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Abstract 

 
 The present thesis intended to contribute for the development of a new generation 

of high durable and sustainable reinforced concrete (RC) beam structures submitted to 

flexural loading, by combining the benefits that Glass Fiber Reinforced Polymers 

(GFRP).  

The main benefit given by the GFRP bars is their corrosion immunity. Furthermore, the 

Fiber Reinforced Concrete (FRC) was developed to improve the ductility of structures 

and to provide greater shear strength.  

One of the advantages of not being attacked by chemicals, is to have the possibility of 

using a very reduced concrete cover for greater structural functionality.  

Although, conventional shear reinforcements were not used, they were totally replaced 

by FRC material and a new 3D positioning geometry of the GFRP bars allowed to help 

this resistance, even if it is not considered in the design calculations. 

Due to the quite high post-cracking tensile strength and energy absorption capacity that 

this composite material attained, the system showed adequate bending resisting, and 

enhancement in the structural performance at serviceability.  

The work started with the assessment to behaviour of GFRP and FRC through 

experimental tests and analytical investigation. The structural performance of this GFRP 

reinforced FRC was investigated by performing four-point bending tests on beams.  

Moreover, an extensive analytical formulation was developed in order to theoretically 

address to the main structural aspect of the tested beams.  

The obtained experimental results were captured well using the respective results from 

the analytical study. Finally, finite element simulations were carried out, using well-

known modelling approach available in the literature for elements in form of  models.  
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Chapter 1 
1. Introduction 
 

1.1. General Consideration 
 

Steel reinforcing bars in aggressive environmental conditions are generally 

affected by corrosion, which is often responsible for deterioration and damage processes 

developing in reinforced concrete (RC) members. This corrosion phenomenon can occur 

after carbonation of concrete cortical layers in members exposed to severe environmental 

conditions. Then, the possible oxidation of steel reinforcements causes the reduction of 

their cross-sectional area, concrete spalling and possibility to lose their bonding to the 

surrounding damaged concrete, which can compromise the functionality of RC structures, 

or even their structural stability. Since the rehabilitation of corroded RC structures is 

generally an expensive solution, demolition of such structures is a relatively frequent 

option, though resulting in several unfavourable impacts in terms of economic, social and 

environmental aspects. 

Durability issues related to the possible oxidation of steel reinforcement in concrete 

structures have brought up the attention of civil engineers towards alternative materials 

for reinforcing systems.  

Fiber Reinforced Polymers (FRPs), which were initially developed and employed 

in the aerospace, aeronautics, naval and automotive industries generally exhibit high 

mechanical and durability performance. Thus, the research of this thesis supports the 

publication of design guidelines on the use of FRP as internal reinforcement of cement-

based composite members. FRP bars using Aramid, Carbon or Glass fibers, namely by 

AFRP, CFRP and GFRP, respectively, are the most widely reinforcing elements that are 

being used in construction industry. 
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A possible disadvantage of FRP bars comparing to steel bars is their cost in almost 

all cases. It is hard to compare the cost of FRP bars with those steel bars due to the many 

factors that may depend on. For instance, the delivery of FRP bars strongly depends on 

where they are ordered and from where they are supplied, and how much. Based on a 

rough analysis, it is expected to pay more FRP bars then steel. To this end, almost all FRP 

Reinforced Concrete (FRP-RC) applications are uneconomic, but the answer to this issue 

is considering a whole life cost of structures and not a first cost basis. The benefits of 

using FRP bars is to overcome the problem comes from the use of steel reinforcements. 

Thus, few amount of the cost spent for FRP-RCs refunds within the typical structure 

lifetime and many for much longer.  

However, shear steel reinforcements need to be protected against corrosive agents, as they 

are more susceptible to corrosion due to the smaller concrete cover. For eliminating steel 

stirrups, a High-Performance Fiber Reinforced Concrete (HPFRC) might be a solution, 

as long as this material provides similar shear reinforcement effectiveness to the 

conventional steel reinforcement [1]. Due to the quite high postcracking tensile strength 

and energy absorption capacity that HPFRC can attain, this composite material can be 

used not only to assure the required shear capacity of RC elements, but also to enhance 

the structural performance at Serviceability and Ultimate Limit States (SLS and ULS). 

