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Abstract

Robots capable of engaging in collaborative behaviours with humans, widely known as
cobots, are characterized by incredibly complex requirements and are one of today’s major
challenges in the robotics field. In order to meet the rather strict accuracy requirements
needed to ensure human safety and to gather context information useful for intelligent
human-robot collaboration, these robots must adequately localize human operators who
move freely in the robotic workplaces. In today’s industrial environments, this objective
can be achieved by adopting sophisticated sensory devices like lasers, ultrasounds or vision
systems. However, human tracking can be particularly difficult in presence of occluding fac-
tors that could severely affect vision-based or light-based approaches and in unconstrained
conditions like crowded spaces.

This thesis analyzes the integration of inertial measurement units and a vision system in
order to improve the human localization for collaborative robotics purposes. More in detail,
this work first shows how the human upper body can be independently reconstructed by
means of an inertial motion capture system and of a stereoscopic vision system. In order
to take advantage of both types of sensors, the measurements of these systems are then
combined using a two-step Kalman filter fusion algorithm.

The approach is first validated by simple calibration movements. Then, some complex
movements are considered in order to verify the effectiveness of the framework. In partic-
ular, two different categories of movements are experimentally tested: i) short movements
where the subject comes back to a rest condition every few seconds and ii) long movements
where the subject performs a long motion task without going back to the rest position
until the end. Experimental results show that the presence of IMU sensors in addition to
cameras can compensate for the typical drift of IMU sensors and effectively improve the
spatial perception of the robot. This result could be of great interest not only for direct
interaction tasks between humans and robots, but also in the characterization of advanced
robotic cells, where human behaviour can be gradually learned and the use of IMU sensors
can be finally disregarded, in favour of a pure three-dimensional reconstruction through
artificial vision.
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Chapter 1

Introduction

1.1 Context

In the recent years, collaborative robotics has started to emerge as one of the main ap-
plications in the field of robotics. Collaborative robots (or cobots) were invented by J.
Edward Colgate and Michael Peshkin, professors at Northwestern University, in 1996. A
1999 US patent [1] describes a cobot as "an apparatus and method for direct physical in-
teraction between a person and a general purpose manipulator controlled by a computer".
In fact, collaborative robots are intended to work alongside humans and to directly engage
with them in a shared space. They can be used for social purposes, mainly to facilitate
relationships, entertain people and connect them with the outside world, or in industrial
environments, to assist human operators and improve their working conditions and the
overall efficiency of an assembly line. In contrast to pure industrial robotics, performance
requirements in collaborative robotics are looser, since the involved velocities and accel-
erations in cobots are lower with respect to industrial robots. Nevertheless, collaborative
robots are characterized by incredibly complex requirements and are one of today’s major
challenges in the robotics field.

1.2 Motivation

Even though recently the research in the robotics field has come a long way, researchers
are still far from reaching a full collaboration between humans and robots. The main
challenges consist in respecting the strict accuracy requirements needed to ensure human
safety and to gather context information useful for intelligent human-robot collaboration.
To this aim, an essential step is the real-time localization of the human operators who
move freely in the robotic workplaces. This entails the spatial perception of the human
body, in order to inform the robot about the operators’ position at every time instant and
to ensure their safety throughout the entire human-robot collaboration.

Human localization is a very challenging task, as human behaviours are commonly af-
fected by a great number of external factors and are often unpredictable. Researchers
have been using different methods to deal with this problem and many systems have been
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Introduction

developed over the years, which employ different kinds of sensors. In today’s industrial en-
vironments, researchers have adopted sophisticated sensory devices like lasers, ultrasounds
or vision systems. Okada et al. [2] presented a method for recognizing the motion of
people using static and mobile laser scanners in an indoor environment. Holban et al. [3]
presented an approach on the reconstruction of 3D objects and calculation of their volumes
from their 2D ultrasound images, showing how this technique has given excellent results
regarding the precise knowledge of the human body. Some researchers reconstructed the
human skeleton analyzing the data coming from monocular video sequences: Remondino
and Roditakis [4] fitted a pre-defined human model to the recovered 3D data, Loy et al.
[5] incorporated limb length and symmetry constraints to obtain a three-dimensional re-
construction of human actions in long image sequences, Chen and Chai [6] constructed
a human motion model from a vast collection of preprocessed human motion examples
to constrain the solution space and learnt a skeleton model from prerecorded data to
minimize the ambiguity of the human skeleton reconstruction, Guler and Kokkinos [7]
introduced HoloPose, a method for reconstructing the three-dimensional human body in
the wild using a monocular camera, aligning the model-based joint positions 3D estimates
and DensePose with their image-based equivalents provided by CNNs and achieving both
global consistency and high spatial accuracy of the joint and of the 3D surface estimates.
Other researchers used stereo video streams, like Liu et al. [8] who tracked positions of
the joints over all the subsequent frames and matched the corresponding joints to the ones
tracked on the image sequences from the other camera, reconstructing the skeleton models
in a three-dimensional space through triangulation. Depth imaging technology has pro-
gressed significantly in the last few years and eventually reached a consumer price point
with the launch of Kinect, a cheap RGB-D binocular sensor providing synchronized color
and depth images. A comprehensive review of the latest computer vision algorithms and
applications based on Kinect can be found in [9]. Since its release, also Kinect has been
used for human tracking: Shotton et al. [10] used single depth images for real-time human
pose identification, using an object recognition method and developing an intermediate
body parts representation that maps the complex pose estimation problem into a simpler
per-pixel classification task, while Alexiadis et al. [11] used Kinect depth maps to track
dancers skeletons in order to evaluate their movements in real-time in online interaction
environments.
Despite all these efforts, human tracking has proven particularly difficult in presence of
occluding factors that severely affect vision-based or light-based approaches and in uncon-
strained conditions like crowded spaces.

Another type of sensors used to address the problem of the human localization are
Inertial Measurement Units (IMU). These sensors are widely used as a wearable tool for
human motion tracking, motion capture and motion evaluation. A survey on IMU-based
human tracking can be found in [12]. For example, Roetenberg et al. [13] designed the
Xsens MVN motion capture suit, a cost effective system for full-body human motion cap-
ture which is based on state-of-the-art miniature inertial sensors, biomechanical models
and sensor fusion algorithms that can record all types of movements, including jumping,
running and crawling, and can be used outdoors as well as indoors. Zheng et al. [14] de-
signed Pedalvatar, a cheap IMU-based system that can record the users’ full-body motion
in real-time using a kinematic model rooted at one foot. With respect to systems based on
vision, this IMU-based system ensures more flexibility to capture outdoor activities that
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1.2 – Motivation

are important for several robotic applications. Kong [15] designed a miniaturized, portable
lower body motion capture system named WB-4R for elderly people gait telerehabilita-
tion, while Zhang [16] used inertial sensors to reconstruct only one arm: he investigated
overhead throwing to reconstruct the trajectory and the rotation velocities of the throwing
arm, as well as the torque and the force imposed on the elbow and shoulder. Lin et al.
[17] instead proposed a model that evaluates the performance of surgical movements in the
laparoscopic training program, using an ultraminiaturized wearable motion capture system
(Waseda Bioinstrumentation system WB-3) to analyze the kinematic data describing the
movements of a surgeon’s arms.
IMU sensors constitute a good alternative for marker-based optical tracking systems, be-
cause their workspace is not limited to a camera’s field of view and, unlike cameras, they
are not affected by occlusions. Even though inertial sensors are small and integrated, they
are rarely used in collaborative robotics applications, since they are affected by a consistent
drift error and therefore they alone cannot provide the accuracy required in order to sat-
isfy the safety requirements during collaborative tasks. Furthermore, the positioning of the
IMU sensors (by means of strips or incorporated in wearable clothes) does not guarantee
a rigid connection with the body segments, with significant repercussions on the estimate
of the human limbs position.

A more recent approach consists in integrating the measurements coming from different
types of sensors, in order to exploit the advantages of each one of them. For example, Jia
et al. [18] explored the combination of high quality images coming from a stereo vision
system and fast computation of depth information of Kinect to develop a high resolution
3D image reconstruction system, which has a wide variety of applications including 3D
body motion detection, hands tracking and finger gestures. Recently, low-cost inertial
measurement units and Kinect techniques have proven to offer a feasible and cost-effective
solution for trajectory tracking problems, though each of them still has its own limitations.
For example, Destelle et al. [19] fused the joint positions found by the Kinect sensor
with the more accurate measurements of body segment orientations provided by inertial
sensors, in order to implement a low-cost accurate skeleton tracking, and they achieved a
very high level of accuracy. Tian et al. [20] instead integrated the same two types of sensors
to perform upper limb motion tracking, with the aim of obtaining robust hand position
information. Safeea and Neto [21] investigated the use of a laser scanner and IMU sensors
for a human-robot interaction application in a dynamic environment with moving humans
and obstacles. The data from the laser scanner and from the inertial measurement units
positioned on the human body were fused together to find the position of the subject’s
torso and the configuration of his upper body, in order to determine the distance between
the human and the robot on the fly and to avoid collisions between them. Corrales and
Candelas [22] designed a hybrid tracking system for human operators using IMU and Ultra
Wide Band (UWB) data fusion by a Kalman filter. Their algorithm exploits the advantages
of both technologies: global translational precision from the UWB localization system and
high data rates from the motion capture system. In this way, their developed hybrid system
is able to track the movements of all the limbs of the user and also to precisely position
the user in the environment. Xu et al. [23] instead integrated IMU and UWB data using
an unbiased finite impulse response (UFIR) filter. Brodie et al. [24] used inertial sensors
and GPS to design a prototype system for the biomechanical analysis of ski racing. Liu et
al. [25] designed an innovative data fusion method of INS/GPS navigation systems based
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Introduction

on adaptive Kalman filtering for autonomous vehicles navigation. Similar approaches have
been proposed for the integration of IMUs and monocular or binocular vision systems. A
recent survey from Chen et al. [26] provides an overview of the latest investigations in
which vision and inertial measurement units are used simultaneously to perform human
action recognition more effectively and a summary of the elements required to accomplish
the integration of data from depth and inertial sensors. For example, Nutzi et al. [27]
performed the fusion of visual and inertial data to improve the pose estimation of an
object and to determine the unknown scale parameter in a monocular SLAM framework.
Schmid and Hirschmuller [28] designed a system that computes high quality depth images
and estimates the ego-motion by fusing key frame-based visual odometry with the data
coming from an IMU sensor, in order to achieve environmental depth perception in real-
time and ego-motion estimation on a hand-held device. Von Marcard et al. [29] proposed a
method that combines a set of inertial measurement units attached to the body limbs and a
single hand-held camera to compute precise three-dimensional poses in the wild. Trumble
et al. [30] presented an algorithm for fusing IMU sensors data with multi-viewpoint video
(MVV), with the aim of accurately estimating the three-dimensional human pose. They
incorporated the pose embedding learnt from a 3D convolutional neural network with a
forward kinematic solve of the inertial data and they found that the hybrid pose inference
obtained from these two data sources can resolve the ambiguities of each sensor modality,
yielding a better accuracy. Malleson et al. [31] designed a real-time full-body motion
capture system which takes as inputs the data coming from a sparse set of IMUs and
the images produced by two or more video cameras and uses a framework based on some
optimization criterion to incorporate in real-time constraints set by the inertial sensors,
by the cameras and by a prior pose model. In this way, they managed to recover the
full 6-DOF motion, including the global positions free of any drift error, and they were
able to track in real-time a broad variety of human motions in unconstrained indoor as
well as outdoor settings. Von Marcard et al. [32] proposed a method to fuse video with
sparse orientation data coming from a small number of IMU sensors to improve full-body
human motion capture and perform human pose estimation. Their hybrid tracker is able to
compensate for the drawbacks of each sensor type: it provides precise limb orientation and
good results during rapid motions from inertial sensors and, at the same time, drift-free
and accurate position information from video data.

