
POLITECNICO DI TORINO
FACULTY OF ENGINEERING

Master’s Degree course in Biomedical Engineering

Master’s Degree Thesis

Temperature monitoring system for the assessment of

thermal comfort in sports and work clothes

Supervisors:
Prof. Alberto Vallan

Candidate:
Francesco Ridolfi

Academic year 2019/2020

Abstract

The control of body temperature in humans is of vital importance because temperature must
be maintained within a certain range, called neutrality, in order to guarantee the human
thermal well-being and homeostasis. Human is a homoeothermic species, which means that
it maintains its body temperature in a certain range of values, for example the oral cavity
must remain between 36.5 and 37.5 °C.

However, if the external conditions are not favorable, adaptive thermogenesis may be
necessary, by applying specific physiological methods, it heats or cools the body in order to
maintain its temperature within a certain range, beyond which it could face frostbite, coma
or death.

Clothing plays an important role here; several studies on human thermal well-being deal
with two main themes: the first concerns the development and production of sports clothing,
while the second concerns the development and production of work clothing. Sports clothing
should not just allow adequate heat dissipation in the case of physical activity in a warm
environment, but it should also thermally insulate the subject in the case of physical activity
in a cold environment; these two goals should be achieved without limiting the athlete’s
movements. Work clothing is more critical because individuals can be subjected to extreme
temperatures; they should protect the human body from chemical and biological agents and
radiation, they should dissipate the sweat produced by the body and they should dissipate
the heat related to temperatures to which they can be subjected.

In order to assess the effectiveness of work and sports clothing, it is therefore necessary
to use a device that allows the measurement of human temperature to be carried out for
extended time spans and using multiple temperature sensors, in order to better understand
the dynamics of heat distribution in different parts of the body surface. In future, smart
sports clothing which integrates these monitoring devices can provide a real-time feedback
concerning the subject’s thermal conditions.

The purpose of this thesis is to create a wearable temperature monitoring system equipped
with miniaturized thermistors suitable to be fixed on the subject skin without interfere with

II

the subject activity. The developed system is able to manage six sensors whose measurements
can be logged on the wearable device and sent via radio to a receiver connected to a Personal
Computer. Moreover, the wearable system also embed a display useful to read the sensor
measurements.

The wearable system has a rechargeable battery that guarantees measurement sessions
up to 12 h. The PC collects the measurements sent by the wearable device and displays the
results using a graphical interface. Data saving and loading capabilities have been embedded
too. The hardware of the wearable system and of the receiver takes advantage of a micro
controller platform produced by Adafruit. The microcontroller were programmed in C lan-
guage and the program running on the PC was written in Python; in details, the latter has
several useful features, including gathering new data, adding data, uploading data in order to
visualize them, deleting data, visualizing just specific channels, monitoring battery voltage
or changing data samples gathering time.

Preliminary tests were carried out monitoring the fingers temperature when the hands
are protected with sport gloves. Then thanks to the small sensor dimension was possible to
monitor the finger tip temperature without cause any discomfort to the subject.

III

Contents

Introduction VIII

1 Factors influencing the change of the body temperature. 1

1.1 Analysis of the metabolic heat production. 2

1.2 Pathologies related to the change in body temperature. 5

1.3 Changing of the human temperature due to sport 6

1.4 Other factors that affect the body temperature: age and microclimes 10

2 Commercial acquisition systems for sports 14

2.1 MSR 147 . 15

2.2 MSR 145 . 16

2.3 MSR 160 . 18

2.4 VitalPatch Biosensor . 19

2.5 BT510 . 21

3 The hardware section of the developed system 23

3.1 Adafruit Feather M0 LORA . 27

3.2 AT SAMD 21 G18 . 28

3.3 Pinout description . 30

3.4 RFM96 . 31

3.5 Battery . 32

3.6 Oled Feather Wings display . 33

3.7 Sensors that can be used by the system . 35

3.7.1 Thermoresistance . 35

3.7.2 Thermocouples . 36

V

Contents

3.7.3 Thermistors . 37

3.8 The sensor employed in this work . 39

3.9 conditioning circuit . 41

4 The developed software 44

4.1 Transmitter . 44

4.2 Flow chart transmitter . 47

4.3 Receiver . 50

4.4 Flow chart receiver . 52

4.5 GUI . 53

4.6 Flow chart GUI . 56

5 Experimental results 58

5.1 Assessment of the glove thermal insulation 58

6 Conclusions and future developments 63

I Appendixes 65

Transmitter code i

Receiver code xxi

GUI code xxviii

VI

Introduction

Monitoring the human skin temperature is important to quantitatively assess the human
well-being and to prevent injuries such as heat strokes and hypothermia. This is particularly
important when the subject performs physical activity or, in more serious circumstances,
when it is exposed to extreme temperatures because of specific works.

This thesis is focused on the measurement of the human skin temperature during physical
activity. Part of this work was devoted to the analysis of the human well-being range and its
changes related to specific causes, such as metabolism, clothing and physical activity.

Temperature monitoring can be performed using several kind of temperature sensors,
which are placed on the body of the subject in order to constantly observe the parameter
on the skin surface. Sensing devices currently available on the market were analyzed and
reviewed.

A wearable device useful to monitor skin temperature during physical activity was de-
signed, realized and tested. The developed device is able to collect and send data to a receiver
using a radio link. The receiver is connected to a personal computer where date can be dis-
played using a graphical interface. Moreover it stores all the measurements for a subsequent
analysis.

The thesis is organized as follow:

• Chapter 1 describes the physiology of heat generation in the human body, analyzing
the causes that change its temperature from the literature.

• Chapter 2 provides an overview of devices currently on the market that send wireless
data to a receiving source used for sport activity.

• Chapter 3 describes the system created, first in a summary way and then dwelling more
on the individual components used.

VIII

• Chapter 4 shows flow charts used for programming respectively the transmitter, receiver
and graphic interface, explaining how the system in question was designed.

• Chapter 5 shows the results of the system and the tests carried out.

• Chapter 6 examines the conclusions and includes an analysis on the hypothetical future
developments of this device.

IX

Chapter 1

Factors influencing the change of the
body temperature.

Human thermoregulation is one of the basic functions of life. Metabolic energy is converted by
the body into mechanical and thermal energy with most of it (30 to 70%) [1] being converted
into heat.

Although the system is considered inefficient, it allows our body to survive and generate
enough heat to maintain homeothermia.

Homeothermic species, such as humans, maintain their body temperature (Tc) at a fixed
value.

This regulation of internal temperature with the surrounding environment is a result of
evolution, and, although it has a significant energy cost, it is of fundamental importance in
order to withstand colder environments. The basal heat production would not be sufficient
to keep the Tc constant.

The thermogenic mechanisms adopted by humans [2], generation and dissipation, are heat
saving and vary depending on what is required for the body to adapt to sudden changes in
external temperature.

The body should be able to produce significant quantities of heat. Otherwise, the ambient
temperature range to which it can be subjected is limited.

Therefore, we should also distinguish the types of thermogenesis that we use to keep the
body’s core temperature constant. The first type is mandatory thermogenesis [2], which
allows the body to stay in thermal equilibrium with the surrounding environment. If the
external temperature falls within a defined range of thermoneutrality, no other methods are
needed to produce heat.

1

1.1. Analysis of the metabolic heat production.

Next comes adaptive thermogenesis [2]: it takes place when the external temperature
leaves the range of thermoneutrality. In this case, the body needs additional heat to main-
tain its vital functions and it implements mechanisms such as vasoconstriction, piloerection,
shivering or more complex metabolic mechanisms.

1.1 Analysis of the metabolic heat production.

Metabolism is a fundamental aspect of thermal comfort. It is analyzed as the trend of the
metabolic rate and is influenced by the insulation of the clothing and by external thermal
conditions to which the individual is subjected.

The equation used to analyze this phenomenon is second-order polynomial [3]; the result
obtained is that the metabolism is lower in a neutral condition, and it increases in case the
temperature gets warmer or colder.

PMV is an index among the models based on human body at balance calculation [3]. It is
a function of the metabolic rate and insulation of clothing with regard to human physiological
regulation. This includes: air temperature, relative humidity and air speed in regard to the
surrounding environment.

M and I are related to human physiological regulation and behavioral regulation. The
other parameters refer to the thermal environment.

Figure 1.1: Effect of metabolic rate on PMV variance with insulation levels of 0.5 clo and 1.0 clo

In figure 1.1 an expected result is observed: the PMV increases linearly depending on the
function of the thermal insulation of the clothing as the air temperature changes; in the case
of 0.5 clo, it initially starts from a higher value, then progresses to the same value of 1.0 clo
at around 30 °C.

2

1.1. Analysis of the metabolic heat production.

MET is equal to 58.2 W/(m2̂), and represents the metabolic rate [3].

Clo is a measure of thermal resistance, it includes the insulation provided by layers of
trapped air between skin and clothing and insulation value of clothing itself [4]; higher is this
value, higher is the insulation between body and external temperature.

In literature, considering the metabolic rate as a constant value is a common assumption.
However, this is not true in most cases.

Table 1.1: Levels and methods for the determination of the metabolic rate.

There are 8 methods with 4 different levels of precision rates to evaluate the metabolic heat
production in the human body(Table 1.1) [3], Refers to 4a method were studied metabolic
rate, the heart rate, the blood flow and the skin temperature; in particular metabolic rate is
described by equation 1.1.

M =
21(0.23Rq + 0.77)Q02

Ad
(1.1)

- M is the metabolic rate (W / m2).

-Rq is the respiratory quotient, which is the molar ratio of Qo2(L / min) exhaled and
Qco2(L / min) inhaled.

- Qo2 and Qco2 are respectively the volumetric rate of carbon dioxide production and
oxygen consumption (ml / s, at conditions of 0 ° C, 101.3 kPa).

- Ad is the surface of Dubois (m2̂). It can be determined by following the empirical
equation 1.2[3]:

Ad = 0.202H0.725W 0.425 (1.2)

where H is height (m) and W is weight (kg).

3

1.1. Analysis of the metabolic heat production.

Figure 1.2: Metabolic rate in different thermal conditions

Fig. 1.2 illustrates the metabolic rate under different thermal conditions [3]. Despite the
individual differences, the general metabolic rates increase when the thermal conditions move
away from the neutral zone(around 32 °C). In fact at 16 °C, we can see that the metabolic
rate increases by about 3 MET at 0.9 clo and about 8 MET at 0.42 clo; this is an expected
result because with more clo the human body is more isolated thanks to clothing, and the
metabolism doesn’t have the necessity to create heat; if we measured the internal temperature
with the device created, we would notice that with the same external temperature the body
has a greater need to create heat if it is less dressed.

Figure 1.3: Physiological response in different temperatures and clothing

Fig. 1.3 further illustrates the overall changing trend of other parameters in different

4

1.2. Pathologies related to the change in body temperature.

thermal conditions, such as the mean metabolic rate, blood flow, mean skin temperature
and heart rate; as regards the mean metabolic rate it increases with decreasing temperature,
blood flow decreases with decreasing temperature and the trend between 0.42 clo and 0.91
clo is different; about the mean skin temperatures, 0.42 clo and 0.91 clo have a more similar
trend, and as expected, the temperature of hands decreases as the temperature decreases ;
in fact with a greater thermal insulation it decreases less. The heartbeat have a minimum
around 26 °C, however, moving from this temperature the heart beats faster with a drop or
elevation in temperature.

This is a demonstration of how clothing affects different parameters internally in the
human body: it is known that these parameters influence the subject’s temperature in turn.

Consequently, it is essential to consider the quantity of clothing which the subject wears
during measurements by the device, in order not to incur in unexpected results.

1.2 Pathologies related to the change in body tempera-
ture.

Body temperature can deviate from its physiological values due to some pathologies, which
are grouped into hyperthermia and hypothermia.

There are three types of Hyperthermia:

• Heat collapse: it can be generally identified in elderly individuals, in whom thermoreg-
ulation is not particularly effective, in non-acclimated individuals and those who carry
out particular physical activity, exposing themselves to high environmental tempera-
tures. This pathology varies the body temperature between 38 and 39 °C.

• Malignant hyperthermia: this pathology is due to a malformation of the calcium channel
in the cells of the skeletal muscle. The calcium channel releases excess ions for the
hydrolysis of ATP in ADP, which are transferred to the sarcoplasmic reticulum and
mitochondria.

• Heat stroke: it could happen because of an excessive exposure to heat. This type of
stroke is fatal in 50% of cases.

These individuals’ body temperature could reach up to 41 °C. The subjects end up
unconscious. It is essential to cool the body to lower the temperature.

5

1.3. Changing of the human temperature due to sport

Hypothermia is a temperature decreasing. The lower is the body temperature, the lower is
the metabolic consumption of oxygen; if this process continues excessively over time, it could
also lead to the risk of permanent brain injury or death.

1.3 Changing of the human temperature due to sport

Heat production increases sharply with exercise. It dynamically contracts the skeletal muscle
and it further increases during the initial stages of training [1].

Figure 1.4: Heat production during physical exercise

The graph in figure 1.4 shows that the heat accumulated in the muscle decreases with the
progress of physical exercise. At the beginning of the exercise the heat reaches its maximum
(80 j / s). The blood heat removal starts from zero and then increases.

The total heat production, which increases overtime, is the sum of the blood heat removal
and the heat accumulation in muscles.

This heat exchange is particularly significant in cold environments. It produces a high
temperature gradient between the muscles, the subcutaneous tissue and the skin, requiring
less thermogenesis mechanisms [2]. Whereas, when the external climate is hot, there is no
significant temperature gradient.

There can be significant changes in the convective heat exchange between limbs and the

6

1.3. Changing of the human temperature due to sport

bust, in case their temperature or blood flow is altered because of environmental or physical
stress. When the exercise is carried out in ischemic conditions, the blood is accumulated
in muscles because of some circulatory blockage in the blood [1]. In addition, the thermal
and metabolic needs of our body depend on the hemodynamic response, which changes with
respect to certain parameters, such as the ambient temperature, the physical exercise carried
out, the duration and intensity of this[1].

The physical activity leads to a greater tachycardia; therefore it increases blood flow and
heat exchanged in the body. We should also distinguish the type of physical activity, which
can be small or large muscle exercise;

In the first case we have exercises on single parts of the body, which consequently require
lower energy expenditure and a blood flow towards a specific part of the body: therefore, the
temperature will be increased only in a certain limb.

Instead, in other more complex exercises that require the use of many joints, such as
swimming or rowing, the heat is equally distributed throughout the body. The heart will
then have to pump blood throughout the body, also depending on the duration of the exercise
and external environmental conditions, which change metabolic and thermal needs of the local
and systemic blood flow.

The combination of heat resistance and intensity of the exercise determines the amount
of oxygen delivered to the brain, heart and muscles, blood pressure and regulation of the
temperature. All these factors change the body temperature, so we can say that doing sports
also increases significantly by 1-2 °C.

Another important feature concerns dehydration; the exercise in a warm environment
determines a greater sweating and, therefore, dehydration [1].

From experimental tests can be observed that the heat request was apparently the same.
Although in the case of hot external temperature the subject had lost the 4% of liquids mass,
the cardiac output was not reduced. Therefore, we can say that blood flow and cardiac
output are lower while practicing an exercise in a warm environment. Dehydration can
explain the discrepancies of the cardiac output depending on the environment around the
analyzed subject[1].

As regards the heat at the extremities of the limbs, studies reveal that the heat stress
increases the blood flow to the arms and legs, whereas in the case of cold stress, limb perfusion
is reduced[1].

By studying the limbs individually, it can be observed that during the heat stress process
some elements increase. Those elements are: the blood flow in the leg tissues, the content of
the femoral venous O2 and the muscle oxygenation[1].

7

1.3. Changing of the human temperature due to sport

Figure 1.5: Example of temperature and heat changing in human legs during cycling exercise

In figure 1.5 a test, concerning a cycling exercise, was performed[1]. It can be observed
that the core temperatures (Toes) and femoral arterial blood temperatures (Tfa) are higher
than muscle temperatures (Tm) and femoral venous temperatures (Tfv); however these last
two elements increase rapidly as the exercise proceeds, since the time required to warm the
Toes is lower. Afterwards, it can be seen a net heat flow, in fact, after a certain period of
time (here 5.5 minutes) the leg has fully heated.

The blood carries the heat inside the body in relation to the temperature of the blood
and the blood flow. The transfer of heat in the main arteries and veins, which flows into the
limbs, is bidirectional.

In normal resting conditions the temperature of muscles, limbs and blood is significantly
lower than the internal arterial temperature. It is due to the fact that there is a rapid thermal
balance between tissues and vessels.

Analyzing the negative gradient mayor supply vessels of the resulting arteriovenous tem-
perature indicates that the heat is transferred from the upper nucleus to the extremities,
rather than vice versa.

8

1.3. Changing of the human temperature due to sport

This net body-to-body heat transfer helps limbs to maintain their temperature when
metabolic heat production is low. For example, according to figure 1.6, the leg VO2 is
normally about 25 mlmin-1 in the resting state, corresponding to a total heat production of
the leg of 0.5 kJmin-1. [1]

These simple estimates demonstrate that more heat is transferred to the resting leg. It
implies that the temperature of the limb tissue will decrease if its circulation is stopped and
the heat dissipation in the surrounding environment is kept constant.

By practicing exercise the body temperature mainly increases in the limbs, whereas it
decreases when the physical exercise is finished.

If this process does not happen, it is because there are perfusion problems due to a
previously described pathology; therefore it is fundamental to monitor the body temperature
with a specific device to control the thermal well-being of the subject.

Figure 1.6: Test of blood temperature and heat exchange in a rat’s hind limb

The net heat of the limbs was the same, as the increase in blood flow corresponds to a
decrease in femoral arteriovenous temperature.

As for the femoral artery, however, when the blood flow was reduced, the heat flow in the
hind limb accordingly decreased, so the temperature difference remained unchanged.

