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Abstract

The catastrophic-forgetting effect is the inability of a neural network to remember
objects already seen when it encounters new classes as in an incremental learning
approach. There have been many attempts to mitigate it such as increasing the
number of parameters of a model or keeping the most significant samples in memory
for each class. However, it requires too much memory. For the following reason, the
goal of this research was to address the problem without external memory support
but rather through the use of generative models such as VAE and PGGAN. Then
a model is proposed that can explore the limits of memory replay combined with
knowledge distillation. It consists in transferring knowledge from a teacher model to
a student when it comes to pseudo-images. The research was conducted on several
datasets such as MNIST, CIFAR10 and a biological dataset of different types of
colorectal cancer



Summary

Introduction

In recent years, Deep Learning (DL) has become the state-of-the-art in many com-
puter visions challenges. Conventionally a DL model elaborates a large dataset,
learning how to retrieve relevant information, with the aim of properly classify the
training data. The trained model is then applied to never seen samples, i.e. the test
set. In such a learning process, the dataset fed to the model represents a domain
of knowledge which does not change over time: given L classes, the trained model
can classify them, but its behaviour in case of the new class L + 1, is not straight-
forward. Furthermore, in a real-world scenario, we need an incremental learning
paradigm, able to process training examples that become available over time, mod-
ifying the learned knowledge accordingly. Think for example of biology. This is
a field in constant evolution and training a DNN without mechanisms suitable for
incremental learning can take longer to train compared to actual use. Furthermore,
for privacy reasons, the cumulative saving of personal data is not possible for long
periods. With Incremental Learning (IL), literature states exactly the DL research
branch tailored to design methodologies and models able to integrate the previous
acquired knowledge, with samples that became available dynamically, thus extend-
ing the domain of knowledge of the given model. The most intuitive way to achieve
this behaviour could be a fine-tuning process on the new extended dataset, starting
from the weight’s configuration in the previous stage. Nevertheless, the alteration
caused by weights update on the net parameters, affects the model globally, destroy-
ing existing features learned from earlier data. The inherent tendency of a neural
network to lose the previously acquired knowledge, when new classes are added, is
well-know in literature with the name of catastrophic forgetting (CF). The main
purpose of the present thesis is first an investigation of the several state-of-the-arts
method for IL, and then the design and development of a new IL strategy, based
on the so-called generative models, which are going to be detailed in the following
paragraph.
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Background
In the last years, many approaches have been investigated to mitigate CF. Then,
the current research on IL may be summarized into three main families of method-
ologies, namely: i) architectural strategies, which means increasing the number of
weights of the model; ii) regularization strategies, consisting in a modified version of
the loss function, tailoring it to preserve the “old important” weights; iii) rehearsal
strategies, namely using a few representative images of the old classes to preserve
knowledge. In the latter context, the generative models are currently receiving
more and more attention.With generative model we intend a Neural Network ca-
pable of generating new images by receiving random samples of distributions as
input. In an incremental learning approach, they can be useful to replace the cu-
mulative storage of samples. Among the most famous models, such as VAE and
GAN, a recent and better model, named Progressive Growing of GANs (PGGAN),
has been introduced. By training a generator to deceive a discriminator with false
images, it is possible to generate good quality images by progressively increasing
the resolution of the image.

Proposed method
This thesis presents an IL solution which is a hybrid between rehearsal and regular-
ization strategies, using images generated by generative models as pseudo-rehearsals
of previous tasks. The contributions are: i) development of a progressive number
of PGGAN generators to avoid the overlap of the features characterizing different
classes; ii) creation of two different models performing the prediction and the mem-
ory replay; iii) development of a quality control module capable to filter among the
generated images those more meaningful for the correspondent class. The result is
then used to carry out the knowledge distillation.This technique requires that the
judgment of a model trained on previous tasks, called teacher, is used as target to
evaluate pseudo images. While, to learn new classes, a classic approach based on
true images and labels is maintained.

Results
The proposed method was tested on datasets characterized by different complexity,
such as MNIST, CIFAR10 and a biological dataset created for the identification
of colorectal cancer cells from other healthy cells. All the tests were performed in
a context of class-Incremental Learning. Multi-layer perceptron (MLP) and pre-
trained ResNet networks were used as common feature extractor to perform fair
comparisons. The results on MNIST were comparable with state-of-the-art meth-
ods. On other datasets, the proposed model performed better than the state-of-the
art models that use generative models, but worse than those that maintain addi-
tional information on the class, such as the most significant exemplars. However,
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compared with the latest, the advantages of the proposed approach are: i) memory
requirements independent of the size of the data; ii) network training capability
on incremental classes without storing statistics or data used on previous training
stages; this is particularly useful when the model is used by different users dealing
with sensitive data, such as medical ones.

Conclusion and future works
The proposed thesis investigated the applicability of generative models in an In-
cremental Learning context. For this purposed a method merging rehearsal and
regularization strategies was designed and developed. In particular, images gen-
erated by PGGAN generative models were used as pseudo-rehearsals of previous
tasks. In the proposed method the use of knowledge distillation in the solicitation
of old tasks was a fundamental contribution. Although the results are not as good
as hoped, these two components have great potential. Furthermore, filtering the
generated images through the quality control module can be useful, especially when
the dataset to be replicated is quite complex. Some future improvements could be:
i) design of a dual memory approach by training the generators using only the im-
ages chosen from a faster model; ii) use better generative models in terms of quality
and training speed.
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Chapter 1

Introduction

The human brain is able to recognize most of the objects from experience.
It can learn different characteristics of an object by interacting with it in different
ways. This result is obtained from the collaborations of many neurons.
Each of these, receiving an electrical impulse, if strong enough, consequently gen-
erates another impulse which in turn will be received by another neuron. This
happens until a single conclusion is reached.
Machine learning was designed to imitate these abilities. Thanks also to the advent
of convolutional neural networks, which allowed to extrapolate characteristics in a
hierarchical way, it was possible to have enormous successes in the field of image
recognition.

In recent years, Deep Learning (DL) has become the state-of-the-art in many com-
puter visions challenges. Conventionally a DL model elaborates a large dataset,
learning how to retrieve relevant information, with the aim of properly classify the
training data. The trained model is then applied to never seen samples, i.e. the test
set. In such a learning process, the dataset fed to the model represents a domain
of knowledge which does not change over time: given L classes, the trained model
can classify them, but its behaviour in case of the new class L + 1, is not straight-
forward. However, there are still big gaps when we change the learning typology in
a sequential way.
In fact there have been many attempts that have tried to have this approach with-
out using cumulative savings of data but all have presented the same flaw in the
end: the catastrophic forgetting.(Kirkpatrick et al.) It’s the inability of a neural
network to remember objects already seen when it encounters new classes.
Other approaches instead, exploiting a growth of the model(Progressive neural net-
work [Rus+16] or using an external memory(as Icarl [Reb+16]), have managed to
obtain better results with the only problem that the memory requirements can be-
come unsustainable.
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1 – Introduction

The ability to consolidate memories in such a way that objects can be recognized
sequentially is the goal of Incremental Learning.
This branch aims to make inference with a sequential approach. All this requires a
change to the ML models as they have been created specifically to simultaneously
inference on multiple labels. For this reason, the evolution of machine learning is
first explored.
Many applications require a neural network suitable for Continual Learning. In
robotics([RLS]) the possibility of having to remember an object seen in the past is
high, especially because a robot can move and not always detect the same object.
In biology, where knowledge is constantly evolving, a model is needed that can learn
new types of cells without necessarily having to train again on old types already
seen.
Many of the current models have taken inspiration from biological studies. Between
these, however, what has remained of greatest interest is the brain. This is in fact
made up of billions of neurons that communicate together through connections
called synapses. When the brain has to learn something, this network of neurons is
activated through electrical impulses. Thus, each neuron gradually learns how to
behave on the next impulse.

