0.834 0.767 0.864 0.863 0.860 0.838
DECONV 1 0.807 0.790 0.886 0.862 0.871 0.843

Mean 0.814 0.780 0.884 0.859 0.864 0.840
Std 0.017 0.012 0.019 0.006 0.006 0.003

Table A.3: Results of training the ResNet18 model with the DECONV module
by freezing the pre-trained model except for the last layer, over the CheXpert
dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
PixelShuffle 1 0.829 0.746 0.872 0.843 0.868 0.832
PixelShuffle 1 0.802 0.758 0.885 0.856 0.859 0.832
PixelShuffle 1 0.816 0.766 0.893 0.881 0.840 0.839

Mean 0.816 0.757 0.883 0.860 0.856 0.834
Std 0.014 0.010 0.011 0.019 0.014 0.004

Table A.4: Results of training the ResNet18 model with the PixelSuffle module
by freezing the pre-trained model except for the last layer, over the CheXpert
dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
ColorU 1 0.800 0.791 0.902 0.875 0.860 0.846
ColorU 1 0.819 0.770 0.851 0.866 0.847 0.831
ColorU 1 0.839 0.772 0.888 0.848 0.850 0.839

Mean 0.819 0.778 0.880 0.863 0.852 0.839
Std 0.020 0.012 0.026 0.014 0.007 0.008

Table A.5: Results of training the ResNet18 model with the ColorU module by
freezing the pre-trained model except for the last layer, over the CheXpert dataset.
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Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
DECONV 2 0.849 0.847 0.938 0.890 0.928 0.890
DECONV 2 0.840 0.859 0.927 0.907 0.925 0.892
DECONV 2 0.834 0.854 0.920 0.904 0.918 0.886

Mean 0.841 0.853 0.928 0.900 0.924 0.889
Std 0.008 0.006 0.009 0.009 0.005 0.003

Table A.6: Results of training the ResNet18 model with the DECONV module
after cleaning the last layer, over the CheXpert dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
PixelShuffle 2 0.830 0.845 0.922 0.905 0.938 0.888
PixelShuffle 2 0.822 0.839 0.947 0.914 0.927 0.890
PixelShuffle 2 0.834 0.858 0.930 0.906 0.923 0.890

Mean 0.829 0.847 0.933 0.908 0.929 0.889
Std 0.006 0.010 0.013 0.005 0.008 0.001

Table A.7: Results of training the ResNet18 model with the PixelShuffle module
after cleaning the last layer, over the CheXpert dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
ColorU 2 0.832 0.861 0.912 0.915 0.932 0.890
ColorU 2 0.820 0.842 0.941 0.933 0.938 0.895
ColorU 2 0.830 0.844 0.930 0.915 0.937 0.891

Mean 0.827 0.849 0.928 0.921 0.936 0.892
Std 0.006 0.010 0.015 0.010 0.003 0.003

Table A.8: Results of training the ResNet18 model with the ColorU module after
cleaning the last layer, over the CheXpert dataset.

A.2 DenseNet121
Below are reported the result, in detail, of all experiments on the CheXpert dataset
using the DenseNet121 model:

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
No 1 0.776 0.721 0.780 0.832 0.822 0.786
No 1 0.781 0.727 0.769 0.830 0.819 0.785
No 1 0.782 0.720 0.782 0.836 0.819 0.788

Mean 0.780 0.723 0.777 0.833 0.820 0.786
Std 0.003 0.004 0.007 0.003 0.002 0.002

Table A.9: Results of training the DenseNet121 model without the colorization
module by freezing all the architecture except the last layer over the CheXpert
dataset.
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Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
No 2 0.850 0.825 0.952 0.937 0.927 0.898
No 2 0.859 0.822 0.952 0.938 0.927 0.900
No 2 0.854 0.833 0.942 0.921 0.933 0.897