1.3 Goals

Most of the literature cited so far shows qualitative 3D reconstruction results, very of-
ten convincing on the perceptual side but lacking in details (timing, accuracy) that could
severely affect a cobotic application. For this reason, this thesis focuses on the integra-
tion of inertial measurement units and a stereo vision system in order to deal with the
reconstruction problem in a more quantitative way. The final aim is to improve the human
localization derived from each single system and to fuse both systems to produce measur-
able additional improvements, significant for collaborative robotics purposes. The proposed
experiments are designed to evaluate the accuracy of the reconstruction framework. First,
a data acquisition system composed of eight IMU sensors attached to the human body
and two cameras is designed. Then, the IMU-based system and the camera-based system
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1.4 – Thesis outline

are singularly calibrated and evaluated. Finally, a two-step Kalman filter fusion algorithm
is used to integrate the inertial and vision measurements and to reconstruct the upper
body skeleton of a human operator in a robotic collaborative environment. The framework
is validated by simple calibration movements and by some more complex movements, in
order to test the accuracy of the algorithm and to verify if such a system can be effectively
employed in collaborative robotics applications.

1.4 Thesis outline
The remaining chapters of this thesis are organized as follows. In chapter 2 the IMU
sensors are introduced and the upper body reconstruction problem using inertial sensors
measurements is formalized. Chapter 3 includes the definition of the camera model and
a short description of the camera calibration method. The stereo vision system is thus
described and the reconstruction of the human skeleton from vision data is formalized.
Chapter 4 provides a brief introduction to the Kalman filter and gives details of the Kalman
filter fusion algorithm adopted in this thesis. In chapter 5 the experiments instrumentation
and setup are presented. Chapter 6 presents the results of the experimental activity; the
analysis and the discussion of these results is left to chapter 7. Chapter 8 draws some
conclusions to the work carried on in this thesis and details some potential applications of
a system fusing IMUs and vision data.

15



16



Chapter 2

Inertial Measurement Units
(IMUs)

An Inertial Measurement Unit or IMU is an electronic device equipped with accelerom-
eters, gyroscopes and sometimes also magnetometers, able to measure orientation and
acceleration. IMUs are small and integrated and, in contrast to cameras, they are able
to provide direct three-dimensional measurements, they do not suffer from occlusions and
their workspace is not restricted to a special room equipped with cameras. For these rea-
sons, they are widely used as a wearable tool for human motion tracking, motion capture
and motion evaluation. However, they suffer from some well-known limitations. Their
main drawback is that they are affected by a consistent drift error and therefore they alone
cannot provide a good accuracy, required for example during collaborative tasks. More-
over, in order to find a positional measurement from an IMU it is possible to derive the
acceleration data, but this is often numerically unstable, and the orientation measurements
suffer from temporal lag. Lastly, wearing many inertial sensors can feel intrusive and limit
the range of motion of the subject.

Despite these limitations, it is still possible to reconstruct the human skeleton using
inertial measurement units, as many researchers did in the past. The first operation to be
executed when dealing with IMUs is their calibration, which will be explained in chapter
5, after the sensors used in this thesis work are introduced.

2.1 Human Skeleton Reconstruction from IMU Sen-
sors: Problem Formalization

The approach followed for the mathematical formalization of the problem of reconstructing
the human skeleton using inertial sensors is inspired by the work of Zhang [16] and Diebel
[33].
Three different types of coordinate frames are needed to formulate the problem:

• one global reference system (Fg), positioned on the ground with the positive z-azis
pointing upwards, the positive x-axis pointing to the right side of the body and the
positive y-axis pointing forward, according to the right hand rule
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• one body reference system per each body segment (Fb), centered on each joint and
oriented exactly as the global reference system, according to the right hand rule

• one IMU reference system per each IMU sensor (F i), centered on each sensor.
The relationship between the three reference systems mentioned above, necessary to derive
the 3D structure of the body, is shown in figure 2.1 and is illustrated in the following
sections.
The different reference frames placed on the human body are shown in figure 2.2.

Figure 2.1: Relationship between the three reference systems Fg, Fb and F i for each body
segment. The two continuous arrows indicate the two direct transforms between the body
and the IMU reference frames (called alignment matrices in the following sections) and
between the IMU and the global reference frames (called initial and instantaneous rotation
matrices in the following sections). The dashed arrow indicates the indirect transform
between the body and the global reference frames, which can be obtained by combining
the two direct transforms.

2.1.1 Alignment Matrices
Sensor-to-body alignment (or anatomical calibration) is a procedure commonly adopted in
order to precisely define the relation between sensors and body segments. It consists in
aligning the sensor axes with the anatomical axes, by finding the rotation matrix between
each IMU reference frame and the reference frame of the body segment to which the IMU
is attached. This step is not compulsory, since the movement of the body segments will
slightly modify the position of the sensors on the body, and therefore some researchers
completely skip it [34][35]. However, it was demonstrated that this anatomical calibration
yields a better overall performance in terms of measurement accuracy, reliability and re-
peatability [36][37], because the sensors may be attached to curved body surfaces or on
active skeletal muscles and consequently it could be difficult to position the IMU sensors
in such a way to guarantee a good alignment with anatomical segments. For this reason,
other researchers tackle this problem using post-processing of standard motion tests data
[36] or a deep learning approach [38].
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Figure 2.2: Global reference system (in green), eight body reference systems (in black)
and eight IMU reference systems (in red) positioned on the human body. The eight IMU
sensors are numbered in red.

For the purposes of this thesis, it is necessary to find eight rotation matrices Ri
b (one

per IMU sensor) which report a vector expressed in the body reference system to the
corresponding IMU reference system, according to the following equation (2.1):

vi = Ri
b · vb (2.1)
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To this aim, the anatomical calibration is performed using the data recorded by the inertial
sensors positioned on the test subject’s body while he is performing a few simple rotations
of his right and left arms and of his torso along a known direction. In particular:

• for the arms, the subject first stands still for a few seconds in the neutral position,
with the arms lowered down along the body (stationary phase). Then he performs
a shoulder rotation in the sagittal plane, raising the right arm forward and lowering
it down again. This rotation is repeated five times. Once this movement is over, he
stands still for a few seconds in the neutral position and then he performs the same
five rotations in the sagittal plane with his left arm. After standing still in the neutral
position again for a few seconds, he performs a shoulder rotation in the coronal plane,
raising the right arm sideways and lowering it down again for five times. Finally, he
repeats the same five sideways rotations with his left arm.
The difference between the sagittal, coronal and transverse planes is shown in figure
2.3. The inertial data recorded by the IMU number 6, positioned on the test subject’s
right hand, during the right arm calibration movements is shown in figure 2.4: the
data from the sagittal rotation is reported in figure 2.4a, while the data from the
coronal rotation is reported in figure 2.4b.

Figure 2.3: Sagittal, coronal and transverse planes.

• for the torso and neck, the subject first stands still for a few seconds in the neutral
position, then he performs a torso rotation in the sagittal plane, lowering the upper
body forward and rising up again. Also this rotation is repeated five times. The
inertial data recorded by the IMU number 1, positioned on the test subject’s torso,
during the torso calibration movements is shown in figure 2.5.
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(a) Inertial data recorded by the IMU sensor
number 6, positioned on the subject’s right
hand, during the first calibration movement.
Since the arm is rotated forward in the sagittal
plane, the rotation (and therefore the angular
velocity) is along the IMU z-axis (plotted in
blue).

(b) Inertial data recorded by the IMU sensor
number 6, positioned on the subject’s right
hand, during the second calibration move-
ment. Since the arm is rotated sideways in
the coronal plane, the rotation (and therefore
the angular velocity) is along the IMU x-axis
(plotted in red).

Figure 2.4: Right hand calibration movements. In the two top plots the output of the
gyroscope, so the angular velocity expressed in semi-turns per second, on the three axes
(x,y,z) is plotted in red, green and blue, respectively. In the two bottom plots the output
of the accelerometer, so the acceleration expressed as a function of gravity g, on the three
axes (x,y,z) is plotted in red, green and blue, respectively.

During the stationary phase (the one in the pane denoted as STA in figure 2.4a), the
acceleration recorded by the IMU sensors in the zb direction is the gravity vector. Then, the
accelerometers readings averaged and normalized during the stationary period constitute
the third column of the alignment matrix Ri

b.
The gyroscope data in one of the two rotation directions (for instance the one in the pane
denoted as ROT in figure 2.4a), integrated with respect to time and normalized, are instead
the vector ct1, which has the same direction of the first column of Ri

b. The first and second
columns of each alignment matrix Ri

b are then found according to equations 2.2 and 2.3:

c2 = c3 × ct1
||c3 × ct1||

(2.2)

c1 = c2 × c3

||c2 × c3||
(2.3)
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Figure 2.5: Torso calibration movements. The rotation is around the
IMU 1 x-axis (shown in red).

Once the alignment matrices from the body reference frames to the IMU reference
frames have been determined, it is necessary to find the coordinate transformations between
the global reference frame and each IMU reference frame. To do so, the initial rotation
matrices Rg

0i and the instantaneous rotation matrices Rg
i need to be defined.

2.1.2 Initial Rotation Matrices
The initial rotation matrix represents the initial attitude of each IMU sensor in the global
reference frame. It can be found from the corresponding initial quaternion, which in turn
is determined from the Euler angles sequence (φ, θ, ψ) relating the initial attitude of each
IMU reference frame with the global reference frame. The detailed procedure is explained
in the following sections.

2.1.2.1 The Euler angles

The Euler angles are three angles introduced by Leonhard Euler to represent the orientation
of a rigid body with respect to a fixed coordinate system. Euler angles are typically denoted
as (φ, θ, ψ) and called respectively roll, pitch and yaw. These terms define a sequence of
three elementary rotations, which can be executed in different combinations. One of the
most used sequences is the z-y-x or 3-2-1 sequence. Considering this sequence, the three
orthogonal matrices associated to the rotations (ψ, θ, φ) are:

• the rotation of an angle φ along the z-axis of the fixed reference frame (equation 2.4):

R3(ψ) =

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 (2.4)
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• the rotation of an angle θ along the axis of the intermediate reference frame y1 (equa-
tion 2.5):

R2(θ) =

 c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

 (2.5)

• the rotation of an angle ψ along the axis of the intermediate reference frame x2
(equation 2.6):

R1(φ) =

1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

 (2.6)

The rotation matrix allowing to change from the each IMU reference frame to the global
reference frame is obtained multiplying the three aforementioned matrices:

Rg
i = R1(φ) · R2(θ) · R3(ψ) (2.7)

which in extended form becomes:

Rg
i =

 c(ψ)c(θ) c(θ)s(ψ) −s(θ)
c(ψ)s(φ)s(θ) − c(φ)s(ψ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) c(θ)s(φ)
s(φ)s(ψ) + c(φ)c(ψ)s(θ) c(φ)s(ψ)s(θ) − c(ψ)s(φ) c(φ)c(θ)

 (2.8)

The three initial Euler angles (i.e. corresponding to the neutral or rest position) can be
found using equation 2.9 for the IMUs on the right arm, equation 2.10 for the IMUs on
the left arm and equation 2.11 for the IMUs on the torso and on the neck:φθ

ψ

 =

atan2(r2, r3)
−asin(r1)

π
2

 (2.9)

φθ
ψ

 =

atan2(r2, r3)
−asin(r1)

−π
2

 (2.10)

φθ
ψ

 =

atan2(r2, r3)
−asin(r1)

π

 (2.11)

where r1, r2 and r3 are the accelerations along the x, y and z axis respectively, registered
by each IMU during the stationary period, expressed in the IMU reference frame and nor-
malized with respect to the gravitational force, and atan2 is the four quadrant inverse
tangent function.