 

1.2. Objectives 
 

The objective of this thesis is the development of a nonlinear analytical model of 

three-dimensional structures. In order to experimental and numerical research. With the 

experimental tests it was intended to obtain a set of results that, on the one hand, would 

help to characterize the behaviour of spatial structures subject to multiaxial efforts and, 

on the other hand, it could be used for the calibration of the developed analytical model, 

finding the behaviour of these structures in the most correct way possible. 

Furthermore, the present work is to develop high effective new reinforcing systems for 

the pre-fabrication industry of concrete beams. The beams are designed to support severe 
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environmental agents (e.g. in the coastline), in order to constitute a competitive alternative 

to the existing conventional structural solutions. The objective is achieved by developing 

a new generation material composed of Fiber Reinforced Concrete (FRC) with GFRP 

reinforcing bars. 

 

1.3. Research steps 
 

The main object of study in this work is the composite material realized by Fiber 

Reinforced Concrete (FRC) with Glass Fiber Reinforced Polymer (GFRP) bars. 

In order to achieve the purpose of the study, the following steps were followed in the 

present research: 

- Firstly, the study focused on evaluating the behaviour of the FRC and GFRP bars. 

- Second, the study of flexural capacity of a slab composed of FRC with a three-

dimensional textile reinforcement in GFRP (3D-SRT).  

- Third step is to create a finite element model that simulate the non-liner behaviour 

of the slab subjected to bending moment.  

- The last step is to compare the structural behaviour of FRC with 3D-SRT with the 

behaviour of FRC with traditional steel reinforcement. 
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Chapter 2 
2. State of the art on composite materials for new 

construction systems 

 

2.1. Introduction 
 

Concrete is a cement-based material that can exhibit a high compressive strength. 

Its main disadvantage consists in its brittleness, i.e. relatively low tensile strength and low 

tensile deformability. The use of tensile reinforcements in concrete structural elements 

improves their tensile and flexural response, limits the crack opening to acceptable values, 

and increases the stiffness of the structural elements after crack initiation. These 

reinforcements can be incorporated in a discrete manner, e.g. conventional steel or fiber 

reinforced polymer (FRP) in the form of bars or grids, or by dispersing fibers into the 

concrete matrix.  

Although steel-reinforced concrete has high strength and stiffness, the major limitation 

of this material is its susceptibility to corrosion and subsequent deterioration.  Textile 

materials can be used instead of steel to reinforce concrete. The outstanding durability of 

composites greatly extends the service life of the structure and reduces the inspection and 

maintenance costs, making them cost-effective. Some of the advantages of composites 

over traditional construction materials are high strength-to-weight ratio, ability to be 

manufactured in complex shapes, ability to tailor their mechanical properties according 

to specific needs, their noncorrosive nature, low thermal conductivity, and outstanding 

fatigue performance. One example is the use of GFRP and CFRP reinforcement in the 

Wotton Bridge's deck [11]. 
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2.2.1. Fiber Reiforced Concrete (FRC)  
 

The use of fiber reinforced concrete in the construction of structural systems has 

being progressively increasing in the last decades for new construction and repair 

operations of building’s structural elements, shell type structures, pre-fabrication 

elements, tunnel linings, decks of bridges, marine structures, etc.  

In the last decades, an extensive research has been conducted on FRC structures, mainly 

concerning the description of fiber reinforcement potentialities and experimental 

characterization from the material to the structural level. 

In the market exist fibers of several types of materials geometric configurations. 

Although the employment of fiber reinforcements in concrete is dated to the beginning of 

the 1900’s, it was majorly since its modern age development that fiber reinforced concrete 

(FRC) has being showing enormous potentialities for use in structural elements [2].  

Fiber reinforcement is being also explored with appreciable success on the partial 

or integral replacement of transverse reinforcement, such in the shear reinforcement of 

beams or in the punching reinforcement of slabs; decreasing the construction time; and 

reducing maintenance costs. When used in structural elements, fiber reinforcement can: 

improve the tensile and flexural response; increase the shear and punching resistance of 

concrete; restrain the crack opening; decrease the tensile stress in conventional 

reinforcement; improve the bond performance of conventional reinforcement to 

surrounding concrete. 