9

1.4. Other factors that affect the body temperature: age and microclimes

An experiment was conducted on rats [1] ; the results were that, in case the blood flow
in the limbs increases, the amount of net heat, which is transferred from the trunk to the
limbs, not necessarily increases. This fact happens due to the compensatory regulations of
the fabric heat exchange - blood inside the leg tissues.

However, if the blood flow decreases, it is likely that there is a lower heat in the limbs; It
was observed that the temperature of the human leg, during a resting phase, also decreases
up to 0.5 degrees and the blood flow increases from 0.4 to 8 liters per minute for the infusion
of ATP [1].

During the exercise the production of heat also increases, not just the convective heat
exchange or the perfusion of the tissues.

Initially, in the practice of physical exercise, the temperatures of the contracting muscle
and the femoral venous blood increase more than the temperatures of the femoral artery
blood. In this phase a negative gradient of the femoral arteriovenous blood temperature
prevails; therefore, in normal environmental conditions, a larger quantity of heat is transferred
from the upper part of the body to the limbs. This process can be observed in figure 1.6 [1].

After a few minutes of exercise, the temperature of the muscular venous blood increases
more than the arterial blood, and the internal temperature of the body consequently increases.
The heat transferred from the limbs to the bust then becomes positive, and, in case the
exercise is moderate, it increases until it reaches a plateau.

1.4 Other factors that affect the body temperature: age
and microclimes

The practice of sports exercise radically changes the blood flow and the changing process
of the body temperature. However, it is not the only factor to be taken into consideration:
from the literature it is clear that some parameters change over the years, and these are basal
metabolic rate (BMR), body weight (BW) and cardiac output (CO) [5].

It is known that thermal well-being is one of the main limits regarding the health of
elderly people, who, compared to young people, have a reduced range of thermoneutrality.

This fact can put them at risk in case of extreme thermal stress; therefore, it is good to
keep their physiological parameters monitored, in order to avoid hypothermia or lack of heat.

The IESD-vial model [5] analyzes the change in physiological parameters with respect
to age. It mainly analyzed the basal metabolic rate, cardiac output and body weight. It

10

1.4. Other factors that affect the body temperature: age and microclimes

also studied situations including vasoconstriction, vasodilation, sweating and shivering. The
result was that basal metabolic rate is the most critical parameter for thermal comfort in
the elderly. It was also shown an excessive exposure to a cold environment could lead to an
excessive cooling in the body, due to the reduced metabolism.

Another consideration should be made with respect to the environment outside the sub-
ject: if, for example, the subject practices physical activity in a park, the thermal comfort
will be different than practicing in an urban area, due to the vegetation present in green
areas [6].

Breathable plants release water vapor into the surrounding environment, decreasing the
air temperature and increasing relative humidity. Urban vegetation always plays an impor-
tant role in the urban climate, producing microclimates, especially during the hot season.

The PCI (Park Cool Island) index defines the cooling of a park, and its value corresponds
to the difference between the temperature of the urban area and the park under analysis[6].
However, it is not precise enough to state the specific temperature and humidity of the various
areas of the park;

Table 1.2: Park analysed.

Through analysis, characteristics of some green areas were found. They are shown in
table 1.2.

11

1.4. Other factors that affect the body temperature: age and microclimes

Figure 1.7: PCI max in green areas in summer

Park No. 3 was located on the slope of a small hill. In fact, its altitude is a little higher
than the others [6].

It was seen that the PCI max of the green areas changed during the day according to the
size of the area, between 1 and 2 °C (fig 1.7), whereas at night there were greater differences
in the PCI max, that even reached up to 3.5 °C. Therefore, these factors are fundamental
for monitoring the athlete’s temperature, since a difference of 3.5 °C in external temperature
cannot be overlooked [6].

Figure 1.8: Percentage of hours with comfort conditions in winter and summer

Figure 1.9: Percentage of hours with discomfort conditions in winter and summer

As for the biometereological indices, the comfortable conditions in figure 1.8 and the
uncomfortable conditions related to the analyzed areas in figure 1.9 can be observed. As
expected, in winter the area with the highest percentage of comfort is the courtyard, which can

12

1.4. Other factors that affect the body temperature: age and microclimes

reach up to 90%, while in summer it approaches 73%. Looking at figure 1.9, it appears that
the covered green area has less uncomfortable conditions: in winter its higher temperatures
are given by the heating of the house, while in summer, as mentioned, from the shade of the
walls.

The largest parks have a lower percentage of comfort and the largest percentage of un-
comfortable hours, around 10%.

For these reasons,with regards to thermal comfort, it would be better to practice sports
in smaller parks with regards to thermal well-being.

13

Chapter 2

Commercial acquisition systems for
sports

There are several monitoring systems useful to measure skin temperature which embeds a
wireless communication link. However, only few of them are also designed to be used during
physical activity. This Chapter reports some relevant system and describes their technical
characteristics.

14

2.1. MSR 147

2.1 MSR 147

Figure 2.1: Picture of acquisition system MSR 147

MSR147 is produced by MSR Electronics GmbH. It is an instrument equipped with Bluetooth
and embeds a data memory that can record up to 1 million measurements [7].

It can measure the temperature of the skin and the level of humidity for long periods of
time. It has 5 connectors for wired sensors: this element makes the device very versatile,
being able to insert and remove sensors that are automatically recognized by the system.
Moreover, it is possible to collect values via USB [7].

The system can be also managed using a an App for mobile phones. It has a led which,
depending on the color, shows customizable alarms, the battery charge status or the record
indicator [7].

15

2.2. MSR 145

Table 2.1: Features of MSR 147.

2.2 MSR 145

Figure 2.2: Picture of acquisition system MSR 145

This system is a different version form the same manufacturer and it is capable of taking up
to 50 measurements per second [8]. It has a 900 mAh battery [8] and can make measurements
for a period of even two years.

LEDs are present: the blue color shows that the device is collecting data, the red color
indicates an alarm and the yellow color shows the battery status [8].

It has a USB connection, so the device can be easily connected to the computer. It also
has two types of sensors, namely temperature and humidity [8];

16

2.2. MSR 145

Table 2.2: Features of MSR 145.

17

2.3. MSR 160

2.3 MSR 160

Figure 2.3: Picture of acquisition system MSR 160

This further version is capable of 1000 samples per second [9].

Pluggable sensors of temperature, humidity and pressure can be added. An SD card can
be added to save a billion measurements.

It includes a 900 mAh rechargeable battery [9]. The saved data can be brought to the
PO or to the computer by a USB interface .

The weight is 80 grams and dimensions are 39x23x72 mm.

The temperature range is between -20 and +65 °C; the relative humidity is between 10%
and 95% [9].

Table 2.3: Features of MSR 160.

18

2.4. VitalPatch Biosensor

2.4 VitalPatch Biosensor

Figure 2.4: Picture of acquisition system VitalPatch Biosensor

Vital Patch Biosensor is a device created by Madgadget. It is a smart device and its di-
mensions are 4x12x2. The patch is disposable and it lasts up to 5 days: thanks to its short
duration, it was possible designing a flexible and breathable device, so that it could suit the
behavior of the body.

Its oval shape area permits the placement of two ECG / EKG leads; the patch can be
stuck everywhere; however, the most appropriate part is above the bust (fig 2.5) [10].

To apply the patch it is enough to shave the selected section. Furthermore, after pressing
a button a led will notify that the patch is active. Hereafter, once the location of the patient
will be established, the patch will conduct 8 continuous measurements.

While the patch is worn, it should not be wetted: it is obviously important to avoid
swimming and / or a direct exposure under the shower.

It is also possible to use a tablet as a point of connection between the device and the
cloud; however, the internet connection is not strictly required because the device can collect
up to ten hours of data [10].

The graphic interface of the tablet includes 7 frames which represent the measured data:
the breathing and heart rate, ECG, body posture, pedometer, skin temperature and detection
of drop. The eighth parameter is the variability of the heart rate, which is accessible only
through the cloud [10].

The cloud is the control center of all patches.

19

2.4. VitalPatch Biosensor

The user can visualize on the cloud all described parameters, which are sent by all patches
commissioned by a treatment center. All data can be downloaded in CSV format.

Figure 2.5: Example of application of VitalPatch Biosensor.

Figure 2.6: GUi on tablet of the device.

20

2.5. BT510

2.5 BT510

Figure 2.7: picture of BT510 Bluetooth 5 Long Range IP67 Multi-Sensor

BT510 is a sensor created by Laird it is an embadded sensor with an internal battery, is
wearable and is used to transfer data via bluetooth, it has 1MB Flash memory and can last
for years [11].

It has Integrated temperature sensor with proximity, accelerometer and magnetic reed
switch sensors, it can be configured from its specific app, the battery consists of a replaceable
CR2477 coin cell [10].

its characteristics are shown in the table 2.4 [11]

21

2.5. BT510

Table 2.4: Features of BT510.

22

Chapter 3

The hardware section of the developed
system

Figure 3.1: Architecture of the system

23

Figure 3.2: System on the subject during one of firsts characterization tests

The developed system is a wearable temperature datalogger with display and wireless con-
nection based on microcontroller platform (Adafruit Feather M0 LORA). It also includes
six temperature sensors (thermistors) and rechargeable battery. The circuit, via the LORA
module, sends data to a second microcontroller of the same type which is attached via USB
to a PC. Data are then collected, displayed and stored by means of a program written in
Pyton language. The wearable system includes an elastic band that can be used to attach
the device to the subject. The six thermistors are connected to the system using thin wires
having a length of 1 m.

Characterization tests has been carried out testing the bare thermistors in a climatic
chamber to verify the reliability of the sensor mathematical model provided by the man-
ufacturer. In this way, defective sensors can be highlighted before being connected to the
system.

Other tests were carried out with the full system. As an example the sensors were fixed
on large metallic block that was previously heated at about 50 °C and then left to cool to
the ambient temperature. In this way, the sensors experienced a slow temperature change.
In this test each sensor has the same temperature because the block act as a large isothermal
element. The setup is shown if Fig. 3.3. A temperature skew among all sensors of about 0.1
°C was recorder during the full temperature change.

24

Figure 3.3: The system during the experimental assessment of the temperature skew among sensors.

25

Figure 3.4: The receiver and Gui witten in Pyton; on the left side of the screen is the control
menù, on the right side is the temperature evolution during the test shown in Fig. 3.3.

26

3.1. Adafruit Feather M0 LORA

3.1 Adafruit Feather M0 LORA

Figure 3.5: Adafruit Feather M0 LORA device

Figure 3.6: Image of the microcontroller in the system with antenna

27

3.2. AT SAMD 21 G18

The Feather M0 LORA is development board containing a microcontroller ATSAMD21G18
ARM Cortex M0 processor and LoRA module RFM69 Packet Radio (868 or 915 MHz) [12].
Two boards were used: one embedded in wearable part of the system and only working as a
receiver.

This device supplies a voltage of 3.3 V with a peak of 500 mA of output current. As
regards inputs, it has 10 analog pins: they all have been used to acquire the thermistor
signals and the battery voltage, useful to highight a low battery. Another analog input pin
was employed to set the Analog to Digital converter voltage reference voltage. Eventually,
two pins were exclusively dedicated for the LORA device. All these features will be better
explained below.

3.2 AT SAMD 21 G18

The microprocessor used is the ATSAMD21G18, in particular it has 256 K of flash memory
and 32 k of ram; the details are described in table 3.1 [13].

Table 3.1: Main features of the microcontroller ATSAMD21G18.

28

3.2. AT SAMD 21 G18

Figure 3.7: Pin description.

29

3.3. Pinout description

3.3 Pinout description

Figure 3.8: Adafruit Feather Mo LORA pinouts

As for the transmitter module the used pins are as follow:

• 3V, GND, SCL, SDA, 5, 6, 9 for the display.

• A0- A1- A2- A3- A4- A5 are attached to the conditioning circuit to take the voltage
value provided by the 6 thermistors (fig 3.18), they are the analog inputs.

• Aref for the refefence tension.

• En, GND that are connected via a switch, which when activated disables the device
and allows it to not consume power (except to a few micro amperes); in this way it’s
possible to increase its duration.

30

3.4. RFM96

3.4 RFM96

Figure 3.9: The LORA module RFM95/96/97.

Sensor measurements are sent via radio with the module RFM 96 integrated inside the
Adafruit board. The LORA system is able to send up to 300 kbytes per second [12].

The library used to program this device is <RH_RF95.h>, which can be employed to
control all all the RFM9x devices.

The LORA characteristics are here summarized [14]:

• 168 dB maximum link budget.

• +20 dBm - 100 mW constant RF output vs. V supply.

• +14 dBm high efficiency PA.

• Programmable bit rate up to 300 kbps.

• High sensitivity: down to -148 dBm

• Bullet-proof front end: IIP3 = -12.5 dBm.

• Excellent blocking immunity.

• Low RX current of 10.3 mA, 200 nA register retention

• Fully integrated synthesizer with a resolution of 61 Hz

• FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation

• Built-in bit synchronizer for clock recovery.

31

3.5. Battery

• Preamble detection.

• 127 dB Dynamic Range RSSI.

• Automatic RF Sense and CAD with ultra-fast AFC

• Packet engine up to 256 bytes with CRC

• Built-in temperature sensor and low battery indicator.

• Module Size16x16mm

3.5 Battery

Figure 3.10: The employed LiPo battery, 3,7 V 500 mAh.

The battery used is a lithium-ion battery, having a voltage of 3,7 V and an electric capacity
of 500 mAh.

The consumption is around 1 µA when the system is off, 30 mA in normal oprating
conditions. It reaches a peak of 130 mA when the radio is on.

32

3.6. Oled Feather Wings display

This battery run time is more than 12 hours. The Adafruit board embeds a battery
charging system that charges the battery when the USB cable is connected to a PC or a
power bank.

3.6 Oled Feather Wings display

A graphical display having a resolution of 128x32 pixels [12] has been added to the system
in order to provide in real time the temperature measured by the sensors as well as other
system information such as the battery voltage. An Oled display already mounted on a board
compliant with the Feather board. The Oled display is produced by Adafruit and has exactly
the same footprint of the microcontroller board so it can be directly soldered on it in order
to save space.

Figure 3.11: The Oled display Adafruit FeatherWings.

33

3.6. Oled Feather Wings display

(a) The wearable part of the system. (b) The system without cover.

Figure 3.12: Images of developed system.

The microcontroller is programmed to show data according to seven modes:

• 6 temperatures , battery voltage and a marker that shows when the data has been sent
and correctly received

• temperature on thermistor 1

• temperature on thermistor 2

• temperature on thermistor 3

• temperature on thermistor 4

• temperature on thermistor 5

• temperature on thermistor 6

The display also embeds three buttons and it has been programmed so that the modes
can be changed by pressing button B; pressing button C instead changes the width of the
moving average filter employed to reduce measurement noise (4 or 16 samples).

34

3.7. Sensors that can be used by the system

The microcontroller and display are connected by means of an I2C interface. This interface
has a two-wire bus, composed of lines SDA and SCL [15]. In addition to these lines, a ground
wire is required.

• SDA is the serial data line: It allows the subject to pass data information.

• SCL is the serial Clock line: It is used to time the passage of data.

The library used for programming the display is available online and it is <Adafruit_SSD1306.h>.

3.7 Sensors that can be used by the system

Different temperature sensors can be used to monitor skin temperature; currently the system
has been designed with a conditioning circuit devised for thermistors because they have a
very high sensitivity that simplify the design of the conditioning circuit. Moreover, some of-
the-shelf thermistors have been produced in very small embodiment without impairing the
robustness, thus allowing the usage in very demanding applications such as the one addressed
in the work which concern the skin temperature during physical activity.

Nevertheless, other miniaturized sensors can be employed with the developed system
provided that a suitable conditioning circuit is interposed between the sensor and the mi-
croncontroller. As an example, thermocouples are thin sensor known to be extremely versatile
with accuracy that is compliant with this application. It can be shown that thermocouples
can be a substitute of thermistors provided that an amplifier having a gain of about 150 is
employed.

Pt100 can be also employed with minimal changes but minaiturized Pt100 sensors are
not so easy to be found.

Below, the main sensor properties and characteristics are described.

3.7.1 Thermoresistance

Platinum sensors can be very accurate because platinum is not a metal subject to corrosion,it
is stable over time. Furthermore, it is easily workable; the input-output relationship is showed
in Eq 3.1 and 3.2 [16]

35

3.7. Sensors that can be used by the system

R = R0(1 + AT +BT 2) (3.1)

between 0 and 850 °C.

R = R0(1 + AT +BT 2 + C(T − 100)T 3) (3.2)

between -200 and 0 °C.

• R0 is the resistance of the Pt100 at room temperature, its value is 100 Ω.

• The coefficients A, B and C are standardized and are a function of the degree of aging
and purity of the sensor.

Another fundamental parameter is the sensitivity [16].

S =
dR

dT
= R0(A+ 2BT) (3.3)

At room temperature, they have a sensitivity of about 0.4 Ω/°C. Using a linear model the
resistance is:[16].

R = R0(1 + αT) = R0 + ST (3.4)

3.7.2 Thermocouples

Thermocouples have a different working principle being this sensor active sensor, that is,
the produce a voltage in the presence of a temperature gradient. These sensors exploit the
Seebeck effect [16]: the gradient in the metal wire alters the distribution of the charges and
it creates a voltage; this voltage only depends on the material, it does not depend on the
sensor dimensions. The effect is reversible; the Peltier effect is the complement of this[16].

The Seebeck coefficients for thermocouples made with different materials are shown in
Fig. 3.13.

36

3.7. Sensors that can be used by the system

Figure 3.13: Relation between seebeck coefficient and the metal used.

The Figure shows the thermocouple sensitivity is very small. A type T thermocouple,
typically employed at room temperature, has a sensitivity of about 40 µ V/°C.