The Euler angles representation of the orientation is easily interpretable, but little effi-
cient and computationally expensive, due to the presence of many trigonometric functions
and the possibility to have numeric singularities. Therefore, in order to represent the orien-
tation and to calculate the attitude changes in time it is more efficient and computationally
more advantageous to use quaternions.
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2.1.2.2 The quaternions

The quaternions are mathematical entities which were first introduced in 1843 by Irish
mathematician William Rowan Hamilton as an extension to complex numbers and they
are applied still today to represent a body attitude in the three-dimensional space. By
defining an axis of instantaneous rotation with a versor:

û =

uxuy
uz


and the rotation around such axis of an angle θ, the corresponding quaternion can be
defined as follows (equation 2.12):

q =


q0
q1
q2
q3

 =


ux · sin( θ2)
uy · sin( θ2)
uz · sin( θ2)
cos( θ2)

 (2.12)

where q0 is the scalar part of the quaternion and q1, q2 and q3 are the three components
of the vectorial part of the quaternion. This quaternion represents a rotation with respect
to the unit direction vector û through the angle θ.
The adjoint, the norm and the inverse of quaternion q are:

q̄ =


q0

−q1
−q2
−q3

 ||q|| =
ñ
q2

0 + q2
1 + q2

2 + q2
3 q−1 = q̄

||q||

One important property of quaternions is that quaternion multiplication is not commuta-
tive.

Quaternions are used in pure and applied mathematics, in particular when there is
the necessity to perform calculations involving three-dimensional rotations such as in 3D
computer graphics and computer vision. In practical applications, for example when it is
required to determine the spatial orientation of a body, they can be used as an alternative
to other methods like Euler angles and rotation matrices, since their algebra is easier and
they are computationally much more efficient. In order to represent the attitude of a rigid
body, a quaternion must have unitary norm:

||q|| = 1

For the purposes of this thesis, using the three Euler angles calculated in the previous
section it is easy to find the initial quaternion q0 from equation 2.13 and the corresponding
initial rotation matrix Rg

0i from equation 2.14:

q0 =


cφ/2cθ/2cψ/2 + sφ/2sθ/2sψ/2

−cφ/2sθ/2sψ/2 + sφ/2cθ/2cψ/2
cφ/2sθ/2cψ/2 + sφ/2cθ/2sψ/2
cφ/2cθ/2sψ/2 − sφ/2sθ/2cψ/2

 (2.13)
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Rg
0i =

q2
0,0 + q2

0,1 − q2
0,2 − q2

0,3 2(q0,1q0,2 + q0,0q0,3) 2(q0,1q0,3 − q0,0q0,2)
2(q0,1q0,2 − q0,0q0,3) q2

0,0 − q2
0,1 + q2

0,2 − q2
0,3 2(q0,2q0,3 + q0,0q0,1)

2(q0,1q0,3 + q0,0q0,2) 2(q0,2q0,3 − q0,0q0,1) q2
0,0 − q2

0,1 − q2
0,2 + q2

0,3

 (2.14)

2.1.3 Instantaneous Rotation Matrices
When each IMU sensor moves, the corresponding quaternion changes and it can be updated
using the quaternion update found from equation 2.15:

d

dt
q = 1

2Ω
è
ωi

é
· q (2.15)

where q is the quaternion at the previous time instant and the 4 × 4 matrix Ω
#
ωi

$
is

constructed using the angular velocity vector expressed in the IMU reference frame, so the
output of the gyroscope ωi, according to equation 2.16:

Ω
è
ωi

é
=


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (2.16)

After the updating process, the new quaternion must be forced to have unitary norm, using
a practical solution (equation 2.17):

q+ = q

||q||
(2.17)

where q+ is the new quaternion with unitary norm.
q+ can be used at every sample instant to calculate the instantaneous rotation matrix Rg

i

from each IMU sensor reference system to the global reference system, following equation
2.14.

2.1.4 Upper Body Trajectory Reconstruction
While each IMU sensor moves, the accelerometer inside it registers the combination of two
different accelerations: the gravitational acceleration and the linear acceleration. The latter
represents the real movement of the body segment to which the inertial sensor is attached.
At each time step the total acceleration can be reported from the IMU reference frame
to the global reference frame using the matrix Rg

i just found, and then the gravitational
acceleration g expressed in the global reference frame can be removed in order to get the
linear acceleration of the inertial sensor in the global reference frame ag (equation 2.18):

ag = Rg
i · ai − gg (2.18)

25



Inertial Measurement Units (IMUs)

where gg =
#
0 0 |g|

$T .
The acceleration can then be integrated once or twice with respect to time in order to
find respectively the linear velocity and the position of each IMU sensor in the global
reference frame (equations 2.19 and 2.20):

vg =
Ú

ag · dt (2.19)

sg =
Ú Ú

ag · dt2 (2.20)

Using the initial and instantaneous rotation matrices found in the previous sections, it is
possible to determine the positions of each joint in the global reference system at every
time step. In doing so, all upper body segments are assumed to behave as rigid bodies.
First, it is necessary to define the position of each joint with respect to the corresponding
IMU system in the body reference system. For example, the right shoulder position with
respect to the IMU number 4 attached to the right upper arm in the right upper arm
reference system can be found as:

lruars/IMU4 =

 0
0
20


and the right shoulder position with respect to the IMU number 2 attached to the neck in
the neck reference system can be found as:

lneckrs/IMU2 =

20
0
6


where all lengths are expressed in centimeters.
The instantaneous position of the right shoulder joint in the global reference system can
be computed from equations 2.21 and 2.22:

sgrs/IMU4 = Rg
IMU4R

IMU4
rua · lruars/IMU4 + s4g (2.21)

sgrs/IMU2 = Rg
IMU2R

IMU2
neck · lneckrs/IMU2 + s2g (2.22)

where RIMU4
rua and RIMU2

neck are respectively the alignment matrix from the right upper arm
reference frame to the IMU number 4 reference frame and the alignment matrix from the
neck reference frame to the IMU number 2 reference frame, Rg

IMU4 and Rg
IMU2 are either

the initial rotation matrices or the instantaneous rotation matrices (depending if we are
considering the first time step or any following time step) for IMU number 4 and for IMU
number 2 respectively, and s4g and s2g are the positions of IMU number 4 and of IMU
number 2 in the global reference system, which at the beginning are set according to the
predefined global reference system shown in figure 2.2, and at the subsequent time steps
are updated with the result of the integration in equation 2.20.

Following the same procedure, it is possible to determine the positions of all eight upper
body joints in the global reference system at every time step.
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2.1.4.1 Anatomical Constraints

In order to ensure that the joints do not break, some anatomical constraints need to be
introduced. For the first body segment of the kinematic chain, which connects the torso
joint to the neck joint, a vector v is defined which represents the torso displacement in the
last time step (equation 2.23):

v = storso(t− 1) − storso(t) (2.23)

For the following body segments of the kinematic chain, vector v connects instead the
position of each joint calculated from the following IMU sensor in the kinematic chain to
the position of the same joint calculated from the previous IMU sensor in the kinematic
chain, to ensure that two consecutive body segments remain always attached during motion.
For example, the displacement of the neck joint during the last time step is computed as
the difference between the neck position calculated from IMU number 1 (placed on the
torso) at time t and the neck position calculated from IMU number 2 (placed on the neck)
at time t, as reported in equation 2.24:

v = sneck/IMU1(t) − sneck/IMU2(t) (2.24)

Vectors v are used to update the positions of the two joints located at the two extremities
of each body segment, which were previously calculated following the same procedure as
in equations 2.21 and 2.22. For example, the vector v computed in equation 2.23 will be
used to update the positions of the torso and neck joints.

Furthermore, in order to avoid any integration errors which would cause a big drift in
the x, y and z directions in the upper body reconstruction, at every time step the position
of each IMU sensor is corrected using the same vector v and the velocity is recomputed by
deriving the position with respect to time.
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Chapter 3

Cameras

The content of the first sections of this chapter is inspired by the work of Olivier Faugeras
[39].

A camera is an optical instrument used to capture images. Cameras are basically sealed
boxes with a small hole, called aperture, that lets light in to record an image on a light-
sensitive surface, which is usually photographic film or a digital sensor. The aperture can
be enlarged or narrowed to let more or less light into the camera and the lenses can focus
the light entering through the aperture. At the end of the day, a camera functions in a
very similar way as the human eye.

3.1 Camera model

The most commonly used model for a camera is the pinhole model. It consists of two
screens: on the first screen a hole has been punched, such that the rays of light emitted
or reflected by an object can pass, forming an inverted image of the object on the second
screen. As shown in figure 3.1, the image p of a 3D point P is formed on the image plane as
the intersection between the line connecting the point P and the optical center (or center
of projection) of the camera with the image plane. This operation is called perspective
projection. The plane passing through the optical center and parallel to the image plane is
called focal plane: the focal length is the distance f between the image plane and the focal
plane. The line passing through the optical center and perpendicular to the image plane
is referred to as the optical axis.

Two coordinate systems can be defined:

• the coordinate system (X,Y,Z) for the 3D space

• the coordinate system (u,v) for the image plane

as indicated in figure 3.2.
(u0,v0) are the coordinates of the center of the image plane.
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Figure 3.1: Pinhole camera model and perspective projection.

Figure 3.2: Pinhole camera coordinate systems.

The relationship between a point in 3D coordinates and its projection on the image
coordinates can be expressed as (equation 3.1):

− f

z
= u

x
= v

y
(3.1)
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which can be rewritten linearly as (equation 3.2):

UV
S

 =

−f 0 0 0
0 −f 0 0
0 0 1 0

 ·


x
y
z
1

 (3.2)

where
u = U

S
v = V

S
if S /= 0

Equation 3.2 is projective, which means that it is defined up to a scale factor S. It is possible
to rewrite it using the projective coordinates (X,Y,Z,T ) of the 3D point P (equation 3.3):

UV
S

 =

−f 0 0 0
0 −f 0 0
0 0 1 0

 ·


X
Y
Z
T

 (3.3)

The above equation shows that the relationship between image coordinates and space
coordinated is linear in projective coordinates. In matrix form (equation 3.4):

p = M · P (3.4)

where
p =

#
U, V, S

$T
and P =

#
X, Y, Z, T

$T
3.2 Camera calibration
The first task to be performed when dealing with cameras is camera calibration, a necessary
step in order to extract three-dimensional information from two-dimensional images. In
general, the problem consists of two steps:

• estimating the perspective projection matrix M, a 3 × 4 matrix which describes the
mapping of a pinhole camera from 3D points in the world coordinate system (xw, yw,
zw) to 2D points in an image coordinate system (u,v)

• estimating from M the intrinsic and extrinsic camera parameters, expressed by the
matrices A and (R,t), respectively.

For some applications, for example for stereo vision, the second step may not be necessary.
The relationship between the different coordinate systems is displayed in figure 3.3.