The use of short and randomly distributed fibers increases concrete post-cracking 

tensile capacity, its ductility, energy absorption capacity and impact resistance when 

compared to plain concrete. Additionally, the restrain to crack propagation, provided by 

the different fiber reinforcement mechanisms enhances the durability and integrity of 

cement based materials. The fundamental reinforcement mechanism of fibers consists in 

the capacity of ensuring relatively high stress transfer between the faces of cracks, by 

restraining the degeneration of micro-cracks in meso- and macrocracks, which increases 

the stiffness and load carrying capacity of concrete structures in their cracking stage, as 

well as their durability [3] – [5]. Fiber contribution after cracking depends mainly on the 



6 
 

content of fibers, their orientation and distribution towards the potential cracks, the 

material and geometric characteristics of the fibers, and the mechanical properties of the 

concrete, which are designated as the variables that mainly affect the fiber reinforcement 

mechanisms. Likewise, the compressive strength of FRC’s is similar to plain concrete, 

while the post-peak load and deformation capacity increase with the variables that have 

a favourable influence on the fiber reinforcement mechanisms [6]. 

Generally, fibers with high modulus of elasticity and tensile strength can improve 

significantly the postcracking strength of cement based materials, like steel, carbon and 

PVA fibers, while low-modulus fibers are mostly used to control cracking shrinkage at 

early ages [2].  

Although some design rules and codes have been developed, as is the case of the fib 

Model Code 2010 [8], in the designer’s community there is still a lack of knowledge in 

the analysis of FRC structures, which avoids a faster use of this material, with economic 

and technical detrimental impact in the construction sector. 

 

2.2.2. Three-Dimensional System Reinforcement Textile (3D-SRT) 
 

Textile reinforcement is a composite material encompassing discrete textile 

reinforcement in the form of a grid or open mesh structure made of non-corrosive 

technical fibres embedded in a fine-grained cementitious matrix. A main aspect 

differentiating TRC from other types of cement-based composites, e.g. FRC, is that fibres 

are bundled and arranged in a discrete open structure which can be positioned according 

to the imposed tensile stresses similar to conventional RC thus increasing the load 

capacity and effectiveness of the fibers. A coverage material is typically applied to the 

filaments to provide surface protection and improve the interaction between them in an 

assembled group (Figure 1).  
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Figure 1 – Structure of a GFRP bar 

The textile reinforcements are typically classified as being two-dimensional 

planar or conventional (2D), three-dimensional (3D) or hybrid structures. In the bi-axial 

case, the grid comprises two groups of yarns interconnected orthogonally. In tri and multi-

axial cases, there are intermediate yarns diagonally placed in reference to the warp and 

weft directions. 

The composite in two dimensional (2D) textiles is reinforced in directions parallel, but 

not orthogonal, to the fabric plane. If using 2D textiles to reinforce a composite, laminated 

composites should be prepared using several textile layers because are characterized by 

poor shear. 

3D-SRT (3 Dimensional System Reinforcement Textile) are produced connecting 

two separate, independent 2D-SRT mesh together with a third set of glass fiber rods along 

the thickness of the fabric (Figure 2). The connecting glass fiber rods, referred to as spacer 

rods, provide both stabilization and shear reinforcement. 

 

Figure 2 - Structure of a manufactured 3D-SRT reinforcement 
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2.2. Constitutive laws of FRC in tension 
 

The FRC compressive behaviour is similar to the one observed in usual Concrete. 

Accordingly, the stress-strain relationships defined in Eurocode 2 [7] or MC2010 [8] for 

the concrete can also be used for characterizing the compressive behaviour of FRC.  

On the other hand, the tensile behaviour of FRC has two types of responses can be 

obtained: strain-softening or strain-hardening. A FRC has a tensile strain-softening 

behaviour when a reduction of load carrying capacity with the increase of crack width 

opening occurs after the formation of the first crack (Figure 3a). Conversely, in a strain-

hardening material the load carrying capacity increases with the material deformation 

(Figure 3b).  