3.7.3 Thermistors

Thermistors are made with non metallic material, which varies according to the sensor tem-
perature. They can be NTC or PTC type: in the first case the sensitivity is negative (i.e.
by increasing the temperature the resistance decreases); in the second case the sensitivity is
positive [16].

Figure 3.14: Characteristic of a typical NTC thermistor.

Rt = R0B(1
T −

1
T0) (3.5)

37

3.7. Sensors that can be used by the system

Temperatures are expressed in kelvin, and the typical error is 0.3 K in the range (0 ÷ 50)
K.

• R0 is the resistance at a room temperature of 298.15 K,R is obtained from Eq 3.9; the
inverse characteristic is expressed in equation 3.10 [16]

• the coefficient B is called the characteristic temperature and is a value given by the
manufacturer

T =
B

(ln(Rt) − ln(A))
(3.6)

Where A is :

A =
R0

e
B
T0

(3.7)

Figure 3.15: Example of conditioning circuit for thermistors.

The sensor sensitivity is not constant and depends on temperature. Moreover, the con-
ditioning circuit has a non linear behaviour too, but its effect can compensate part of the
sensor non linearity, provided that the resistances are carefully chosen.

38

3.8. The sensor employed in this work

3.8 The sensor employed in this work

Figure 3.16: Thermistors used for project

Thermistors used are thin, with dimensions of 6.5x2.4 mm and this allows to detect body
temperature even in very close places; they have also been numbered using rings of heat
shrink tubing, so that they can be easily recognized during applications.

They were welded to double wires of about 1 meter long, so that it is possible to make
measurements further away from the point of application; a heat shrinkable tube was posi-
tioned on the upper part to cover the welded metal part.

The thermistors fundamental parameters are [17]:

• R0=10 kΩ

• B=3988 K

• Tmin=-55 °C

• Tmax=150 °C

• Accuracy=1%

.

39

3.8. The sensor employed in this work

(a) Thermistors with wires em-
ployed to measure skin tempera-
ture.

(b) Focus on thermistors,it’s possible to dis-
tinguish them for the quantity of white and
blue rings near thermistors (1, 2 or 3 white
rings for thermistors 1,2 and 3; 1,2 or 3
blue rings for thermistors 4,5 and 6 .

Figure 3.17: Images of sensors used.

40

3.9. conditioning circuit

3.9 conditioning circuit

Figure 3.18: conditioning circuit for thermistors (output A0 to A5) and the voltage divider for the
ADC voltage reference (output Aref).

• R1 = 22 kΩ

• R2 = 18 kΩ

• R3 = 4,7 kΩ

• Val= 3.3 V.

• RT is the resistance of thermistors

R2 and R3 were chosen in order to create a reference V of about 2.62 V, as specified by
the manual. In fact, this reference V should be less than Val-0.6V [13].

To choose the R1 value, a simulation was performed on MATLAB of the conditioning
circuit connected to the microcontroller, and various parameters were evaluated, such as
minimum temperature, sensitivity and resistances on the market.

A compromise was found so that the temperature measured by the sensor can be below 0
°C without reduce the sensitivity at high temperatures. A value of 22 kΩ was found, which
allows a minimum temperature of -16 °C to be measured.

41

3.9. conditioning circuit

(a) Relevated voltage in function of external
temperature .

(b) Sensitivity of the system .

Figure 3.19: Graph on MATLAB of tension and sensitivity of the system between -16 and 55 °C.

Resistances were measured using an ohmmeter; their values are reported in Tab. 3.2.

Table 3.2: Actual values (in Ω) of the conditioning circuit resistances in series with the thermistors.

In order to verify thermistors expected values, tests have been conducted using a climate
chamber. A Pt100 was used as a reference, were measured: the value of Pt100, then the
values of the 6 thermistors and the value of Pt100 again in order to make sure that the
temperature of the climate chamber maintained the same value. Values of resistances are
shown in the table 3.3.

Values were initially measured at 20 °C, then at 35 °C and 50 °C. Hereafter, they were
again measured at 20 °C, in order to test the reliability of the measurement procedure: results
were those expected and variations were lower than 1%.

Expected values, calculated from equation 3.10, are:

• 12562.60 Ω for T = 20 °C.

• 6478.68 Ω for T = 35 °C.

• 3552.98 Ω for T = 50 °C.

42

3.9. conditioning circuit

Table 3.3: Test to verify that the thermistor values are in agreement with the expected values
(resistance values are in Ω).

43

Chapter 4

The developed software

The designed software consists of 3 distinct parts:

• transmitter system, written in C

• receiver system, written in C

• GUI, written in Python

4.1 Transmitter

Figure 4.1: Block diagram of transmitting system

This code is composed of three main parts:

44

4.1. Transmitter

• A main loop, in which data are sent via radio to the receiver.

• An interrupt, in which data are taken in each selected sampling time. Through this
process, the display is changed.

• Some subfunctions for an easier programming of the code.

The interrupt times two events: showing data on the display and the data sampling.

It conducts it cycle every 1 ms, counters were set so that the two events mentioned above
take place at every set up time lapse. Data on the display are changed every 115 ms. By
pressing button B it is possible to change the display mode, whereas by pressing button C
the filtering mode can be modified.

The sampling of data, if not changed through the GUI, takes place every 1000 ms.

It renders the six data from the thermistors conditioning circuit and calculates the CRC:
this process is conducted by sending data to a special algorithm that derives an 8-bit value.

The CRC algorithm basically provides for a polynomial division between data provided,
which are converted into a polynomial, and a polynomial called the generator .

The generator polynomial used was x^8+x^4+x^3, it is obtained from the value 10001100,
the value x replaces the units raised to their corresponding bit added together. In the same
way, the polynomial is obtained by dividing data supplied (with respect to the temperature)
converted into binary.

The value obtained is used to verify that data received by the receiver are the same as
they are sent, since the CRC of data received is obtained with the same algorithm. If data
received were different from those sent, the CRC would also be different; it can be said, with
an error of 0,4%, that data was not received correctly.

The number of data, the CRC and the 6 temperature values are saved in a matrix which
acts as a buffer. The position in which information will be saved, is defined by a pointer: it
scrolls along the matrix and saves each new acquisition in the next free line.

In the main loop, data are sent, then the confirmation of correct reception is awaited.

Initially, 10 samples are acquired without the radio sending: in this way the buffer is filled
at a minimum before starting to send.

Hereafter, acquisitions are sent one at a time, until they will be correctly received. The
acquisition to be sent is decided by a second pointer, asynchronous with respect to the first.

The sending time is lower than the acquisition time, for this reason the second pointer
should not exceed the first one, otherwise it would send empty lines. Once reached the end
of the matrix, pointers start again from row zero.

45

4.1. Transmitter

sub-functions:

• MOD INTERRUPT: it changes the sample time.

• CRC_SEND: data preparation for the CRC_8 algorithm.

• CRC_8: executes the CRC algorithm.

• INIT_RADIO: it initializes the radio and sets the frequency to 915 MHz.

• INIT_INTERRUPT: initializes an interrupt every 1 ms.

• DISPLAY_FUNCTION: it shows the display modality and changes the modality of
filtering, if is request.

46

4.2. Flow chart transmitter

4.2 Flow chart transmitter

Figure 4.2: flow chart of main_loop’s transmitter

47

4.2. Flow chart transmitter

Figure 4.3: flow chart of interrupt’s transmitter

48

4.2. Flow chart transmitter

Figure 4.4: flow chart of subfunction’s transmitter

49

4.3. Receiver

4.3 Receiver

Figure 4.5: Block diagram of receving system

The code for the receiver consists only of a main loop and sub-functions: The main loop is
waiting for data to be received via radio. Once data arrived, it breaks the string into the
data number, CRC and temperature values. To verify that reception is correct, two checks
are performed:

• 1)The first test is conducted to verify that data arrived correctly, the same algorithm
of the CRC, described above, is performed. If the CRC arrived and the one obtained
is different, it means that data are corrupted; therefore, the reception is not successful.

• 2)The second test verifies that the number of the received data is the expected one.
Therefore, it is checked that the number of the data is the next compared to the one
previously received.

It may also happen that the transmitter is reset: in this case, in order not to enter the
loop after 3 errors on the data number, it is checked that the number of the expected data
is not zero; in this way it is possible to resume the correct reception without resetting the
receiver. Hereafter, if there are no reception errors, the data number, the battery voltage
and temperature values are written in the serial port, so they can be read by the graphical
interface. Lastly, the result of the correct reception is sent via radio, together with the new
sampling time read in the serial port, if you want to change it from the graphical interface

50

4.3. Receiver

Sub-functions:

• 1)CRC_SEND: data preparation for the CRC_8 algorithm.

• 2)CRC_8: it executes the CRC algorithm.

• 3)INIT_RADIO: it initializes the radio and sets the frequency to 915 MHz.

51

4.4. Flow chart receiver

4.4 Flow chart receiver

Figure 4.6: flow chart of main_loop’s receiver

52

4.5. GUI

4.5 GUI

Figure 4.7: Block diagram of GUI

The graphical interface has a menu consisting of two buttons: NEW DATA and ADD /
LOAD DATA.

Figure 4.8: General menù of GUI

53

4.5. GUI

Figure 4.9: Menù new data of GUi

Pressing the first button it is possible to collect new data, create a new text file or
overwrite a previous one. Using the function ADD / LOAD DATA it is possible to add data
to a pre-existing file, or simply to load data in order to see its progress.

The buttons are:

• RETURN: in case you want to return to the main menu.

• START: press to start saving the data in the txt file and display them, once pressed
the button turns blue, if you exit this mode it returns green.

• STOP: pressing this button, data are not saved but lost. This mode is activated in case
there are problems of noise; if pressed the button turns blue, if deactivated it remains
red.

• INTERATION: it allows the subject to interact with the figure. The button turns blue
if this mode is entered; it returns yellow if the function is deactivated. When the button
is active, no new data are displayed; if START is also pressed data are saved in txt file.

• CANCEL DATA: the data in that text file is deleted.

• CH: it shows values related to different channels and it will remain orange. If the
function is deactivated the button turns blue and values are no longer displayed (they
are still saved in the txt file).

54

4.5. GUI

• 1000: it allows the subject to choose the new time for the data sample.

• SUBMIT: it allows the subject to send the new chosen time of data sample to the
receiver via serial port, which sends it to the transmitter via radio.

55

4.6. Flow chart GUI

4.6 Flow chart GUI

Figure 4.10: flow chart GUI BLOCK A

56

4.6. Flow chart GUI

Figure 4.11: flow chart GUI BLOCK B

57

Chapter 5

Experimental results

5.1 Assessment of the glove thermal insulation

In these preliminary tests the thermal insulation of gloves was experimental assessed by
monitoring the temperature on the finger surface.

The monitoring system developed during this thesis work is equipped with miniaturized
thermistors having a diameter of 2 mm. They are thus well suited to be employed inside
gloves where the space is limited and the comfort of the athlete is of primary concern. The
sensors were fixed with adhesive tape to the three middle fingers at a distance of about 1
cm from the finger tip. Three sensors were employed to monitor the right hand and the
remaining three sensors were fixed on the left hand. Fig. 5.1a shows the sensors fixed on the
fingers.

Aim of this test was the assessment of the further thermal insulation provided by a thin
under glove made of silk. Fig. 5.1b shows the white under glove on the right hand and
eventually Fig. 5.1.c shows both hands wearing a pair of gloves made by Salewa (Polarlite
model).

For comparison purposes two test were carried out: in the first test the under glove was
on the right hand while in the second test to under glove was on the left hand. In this way it
is possible to highlight the temperature differences that arise hand perfusion. Both tests were
performed outdoor by the same volunteer performed outdoor with an ambient temperature
of about 9 °C.

During the first test the under glove was on the right hand and the subject performed a
moderate physical activity comprising walking and running phases according to the following

58

5.1. Assessment of the glove thermal insulation

protocol:

• 25 minutes of walking

• 10 minutes of running

• 6 minutes of resting

(a) thermistors positioning. (b) putting underglove in right
hand.

(c) putting gloves in hands.

Figure 5.1: Cover used for hands.

59

5.1. Assessment of the glove thermal insulation

(a) Index finger.

(b) Middle finger.

(c) Ring finger.

Figure 5.2: Data saved by system.

60

5.1. Assessment of the glove thermal insulation

The system recorded the sensor measurements that were subsequently analyzed using
MATLAB. Fig. 5.2 compares the temperatures of the same finger of the right and left hand.
At the beginning of the walking phase the temperature of fingers remains around 22 °C.
This value is low due to the fact that the subject was in a cold environment before the
test. During walking, the temperature increased of about 1.5 °C and afterwards, during
the running phase, the temperature dropped around 19 °C. This reduction can be explained
because the peripheral vasoconstriction occurred and the cold ambient air entered inside
the gloves because of the speed. Actually the gloves are made with a water repellent but
breathable fabric.

Figure 5.3: Average finger temperature when the right hand wears the under glove.

Figure 5.3 show the average finger temperature. During the running phase the right
hand is warmer than the left hand thus proving the larger insulation capability of the silk
underglove.

61

5.1. Assessment of the glove thermal insulation

Figure 5.4: Average finger temperature when the left hand wears the under glove.

For comparison purposes, a similar test was carried when the under glove was on the left
hand. In this test the volunteer followed a free protocol composed of short walking a running
phases. The results are shown in Fig. 5.4. The finger temperature at the beginning of the
test was higher that in the previous test because the volunteer was in a warm environment
before the test. Again, it is possible to see that in the running phases the temperature
decreases and increases during the walking phase. Again, the hand wearing the under-glove
has a higher temperature.

In fact we can see in both tests that the effect of the under glove is evident; the hand
that wears the glove is 1.5 °C warmer during activity, the system is able to detect the
temperature of the fingers during sports activities even in different clothing conditions and
outside temperature.

In the second test, however, we notice a bigger noise, probably the sensors had a slipped
and it was not fixed as in the first test, to fix this in subsequent tests it is possible to increase
the number of samples filtered by the display by pressing the button C if the number of
filtered samples is 4.

62

Chapter 6

Conclusions and future developments

This thesis work was aimed at creating a system for monitoring human body temperature
during sports or other physical activities. The system core is a wearable device that embeds
six temperature sensors and a radio module which is employed to send measurements to a
remote receiver interfaced to a Personal Computer. The wearable device is equipped with an
internal rechargeable battery that provides autonomy of more than 12 hours. It powers an
M0 LORA Adafruit Feather microcontroller, 6 thermistors and a display.

The display lets the athlete monitor temperatures, the battery status and the reliability of
the wireless link. In case of the link is not working, the wearable device logs the measurements
in a local memory.

The thermistors have their own conditioning circuit. They are connected to the wearable
system via cables approximately 1 m long, so that they can be positioned in different parts
of the subject’s body.

The system acquires data and sends the measurements and other parameters to the
receiver using a LORA module. The receiver is connected to a PC where a Python program
display data on graphical interface. Data are also stored for a subsequent processing.

The sensors and the full system were tested and characterized. In isothermal conditions,
a temperature skew of about 0.1 °C was found among the sensors. The noise of raw measure-
ments is of about 0.3 °C, a value that is reduced to about 0.1 °C using a proper numerical
filtering. The filer bandwidth can be also set by the user.

The system was employed to assess the thermal isolation of gloves. The employed ther-
mistors are very small so they are well suited to be introduced inside the glove fingers without
any discomfort for the athlete. Temperature changes due to the different training phases, as
well as the presence of an underglove, were clearly detected.

63

A future development of the proposed system is the increase in measurement points.
This can be obtained using several transmitters since they can support a wireless sensor
network protocol. Moreover, the system can manage different temperature sensors, such
as the thermocouples, provided that a suitable amplifier is integrated inside the wearable
system. Digital sensors for different quantities can be also easily integrated. To this aim,
would be also useful to take advantage of electrical connectors, so that the sensors can be
removed when they are not employed.

