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Summary

In this period there is a lot of hype around the possibility to make computers
able to learn automatic tasks by using a group of algorithms that go by the
name of Artificial Intelligence. One of those tasks is the automatic classifi-
cation of images and it is the one this work is focused on.
In real world applications, having an algorithm able to classify new types of
images, once that it has been already trained for a previous task, would be
extremely useful. Unfortunately, simply training the model with new types
of images is not enough due to the so-called catastrophic forgetting problem:
the algorithm will learn how to recognize the new types of images, but it will
loose knowledge about previous ones.
Thinking about a real use-case affected by this problem is extremely easy: let
us consider an oncologist who is using an application able to take histological
images in input and to predict, among some already learnt types, the type
of the cancer depicted in that image; at a certain point in time including
the automatic recognition of new types of cancer becomes necessary, so the
algorithm behind the application will be trained according this need.
The purpose of this work is to propose a possible solution to deal with the
catastrophic forgetting problem and, in this way, to make a machine able to
learn new images classification tasks incrementally.

4



Acknowledgements

Before diving into the seriousness of this work, I would like to take a moment
to thank the professors who helped me in achieving a personally more than
satisfying result. So thanks to profs. Elisa Ficarra, Santa Di Cataldo and
Francesco Ponzio.

5



Contents

1 Introduction 9
1.1 Incremental learning . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Formalization of the goal . . . . . . . . . . . . . . . . . . . . . 11
1.3 Trivial solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Available works 13
2.1 Additional loss terms . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Baseline - iCaRL . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 End-to-End Incremental Learning . . . . . . . . . . . . 17
2.1.3 Large Scale Incremental Learning . . . . . . . . . . . . 17

2.2 A different sub-part of the network for each task . . . . . . . . 19
2.2.1 Packnet . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Piggyback . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Artificially generated samples . . . . . . . . . . . . . . . . . . 22
2.3.1 Exemplar-Supported Generative Reproduction . . . . . 22
2.3.2 Deep Generative Replay . . . . . . . . . . . . . . . . . 24

3 The chosen architecture 27
3.1 Expert Gate: Lifelong Learning with a Network of Experts . . 29
3.2 The Autoencoder Gate . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Predicting the task’s expert . . . . . . . . . . . . . . . . . . . 33
3.4 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 A new application: CIFAR-100 . . . . . . . . . . . . . . . . . 36

4 The Bayesian approach 41
4.1 Introduction to Bayesian neural networks . . . . . . . . . . . . 42
4.2 Dropout approximation . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Uncertainty estimation . . . . . . . . . . . . . . . . . . 45

6



4.4 Two new proposed architectures . . . . . . . . . . . . . . . . . 50
4.5 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusions 59

Appendices 61

A iCaRL 63
A.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B End-to-End Incremental Learning 67
B.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C Large Scale Incremental Learning 69
C.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D Packnet 71
D.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
D.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

E Piggyback 73
E.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
E.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

F Exemplar-Supported Generative Reproduction 75
F.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
F.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

G Deep Generative Replay 77
G.1 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
G.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

H Expert Gate: Lifelong Learning with a Network of Experts 79
H.1 Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
H.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 81

7



8



Chapter 1

Introduction

1.1 Incremental learning

The purpose of this work is to propose a possible solution to implement the

incremental learning concept. In this case we are focused on a task of auto-

matic classification of images. As we widely know now, for this kind of tasks

neural network models are typically used and, in particular convolutional

neural networks.

More specifically, we want to train a network in order to accomplish a given

classification task first and, then, we want the train again the network because

we want it to be able to execute a new classification task. This, of course,

could be theoretically indefinitely extended, so we could ideally present to

the network as many new classification tasks to be learnt as we want. The

figure 1.1 represents the meaning of the just introduced incremental learning

concept.

The first thing that one could think to deal with this incremental learning
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1 – Introduction

problem is to train the current model as new tasks come as if we were deal-

ing with a traditional learning problem. Unfortunately this trivial approach

would fail because of the so-called catastrophic forgetting phenomenon. All

neural networks suffer of this problem: when training a model for a task, but

it has already been trained for a different one, the model starts learning about

the newer one and, at the same time, it starts forgetting about the older one.

The final result will be a good performance for the most recent task, but

very bad one for the older task. Going very deeply in this explanation, when

training the network for the new task, its weights start changing trying to

maximize the performance according to the new classification problem and,

for this reason, they could be moved even of a relatively huge quantity with

respect to the initial values so that they could not represent the previous

knowledge anymore.

Figure 1.1. Graphical representation of incremental learning.
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1.2 – Formalization of the goal

1.2 Formalization of the goal

At this point it should be quite clear in how many real-world applications an

incremental learning approach would be extremely useful or even necessary.

Now it is time to formalize which are the actual goals and issues of this topic.

Basically we are looking for an algorithm having the following properties:

I. it should be trainable from a stream of data, properly divided in tasks,

but with data of a single task that can occur in a non well defined

order (within data of a task, samples are not necessarily presented to

the model sorted by the type of class);

II. it should, at any time, provide a competitive multi-class classifier for

the so far seen classes;

III. its computational requirements, specially the training time, and memory

footprint should remain bounded or, at least, grow slowly as new classes

are observed.

1.3 Trivial solutions

Once that we have formalized the goal of whatever would be a possible solu-

tion for the incremental learning problem, we can analyze it with respect of

how much it complies with these aspects.

Here some trivial solutions are presented just to show how easy violating one

of those aspects could be. For this reason, the following solutions can not be

used in any real-world application actually.

The starting point is the same and it is a common convolutional neural net-

work whose number of output nodes will increase as new classes are observed
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1 – Introduction

in order to match exactly the number of different seen classes. We look at the

network as split into two parts: a features extraction one which is followed

by a classification part. The parameters of the features extraction part are

shared among all tasks and identified by θs. Instead, for the classification

part, the parameter of previous and new tasks are identified by θo and θn

respectively. Said that, here we have the approaches:

• Features Extraction - θn are estimated by the training, while θs and θo
are kept frozen. Typically performance on the new task are not so good

since θs do not represent the knowledge about it, while the ones on old

tasks do not change of course.

• Fine Tuning - θn are estimated by the training, θs are optimized by

the training and θo are kept frozen. Typically performance on the new

task are good since θs and θn have just been optimized and estimated

respectively for it, but the ones on old tasks dramatically decrease since

θs do not represent the knowledge about them anymore.

• Joint Training - All parameters are estimated from scratch every time

a new task comes. Performance on both old and new classes could be

good, but the solution is not always feasible. In fact for this approach

all images of all old classes must be available, and so stored on the disk,

and the training time quickly increase as new classes come.

12



Chapter 2

Available works

In literature we can find very many approaches concerning the incremental

learning problem. Even if they can be even extremely different, they can

be grouped in some quite well separated categories according to the main

followed reasoning:

• additional loss terms to preserve the previous knowledge;

• a different sub-part of a network for each task;

• artificially generated samples of old classes to preserve the knowledge

about them;

• expand the architecture for new tasks.

Here we are going to introduce some examples for each category in the next

sections. At the end we will dedicate the entire next chapter to the last cate-

gory in order to explain its aspects in detail since the implemented solutions

belongs to that category.

13



2 – Available works

Notice that, for each of the introduced solutions, the corresponding pseudo

code and experiments’ result are illustrated in the appendices of this work.

2.1 Additional loss terms

In this approach, typically there is a single network trained on a specific loss

made by the traditional classification term and, in addition, a distillation

one which helps the network to preserve the knowledge about previous tasks

during the training for a new one.