In strain-softening FRC a major failure crack is formed, while in strain-hardening 

a diffuse crack pattern is observed.  Commonly, for usual volume contents of fibers, 

FRC’s exhibit a tensile strain-softening behaviour, while for high performance matrix and 

high fiber contents (>1.5% in volume of FRC) is possible to attain a strain-hardening 

behaviour [9]. 

 
Figure 3 - Typical load (P) – deformation (d) of FRC: a) Tensile strain-softening; b) Tensile strain-
hardening [8]. 

For the characterization of FRC, 3-point notched beam bending tests (3PNBBT) 

are executed according to EN 14651 [10]. From the execution of 3PNBBT, it is possible 

to evaluate the post-cracking tensile strength of a FRC. The test setup and typical load vs. 

crack mouth opening displacement (CMOD) relationship are presented in Figure 4. Based 
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on the force values, 𝐹𝑗(𝑗 = 1,2,3,4) corresponding to specific values of CMOD, the 

residual flexural tensile strength, 𝑓𝑅𝑗 , is determined from the following expression: 

 
𝑓𝑅𝑗 =

3 ∙ 𝐹𝑗 ∙ 𝑙

2 ∙ 𝑏 ∙ ℎ𝑠𝑝2
 Eq. (2.1) 

where 𝑙 is the span length of the test beam; 𝑏 is the width of the specimen’s cross section; 

and ℎ𝑠𝑝 is the distance between the notch tip and the beam top face. By specifying the 

values of the residual flexural strength, it is possible to compare the post-cracking 

behaviour of different FRC’s compositions. 

 
Figure 4 - Typical load-CMOD curve of FRC [8] (dimensions in mm). 

In fact, the MC2010 resorts to the residual flexural strength concept to classify the post-

cracking performance of a FRC, by adopting a toughness class. The toughness class is 

determined from the characteristic values of the residual flexural tensile strength of FRC 

for serviceability, 𝑓𝑅1𝑘, and ultimate limit state condition, 𝑓𝑅3𝑘. The value of 𝑓𝑅1𝑘 

corresponds to 𝐶𝑀𝑂𝐷1 = 0.5𝑚𝑚 and 𝑓𝑅3𝑘 to 𝐶𝑀𝑂𝐷3 = 2.5𝑚𝑚. 

For structural applications, MC2010 specifies that a minimum ratio between the residual 

tensile strength at CMOD = 2.5mm and CMOD = 0.5mm (Eq. (2.2)) should be verified 

in order to consider the tensile contribution of FRC in the ultimate limit state (ULS) 

resistance of a structural element [8]. 

 𝑓𝑅3𝑘
𝑓𝑅1𝑘

≥ 0.5 Eq. (2.2) 

An additional condition is also specified in MC2010, related with the ratio 

between the characteristic value of the limit of proportionality, 𝑓𝐿𝑘, and the residual 
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strength, 𝑓𝑅1𝑘 (Eq. (2.3)) [8]. The value of 𝑓𝐿𝑘 is given by Eq. (2.1), considering the 

maximum load value, 𝐹𝐿 , registered on the 3PNBBT up to CMOD = 0.05mm [10]. 

 𝑓𝑅1𝑘
𝑓𝐿𝑘

> 0.4 Eq. (2.3) 

Contrarily to simple concrete where the tensile strength is usually neglected in the design 

process of structural elements, FRC can exhibit a significant post-cracking tensile 

capacity. In the pre-peak stage, it is possible to assume that FRC and concrete have similar 

response, and the existing stress-strain relationship used for concrete is also applicable to 

FRC until this stage [8], see Figure 5: 

{
 
 

 
 𝜎 = 𝐸𝑐 ∙ 𝜀 ;                                                                                                     0 ≤ 𝜀 ≤ 0.9 ∙

𝑓𝑐𝑡
𝐸𝑐

𝜎 = 𝑓𝑐𝑡 ∙ (1 − 0.1 ∙
0.15 × 10−3 − 𝜀

0.15 × 10−3 − 0.9 ∙
𝑓𝑐𝑡
𝐸𝑐

) ;          0.9 ∙
𝑓𝑐𝑡
𝐸𝑐
< 𝜀 ≤ (𝜀𝑝 = 0.15‰)

      

𝐸𝑞. (2.4) 

 
Figure 5 - Tensile stress-strain relationship for plain concrete and FRC up to material tensile strength. 