64

Part I

Appendixes

65

Transmitter code

1
2
3 // Feather9x_TX
4 // −∗− mode : C++ −∗−
5
6 #include <RH_RF95. h>
7 // f o r f e a t h e r m0
8 #define RFM95_CS 8
9 #define RFM95_RST 4
10 #define RFM95_INT 3
11 // Change to 434.0 or o ther frequency , must match RX’ s f r e q !
12 #define RF95_FREQ 915.0
13 #include <SPI . h>
14 #include <Wire . h>
15 #include <Adafruit_SSD1306 . h> // f o r the d i s p l a y
16 Adafruit_SSD1306 d i sp l ay = Adafruit_SSD1306 (128 , 32 , &Wire) ; // to comunicate

wi th d i s p l a y us ing SDA and SCL
17
18 #define BUTTON_B 6
19 #define BUTTON_C 5
20
21 char tdataBuf f e r [1 0 0] ; // array to send
22 int i ;
23
24 #define r i ghe 600 //max=863
25 #define co lonne 8
26 f loat data_matrix [r i ghe] [co lonne] ; // data are s t o r ed in t ha t matrix
27 char buf_str ing [1 0 0] ; // f o r ana l i z e the array coming
28
29 int count=0; // number o f data send
30 byte CRC; //CRC fo r see i f the data sended ar r i v ed c o r r e c t l y

i

31
32
33 int t_s igna l [1 2] ; // f o r ana l i z e the array coming
34 char ∗ token ;
35 char ∗ ptr ;
36
37 int LSB1 =0; // LSB of data readed by t h e rmi s t o r s (dec ided by i n t e r n a l r e f)
38 int LSB2 =0;
39 int LSB3 =0;
40 int LSB4 =0;
41 int LSB5 =0;
42 int LSB6 =0;
43 f loat Rs1=0; // r e s i s t e n c e o f t h e rmi s t o r s
44 f loat Rs2=0;
45 f loat Rs3=0;
46 f loat Rs4=0;
47 f loat Rs5=0;
48 f loat Rs6=0;
49 f loat T1=0; // temperature view from the the rmi s to r
50 f loat T2=0;
51 f loat T3=0;
52 f loat T4=0;
53 f loat T5=0;
54 f loat T6=0;
55 // wi th CRC i compare a l s o 4 decimal
56 f loat T7=0;
57 f loat T8=0;
58 f loat T9=0;
59 f loat T10=0;
60 f loat T11=0;
61 f loat T12=0;
62 f loat T13=0;
63 f loat T14=0;
64 f loat T15=0;
65 f loat T16=0;
66 f loat T17=0;
67 f loat T18=0;
68 f loat rounded=0.5;
69
70 f loat Vbattery=0;
71 char sending1=’ ’ ;
72 byte sending=0;
73

ii

74 int x=0; // t h i s v a r i a b l e i s used f o r change the data sampling
75
76
77 uint8_t buf [RH_RF95_MAX_MESSAGE_LEN] ;
78 uint8_t l en = s izeof (buf) ;
79
80 byte c r c = 0x00 ; // f o r CRC8
81 byte ex t r a c t = 0 ;
82 byte sum = 0 ;
83 byte tempI=0;
84
85 int f i l t =0; // count f o r f i l t e r i n g
86 int N_fi l t =16; //N samples t ha t are mediated wi th 4 i s 16 and v i ceve r sa ,

because in the f i r s t loop i t changes
87
88
89 int Ctrad=0; // po in t e r t ha t i n d i c a t e s a f r e e c e l l in data matrix in

wi tch i can put new data
90 int Csend=0; // po in t e r t ha t i n d i c a t e s the c e l l to send
91
92 int countTC1=0; // count f o r read new data
93 int i n t e r rup t1 =1000; // mi l l i s e c ond to read a new data
94 int countTC2=0; // count f o r mod i f i ca t e d i s p l a y
95 int i n t e r rup t2 =115; // mi l l i s e c ond to mod i f i ca t e d i s p l a y
96 int display_count=7; //N of d i s p l a y to send
97
98 byte Cin i t =0; // the f i r s t time enter in the loop i take 10 sample , i t w i l l be

1 a f t e r t h i s
99
100 // S ing l e t on ins tance o f the rad io d r i v e r
101 RH_RF95 r f 95 (RFM95_CS, RFM95_INT) ; // i n i z i a l i z z a l a rad io
102
103 // v a r i a b l e s f o r t h e rmi s t o r s
104
105 int b i t s =12;
106 f loat A=0.01552230636; //10000/(e ^(3988/298.15))
107 int B= 3988 ;
108 f loat RRef=18208;
109 f loat R11=4705;
110 f loat RA0=22175;
111 f loat RA1=22167;
112 f loat RA2=22143;
113 f loat RA3=22222;

iii

114 f loat RA4=22067;
115 f loat RA5=22138;
116 f loat K=0;
117
118 void setup ()
119 {
120 INIT_RADIO() ;
121 i n i t_ in t e r r up t () ;
122 K=(RRef/(RRef+R11)) ;
123 S e r i a l . begin (115200) ;
124 d i sp l ay . begin (SSD1306_SWITCHCAPVCC, 0x3C) ; // Address 0x3C fo r 128x32
125 d i g i t a lWr i t e (8 , LOW) ;
126 d i sp l ay . d i sp l ay () ; // a c t u a l l y

d i s p l a y a l l o f the above
127 de lay (100) ;
128
129 pinMode (A1 , INPUT) ;
130 pinMode (A2 , INPUT) ;
131 pinMode (A3 , INPUT) ;
132 pinMode (A7 , INPUT) ;
133 d i sp l ay . c l e a rD i sp l ay () ; // c l e a r the

d i s p l a y
134 d i sp l ay . d i sp l ay () ;
135 S e r i a l . p r i n t l n ("N_fi lt_setup") ;
136 S e r i a l . p r i n t l n (N_f i l t) ;
137
138 pinMode (BUTTON_B, INPUT_PULLUP) ;
139 pinMode (BUTTON_C, INPUT_PULLUP) ;
140
141 d i sp l ay . s e tTextS i z e (2) ; // s e t dimention o f

t e x t s i z e
142 d i sp l ay . setTextColor (SSD1306_WHITE) ; // s e t c o l o r s o f

cha rac t e r s o f d i s p l a y
143 d i sp l ay . se tCursor (0 , 0) ;
144 d i sp l ay . setFont () ;
145 // d i s p l a y . se tFont(&FreeSer i f 9p t7b) ;
146 d i sp l ay . p r i n t (" START ") ;
147 d i sp l ay . setFont () ;
148 d i sp l ay . se tCursor (0 , 0) ; // i n i t i a l i z e

cursor
149 d i sp l ay . d i sp l ay () ;
150 display_count=7; // in s t a r t bu t ton B and C are pressed , i want the

s t a r t i n g cond i t i on s

iv

151 i f (N_f i l t==4)
152 {
153 N_f i l t =16;
154 }
155 else
156 {
157 N_f i l t =4;
158 }
159 }
160
161 void loop ()
162 {
163 d i g i t a lWr i t e (13 , HIGH) ;
164 // i take 10 sample wi thou t t r an sm i t t i n g (on ly the f i r s t time ,

a f t e r t h i s Cin i t w i l l be 1)
165
166 while ((Ctrad<10)&&(Cin i t==0))
167 {
168 S e r i a l . p r i n t (" ") ;
169 }
170 Cin i t =1;
171
172 i f ((Csend!=Ctrad)) // i f Ctrad i s h i g h t e r than Csend i have to send

data , Csend can ’ t be h i g h t e r than Ctrad
173 {
174
175 // data sended : count , CRC, T1 ,T2 ,T3 ,T4 ,T5 ,T6
176 /∗ S e r i a l . p r i n t l n (" dato i n v i a t o ") ;
177 S e r i a l . p r i n t l n (data_matrix [Csend] [0]) ;
178 S e r i a l . p r i n t l n ("Csend") ;
179 S e r i a l . p r i n t l n (Csend) ; ∗/
180
181 s p r i n t f (tdataBuf fe r , "%f ,%f ,%f ,%f ,%f ,%f ,%f ,%f ,% f " , data_matrix [Csend

] [0] , data_matrix [Csend] [7] , data_matrix [Csend] [1] , data_matrix [Csend
] [2] , data_matrix [Csend] [3] , data_matrix [Csend] [4] , data_matrix [Csend
] [5] , data_matrix [Csend] [6] , Vbattery) ;

182 S e r i a l . p r i n t l n (" sending ") ;
183 S e r i a l . p r i n t l n (tdataBuf f e r) ;
184
185 r f 9 5 . send ((uint8_t ∗) tdataBuf fe r , 100) ; // sending
186 r f 9 5 . waitPacketSent () ;
187
188 // Now wai t f o r a r ep l y

v

189 buf [RH_RF95_MAX_MESSAGE_LEN] ; // recep t i on message from r e c i v e r
190 l en = s izeof (buf) ;
191
192 // S e r i a l . p r i n t l n ("Waiting f o r r e p l y . . . ") ;
193
194 i f (r f 9 5 . waitAvai lableTimeout (5000))
195 {
196
197 // Should be a r ep l y message f o r us now
198 i f (r f 9 5 . recv (buf , &l en))
199 {
200
201 S e r i a l . p r i n t ("Got r ep ly : ") ; // here i have the r e s u l t
202 s p r i n t f (buf_str ing , "%s " , buf) ;
203 S e r i a l . p r i n t l n ((char∗) buf) ;
204 token=s t r t ok (buf_str ing , " , ") ;
205
206 i =0;
207 while (token !=NULL)
208 {
209 t_s igna l [i]= s t r t od (token ,&ptr) ;
210 i++;
211 token=s t r t ok (NULL, " , ") ;
212 }
213
214 }
215 else
216 {
217 S e r i a l . p r i n t l n ("Receive f a i l e d ") ;
218 }
219 }
220 else // i f i a r r i v e here t he r e i s too de lay , i wr i t e

r e s u l t =1(error) and t_s i gna l [2] remain−49(i s f o r not modify data
sampling)

221 {
222 S e r i a l . p r i n t l n ("No reply , i s the re a l i s t e n e r around?") ;
223
224 S e r i a l . p r i n t l n (" r i t a r d o ") ;
225 t_s igna l [2]=−49;
226 t_s igna l [0]=1 ;
227 }
228
229 S e r i a l . p r i n t l n (" i n t e r rup t1 ") ;

vi

230 S e r i a l . p r i n t l n (i n t e r rup t1) ;
231
232 i f (t_s igna l [2]>−1)
233 {
234 MOD_INTERRUPT() ; // i f l i n e a r r i v e s here i want to modify

data sampling
235 }
236
237 i f (t_s igna l [0]==0)
238 {
239 Csend++;
240 S e r i a l . p r i n t l n ("C_send") ;
241 S e r i a l . p r i n t l n (Csend) ;
242 sending=1;
243 }
244 i f (Csend==r i ghe)
245 {
246 Csend=0;
247 }
248
249 }
250
251 }
252
253
254 //CRC−8 − CRC−8 formula−based a l gor i thm of Da l l a s /Maxim
255 // code pub l i s h ed under l i c e n c e GNU GPL 3.0
256 byte CRC8(const byte ∗data , byte l en)
257 {
258 c rc = 0x00 ;
259 while (len−−)
260 {
261 ex t r a c t = ∗data++;
262 for (tempI = 8 ; tempI ; tempI−−)
263 {
264 sum = (crc ^ ex t r a c t) & 0x01 ;
265 c rc >>= 1 ;
266 i f (sum)
267 {
268 crc ^= 0x8C ;
269 }
270 ex t r a c t >>= 1 ;
271 }

vii

272 }
273 return c r c ;
274 }
275
276
277 void INIT_RADIO(void)
278 {

// i n i t i a l i z a t i o n o f rad io
279
280
281 d i g i t a lWr i t e (8 , HIGH) ;
282 de lay (1) ;
283 d i g i t a lWr i t e (8 , LOW) ;

// pin 8 low fo r
a c t i v a t e radio , h igh f o r i n a c t i v a t e i t

284
285 pinMode (RFM95_RST, OUTPUT) ;
286 d i g i t a lWr i t e (RFM95_RST, HIGH) ;
287
288
289 // S e r i a l . p r i n t l n (" Feather LoRa TX Test ! ") ;
290
291 d i g i t a lWr i t e (RFM95_RST, LOW) ; // manual r e s e t
292 d i g i t a lWr i t e (RFM95_RST, HIGH) ;
293 while (! r f 9 5 . i n i t ())
294 {
295 // S e r i a l . p r i n t l n ("LoRa rad io i n i t f a i l e d ") ;
296 while (1) ;
297 }
298 // S e r i a l . p r i n t l n ("LoRa rad io i n i t OK!") ;
299
300 // De fau l t s a f t e r i n i t are 434.0MHz, modulation GFSK_Rb250Fd250 , +13dbM
301 i f (! r f 9 5 . setFrequency (RF95_FREQ))
302 {
303 // S e r i a l . p r i n t l n (" setFrequency f a i l e d ") ;
304 while (1) ;
305 }
306 // S e r i a l . p r i n t (" Set Freq to : ") ; S e r i a l . p r i n t l n (RF95_FREQ) ;
307
308 // De fau l t s a f t e r i n i t are 434.0MHz, 13dBm, Bw = 125 kHz , Cr = 4/5 , Sf = 128

ch ip s /symbol , CRC on
309

viii

310 // The d e f a u l t t r an smi t t e r power i s 13dBm, us ing PA_BOOST.
311 // I f you are us ing RFM95/96/97/98 modules which uses the PA_BOOST

t ran smi t t e r pin , then
312 // you can s e t t r an smi t t e r powers from 5 to 23 dBm:
313 r f 95 . setTxPower (23 , fa l se) ;
314
315 }
316
317
318 void TC4_Handler ()

// In t e r rup t Serv i c e Routine (ISR) f o r t imer TC4
319 {
320
321 // Check f o r ove r f l ow (OVF) i n t e r r u p t
322 i f (TC4−>COUNT8.INTFLAG. b i t .OVF && TC4−>COUNT8.INTENSET. b i t .OVF)
323 {
324 REG_TC4_INTFLAG = TC_INTFLAG_OVF; // Clear the OVF in t e r r u p t

f l a g
325 }
326
327 // Check f o r match counter 0 (MC0) i n t e r r u p t
328 i f (TC4−>COUNT8.INTFLAG. b i t .MC0 && TC4−>COUNT8.INTENSET. b i t .MC0)
329 {
330 // Put your counter compare 0 (CC0) code here :

//CC0
331 // . . .
332 i f (countTC2==in t e r rup t2)
333 {
334
335 countTC2=0;

// here i want to change d i s p l a y
336 DISPLAY_FUNC() ;
337 }
338 i f (countTC1==in t e r rup t1)
339 {
340 countTC1=0;

// here i want to take new data
341 //

vero

ix

programma

in t e r rup t
,

l e t t u r a

dato

342 analogReadResolut ion (b i t s) ;
343 ana logReference (AR_EXTERNAL) ; // tak ing e x t e r na l

r e f e r ence
344 LSB1 =0; // i n i t i a l i z e LSB
345 LSB2 =0;
346 LSB3 =0;
347 LSB4 =0;
348 LSB5 =0;
349 LSB6 =0;
350
351 for (f i l t =1; f i l t <=N_fi l t ; f i l t ++) // f i l t e r i n g
352 {
353 LSB1 =analogRead (A0)+LSB1 ;
354 LSB2 =analogRead (A1)+LSB2 ;
355 LSB3 =analogRead (A2)+LSB3 ;
356 LSB4 =analogRead (A3)+LSB4 ;
357 LSB5 =analogRead (A4)+LSB5 ;
358 LSB6 =analogRead (A5)+LSB6 ;
359 }
360 LSB1=LSB1/N_fi l t ;
361 LSB2=LSB2/N_fi l t ;
362 LSB3=LSB3/N_fi l t ;
363 LSB4=LSB4/N_fi l t ;
364 LSB5=LSB5/N_fi l t ;
365 LSB6=LSB6/N_fi l t ;
366
367
368 S e r i a l . p r i n t l n (" ") ;
369
370 Rs1=RA0/((pow(2 , b i t s) /(LSB1∗K))−1) ; // tak ing r e s i s t e n c e o f

t h e rmi s t o r s
371 T1=B/(log (Rs1)−l og (A)) −273.15; // tak ing temperature

from r e s i s t a n c e
372

x

373 Rs2=RA1/((pow(2 , b i t s) /(LSB2∗K))−1) ;
374 T2=B/(log (Rs2)−l og (A)) −273.15;
375
376 Rs3=RA2/((pow(2 , b i t s) /(LSB3∗K))−1) ;
377 T3=B/(log (Rs3)−l og (A)) −273.15;
378
379 Rs4=RA3/((pow(2 , b i t s) /(LSB4∗K))−1) ;
380 T4=B/(log (Rs4)−l og (A)) −273.15;
381
382 Rs5=RA4/((pow(2 , b i t s) /(LSB5∗K))−1) ;
383 T5=B/(log (Rs5)−l og (A)) −273.15;
384
385 Rs6=RA5/((pow(2 , b i t s) /(LSB6∗K))−1) ;
386 T6=B/(log (Rs6)−l og (A)) −273.15;
387
388
389 i f (T1>0) // rounding r e s u l t s
390 {
391 rounded=0.5;
392 }
393 i f (T1<0)
394 {
395 rounded=−0.5;
396 }
397 T1=(f l o o r (T1∗100+rounded)) /100 ;
398
399 i f (T2>0)
400 {
401 rounded=0.5;
402 }
403 i f (T2<0)
404 {
405 rounded=−0.5;
406 }
407 T2=(f l o o r (T2∗100+rounded)) /100 ;
408 i f (T3>0)
409 {
410 rounded=0.5;
411 }
412 i f (T3<0)
413 {
414 rounded=−0.5;
415 }

xi

416 T3=(f l o o r (T3∗100+rounded)) /100 ;
417 i f (T4>0)
418 {
419 rounded=0.5;
420 }
421 i f (T4<0)
422 {
423 rounded=−0.5;
424 }
425 T4=(f l o o r (T4∗100+rounded)) /100 ;
426 i f (T5>0)
427 {
428 rounded=0.5;
429 }
430 i f (T5<0)
431 {
432 rounded=−0.5;
433 }
434 T5=(f l o o r (T5∗100+rounded)) /100 ;
435 i f (T6>0)
436 {
437 rounded=0.5;
438 }
439 i f (T6<0)
440 {
441 rounded=−0.5;
442 }
443 T6=(f l o o r (T6∗100+rounded)) /100 ;
444
445 CRC=CRC_SEND() ;
446
447 data_matrix [Ctrad] [0]= count ; // i put them in data_matrix
448 data_matrix [Ctrad] [1]=T1 ;
449 data_matrix [Ctrad] [2]=T2 ;
450 data_matrix [Ctrad] [3]=T3 ;
451 data_matrix [Ctrad] [4]=T4 ;
452 data_matrix [Ctrad] [5]=T5 ;
453 data_matrix [Ctrad] [6]=T6 ;
454 data_matrix [Ctrad] [7]=CRC;
455
456 Ctrad++;
457 i f (Ctrad==r i ghe)
458 {

xii

459 Ctrad=0;
460 }
461 S e r i a l . p r i n t l n ("Ctrad") ;
462 S e r i a l . p r i n t l n (Ctrad) ;
463 count ++;
464
465 //

i n t e r r u p t

f i n i s h

466 }
467 countTC1=countTC1 +1;
468 countTC2=countTC2 +1;
469
470 REG_TC4_INTFLAG = TC_INTFLAG_MC0; // Clear the MC0 in t e r r u p t

f l a g
471 }
472
473 // Check f o r match counter 1 (MC1) i n t e r r u p t
474 i f (TC4−>COUNT8.INTFLAG. b i t .MC1 && TC4−>COUNT8.INTENSET. b i t .MC1)
475 {
476 // Put your counter compare 1 (CC1) code here :
477 // . . .
478
479 REG_TC4_INTFLAG = TC_INTFLAG_MC1; // Clear the MC1

in t e r r u p t f l a g
480 }
481 }
482
483 void i n i t_ in t e r r up t ()
484 {
485 // Set up the gener i c c l o c k (GCLK4) used to c l o c k t imers
486 REG_GCLK_GENDIV = GCLK_GENDIV_DIV(3) | // Divide the 48MHz c l o c k

source by d i v i s o r 3 : 48MHz/3=16MHz
487 GCLK_GENDIV_ID(4) ; // S e l e c t Generic Clock (