Mathematical models such as neural networks have proven extremely useful in the
field of biology. it is in fact essential to find a way to identify important pathologies
hardly visible by other instruments from blood samples or cell images. Through
machine learning it was possible to obtain excellent results, allowing non-invasive
exams to be carried out.

However, although the enormous progress, there are still many critical issues. The
knowledge of all pathologies is not complete but grows progressively. A model is
therefore needed with the ability to learn new pathologies without forgetting pre-
vious memories without being forced to review the past as well. This would imply
a big waste of time and would force to keep all the samples in memory. The need
for memory becomes critical in many fields like in biology where the number of
pathologies is very large.
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Chapter 2

Background

2.1 Neural Networks
This is made up of a large number of interconnected units that work in parallel
to obtain a result. Thanks to this structure it is therefore possible to find the
connections between the different characteristics of the data so as to be able to
distinguish them.
These structures can therefore be used for paradigms such as Supervised Learning
(looking for a function that can combine input with the right output), Unsupervised
Learning (looking for useful patterns to distinguish groups of data).

2.1.1 Perceptron

Perceptron can be considered as one of the first neural network models. This is in
fact a single layer feed-forward neural network and is able to distinguish linearly
separable characteristics.
Its algorithm simply consists of updating the weights of a learning rate whenever it
is wrong to classify. This algorithm is functional if and only if the data are linearly
separable as demonstrated by the convergence theorem([KS15]). The latter presents
the existence of a finite number of iterations if the data are linearly separable.
Assuming w ∈ RD a normal vector defining a hyperplane,using b as bias and

x ∈ RD as input sample, it is possible define a function f as

f(x) = h(b +
DØ
i=1

wixi)

where h is the activation function which returns a value only if the input has
exceeded a certain threshold
If there is also a label t = - 1,1 along with the input, then you can define an error
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2 – Background

Figure 2.1. Example of perceptron[Hem+20]

function such as:
E(w) = −

Ø
i∈M

tiwÛxi

ConsideringM as the set of all points incorrectly classified.

Stochastic Gradient Descent

This is used to minimize the error function. Assuming to have a strictly convex
function, it is possible to find out in which direction the minimum is found by using
its derivative.
It is based on updating the weights each time an error is made.

wk+1 = wk − η∇E(w)

η is the learning rate. It Represents how big the step is with each update. If large it
makes the algorithm faster but at the same time it can prevent the algorithm from
converging. If we consider the Error function as the mean square error between the
target t and the predicted label o then:

∂ED[þw])
∂wj

= ∂

∂wi

1
2
Ø
d

(td − od)2
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2.1 – Neural Networks

By deriving it is possible to separate the derivable part from what is not

= 1
2
Ø
d

2 (td − od)
∂

∂wi

(td − od)

=
Ø
d

(td − od)
A
−∂od

∂wi

B

however it is possible to solve the equation by making a change of variables

= −
Ø
d

(td − od)
∂od

∂neti

∂netd
∂wi

= −
Ø
d

(td − od) od (1− od) xid

2.1.2 Multi Layer Perceptron
When, on the other hand, the data are not linearly separable, there is a need for
an equal non-linear function. Its realization is possible through a neural network
consisting of several layers arranged sequentially. In this way the output of a layer
becomes the input of the next layer. In this case, to understand how to update the

Figure 2.2. Example of multi-layer perceptron [Liu18]

weights of all the layers, it is necessary to take the mean squared error as a cost
function.
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2 – Background

2.1.3 Convolutional Neural Network
The structure has been of particular interest in the area of image recognition.
Using this structure it is possible to hierarchically extrapolate different types of
characteristics from the lowest to the highest levels.
A peculiarity is that it uses the same parameters (which make up a kernel) on
different areas of the input.
After extracting the characteristics, a fully-connected layer is used as the last layer
in order to predict the class the image belongs to.

Convolutional Layer

Figure 2.3. A visual representation of a convolutional layer([DV18]

hnj = max
A

0,
KØ
k=1

bn−1
k ∗ wn

kj

B

Pooling Layer

It has the role of downsample the input, consequently allowing positive effects such
as: r

• greater generalization of the image preventing the problem of overfitting

• reducing the parameters necessary for the next layer

Activation Function

As previously mentioned, the activation function plays a very important role in
the network. However, depending on the choice you want to make, you can get
different effects. Although the most obvious function may be the sigmoid function
f(x) = (1 + e−x)−1, this could attenuate very important nonlinear characteristics.
For this reason, the relu function is more useful f(x) = max(0, x).
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2.1 – Neural Networks

Batch Normalization

In the intermediate layers, together with the activation function it is good practice
to normalize the values in order to control overfitting by increasing the generaliza-
tion. It is also useful for preventing gradients from becoming too large.
Considering in fact Ib,c,x,y and Ob,c,x,y inputs and outputs respectively, c the chan-
nels, b the batch and x and y two spatial dimensions then

Ob,c,x,y ← γc
Ib,c,x,y − µcñ

σ2
c + Ô

+ βc ∀b, c, x, y

Transposed Convolutional layer

it is usually used when an output larger than the input is desired. Its use is used
in the construction of decoders to reconstruct images.

ResNet

In the previously discussed model, increasing the level of depth means increasing
the levels of abstraction.
However, after a certain point, a certain type of degradation occurs, not caused by
overfitting but precisely by the depth of the model.
Discovered this problem, a new approach was proposed residual learning. The
results turned out to be excellent, even winning the first place in the ILSVRC 2015
classification competition.
Main difference from one from a convolutional network is the addition of shortcut
connections by creating residual blocks in the structure.[He+15]

This mechanism involves combining the output of each layer with its input.
When these layers have a shortcut far from zero, this becomes a residual function.
A peculiarity of this method is that to obtain a good accuracy it is not necessary
to have a model of an excessive number of layers.
A residual function is defined as

F (x) := H(x)− x

where H represents the result of a few stacked layers.The output y can be obtained
as

y = F (x, {Wi}) + x

In this way the solvers have the possibility of bringing the weights initially to zero
towards identity mappings. When, for various reasons, the size of the input is
different from that of the output, a linear projection is performed

17



2 – Background

Figure 2.4. Example of residual block ([He+15])

2.2 Incremental Learning

2.2.1 Scenarios
Classes are addressed in task groups. As suggested by [VT18]and [ML19] The main
scenarios are of three types :

• Task-incremental learning

• Domain-incremental learning

• class-incremental learning

Task Incremental Learning

Given the task it is required to predict which class of the task the sample belongs
to.

Domain Incremental Learning

Typical examples of this scenario are protocols whereby the structure of the tasks
is always the same, but the input-distribution is changing. A relevant real-world
example is an agent who needs to learn to survive in different environments, without
the need to explicitly identify the environment it is confronted with.
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2.2 – Incremental Learning

Class Incremental Learning

This turns out to be the most complicated of scenarios because inference is required
on all classes without any information regarding the task. However, this case is the
one that most represents reality.

2.2.2 Strategies
This type of research has been developed mainly in recent years thanks to the
advent of DNN. For this reason it is still a developing branch. In any case, until now
three main types of strategies have been formed:architectural, by regulation or
by rehearsal. The first of these is proposed as a method capable of completely
removing the effect of catastrophic forgetting at the cost of exponentially increasing
the number of parameters. The remaining two instead seek a compromise between
time and memory, mitigating the catastrophic forgetting.

Full Rehearsal

This type of technique involves the accumulative saving of all classes. This is then
combined with the new task and the model is trained again on the newly created
dataset. Although it can be defined as upper-bound in terms of precision, it is
inefficient in terms of memory and time and it is difficult to consider it as a method
for continual learning

Naive

This approach involves the use of a standard classification algorithm trained sequen-
tially on different classes. Obviously, since it has no mechanism to prevent catas-
trophic forgetting, its ability to remember will be hopelessly limited.This therefore
represents the lower-bound of continual learning.