Similarly to the trivial solutions, the network is considered as split into two

parts: a features extractor followed by a classifier whose number of output

nodes is the same of the number of all different seen classes.

2.1.1 Baseline - iCaRL

Incremental Classifier and Representation Learning [1] can be considered one

of the milestones for incremental learning. It is characterized by three main

elements:

• classification by a nearest-mean-of-exemplars rule;

• prioritized exemplar selection;

• representation learning using knowledge distillation.

The used architecture is the same of the one described in the previous section.

In this approach some most representative samples of previous classes are

stored up to the total number of them reaches the value of a parameter K.

Setting this parameter the amount of the needed disk space is constrained

14



2.1 – Additional loss terms

to a value that depends on the total amount of available space.

The first purpose of storing these samples is classification: at inference time

the sample is forwarded through the network up to the features extraction

layer, the mean vector for each class is computed and for the nearest one to

the extracted features vector, the corresponding class will be considered as

the predicted one.

The second purpose of storing these samples is training. It is done making the

network to try to minimize a loss made of the traditional classification loss

and by a distillation loss. The equation 2.1 represents the total loss and the

second term, the distillation one, is computed using only the stored sample.

They are forwarded through a copy of the network preceding the changes due

to the current training phase then are used as ground truth for the principal

network. The goal of this is to force the principal network to generate the

same predictions on old samples both before and after the training for the

new task which, in other words, means to reduce the catastrophic forgetting

problem.

l(Θ) = −
Ø

(xi,yi∈D)
[

tØ
y=s

δy=yi log gy(xi) + δy /=yi log gy(1− xi)+

s−1Ø
y=1

qi
y log gy(xi) + (1− qiy) log gy(1− xi)]

(2.1)

A the end of a training session the set of stored samples is updated with the

ones from the new classes and, for each class, only the most representative

are kept. Of course reducing the number of stored samples per class could

become necessary as new tasks are learnt in order not to violate the K con-

straint. How much a sample is representative for its class is computed by
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the distance of its extracted features vector from the mean features vector of

that class.

Talking about overhead, the most part of the one of this solution is about

computation of most representative samples at the end of the training proce-

dure because this must be done for all seen classes. Of course we have a part

of it even during training since the training time increase with the number

of tasks, but typically new samples are much more then the ones store per

each one of the previous classes.

Another important aspect to consider is the K parameter. Both the per-

formances and the overhead depend on it: the more is K, the more is the

knowledge preserved about old tasks but also the more is the overhead and

the needed disk space (and vice versa). For these reasons, when implement-

ing a solution based on iCaRL, how fast the training phase needs to be and

the tolerable percentage of errors of the algorithm should be taken into ac-

count according to which are the available resources.

One of the main problems about iCaRL is that typically, regardless the value

of K, the training dataset is unbalanced towards the task samples. As we

know, this could lead the network’s predictions to be more oriented towards

the new classes during the training step. This, of course, leads to poor per-

formances at inference time considering all seen classes.

In the next sections two possible improvements are presented and it is im-

portant to remember that in both of them a limited amount of old samples

is stored.
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2.1 – Additional loss terms

2.1.2 End-to-End Incremental Learning

The End-to-End Incremental Learning [2] training procedure simply has an

additional fine-tuning step with respect the iCaRL’s one. In fact, after the

training with all new and a small selection of stored old samples, a reduced

and balanced dataset with both types of samples is built. The just created

dataset is then used to fine-tune the model. The last step of the training

procedure is updating the representative samples for all classes seen so far.

Also for this step there is a little difference with respect to iCaRL: in this case

the metric measuring how much a sample is representative is the prediction

score of the network for that sample.

Figure 2.1. The whole training procedure of End-to-End Incremental Learning.

2.1.3 Large Scale Incremental Learning

In the approached followed by Large Scale Incremental Learning [3] before

the last fully connected layer a bias correction one is introduced and it is

simply a linear model with only two parameters to estimate. From the whole

training set a much smaller validation set is taken out and it is balanced set.

The idea is that the balanced validation set should quite well approximate
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the distribution of old and new classes for real data. The training procedure

is split into two stages:

1. train, with both classification and distillation loss, the whole network

while keeping the bias correction layer frozen by using the remaining

training data;

2. train the bias correction layer while keeping all the network but such a

layer frozen by using the small validation set.

Figure 2.2. The two steps training procedure of Large Scale Incre-
mental Learning.

The linear model that implements the bias correction is the following one (ok
is the output logits for old classes) and it is trained using the loss function

in the equation 2.3:

qk =


ok, 1 ≤ k ≤ n (old classes)

αok + β, n+ 1 ≤ k ≤ n+m (new classes)
(2.2)

Lb = −
n+mØ
k=1

δy=k log[softmax(qK)] (2.3)
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2.2 – A different sub-part of the network for each task

As last thing, notice that the bias correction layer has thought with only two

parameters due to the little size of the validation set. In fact, considering a

bigger validation set would lead to a smaller training set and so to a worse

result on the first step of the training procedure. At the same time, if the bias

correction layer had more than two parameters, it would be more complex

to well estimate them with such a few validation samples.

2.2 A different sub-part of the network for

each task

Here, fixed the initial network, for each new task, a different part of that

network is used. More specifically a different group of weights of the same

network is used for each task.

In this work, two examples of this approach are going to be examined which

differ for a specific aspect: weights could or could not be shared for differ-

ent tasks. Despite this important difference, these methods have common

positive and negative aspects: the size of the initial model does not change

significantly as new tasks come but, at the same time, the model could not

learn new tasks indefinitely due to saturation of its capacity; performances

on old tasks are not changed by adding new ones; no samples from old tasks

are stored.

In general these methods are the one requiring least disk space and train-

ing time since at each training procedure only data of the current task are

involved.
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2.2.1 Packnet

In this method [4], for each new task to be learnt, the training procedure

works as follows:

1. train the network for the new task by using all remaining weights;

2. prune some of the just trained weights (this leads to a decreasing in

accuracy for the current task);

3. train the network again using the remaining parameters (in order to let

the on the current task accuracy to increase again).

Going more deeply in the pruning operation, once the percentage of weights

to be cut for each layer has been selected, they are pruned starting form the

ones with the lowest absolute magnitude which are less relevant for the final

output. At the end of this process a matrix per task is stored in order to

indicate which weights should be considered at inference time for that task.

This is a very little overhead in both time and resources terms.

Figure 2.3. Graphical representation of packnet mechanism.
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2.2 – A different sub-part of the network for each task

2.2.2 Piggyback

In this method [5], the main goal of the training procedure is to define a

mask, with as many elements as the number of weights in the starting net-

work, in order to select only the weights relevant for a given classification

task at inference time. More specifically, in order to obtain these masks, the

training procedure starts with a pretrained network and some real-valued

numbers as elements of the matrix. These values are then trained through

backpropagation by combining network binarization [6] and pruning [7]. In

the end they are passed through a threshold function which will return only

zeros and ones.

At inference time, before forwarding samples through the network, each

weight is combined with the corresponding element of the matrix of the task

the sample belongs to.

Adding these matrices introduces a very little overhead: just one bit for each

weight of the network and the operation to combine each weight with one

element of a matrix, which is a very fast operation.

Figure 2.4. Graphical representation of piggyback mechanism.
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2.3 Artificially generated samples

Approaches based on artificially generating samples of previous tasks to over-

come the catastrophic forgetting phenomenon make use of deep generative

models that go by the name of Generative Adversarial Networks (GANs) [8].