3.2.1 Intrinsic parameters
The most general matrix M can be written as (equation 3.5):

M =

−f · ku 0 u0 0
0 −f · kv v0 0
0 0 1 0

 (3.5)
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Figure 3.3: Different coordinate systems and intrinsic and extrinsic parameters.

where f is the focal length, ku and kv are two coefficients whose interpretation will be
given in the following paragraphs and u0 and v0 are the coordinates of the intersection of
the optical axis with image plane, so the coordinates of the center of the image plane. By
letting αu = −f · ku and αv = −f · kv, matrix M becomes (equation 3.6):

M =

αu 0 u0 0
0 αv v0 0
0 0 1 0

 (3.6)

The scale factors αu and αv and the coordinates u0 and v0 do not depend on the spatial
position and orientation of the camera, and therefore they are called intrinsic parameters.

If we model the camera using the pinhole model, the projection equation relating a point
seen on the image plane and the same point in the camera frame is reported in equation
3.7: UV

S

 =

αu 0 u0 0
0 αv v0 0
0 0 1 0

 ·


xc
yc
zc
1

 = A ·


xc
yc
zc
1

 (3.7)

where, if S /= 0, u = U
S and v = V

S and xc, yc and zc are the camera frame coordinates.
Expressing x, y, z and f in units of length and u and v in pixel units, from equations 3.8
and 3.9 it is possible to interpret the meaning of the intrinsic parameters.

u = U

S
= −f · ku · x

z
+ u0 (3.8)

v = V

S
= −f · kv · y

z
+ v0 (3.9)

32



3.2 – Camera calibration

The quantities 1
ku

and 1
kv

can be interpreted as the size of the horizontal and vertical pixels
in meters, respectively, while the parameters αu and αv can be interpreted as the size of
the focal length in horizontal and vertical pixels, respectively.

3.2.2 Extrinsic parameters
The relationship between a point in the camera frame (expressed in the xc, yc and zc coordi-
nates) and the same point in the world frame (expressed in the xw, yw and zw coordinates)
is reported in equation 3.10:

xc
yc
zc
1

 =
5
r1 r2 r3 0
0 0 0 1

6
·


xw
yw
zw
1

 =
5
R t

03
T 1

6
·


xw
yw
zw
1

 = (R, t) ·


xw
yw
zw
1

 (3.10)

where the rotation matrix R and the translational vector t describe the position and ori-
entation of the camera frame with respect to the world coordinate system. The three
parameters which define R and the three parameters of t are called the extrinsic parame-
ters of the camera.

3.2.3 Estimating M
The general form of the perspective projection matrix M, written as a function of the
intrinsic and extrinsic parameters, is reported in equation 3.11:

M =

αu · r1 + u0 · r3 αu · tx + u0 · tz
αv · r2 + v0 · r3 αv · ty + v0 · tz

r3 tz

 (3.11)

where the vectors r1, r2 and r3 are the row vectors of matrix R and tx, ty and tz are the
three components of the translation vector t in the x, y and z directions, respectively.

In total, there are four intrinsic parameters (the scale factors αu and αv and the co-
ordinates u0 and v0) and six extrinsic parameters (three for the rotation and three for
the translation from the world coordinates system to the camera coordinate system) to be
determined. As mentioned at the beginning of this section, for stereo vision it is possible
to calibrate the camera estimating only the perspective projection matrix M, without esti-
mating its intrinsic and extrinsic parameters. To do so, it is enough to combine equations
3.7 and 3.10 in order to relate a point coordinates on the image plane directly to its coor-
dinates in the world reference system, through the perspective projection matrix M. This
step is reported in equation 3.12:

s ·

uv
1

 =

UV
S

 = A · (R, t) ·


xw
yw
zw
1

 = M ·


xw
yw
zw
1

 (3.12)
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In order to perform camera calibration, it is necessary to estimate all 12 parameters of
the matrix M.
By developing equation 3.7, it results that one point of an image gives us the two following
equations (3.13): I

u = m11·xw+m12·yw+m13·zw+m14
m31·xw+m32·yw+m33·zw+m34

v = m21·xw+m22·yw+m23·zw+m24
m31·xw+m32·yw+m33·zw+m34

(3.13)

Since the 3 × 4 matrix M is defined up to a scale factor, it is possible to divide everything
by one of the parameters, for example by m34, by assuming that it is equal to 1. With a
little bit of algebra, it is easy to reformulate the latter equations as follows (3.14):

I
−m11 · xw −m12 · yw −m13 · zw −m14 +m31 · xw · u+m32 · yw · u+m33 · zw · u = −u
−m21 · xw −m22 · yw −m23 · zw −m24 +m31 · xw · v +m32 · yw · v +m33 · zw · v = −v

(3.14)
The system has now 2 equations and 11 unknowns. It is solvable using the Least Squares
method with at least 6 points, by solving the following system (3.15)):

Q · b = d (3.15)

where matrix Q contains all the known parameters (xw, yw, zw, u and v) of the considered
points, vector b contains all the unknowns (m11, m12,..., m33) and vector d contains the
known (u,v) of the different points.
The solution is obtained using the following equation (3.16):

b = (QT · Q)−1 · QT · d (3.16)

Once the system is solved, all the parameters of the perspective projection matrix M
are determined. As hinted before, since this thesis uses a stereo vision application, this
solution does not procure the camera’s intrinsic and extrinsic parameters. Therefore, for
the purpose of this work the camera calibration is completed.

3.3 Stereo vision
A stereo vision system consists of two pinhole cameras which form two images (ul,vl) and
(ur,vr) of the same point P = (xw, yw, zw), expressed in the world reference frame. This
configuration, shown in figure 3.4, allows the vision system to simulate human binocular
vision, and therefore to capture three-dimensional images.

Given the two images on the two cameras’ image planes, two problems arise:

• the correspondence problem: given a point (ul,vl) on the left camera’s image plane,
define to which point (ur,vr) on the right camera’s image plane it corresponds to.
The correspondence of two points means that they are the two images of the same
3D point P
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• the reconstruction or triangulation problem: given two projections (ul,vl) and (ur,vr)
of a point P = (xw, yw, zw) on two images, determine the 3D coordinates of P in the
world reference frame.

Figure 3.4: Stereoscopic system formed by two cameras.

3.3.1 The correspondence problem
The correspondence problem is always ambiguous, so there are some geometric and physical
constraints that can be imposed to reduce the number of potential matches for a given point
(ul,vl) on the left image.

3.3.1.1 The epipolar constraint

The first and most important constraint that can be imposed is the epipolar constraint,
which arises from the geometry of stereo vision. From figure 3.5, it is clear that the point P
that has produced the image pl on the left image plane must lie on the half-line connecting
the optical center of the left camera Ol and the projection pl itself. Consequently, all
possible matches pr of pl on the right image plane must lie on the image of this half-line,
which is another half-line connecting pr to the point er. er is the intersection between
the line connecting the two optical centers of the two cameras Ol and Or, whose length
is referred to as baseline, and the right camera’s image plane. er is called the epipole of
the right camera with respect to the left one and the line connecting er and pr is called
the epipolar line of point pl in the image plane of the right camera. Since the epipolar
constraint is symmetric, also the possible matches for a point pr in the right camera’s image
plane lie on the epipolar line through the epipole el, which is the intersection between the
line connecting the two optical centers of the two cameras Ol and Or and the left image
plane. The two epipolar lines are the intersections of the epipolar plane OlPOr with the
two cameras’ image planes. In conclusion, each epipolar constraint states that for a given
point pl or pr, on the left or right image plane respectively, all the possible matches in the
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other image plane lie on a line called the epipolar line. In this way it is possible to reduce
the dimensions of the search space from two dimensions to one.

Figure 3.5: The epipolar geometry.

3.3.1.2 Other constraints

Other constraints that can be imposed in order to solve the correspondence problem in-
clude:

• Uniqueness: for opaque objects, one point oon the left image should have only one
matching point on the right image. This constraint does not hold for transparent
objects.

• Continuity: this constraint is based on the idea that most of the objects in the world
have smooth surfaces. Let P be a 3D point with projections pl = (ul, vl) on the left
image plane and pr = (ur, vr) on the right image plane. The disparity d is defined as
the difference d = vr − vl. Then a neighbour nl of pl in the left image plane should
have a match nr on the right image plane with a disparity close to d.

• Ordering: objects in the world are usually bounded by continuous opaque surfaces. If
we assume that the observed feature points lie on such a surface so as to be simulta-
neously visible to both image planes, we arrive at the ordering constraint: points on
the same epipolar line are in the same order in both image planes’ views. Therefore
the ordering of edges or other features is usually preserved by stereo projection along
epipolar lines. This means that if feature A is on the left of feature B in the left
stereo image, the same spatial configuration is preserved in the right stereo image.
More practically, the forbidden zone associated with a point of the surface is the cone
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defined by the point P itself and the two optical centers of the two cameras Ol and
Or. Any point belonging to this region has projections on the left and right image
planes which violate the ordering constraint relative to point P. Since it is easy to
check if a point belongs to the forbidden zone depicted by point P considering the
order of their images along the epipolar lines, this constraint can be used to eliminate
matches for the point in the forbidden zone on one of the two image planes, given the
match (pl,pr).

• The disparity gradient: let us consider a virtual retina parallel to the two real ones,
called the cyclopean retina. If a point P has projections pl and pr on the two real
retinas with coordinates vl and vr from their respective optical centers Ol and Or, then
its image p on the virtual retina has coordinates vl+vr

2 and the disparity d is defined
as a smooth function of w = vl+vr

2 . Let us consider two points on an object with
cyclopean coordinates wl and wr and disparities dl and dr. The disparity gradient
is defined as the magnitude of the derivative of the disparity with respect to the
cyclopean coordinate: DG =| d1 − d2

w1 − w2
|. The disparity gradient is upper-bounded:

DG < K. A limit K of less than 2 implies that the matches between the two images
preserve the topology of the images.

• Geometric constraints: this constraints restrict objects to be locally planar. For
example, let us observe a curve C with three cameras and let us consider a point P
on the curve. From two images p1 and p2 of point P it is possible to reconstruct P
and therefore reproject it to predict p3. In the same way, from the tangents t1 and
t2 at p1 and p2 it is possible to predict the tangent t3 at p3 and from the curvatures
k1 and k2 at p1 and p2 it is possible to predict the curvature k3 at p3.

3.3.1.3 OpenPose

In this thesis, the correspondence problem was solved by means of the tool OpenPose.
OpenPose is a real-time multi-person system that can detect human body, hand, facial,
and foot keypoints (in total 135 keypoints) simultaneously on single images [40]. It has
two main funcionalities:

• 2D real-time multi-person keypoint detection: 15 or 18 or 25-keypoint body or foot es-
timation, 6-keypoint foot estimation, 2x21-keypoint hand estimation and 70-keypoint
face estimation.

• 3D real-time single-person keypoint detection: three-dimensional triangulation from
multiple single views.

The program takes as input an image, a video, a webcam, a Flir/Point Grey or an IP
camera and returns as output a basic image plus the keypoint display/saving in image or
video format, the keypoint saving in text format (for example as a JSON file) and/or the
keypoints as an array class. It runs on different operating systems, such as Ubuntu (14,
16), Windows (8, 10), Mac OSX and Nvidia TX2. Several versions are available for free
download online, including the CUDA (Nvidia GPU), the OpenCL (AMD GPU) and the
CPU-only (no GPU) versions.
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Figure 3.6: The overall OpenPose pipeline.

Figure 3.6 illustrates the overall pipeline of OpenPose. The system takes as input a
color image (Fig. 3.6a). First, a feedforward network predicts simultaneously a set of 2D
confidence maps S of body part positions (Fig. 3.6b) and a set of 2D vector fields L of
part affinities, which encode the degree of association between body parts (Fig. 3.6c). The
confidence maps and the affinity fields are then parsed by greedy inference (Fig. 3.6d) to
produce as output the 2D locations of anatomical keypoints for each person in the image
(Fig. 3.6e).