2.2.3 Architectural strategies
Architectural techniques involve changing the architecture of the model such as the
number of parameters, connections and their freezing in order to slow down the
model to forget old classes.

PNN

PNN ([Rus+16]is one of the best architectural models immune to catastrophic
forgetting and with explicit support to tackle different sequences of tasks in a
sequential manner (multiple tasks).One of the main applications for which it has
been developed is reinforcement learning. It starts from a single column made of a
deep neural network having L layers. When switching to a new task the parameters
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2 – Background

Figure 2.5. the figure shows the accuracy of the CIFAR10 test set if the network
is offline or without any incremental learning mechanism. it is therefore possible
to see that the network is able to learn only the new classes without being able to
remember anything of the previous ones

are frozen and a new column is istantiated where hidden layers receive receive input
from both column layers via lateral connection.

h
(k)
i = f

W
(k)
i h

(k)
i−1 +

Ø
j<k

U
(k:j)
i h

(j)
i−1


with:

• f = max(0,x)

• k task

• W
(k)
i weight matrix of layer i of column k

• U
(k:j)
i lateral connections from layer i - 1 of column j, to layer i of column k

• h
(
iK) layer i of column k

Through this algorithm it is possible to predict K independent tasks quickly and
avoiding forgetting.
The real problem with this network is that the number of parameters increases
exponentially with the number of tasks it learns.
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2.2 – Incremental Learning

Tree-CNN

Figure 2.6. Generic Tree-CNN [RPR19]

The Tree-CNN is made of nodes connected as a directed a-cyclic graph.Each
node acts a classifier that outputs a label for the input image. As per the label, the
image is then passed on to the next node which further classifies the image, until
we reach a leaf node, the last step of classification.
The network starts from a single root node and gradually grows as a direct a-cyclic
graph.
When a new class arrives at a non-leaf node for each child the probability of class
membership is calculated. If this probability is higher than a limit then the new
class can be added to the existing child, if there are two children with the same
probability then the two children and the class are combined to generate a new
child node otherwise if no one exceeds the threeshold then a new child is created.

Below is presented how the likelihood is calculated:

Oavg(k, m) =
IØ
i=1

O(k, m, i)
I

L(k, m) = eOavg(k,m)qK
k=1 eOavg(k,m)
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max
k

(lm1(k)) >= max
k

(lm2(k)) >= . . . >= max
k

(lmM(k))

where

• Oavg(k, m)Oavg(k, m) is the average output of the class m for the k child

• L(k, m) is the likelihood of the class m for the child k

2.2.4 Regulation Strategies
The regularization techniques include the addition of a term during the training so
as to attenuate the change to the network weights when a new task is faced. In
EWC this is done by penalizing excessive changes to the fisher matrix during task
switching. In many others, Knowledge distillation is carried out.
The distillation (introduced by Hilton []) uses an original model called Teacher that
teaches how to behave when old tasks are introduced as an input to a copy named
student. This is compared to the teacher for the old tasks and the ground truth
for the current task.
Among those that use knowledge distillation are Lwf (Learning without forgetting),
Icarl and RtF

Elastic weight consolidation -EWC

[Kir+16] The following model wants to imitate the synapses by reducing the plas-
ticity of the basic network parameters for previous activities, therefore trying to
keep them always close to the same values.

In a nutshell, when the aim is to learn B after having already learned A, we try
to protect the area in which the parameters have been allocated so as to keep the
error on the previous task low.
To find out which are the most important parameters, a probabilistic analysis is
then carried out.
It can be assumed that after learning a task, all its information has been absorbed
by the posterior distribution. The latter also contains all the information on the
arrangement of the weights of the network.

So to be able to extrapolate it is sufficient to calculate an approximation( ap-
proximation by Mackay[]) using a Gaussian distribution with mean and covariance
obtained from the fisher matrix.[Kir+16]

L = Lcross(y, t = y) + λ/2 ·
Ø
k

F k(θk − θ*
k)2

The dataset used is none other than the Mnist dataset. Each task was created
by applying a noise (i.e. a fixed random permutation) on all the classes. In this way
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2.2 – Incremental Learning

it is possible to predict the task on which it was applied (Task incremental learning).

There are two problems related to this model: firstly, maintaining the Fisher
matrix can be expensive in terms of memory and, as a second point, it works well
in the case of Task incremental learning but the same cannot be said in the case of
class- incremental learning.

Synaptic Intelligence

[ZPG17] It is a variant of EWC since the fisher matrix is too expensive
this is proposed as a structural regularizer developed online and implemented in

each synapse. a synapse is actually a parameter (weights and biases) of the neural
network. Its goal is to penalize the change of important parameters to remember
the old memories

L(θ(t) + δ(t))− L(θ(t)) ≈
Ø
k

gk(t)δk(t)

g = ∂L

∂θ

Ú
C

g(θ(t))dθ =
Ú t1

t0
g(θ(t)) · θÍ(t)dt

Ú tµ

tµ−1
g(θ(t)) · θÍ(t)dt =

Ø
k

Ú tµ

tµ−1
gk(θ(t))θÍ

k(t)dt

≡ −
Ø
k

ωµk

the attempt to reduce the loss on the new tasks leads to an increase in the cost on
the previous ones. To avoid this it is necessary to understand how each parameter
is important and how much it moves with each update.

So it was decided to change the loss by adding a surrogate term which approxi-
mates the loss of the previous tasks

L̃µ = Lµ + c
Ø
k

Ωµ
k

1
θ̃k − θk
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surrogateloss

Ωµ
k =

Ø
ν<µ

ωνk
(∆ν

k)
2 + ξ
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Learning without Forgetting

[LH17] It is one of the first methods that uses knowledge distillation to mitigate
the CF. This involves copying the trained model on the previous tasks.
When it receives a new task as input, it performs the cross-entropy loss between its
prediction and the ground truth. Instead, when it receives an old task as an input, it
compares its prediction with the copied model using the distillation loss[HVD15].its
operation is based both on the use of: parameters shared between tasks θs, and of
task-specific parameters θo.
When new tasks arrive, the response from the original model trained on the old tasks
is recorded first.Then, randomly initialized parameters are added and, after freezing
the parameters already trained, the complete network is trained to minimize the
loss.
The latter is the union of lnew (loss generated by the comparison of the new tasks
with the ground truth) and of lold (based on the comparison with the original
network). In addition to the loss comes a regularization term made with the weight
decay.

Lnew (yn, ŷn) = −yn · log ŷn

Lold (yo, ŷo) = −H (yÍ
o, ŷÍ

o) = −
lØ

i=1
yÍ(i)
o log ŷÍ(i)

o

yÍ(i)
o =

1
y(i)
o

21/T

q
j

1
y

(j)
o

21/T , ŷÍ(i)
o =

1
ŷ(i)
o

21/T

q
j

1
ŷ

(j)
o

21/T

θ∗
s , θ∗

o, θ∗
n ← θ̂s, θ̂s, θ̂nargmin

1
λoLold

1
Yo, Ŷo

2
+ Lnew

1
Yn, Ŷn

2
+R

1
θ̂s, θ̂o, θ̂n
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2.2.5 Reharsal Strategies
Here the idea is to re-use the most representative tests of the previous classes to
maintain an understanding of the past. These samples can be kept in external
buffers of fixed size or can be replicated through generators. These replicas can be
useful both to classify and to continually solicit the model with old features

Ex-stream

[HCK18] It involves the use of a buffer per class. This is filled until it reaches a
limited number of samples. Subsequently it is updated by removing or compressing
the elements already present in the buffer. In addition to these buffers, it also
contains counters (c) that indicate how many samples are present for each cluster.
Furthermore, once a buffer is full and a new sample arrives (xt, yt) the two clusters
closest to the image are joined.
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2.2 – Incremental Learning

wi ←
ciwi + cjwj

ci + cj

ci ← ci + cjandwj ← xtandcj = 1
When the buffers are ready, all the images in them are used to retrain the DNN.