These models are able to maximize the likelihood of generated samples being

in a real distribution and, in our cases, distributions of images. Within the

GANs framework a zero-sum game between a generator G and a discrimina-

tor D is defined. The first is in charge to create artificial samples learning

how to mimic the real data distribution as closely as possible, while the latter

learns how to distinguish them from the real ones. In the equation 2.1 the

objective function of this zero-sum game is illustrated:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))] (2.4)

Using such a technique, storing samples from previous tasks can be avoided

or, at least, greatly reduced in order to reduce the memory footprint required

by a given solution, as well.

On the other hand, the training time for a given task could still be a problem.

In fact, we have to consider the time to generate artificial sample for all the

so far seen classes and that, typically, the training set would be quite large

since it could include a lot of samples for each class, regardless they are real

or artificially generated.

2.3.1 Exemplar-Supported Generative Reproduction

For this method [9] the incremental learning meaning is slightly different

from the others since it violates the first principle of the three ones defined
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2.3 – Artificially generated samples

at the very beginning of this work: the model learns about a single class at

a time, instead of a single task (that is a group of classes).

As a new class comes, the followed steps are represented in figure 2.6 and

work as follows:

1. train a generator of artificial samples of that class that is nothing more

than a GAN;

2. build a dataset by including both real samples of the new class and real

and artificial ones (created through the past generators) of old classes;

3. train basically from scratch the network with the dataset of the previous

point (similarly to Jointly Training trivial approach presented at the

beginning of this work);

4. for each class, select the most representative samples and store them.

Figure 2.5. Training steps of Exemplar-Supported Generative Reproduction
for Class Incremental Learning.

Similarly to iCaRL, the upper bound of the total number of samples to be

stored is an input parameter, instead the metrics telling how much a sample
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is representative is different: in this case the used metric is the prediction

score of the right class made by the just trained network.

As anticipated before, this approach stresses the constraints about disk and,

moreover, time resources since some samples of already seen classes are stored

and for each new class the whole model is trained basically from scratch. The

overhead introduced by this approach is much more relevant then others.

First of all the whole procedure described above have to be executed for each

new class instead of for a group of them, so much more frequently. Then,

starting from the beginning of the procedure, GAN models requires time to

be trained and disk space to be stored first and, in addition, a not negligible

time to create the set of artificial samples. The worst aspect is, for sure,

that the model should be trained from scratch for each new class and, of

course, this training time increases with the number of different classes to

learn. Least, but not last, there is the time to select, for each class, the most

representative samples and the disk space to store them, that are relevant,

as well.

2.3.2 Deep Generative Replay

This method [10] is based on the concept of scholar that is a tuple made of

a generator and a solver. There is a scholar for each task, it is able to learn

about the corresponding task and to acquire knowledge from the one of the

previous task. This means that a scholar itself is able to transfer knowledge

to another one, as well. This transfer of knowledge occurs from the (i− 1)th

task scholar to the ith one and, in this way, the last scholar is automatically

learning about all previous tasks and, in particular, about both the genera-

tion of artificial samples and the classification of all so far seen classes.
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2.3 – Artificially generated samples

More formally, when a new task has to be learnt, the applied training pro-

cedure works as follows:

1. the last generator is used to create artificial samples about all previous

tasks and these are joined together with the real samples of the new task

into a single training set;

2. the training set output of the previous point is used to make the new

generator to learn the distribution of both all old classes and the new

ones;

3. the last scholar is used to create both artificial samples of old classes

and their label by using its generator and its solver respectively;

4. data produced at the previous point together with new training data are

used to train the new solver.

Figure 2.6. Training steps of Continual Learning with Deep Generative Replay.

This method is characterized by a non negligible overhead. This is especially

true for the step of the generation of very many artificial samples together

with the corresponding labels and, moreover, because, for each new task,

the training of the solver is executed considering a lot of samples of all seen

classes.
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On the other hand the required amount amount of disk space is relatively

little: no previous samples and, at most, two generators (the new one and

the one just before of that) are stored.
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Chapter 3

The chosen architecture

After a study of many different possible solutions to deal with the incremental

learning problem, we decided to study in deep and implement the Expert

Gate: Lifelong Learning with a Network of Experts [11] one. This work

tries to avoid many little defects that most of the so far presented solutions

unavoidably have due the way they are thought to work.

For example, for approaches that simply add output neurons for new classes

and that make use of the distillation term into the training loss, there are, at

least, three drawbacks. The first is risk of negative inductive bias when tasks

are not related. The second is that the shared part of the network could fail

in trying to learn information that are good for all involved tasks. The last

is that for each new task the whole network is retrained.

Then, as widely explained in the previous chapter, the solutions based on

masking some weights can learn a limited number of incremental tasks and,

in order not to saturate the capacity of the network, they start from a very

huge network.

At last, for all approaches based on the generation of artificial samples, the
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3 – The chosen architecture

main problem is the training time, since at each new task the network is

trained from scratch. In addition it may not be able to capture knowledge

that fits well all different tasks.

In addition to all just presented defects, all of the illustrated methods have

a common problem: they could need a lot of space in memory to load all

the needed models. According to the specific technique, it is due either to

the dimension of the single used network or because additional modules, like

generators, are needed together with the main network. Said that, we have

also to consider that modern GPUs, used to speed up the training and testing

of neural networks, has a limited amount of memory with respects to CPUs.

Now, taking into account what we have just illustrated about the common

problem of all previous method, in some cases, even the GPU memory could

became a real constraint.

Let us think for example to an embedded system like a drone. It could not be

made with too large hardware components and, as a direct consequence, the

available memory could inevitably be a limitation. Now, let us thinking to

a possible real application of this drone: it could be use to recognize objects

in different rooms, objects that could be either outside or inside and even

with different lighting conditions. It should be immediately clear how this is

a problem that fits quite well the incremental learning approach. In fact we

can think to each of the combinations of the different presented factors as a

task that the algorithm inside the drone should learn.

Concluding this introduction, due to the limited memory of the drone, one

could think to a way to train a different classifier for each of the tasks and,

at inference time, to load only the needed one in memory in order not to

saturate it. The core idea behind the chosen solution is something just like
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3.1 – Expert Gate: Lifelong Learning with a Network of Experts

this and it will be deeply examined in the next sections.

3.1 Expert Gate: Lifelong Learning with a

Network of Experts

As widely explained before, the main idea consists in separating the tasks

both for all just explained reasons and in order to deal with each task easily.

More concretely the used architecture is the one depicted in figure 3.1 and

Figure 3.1. The whole architecture of Expert Gate: Lifelong Learning
with a Network of Experts.

29



3 – The chosen architecture

now we are going to present it. For each task two models are trained: a little

autoencoder and an expert, that is a traditional classifier.

The first part of the architecture is made, in the following order, of a features

extractor, as many autoencoders as the number of the seen tasks and a simple

softmax function. These elements constitute a sort of gate: it receives a

sample in input, predicts the task the sample belongs to and forwards it to

the corresponding expert. The architecture continues with as many experts

as the number of seen tasks and each of them works as traditional classifier

for the classes of the corresponding task. Just for sake of simplicity, from

now on, we will refer to this architecture with AutExp.

3.2 The Autoencoder Gate

An autoencoder [12] is a neural network that learns to produce an output

similar to its input [13]. The network is composed of two parts: an encoder

f = h(x), which maps the input x to a code h(x) and a decoder r = g(h(x)),

that maps the code to a reconstruction of the input. The loss function

L(x, g(h(x))) is simply the reconstruction error.