Mean 0.854 0.827 0.949 0.932 0.929 0.898
Std 0.005 0.006 0.006 0.010 0.003 0.002

Table A.10: Results of training the DenseNet121 model without the colorization
module over the CheXpert dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
DECONV 1 0.781 0.798 0.883 0.861 0.841 0.833
DECONV 1 0.788 0.799 0.886 0.868 0.853 0.839
DECONV 1 0.824 0.762 0.884 0.847 0.850 0.833

Mean 0.798 0.786 0.884 0.859 0.848 0.835
Std 0.023 0.021 0.002 0.011 0.006 0.003

Table A.11: Results of training the DenseNet121 model with the DECONV mod-
ule by freezing the pre-trained model except for the last layer, over the CheXpert
dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
PixelSuffle 1 0.828 0.758 0.885 0.858 0.869 0.840
PixelSuffle 1 0.816 0.751 0.874 0.882 0.866 0.838
PixelSuffle 1 0.824 0.800 0.893 0.882 0.864 0.853

Mean 0.823 0.770 0.884 0.874 0.866 0.844
Std 0.006 0.027 0.010 0.014 0.003 0.008

Table A.12: Results of training the DenseNet121 model with the PixelSuffle mod-
ule by freezing the pre-trained model except for the last layer, over the CheXpert
dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
ColorU 1 0.802 0.782 0.882 0.852 0.864 0.836
ColorU 1 0.809 0.759 0.885 0.877 0.851 0.836
ColorU 1 0.800 0.765 0.921 0.870 0.864 0.844

Mean 0.804 0.769 0.896 0.866 0.860 0.839
Std 0.005 0.012 0.022 0.013 0.008 0.005

Table A.13: Results of training the DenseNet121 model with the ColorU module
by freezing the pre-trained model except for the last layer, over the CheXpert
dataset.
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Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
DECONV 2 0.856 0.872 0.911 0.890 0.924 0.891
DECONV 2 0.835 0.881 0.927 0.905 0.924 0.894
DECONV 2 0.840 0.835 0.947 0.922 0.917 0.892

Mean 0.844 0.863 0.928 0.906 0.922 0.892
Std 0.011 0.024 0.018 0.016 0.004 0.002

Table A.14: Results of training the DenseNet121 model with the DECONV
module after cleaning the last layer, over the CheXpert dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
PixelShuffle 2 0.830 0.850 0.945 0.917 0.942 0.897
PixelShuffle 2 0.863 0.833 0.940 0.913 0.938 0.897
PixelShuffle 2 0.848 0.868 0.929 0.900 0.930 0.895

Mean 0.847 0.850 0.938 0.910 0.937 0.896
Std 0.017 0.018 0.008 0.009 0.006 0.001

Table A.15: Results of training the DenseNet121 model with the PixelShuffle
module after cleaning the last layer, over the CheXpert dataset.

Module Mode Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean
ColorU 2 0.856 0.860 0.940 0.913 0.935 0.901
ColorU 2 0.829 0.826 0.935 0.946 0.927 0.893
ColorU 2 0.851 0.839 0.936 0.920 0.931 0.895

Mean 0.845 0.842 0.937 0.926 0.931 0.896
Std 0.014 0.017 0.003 0.017 0.004 0.004

Table A.16: Results of training the DenseNet121 model with the ColorU module
after cleaning the last layer, over the CheXpert dataset.
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Appendix B

Methodology

In this chapter, all parameters needed to replicate the experiments are described
in detail.

B.1 Modules structure

B.1.1 DECO

Figure B.1: DECO structure with parameters.
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The initialization of the layers is:

• ConvLayer: Initialized by using the Xavier Uniform Initialization.

• BatchNorm: Weight = 1 and Bias = 0

• Other: Other layers are initialized with default methods of Pytorch.

B.1.2 PixelShuffle

Figure B.2: PixelShuffle structure with parameters.

The initialization of the layers is:

• ConvLayer of PixelShuffle Layer: Initialized by using the ICNR[40].

• BatchNorm: Weight = 1 and Bias = 0
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• Other: Other layers are initialized with default methods of Pytorch.