2.2.6 Hybrids
Another type of method involves using regularization techniques combined with
pseudo-rehearsal images. Usually these take advantage of the knowledge distillation
combined with the memory replay. The model of art is iCarl obtaining good results
on both Cifar10 and Cifar100. This however provides for the rescue of the most
exemplary samples for each class. Subsequently, a dual-memory model like Fearnet
was created but this involves saving statistische per class to generate the images.
To avoid saving samples of all kinds, the first attempts to use generative models
began. In this case there is the Rtf[VT18]model trained on MNIST, Neurogenesys
Deep Learning[Dra+17], MerGAN[Wu+19] on L-SUN and CQFG

Icarl

The following model consists of a classifier, a feature extractor and a progressive
number of exemplar sets per class. The latter are the most representative samples
of the classes previously seen and their size depends on the memory constraints
imposed.
To select the most representative images this makes use of methods such as: nearest-
mean-of-examplers, herding or knowledge distillation. The classification is therefore
based simply on the extraction of the features from all the exemplars to then
calculate the average distance of each set from the sample[Reb+16]

y∗ = argminy=1,...,t ëϕ(x)− µyë
Furthermore, to respect memory constraints, when new classes are available the
previous sets must be updated in order to have fewer images. To do this, each
specimen is chosen by trying to minimize the distance of the samples of each set
from their average.
For each examplar k we select x in such a way as to create a set of mean µ using
features extractor ϕ()

argminx∈Xëµ−
1
k

ϕ(x) +
k−1Ø
j=1

ϕ (pj)
 |

Subsequently, the classifier and the characteristic extractor are trained simultane-
ously trying to optimize both the classification loss for the new classes and the
distillation loss to reproduce the same results for the old classes.
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Neurogenesys Deep Learning

this model is inspired by how the hippocampus, to keep memory of past events,
exploits the mechanism of neurogenesis to generate new neurons which gradually
learn to code new information.[Dra+17]
The model is able to realize when it receives images of new classes thanks to the

Figure 2.7. Illustration of NDL processing MNIST digits (orange/red circles
indicate accuracte/inaccurate feature representations of the input; green indicate
new nodes added via neurogenesis)[Dra+17].

error of reconstruction of an auto-encoder which is optimized to reconstruct the
images. This peculiarity allows to have a high reconstruction error if the class has
never been recognized. In this case, new weights are added by freezing / slowing
down those already trained in such a way as to also be able to reconstruct the new
images without losing information on old features.
Finally, to stabilize the network with all weights, it is chosen to perform fine-tuning
using the images of the current task together with images called "intrinsic replay"
IR and generated by the Auto-encoder itself.
To generate them, statistics (mean and Cholesky factorization of the covariance)
are stored, not of images but of the intermediate product of the autoencoder in
which it is smaller.

µE = Mean(E), ChE = Chol(Cov(E))
To have a certain variability for each class at the time of generation, the product of
the cholesky factorization is added to the average vector with a random sampling
of a normal distribution.

IRImages = Decode (µE + N(0,1) ∗ ChE)

However, the network does not have a classification method but is only able to
determine whether or not it has already seen a class through the reconstraction
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2.2 – Incremental Learning

error. It is also forced to keep statistics for each class that can be excessively heavy
(covariance matrix) and this depends on the size of the intermediate space.

Fear-Net

Figure 2.8. FearNet[KK17]

FearNet has three brain-inspired sub-systems: HC as recent memory system,
mPFC for long-term storage and third component able to predict if it is more
usefull select HC or mPfc.
Hc is an alternative of a probabilistic neural network

P HC(C = k|x) = βk’q
k’βk’

beta in this case represents the distance from the image more similar for each class
k.
Mpfc was instead created with an autoencoder which not only is able to reconstruct-
generate images but is also able to predict the class to which it belongs

Lmpfc = Lrecon + Lpred

27



2 – Background

Figure 2.9. mPFC [KK17]

Lrecon =
MØ
j=0

Hj−1Ø
i=0

...hencoder,(i,j) − hdecoder,(i,j)
...2

2

Rtf

[VT18]The Rtf model is similar to the FearNet Mpfc. The difference is that instead
of using an autoencoder with an external support it was preferred to use a generative
model like a VAE. This allows you to generate different types of images knowing
in advance which input to give to the decoder without keeping a storage.
The network is a symmetrical VAE with an additional softmax layer from the
hidden layer of the encoder. The loss is calculated as follows: For the current task
the loss consists of 3 terms: the reconstruction loss, the classification loss and the
KL loss.

L = LVAE + Lpred = Lrecon + LKL + Lpred

For the replicated images instead the classification term is replaced by a distillation
term already seen in algorithms like LWf.
The model works very good on MNiST-digits which is relatively easy.

Mergan

It is a conditional GAN framework that integrates a memory replay generator.
The approach is based on a discriminator and a generator. the editor creates
false images starting from a sampling of a Gaussian distribution and then the
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2.3 – Tools for Memory replay

discriminator has the role to recognize the fake images from the real images. In
this way the generator become more good to generate real images. A Mergan
integrates also a memory replay generator.
This replay mechanism resembles the role of the hippocampus in replaying memories
during memory consolidation.
A first approach is to combine the dataset of the new class to be learned with the
replicas generated by the generator. The second approch is synchronize both the
replay generator and the current one

2.3 Tools for Memory replay
This chapter presents the tools to carry out the memory replay.The latter is a
technique that aims to use pseudo-rehearsals to solicit the memory of the model
specially in cases like Incremental Learning.
To do this, a tool capable of generating images is required. In the past this mech-
anism was created through AutoEncoder and later also by generative models such
as Variational AutoEncoder and gan

2.3.1 Auto Encoder

Figure 2.10. image of an Undercomplete Auto-encoder([Cha+18]

An auto encoder is an effective tool to perform dimensionality reduction. This
is realized through an encoder that produces a code much smaller than the input
and a decoder which, receiving the code, is able to reconstruct the image.
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Structure

Nr. a b

1

2

Table 2.1. Example the reconstraction of an Auto-encoder on biological
dataset[Pon+19].reducing the latent space of an Auto-Encoder the quality
of the image can be lower.

Both are trained to minimize the rebuild error and can have different implemen-
tations. Its main use is to make a sort of feature fusion, that is to combine features.
In this way it is possible to remove redundant features and thus also reduce the
size of the dataset.

Different groups of Auto-encoders can be differentiated according to the structure
of the model, including: Undercomplete Autoencoder and Overcomplete Autoen-
coder. they differ from the size of the intermediate space between encoder and
decoder. In fact, the under-complete AE has a smaller input size thus forcing the
model to achieve a more compact display of the data. On the contrary in the over-
complete AE the size is equal to or greater than the input size allowing to learn
the identity function.

AE for memory replay

In the past, the autoencoder has been used by several models to make a sort of
memory replay. It was used in FearNet[KK17] and NDL[Dra+17] as a first attempt.
In these cases, statistics by class were saved on the encoder output (mean vector
and covariance matrix).
Then,to allow the variability of the reconstructions, the decoder was given a result
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code by the sum of the mean vector and by the eigenvalues of the covariance matrix
multiplied by a random value (so as to vary the main characteristics of the class).In
this case, a classifier was added to the penultimate layer of the encoder with the
role of identifying the class.The problem with this technique is that reconstructing
images of complex datasets (CIFAR) only from mean vector and covariance is not
at all simple.
It also forces the storage of a mean vector and of the covariance matrix for each
class and the latter can require a lot of memory.