In general two types of autoencoders could be used. When the encoder

learns, through a hidden layer, a lower dimensional representation of the

input, then the autoencoder is defined undercomplete. When instead, the

encoder learns, through a hidden layer, a higher dimensional representation,

then the autoencoder is defined overcomplete.

Applying and autoencoder can be thought very similarly to applying the PCA

method for data dimensionality reduction [14]. In fact, a linear autoencoder,

that is one with the Euclidean loss as objective function, subspace of the
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3.2 – The Autoencoder Gate

PCA approach. However, non-linear autoencoders yield better dimension-

ality reduction compared to PCA. For this reason autoencoders have been

preferred for the data dimensionality reduction purpose.

Autoencoders are usually used for data dimensionality reduction or even to

learn feature representations in an unsupervised manner. Here, they are

used for a different goal. The lower dimensional subspace learned by one

of our undercomplete autoencoders will be maximally sensitive to variations

observed in the task data but insensitive to changes orthogonal to the man-

ifold. In other words, it represents only the variations that are needed to

reconstruct relevant samples. Given all these reasons, we can formulate the

main hypothesis this work is based on: the autoencoder of one domain/-

task should be better at reconstructing the data of that task than the other

autoencoders. At this point, comparing the reconstruction errors of the dif-

ferent tasks’ autoencoders then allows to successfully forward a test sample

to the most relevant expert network.

In figure 3.2 we have illustrated a part of the whole just depicted autoen-

coder gate and it is better to remember that the input of this architecture

is not made of images but of a set of their features extracted using a certain

model. In the original paper an AlexNet pretrained on ImageNet has been

used as features extractor. In the current work we used a VGG16 pretrained

on ImageNet instead, since it has a very simple architecture and we thought

that, for these reason, it would not have distorted too much the differences

between images of different tasks which, then, would have allowed to well

discriminate among the reconstruction of different autoencoders of each in-

put samples.

Before actually passing the extracted features through the autoencoder, a
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Figure 3.2. Part of the whole autoencoder gate structure.

preprocessing step is applied on them. The first operation is standardization

which has the goal to increase the robustness of the hidden representation

to input variations. Typically this operation is done using the statistics of

data the network is trained on. Here the problem is that, since we have

trained each autoencoder on a different training set, when, at inference time,

we would compare the reconstruction errors of all autoencoders, they would

have not been comparable. For this reason, the used statistics have been

the same for all autoencoders and simply they were the mean and standard

deviation of features extracted by our VGG16 model given the ImageNet

dataset in input. Just after the standardization, a simple sigmoid activation

function is applied in order to map each input value into the [0, 1] interval.

The actual autoencoder starts with the encoding layer, that is nothing more

than a fully connected layer and that is followed by a ReLU [15] activation

function which introduces sparsity in the hidden units and leads to a better
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generalization. The decoding layer is, again, a fully connected layer with as

many output units as the number of the input ones and that is followed by

a sigmoid activation function. In this case, this last activation is needed

because of the used loss to train the autoencoder that is the cross entropy

one which requires input values to be into the [0, 1] interval.

3.3 Predicting the task’s expert

At test time, in order to select the task the input sample belongs to, and

so, the corresponding expert that will be used as classifier, that sample is

reduced in dimensionality, preprocessed and, then, forwarded to all available

autoencoders. Then, combining the input and the corresponding output

array, we can compute the reconstruction error of each autoencoder. In

particular, this error is computed simply as Euclidean distance. At his point,

a softmax layer is applied with all reconstruction error values in order to

retrieve, for each task, a value representing a sort of probability that the input

sample belongs to that task. In particular, for the ith reconstruction error

value, the corresponding probability value is computed as in the equation

3.1:

pi = e−erri/tq
j e−errj/t

(3.1)

In the just illustrated equation the t is the temperature values and it has been

set to 2 as in [16] and [17] works.

Once that the probabilities have been computed, only the expert that cor-

responds to the maximum values among them is loaded in memory to work

as a traditional classifier. In some cases one could even consider more than
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one expert if the highest probability values are very close and then analyze

the different predictions.

3.4 The experiment

The just described architecture has been tested on the same datasets explored

in the reference paper but one and they are: MIT Scenes [35], Caltech-UCSD

Birds [22], Oxford Flowers [24], Stanford Cars [23], and FGVC Aircrafts [36].

These datasets involve classification problems of 67, 200, 102, 196, 90 classes

respectively. We have considered a common data size of 256x256 pixels for

all images (3 channels), the 25% of each dataset as test set and the 25% of

the remaining samples as validation set. As already said we used a VGG16

as features extractor, while we used a InceptionResnetV2 [46], pretrained on

ImageNet, as base model for the experts. The choice of that base model

for the experts has been characterized by the fact that, for each dataset,

there were quite many different classes to learn, so we needed a network

architecture comlplex and deep enough. Here we have the results of the

experiment and both the accuracy of the autoencoders gate at predicting the

correct task ans the final classification accuracy are shown in figures 3.3 and

3.4 respectively.

Looking at the charts, it is extremely evident how well the autoencoders gate

performs. In fact most of the misclassifications were made by the experts.

Anyway, this experiment well demonstrates a solution for the incremental

learning since the architecture was very good at discriminating classes tasks.

Of course these results could be improved just working on the experts (i.e.

changing the base model, exploring a wider space of parameters for the cross
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validation of them, etc.).

Figure 3.3. Autoencoders tasks accuracy increasing the number of tasks.

Figure 3.4. Final classification accuracy increasing the number of tasks.
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3.5 A new application: CIFAR-100

As one could see from the results of the experiment in the previous section,

the autoencoders gate is extremely good at predicting the belonging task of

an input sample at inference time. Despite this, we have to admit that we

have considered classes of the same domain for each task and the real reason

behind the more than satisfying performance of the autoencoders could be

just this. In fact, since images of the same task are in some way similar,

acquiring the knowledge to recognize samples of a single task could be quite

easy for an autoencoder.

In this new section we are going to present a new experiment in which the

autoencoders gate has been stressed much more than before in order to see

if it is actually able to learn how to recognize different taks. Here we have

considered each task made of some randomly chosen classes of the CIFAR-100

dataset. Of course, randomly choosing the classes of each task is important

in order to have classes of different domains.

The base model has been the VGG16 pretrained on ImageNet for both the

features extractor and the experts. By the way the features extractor network

was not used entirely but we cut it 3 layers before the end. The reason of that

was that, considering the whole architecture we ended up in too few features

to well capture the differences among samples of different tasks. Furthermore

the expert base model was constituted by a much simpler network than

before just because the classification problems were easier and involved less

different classes. We have conducted two different experiments varying the

number of tasks (5 and 10) and, as a consequence, the number of different

classes per tasks (20 and 10). In figures 3.5 and 3.6 the mean accuracy
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and its standard deviation as the number of tasks increases are represented.

Examining these results it is rather palpable how the architecture is stressed

Figure 3.5. Gate and Classification accuracy for 5 tasks with data size 32x32x3.

Figure 3.6. Gate and Classification accuracy for 10 tasks with data size 32x32x3.

by this new dataset. In fact, apart from the misclassifications of the experts,

many mistakes are made by the autoencoders gate. In other words, our
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supposition about the fact that considering images of the same domain for

each task makes easier the work of the autoencoders gate has been confirmed.