As the formation of cracks in concrete is a discrete phenomenon, a stress-crack opening 

relationship is the most suitable formulation to describe FRC post-cracking behaviour, 

mainly in FRC of tensile-softening nature, which is the most current in structural 

applications. In MC2010 different approaches are used to characterize the post-cracking 

tensile behaviour of FRC, depending on the type of limit state verification. 
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For the ULS analysis two models can be used: the (i) rigid-plastic model; and the 

(ii) linear model. Both models are schematically presented in Figure 6, where: 𝑤𝑢 is the 

ultimate crack opening corresponding to the ULS criterion𝑓𝐹𝑡𝑢; is the ultimate residual 

tensile strength; and 𝑓𝐹𝑡𝑠 is the serviceability residual tensile strength. For FRC with a 

softening post-cracking behaviour (solid lines in Figure 6) the value 𝑓𝐹𝑡𝑢 is lower than 

𝑓𝐹𝑡𝑠, while for a hardening post-cracking response (dashed lines in Figure 6) the value 

𝑓𝐹𝑡𝑢 is higher than 𝑓𝐹𝑡𝑠. 

 
Figure 6 - Stress-crack opening constitutive laws for ULS analysis: a) rigid-plastic model; b) linear model 
[8]. 

For the rigid-plastic model, the ultimate residual tensile strength is determined from [8]: 

 
𝑓𝐹𝑡𝑢 =

𝑓𝑅3
3

 Eq. (2.5) 

For the linear model, the serviceability and ultimate residual tensile strength are obtained 

from [8]: 

 𝑓𝐹𝑡𝑠 = 0.45 ∙ 𝑓𝑅1 Eq. (2.6) 

 𝑓𝐹𝑡𝑢 = 𝑓𝐹𝑡𝑠 −
𝑤𝑢

𝐶𝑀𝑂𝐷3
∙ (𝑓𝐹𝑡𝑠 − 0.5 ∙ 𝑓𝑅3 + 0.2 ∙ 𝑓𝑅1) ≥ 0 Eq. (2.7) 

For the rigid-plastic model the value of the ultimate crack opening is equal to                 

 𝑤𝑢 = 𝐶𝑀𝑂𝐷3, while for the linear model it depends on the ductility required, namely: 

 𝑤𝑢 = min(2.5 𝑚𝑚; 𝑙𝑐𝑠; 𝜀𝐹𝑢) Eq. (2.8) 
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where, 𝜀𝐹𝑢 is the ultimate tensile strain of FRC; and 𝑙𝑐𝑠 is the structural characteristic 

length. 

According to the MC2010, the ultimate tensile strain, 𝜀𝐹𝑢, depends on the strain 

distribution along the cross-section. For a constant tensile strain (section under pure 

normal tensile force), 𝜀𝐹𝑢 = 1%. For variable strain distribution in the cross-section 

(section under pure bending or combined axial bending load), 𝜀𝐹𝑢 = 2% [8]. 

In structural elements with steel bars reinforcement, the structural characteristic length is 

determined from [8]: 

 𝑙𝑐𝑠 = min(𝑦; 𝑠𝑟𝑚) Eq. (2.9) 

where, 𝑦 is the distance between the neutral axis position and the tensile side of the cross-

section (Figure 7); and 𝑠𝑟𝑚 is the mean crack spacing. In the evaluation of the neutral axis 

position, 𝑥, a loading situation corresponding to the cracking serviceability criteria is 

assumed, generally the quasi-permanent load combination; and the tensile contribution of 

FRC can be disregarded [8]. An example of stress-strain distribution in a cross-section 

for the calculation of the neutral axis is presented in Figure 7. For sections without 

traditional reinforcements, the value of the structural characteristic length, 𝑙𝑐𝑠, is 

considered equal to the cross-section height, ℎ [8].  

 
Figure 7 - Example of determination of neutral axis position,  𝑥, and 𝑦 for the evaluation of 𝑙𝑐𝑠. 