2.3.2 Generative models
Generative modeling is a vast area of machine learning that works using P (X) dis-
tributions on a larger set of X data. X can be any type of data as well as an image
of different resolution. The generative model therefore has the task of capturing
the correlations between the different characteristics of the image and elaborating
the importance of each of these. Then you can use this feature to reproduce new
images similar to the initial database but not exactly the same.This is very useful
when the dataset is small and there is a need to increase its size.
Generative models exploit the concept of latent variable z. It is called this because
it is not necessary to know which parameters are more important than this to gen-
erate a specific image.
However, it must be ensured that it exists a setting for each element X that can
allow you to reconstruct something very similar to X.
The goal is therefore to sample z from P (z) known a priori and optimize theta in
such a way that f (z, theta) can be similar to the X dataset

P (X) =
Ú
z

P (X|z)P (z)dz
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Variational autoencoders (VAEs) are generative models. This is called as au-
toencoder only because it consists of an encoder and a decoder and recalls the
structure of a traditional autoencoder. However his work is completely different.
In fact z is extracted from a simple distribution known a priori with mean 0 and
variance to 1. Then it is possible to deduce the probability of obtaining X given z
as:

P (X|z; θ) = N
1
X|f(z; θ), σ2 ∗ I

2
Through this formula, if we consider f as a neural network, then it is possible to see
how the encoder can map the input into latent variables and then be used by the
decoder to generate new images. However it is necessary to penalize how different
this variable can be from a normal distribution P (z).

P (z) ∼ N (0, I)

KL Divergence
Since P (X | z) is very small, its contribution to estimate P (X) is almost nonex-

istent. We therefore need a function Q (z | X) that allows us to find a distribution
on z that is more likely to reproduce X. It is therefore necessary to correlate P (X)
and EzsimQ P (X | z) through the Kullback-leibler divergence

DKL[Q(z|X)ëP (z|X)] = Ez∼Q(z|Z)[log Q(z|X)− log P (z|X)]

Applying the rules of bayes:

P (z|X) = P (X|z)P (z)s
z P (X|z)P (z)dz

Then
Ez∼Q(z|X)

C
log Q(z|X)− log P (X|z)P (z)

P (X)

D
=

Ez∼Q(z|X)[log Q(z|X)− log P (X|z)− log P (z)] + log P (X) =

DKL[Q(z|X)ëP (z)]− Ez∼Q(z|X)[log P (X|z)] + log P (x)

Ordering

log P (X)−DKL[Q(z|X)ëP (z|X)] = Ez∼Q(z|X)[log P (X|z)]−DKL[Q(z|X)ëP (z)]

The right part represents what we want to optimize (P (x)) instead the left part
represents what we can optimize through the neural network.

DKL [N (µ0, Σ0) ||N (µ1, Σ1)] = 1
2

C
(µ0 − µ1)Û Σ−1

1 (µ0 − µ1) + Tr
1
Σ0Σ−1

1

2
− log |Σ0|

|Σ1|
− n

D
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reparameterization trick A problem that occurs, however, is to propagate the
error in sampling z from Q (z | X) which is an operation without a gradient. The
reason is that back-propagation only works on stochastic units. So, to solve this
problem, a solution called reparameterization trick was devised.
Obtained mu and var as the encoder output, the trick is to extrapolate z as

z = µ(X) + Σ1/2(X) ∗ Ô

considering Ô ∼ N (0, I)

Figure 2.11. Comparison between VaE without reparametrization trick (left)and
VAe using reparametrization trick(right)[Doe16]. They seems similar but only in
the second the backpropagation works.

Tests on MNIST and CIFAR10
Once the model has trained itself to reconstruct a dataset, it can be verified

that the most significant and probable images are present in the latent space in the
neighborhood of the distribution N (0,1). Furthermore, speaking of Mnist, all the
forms of each number can be grouped into sets of similar characteristics.
However, when the model is tested on cifar10 the reconstruction is blurred. This is
probably due to an over generalization in an attempt to group the different sets.
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a b

Table 2.2. This table presents a comparison between inputs (the first four
lines) with the reconstructions (the last lines) of a variational auto-encoder.
In particular, we want to rebuild cars and planes obtained by CIFAR10 with
a and b respectively.

GAN

The idea is based on the simple game of two components. The first is called
discriminator and has the task of receiving images and being able to divide them
into two classes (fake or real). The second is called generator and is trained to
deceive the discriminator. This means that the generator must learn to reconstruct
samples more and more similar to the original dataset to make the discriminator’s
job more and more difficult.
First we consider θ as the parameters of the model, G as the function that describes
the generator, D as that to describe the discriminator.Then we can say that both
components want to minimize their cost function using only their parameters.
The generator receives as input z, i.e. the result obtained from a random sampling
of a distribution known a priori.
The training of this model is very simple: at each step two minibatches are obtained
(from the original dataset and from the generation of the G generator) and two
gradients are processed simultaneously. The first is used to optimize theta (G) and
the other to improve theta (D), obviously using SGD techniques.

In fact the cost of the discriminator can be considered as

J (D)
1
θ(D), θ(G)

2
= −1

2Ex∼pdata log D(x)− 1
2Ez log(1−D(G(z)))

min
G

max
D

DE[log(D(x))] + x̃ ∼ PgE[log(1−D(x̃))]
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Figure 2.12. samples generated with Variational AutoEnconder On MNIST dataset.

This is cross-entropy considering as labels at 1 for the images of the original dataset
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and labels equal to 0 for the images generated by the generator. The function of
the cost to optimize the generator is different. In this case, it is necessary to reward
the cases in which the generator managed to make the discriminator wrong. So,
it would be enough to change the sign to the previous formula on the generated
images.
Since however in this way the work of one would defeat that of the other, then it
is much more preferable to change the target label. In this way it is possible to
maximize the probability that the discriminator will be wrong. This is a simple
game but unfortunately it is not fast. In fact, while one manages to make improve-
ments the other simultaneously can get worse. In this case there is a problem of
non-convergence.
An important problem related to gan is called mode collapse and it happens when
multiple values of z correspond to the same image. It is a problem that limits the
use of the GAN which can only produce a small number of distinct images.

Considering the generator G, the discriminator D, Pr the data distribution and
Pg the model distribution with x ’= G (z) and z a random noise generated by
sampling a uniform or Guassian distribution
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PGGAN-Progressive Growing of GANs

Figure 2.13. Training of a PGGAN[Kar+18] model: It is based on training
a gan by progressively adding multiple levels and simultaneously increasing
the resolution of the image

The idea is to take a Generative adversarial network trained with the Wasserstein
loss[Gul+17] and gradually increase the resolution and layers of the network. This
network was born because it was noticed that a normal GAN manages to generate
a subset of the variations of the training set.
Since this is due to the fact that the statistics of the characteristics are connected
not to the single image but to the minibatch, the proposal of the PPGAN was
to calculate the standard deviation for each characteristic in each spatial location.
Finally the average on all features is calculated to obtain a single value. The
training is done using the improved wasserstein loss.
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Figure 2.14. Training of a PGGAN[Kar+18] model: In the phase of change be-
tween a lower resolution and a higher one, to make the transition gradual, the
network is transformed into a residual network by attenuating the effect of the
residual by an alpha coefficient (from 1 to 0). The figure shows the 3 different
steps during this change. 2x and 0.5x are made with nearest neighbor filtering
and average pooling, respectively.TORGB and FROMRGB are two layers that
carry out a 1x1 convolution and are necessary to project the feature vector on the
rgb channels and vice versa.
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Figure 2.15. comparison with Biodataset [Pon+19]
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Chapter 3

Proposed model

A first experiment aims to analyze the potential of a generative model such as a
VAE in a system such as RTF using convolutional networks.
Always using a VAE as generator, a progressive network of generators has been
created using only the reconstruction error to classify on MNIST.
Finally, given that the previous models use a single generator for all classes, as a last
experiment a network of generators (PGGAN) has been created, built progressively,
maintaining a class incremental learning approach from the data point of view.