In this thesis, OpenPose was run on the experiments’ videos of both cameras recording
the experiment and the people pose data for each video frame was saved on a custom JSON
file using the write_json flag. Each JSON file has a people array of objects, where each
object has:

• an array pose_keypoints_2d containing the body part locations and detection confi-
dence formatted as x1,y1,c1,x2,y2,c2,.... The coordinates x and y can be normalized
to the range [0,1], [-1,1], [0, source size], [0, output size], etc., depending on the flag
keypoint_scale, while c is the confidence score in the range [0,1]

• the arrays face_keypoints_2d, hand_left_keypoints_2d, and hand_right_keypoints_2d,
analogous to pose_keypoints_2d

• the analogous 3-D arrays body_keypoints_3d, face_keypoints_3d, hand_left_keypoints_2d,
and hand_right_keypoints_2d (if –3d is enabled, otherwise they will be empty).
Their format is x1,y1,z1,c1,x2,y2,z2,c2,..., where c is simply 1 or 0 depending on
whether the 3-D reconstruction was successful or not

• the body part candidates before being assembled into people (if –part_candidates is
enabled).

Two possible pose formats are supported by OpenPose: The BODY_25 pose output for-
mat and the COCO pose output format. The keypoint ordering of these two body models
is shown in figure 3.7.

The effectiveness of OpenPose is appreciable in figure 3.8, where two camera frames of
two different test subjects during the experiment sessions are reported alongside the cor-
responding two outputs of OpenPose with the identified joints and limbs.
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(a) BODY_25 Pose Output Format. (b) COCO Pose Output Format.

Figure 3.7: The two possible pose output formats supported by OpenPose.

3.3.2 The reconstruction or triangulation problem
As hinted before, the reconstruction or triangulation problem consists in reconstructing
three-dimentional geometric objects from matches obtained by stereo vision. More practi-
cally, the task is to determine the 3D coordinates of a point P = (xw, yw, zw) in the world
reference frame, given its two projections (ul,vl) and (ur,vr) on the two cameras’ images.
In order to solve this problem, it is crucial to determine the parameters of the camera
projection function from 3D to 2D for the cameras involved. In the simplest case, this is
represented by the camera matrices. Knowing the perspective projection matrices Ml and
Mr of the two cameras (left and right) found during each single camera calibration, it is
possible to write the following systems (equations 3.17 and 3.18):

s ·

ulvl
1

 = Ml ·


xw
yw
zw
1

 (3.17)

s ·

urvr
1

 = Mr ·


xw
yw
zw
1

 (3.18)

where (ul, vl), (ur, vr) and (xw, yw, zw) are the coordinates of the same point in the left
camera frame, right camera frame and in the world reference frame, respectively.
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(a) A camera frame of one test subject given
as input to OpenPose.

(b) Corresponding output of OpenPose, in
which the joints and limbs are identified.

(c) A camera frame of one test subject given
as input to OpenPose.

(d) Corresponding output of OpenPose, in
which the joints and limbs are identified.

Figure 3.8: Two camera frames of two different subjects during the experiment sessions
and the corresponding two outputs of OpenPose, with the identified joints and limbs.
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The two previous systems give us the four following equations (3.19):

ul = m11l
·xw+m12l

·yw+m13l
·zw+m14l

m31l
·xw+m32l

·yw+m33l
·zw+m34l

vl = m21l
·xw+m22l

·yw+m23l
·zw+m24l

m31l
·xw+m32l

·yw+m33l
·zw+m34l

ur = m11r ·xw+m12r ·yw+m13r ·zw+m14r

m31r ·xw+m32r ·yw+m33r ·zw+m34r

vr = m21r ·xw+m22r ·yw+m23r ·zw+m24r

m31r ·xw+m32r ·yw+m33r ·zw+m34r

(3.19)

After a few algebraic passages, the four equations become (equation 3.20):


−m11l
· xw −m12l

· yw −m13l
· zw +m31l

· xw · ul +m32l
· yw · ul +m33l

· zw · ul =
= m14l

−m34l
· ul

−m21l
· xw −m22l

· yw −m23l
· zw +m31l

· xw · vl +m32l
· yw · vl +m33l

· zw · vl =
= m24l

−m34l
· vl

−m11r · xw −m12r · yw −m13r · zw +m31r · xw · ur +m32r · yw · ur +m33r · zw · ur =
= m14r −m34r · ur

−m21r · xw −m22r · yw −m23r · zw +m31r · xw · vr +m32r · yw · vr +m33r · zw · vr =
= m24r −m34r · vr

(3.20)

The system has 4 equations and 3 unknowns, so it is easily solvable using the Least Squares
method with at least 1 point, by solving the following system (equation 3.21):

Q · b = d (3.21)
where matrix Q and vector d contain all the known parameters (m11l

,..., m34l
, m11r ,...,

m34r) of the two perspective projection matrices Ml and Ml and the known image co-
ordinates (ul, vl, ur, vr) of the considered point, while vector b contains the 3 unknown
coordinates of the 3D point in the world frame (xw, yw, zw).
The solution is obtained using the following equation (3.22):

b = (QT · Q)−1 · QT · d (3.22)
if rank(Q)=3, which is assumed to be the case.

Once this system is solved, the 3D coordinates of the point that we want to reconstruct in
the world frame are determined, thus solving the reconstruction problem.

3.4 Rototranslation from the camera world reference
system to the global reference system

The last step is to report the just found 3D point P in the camera world reference frame to
the global reference frame. Figure 3.9 shows the configuration of the two reference systems,
seen from the side and from the top.
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(a) Side view of the two reference frames. (b) Top view of the two reference frames.

Figure 3.9: Side view and top view of the two reference frames. In green, the global
reference frame to which the positions determined by the IMU sensors are reported. In
red, the camera world reference frame in which the positions determined by the two cameras
are found.

In principle, the cameras calibration could be carried out directly on points which belong
to the space defined by the global reference system. In this case, it was decided to calibrate
the cameras on the three-dimensional grid, so it is necessary to bind the board to the global
space. Obviously, the transformation between the two reference systems is known and it
is expressed by a rototranslation matrix RT. The rotational part of such matrix is set to
the identity matrix, since there is no rotation between the two reference systems (as shown
in figure 3.9), while its translational part is the vector t =

#
tx ty tz

$T representing the
difference between the position of a reference point seen from the camera world frame and
the position of the same reference point seen from the global coordinate system. In this
dissertation the neck point was selected as reference point. In order to report the three-
dimensional point P in the camera world reference frame to the global reference frame, it
is enough to simply pre-multiply such point in the camera frame written in homogeneous
coordinates by the matrix RT. These steps are summarized in equations 3.23 and 3.24:

RT =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (3.23)

where t =
#
tx ty tz

$T = norm(neckw − neckg)
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xg
yg
zg
1

 = RT ·


xw
yw
zw
1

 (3.24)
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Chapter 4

The Kalman filter

The Kalman filter is a recursive state-space model based estimation algorithm named after
Rudolf Emil Kalman, who in 1960 published his famous paper "A new approach to linear
filtering and prediction problems" describing a recursive solution to the discrete-data linear
filtering problem[41]. This method uses a dynamic model, measured control inputs and
process measurements to estimate the process output. The estimation is composed of two
distinct phases:

• Time update or Prediction phase: the state vector and the error covariance
matrix are estimated, based on the system’s mathematical model. Such an estimate
is called a-priori estimate of the system.

• Measurement update or Correction phase: the a-priori state just estimated is
corrected using an external measurement, in order to obtain a better estimate of the
system state. This estimate is called a-posteriori estimate of the system.

The Kalman filter behaves then as a predictor-corrector algorithm, applying recursively
the aforementioned procedure (figure 4.1).

Figure 4.1: The recursive process of the Kalman filter.
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4.1 The discrete Kalman filter
The content of this section is inspired by the work of Fabio Scibona [42], who used an
extended formulation of the Kalman filter algorithm to combine measurements provided
by three gyroscopes and a star sensor in a typical space scenario, for the development and
validation of a navigation system for the attitude module based on low cost MEMS inertial
sensors.

The discrete Kalman filter addresses the problem of estimating the state x ∈ Ùn of a
discrete-time controlled process that is governed by the following state-transition equation
at time k, called state model (equation 4.1):

xk = Ak−1 · xk−1 + Bk−1 · uk−1 + Wk−1 · wk−1 (4.1)

and a measurement equation at time k, called measurement model (equation 4.2):

zk = Hk · xk + Vk · vk (4.2)

where:

• xk is the n× 1 system state vector

• uk is the p× 1 system control input vector

• Ak is the n× n state-transition matrix, linking the system state xk−1 to the system
state xk

• Bk is the n× p input matrix, linking the input u to the system state xk

• Wk is the n× n matrix linking the noise w to the system state xk

• wk is the n×1 process noise vector, a Gaussian white noise with zero mean E[wk] = 0
and known covariance E[wk · wT

i ] = Qk if i=k, zero otherwise

• zk is the m× 1 measurement vector

• Hk is the m×n observation matrix, linking the system state xk to the measurement
zk. It represents how the system state is registered by the sensors

• Vk is the m×m matrix linking the noise v to the measurement zk

• vk is the m × 1 measurement noise vector, a Gaussian white noise with zero mean
E[vk] = 0 and known covariance E[vk · vTi ] = Rk if i=k, zero otherwise.

If we assume that the noises w and v are uncorrelated, then the two covariance matrices
Qk and Rk are independent from each other.

Let us define the a-priori state vector at time k as x̂−k and the a-posteriori state vector at
time k as x̂+

k . At each time step, the a-posteriori state is calculated as a linear combination
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of the a-priori state and the weighted difference between the actual measurement zk and
the estimated measurement Hk · x̂−k , as reported in formula 4.3:

x̂+
k = x̂−k + Kk · (zk − Hk · x̂−k ) (4.3)

where:

• (zk − Hk · x̂−k ) is the term normally called residue

• Kk is the Kalman gain.

The Kalman gain allows to minimize the error covariance matrix Pk and can be calcu-
lated from formula 4.4:

Kk = P−k · HT
k

(Hk · P−k · HT
k + Vk · Rk · V T

k )
(4.4)

From formulas 4.3 and 4.4, it is clear that Kk weights more the residue if the measure-
ment covariance matrix Rk tends to zero:

lim
Rk→0

Kk = H−1
k =⇒ x̂+

k → H−1
k · zk

Conversely, Kk weights less the residue if the a-priori state covariance matrix P−k tends to
zero:

lim
P −

k
→0

Kk = 0 =⇒ x̂+
k → x̂−k

The Kalman gain allows therefore to optimally estimate the system state, weighting the
measurement proportionally to its reliability. Its reliability is defined by the comparison
between the covariance of the measurement expected from the mathematical model P−k
and the covariance of the acquired measurement Rk.

Once the a-posteriori state has been calculated from formula 4.3, the state covariance
matrix is updated using formula 4.5 in order to find the a-posteriori state covariance matrix:

P +
k = (I − Kk · Hk) · P−k (4.5)

This concludes the correction phase of the Kalman filter.

In the prediction phase, the new a-priori state is calculated based on the mathematical
model of the system, according to the state equation 4.6:

x̂−k+1 = Ak · x̂+
k + Bk · uk (4.6)

Then, the new covariance matrix is calculated using formula 4.7:

P−k+1 = Ak · P +
k · AT

k + Wk · Qk · W T
k (4.7)

The discrete Kalman filter algorithm is described in figure 4.2.
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Figure 4.2: The discrete Kalman filter algorithm (from [42]).