The mean crack spacing, 𝑠𝑟𝑚, can be estimated from the bond transfer length, 

𝑙𝑠,𝑚𝑎𝑥. It is the length needed for concrete to reach its tensile strength, 𝜎 = 𝑓𝑐𝑡𝑚, due to 
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bond action. Therefore, new cracks cannot occur within the distance 𝑙𝑠,𝑚𝑎𝑥 from the 

cracks, as stress on concrete does not reach its tensile strength within this transition zone. 

The bond transfer length and the mean crack spacing can be determined through the 

following equation [6]: 

 
𝑙𝑠,𝑚𝑎𝑥 =

𝑓𝑐𝑡𝑚
4 ∙ 𝜏𝑏𝑚𝑠

∙
∅

𝜌
 Eq. (2.10) 

 𝑠𝑟𝑚 = 1.5 ∙ 𝑙𝑠,𝑚𝑎𝑥 Eq. (2.11) 

where 𝜏𝑏𝑚𝑠  is the mean bond strength between the bar and concrete; ∅ is the diameter 

of the bar; and 𝜌 = 𝐴𝑐/𝐴𝑠 is the ratio of longitudinal reinforcement. 

To transform the stress-crack opening relationship in a stress-strain diagram, the MC2010 

[8] proposes to convert the concept of crack opening, 𝑤, in tensile strain, 𝜀, by using the 

structural length parameter: 

 
𝜀 =

𝑤

𝑙𝑐𝑠
 Eq. (2.12) 

In Figure 8a is presented the complete stress-strain diagram for a strain softening 

FRC, assuming that  𝑓𝐹𝑡𝑠 < 𝑓𝑐𝑡 and the FRC’s post-cracking linear model (Figure 6b). 

However, for the usual cases where  𝜀𝑈𝐿𝑆 ≫ 𝜀𝑝, and for an analytical estimation of the 

cross-section flexural capacity, the pre-cracking contribution of FRC can be disregarded 

and the simplified stress-strain diagram presented in Figure 8b can be adopted without a 

significant loss of precision. 

During the analysis of a cross-section, if  𝜀 > 𝜀𝑈𝐿𝑆 a stress cut-off is assumed. The 

complete tensile stress-strain diagram presented in Figure 8a is mathematical described 

by Eq. (2.13), while in Eq. (2.14) is presented the simplified model. 

 

{
 
 
 
 

 
 
 
 

𝜎 = 𝐸𝑐 ∙ 𝜀

𝜎 = 0.9 ∙ 𝑓𝑐𝑡 + (
𝑓𝑐𝑡 − 0.9 ∙ 𝑓𝑐𝑡

𝜀𝑝 − 0.9 ∙
𝑓𝑐𝑡
𝐸𝑐

) ∙ (𝜀 − 0.9 ∙
𝑓𝑐𝑡
𝐸𝑐
)

𝜎 = 𝑓𝐹𝑡𝑠 + (
𝑓𝐹𝑡𝑢 − 𝑓𝐹𝑡𝑠
𝜀𝑈𝐿𝑆 − 𝜀𝑝

) ∙ (𝜀 − 𝜀𝑝)

𝜎 = 0

 

; 0 ≤ 𝜀 ≤
0.9 ∙ 𝑓𝑐𝑡
𝐸𝑐

 

;
0.9 ∙ 𝑓𝑐𝑡
𝐸𝑐

< 𝜀 ≤ 𝜀𝑝 

; 𝜀𝑝 < 𝜀 ≤ 𝜀𝑈𝐿𝑆 

; 𝜀 > 𝜀𝑈𝐿𝑆 

Eq. (2.13) 
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{
𝜎 = 𝑓𝑡𝑠 + (

𝑓𝐹𝑡𝑢 − 𝑓𝐹𝑡𝑠
𝜀𝑈𝐿𝑆 − 𝜀𝑝

) ∙ 𝜀

𝜎 = 0

 
; 0 ≤ 𝜀 ≤ 𝜀𝑈𝐿𝑆 

; 𝜀 > 𝜀𝑈𝐿𝑆 
Eq. (2.14) 

 

Figure 8 - Stress-strain relationship of a strain softening FRC, for ULS analysis: (a) complete diagram; (b) 
simplified diagram. 

For the verification of the serviceability limit states (SLS), one of the three stress-

strain models presented in MC2010 (Figure 9) is applicable. The residual tensile strength 

𝑓𝐹𝑡𝑠 and 𝑓𝐹𝑡𝑢 are determined from Eq. (2.6) and Eq. (2.7), respectively. 