3.1 NVAE
During the study of the generative models, the Variational Auto-Encoder model
was examined. This, in addition to being able to have a light structure, can also
function as an anomaly detector. This is possible because after being trained to
rebuild a given class, when he receives an image he generates a new one of that
class more similar to the input. If therefore this is very different from normal,
the reconstruction error is high. Given this, it was decided to create a network
of VAE generators of a size proportional to the number of classes encountered.
The classification was therefore based on selecting the generator with the lowest
reconstruction error.

ypred = miny(Erecon)

the accuracy obtained on MNIST was on average 94.5%. On Cifar10, however,
performance has dropped drastically due to the fact that the Vae generates images
that are too blurry.For this reason this first model was discarded for subsequent
comparisons.For this reason they have not been used to make comparisons.
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type layer input output kernel size padding stride
encoder

1 (1,32,32) (16,16,16) (3,3) (1,1) 2
2 (16,16,16) (32,8,8) (3,3) (1,1) 2

fully connected (32*8*8) 100
fully connected 100 (32*8*8)

decoder
1 (32,8,8) (16,16,16) (3,3) (1,1) 2
2 (16,16,16) (1,32,32) (3,3) (1,1) 2

Table 3.1. structure of a single vae

Nr. a b c d

1

2

3

Table 3.2. Generation of all numbers using NVAE. For each generator,
the input and output are illustrated by highlighting in yellow the cases in
which they are the same
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3.2 network of PGGAN

The aim of this research is focused on learning different kind of objects in a se-
quential way mitigating at the same time the catastrophic forgetting effect with
pseudo-Images.In essence we want to make a model capable of dreaming and use
these dreams to consolidate memory.
In the past many approaches has been discovered and we have decided to take the
more challenging way.
Indeed it is first of all necessary to create a stable and plastic neural network. This
means that it should be enough stable to consolidate previous memory and at the
same time It should enough malleable to learn new object without breaking it.

Algorithm 1: Incremental Train
Result: Write here the result
S=data;
S’= generated images;
y’= target scores;
y=label;
G=generator;
D= discriminator;
for k in tasks do

for e in epochs do
S’= ∅;
y’= ∅;
for j in (0,k) do

OutPut’j = Gj(noise);
y’j = Dk−1(S Í

j);
if y’j == j then

S’ = S’ + OutPut’j;
y’target = yÍ

j; end
end
ypred = Dk(Sk);
y’pred = Dk(S Í);
Ldistill =-ql

i=1 y
Í(i)
target log y

Í(i)
pred;

Lcross = CrossEntropyLoss(y, ypred);
end

end
for class in k do

train Gclass;
end
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we want to do all this without using any type of external memory and instead
of keeping samples I wanted to generate them every time.
The incremental approach used is the class incremental learning. This consists in
using only the images of the current classes grouped in tasks and the model must
be able to predict the image label without knowing which task it belongs to.
Finally, we decided to use knowledge distillation. This technique consists in trans-
mitting knowledge from a larger model, the teacher model, to a smaller one, the
student model. To do this, in our case it is necessary that the teacher initially
elaborates the pseudo-image to obtain a result subsequently used by the student as
a target. At the same time the original images arrive and in that case the student
model uses ground truth as a target.

A point that we would like to analyze further are the generated pseudo-images
used by existing incremental learning models. Generated by Auto-encoder plus
statistics by class or Variational Auto-Encoder these images were often very similar
to the original images but unfortunately still visibly different. This evidence be-
comes larger as the complexity of the dataset increases.At the same time, overuse
of these can be risky, causing the model to lose contact with reality.
However these images, being extremely rich in features, have great potential in
soliciting the memory of the model.

Like a normal autoencoder the purpose of a variational auto-encoder is to recon-
struct the image received in input. However, the essential change was to make
the latent space look like a distribution known a priori. In this way, by randomly
sampling the same distribution it is possible to obtain different types of images.
One of its known characteristics is also that of being a good anomaly detector.
In fact, if it receives as input an image very different from the one on which you
trained the reconstruction error is very high.

however, the fact that the variational auto-encoder generates blurry images on
complicated datasets becomes a limitation.

For this reason we have chosen to use in my research a more recent genera-
tive model capable of optimally generating even more complicated images such as
those present in Cifar10. PGGAN. it was published in 2018 obtaining the inception
score record (8.8) on a complicated dataset such as Cifar10.
Like a simple Gan his training is based on a simple game between a discriminator
and an image generator. while the discriminator has the task of recognizing the
real images from the fakes, the generator improves its image generation by trying to
deceive the discriminator. As an additional thing, however, its incremental increase
in resolution is particularly interesting. in fact during the passage from lower to
higher resolution the network becomes very similar to a residual network.
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3.2 – network of PGGAN
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Figure 3.1. Proposed model trained on the first task.
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Figure 3.2. Proposed model trained on the n+1 task.

So as to be able to study the true potential of the memory replay associated with
knowledge distillation within an incremental learning environment, we decided to
use a generative model for each class encountered although it may be an excessive
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3 – Proposed model

cost in terms of memory requirements . In this way I have the possibility to avoid
overlapping characteristics belonging to different classes in the same image.
Moreover, this architectural structure allows me to carry out a quality control on
the images generated before they are used for training. The images of a generator
trained on a class A are therefore only used if the teacher’s judgment on that image
is A. However, to prevent it from being too blocking when the teacher has already
been the victim of catastrophic forgetting, this check is carried out a limited num-
ber of times.
In this research, given that in an incremental approach it is an important vari-
able also the time, we have not trained the PGGAN models with all the iterations
suggested by the manufacturer but only with those necessary to replicate images
similar to the originals (2 days per class )

Finally the protagonist of my study is the discriminator. this must face the classes
incrementally, also receiving pseudo-images from the network of generative models.
this consists of an autoencoder and a CNN to be able to extract the characteristics
of the image in a hierarchical way. This is essential to reduce the difference between
the original images and the fake images.
It is then trained to reduce the reconstruction error, the prediction error on the
current task and the distillation loss on the pseudo-images

Figure 3.3. scheme of the auto-encoder + discriminator
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3.2 – network of PGGAN

type layer input output kernel size padding stride
encoder-cov

conv (3,32,32) (10,32,32) (3,3) (1,1) 1
ELU

batchNorm
MaxPool (10,32,32) (10,16,16)
ELU

batchNorm
dropout
conv (10,16,16) (20,16,16) (3,3) (1,1) 1
ELU

batchNorm
MaxPool (20,16,16) (20,8,8)
ELU

batchNorm
dropout

encoder-mean
Ûconv (3,32,32) (10,32,32) (3,3) (1,1) 1
ELU

batchNorm
MaxPool (10,32,32) (10,16,16)
ELU

batchNorm
dropout
conv (10,16,16) (20,16,16) (3,3) (1,1) 1
ELU

batchNorm
MaxPool (20,16,16) (20,8,8)
ELU

batchNorm
dropout

decoder
conv (20,8,8) (10,16,16) (3,3) (1,1) 1
ELU
conv (10,16,16) (3,32,32) (3,3) (1,1) 1
ELU

Sigmoid

Table 3.3. Convolutional AutoEncoder Structure
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3 – Proposed model

type layer input output kernel size padding stride
encoder

resnet (3,32,32) 512
fully connected 512 (512)

decoder
conv (8,8,8) (10,16,16) (3,3) (1,1) 1
ELU
conv (10,16,16) (3,32,32) (3,3) (1,1) 1
ELU