A first idea to improve these results was to consider the same data but with

a higher data size. This idea came from the willing to try the behaviour of

the autoencoders giving them more features to reconstruct. So, starting from

the original data size of the CIFAR-100 samples of 32x32x3, we got samples

with size of 128x128x3 by interpolating pixels. In figures 3.7 and 3.8 the

results of this new experiment are shown.

We can see how the performance improved with the higher data size even

if they are not comparable with the ones of the experiment with each task

containing images of the same domain.

In the next chapter two new approaches based on Bayesian models will be

proposed and we will compare all architectures even increasing the number

of tasks the whole dataset is splitted into.

Figure 3.7. Gate and Classification accuracy for 5 tasks with data
size 128x128x3.
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Figure 3.8. Gate and Classification accuracy for 10 tasks with data
size 128x128x3.
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Chapter 4

The Bayesian approach

In the previous chapter we have demonstrated that the autoencoders gate

performs extremely well in case of images of the same domain for each task,

but this is not the case in the opposite case. Here we want to introduce

bayesian models in order to improve the task prediction performance just in

the second case.

Very briefly, a bayesian model is a specific neural network that, given an

input sample, is able to compute the uncertainty of its class prediction on

that sample. Said that, we used the same previous architecture but in two

new variants which will be referred with BayExp and AutBay respectively:

• A gate of Bayesian models followed by the same number Experts;

• A gate of Autoencoders followed by the same number of Bayesian models

(which are both in charge of correcting the gate tasks predictions and of

running the final classification).

Just like for autoencoders, each bayesian model is trained using only data of

one task and, at inference time, we rely on this in order to well predict the
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belonging task of each sample. In fact, a bayesian which has never seen a

certain class should produce a higher value of uncertainty. Exploiting this

typical characteristic of bayesian neural networks, better predicting the task

of each input sample or correcting the autoencoders predictions have been

possible in some cases.

4.1 Introduction to Bayesian neural networks

Tools such as neural networks and convolutional neural networks are very

well known and extensively used in a deterministic form: forwarding as many

times as we want the same sample through the network, it will produce al-

ways the same prediction. Typically the last layer of a network is a softmax

function which gives, for each class, a value representing how much confident

the network is about the fact that the sample belongs to that class. Unfor-

tunately, this way of interpreting the output of the network is not totally

correct. In fact, it could happen that, even if the highest softmax output is

relatively much higher than others, the model could still be uncertain about

that prediction. Another important defect of the softmax function is that

it always returns predictions, even if we present to the model a sample of a

class it has never seen before.

Now, looking at real-world applications, handling the uncertainty of predic-

tions could be very useful: let us think to a case in which the network says to

be uncertain enough of a prediction, then an human being could intervene.

Situations like this one can happen, for example, in a post office, sorting

letters according to their zip code, or in a nuclear power plant with a system

responsible for critical infrastructure [38].
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4.2 – Dropout approximation

4.2 Dropout approximation

Bayesian probability theory offers us mathematically grounded tools to build

bayesian network and its uncertainty, but these usually come with a pro-

hibitive computational cost. The main idea of these tools is to associate

a Gaussian curve for each weight of the network and then, during the for-

warding of the input through the network, the actual value of each weight

is sampled from the corresponding Gaussian. This behaviour has two main

consequences: forwarding many times the same samples through the network,

it may produce different outputs and, instead of optimizing weights during

training, mean and variance of each of those Gaussians are optimized.

In [39] has been recently showed that a typical optimization of dropout neu-

ral networks is equivalent to Bayesian learning via variational inference with

a specific variational distribution. This means that a neural network with

arbitrary depth and non-linearities, with dropout applied before every weight

layer, is mathematically equivalent to an approximation to the probabilistic

deep Gaussian network. The fundamental advantage of this dropout approx-

imation, with respect the traditional Bayesian model, is that the computa-

tional cost is not prohibitive anymore.

A dropout layer works randomly cutting some connections (the corresponding

weight is set to 0) between nodes of two consecutive layers. The percentage of

cut connections depends on the chosen dropout rate which is an input param-

eter and represents, for each node, the probability to be cut. Traditionally

dropout layers have been used in order to avoid overfitting and to make the

network to generalize at inference time, with the final goal of increasing the

its accuracy on test data. More specifically, these layers are activated only
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during the training phase in order to make the learning process more complex

for the network, while they do not cut any weight when testing. In this way,

if the network was able to accomplish a good performance without the cut

weights, then it will very likely perform even better exploiting all its weights.

In the approximation of a Bayesian network, dropout layers are always ac-

Figure 4.1. Traditional application of dropout: inference on the left
and training on the right.

tivated and, remembering that cutting nodes is a random operation, then

every time the same sample is forwarded through the network, the output

could change depending on which nodes has been cut.

4.3 Uncertainty analysis

The variability of the output of a Bayesian network just presented in the

previous section is main element exploited to compute the uncertainty of the

network itself about its predictions. In this work we have used the method

proposed by [40] for the computation of the model uncertainty. According
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to this approach the whole uncertainty is made of two terms: epistemic and

aleatoric ones.

The aleatoric component captures noise inherent in the observations. It is

useful in big data scenarios where the epistemic component of uncertainty

disappears, potentially leading the model to overconfident predictions. More-

over, it provides a measure of the diversity of the input data, it can help to

differentiate between inputs that are easier to classify or not, based on their

ambiguity.

The epistemic component captures the actual uncertainty of the model. It

is useful when big data sets are not available because these are the scenarios

that require to express a high uncertainty for the model parameters. Fur-

thermore, it is key to understand out-of-distribution samples, observations

that are different from the training data. This can be particularly useful for

critical applications where it is not possible to train the model on the full

distribution of input data. For instance, considering an autonomous driving

system, it is not possible to train the neural network on all possible scenarios,

therefore the autopilot should notify the human driver to take control in the

presence of uncertain images from the street.

4.3.1 Uncertainty estimation

Let D = {(xi, yi)}Ni=1 be a realization of independently and identically dis-

tributed variables with xi ∈ Rd and yi = (y(1)
i , ..., y

(K)
i ) ∈ {0,1} are the ith

input and the corresponding one-hot encoded output respectively. In addi-

tion N is sample size, d is the dimension of the input variables and K is the

number of different classes. Let us consider now a Bayesian neural network

represented by ω ∈ Ω, that is the vector of network parameters (weights
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and biases). Given the prior distribution of ω we can compute the posterior

distribution and the predictive one for a new input x∗ and a new output y∗

(4.1 and 4.2 respectively).

p(ω|D) = p(D|ω)p(ω)
p(D) =

rN
i=1 p(yi|xi, ω)

p(D) (4.1)

p(y∗|x∗, D) =
Ú

Ω
p(y∗|x∗, ω)p(ω|D)dω (4.2)

Now denoting the last K-dimensional pre-activated linear output of the pre-

vious neural network by fω(x) = (fω1 (x), ..., fωK(x)), then the predictive prob-

ability is the one at 4.3.

p{y(k) = 1|x, ω} = p{y(k) = 1|fω(x)} = ef
ω
k (x)qK

j=1 e
fωj (x) (4.3)

Despite the simplicity of this formalization, the learning is still a complex

issue due to the computation of the posterior p(ω|D) which requires an inte-

gration with respect to the whole parameters space Ω and this does not have

a closed form solution typically.