B.1.3 ColorU

Figure B.3: ColorU structure with parameters.

The layers are initialized with default methods of Pytorch.
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B.2 Experiments parameters

B.2.1 CheXpert

Baseline - Mode1:

• Model pre-trained on ImageNet (ResNet18 and DenseNet121).

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 2e-3.

• Epochs: 12 or until convergence.

• Dataset shuffle.

• Best model saved every 4800 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

Baseline - Mode2:

• Model pre-trained on ImageNet (ResNet18 and DenseNet121).

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 2e-2.

• Epochs: 6 or until convergence.

• Dataset shuffle.

• Best model saved every 4800 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

Tests with modules - Mode1:

• Model pre-trained on ImageNet (ResNet18 and DenseNet121).

• Models used: DECONV, PixelShuffle and ColorU.

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 2e-3.
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• Epochs: 12 or until convergence.

• Dataset shuffle.

• Best model saved every 4800 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

Tests with modules - Mode2:

• Model pre-trained on ImageNet (ResNet18 and DenseNet121).

• Models used: DECONV, PixelShuffle and ColorU.

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 2e-2.

• Epochs: 6 or until convergence.

• Dataset shuffle.

• Best model saved every 4800 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

B.2.2 MURA

Baseline - Mode1 and Mode2:

• Model pre-trained on ImageNet (ResNet18).

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 2e-3.

• Epochs: 48 or until convergence.

• Dataset shuffle.

• Best model saved every 2048 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.
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• Pytorch 1.4.0

Tests with modules - Mode1 - Mode2 - Mode3:

• Model pre-trained on ImageNet (ResNet18).

• Models used: DECONV, PixelShuffle and ColorU (Scratch/Pre-trained on
CheXpert).

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 2e-3.

• Epochs: 48 or until convergence.

• Dataset shuffle.

• Best model saved every 2048 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

B.2.3 ChestX-ray14

Baseline - Mode3:

• Model pre-trained on ImageNet (ResNet18).

• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 1e-3.

• Epochs: 48 or until convergence.

• Dataset shuffle.

• Best model saved every 43520 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

Tests with modules - Mode3:

• Model pre-trained on ImageNet/CheXpert (ResNet18).

• Models used: PixelShuffle (Pre-trained on CheXpert).
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• Learning alghoritm: SGD with OneCycle policy.

• MaxLr: 1e-3.

• Epochs: 48 or until convergence.

• Dataset shuffle.

• Best model saved every 43520 iteration.

• Data Augmentation: see Chapter 5.

• GPU: NVIDIA 1080Ti and NVIDIA K80.

• Pytorch 1.4.0

70


	List of Tables
	List of Figures
	Introduction
	Structure of the document

	Background
	Machine Learning algorithms
	Neural Network
	Deep learning
	CNN
	Models

	Transfer Learning
	Definition
	Transfer Learning Scenarios

	Transfer Learning Strategies
	How to perform transfer learning
	Data Augmentation

	Related Work
	Transfer Learning in Medical Image Analysis
	Image colorization
	Colorful Image Colorization
	ColorUNet
	(DE)2CO: Deep Depth Colorization
	Colorization in the medical domain

	Few-Shot Learning

	Methods and materials
	Datasets
	CheXpert
	MURA
	ChestX-ray14
	CheXpert subsets

	Architecture
	Colorization modules
	DECO
	U-Net

	Pre-Trained models
	Training and evaluation
	Experiments on CheXpert
	Experiments on MURA
	Experiments on ChestX-ray14
	Data augmentation and experimental setup


	Results
	Training modules over CheXpert
	Experiments over MURA
	Testing over ChestX-ray14
	Effect of training set size

	Discussion
	Future works

	Bibliography
	Chexpert Results
	ResNet18
	DenseNet121

	Methodology
	Modules structure
	DECO
	PixelShuffle
	ColorU

	Experiments parameters
	CheXpert
	MURA
	ChestX-ray14