Sigmoid

Table 3.4. AutoEncoder Structure using resnet pretrained on imagenet

type layer input output kernel size padding stride
discriminator

conv (20,8,8) (20,8,8) (3,3) (1,1) 1
ELU

batchNorm
MaxPool (20,8,8) (20,4,4)
ELU

batchNorm
dropout
conv (20,4,4) (20,4,4) (3,3) (1,1) 1
ELU

batchNorm
MaxPool (20,4,4) (20,2,2)
ELU

batchNorm
dropout

fully connected (20,2,2) 10

Table 3.5. Structure of convolutional discriminator
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3.2 – network of PGGAN

Layer input output
fully connected (1,32,32) (100)

fully connected (100) (100)

fully connected (100) (100)

fully connected (100) (10)

Table 3.6. Structure of MLP discriminator for MNIST dataset
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Chapter 4

Results

In this section the various results obtained on datasets such as MNIST, CIFAR10
and biological dataset are presented. The context addressed is class-incremental
learning. Everything was developed using the famous Pytorch framework. The
comparisons made with other state-of-art were made using MLP and pre-trained
resnet as main components. Further experiments were developed using a convolu-
tional model consisting of an AutoEncoder.
The comparisons were made considering the model without mechanisms suitable
for incremental learning as the lower limit and the model trained using the entire
dataset as the upper limit.
Icarl was chosen as comparison models, because it is the state of the art between
the regularization and rehearsal strategies, and RtF, one of the first models of this
type to use generative models. Finally, comparisons were made using the same
approach but varying the number of tasks, the presence of a quality control and
also the duration on which each task is trained.
Table 4.1 shows how effective the generated images are to replace the original

MNIST CIFAR10 Biological Dataset
Only pseudo-images 96,20 35,62 15,20

Table 4.1. Results on different datasets using only generated images.

dataset during the training phase. Visibly there are 3 very different difficulty lev-
els.

statistics-based models

In models such as NDL and FearNet statistics are saved for each class and then
reused to generate pseudo-reharsal images through the use of an autoencoder. This,
if performed as NDL, involves saving an average vector and a covariance matrix,
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which can be a heavy element at the computational level. In an attempt to replicate
this phenomenon, it was possible to replicate simple datasets on MNIST while on
other datasets, where the correlation of the characteristics is lower, the replicas were
difficult to obtain.Since therefore, probably some information was missing from the
literature, it was not possible to replicate the results of models that use statistics.

4.1 MNIST
This dataset represents the basis from which all models start. In fact, it is relatively
easy to recognize each number. They are also low resolution images (1x28x28).This
allows simple generative models such as vae to generate images almost identical to
the original dataset.For this reason the results on this dataset are excellent with
any model.
The peculiarity of the anomaly detection of the vae works well on this dataset.When
the input is the number it is trained on, the reconstruction remains faithful. In the
case of a mismatch, on the other hand, there is a high reconstruction error.
peculiarity of the anomaly detection of the vae works well on this dataset. As shown
in the table 3.2, when the input is the number it is trained on, the reconstruction
remains faithful. In the case of a mismatch, on the other hand, there is a high
reconstruction error.

The diagram 4.1 presents a first positive approach to how to mitigate catas-
trophic forgetting. In fact from one task to another the accuracy remains almost
constant. This is precisely because the images generated replace the initial dataset
almost perfectly, without letting the model understand that there have been actual
differences.However, it can be seen that there is an error propagation and it grows
as new tasks are faced up until the end.

i-carl RtF NG
lower bound 19,9
1 epoch 95,30 91,51 92,75
2 epoch 96,15 92,87 91,16
5 epoch 96,45 91,15 92,54

upper bound 97,20

Table 4.2. Results on Mnist using a Multilayer Perceptron model as com-
mon discriminator on 5 task.
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4.1 – MNIST

Figure 4.1. This diagram shows the progress of the accuracy on MNIST. In this
case the dataset was divided into 5 different tasks which are given to the model
individually.This result has been obtained using a MLP model.
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4 – Results

name i-carl rtf NG
lower bound 49,9

1 epoch 92,20 90,21 93,85
2 epoch 94,30 94,66 93,11
5 epoch 95,48 95,05 94,78

upper bound 97,20

Table 4.3. results on Mnist using a Multilayer Perceptron model as common
discriminator on 2 task.

From the tables 4.2 and 4.3 it is easy to understand that in an incremental learn-
ing environment, models that exploit image generators are unlikely to obtain better
results than those that keep the best exemplars in memory as Icarl. Furthermore, it
can be seen if the same problem is addressed with few but large tasks, the accuracy
improves.

name no quality with quality control
lower bound 19,9
1 epoch 91,85 92,75
2 epoch 90,15 91,16
5 epoch 89,43 92,54

upper bound 97,20

Table 4.4. results on MNIST dataset using a MLP model as discrimina-
tor and only 5 tasks. .
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4.1 – MNIST

Add a quality control can improve the situation, as shown in the table 4.4Qual-
ity control filters the images used for the training phase. The improvement that
this allows compared to not using it represents the proportion of significant images
compared to all those generated. When the generated images are all incomprehen-
sible, the quality control is ineffective and blocking.
In this case a slight improvement can be noticed even if, by increasing the number
of epochs per class, it becomes less and less effective.
Subsequently, some tests(4.5,4.6,4.2) were performed using a convolutional model

name 2 task 5 task
lower bound 49,2 19,9
1 epoch 97,22 95,15
2 epoch 96,89 92,18
5 epoch 92,54 88,42

upper bound 99,48

Table 4.5. results on Mnist using a convolutional model as discriminator.

name no quality with quality control
lower bound 49,2
1 epoch 97,22 97,20
2 epoch 96,89 96,55
5 epoch 88,42 92,78

upper bound 99,48

Table 4.6. results on Mnist using a convolutional model as discrimina-
tor and only 2 tasks. .

name no quality with quality control
lower bound 19,9
1 epoch 95,15 95,75
2 epoch 92,18 96,15
5 epoch 88,42 85,51

upper bound 99,48

Table 4.7. results on MNIST dataset using a convoutional model as dis-
criminator and only 5 tasks. .
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consisting mainly of an Auto-encoder.A convolutional model can lead to better re-
sults, above all thanks to an extractor of features such as the Auto-Encoder. How-
ever, it suffers from the same problems and indeed accentuates them.
As can be seen, in fact, even with such a model, there continues to be a greater
error when the number of tasks per dataset increases. Furthermore, there is a vis-
ible overfitting on the generated images, losing contact with reality, increasing the
number of epochs.
This, of course, can also be caused by the structure of the network, such as the
number of layers or an excessive presence of pooling layers.
For this reason, in the next datasets, much more complicated than MNIST, "resnet18"
has been chosen to make correct comparisons with the other models.

4.2 Cifar10
This dataset is, although small, much more complicated. With a resolution of 32x32
it has first 3 input channels to represent all possible colors. Each class does not
have a unique shape and color but is very variable.
Furthermore, the subject is almost never centered (something that often happens
in works of generative models). So we can basically say that the correlation of
features of different images belonging to the same class is very low.
For this reason, the generated images, as illustrated in 4.2, are different from the
original dataset. However, they maintain some important peculiarities that char-
acterize the class. To measure how different these images were from the original
dataset, a special training was performed, using only the images generated during
the training. In this way, using a pre-trained resnet18, it was possible to reach 35%
accuracy on the test set.

i-carl rtf NG
lower bound 44,23

1 epoch 55,30 41,32 52,31
2 epoch 58,14 40,45 55,15
5 epoch 72,36 42,53 49,45

upper bound 82,20

Table 4.8. results on Cifar10 using pretrained resnet as common dis-
criminator on 2 task.
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4.2 – Cifar10

Figure 4.2. generated images using a Pgan model per class
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For this reason the results shown in table 4.8 are much lower than a standard
workout where classes are given simultaneously. In this case, however, we can see
that compared to RtF (which generates blurred images) the performance is better.
In particular, it is possible to see that, while Icarl learns to better extract the
features in the exemplars that it has in memory, our model suffers from overfitting,
adapting too much to a new date completely different from the original one.
As the diagram 4.3 shows, the first task is absorbed fairly well. Subsequently,

Figure 4.3. Accuracy On CIFAR10 using resnet pre-trained as encoder on 2 tasks.

however, when facing the new task, most of the characteristics are forgotten and
the classification deteriorates very quickly. it should be noted, however, that the
model learns the new task with an accuracy> 80%. This may mean that the
structure is still well designed and the fundamental problem lies in the generated
images. From this we can understand that we should have a model capable of
putting dirty and original images on the same level.