GCLK) 4
488 while (GCLK−>STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
489
490 REG_GCLK_GENCTRL = GCLK_GENCTRL_IDC | // Set the duty c y c l e to

50/50 HIGH/LOW
491 GCLK_GENCTRL_GENEN | // Enable GCLK4

xiii

492 GCLK_GENCTRL_SRC_DFLL48M | // Set the 48MHz c l o c k
source

493 GCLK_GENCTRL_ID(4) ; // S e l e c t GCLK4
494 while (GCLK−>STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
495
496 // Feed GCLK4 to TC4 and TC5
497 REG_GCLK_CLKCTRL = GCLK_CLKCTRL_CLKEN | // Enable GCLK4 to TC4 and

TC5
498 GCLK_CLKCTRL_GEN_GCLK4 | // S e l e c t GCLK4
499 GCLK_CLKCTRL_ID_TC4_TC5; // Feed the GCLK4 to TC4 and

TC5
500 while (GCLK−>STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
501
502 REG_TC4_CTRLA |= TC_CTRLA_MODE_COUNT8; // Set the counter to 8− b i t

mode
503 while (TC4−>COUNT8.STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
504
505 REG_TC4_COUNT8_CC0 = 0x55 ; // Set the TC4 CC0 r e g i s t e r

to some a r b i t a r y va lue
506 while (TC4−>COUNT8.STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
507 REG_TC4_COUNT8_CC1 = 0xAA; // Set the TC4 CC1 r e g i s t e r

to some a r b i t a r y va lue
508 while (TC4−>COUNT8.STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
509 REG_TC4_COUNT8_PER = 0xFF ; // Set the PER (per iod)

r e g i s t e r to i t s maximum va lue
510 while (TC4−>COUNT8.STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
511
512 //NVIC_DisableIRQ(TC4_IRQn) ;
513 //NVIC_ClearPendingIRQ(TC4_IRQn) ;
514 NVIC_SetPriority (TC4_IRQn, 0) ; // Set the Nested Vector In t e r rup t

Con t ro l l e r (NVIC) p r i o r i t y f o r TC4 to 0 (h i g h e s t)
515 NVIC_EnableIRQ(TC4_IRQn) ; // Connect TC4 to Nested Vector In t e r rup t

Con t ro l l e r (NVIC)
516
517 REG_TC4_INTFLAG |= TC_INTFLAG_MC1 | TC_INTFLAG_MC0 | TC_INTFLAG_OVF;

// Clear the i n t e r r u p t f l a g s
518 REG_TC4_INTENSET = TC_INTENSET_MC1 | TC_INTENSET_MC0 | TC_INTENSET_OVF;

// Enable TC4 i n t e r r u p t s
519 // REG_TC4_INTENCLR = TC_INTENCLR_MC1 | TC_INTENCLR_MC0 | TC_INTENCLR_OVF;

// Disab l e TC4 i n t e r r u p t s
520
521 REG_TC4_CTRLA |= TC_CTRLA_PRESCALER_DIV64 | // Set p r e s c a l e r to 64 , 16

MHz/64 = 256kHz

xiv

522 TC_CTRLA_ENABLE; // Enable TC4
523 while (TC4−>COUNT8.STATUS. b i t .SYNCBUSY) ; // Wait f o r synchron i za t i on
524 }
525
526 int CRC_SEND() //CRC_SEND
527 {
528
529 // ana l i s i n g CRC of data
530 T7=((T1−int (T1)) ∗100) ;
531 T8=((T2−int (T2)) ∗100) ;
532 T9=((T3−int (T3)) ∗100) ;
533
534
535 T10=((T4−int (T4)) ∗100) ;
536 T11=((T5−int (T5)) ∗100) ;
537 T12=((T6−int (T6)) ∗100) ;
538
539 T13=((T7−int (T7)) ∗100) ;
540 T14=((T8−int (T8)) ∗100) ;
541 T15=((T9−int (T9)) ∗100) ;
542
543
544 T16=((T10−int (T10)) ∗100) ;
545 T17=((T11−int (T11)) ∗100) ;
546 T18=((T12−int (T12)) ∗100) ;
547
548 const byte data []={T1 ,T2 ,T3 ,T4 ,T5 ,T6 ,T7 ,T8 ,T9 , T10 , T11 , T12 , T13 , T14 , T15 , T16 ,

T17 , T18 } ;
549
550 // f i n e o l ed
551 CRC=CRC8(data , 1 8) ;
552 return CRC;
553 }
554
555 void DISPLAY_FUNC()

//
DISPLAY_FUNC

556 {
557 // disp lay_count modify the

d i s p l a y
558
559 i f (! d i g i t a lRead (BUTTON_B)) // but ton A incremented

disp lay_count

xv

560 {
561 display_count=display_count+1;
562 }
563
564 i f (display_count >=8)
565 {
566 display_count=1;
567 }
568 d i sp l ay . c l e a rD i sp l ay () ;
569 d i sp l ay . se tCursor (0 , 0) ;
570 Vbattery=analogRead (A7) ;
571 Vbattery ∗= 2 ; // we d i v i d ed by 2 , so mu l t i p l y

back
572 Vbattery ∗=3.3∗RRef/(R11+RRef) ; // Mu l t i p l y by 3.3V, our r e f e r ence

v o l t a g e
573 Vbattery /= pow(2 , b i t s) ; // conver t to v o l t a g e
574
575 i f (sending==0) // i f i send data i show i t in the

d i s p l a y
576 {
577 sending1=’ ’ ;
578 }
579 else
580 {
581 sending1=’ ∗ ’ ;
582 sending=0;
583 }
584
585 i f (display_count==1)
586 {
587 d i sp l ay . s e tTextS i z e (2) ;
588 d i sp l ay . p r i n t l n (" ") ;
589 d i sp l ay . p r i n t ("T1 : ") ;
590 d i sp l ay . p r i n t (round (T1) ,1) ;
591 d i sp l ay . p r i n t (" C") ;
592
593 }
594
595 i f (display_count==2)
596 {
597 d i sp l ay . s e tTextS i z e (2) ;
598 d i sp l ay . p r i n t l n (" ") ;
599 d i sp l ay . p r i n t ("T2 : ") ;

xvi

600 d i sp l ay . p r i n t (T2 , 1) ;
601 d i sp l ay . p r i n t (" C") ;
602
603
604 }
605 i f (display_count==3)
606 {
607 d i sp l ay . s e tTextS i z e (2) ;
608 d i sp l ay . p r i n t l n (" ") ;
609 d i sp l ay . p r i n t ("T3 : ") ;
610 d i sp l ay . p r i n t (T3 , 1) ;
611 d i sp l ay . p r i n t (" C") ;
612
613
614 }
615 i f (display_count==4)
616 {
617 d i sp l ay . s e tTextS i z e (2) ;
618 d i sp l ay . p r i n t l n (" ") ;
619 d i sp l ay . p r i n t ("T4 : ") ;
620 d i sp l ay . p r i n t (T4 , 1) ;
621 d i sp l ay . p r i n t (" C") ;
622
623
624 }
625 i f (display_count==5)
626 {
627 d i sp l ay . s e tTextS i z e (2) ;
628 d i sp l ay . p r i n t l n (" ") ;
629 d i sp l ay . p r i n t ("T5 : ") ;
630 d i sp l ay . p r i n t (T5 , 1) ;
631 d i sp l ay . p r i n t (" C") ;
632
633
634 }
635
636 i f (display_count==6)
637 {
638 d i sp l ay . s e tTextS i z e (2) ;
639 d i sp l ay . p r i n t l n (" ") ;
640 d i sp l ay . p r i n t ("T6 : ") ;
641 d i sp l ay . p r i n t (T6 , 1) ;
642 d i sp l ay . p r i n t (" C") ;

xvii

643
644
645 }
646
647 i f (display_count==7)
648 {
649 d i sp l ay . s e tTextS i z e (1) ;
650 d i sp l ay . p r i n t l n (" ") ;
651 d i sp l ay . p r i n t (T1 , 1) ;
652
653 d i sp l ay . p r i n t (" ") ;
654 d i sp l ay . p r i n t (T2 , 1) ;
655
656 d i sp l ay . p r i n t (" ") ;
657 d i sp l ay . p r i n t (T3 , 1) ;
658 d i sp l ay . p r i n t (" ") ;
659 d i sp l ay . p r i n t (" ") ;
660 d i sp l ay . p r i n t (" ") ;
661 d i sp l ay . p r i n t l n (Vbattery) ;
662 d i sp l ay . p r i n t l n (" ") ;
663 d i sp l ay . p r i n t (T4 , 1) ;
664
665 d i sp l ay . p r i n t (" ") ;
666 d i sp l ay . p r i n t (T5 , 1) ;
667
668 d i sp l ay . p r i n t (" ") ;
669 d i sp l ay . p r i n t (T6 , 1) ;
670 d i sp l ay . p r i n t (" ") ;
671 d i sp l ay . p r i n t (" ") ;
672 d i sp l ay . p r i n t (" ") ;
673 d i sp l ay . p r i n t (" ") ;
674 d i sp l ay . p r i n t l n (sending1) ;
675
676
677 }
678
679 i f (! d i g i t a lRead (BUTTON_C)) // but ton C modify N_f i l t (4 or 16)
680 {
681
682 d i sp l ay . c l e a rD i sp l ay () ;
683 d i sp l ay . se tCursor (0 , 0) ;
684 i f (N_f i l t==4)
685 {

xviii

686 N_fi l t =16;
687 }
688 else
689 {
690 N_fi l t =4;
691 }
692 d i sp l ay . s e tTextS i z e (1) ;
693 de lay (10) ;
694 d i sp l ay . p r i n t ("N campioni mediat i : ") ;
695 d i sp l ay . p r i n t l n (" ") ;
696 d i sp l ay . p r i n t l n (" ") ;
697 d i sp l ay . s e tTextS i z e (2) ;
698 d i sp l ay . p r i n t (N_f i l t) ;
699 countTC2=−1800;
700
701 }
702
703 d i sp l ay . d i sp l ay () ;
704 }
705
706
707 void MOD_INTERRUPT() // t h i s f unc t i on modify data sampling
708 {
709 x=int (t_s igna l [2]) ;
710 switch (x)
711 {
712
713 case 0 :
714 in t e r rup t1 =600;
715 break ;
716 case 1 :
717 in t e r rup t1 =800;
718 break ;
719 case 2 :
720 in t e r rup t1 =1000;
721 break ;
722 case 3 :
723 in t e r rup t1 =1200;
724 break ;
725 case 4 :
726 in t e r rup t1 =1400;
727 break ;
728 case 5 :

xix

729 in t e r rup t1 =1600;
730 break ;
731 case 6 :
732 in t e r rup t1 =1800;
733 break ;
734 case 7 :
735 in t e r rup t1 =2000;
736 break ;
737 case 8 :
738 in t e r rup t1 =2200;
739 break ;
740 case 9 :
741 in t e r rup t1 =2500;
742 break ;
743 case 10 :
744 in t e r rup t1 =3000;
745 break ;
746 case 11 :
747 in t e r rup t1 =3500;
748 break ;
749 case 12 :
750 in t e r rup t1 =4000;
751 break ;
752 case 13 :
753 in t e r rup t1 =4500;
754 break ;
755 case 14 :
756 in t e r rup t1 =5000;
757 break ;
758 case 15 :
759 in t e r rup t1 =10000;
760 break ;
761 }
762
763 }

xx

Receiver code

1
2 // Feather9x_RX
3 // −∗− mode : C++ −∗−
4
5 #include <SPI . h>
6 #include <RH_RF95. h>
7
8 // f o r f e a t h e r m0
9 #define RFM95_CS 8
10 #define RFM95_RST 4
11 #define RFM95_INT 3
12
13 // Change to 434.0 or o ther frequency , must match RX’ s f r e q !
14 #define RF95_FREQ 915.0
15
16 // S ing l e t on ins tance o f the rad io d r i v e r
17 RH_RF95 r f 95 (RFM95_CS, RFM95_INT) ; // f r e q s e t t e d
18
19 // Bl inky on r e c e i p t
20 #define LED 13
21
22 int i ;
23 char buf_str ing [1 0 0] ;
24 char vet tSt r ing_rec [1 0 0] ; // array f o r GUI
25
26 char ∗ token ;
27 int r e s u l t ; // i f array r e c i v ed has no problem i s 0 , 1 f o r

d i f f e r e n t CRC, 2 f o r s i g n a l l o s t
28 int count=0; // count o f Rx
29 int count_sended=0; // count o f Tx
30

xxi

31 f loat r_s igna l [1 2] ;
32 byte CRC; //CRC of Rx
33 char ∗ ptr ;
34
35 int e r r o r =0;
36 byte tempI=0;
37 int double_send=−1;
38
39 int CRC_sended=0; //CRC of Tx
40
41 f loat b1=0; // wi th CRC i compare a l s o 4 decimal
42 f loat b2=0;
43 f loat b3=0;
44 f loat b4=0;
45 f loat b5=0;
46 f loat b6=0;
47 f loat b7=0;
48 f loat b8=0;
49 f loat b9=0;
50 f loat b10=0;
51 f loat b11=0;
52 f loat b12=0;
53 f loat b13=0;
54 f loat b14=0;
55 f loat b15=0;
56 f loat b16=0;
57 f loat b17=0;
58 f loat b18=0;
59
60 int f i r s t =0;
61
62 byte c r c = 0x00 ; // f o r sub func t i on in CRC8
63 byte ex t r a c t = 0 ;
64 byte sum =0;
65
66 int GUI_signal=’ ’ ;
67 int GUI_signal2=’ ’ ;
68
69 uint8_t buf [RH_RF95_MAX_MESSAGE_LEN] ;
70 uint8_t l en = s izeof (buf) ;
71
72 void setup ()
73 {

xxii

74
75 pinMode (LED, OUTPUT) ;
76 pinMode (RFM95_RST, OUTPUT) ;
77 d i g i t a lWr i t e (RFM95_RST, HIGH) ;
78
79 S e r i a l . begin (115200) ;
80 while (! S e r i a l)
81 {
82 de lay (1) ;
83 }
84 de lay (100) ;
85
86 S e r i a l . p r i n t l n ("Feather LoRa RX Test ! ") ;
87
88 // manual r e s e t
89 d i g i t a lWr i t e (RFM95_RST, LOW) ;
90 de lay (10) ;
91 d i g i t a lWr i t e (RFM95_RST, HIGH) ;
92 de lay (10) ;
93 d i g i t a lWr i t e (8 , LOW) ;
94 while (! r f 9 5 . i n i t ())
95 {
96 S e r i a l . p r i n t l n ("LoRa rad io i n i t f a i l e d ") ;
97 while (1) ;
98 }
99 S e r i a l . p r i n t l n ("LoRa rad io i n i t OK! ") ;
100
101 // De fau l t s a f t e r i n i t are 434.0MHz, modulation GFSK_Rb250Fd250 , +13dbM
102 i f (! r f 9 5 . setFrequency (RF95_FREQ))
103 {
104 S e r i a l . p r i n t l n (" setFrequency f a i l e d ") ;
105 while (1) ;
106 }
107 S e r i a l . p r i n t (" Set Freq to : ") ; S e r i a l . p r i n t l n (RF95_FREQ) ;
108
109 // De fau l t s a f t e r i n i t are 434.0MHz, 13dBm, Bw = 125 kHz , Cr = 4/5 , Sf = 128

ch ip s /symbol , CRC on
110
111 // The d e f a u l t t r an smi t t e r power i s 13dBm, us ing PA_BOOST.
112 // I f you are us ing RFM95/96/97/98 modules which uses the PA_BOOST

t ran smi t t e r pin , then
113 // you can s e t t r an smi t t e r powers from 5 to 23 dBm:
114 r f 9 5 . setTxPower (23 , fa l se) ;

xxiii

115 }
116 void loop ()
117 {
118
119 i f (r f 9 5 . a v a i l a b l e ())
120 {
121
122 buf [RH_RF95_MAX_MESSAGE_LEN] ;
123 l en = s izeof (buf) ;
124
125 i f (r f 9 5 . recv (buf , &l en)) //we are recev ing
126 {
127 s p r i n t f (buf_str ing , "%s " , buf) ;
128
129 token=s t r t ok (buf_str ing , " , ") ; // t h i s i n s t r u c t i o n i s f o r ana l i z e

the array coming
130
131 i =0;
132 while (token !=NULL)
133 {
134 r_s igna l [i]= s t r t od (token ,&ptr) ;
135 i++;
136 token=s t r t ok (NULL, " , ") ;
137 }
138
139 count_sended=r_s igna l [0] ; // i r ewr i t e va l u e s f o r a g r ea t e r

r e a d a b i l i t y
140 CRC_sended=r_s igna l [1] ;
141
142 b1=r_s igna l [2] ;
143 b2=r_s igna l [3] ;
144 b3=r_s igna l [4] ;
145 b4=r_s igna l [5] ;
146 b5=r_s igna l [6] ;
147 b6=r_s igna l [7] ;
148
149 /∗ S e r i a l . p r i n t l n (" count ") ;
150 S e r i a l . p r i n t l n (count) ;
151 S e r i a l . p r i n t l n (" count_sended ") ;
152 S e r i a l . p r i n t l n (count_sended) ; ∗/
153
154 CRC=CRC_SEND() ;
155

xxiv

156 i f ((CRC−CRC_sended) !=0) // i f CRC i s d i f f e r e n t r e s u l t=1
157 {
158 r e s u l t =1;
159
160 }
161 else i f (count_sended !=(count)) // i f C_inf i s d i f f e r e n t r e s u l t