Different methods to overcome this problem have been proposed over time

with more or less success. [41] proposed a Laplace approximation of the

posterior but it was a too poor one. [42] proposed a Markov Chain Monte

Carlo sampling approach using Hamiltonian dynamics which led to a set of

posterior samples without directly computing it actually, but it was still a

computationally prohibitive technique.

A more recent alternative was proposed by [43] and [44] approximating the

posterior distribution with a tractable variational one qθ(ω) indexed by a

variational parameter θ. The optimal variational distribution is the closest

distribution to the posterior among the pre-determined family Q = {qθ(ω)}.

The closeness is often measured by the Kullback-Leibler divergence between
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qθ(ω) and p(ω|D). In this way they moved from an integration problem to

an optimization one, which could be tackled with online learning, but whose

quality depended on the family of distributions Q.

This work is totally based on the paper [40] which follows the idea to split

the uncertainty into the aleatoric and epistemic components. Now let us see

how they derived the definition of both of them.

Let θ̂ be the optimized variational parameter iteratively minimizing Monte

Carlo approximated version of the equation 4.1 so, at inference time, the

variational predictive distribution, which approximates the predictive distri-

bution, can be written as

pθ̂(y
∗|x∗) =

Ú
Ω
p(y∗|x∗, ω)qθ̂(ω)dω (4.4)

which is estimated by

q̂θ̂(y
∗|x∗) = 1

T

TØ
t=1

p(y∗|x∗, ω̂t) (4.5)

This estimator converges in probability considering a set of realized vec-

tors {ω̂t}Tt=1 randomly drawn from the variationl distribution q̂θ̂(ω) (T is the

number of samples). The variance of the variational predictive distribution

q̂θ̂(y∗|x∗) is given by the following equation (for further explanations about

the single operations of this equation, please take a look at the reference

paper previously indicated).

V arq̂θ̂(y∗|x∗)(y∗) = Eq̂θ̂(y∗|x∗){y∗⊗2} − Eq̂θ̂(y∗|x∗)(y∗)⊗2}

=
Ú

Ω
[diag{Ep(y∗|x∗,ω)(y∗)} − Ep(y∗|x∗,ω)(y∗)⊗2]qθ̂(ω)dωü ûú ý

aleatoric

+
Ú

Ω
{Ep(y∗|x∗,ω)(y∗)− Eq̂θ̂(y∗|x∗)(y∗)}⊗2qθ̂(ω)dωü ûú ý

epistemic

(4.6)
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In [45], starting from the previous definitions of the two types of uncer-

tainty, a concrete method to estimate those quantity has been developed.

The used model has been a Bayesian neural network with the last layer be-

fore activation that computes the mean and variance of logits. Now, let

fωkendall(x∗) = (µ, σ2) be the 2K-dimensional pre-activated linear output of

the neural network with µ and σ2 the mean and variance of the K nodes, for

the realized vectors {ω̂t}Tt=1, they proposed the following estimator for the

uncertainty
1
T

TØ
t=1

diag(σ̂2
t )ü ûú ý

aleatoric

+ 1
T

TØ
t=1

(µ̂t − µ)⊗2

ü ûú ý
epistemic

(4.7)

where µ = 1
T

qT
t=1 µ̂t.

Estimators at 4.7 have some limitations when they are used for estimating the

classification uncertainty. First, they do not consider the predictive probabil-

ities, but they model the variability of linear predictors only, without taking

into account that the covariance matrix of a multinomial random variable is

a function of the mean vector. Second, the aleatoric uncertainty does not

reflect correlations due to a diagonal matrix modeling.

Due to these limitations, some variations have been introduced so that the

final definition of estimators for aleatoric and epistemic uncertainties became

the following one
1
T

TØ
t=1

diag(p̂t)− p̂⊗2
tü ûú ý

aleatoric

+ 1
T

TØ
t=1

(p̂t − p)⊗2

ü ûú ý
epistemic

(4.8)

where p = 1
T

qT
t=1 p̂t and p̂t = p(ω̂t) = softmax{f ω̂t(x∗)}. Now the compu-

tation of these estimators does not involve the σ2 term and the number of

parameters and operation has been reduced. Last, but not least, they con-

verge in the probability at 4.6 as T increases.

48



4.3 – Uncertainty analysis

Just to clarify, here we present a snippet of Python code representing the

function that implement the estimator at 4.8. It takes as input a Bayesian

model, the data and the sampling number and returns the two just described

uncertainty components.

1 import numpy as np

2

3 def compute_predictions_uncertainty ( bayesian_model , X, T):

4 p_hat = []

5 for t in range(T):

6 p_hat. append ( bayesian_model . predict (X))

7 p_hat = np.array(p_hat)

8

9 aleatoric = np.mean(p_hat * (1 - p_hat), axis =0)

10 epistemic = np.mean(p_hat ** 2, axis =0)

11 - np.mean(p_hat , axis =0) ** 2

12 predictions = np.mean(p_hat , axis =0)

13

14 aleatoric_unc = np.zeros(len(X))

15 epistemic_unc = np.zeros(len(X))

16 for i, x in enumerate (X):

17 predicted_class = np. argmax ( predictions [i])

18 aleatoric_unc [i] = aleatoric [i, predicted_class ]

19 epistemic_unc [i] = epistemic [i, predicted_class ]

20

21 return aleatoric_unc , epistemic_unc

Listing 4.1. Function to compute uncertainty of a model.
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4.4 Two new proposed architectures

As anticipated in the introduction of this section, we developed two new

approaches exploiting bayesian neural networks. In particular, we trained a

bayesian model for each task and then, combining them alternatively with

the autoencoders and the experts, we built two apparently similar architec-

tures.

The first one is BayExp an it is analogue to the main architecture presented

in this work. In fact the part of the experts is the same, but the autoencoders

gate is replaced by a bayesians one. In particular, at inference time, the same

sample is given to all bayesians (there is one for each tasks), each of them

computes the uncertainty value for that sample and the predicted task will

be the one corresponding to the least uncertain bayesian. Once predicted the

task of the input sample, the classification part is exactly the same of before.

For the second architecture, that is AutBay, we have again an autoencoders

gate, but they are followed by the same number of bayesian models this time.

At inference time, the input sample is given to all autoencoders and, run-

ning the usual procedure, its belonging task is predicted. Now the sample

is forwarded to the bayesian model which corresponds to the predicted task

and it computes both the class prediction and the uncertainty value. If the

uncertainty is below a given threshold, then we consider the prediction of the

current bayesian as the good one, otherwise we send the sample to all existing

bayesians. Each one computes both the predicted class and the uncertainty

but only the prediction of least uncertain model will be actually considered.

The uncertainty threshold of each bayesian is computed analyzing the un-

certainty discrete distribution of the training samples. First, by exploiting
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the Otzu’s algorithm [47] the value of uncertainty splitting the distribution

in two modes is found. Then, starting from that value, we look for the one

corresponding to the maximum delta in the distribution (for the mode with

the highest values of uncertainty of course). In figure 4.2 we have an example

of this procedure.

Figure 4.2. Example of how the threshold for bayesian models is found. The
non-continual line represent the value we look for.

4.5 The experiment

In figures 4.3, 4.4, 4.5, 4.6 and 4.7 there are the results of these new ar-

chitectures on CIFAR-100, including the traditional one, as well. We have

considered 2, 5, 10, 20 and 50 tasks.
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Figure 4.3. Gate and Classification accuracy for 2 tasks.

Those charts say that the two new approaches better perform than the tra-

ditional one as far as the number of tasks is relatively small. In fact when

considering 20 and 50 tasks performances significantly degrade for the archi-

tecture with bayesians and Experts, while the architecture with autoencoders

and bayesians performs quite similarly to the traditional one.