4.2 The Kalman filter fusion algorithm

In this work, the discrete Kalman filter is used to integrate the positions of the human
joints in the global reference frame obtained from the inertial sensors with the ones recon-
structed from the the cameras.
Each state vector x is composed of the (x,y,z) coordinates of the global position of one
joint of the user in the environment. A is a 3 × 3 identity matrix, in order to incorporate
directly the IMU measurements, and B is a null matrix since there are no control inputs.
The noise matrices W and V are 3 × 3 identity matrices, as well as the observation matrix
H. The process noise covariance matrix Q is a diagonal matrix because state vector vari-
ables are not correlated. Its diagonal terms correspond to the mean error of the inertial
measurements. The measurement noise covariance matrix R is a diagonal matrix because
measurement vector variables are not correlated. Its diagonal terms correspond to the
mean error of the camera measurements.

The Kalman filter based fusion algorithm used in this thesis works according to the
flowchart reported in figure 4.3.
Before starting the main loop, the initial a-priori state vectors x̂−0 (one for each joint being
tracked) are estimated as the global positions found from the first frame of the two cameras,
when the human is in the rest position. Also the initial a-priori covariance matrix P−0 is
initialized as matrix Q.

When a new measurement arrives at time k, the first step to be executed is the correction
phase of the Kalman filter algorithm:

1. first, the Kalman gain at time k Kk is calculated according to formula 4.4
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Figure 4.3: The fusion algorithm diagram.
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2. then, the a-posteriori state vector at time k x̂+
k is computed:

• if the measurement comes from an IMU sensor, the a-posteriori state vector coin-
cides with the a-priori state vector found from the IMU sensor in the prediction
step performed at time k-1

• if the measurement comes from the cameras (zk), the a-posteriori state vector is
updated using the camera measurement in order to eliminate the error accumula-
tion in the previous a-priori estimate and thus compute an improved a-posteriori
estimate of the global position x̂+

k , as reported in formula 4.3

3. lastly, the a-posteriori error covariance matrix at time k P +
k is updated according to

formula 4.5.

Afterwards, the prediction phase is executed:

1. first, a new a-priori state vector estimate of the global position of the user’s considered
joint at time k+1 x̂−k+1 is computed by incorporating the position measurement of
the corresponding IMU sensor, following formula 4.6. This estimate will be used as
starting point in the next cycle to compute the a-posteriori state vector at time k+1

2. finally, a new a-priori estimate of the error covariance matrix at time k+1 P−k+1 is
calculated from formula 4.7. Also this estimate will be used in the next cycle to
compute both the a-posteriori error covariance matrix and the Kalman gain at time
k+1.

The loop execution continues as long as new measurements are received.

Thereby, the prediction step will be executed with the inertial sensors rate (200 Hz) and
the correction step will be executed with the cameras rate (15 Hz).
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Chapter 5

Experiments

5.1 Experiments Instrumentation

5.1.1 Board

The grid used for the purpose of the experiments was built using a flat wooden surface
whose dimensions were 60cm× 60cm. Several wooden sticks of different heights were fixed
on top of the board and any two sticks were placed 15 cm apart, both along the length
and width directions of the grid. The sticks are either 0 cm, 5 cm, 10 cm, 15 cm or 20 cm
tall. A picture of the board used for the experiments is shown in figure 5.1.

Figure 5.1: The grid used in the experiments.
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5.1.2 IMU sensors

The inertial sensors used for the experiments are the WB-4R (Waseda Bioinstrumentation
4R) Inertial Measurement Units, shown in figure 5.2a. Each of these sensors contains a tri-
axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. The specifications
of these sensors are reported in Table 5.1. The sampling frequency of the WB-4R is 200
Hz. More detailed information about these sensors can be found in [35].

Accelerometer Gyroscope Magnetometer
(LIS331DLH) (LYPR540AH) (HMC5843)

Axis 3-axis 3-axis 3-axis
Range ±2/± 4/± 8 [G] ±400/± 1600 [deg/s] ±4 [Gauss]

Resolution 1/2/3.9 [mG/digit] 3.2/0.8 [mV/dps] 12 [bit]
Bandwidth 25/50/500 [Hz] 140 [Hz] 50 [Hz]

Table 5.1: Specifications of WB-4R IMU sensors.

Eight IMU sensors are placed on the human body: one on the right upper arm, one
on the left upper arm, one on the right forearm, one on the left forearm, one on the right
hand, one on the left hand, one on the torso and one right under the neck. The sensors
are fixed on the body with elastic bands, as shown in figure 5.2b, which makes it easy to
adjust them to different body parts and to different partecipants.

(a) WB-4R Inertial Measurement Unit (IMU).
(b) IMU sensors placement on the body

Figure 5.2: WB-4R IMU sensor and IMU placement on the body.
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The eight IMU sensors are connected to a central board with micro USB cables, in a
daisy chain fashion, and they communicate via CAN bus. The data transmission between
the central board and the computer is implemented using Bluetooth 2.1 (Class 1), ensuring
the synchronization between sensors and allowing a large workspace for the partecipants.

5.1.2.1 Inertial sensors calibration

The first operation to be performed when dealing with inertial measurement units is their
calibration, an essential step in order to set standards for the IMU attitude and reduce
errors caused by inaccurate sensor measurements.

Accelerometer calibration In order to calibrate the accelerometer, the following tools
are needed and they are shown in figure 5.3:

• calibration box: it is an empty box with flat and perpendicular surfaces and two cuts
on the case to pass the USB cable

• WB-4R IMU sensor to be calibrated and central board

• horizontal plate: it can be made from a flat plate and three bolts, three spring washers
and six nuts

• thin double side tape to fix the sensor to the calibration box

• level gauge

Figure 5.3: Equipment necessary for the accelerometer calibration.

First of all, the IMU sensor needs to be fixed to the calibration box in the correct
direction drawn on the inside of the calibration box itself using double side tape. This
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positioning is shown in figure 5.4a. Then, the height of the three legs of the horizontal
plate needs to be adjusted to make it horizontal, using the level gauge to check the correct
inclination. This step is shown in figure 5.4b.

(a) Correct positioning of the IMU sensor
inside the calibration box.

(b) Horizontal plate with the level gauge to
check its inclination.

Figure 5.4: Correct positioning of theIMU sensor inside the calibration box and horizontal
inclination checking using the level gauge.

The IMU sensor needs to be connected to the central board via Bluetooth and then
the calibration box needs to be positioned on the horizontal plate with one face down
and kept still for 10 seconds, the time needed by the software to take 100 samples. Once
the 100 samples are taken, the calibration box can be rotated onto another face and the
same procedure is repeated. After taking samples from all six faces, the calibration of the
accelerometer is complete. The calibration box positioned on the horizontal plate during
the accelerometer calibration is shown in figure 5.5.

Gyroscope calibration In order to calibrate the gyroscope, the following tools are
needed:

• calibration box

• WB-4R IMU sensor to be calibrated and central board

• turn table

First of all, the sensor needs to be fixed with double side tape inside the calibration box and
connected to the central board via Bluetooth. The calibration box and the central board
need to be placed on the turn table and the rotation speed of the turn table needs to be set
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Figure 5.5: IMU accelerometer calibration.

at 45 rounds per minute. At first, the sensor is kept static for a few seconds with one face
of the calibration box placed down on the turn table. Then, the rotation of the turn table
is activated to conclude the calibration of that axis. The same procedure is repeated for
every face of the calibration box, until the gyroscope calibration is finished. The calibration
box and the central board positioned on the turn table during the gyroscope calibration
are shown in figure 5.6.

5.1.3 Cameras
The cameras used for the experiments are two Logitech HD Pro Webcams C920, shown
in figure 5.7. They are able to deliver full HD video (1080p at 30fps) and clear, stereo
sound. The 78-degree field of view can frame up to two people at once and two integrated
microphones capture audio from every angle. They are compatible with Windows 10 or
later, Windows 8 and Windows 7 and they work in USB Video Device Class (UVC) mode
with different supported video-calling clients. The technical specifications of such cameras
are reported in table 5.2.

5.2 Experiments Setup
The experiments were performed at prof. Takanishi Laboratory of Waseda University,
located at TWIns, in Tokyo, Japan. The grid was positioned on top of a desk, at a height
of approximately 75 cm. The test subject was positioned on one side of the board. The two
cameras were positioned on the other side, at a measured distance of approximately 213
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Figure 5.6: IMU gyroscope calibration.

Figure 5.7: Logitech HD Pro Webcams C920.

cm from the board, and were mounted on top of two tripods at a height of approximately
117.5 cm. The measured distance between the two camera centers was approximately 99
cm. The room setup can be seen in figure 5.8.

Two experiments were designed, in which the test subject had to perform a series of
movements on the grid while the inertial sensors were placed on his body and the two
cameras were recording his motion. The IMU sensors recorded the accelerations and the
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5.2 – Experiments Setup

Logitech HD Pro Webcam C920
Dimensions (Height x Width x Depth) Without clip: 29 mm x 94 mm x 24 mm

Including clip: 43.3 mm x 94 mm x 71 mm
Cable Length 1.5 m

Max Resolution 1080p/30fps - 720p/30fps
Focus type autofocus
Built-in mic stereo

Table 5.2: Specifications of Logitech HD Pro Webcams C920.

Figure 5.8: Room setup for the experiments.

angular velocities along the three axes (x,y,z) at a rate of 200 Hz, so once every 5 ms, while
the two cameras recorded the subject’s motion at a rate of 15 fps. For both experiments,
the subject started from the rest position, which consists in standing straight with both
arms lowered along the sides. The rest position, sometimes also called neutral condition
or N-pose, is shown in figure 5.9a.

• The first experiment was of short duration in time and consisted in the test subject
touching with his right index finger the tips of the 4 wooden sticks fixed on the 4
corners of the three-dimensional grid. After every touch, the subject returned to the
rest position for a couple of seconds.

• The second experiment was of longer duration in time and consisted in the test
subject touching with his right index finger the tips of all 25 wooden sticks, following
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a predefined sequence. This time, the subject did not return to the rest position until
the end of the experiment. One of the test subjects performing the second experiment
is shown in figure 5.9b.

(a) One of the test subjects standing in the
rest position, also called neutral condition
or N-pose.

(b) One of the test subjects while perform-
ing the second experiment, which is the
longer one.

Figure 5.9: Experiments setup.

Four young subjects were recruited from the WB and Musical groups of prof. Takanishi
Laboratory at Waseda University and participated in the experiments in two different
sessions held in two different days. The subjects were chosen for having variety on height,
weight and sex, as reported in table 5.3. The experiments were performed with different
subjects to make sure that the results were not biased by the particular position of the
sensors on a single subject or by his motion during the test. Each subject repeated each
experiment three times, at different speeds.

Subject S1 S2 S3 S4 Mean
Age 23 27 25 20 23.75

Height [cm] 175 162 180 173 172.5
Weight[kg] 60 68 80 75 70.75

Table 5.3: Anthropometric information of experimental subjects.
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Chapter 6

Results

Using the data collected from the IMU sensors and from the cameras and following the
procedure explained in the previous chapters, it is possible to reconstruct the human upper
body segments.

6.1 Calibration movements
First of all, the calibration movements of the arms along the sagittal and coronal planes
were reconstructed. The results of the calibration movements reconstructions are only
qualitative and they are presented to show the behaviour of the system in simple cases. In
the following body plots, only the subject’s shoulders and arms are displayed.
Figure 6.1 shows the three-dimensional reconstruction of the calibration movement of the
right arm along the sagittal plane. The test subject with the arm raised forward at 90
degrees and the corresponding reconstruction are reported in figures 6.2a and 6.2b.
Figure 6.3 shows instead the three-dimensional reconstruction of the calibration movement
of the right arm along the coronal plane. The test subject with the arm raised sideways
at 90 degrees and the corresponding reconstruction are reported in figures 6.4a and 6.4b,
respectively.