=2
162 {
163 r e s u l t =2;
164 e r r o r=e r r o r +1;
165
166 }
167 else // o therw i s e r e s u l t=0
168 {
169 r e s u l t =0;
170 count=count+1;
171 e r r o r =0;
172 i f ((count_sended−double_send) !=0)
173 // sending i f data i s c o r r e c t and i f t h e r e are no 2 same va lue
174 {
175 s p r i n t f (vettStr ing_rec , "%d %3.2 f %3.2 f %3.2 f %3.2 f %3.2 f %3.2 f

%3.2 f " , count_sended , r_s igna l [2] , r_s igna l [3] , r_s igna l [4] ,
r_s igna l [5] , r_s igna l [6] , r_s igna l [7] , r_s igna l [8]) ;

176 S e r i a l . p r i n t l n (ve t tSt r ing_rec) ;
177 double_send=count_sended ;
178 }
179
180 }
181
182 i f (e r ror >1)
183 // i f f o r an error Cinf_sended>C_inf w i l l be a loop , i f i see f o r 3 t imes

error in C_inf t h i s s t op s the loop
184 {
185 count=count_sended ;
186 e r r o r =0;
187 }
188
189 GUI_signal=S e r i a l . read () ;
190 GUI_signal2= int (GUI_signal)− ’ 0 ’ ;
191
192
193 s p r i n t f (buf_str ing , "%d,%d,%d" , r e su l t , count_sended , GUI_signal2) ;

xxv

194 // f i r s t the r e s u l t , second what i have compared and t h i r d i f i have to
change data sample

195
196
197 r f 95 . send ((uint8_t ∗) buf_str ing , 500) ;
198
199 }
200 else
201 {
202 S e r i a l . p r i n t l n ("Receive f a i l e d ") ;
203
204 }
205
206
207 }
208 }
209
210 //CRC−8 − CRC−8 formula−based a l gor i thm of Da l l a s /Maxim
211 // code pub l i s h ed under l i c e n c e GNU GPL 3.0
212 byte CRC8(const byte ∗data , byte l en)
213 {
214 c rc = 0x00 ;
215 while (len−−)
216 {
217 ex t r a c t = ∗data++;
218 for (tempI = 8 ; tempI ; tempI−−)
219 {
220 sum = (crc ^ ex t r a c t) & 0x01 ;
221 c rc >>= 1 ;
222 i f (sum)
223 {
224 crc ^= 0x8C ;
225 }
226 ex t r a c t >>= 1 ;
227 }
228 }
229 return c r c ;
230 }
231
232 int CRC_SEND() // here i save a l s o decimal c i phe r s and i w i l l send them to

CRC8
233 {
234 b7=((b1−int (b1)) ∗100) ;

xxvi

235 b8=((b2−int (b2)) ∗100) ;
236 b9=((b3−int (b3)) ∗100) ;
237
238
239 b10=((b4−int (b4)) ∗100) ;
240 b11=((b5−int (b5)) ∗100) ;
241 b12=((b6−int (b6)) ∗100) ;
242 b13=((b7−int (b7)) ∗100) ;
243 b14=((b8−int (b8)) ∗100) ;
244 b15=((b9−int (b9)) ∗100) ;
245 b16=((b10−int (b10)) ∗100) ;
246 b17=((b11−int (b11)) ∗100) ;
247 b18=((b12−int (b12)) ∗100) ;
248
249 const byte data []={b1 , b2 , b3 , b4 , b5 , b6 , b7 , b8 , b9 , b10 , b11 , b12 , b13 , b14 , b15 , b16 ,

b17 , b18 } ;
250 CRC=CRC8(data , 1 8) ;
251 return CRC;
252 }

xxvii

GUI code

1
2
3 from tk i n t e r import ∗
4 import os . path
5 from matp lo t l i b . pyplot import show , ion , draw
6 import matp lo t l i b . pyplot as p l t
7 import s e r i a l
8 import time
9 from matp lo t l i b . c o l l e c t i o n s import EventCo l l ec t ion
10 import numpy as np
11 import matp lo t l i b . animation as animation
12 g l oba l countDataTime
13 countDataTime=2
14 g l oba l varDataTime
15 varDataTime=2
16 g l oba l x l ab l
17 x l ab l=1
18 g l oba l can1 #channels , they can be a c t i v e or d i s a c t i v e
19 can1=1
20 g l oba l can2
21 can2=1
22 g l oba l can3
23 can3=1
24 g l oba l can4
25 can4=1
26 g l oba l can5
27 can5=1
28 g l oba l can6
29 can6=1
30 g l oba l button_1
31 g l oba l go # when i s =1 we take data from s e r i a l port

xxviii

32 g l oba l f i r s t im e # i s for ente r the f i r s t time in the main loop
33 f i r s t im e=1
34 g l oba l i n t e r a z i o n e # =1 i can only i n t e r a c t with f i g u r e
35 i n t e r a z i o n e=0
36 g l oba l f i g u r e
37 f i g u r e=0
38 g l oba l f i r s t _ c l i c k# i s for return and new data
39 f i r s t _ c l i c k = 0
40 g l oba l l a b e l l
41 l a b e l l=0
42 g l oba l l oad ing
43 load ing = 0
44 g l oba l newsho #newsho mi s e rve a mettere i l warning su wr i t e data
45 newsho = 0
46 g l oba l batt
47 batt=" 4 .10 "
48 g l oba l label_bat2
49
50 go=’ s ’
51
52 de f animate (i) : #this sub funct ion i s for read data from txt
53
54 g l oba l t ex t
55 g l oba l changing
56 g l oba l i n t e r a z i o n e
57 g l oba l adding
58 g l oba l x l ab l
59
60 i f not i n t e r a z i o n e :
61 g l oba l can1
62 g l oba l can2
63 g l oba l can3
64 g l oba l can4
65 g l oba l can5
66 g l oba l can6
67 #pr in t (t ex t)
68 pul lData = open (text , " r ") . read ()
69 dataArray = pul lData . s p l i t (’ \n ’)
70 X = []
71 Y1 = []
72 Y2 = []
73 Y3 = []
74 Y4 = []

xxix

75 Y5 = []
76 Y6 = []
77
78 for eachLine in dataArray : # i s for read ing a l l l i n e s
79 i f l en (eachLine) >1:
80 x , xt , y1 , y2 , y3 , y4 , y5 , y6 , batt , c = eachLine . s p l i t (’ ’) #in txt i

read : p o s i t i o n x in txt f i l e , number o f t r an smi t t e r data ,
data from data 1 to 6 and /n

81 X. append (f loat (x))
82 Y1 . append (f loat (y1))
83 Y2 . append (f loat (y2))
84 Y3 . append (f loat (y3))
85 Y4 . append (f loat (y4))
86 Y5 . append (f loat (y5))
87 Y6 . append (f loat (y6))
88
89 ax1 . c l e a r ()
90 #i f i want to d i s a c t i v a t e some channel i t w i l l

d i sappear from the window
91 i f can1 :
92 ax1 . p l o t (X,Y1)
93 p l t . p l o t (X,Y1 , "b" , l a b e l="CH 1")
94 i f can2 :
95 ax1 . p l o t (X,Y2)
96 p l t . p l o t (X,Y2 , " r " , l a b e l="CH 2")
97 i f can3 :
98 ax1 . p l o t (X,Y3)
99 p l t . p l o t (X,Y3 , "g" , l a b e l="CH 3")
100 i f can4 :
101 ax1 . p l o t (X,Y4)
102 p l t . p l o t (X,Y4 , " orange " , l a b e l="CH 4")
103 i f can5 :
104 ax1 . p l o t (X,Y5)
105 p l t . p l o t (X,Y5 , "aqua" , l a b e l="CH 5")
106 i f can6 :
107 ax1 . p l o t (X,Y6)
108 p l t . p l o t (X,Y6 , "m" , l a b e l="CH 6")
109
110 p l t . x l ab e l ("n")
111 p l t . y l ab e l ("∗c")
112 p l t . t i t l e ("CHANNELS AND tmp102 in ∗C")
113 p l t . l egend ()
114

xxx

115
116 command=r i c e z i o n e ()
117
118 de f r i c e z i o n e () :
119 g l oba l t ex t
120 g l oba l batt
121 i f (arduino . inWaiting ()) : #i

do this i f s e r i a l port i s a c t i v e
122 TEMP = arduino . r e ad l i n e ()
123 str ing_to_disp lay = TEMP. decode ()
124 g l oba l can1
125 g l oba l can2
126 g l oba l can3
127
128 i f go==’ a ’ : #now i want to receve
129 x , y1 , y2 , y3 , y4 , y5 , y6 , batt , c = str ing_to_disp lay . s p l i t (’ ’) #

va r i a b l e s with data taked by s e r i a l port
130 p r i n t (s t r ing_to_disp lay)
131 #i f r e s u l t i s 0 i want to

read
132 p r i n t ("ok")
133 p r i n t (s t r ing_to_disp lay)
134 g l oba l x l ab l
135 pul lData = open (text , " r ") . read () #x l ab l has the value o f l a s t

row in txt f i l e
136 dataArray = pul lData . s p l i t (’ \n ’)
137 x l ab l=len (dataArray)
138 g l oba l Label_7
139 g l oba l Label_8
140 g l oba l Label_9
141 g l oba l Label_71
142 g l oba l Label_81
143 g l oba l Label_91
144 s t r x l a b l=s t r (x l ab l)
145
146 new_string_to_display = " " . j o i n ([s t r x l ab l , x , y1 , y2 , y3 , y4 , y5 , y6 ,

batt , ’ \n ’]) # in txt f i l e are wr i t t en : data number ;T1 ,T2 ,T3
,T4 ,T5 ,T6

147 f i l e = open (text , "a")
148 f i l e . wr i t e (new_string_to_display)
149 f i l e . c l o s e ()
150
151 Label_7 . grid_remove ()

xxxi

152 Label_8 . grid_remove ()
153 Label_9 . grid_remove ()
154 Label_71 . grid_remove ()
155 Label_81 . grid_remove ()
156 Label_91 . grid_remove ()
157 g l oba l label_bat2
158 label_bat2 . g r id_fo rge t ()
159 label_bat2 = Label (window , t ext=batt , foreground="black " , f ont="

none 12 bold ")
160 label_bat2 . g r id (row=13, column=1, s t i c k y=N)
161
162
163 #con t r o l i f channe l s are a c t i v e or d i s a c t i v e to p r i n t or not data
164 i f can1 :
165 Label_7=Label (window , t ext=y1 , foreground="black " , f ont="none

12 bold ")
166 Label_7 . g r id (row=6, column=3, s t i c ky=N)
167 else :
168 Label_7 . grid_remove ()
169 i f can2 :
170 Label_8 =Label (window , t ext=y2 , foreground="black " , f ont="none

12 bold ")
171 Label_8 . g r id (row=7, column=3, s t i c ky=N)
172 else :
173 Label_8 . grid_remove ()
174 i f can3 :
175 Label_9 =Label (window , t ext=y3 , foreground="black " , f ont="none

12 bold ")
176 Label_9 . g r id (row=8, column=3, s t i c ky=N)
177 else :
178 Label_9 . grid_remove ()
179 i f can4 :
180 Label_71=Label (window , t ext=y4 , foreground="black " , f ont="none

12 bold ")
181 Label_71 . g r id (row=9, column=3, s t i c ky=N)
182 else :
183 Label_71 . grid_remove ()
184 i f can5 :
185 Label_81 =Label (window , t ext=y5 , foreground="black " , f ont="

none 12 bold ")
186 Label_81 . g r id (row=10, column=3, s t i c ky=N)
187 else :
188 Label_81 . grid_remove ()

xxxii

189 i f can6 :
190 Label_91 =Label (window , t ext=y6 , foreground="black " , f ont="

none 12 bold ")
191 Label_91 . g r id (row=11, column=3, s t i c ky=N)
192 else :
193 Label_91 . grid_remove ()
194
195 de f spegnimento_feather () : #this f unc t i on permit t s to not take other

data
196 g l oba l button_1
197 g l oba l button_2
198 g l oba l label_0
199 button_1 . g r id_forge t () #gr id f o r g e t i s for delete

c o l o r o f buttons for wr i t e another one
200 button_2 . g r id_forge t ()
201 button_2=Button (window , t ext = "STOP" ,command=spegnimento_feather ,

background="blue ") #blue when the s t a t e i s a c t i v e
202 button_1=Button (window , t ext = "START" ,command=accens ione_feather ,

background="green ") #green i s i n a c t i v e (only for s ta r t , every button
has h i s own co l o r for i n a c t i v e s t a t e)

203 g l oba l go
204 go=’ s ’ #this don ’ t permitt to ente r in the rou t in e
205 p r in t (go)
206 Label_0=Label (window , t ext=" " ,

foreground="black " , f ont="none 12 bold ")
207 Label_0=Label (window , t ext=" STOP SAVING DATA " , foreground="black ")
208 button_2 . g r id (row=3, column=1, s t i c k y=N)

#where to put buttons or l a b e l
209 button_1 . g r id (row=2, column=1, s t i c k y=N)
210 Label_0 . g r id (row=0, column=0, s t i c ky=N)
211
212 de f accens ione_feather () : #t h i s func t i on permit t s to take other data
213 g l oba l button_1
214 g l oba l button_2
215 g l oba l label_0
216 button_1 . g r id_forge t ()
217 button_2 . g r id_forge t ()
218 button_1=Button (window , t ext = "START" ,command=accens ione_feather ,

background="blue ")
219 button_2=Button (window , t ext = "STOP" ,command=spegnimento_feather ,

background="red ")
220 g l oba l go
221 go=’ a ’ #when go i s ’ a ’ we take data

xxxiii

222 g l oba l f i r s t im e
223 Label_0=Label (window , t ext=" SAVING DATA " , foreground="black

")
224 i f f i r s t im e :
225 f i r s t im e=0
226 command = r i c e z i o n e ()
227 button_1 . g r id (row=2, column=1, s t i c k y=N)
228 button_2 . g r id (row=3, column=1, s t i c k y=N)
229 Label_0 . g r id (row=0, column=0, s t i c ky=N)
230
231
232 de f ana l i s i_da t i () : #i make i n t e r a c t i o n to 1 f o r i n t e r a c t with f i g u r e
233 g l oba l button_3
234 button_3 . g r id_forge t ()
235 g l oba l label_0
236
237 g l oba l i n t e r a z i o n e #with i n t e r a c t i o n to 1 we can only

i n t e r a c t with f i g u r e
238 i f i n t e r a z i o n e :
239 i n t e r a z i o n e=0
240 button_3 = Button (window , t ext="INTERATION" , command=ana l i s i_dat i ,

background="ye l low ")
241 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
242 Label_0=Label (window , text=" GUI FIGURA1 STOP " , foreground="black

")
243 e l s e :
244 i n t e r a z i o n e=1
245 button_3 = Button (window , t ext="INTERATION" , command=ana l i s i_dat i ,

background="blue ")
246 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
247 Label_0=Label (window , text=" USING GUI FIGURA1 " , foreground="

black ")
248 button_3 . g r id (row=4, column=1, s t i c k y=N)
249 Label_0 . g r id (row=0, column=0, s t i c ky=N)
250
251 de f cana le1 () : #to a c t i v a t e or not channe l s
252 g l oba l can1
253 g l oba l button_5
254 button_5 . g r id_forge t ()
255 i f can1 :
256 can1=0

xxxiv

257 button_5 = Button (window , t ext="CH1" , command=canale1 , background="
blue ")

258 Label_0=Label (window , text=" " ,
foreground="black " , f ont="none 12 bold ")

259 Label_0=Label (window , text=" CH1 DISABLED " , foreground="black ")
260 e l s e :
261 can1=1
262 button_5 = Button (window , t ext="CH1" , command=canale1 , background="

orange ")
263 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
264 Label_0=Label (window , text=" CH1 ABLED " , foreground="black ")
265 button_5 . g r id (row=6, column=1, s t i c ky=N)
266 Label_0 . g r id (row=0, column=0, s t i c ky=N)
267
268
269 de f cana le2 () :
270 g l oba l can2
271 g l oba l button_6
272 button_6 . g r id_forge t ()
273 i f can2 :
274 can2=0
275 button_6 = Button (window , t ext="CH2" , command=canale2 , background="

blue ")
276 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
277 Label_0=Label (window , text=" CH2 DISABLED " , foreground="black ")
278 e l s e :
279 can2=1
280 button_6 = Button (window , t ext="CH2" , command=canale2 , background="

orange ")
281 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
282 Label_0=Label (window , text=" CH2 ABLED " , foreground="black ")
283 Label_0 . g r id (row=0, column=0, s t i c ky=N)
284 button_6 . g r id (row=7, column=1, s t i c ky=N)
285
286 de f cana le3 () :
287 g l oba l can3
288 g l oba l button_7
289 button_7 . g r id_forge t ()
290 i f can3 :
291 can3=0

xxxv

292 button_7 = Button (window , t ext="CH3" , command=canale3 , background="
blue ")

293 Label_0=Label (window , text=" " ,
foreground="black " , f ont="none 12 bold ")

294 Label_0=Label (window , text=" CH3 DISABLED " , foreground="black ")
295 e l s e :
296 can3=1
297 button_7 = Button (window , t ext="CH3" , command=canale3 , background="

orange ")
298 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
299 Label_0 = Label (window , t ext=" CH3 ABLED " , foreground="black