In parallel with respect to the previous analysis, now we look at the effi-

ciency in terms of time for the training and, in particular, for the inference

of the different architectures. For the training phase both the new architec-

tures require more time than the first one simply because, for a new task, we

have to train a bayesian CNN instead of an autoencoder or an expert and

in both cases the training time is longer. For the inference phase we have

the same situation because computing the uncertainties and the predictions

of a bayesian model require passing the same data different times through it
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Figure 4.4. Gate and Classification accuracy for 5 tasks.

Figure 4.5. Gate and Classification accuracy for 10 tasks.

53



4 – The Bayesian approach

Figure 4.6. Gate and Classification accuracy for 20 tasks.

Figure 4.7. Gate and Classification accuracy for 50 tasks.
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(100 times in our case). In figures 4.8, 4.9, 4.10, 4.11 and 4.12 there are some

charts which compare the mean inference time per task of the three methods

as the number of tasks increases.

It is evident that, as the number of tasks increases, the mean inference time

of the architecture with autoencoders and experts is quite negligible with

respect to the other two architectures. To be honest, having such a long

inference time does not happen with many of the other state-of-the-art ap-

proaches and it is an aspect to be taken into account according to which

are the actual needs of an application. By the way, at least the part of the

inference procedure to predict the task could be made faster parallelizing the

computation of actually used metrics to made this prediction.
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Figure 4.8. Mean inference time per task for 2 tasks.
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Figure 4.9. Mean inference time per task for 5 tasks.
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Figure 4.10. Mean inference time per task for 10 tasks.

56



4.5 – The experiment

10 20 30 40 50 60 70 80 90 100
classes

0

50

100

150

200

250

300

350

400

me
an

 tim
e p

er
 ta

sk
 [s

]

ETA
Aut-Exp
Aut-Bay
Bay-Exp

Figure 4.11. Mean inference time per task for 20 tasks.
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Chapter 5

Conclusions

We have explored very many existing solutions for the incremental learning

problem until we created two new solutions on our own. They both appeared

very competitive and, in some cases, even better than some of the available

state-of-the-art approaches. This is evident simply looking at our results,

but it is better to highlight some apparently secondary aspects regarding

the resources involved in our solutions. The most evident aspect is that

they do not need to keep samples of the previous tasks which implies no

specific requirements for the disk space (and probably less training time).

Another interesting plus of our solutions is that even the actual memory

could not represent a huge requirement since, at inference time, we can load

in memory a model at a time (of course the time for the inference phase will

be negatively affected by this). Last, but not least, the training time could be

reduced training, for each task, the two needed models (i.e. autoencoder and

expert or bayesian and expert) in parallel, since these steps are completely

independent.

Despite these interesting aspects, we have also to mention that the inference
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time could be a problem with our two new architectures.

In conclusion, let us see some of the possible future developments:

• increase the number of task;

• increase the hidden layers of the autoencoders;

• for the configuration with autoencoders and bayesians, add the final

classification step run by experts;

• change the base model for the features extractor, bayesians and classi-

fiers.
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Appendix A

iCaRL

A.1 Pseudo code

Here we have the pseudo code of the different parts of this method.

Algorithm 1 iCaRL - Classification
input x # image to be classified
require P = (P1, ..., Pt) # class exemplar sets
require φ : X → Rd # feature map

for y = 1, ..., t do
µy ← 1

|Py|
q
p∈P φ(p) # mean-of-exemplars

end for
y∗ ← argmin

y=1,...,t
||φ(x)− µy|| # nearest prototype

output y∗ # class label
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A – iCaRL

Algorithm 2 iCaRL - Incremental train
input Xs, ..., X t # training examples in per-class sets
input K # memory size
require Θ # current model parameters
require P = (P1, ..., Pt) # current exemplar sets

Θ← UpdateRepresentation(Xs, ..., X t;P,Θ)
m← K/t # number of exemplars per class
for y = 1, ..., s− 1 do

Py ← ReduceExemplarSet(Py,m)
end for
for y = s, ..., t do

Py ← ConstructExemplarSet(Xy,m,Θ)
end for
P ← (P1, ..., Pt) # new exemplar sets

Algorithm 3 iCaRL - UpdateRepresentation
input Xs, ..., X t # training images of classes s, ..., t
require P = (P1, ..., Pt) # exemplar sets
require Θ # current model parameters

# form combined training set
D ← t

y=s,...,t
{(x, y) : x ∈ Xy} ∪ t

y=1,...,s−1
{(x, y) : x ∈ P y}

# store network outputs with pre-update parameters
for y = 1, ..., s− 1 do

qyi ← gy(xi) for all (xi, ·) ∈ D
end for

run network training with loss function illustrated in equation 2.1
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Algorithm 4 iCaRL - ReduceExemplarSet
input m # target number of exemplars
input P = (p1, ..., p|P |) # current exemplar set

P ← (p1, ..., pm) # keep only the first m

output P # exemplar set

Algorithm 5 iCaRL - ConstructExemplarSet
input Xy = {xy1, ..., xyn} # image set of class y
input m # target number of exemplars
require φ : X → Rd # current feature map function

µ← 1
n

q
x∈X φ(x) # current class mean

for k = 1, ...,m do
pk argmin

x∈X
||µ− 1

k [φ(x) + qk−1
j=1 φ(pj)]||

end for
P ← (p1, ..., pm)

output P # exemplar set

A.2 Experiment

iCaRL has been tested on the CIFAR-100 [18] dataset many times changing,
for each trial, the number of classes per task. The used network is a ResNet32
[19] with the possibility to store up to 2000 exemplars. Here we have the
results of the experiment.
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Figure A.1. Result (in blue) of iCaRL on the CIFAR-100 dataset.
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Appendix B

End-to-End Incremental
Learning

B.1 Pseudo code
The pseudo code of this method is very similar to the iCaRL’s one, but some
little differences:

• the classification is done traditional computing the logits and passing
them through the softmax function;

• after the traditional training, there is an additional fine tuning phase
using a balanced training set.

B.2 Experiment
End-to-End Incremental Learning has been tested on CIFAR-100 and Im-
ageNet [20] datasets. For the first the used network is ResNet32 with the
possibility to store up to 2000 exemplars. For the latter the used network
is ResNet18 with the possibility to store up to 20000 exemplars. For both
datasets many experiments have been executed changing, each time, the
number of classes per task.
In figure B.1 there are two plots of the incremental accuracy on the CIFAR-
100 using 2 and 5 classes per task.
In figure B.2 there is a summary of many experiments indicating the average
incremental accuracy of this method on both the just introduced datasets
and considering different values of classes per task.
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Figure B.1. Result (in red) of End-to-End Incremental Learning on the
CIFAR-100 dataset with 2 and 5 classes per task.

Figure B.2. Average incremental accuracy of End-to-End Incremental
Learning on the CIFAR-100 and ImageNet datasets with different values
of classes per task.
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Appendix C

Large Scale Incremental
Learning

C.1 Pseudo code

The pseudo code of this method is very similar to the iCaRL’s one, but the
additional bias correction step.