When the number of tasks increases, the results worsen even more. This affects
all models including I-carl(table 4.9). One of the possible reasons is that when
faced with smaller tasks, the discriminator manages to obtain excellent results dur-
ing training. As a consequence, the loss remains low and the model does not work
enough to be able to separate the classes substantially. For example, if it is enough
to distinguish two classes for a color, then it is not necessary to take into consider-
ation all the other details that determine them.
In fact, shown by the graph 4.4 at the end of the fourth task, the only two classes
that the model can remember only planes, usually the sky as a background, and the
machines. The fifth task unfortunately contains two classes very similar to the ones
mentioned above. This makes losing the little memory left. In this case however
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4.2 – Cifar10

i-carl rtf NG
lower bound 18,5

1 epoch 51,37 21,32 21,31
2 epoch 56,78 20,45 22,15
5 epoch 60,86 22,53 21,45

upper bound 82,20

Table 4.9. results on Cifar10 using pretrained resnet as common dis-
criminator on 5 task.

Figure 4.4. Accuracy On CIFAR10 using resnet pre-trained as encoder on 5 tasks.

we can note that inserting a quality control mechanism will actually improve per-
formance (table 4.10). However, this experiment was only carried out on 2 tasks,
because carrying out it on 5 tasks can be too blocking, This happens because if the
teacher becomes a victim of catastrophic forgetting he is no longer in line with the
ground truth.

By carrying out tests also on Icarl 4.6 4.5, it is possible to note that this model
also suffers from catastrophic forgetting, especially when the number of tasks is
greater. Subsequently other attempts were made using a convolutional Autoen-
coder. As can be seen in table 4.11 the first epochs of this model manage to be
better than a pre-trained model when the number of epochs is greater. The possible
reason is that an autoEncoder is an unsupervised feature extractor. His training is
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name no quality with quality control
lower bound 43,2
1 epoch 45,98 52,31
2 epoch 46,25 55,15
5 epoch 46,88 49,45

Upper bound 82,2

Table 4.10. results on Cifar10 using a resnet model pretrained as discrimi-
nator and only 2 tasks.Using a quality control mechanism on the generated
images the accuracy can improve.

Figure 4.5. Icarl:Accuracy using resnet pre-trained on CIFAR10 on 5 tasks

based on how good it is to reconstruct the image. So adding new classes changes
it less. Furthermore, being a feature extractor, it can put generated images and
original dataset on the same level.
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4.3 – Bio-dataSet

Figure 4.6. Icarl: Accuracy using resnet pre-trained on CIFAR10 on 2 tasks.

name 2 task 5 task
lower bound 38,74 18,41
1 epoch 42,84 30,18
2 epoch 42,07 23,61
5 epoch 43,36 22,84

Upper bound 77,05

Table 4.11. results on Cifar10 using a convulational model as discriminator .
With this comparison, a degradation of performance was observed in the 5 tasks
case, increasing the training time per task

4.3 Bio-dataSet
This dataset, kindly provided by the author of [Pon+19], was born as a need to cre-
ate a convolutional model capable of distinguishing adenocarcinomas from healthy
tissues. In this case the images of the entire dataset share the same colors and the
cells are never centered.
The overlap of the characteristics of different classes is so high that simply clas-
sifying them normally can be difficult. The replicas obtained from the generative
models are very generalized, managing to distinguish them slightly with naked eyes
thanks to the shape.
However, by performing a training on the generated images only, the discriminator
cannot distinguish them (<20% accuracy on the test set). For this reason, very low
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name no quality with quality control
lower bound 38,74
1 epoch 42,84 42,36
2 epoch 42,07 41,81
5 epoch 41,36 41,40

upper bound 77,05

Table 4.12. results on Cifar10 using a convolutional model as discriminator
and only 2 tasks. When the discriminator is not capable of extract all the
features the quality controll is useless.

results should be expected.

I-carl rtf NG
lower bound 33,3

1 epoch 33,53 33,3 33,3
2 epoch 33,91 33,3 42,81
5 epoch 44,23 33,3 34,64

upper bound 72,2

Table 4.13. results on Biological using pretrained resnet as common
discriminator on 2 task.
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name no quality with quality control
lower bound 33,33
1 epoch 33,3 33,3
2 epoch 39,08 42,81
5 epoch 34,2 34,64

upper bound 71,2

Table 4.14. results on Biological dataset using a resnet model as discrim-
inator and only 2 tasks. .
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Chapter 5

Conclusions and future
works

5.1 Conclusion

From the results obtained we can see that it is not easy to get good results from
generative models. When the correlation of the characteristics of different images
belonging to the same class is high, the generative model knows how to replicate
excellent results. When this is low with more complex datasets such as Cifar10 the
few characteristics captured are not sufficient to be able to recognize the class.

The difficulty lies primarily in the choice of the generative model, an element that
is always evolving. However, the difference between original and generated images
can be balanced by a good feature extractor. In fact, a pre-trained model has
proven to have better results than a generic convolutional model.

It was then noted that different results can also be obtained on the basis of the
number of classes that are faced at a time. For this reason, it is convenient to try
to have large rather than small tasks.

This technique was also unstable with a decrease in accuracy increasing the train-
ing iterations. This is mainly due to the quality of the generated images: if they
are of low quality the model adapts to that format forgetting the original dataset.
The speed with which this happens is high and therefore a low number of epochs
is preferable. However, if you use a pre-stretched model this memory loss is lower
allowing you to learn new classes too.

To improve this phenomenon, a quality control of the training images used with
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knowledge distillation can be useful. In fact, using a generative model, more signif-
icant images can be generated than others. The added value from quality control
represents the percentage of good quality images out of all the generated images. If
adding quality control there is no improvement it means that the generated images
are the same or completely different to the original dataset

In the presence of multiple tasks the structure of auto-encoder + discriminator
can be useful. This is because in the transition from one task to another, unlike
a normal model, the initial layers remain unchanged as you want to minimize the
reconstruction error.

The fact that it requires the use of a few epochs reveals a strong connection with
the requirements imposed by incremental learning. In fact, it allows you to learn
new classes without having to waste too much time reviewing all previous classes

The results obtained are different from RtF because this has exploited VaE, not
excellent for complex datasets, and above all because rtf uses a single model to
generate and predict. However this work is still far behind models such as Icarl
which, however, keeps real samples by class

5.2 Future Work
Generative models have great potentional skills but It is not convenient using only
them in the role of consolidation. One solution would be to try using them in a
dual memory approach .This would involve building a model similar to fearnet but
using generative models in memory consolidation instead of class statistics. The
generators could therefore be trained with the most characteristic images of the
class chosen through the criteria of the second model. Another case study path
could be increasing the resolution of the images during training (the work carried
out focused on 32x32 low resolution images) for more complex datasets such as the
biological one. Since a quality control has taken effect, further control should be
carried out without the need to have a generator per class but only 1.Finally, it
is obvious that a better image generator is needed especially in cases of complex
datasets
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