")
300 button_7 . g r id (row=8, column=1, s t i c ky=N)
301 Label_0 . g r id (row=0, column=0, s t i c ky=N)
302
303 de f cana le4 () :
304 g l oba l can4
305 g l oba l button_51
306 button_51 . g r id_forge t ()
307 i f can4 :
308 can4=0
309 button_51 = Button (window , t ext="CH4" , command=canale4 , background="

blue ")
310 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
311 Label_0=Label (window , text=" CH4 DISABLED " , foreground="black ")
312 e l s e :
313 can4=1
314 button_51 = Button (window , t ext="CH4" , command=canale4 , background="

orange ")
315 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
316 Label_0=Label (window , text=" CH4 ABLED " , foreground="black ")
317 button_51 . g r id (row=9, column=1, s t i c ky=N)
318 Label_0 . g r id (row=0, column=0, s t i c ky=N)
319
320 de f cana le5 () :
321 g l oba l can5
322 g l oba l button_61
323 button_61 . g r id_forge t ()
324 i f can5 :
325 can5=0

xxxvi

326 button_61 = Button (window , t ext="CH5" , command=canale5 , background="
blue ")

327 Label_0=Label (window , text=" " ,
foreground="black " , f ont="none 12 bold ")

328 Label_0=Label (window , text=" CH5 DISABLED " , foreground="black ")
329 e l s e :
330 can5=1
331 button_61 = Button (window , t ext="CH5" , command=canale5 , background="

orange ")
332 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
333 Label_0=Label (window , text=" CH5 ABLED " , foreground="black ")
334 Label_0 . g r id (row=0, column=0, s t i c ky=N)
335 button_61 . g r id (row=10, column=1, s t i c ky=N)
336
337 de f cana le6 () :
338 g l oba l can6
339 g l oba l button_71
340 button_71 . g r id_forge t ()
341 i f can6 :
342 can6=0
343 button_71 = Button (window , t ext="CH6" , command=canale6 , background="

blue ")
344 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
345 Label_0=Label (window , text=" CH6 DISABLED " , foreground="black ")
346 e l s e :
347 can6=1
348 button_71 = Button (window , t ext="CH6" , command=canale6 , background="

orange ")
349 Label_0=Label (window , text=" " ,

foreground="black " , f ont="none 12 bold ")
350 Label_0 = Label (window , t ext=" CH6 ABLED " , foreground="black

")
351 button_71 . g r id (row=11, column=1, s t i c ky=N)
352 Label_0 . g r id (row=0, column=0, s t i c ky=N)
353
354 de f bat te ry () :
355 g l oba l batt
356 g l oba l label_bat2
357 label_bat2 . g r id_fo rge t ()
358 label_bat2 = Label (window , t ext=batt , foreground="black " , f ont="none 12

bold ")

xxxvii

359 label_bat2 . g r id (row=13, column=2, s t i c k y=N)
360
361 de f datatime () : #to change data sampling in t r an smi t t e r
362
363 g l oba l varDataTime
364 g l oba l countDataTime
365 g l oba l button_83
366 button_83 . g r id_forge t ()
367 countDataTime=countDataTime+1
368 i f countDataTime==16:
369 countDataTime=0
370
371 i f countDataTime==0: #countDataTime can have 16

p o s s i b i l i t i e s , every time i touch the button i t changes
372 varDataTime=’ 0 ’
373 button_83 = Button (window , t ext ="600" , command=datatime)
374 i f countDataTime==1:
375 varDataTime=’ 1 ’
376 button_83 = Button (window , t ext ="800" , command=datatime)
377 i f countDataTime==2:
378 varDataTime=’ 2 ’
379 button_83 = Button (window , t ext ="1000" , command=datatime)
380 i f countDataTime==3:
381 varDataTime=’ 3 ’
382 button_83 = Button (window , t ext ="1200" , command=datatime)
383 i f countDataTime==4:
384 varDataTime=’ 4 ’
385 button_83 = Button (window , t ext ="1400" , command=datatime)
386 i f countDataTime==5:
387 varDataTime=’ 5 ’
388 button_83 = Button (window , t ext ="1600" , command=datatime)
389 i f countDataTime==6:
390 varDataTime=’ 6 ’
391 button_83 = Button (window , t ext ="1800" , command=datatime)
392 i f countDataTime==7:
393 varDataTime=’ 7 ’
394 button_83 = Button (window , t ext ="2000" , command=datatime)
395 i f countDataTime==8:
396 varDataTime=’ 8 ’
397 button_83 = Button (window , t ext ="2200" , command=datatime)
398 i f countDataTime==9:
399 varDataTime=’ 9 ’
400 button_83 = Button (window , t ext ="2500" , command=datatime)

xxxviii

401 i f countDataTime==10:
402 varDataTime=’ : ’
403 button_83 = Button (window , t ext ="3000" , command=datatime)
404 i f countDataTime==11:
405 varDataTime=’ ; ’
406 button_83 = Button (window , t ext ="3500" , command=datatime)
407 i f countDataTime==12:
408 varDataTime=’< ’
409 button_83 = Button (window , t ext ="4000" , command=datatime)
410 i f countDataTime==13:
411 varDataTime=’=’
412 button_83 = Button (window , t ext ="4500" , command=datatime)
413 i f countDataTime==14:
414 varDataTime=’> ’
415 button_83 = Button (window , t ext ="5000" , command=datatime)
416 i f countDataTime==15:
417 varDataTime=’ ? ’
418 button_83 = Button (window , t ext ="10000" , command=datatime)
419
420
421 p r in t (countDataTime)
422 button_83 . g r id (row=12, column=1, s t i c ky=N)
423
424
425 de f submit () : #now i submit the new data sampling touching

submit to t r an smi t t e r
426 g l oba l varDataTime
427 sending=s t r (varDataTime)
428 arduino . wr i t e (sending . encode (’ lat in_1 ’))
429 Label_0=Label (window , t ext=" " ,

foreground="black " , f ont="none 12 bold ")
430 Label_0 =Label (window , t ext=" SENDING " , foreground="black ")
431 Label_0 . g r id (row=0, column=0, s t i c ky=N)
432 pr in t (sending)
433
434 de f cancel_data () : #t h i s c l e a r the f i l e txt
435 f i l e = open (text , "w+")
436 f i l e . c l o s e ()
437 Label_0 =Label (window , t ext=" " ,

foreground="black " , f ont="none 12 bold ")
438 Label_0 =Label (window , t ext=" DATA CANCELLED " , foreground="black

")
439 Label_0 . g r id (row=0, column=0, s t i c ky=N)

xxxix

440
441 de f new_data () : #f o r tak ing new data , we ove rwr i t e the f i l e i f the re i s

something
442 g l oba l x l ab l
443 x l ab l=0
444 g l oba l i n t e r a z i o n e
445 g l oba l t ex t
446 g l oba l newsho
447
448 i n t e r a z i o n e=0
449 f i l ename =entry_1 . get () #we can change the name o f txt f i l e , i f we

doesn ’ t use this command i s data . txt
450 p r in t (f i l ename)
451 i f (f i l ename=="") :
452 f i l ename="data"
453 ex t enc t i on=" . txt "
454 text = " " . j o i n ([f i l ename , ex t enc t i on])
455 i f os . path . i s f i l e (t ex t) :
456 p r in t (" e x i s t ")
457 Label_17 . g r id (row=2, column=1)
458 Label_18 . g r id (row=3, column=1)
459 newsho+=1
460 else :
461 p r in t (" f i l e doesn ’ t e x i s t ")
462 Label_17 . g r id_fo rge t ()
463 Label_18 . g r id_fo rge t ()
464 newsho=2
465 i f (newsho>1) :
466 f i l e = open (text , "w+")
467 f i l e . c l o s e ()
468 Label_0 = Label (window , t ext=" NEW DATA " , font="none 12 bold ")
469 Label_0 . g r id (row=0, column=0)
470 button_1 . g r id (row=2, column=1, s t i c k y=N)
471 label_1 . g r id (row=2, column=0, s t i c k y=W)
472 label_2 . g r id (row=3, column=0, s t i c k y=W)
473 button_2 . g r id (row=3, column=1, s t i c k y=N)
474 button_3 . g r id (row=4, column=1, s t i c k y=N)
475 label_3 . g r id (row=4, column=0, s t i c k y=W)
476 button_4 . g r id (row=5, column=1, s t i c k y=N)
477 label_4 . g r id (row=5, column=0, s t i c k y=W)
478 label_5 . g r id (row=6, column=0, s t i c k y=W)
479 button_5 . g r id (row=6, column=1, s t i c k y=N)
480 button_6 . g r id (row=7, column=1, s t i c k y=N)

xl

481 button_7 . g r id (row=8, column=1, s t i c k y=N)
482 button_51 . g r id (row=9, column=1, s t i c k y=N)
483 button_61 . g r id (row=10, column=1, s t i c k y=N)
484 button_71 . g r id (row=11, column=1, s t i c k y=N)
485 Label_7 . g r id (row=6, column=3, s t i c k y=N)
486 Label_8 . g r id (row=7, column=3, s t i c k y=N)
487 Label_9 . g r id (row=8, column=3, s t i c k y=N)
488 Label_71 . g r id (row=9, column=3, s t i c ky=N)
489 Label_81 . g r id (row=10, column=3, s t i c ky=N)
490 Label_91 . g r id (row=11, column=3, s t i c ky=N)
491 button_82 . g r id (row=12, column=2, s t i c k y=N)
492 button_83 . g r id (row=12, column=1, s t i c k y=N)
493 Label_83 . g r id (row=12, column=0, s t i c ky=N)
494 button_15 . g r id (row=0, column=3, s t i c k y=N)
495 label_bat1 . g r id (row=13, column=0)
496 label_bat2 . g r id (row=13, column=1)
497 Label_14 . g r id_fo rge t ()
498 button_13 . g r id_fo rge t ()
499 button_16 . g r id_fo rge t ()
500 Label_16 . g r id_fo rge t ()
501 entry_1 . g r id_fo rge t ()
502 Label_17 . g r id_fo rge t ()
503 Label_18 . g r id_fo rge t ()
504 Label_19 . g r id_fo rge t ()
505 newsho=0
506 p l t . show ()
507
508 de f returnn () : #the button return permit t s to go in the men , in

witch there are new data or add data
509 ax1 . c l e a r ()
510 g l oba l f i g u r e
511 g l oba l go
512 go=’ s ’
513 g l oba l i n t e r a z i o n e
514 g l oba l button_1
515 g l oba l button_2
516 g l oba l button_5
517 g l oba l button_6
518 g l oba l button_7
519 g l oba l label_bat2
520 i n t e r a z i o n e=1
521 Label_0 = Label (window , t ext=" MENU " , font="none 12 bold "

)

xli

522 Label_0 . g r id (row=0, column=0)
523 button_1 . g r id_forge t ()
524 label_1 . g r id_forge t ()
525 label_2 . g r id_forge t ()
526 button_2 . g r id_forge t ()
527 button_3 . g r id_forge t ()
528 label_3 . g r id_forge t ()
529 button_4 . g r id_forge t ()
530 label_4 . g r id_forge t ()
531 label_5 . g r id_forge t ()
532 button_5 . g r id_forge t ()
533 button_6 . g r id_forge t ()
534 button_7 . g r id_forge t ()
535 Label_7 . g r id_forge t ()
536 Label_8 . g r id_forge t ()
537 Label_9 . g r id_forge t ()
538 Label_71 . g r id_forge t ()
539 Label_81 . g r id_forge t ()
540 Label_91 . g r id_forge t ()
541 button_82 . g r id_forge t ()
542 button_83 . g r id_forge t ()
543 Label_83 . g r id_forge t ()
544 button_2 . g r id_forge t ()
545 button_3 . g r id_forge t ()
546 button_5 . g r id_forge t ()
547 button_6 . g r id_forge t ()
548 button_7 . g r id_forge t ()
549 button_51 . g r id_forge t ()
550 button_61 . g r id_forge t ()
551 button_71 . g r id_forge t ()
552 button_15 . g r id_forge t ()
553 label_bat1 . g r id_fo rge t ()
554 label_bat2 . g r id_fo rge t ()
555 button_1=Button (window , t ext = "START" ,command=accens ione_feather ,

background="green ")
556 button_2 = Button (window , text="STOP" , command=spegnimento_feather ,

background=" red ")
557 entry_1 . g r id (row=1, column=1)
558 Label_14 . g r id (row=1,column=0)
559 button_13 . g r id (row=2, column=0)
560 button_16 . g r id (row=3, column=0)
561 Label_16 . g r id (row=1, column=2)
562 Label_19 . g r id (row=5, column=0)

xlii

563 entry_1 . g r id (row=1, column=1)
564
565
566 de f add () : #i f we pre s s add data we don ’ t ove rwr i t e an i th ing , we add

data to an ex i s t e n c e f i l e
567
568 g l oba l t ex t
569 g l oba l i n t e r a z i o n e
570
571 i n t e r a z i o n e = 1
572 f i l ename = entry_1 . get ()
573 p r in t (f i l ename)
574 i f (f i l ename == "") :
575 f i l ename = "data"
576 ex t enc t i on = " . txt "
577 text = " " . j o i n ([f i l ename , ex t enc t i on])
578 i f os . path . i s f i l e (t ex t) :
579 p r in t (" e x i s t ")
580 Label_15 . g r id_fo rge t ()
581 i n t e r a z i o n e = 0
582 e l s e :
583 p r in t (" f i l e doesn ’ t e x i s t ")
584 Label_15 . g r id (row=3, column=1)
585 i f not (i n t e r a z i o n e) :
586 Label_15 . g r id_fo rge t ()
587 Label_0 = Label (window , t ext=" ADD/LOAD DATA " , font="none 12 bold ")
588 Label_0 . g r id (row=0, column=0)
589 button_1 . g r id (row=2, column=1, s t i c k y=N)
590 label_1 . g r id (row=2, column=0, s t i c k y=W)
591 label_2 . g r id (row=3, column=0, s t i c k y=W)
592 button_2 . g r id (row=3, column=1, s t i c k y=N)
593 button_3 . g r id (row=4, column=1, s t i c k y=N)
594 label_3 . g r id (row=4, column=0, s t i c k y=W)
595 button_4 . g r id (row=5, column=1, s t i c k y=N)
596 label_4 . g r id (row=5, column=0, s t i c k y=W)
597 label_5 . g r id (row=6, column=0, s t i c k y=W)
598 button_5 . g r id (row=6, column=1, s t i c k y=N)
599 button_6 . g r id (row=7, column=1, s t i c k y=N)
600 button_7 . g r id (row=8, column=1, s t i c k y=N)
601 button_51 . g r id (row=9, column=1, s t i c k y=N)
602 button_61 . g r id (row=10, column=1, s t i c k y=N)
603 button_71 . g r id (row=11, column=1, s t i c k y=N)
604 Label_7 . g r id (row=6, column=3, s t i c k y=N)

xliii

605 Label_8 . g r id (row=7, column=3, s t i c k y=N)
606 Label_9 . g r id (row=8, column=3, s t i c k y=N)
607 Label_71 . g r id (row=9, column=3, s t i c ky=N)
608 Label_81 . g r id (row=10, column=3, s t i c ky=N)
609 Label_91 . g r id (row=11, column=3, s t i c ky=N)
610 button_82 . g r id (row=12, column=2, s t i c k y=N)
611 button_83 . g r id (row=12, column=1, s t i c k y=N)
612 Label_83 . g r id (row=12, column=0, s t i c ky=N)
613 button_15 . g r id (row=0, column=3, s t i c k y=N)
614 label_bat1 . g r id (row=13, column=0)
615 label_bat2 . g r id (row=13, column=1)
616 Label_15 . g r id_fo rge t ()
617 Label_14 . g r id_fo rge t ()
618 button_13 . g r id_fo rge t ()
619 button_16 . g r id_fo rge t ()
620 Label_16 . g r id_fo rge t ()
621 Label_19 . g r id_fo rge t ()
622 entry_1 . g r id_fo rge t ()
623 p l t . show ()
624
625
626 window = Tk()
627 window . t i t l e ("GUI")
628
629 f i g = p l t . f i g u r e () #p l o t t i n g the f i g u r e
630
631 ax1 = f i g . add_subplot (1 , 1 , 1)
632
633 ani = animation . FuncAnimation (f i g , animate , i n t e r v a l =1) #ente r in the

subrout ine animation f o r s e e i ng data
634
635
636 var_1=Str ingVar ()
637
638 #entry_1 = Entry (window)
639 arduino = s e r i a l . S e r i a l (’COM8 ’ , 9600) #we see data from th i s s e r i a l

port that i s the same o f the r e c i v e r
640
641 whi l e (True) :
642 #i n i z i o r i c e z i o n e
643 Label_0 = Label (window , t ext=" MENU " , font="none 12 bold ")
644 Label_00 = Label (window , t ext=" MENU " , font="none

12 bold ")

xliv

645 button_1=Button (window , t ext = "START" ,command=accens ione_feather ,
background="green ")

646 label_1=Label (window , t ext=" pre s s to save temperature " , foreground="black " ,
f ont="none 12 bold ")

647 button_2=Button (window , t ext = "STOP" ,command=spegnimento_feather ,
background=" red ")

648 label_2=Label (window , t ext=" pre s s to stop sav ing temperature " , foreground="
black " , f ont="none 12 bold ")

649 #i n i z i o r i c e z i o n e
650 button_3=Button (window , t ext = "INTERATION" ,command=ana l i s i_dat i , background

=" ye l low ")
651 label_3=Label (window , t ext=" pre s s to use GUI o f f i g u r a 1 " , foreground="

black " , f ont="none 12 bold ")
652 #can c e l l o v a l o r i . txt
653 button_4=Button (window , t ext = "CANCEL DATA " ,command=cancel_data)
654 label_4=Label (window , t ext=" pre s s to cance l data" , foreground="black " , f ont