Algorithm 6 Large Scale Incremental Learning - BIAS CORRECTION
input k # number of validation samples
require Pold = (P1, ..., Ps − 1) # stored samples
require Pnew = (Ps, ..., Pt) # new samples

Dval ← ExtractV alidationData(Pold, Pnew, k) # validation data
freeze all layers but the Bias Correction one
run bias correction layer training on Dval data and loss 2.3

C.2 Experiment

Large Scale Incremental Learning has been tested on ImageNet-1000 and
Celeb-10000 [21] datasets considering 100 and 1000 classes per task respec-
tively. The used network is a ResNet18 for both datasets.
The figure C.1 illustrates the results of these experiments.
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Figure C.1. Result (in purple) of End-to-End Incremental Learning on the
Imagenet-1000 and Celeb-10000 datasets with 10 incremental steps.
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Appendix D

Packnet

D.1 Pseudo code

Here we are going to illustrate the pseudo code for the training of a single
task.
At inference time the procedure is quite simple. In fact, once combined the
network’s weights with the mask of the corresponding task, the classification
works just like in the most general case.

Algorithm 7 Packnet - SINGLE TASK TRAINING
input k # percentage of weights to cut
input m # mask of available weights
require Θ # network weights
require Dt # data of the new task

ΘÍ ←MaskWeights(Θ,m)
TrainNetwork(ΘÍ, Dt)
Θunrelevant,Θrelevant ← SelectUnrelevantWeights(ΘÍ)
PruneWeights(Θunrelevant)
TrainNetwork(Θrelevant, Dt)
m← UpdateMask(m,Θrelevant) # reduce available weights

output Θrelevant,m
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D.2 Experiment
Packnet: Adding Multiple Tasks to a Single Network by Iterative Pruning has
been tested on ImageNet, Caltech-UCSD Birds [22], Standford Cars [23] and
Oxford Flowers [24] datasets. Each dataset represents a classification task
and, in the depicted example in figure 1.1, they have been considered just
in this order. Instead of the accuracy, in that figure, the error percentage is
indicated. The used network is a VGG16.

Figure D.1. Result of Packnet on the ImageNet, Standford Cars, Cal-
tech-UCSD Birds and Oxford Flowers datasets.
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Appendix E

Piggyback

E.1 Pseudo code
Here we are going to illustrate the pseudo code for the training of a single
task.
At inference time the procedure is quite simple. In fact, once combined the
network’s weights with the mask of the corresponding task, the classification
works just like in the most general case.

Algorithm 8 Piggyback - SINGLE TASK TRAINING
require Θ # network weights
require Dt # data of the new task

m← InitializeRealV aluesMaskWeights()
TrainNetwork(ΘÍ, Dt,m)
mÍ ← Binarize(m)

output mÍ

E.2 Experiment
Piggybackt: Adapting a Single Network to Multiple Tasks by Learning to Mask
Weights has been tested on ImageNet, CUBS, Standford Cars, Oxford Flow-
ers, WikiArt [25], Sketch [26] datasets both in this and in the reverse order.
Each dataset represents a classification task and, in the depicted example
in figure E.1, instead of the accuracy, the error percentage is indicated. In
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addition there is also the size of the model for each of the examined methods.
The used network is a VGG16 [27].

Figure E.1. Result of Piggyback on the ImageNet, CUBS, Standford Cars,
Oxford Flowers, WikiArt, Sketch datasets.
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Appendix F

Exemplar-Supported
Generative Reproduction

F.1 Pseudo code
Here we are going to illustrate the pseudo code for the training of a single
class.
At inference time the procedure is the traditional one with the logits that
are passed through the softmax activation function.

Algorithm 9 Exemplar-Supported Generative Reproduction - SINGLE
CLASS TRAINING
input K # upper bound of stored exemplars
require X1

real, ..., X
t−1
real # stored exemplars

require G1, ..., Gt−1 # generators of old exemplars
require X t

real # new exemplars

Gt ← TrainGenerator(X t
real) # objective function at 2.4

X1
exem, ..., X

t−1
exem ← GenSamples(G1, ..., Gt−1) # artificial old exemplars

Dtrain ← X t
real ∪X1

real, ..., X
t−1
real ∪X1

exem, ..., X
t−1
exem

TrainNetwork(Dtrain)
for y = 1, ..., t do

Xy
real ← SelectExemplars(Xy

real, K)
end for

output X1
real, ..., X

t
real
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Algorithm 10 Exemplar-Supported Generative Reproduction - SelectEx-
emplars
input K
require Xy

real

require t # seen classes

m← K/t # exemplars per class
for xyi ∈ X

y
real do

xyi , scorei ← Predict(xyi )
end for
xy1, ..., x

y
|Xy

real|
← SortByScore((xy1, score1), ..., (xy|Xy

real|
, score|Xy

real|))

output xy1, ..., xym # only the first m ones

F.2 Experiment
Exemplar-Supported Generative Reproduction for Class Incremental learning
has been tested on CIFAR-100 and ImageNet-Dogs [28] datasets adding one
class at a time. For the first a LeNet [29] and a WGAN [30] have been used
as main network and generator respectively. For the latter a ResNet with 4
residual blocks and a AC-GAN [31] have been used as main network and gen-
erator respectively. In figure F.1 there are the results of these experiments.

Figure F.1. Result (in brown) of Exemplar-Supported Generative Reproduc-
tion CIFAR-100 and ImageNet-Dogs datasets.
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Appendix G

Deep Generative Replay

G.1 Pseudo code
Here we are going to illustrate the pseudo code for the training of a single
task.
At inference time the procedure is the traditional one with the logits that
are passed through the softmax activation function.

Algorithm 11 Deep Generative Replay - SINGLE TASK TRAINING
require Gt−1, St−1 # last scholar (generator, solver)
require (X, Y ) # new task samples

X Í ← GenerateOldSample(Gt−1)
Gt ← TrainGenerator(X ∪X Í)
(X Í, Y Í)← GenerateOldSampleWithLabel(Gt−1, St−1)
St ← TrainSolver((X Í, Y Í) ∪ (X, Y ))

output Gt, St

G.2 Experiment
Continual Learning with Deep Generative Replay has been tested on MNIST
[32] and SVHN [33] datasets. These datasets have been presented one after
the other to the model and in both the orders. In particular each task was
made by a group of classes of a dataset. A WGAN-GP [34] netwotk has been
used for generators.
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Figure G.1. Result (in orange) of Deep Generative Replay MNIST
and SVHN datasets.
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Appendix H

Expert Gate: Lifelong
Learning with a Network
of Experts

H.1 Pseudo Code

The training of autoencoders and experts, as explained into the dedicated
sections, is quite simple. Here we are going to present the pseudo code for
the inference procedure.

Algorithm 12 Expert Gate - INFERENCE PROCEDURE
input x # input sample
require A1, ..., At # trained autoencoders

for i=1,...,t do
pi ← Ai(x)

end for
t∗ ← argmax softmax(p1, ..., pt) # predicted task
Et∗ ← LoadExpert(t∗)
y∗ ← PredictClass(Et∗, x) # predicted class

output y∗
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H.2 Experiment
Expert Gate: Lifelong Learning with a Network of Experts has been tested on
MIT Scenes [35], Caltech-UCSD Birds, Oxford Flowers, Stanford Cars, and
FGVC Aircrafts [36] datasets. Each dataset represent a task to learn and
they are presented to the model in the order they have been just presented.
The used features extractor is an AlexNet [37] pretrained on ImageNet.
In figure H.1 there are the results of incremental classification, while in figure
H.2 there are the results of the gate analysis.

Figure H.1. Incremental accuracy of Expert Gate: Lifelong Learning
with a Network of Experts.

Figure H.2. Gate analysis of Expert Gate: Lifelong Learning with
a Network of Experts.
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