6.2 Complex movements
When considering more complex movements, it is possible to compare three approaches:

1. the first considered approach consists in reconstructing the human upper body using
only the measurements provided by the inertial sensors, completely neglecting the
cameras data

2. the second method performs the reconstruction based only on the cameras measure-
ments, completely neglecting the IMU sensors data

3. the third approach takes into account both the inertial and the cameras data, inte-
grating them with a Kalman filter fusion algorithm with the aim of improving the
final skeleton reconstruction.
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Figure 6.1: Three-dimensional reconstruction of the first calibration movement. The right
arm is rotated forward, along the sagittal plane. Its position in the global reference frame
is plotted once every 20 time steps.

(a) Test subject with the arm raised forward
at 90 degrees.

(b) Reconstruction of the test subject with
the arm raised forward at 90 degrees.

Figure 6.2: Test subject with the arm raised forward at 90 degrees and corresponding
reconstruction.
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Figure 6.3: Three-dimensional reconstruction of the second calibration movement. The
right arm is rotated sideways, along the coronal plane. Its position in the global reference
frame is plotted once every 20 time steps.

(a) Test subject with the arm raised side-
ways at 90 degrees.

(b) Reconstruction of the test subject with
the arm raised sideways at 90 degrees.

Figure 6.4: Test subject with the arm raised sideways at 90 degrees and corresponding
reconstruction.
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In order to validate the experiments, the right index finger positions in the global ref-
erence frame at the time instants in which the subject touched the tip of each stick are
compared to the real positions of the sticks’ tips. To do so, a minimization procedure is
performed applying an algorithm called Iterative Closest Point (ICP). The ICP algorithm
was first introduced by Paul J. Besl and Neil D. McKay in their 1992 paper "A method for
registration of 3-D shapes" [43]. It is widely employed to minimize the difference between
two clouds of points, in order to align three-dimensional shapes for object recognition and
reconstruct 2D or 3D surfaces from different scans. In the Iterative Closest Point algorithm,
one reference point cloud is kept fixed and the other one is transformed to find the best
match with the reference one. Every point in one data set is coupled with the closest point
in the other data set, forming correspondence pairs. Then the algorithm iteratively refines
the transformation between the two point clouds, which is a combination of translation
and rotation, in order to minimize a point-to-point error metric, usually the sum of the
squared differences between the coordinates of the matched pairs. The process is iterated
until the error becomes smaller than a threshold or it stabilizes.
The mathematical formulation of the ICP algorithm is the following: given two correspond-
ing point sets X = x1, ..., xNx and P = p1, ..., pNp , the goal is to find a rotation RICP and a
translation tICP that minimize the sum of the squared errors between each matching pair
of the two point clouds:

EICP = 1
Np

·
NpØ
i=1

||xi − RICP · pi − tICP ||2

where xi and pi are corresponding points.
If the correct correspondences are known, it is possible to calculate the correct relative
rotation and translation in closed form.

The reported ICP errors are calculated from experiments repeated by different subjects.
The shown temporal plots instead are relative to some subjects only, since all the test
subjects presented similar trends over time.

6.2.1 IMUs-only reconstruction
The first implementation involves the reconstruction of the human upper body using only
the measurements provided by the inertial sensors. The detailed procedure is explained in
chapter 2.

6.2.1.1 Short movement

Figure 6.5a shows the three-dimensional reconstruction of the human shoulders and arms
at the 4 moments in which the test subject touches the grid’s 4 corners. The thicker arm
is the right one, which moves to touch the tops of the grid’s sticks.
The calculated ICP error EICP between the estimated and the real point clouds obtained
after the ICP minimization procedure is:

EICP = 6.72 cm
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The real x,y,z coordinates of each of the 4 corners in the global reference frame (in blue)
and the estimated x,y,z coordinates of each of the 4 corners in the global reference frame
obtained after the minimization procedure (in red) are compared in figure 6.5b.

(a) 3D reconstruction of the human upper
body at the 4 moments in which the test
subject touches the grid’s 4 corners using
inertial sensors only.

(b) Difference between the 4 corners real po-
sitions (in blue) and their estimated posi-
tions using inertial sensors only along the x,
y and z directions (in red).

Figure 6.5: Three-dimensional reconstruction of the test subject touching the 4 corners of
the grid and difference between the 4 corners real and estimated positions in the global
reference frame, using inertial measurements only.

6.2.1.2 Long movement

The long movement consisted in touching sequentially the tips of all 25 sticks fixed on the
board. The calculated ICP error EICP between the estimated and the real point clouds
obtained after the ICP minimization procedure is:

EICP = 22.57 cm

Figure 6.6 shows the difference between the real x,y,z coordinates of each stick’s tip in the
global reference frame (in blue) and the estimated x,y,z coordinates of each stick’s tip in
the global reference frame obtained after the ICP minimization procedure (in red).
In figure 6.7, instead, the error evolution in time is displayed. On the x-axis there are the
25 points that the test subject touches sequentially, while on the y-axis is plotted the norm
of the error vector. The error at each point is the difference between the real position of
the tip of the stick in the global reference frame and the estimated position of the tip of
the stick in the global reference frame.
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Figure 6.6: Difference between the 25 points real positions (in blue) and their estimated
positions using inertial sensors only along the x, y and z directions (in red).

Figure 6.7: The error evolution in time using inertial sensors only. On the x-axis there are
the 25 points that the test subject touches sequentially, while on the y-axis the norm of
the error vector is plotted.
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6.2.2 Vision-only reconstruction

The second method treated in this dissertation features a pure vision reconstruction. The
procedure is explained in chapter 3.

6.2.2.1 Short movement

The three-dimensional reconstruction of the human shoulders and arms at the 4 moments
in which the test subject touches the tip of the 4 sticks fixed at the grid’s 4 corners is
shown in figure 6.8a. As explained before, the thicker arm is the right one, which the test
subject moves to touch the tips of the sticks.
In this case, the calculated ICP error between the estimated and the real point clouds
obtained after the ICP minimization procedure is:

EICP = 6.05 cm

Figure 6.8b compares the real x,y,z coordinates of each of the 4 corners in the global
reference frame (in blue) and the estimated x,y,z coordinates of each of the 4 corners in
the global reference frame obtained after the minimization procedure (in red).

(a) 3D reconstruction of the human upper
body at the 4 moments in which the test
subject touches the 4 corners of the grid us-
ing cameras only.

(b) Difference between the 4 corners real po-
sitions (in blue) and their estimated posi-
tions using cameras only along the x, y and
z directions (in red).

Figure 6.8: Three-dimensional reconstruction of the test subject touching the 4 corners of
the grid and difference between the 4 corners real and estimated positions in the global
reference frame, using cameras measurements only.
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6.2.2.2 Long movement

For the 25 points experiment, the calculated ICP error between the estimated and the real
point clouds obtained after the ICP minimization procedure using vision measurements
only is:

EICP = 12.08 cm

Figure 6.9 shows the difference between the real x,y,z coordinates of each stick’s tip in
the global reference frame (in blue) and the estimated x,y,z coordinates of each stick’s tip
obtained after the ICP minimization procedure (in red).
The error evolution in time in the cameras-only method is displayed in figure 6.10. As
before, on the x-axis there are the 25 points that the test subject touches sequentially,
while on the y-axis the norm of the error vector is plotted.

Figure 6.9: Difference between the 25 points real positions (in blue) and their estimated
positions using visual data only along the x, y and z directions (in red).

6.2.3 IMUs + Cameras reconstruction
The third and last approach consists in reconstructing the human upper body fusing to-
gether the measurements provided by the inertial sensors and the data provided by the
cameras. The procedure is explained in detail in chapter 4.

6.2.3.1 Short movement

Also in this case, the three-dimensional reconstruction of the human shoulders and arms
at the 4 moments in which the test subject touches the grid’s 4 corners is plotted in figure
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Figure 6.10: The error evolution in time using visual data only. On the x-axis there are
the 25 points that the test subject touches sequentially, while on the y-axis the norm of
the error vector is plotted.

6.11a. As usual, the thicker arm is the right one.
The calculated ICP error between the estimated and the real point clouds obtained after
the ICP minimization procedure in this case is:

EICP = 4.74 cm

Figure 6.11b shows the difference between the real x,y,z coordinates of each corner in the
global reference frame (in blue) and the estimated x,y,z coordinates of each corner obtained
after the ICP minimization procedure (in red).

6.2.3.2 Long movement

For what concerns the long experiment, the calculated ICP error between the estimated
and the real point clouds obtained after the ICP minimization procedure is:

EICP = 6.69 cm

Figure 6.12 shows the difference between the real x,y,z coordinates of each stick’s tip in
the global reference frame (in blue) and the estimated x,y,z coordinates of each stick’s tip
obtained after the ICP minimization procedure (in red).
The error evolution in time obtained using a Kalman fusion algorithm of inertial and cam-
eras measurements can be observed in figure 6.13. On the x-axis there are the 25 points
that the test subject touches sequentially, while on the y-axis the norm of the error vector
is plotted.
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(a) 3D reconstruction of the human upper
body at the 4 moments in which the test
subject touches the 4 corners of the grid us-
ing Kalman fusion.

(b) Difference between the 4 corners real po-
sitions (in blue) and their estimated posi-
tions using Kalman fusion along the x, y
and z directions (in red).

Figure 6.11: Three-dimensional reconstruction of the test subject touching the 4 corners
of the grid and difference between the 4 corners real and estimated positions in the global
reference frame, obtained using Kalman fusion of inertial and cameras measurements.

Figure 6.12: Difference between the 25 points real positions (in blue) and their estimated
positions using Kalman fusion along the x, y and z directions (in red).
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Figure 6.13: The error evolution in time using Kalman fusion. On the x-axis there are the
25 points that the test subject touches sequentially, while on the y-axis the norm of the
error vector is plotted.

6.2.4 Results Comparisons
For better understanding, the error accumulations in the three long experiments resulting
from reconstructing the human upper body using only IMUs, only vision and Kalman
fusion of the two types of sensors are compared in figure 6.14.
For the purpose of confronting them more easily, table 6.1 summarizes the mean ICP errors
of both short and long experiments obtained after the ICP minimization procedure for the
three reconstruction methods explored in this thesis work.

IMUs only Vision only Kalman fusion
Short experiment 6.72 cm 6.05 cm 4.74 cm
Long experiment 22.57 cm 12.08 cm 6.69 cm

Table 6.1: Mean ICP errors of short and long experiments obtained after the ICP mini-
mization procedure for the three reconstruction methods (IMUs only, vision only, Kalman
fusion of IMUs and vision measurements).

Finally, in order to give the readers a more intuitive idea of the fusion algorithm work-
flow, one camera frame taken at the time instant at which the test subject is touching
the tip of one of the 25 sticks, the corresponding OpenPose output and the corresponding
three-dimensional reconstruction obtained using the Kalman fusion algorithm of inertial
and vision data are shown in figures 6.15, 6.16 and 6.17, respectively.

69



Results

Figure 6.14: Comparison between the error accumulation in the long experiment using
IMU sensors only (in red), vision only (in blue) and Kalman fusion (in green).

Figure 6.15: The camera frame taken at the time instant at which the test subject is
touching the tip of the stick number 4 of the board.
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Figure 6.16: The corresponding OpenPose output, in which the joints and limbs are iden-
tified.