="none 12 bold ")
655
656 #s c r i v o i c ana l i
657 label_5=Label (window , t ext=" pre s s to p r i n t or not l a s t channe l s " ,

foreground="black " , f ont="none 12 bold ")
658
659 button_5 = Button (window , text="CH1" , command=canale1 , background="orange "

)
660 button_6 = Button (window , text="CH2" , command=canale2 , background="orange "

)
661 button_7 = Button (window , text="CH3" , command=canale3 , background="orange "

)
662 button_51 = Button (window , t ext="CH4" , command=canale4 , background="orange

")
663 button_61 = Button (window , t ext="CH5" , command=canale5 , background="orange

")
664 button_71 = Button (window , t ext="CH6" , command=canale6 , background="orange

")
665 button_82 = Button (window , t ext="SUBMIT" , command=submit)
666 button_83 = Button (window , t ext="1000" , command=datatime)
667 Label_83 = Label (window , t ext=" choose time for data a c q u i s i t i o n (ms) " ,

foreground="black " , f ont="none 12 bold ")
668 label_bat1 = Label (window , t ext=" batte ry t en s i on (V) " , foreground = "black "

, f ont = "none 12 bold ")
669 label_bat2 = Label (window , t ext="" , foreground="black " , f ont="none 12 bold

")
670

xlv

671 Label_7 = Label (window , t ext=" " , foreground="black " ,
f ont="none 12 bold ")

672 Label_8 = Label (window , t ext=" " , foreground="black " ,
f ont="none 12 bold ")

673 Label_9 = Label (window , t ext=" " , foreground="black " ,
f ont="none 12 bold ")

674 Label_71 = Label (window , t ext=" " , foreground="black " ,
f ont="none 12 bold ")

675 Label_81 = Label (window , t ext=" " , foreground="black " ,
f ont="none 12 bold ")

676 Label_91 = Label (window , t ext=" " , foreground="black " ,
f ont="none 12 bold ")

677
678
679 #choos ing f i l e
680 entry_1 = Entry (window)
681 entry_1 . g r id (row=1, column=1)
682 button_13 = Button (window , t ext="WRITE DATA" , command=new_data)
683 button_16 = Button (window , t ext="ADD/LOAD DATA" , command=add)
684 Label_14=Label (window , t ext=" s e l e c t f i l e " , foreground="black " ,

f ont="none 12 bold ")
685 Label_17 = Label (window , t ext="WARNING: f i l e a l r eady e x i s t " , foreground="

black " , f ont="none 12 bold ")
686 Label_18 = Label (window , t ext=" pre s s WRITE DATA to overwr i t e " , foreground="

black " , f ont="none 12 bold ")
687 Label_19 = Label (window , t ext=" (i f f i l e i s not s p e c i f i e d , GUI w i l l use

data . txt) " , foreground="black " , f ont="none 12 bold ")
688
689 Label_16 = Label (window , t ext=" . txt " , foreground="black ")
690 Label_0 . g r id (row=0, column=0)
691 Label_14 . g r id (row=1,column=0)
692 Label_16 . g r id (row=1, column=2)
693 button_13 . g r id (row=2, column=0)
694 button_16 . g r id (row=3, column=0)
695 button_15 = Button (window , t ext="return " , command=returnn)
696 Label_19 . g r id (row=5, column=0)
697 #button_15 . g r id (row=0, column=3)
698
699 #GREED
700 Label_15=Label (window , t ext=" this f i l e doesn ’ t e x i s t " , foreground="black

" , f ont="none 12 bold ")
701
702 window . mainloop ()

xlvi

List of Figures

1.1 Effect of metabolic rate on PMV variance with insulation levels of 0.5 clo and 1.0 clo 2

1.2 Metabolic rate in different thermal conditions . 4

1.3 Physiological response in different temperatures and clothing 4

1.4 Heat production during physical exercise . 6

1.5 Example of temperature and heat changing in human legs during cycling exercise 8

1.6 Test of blood temperature and heat exchange in a rat’s hind limb 9

1.7 PCI max in green areas in winter - Absorption . 12

1.8 Percentage of hours with comfort conditions in winter and summer 12

1.9 Percentage of hours with discomfort conditions in winter and summer 12

2.1 Picture of acquisition system MSR 147 . 15

2.2 Picture of acquisition system MSR 145 . 16

2.3 Picture of acquisition system MSR 160 . 18

2.4 Picture of acquisition system VitalPatch Biosensor . 19

2.5 Example of application of VitalPatch Biosensor. 20

2.6 GUi on tablet of the device. 20

2.7 picture of BT510 Bluetooth 5 Long Range IP67 Multi-Sensor 21

3.1 Architecture of the system . 23

3.2 System on the subject during one of firsts characterization tests 24

3.3 The system during the experimental assessment of the temperature skew among sensors. . . . 25

3.4 The receiver and Gui witten in Pyton; on the left side of the screen is the control menù, on
the right side is the temperature evolution during the test shown in Fig. 3.3. 26

3.5 Adafruit Feather M0 LORA device . 27

3.6 Image of the microcontroller in the system with antenna . 27

3.7 Pin description. 29

3.8 Adafruit Feather Mo LORA pinouts . 30

3.9 The LORA module RFM95/96/97. 31

3.10 The employed LiPo battery, 3,7 V 500 mAh. 32

xlvii

List of Figures

3.11 The Oled display Adafruit FeatherWings. 33

3.12 Images of developed system. 34

3.13 Relation between seebeck coefficient and the metal used. 37

3.14 Characteristic of a typical NTC thermistor. 37

3.15 Example of conditioning circuit for thermistors. 38

3.16 Thermistors used for project . 39

3.17 Images of sensors used. 40

3.18 conditioning circuit for thermistors (output A0 to A5) and the voltage divider for the ADC
voltage reference (output Aref). 41

3.19 Graph on MATLAB of tension and sensitivity of the system between -16 and 55 °C. 42

4.1 Block diagram of transmitting system . 44

4.2 flow chart of main_loop’s transmitter . 47

4.3 flow chart of interrupt’s transmitter . 48

4.4 flow chart of subfunction’s transmitter . 49

4.5 Block diagram of receving system . 50

4.6 flow chart of main_loop’s receiver . 52

4.7 Block diagram of GUI . 53

4.8 General menù of GUI . 53

4.9 Menù new data of GUi . 54

4.10 flow chart GUI BLOCK A . 56

4.11 flow chart GUI BLOCK B . 57

5.1 Cover used for hands. 59

5.2 Data saved by system. 60

5.3 Average finger temperature when the right hand wears the under glove. 61

5.4 Average finger temperature when the left hand wears the under glove. 62

xlviii

List of Tables

1.1 Levels and methods for the determination of the metabolic rate. 3

1.2 Park analysed. 11

2.1 Features of MSR 147. 16

2.2 Features of MSR 145. 17

2.3 Features of MSR 160. 18

2.4 Features of BT510. 22

3.1 Main features of the microcontroller ATSAMD21G18. 28

3.2 Actual values (in Ω) of the conditioning circuit resistances in series with the thermistors. . . 42

3.3 Test to verify that the thermistor values are in agreement with the expected values (resistance
values are in Ω). 43

xlix

Bibliography

[1] José González-Alonso. “Human thermoregulation and the cardiovascular system”. In:
Experimental Physiology 97.3 (2012), pp. 340–346.

[2] J. Enrique Silva. “Thermogenic Mechanisms and Their Hormonal Regulation”. In: Phys-
iological Reviews 86.2 (2006), pp. 435–464.

[3] Maohui Luo et al. “Revisiting an overlooked parameter in thermal comfort studies, the
metabolic rate”. In: Energy and Buildings 118 (2016), pp. 152–159.

[4] DETERMINATION OF THERMAL COMFORT TEMPERATURE. url: http://
ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcomnotes1.
html.

[5] W. Larry Kenney and Thayne A. Munce. “Invited Review: Aging and human temper-
ature regulation”. In: Journal of Applied Physiology 95.6 (2003), pp. 2598–2603.

[6] Laura Bacci et al. “Thermohygrometric conditions of some urban parks of Florence
(Italy) and their effects on human well-being”. In: The Fifth International Conference
on Urban Climate 2 (Jan. 2003).

[7] Datasheet MSR147WD. url: https : / / www . msr . ch / media / pdf / Datalogger _
MSR147WD_Datasheet.pdf.

[8] Datasheet MSR145. url: https://www.msr.ch/media/pdf/Data_logger_MSR145_
Data_sheet.pdf.

[9] Datasheet MSR160. url: https://www.msr.ch/media/pdf/Data_logger_MSR160_
Datasheet.pdf.

[10] VitalPatch Biosensor. url: https://www.medgadget.com/2018/12/vitalpatch-
biosensor-and-vistatablet-monitor-a-medgadget-review.html.

l

http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcomnotes1.html
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcomnotes1.html
http://ergo.human.cornell.edu/studentdownloads/DEA3500notes/Thermal/thcomnotes1.html
https://www.msr.ch/media/pdf/Datalogger_MSR147WD_Datasheet.pdf
https://www.msr.ch/media/pdf/Datalogger_MSR147WD_Datasheet.pdf
https://www.msr.ch/media/pdf/Data_logger_MSR145_Data_sheet.pdf
https://www.msr.ch/media/pdf/Data_logger_MSR145_Data_sheet.pdf
https://www.msr.ch/media/pdf/Data_logger_MSR160_Datasheet.pdf
https://www.msr.ch/media/pdf/Data_logger_MSR160_Datasheet.pdf
https://www.medgadget.com/2018/12/vitalpatch-biosensor-and-vistatablet-monitor-a-medgadget-review.html
https://www.medgadget.com/2018/12/vitalpatch-biosensor-and-vistatablet-monitor-a-medgadget-review.html

Bibliography

[11] BT510 Bluetooth 5 Long Range IP67 Multi-Sensor. url: https://www.lairdconnect.
com/iot-devices/iot-sensors/bt510-bluetooth-5-long-range-ip67-multi-
sensor?adgroup=bt510&gclid=Cj0KCQjwx7zzBRCcARIsABPRscP520L2NaHmu2HHQhWXxfGoMpokWyQlEvHFUm394-
AEcqe0dVi3ngMaAhm5EALw_wcB&matchtype=p&sncid=13&utm_campaign=platforms_
general&utm_medium=cpc&utm_source=googlel.

[12] Datasheet Adafruit Feather M0 Radio with LoRa Radio Module. url: https://cdn-
learn.adafruit.com/downloads/pdf/adafruit-feather-m0-radio-with-lora-
radio-module.pdf?timestamp=1584253431.

[13] Manual Atmel SAM D21E / SAM D21G / SAM D21J. url: https://cdn.sparkfun.
com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf.

[14] Datasheet RFM95/96/97/98(W). url: https://cdn.sparkfun.com/assets/learn_
tutorials/8/0/4/RFM95_96_97_98W.pdf.

[15] Samuele Crivellaro. protocollo di comunicazione i2C. 2017. url: http://www.crivellaro.
net/wp-content/uploads/2017/03/Protocollo-di-comunicazione-I2C.pdf.

[16] Alberto Vallan. Slides Sensori di temperatura. 2020.

[17] B57861S103F40 Datasheet. url: https://www.mouser.it/datasheet/2/400/NTC_
Mini_sensors_S861-1317170.pdf.

li

https://www.lairdconnect.com/iot-devices/iot-sensors/bt510-bluetooth-5-long-range-ip67-multi-sensor?adgroup=bt510&gclid=Cj0KCQjwx7zzBRCcARIsABPRscP520L2NaHmu2HHQhWXxfGoMpokWyQlEvHFUm394-AEcqe0dVi3ngMaAhm5EALw_wcB&matchtype=p&sncid=13&utm_campaign=platforms_general&utm_medium=cpc&utm_source=googlel
https://www.lairdconnect.com/iot-devices/iot-sensors/bt510-bluetooth-5-long-range-ip67-multi-sensor?adgroup=bt510&gclid=Cj0KCQjwx7zzBRCcARIsABPRscP520L2NaHmu2HHQhWXxfGoMpokWyQlEvHFUm394-AEcqe0dVi3ngMaAhm5EALw_wcB&matchtype=p&sncid=13&utm_campaign=platforms_general&utm_medium=cpc&utm_source=googlel
https://www.lairdconnect.com/iot-devices/iot-sensors/bt510-bluetooth-5-long-range-ip67-multi-sensor?adgroup=bt510&gclid=Cj0KCQjwx7zzBRCcARIsABPRscP520L2NaHmu2HHQhWXxfGoMpokWyQlEvHFUm394-AEcqe0dVi3ngMaAhm5EALw_wcB&matchtype=p&sncid=13&utm_campaign=platforms_general&utm_medium=cpc&utm_source=googlel
https://www.lairdconnect.com/iot-devices/iot-sensors/bt510-bluetooth-5-long-range-ip67-multi-sensor?adgroup=bt510&gclid=Cj0KCQjwx7zzBRCcARIsABPRscP520L2NaHmu2HHQhWXxfGoMpokWyQlEvHFUm394-AEcqe0dVi3ngMaAhm5EALw_wcB&matchtype=p&sncid=13&utm_campaign=platforms_general&utm_medium=cpc&utm_source=googlel
https://www.lairdconnect.com/iot-devices/iot-sensors/bt510-bluetooth-5-long-range-ip67-multi-sensor?adgroup=bt510&gclid=Cj0KCQjwx7zzBRCcARIsABPRscP520L2NaHmu2HHQhWXxfGoMpokWyQlEvHFUm394-AEcqe0dVi3ngMaAhm5EALw_wcB&matchtype=p&sncid=13&utm_campaign=platforms_general&utm_medium=cpc&utm_source=googlel
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m0-radio-with-lora-radio-module.pdf?timestamp=1584253431
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m0-radio-with-lora-radio-module.pdf?timestamp=1584253431
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m0-radio-with-lora-radio-module.pdf?timestamp=1584253431
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/0/4/RFM95_96_97_98W.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/0/4/RFM95_96_97_98W.pdf
http://www.crivellaro.net/wp-content/uploads/2017/03/Protocollo-di-comunicazione-I2C.pdf
http://www.crivellaro.net/wp-content/uploads/2017/03/Protocollo-di-comunicazione-I2C.pdf
https://www.mouser.it/datasheet/2/400/NTC_Mini_sensors_S861-1317170.pdf
https://www.mouser.it/datasheet/2/400/NTC_Mini_sensors_S861-1317170.pdf

Acknowledgements

Per questo progetto di tesi ringrazio il mio professore Alberto Vallan, al quale devo tanto per questo risultato;
in questi mesi in cui progettavo il dispositivo mi ha insegnato molto, è stato sempre disponibile ed ha
fatto tutto in un clima estremamente positiva per me e per gli altri tesisti, questa resterà per me sempre
un’esperienza profonda.

Ringrazio la mia famiglia,i miei genitori Sauro e Rita, senza i quali tutto questo non sarebbe potuto
essere possibile,sia economicamente e sia per tutto il sostegno che mi hanno sempre dato fin da piccolo, non
voglio nemmeno dilungarmi troppo, un sentimento del genere non si può scrivere, ma solo vivere di persona.

A seguire i miei zii Lucia Filippo e Giuliana che sono sempre stati maestri di vita, facendomi spesso
ragionare fin da piccolo a problemi che ancora non mi ponevo e standomi sempre vicini in ogni situazione.

Appena fuori dall’ambiente familiare ci tengo a ringraziare particolarmente una persona che considero
come un fratello, il mio amico Davide, che mi ha sempre supportato moralmente, c’è sempre stato e rimarrà
per me sempre una persona su cui fare totale affidamento.

Il mio amico Edoardo, altra persona molto vicina alla mia famiglia con la quale ho passato bellissimi
momenti, una persona estremamente forte ed un medico che come tanti altri senza chiedere nulla a nessuno è
a fronteggiare il COVID-19;lui e tutti i medici ed infermieri hanno tutto il mio sostegno in questo momento.

Un ringraziamento speciale a Marta, una persona che da poco è entrata come un tornado nella mia vita
ed alla quale devo tanti momenti bellissimi, tanto supporto e tanta allegria; senza di lei quest’ultimo periodo
sarebbe stato totalmente diverso.

Ringrazio inoltre tutti gli amici che mi sono stati sempre vicini e mi hanno sempre sostenuto, in particolare
le persone a cui devo i momenti condivisi in questo periodo sono stati coloro con cui ho studiato in questo
ultimo periodo Manny, federica e Sara,i miei amici e compagni di tesi Edoardo ed Aurora che sono stati
con me ogni giorno negli ultimi mesi e con i quali ho passato bellissimi momenti sebbene li abbia conosciuti
da poco, i miei coinquilini Alex e Silvia e tutti i miei amici di sempre,che non posso nominare tutti o i
ringraziamenti non finirebbero più, grazie mille a tutti voi ragazzi.

Per ultimo devo essere grato a Francesco ed Andrea,i quali durante la scelta riguardante l’università mi
hanno fatto conoscere il Politecnico di Torino, sono entrato qui grazie a loro.

lii

	Introduction
	Factors influencing the change of the body temperature.
	Analysis of the metabolic heat production.
	Pathologies related to the change in body temperature.
	Changing of the human temperature due to sport
	Other factors that affect the body temperature: age and microclimes

	Commercial acquisition systems for sports
	MSR 147
	MSR 145
	MSR 160
	VitalPatch Biosensor
	BT510

	The hardware section of the developed system
	Adafruit Feather M0 LORA
	AT SAMD 21 G18
	Pinout description
	RFM96
	Battery
	Oled Feather Wings display
	Sensors that can be used by the system
	Thermoresistance
	Thermocouples
	Thermistors

	The sensor employed in this work
	conditioning circuit

	The developed software
	Transmitter
	Flow chart transmitter
	Receiver
	Flow chart receiver
	GUI
	Flow chart GUI

	Experimental results
	Assessment of the glove thermal insulation

	Conclusions and future developments
	I Appendixes
	Transmitter code
	Receiver code
	GUI code