 
Figure 9 - Stress-strain relationship for SLS analysis: (a) Case I; (b) Case II; (c) Case III [8]. 

 The constitutive models presented in Figure 9 have common defining points, 

namely points A, B, D and E. Points A and B correspond to the stress and strain values 

defined for un-macro-cracked plain concrete (Figure 5). Point D and E correspond, 
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respectively, to the serviceability and ultimate deformation criteria of the material, which 

are determined by [8]: 

 
{
𝜀𝑆𝐿𝑆 =

𝐶𝑀𝑂𝐷1
𝑙𝑐𝑠

𝜀𝑈𝐿𝑆 = 𝑤𝑢/𝑙𝑐𝑠

 Eq. (2.15) 

where 𝐶𝑀𝑂𝐷1 = 0.5 𝑚𝑚 and 𝑙𝑐𝑠 is determined as previously described.  

The first model, Case I (Figure 9a), is applicable for softening materials with 𝑓𝐹𝑡𝑠 < 𝑓𝑐𝑡. 

The stress of point Q is equal to𝜎𝑄 = 0.2 ∙ 𝑓𝑐𝑡, and its corresponding strain is determined 

from the following equation [8]: 

 
𝜀𝑄 =

𝐺𝐹
𝑓𝑐𝑡 ∙ 𝑙𝑐𝑠

+ (𝜀𝑝 −
0.8 ∙ 𝑓𝑐𝑡
𝐸𝑐

) Eq. (2.16) 

where 𝐺𝐹 represents the fracture energy of a plain concrete of the same strength class of 

the FRC, which can be estimated from the following expression [8]: 

 
𝐺𝐹 =

73 ∙ 𝑓𝑐𝑚
0.18

1000
   [

𝑁

𝑚𝑚
] Eq. (2.17) 

where 𝑓𝑐𝑚 is the mean compressive strength of concrete, in MPa, that can be determined 

from the following expression [8]: 

 
𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8 𝑀𝑝𝑎 Eq. (2.18) 

Point C coordinates are determined from the intersection of lines BQ and DE, which 

represents the intersection of the concrete matrix post-cracking strength with the post-

cracking residual strength of FRC. Due to the dependence of 𝜀𝑄 on the values of 𝑓𝑐𝑡 and 

𝑙𝑐𝑠, the application of Eq. (2.16) can result a value of strain lower than that for the tensile 

strength, 𝜀𝑄 < 𝜀𝑃, which has no physical meaning. In this situation, the concrete matrix 

post-cracking contribution is discarded, and it is assumed that 𝜀𝑄 = 𝜀𝑃 = 0.15‰, as 

presented in Figure 10. 
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Figure 10 - SLS stress-strain case I model for situation where concrete matrix post-cracking contribution 
is disregarded. 

Additionally, the present formulation can also result in a situation where the intersection 

of both lines yields 𝜀𝐶 < 𝜀𝑃 (Figure 11). In this circumstance, point C is disregarded, and 

point D is connected to point B. 

 
Figure 11 - Example of SLS stress-strain Case I model where point C is disregarded. 

Cases II and III are applicable for materials exhibiting a stable crack propagation up to 

𝜀𝑆𝐿𝑆, with 𝑓𝐹𝑡𝑠 > 𝑓𝑐𝑡. Case II is applicable when: 

 
𝜎𝐷 − 𝜎𝐴
𝜀𝑆𝐿𝑆 − 𝜀𝐴

≤
𝜎𝐵 − 𝜎𝐴
𝜀𝑃 − 𝜀𝐴

⇔
𝑓𝐹𝑡𝑠 − 0.9 ∙ 𝑓𝑐𝑡

𝜀𝑆𝐿𝑆 − 0.9 ∙
𝑓𝑐𝑡
𝐸𝑐

<
𝑓𝑐𝑡 − 0.9 ∙ 𝑓𝑐𝑡

𝜀𝑃 − 0.9 ∙
𝑓𝑐𝑡
𝐸𝑐

 Eq. (2.19) 
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otherwise Case III is adopted. The equation Eq. (2.19) compares the slope of lines AD 

and AB. If the slope of line AD is lower than the slope of line AB, Case II is applied, 

otherwise Case III should be chosen. Case III has an additional point, A’, which stress 

value is 𝜎𝐴′ = 0.9 ∙ 𝑓𝐹𝑡𝑠 and corresponding strain is 𝜀𝐴′ = 0.9 ∙
𝑓𝐹𝑡𝑠

𝐸𝑐
. 