Figure 6.17: The corresponding three-dimensional reconstruction obtained using the
Kalman fusion algorithm of inertial and vision data.
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Chapter 7

Discussion

Looking at the experimental results, a first consideration clearly emerges: when the human
upper body is reconstructed using only inertial sensors, there is an unavoidable drift error.
As time goes by, the estimated positions tend to diverge a bit from the real positions of the
three-dimensional grid. This trend is particularly evident in the y direction of figure 6.6
and in figure 6.7. This drift error affecting IMU sensors has been reported also by other
researchers. For example, Corrales and Candelas in [22] compared the actual displacement
of a person at different distances with the displacement obtained from their motion capture
system and they obtained a maximum error of 66.04 cm over a distance of 200 cm, of 69.54
cm over a distance of 300 cm and of 64.23 cm over a distance of 400 cm. In some cases,
the resulting error was more than 30% of the actual distance. Since this drift error was
too high for industrial purposes, they had to add an additional UWB localization system
to their framework. Also Zheng et al. in [14] measured the positions of hand and feet
during motion along specific trajectories. They first let the tip of one hand move along
the boundary of a 50cm × 50cm board and obtained a maximum error of 4 cm in one
direction. Then they tested walking along a straight line 4.71 m long, turning around and
walking back to the starting point and found that the trajectory measured by the system
was drifted of a distance around 0.4 m. The accuracy of each reconstruction method is
especially evident when observing the overall error estimated with the ICP algorithm for
the longer experiment, in which the test subject touched the tips of all 25 sticks of the
grid. EICP is particularly high for the inertial reconstruction, reaching 22.57 cm, which is
more that 30% of the actual board’s dimension. This result is comparable with the ones
obtained by Ramon and Candelas and by Zheng et al.

When dealing only with the vision system, the obtained errors depend mainly on the
position of the subject with respect to the two cameras and on the performance of Open-
Pose. The error space for the stereoscopic system is notoriously non uniform and this leads
to a lack of accuracy in the three-dimensional reconstruction when the subject’s position is
not favourable for triangulation, for instance when a limb is straight along the optical axis
of the camera. Moreover, the joints positions found by OpenPose are generally accurate,
but mistakes of a few pixels are absolutely normal and can result in an error of several
centimeters after the triangulation is performed. As shown in figure 6.9, this leads to an
error still particularly consistent in the y direction of the global reference system, which
is the depth of the scene observed by the two cameras. Figure 6.10 shows instead that
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the error is not affected by drift; in fact, it can vary significantly over time, but this is
somehow expected and clearly related to the position of the sticks rather than to the time
elapsed since the start of the experiment. Moving from left to right the final joints reach
indeed positions that are less favourable for triangulation, while in the left part of the
experimental set such a condition is more advantageous. The ICP error in the vision-only
framework decreases to 12.08 cm, showing a considerable improvement with respect to the
only IMUs case.

When fusing inertial and vision data, we observe a clear limitation of the errors along
all three directions (x,y,z). This leads to a good matching between the estimated points
and the real points of the grid, which is especially noticeable, with respect to the previous
two methods, in the y direction of figure 6.12. Moreover, figure 6.13 shows that the norm of
the error vector is small and quite constant in time. When fusing inertial and vision data,
the ICP error is decisively improved, reaching 6.69 cm. This result is slightly better than
the one obtained by Trumble et al. in [30], whose proposed approach tested on walking,
acting and freestyle performances presents a mean of the average per joint errors equal to
7 cm. However, differently from this thesis work, they used eight calibrated full HD video
cameras recording at 60 Hz and they fused IMU data with a fully connected fusion layer.
The result obtained in this thesis is comparable with the ones obtained by Malleson et al.
in [31], and the outcome is even more remarkable when taking into account that they used
both more IMU sensors and more cameras with respect to this thesis setup. They ana-
lyzed various indoor motions including walking, acting and freestyle, obtaining an average
position error of 6.2 cm using thirteen IMUs and eight cameras, degrading slightly to 6.8
cm using four cameras. When using only six IMU sensors, instead, they obtained larger
errors, namely 9.1 cm when using eight cameras and 14.2 cm when using four cameras.
Von Marcard et al. in [32] obtained a mean 3D joint position error between 3.8 cm and 5.2
cm for their hybrid tracker when evaluating a set of walking and jogging sequences, which
is a better result than the one obtained in this work. However, differently from the setup
used in this thesis, they used a set of seven synchronized RGB-video cameras working at
a resolution of 800 × 600 pixels, at a frame rate of 50 Hz and having orthogonal viewing
directions to the scene, which provides more detailed 3D information with respect to a
simple stereo setup. Moreover, they adopted a background subtraction method based on
a pixel-wise Gaussian model to generate body silhouettes and ten IMU sensors to record
the limbs orientation (five of them are used for tracking, the other five for validation).
Obviously, when more cameras are used the ambiguities in the silhouettes decrease and
the orthogonal positioning of the cameras leads to a better inference of the limb positions
and orientations orthogonal to the viewing direction of the additional cameras.

A more effective comparison of the error trends of the three approaches experimentally
tested is given by figure 6.14, where the error for the long experiment is plotted. Here, the
accumulation of the method based on pure inertial sensors, due to the well-known drift
error affecting IMU sensors, can be clearly appreciated. For the vision system only, drift
hardly appears, even though error still presents sudden changes, reaching quite high values
at some points. Finally, when using the Kalman fusion algorithm, no error accumulation
is reported, since the norm of the error is limited and its trend is clearly bounded in time.
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Chapter 8

Conclusions and Possible
Applications

Collaborative robotics is one of today’s major challenges in the robotics field. Cobots are
intended to work alongside humans and to directly engage with them in a shared space,
for social purposes or in industrial environments. Even if the performance requirements in
collaborative robotics are looser than in industrial robotics, cobots are still characterized
by incredibly complex specifications, which are still far from being satisfied by present-
day industrial systems. In particular, the main challenge consists in respecting the strict
accuracy requirements needed to ensure human safety, which leads to the need to localize
the human operators in the robotic workplaces in real-time. In different terms, robots
should be provided with a good spatial perception of the robotic workplace and with the
ability to make reasonable predictions on the human movements, also in case of obstacles
and occlusions, which is a very challenging task. Researchers have been using different
methods and different kinds of sensors to deal with this problem, such as lasers, ultrasounds,
vision systems, depth imaging technology or Inertial Measurement Units (IMUs). Since all
these sensors presented some drawbacks which made the task of accurately reconstructing
the human skeleton critical, for example being affected by occlusions, being restricted to a
limited field of view or suffering from a consistent drift error, researchers started exploring
other options, like the integration of the measurements coming from different types of
sensors in order to exploit the advantages of each one of them and, at the same time, to
compensate each sensor’s drawbacks. In the literature there are many examples of fusion
of Kinect and stereo vision, IMUs and Kinect, lasers and inertial sensors, IMUs and UWB
technology, inertial sensors and GPS or IMUs and vision systems.

This thesis work focuses on the integration of inertial measurement units and a stereo
vision system using a Kalman filter-based fusion algorithm, with the aim of localizing the
human operator in the robotic workspace as accurately as possible. This problem is dealt
with in a quantitative way, meaning that the performed experiments are designed with
the purpose of evaluating the accuracy of the applied reconstruction methodology and to
verify if such a system can be effectively employed in collaborative robotics applications.

Experimental results show that the fusion of inertial and vision data improved remark-
ably the accuracy of the human upper body reconstruction with respect to a vision-only
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or an IMUs-only approach. Using the proposed hybrid system, the presence of a human
operator in a robotic workspace can be detected with an accuracy of some centimeters,
which is comparable or in some cases even better than the results obtained by other re-
searchers, who often used much more expensive equipment. The system described in this
thesis work employs only two commercial cameras observing the scene and eight inertial
sensors strapped to the operator’s body. It is lightweight, cheap and it exploits the advan-
tages of both types of sensors: on one hand, the presence of inertial sensors allows for the
field of view not to be limited to the one of the two cameras, for the reconstruction to work
also in the presence of occlusions in the workspace and for the system to work at a high
data rate; on the other hand, every time a camera frame is available the greater accuracy of
the vision system allows to correct the error in the joints positioning coming from the IMU
measurements and to fix therefore the consistent drift error which affects inertial sensors
especially during long experiments. In conclusion, such a system can be effectively em-
ployed for human localization in a robotic workspace for collaborative robotics applications.

The results achieved by this thesis could be of great interest not only for direct in-
teraction tasks between humans and robots, but also in the characterization of advanced
robotics cells. Today the characterization is performed in a kinematic way, by using dif-
ferent kinds of sensors to analyze the robot trajectories and determine the risk areas in
which the robot and the human operators could work simultaneously. The robot is then
programmed to slow down or to completely stop moving when the user enters such areas.
With reference to figure 8.1, some researchers [44] proposed to divide the robotic cell into
smaller zones: the red zone (detection zone), in which the robot motion is cancelled when
someone steps into it and the yellow zone (warning zone), in which the robot speed is
reduced to the safe value of 250 mm/s when someone steps into it, in order to prevent the
complete stop of the production line. However, when the human and the robot have to
work in a very small area, it is necessary to apply techniques limiting the power and the
force of the robot, in parallel to its reduced speed. This safety strategy requires capaci-
tive robotic skin that allows the robot to detect contact with the human in real-time or
pressure sensitive floor mats that are capable of tracking the position of the human. Of
course different safety strategies can be envisaged; for example, researchers proposed the
definition of suitable comfort zones around the operator and the robot [45]. Depending
on the value of the frame-by-frame distance between the two zones with respect to two
thresholds, the system can be either in a safe, warning or dangerous situation, and conse-
quently the robot will respectively continue to move at its normal speed, slow down or stop
completely. A further strategy monitors instead the safety of the operator by evaluating
the time instants in which he crosses some virtual barriers which delimit the three zones:
the safe zone (where the human can move safely because the robot cannot reach him), the
warning zone (where the contact between human and robot can happen), and the danger
zone (where the robot works and can easily hit the operator).

The innovative idea brought by this thesis work is that spatial perception can be more
than a simple detection of (fixed or moving) safety zones. Looking at the human body
as a 3D skeleton, common trajectories in the workspaces can be gradually learnt by the
robot during a cell characterization phase. Using the inertial sensors data, it is possible to
train neural networks and machine learning algorithms to identify and foresee the human
operator’s accelerations and velocities during the execution of a specific movement. In the
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Figure 8.1: Safety zones for human-robot collaboration with speed and separation moni-
toring technology (Courtesy of ABB Robotics). The green one is the safe zone, the yellow
one is the warning zone and the red one is the danger zone.

training phase the pure vision data is compared to the fusion data, with the final goal of
learning the more accurate trajectories, i.e. those reconstructed with the fusion algorithm,
starting from vision data only. At this point, it will be possible to eventually disregard
the IMU sensors, which are often bulky and can sometimes limit the operator’s freedom of
motion, in favour of a pure three-dimensional vision reconstruction, where only cameras,
which are cheap and very common, are used.

In summary, this work will hopefully be a starting point to better investigate the con-
cept of "spatial intelligence" for a robotic system, taking into consideration real environ-
ments characterized by people in motion and rigorous safety constraints. Interestingly, this
concept of spatial intelligence can hardly be separated from the great need for "adaptive
behaviors" that we expect from advanced robots; moreover, it cannot be separated from
a basic "learning ability" which should take into account the reliability of various sensory
systems and the correct evaluation of repeated trial and error phases. In this perspective,
the fusion strategy adopted by this thesis could be easily extended to additional sensory
systems and easily integrated with state-of-the-art learning strategies.
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