In the safety assessment of a member at SLS, the principal tensile strain cannot 

exceed 𝜀𝑆𝐿𝑆, where a stress cut-off is admitted. 

Similarly, to the consideration adopted for the ULS stress-strain diagram, in the common 

situation where 𝜀𝑆𝐿𝑆 ≫ 𝜀𝑃, for analytical calculation of the cross-section flexural 

capacity, the pre-cracking contribution of FRC can be disregarded without a significant 

loss of precision. 

 

2.3. Shear resistance of FRC 
 

Fiber reinforcement enhances the shear capacity of concrete and allows a partial 

or total replacement of steel stirrups in structural elements [6]. According to MC2010, 

the design value of the shear resistance of an FRC structural element with longitudinal 

bars and without shear reinforcement, 𝑉𝑅𝑑,𝐹, can be evaluated by employing the 

expression [8]: 

𝑉𝑅𝑑,𝐹 = (
0.18

𝛾𝑐
∙ 𝑘 ∙ (100 ∙ 𝜌𝑠𝑙 ∙ (1 + 7.5 ∙

𝑓𝐹𝑡𝑢𝑘
𝑓𝑐𝑡𝑘

) ∙ 𝑓𝑐𝑘)

1
3
+ 0.15 ∙ 𝜎𝑐𝑝) ∙ 𝑏𝑤 ∙ 𝑑 Eq. (2.20) 

where: 

- 𝛾𝑐 = 1.5 is the partial safety factor for concrete without fibers; 

- 𝑘 = 1 + √
200

𝑑
≤ 2 is a factor that considers the size effect;  

- 𝑑 is the effective depth of the cross section [mm]; 

- 𝜌𝑠𝑙 =
𝐴𝑠𝑙

(𝑏𝑤∙𝑑)
 is the longitudinal reinforcement ratio; 
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- 𝐴𝑠𝑙 is the cross-sectional area of the longitudinal reinforcement; 

- 𝑓𝐹𝑡𝑢𝑘 is the characteristic value of the ultimate residual tensile strength of the FRC 

that is computed from Eq. (2.7) considering the characteristic values of the 

residual flexural strength of FRC and 𝑤𝑢 = 1.5 𝑚𝑚; 

- 𝑓𝑐𝑡𝑘 is the characteristic tensile strength for the concrete without fibers; 

- 𝑓𝑐𝑘 is the characteristic compressive strength; 

- 𝜎𝑐𝑝 =
𝑁𝑒𝑑

𝐴𝑐
< 0.2 ∙ 𝑓𝑐𝑑 is the average axial stress acting in the cross-section 

(considered positive in compression); 

- 𝑏𝑤 is the smallest width of the tensile zone of the cross-section. 

The previous equation is based on the one proposed by Eurocode 2 [7] for shear 

contribution of plain concrete members without transverse reinforcements, by adding the 

contribution of FRC residual flexural strength. The effect of the dispersed fibers to shear 

resistance provided by the increased post-cracking toughness and crack-opening 

restriction is empirically considered by multiplying the longitudinal reinforcement ratio 

by the factor (1 + 7.5 ∙ 𝑓𝐹𝑡𝑢𝑘
𝑓𝑐𝑡𝑘

). Therefore, the contribution of fiber reinforcement is 

regarded as an extra flexural reinforcement, whose favourable mechanism for the shear 

capacity derives from the dowel effect. 

It should be noticed that in Eurocode 2 is considered an upper limit of to the value of the 

longitudinal reinforcement ratio 𝜌𝑠𝑙 ≤ 0.02 to be used in the calculation of the shear 

resistance of plain concrete members. 

The applicability of Eq. (2.20) is limited to elements where shear diagonal failure is 

expected and arch action is insignificant, namely for elements with ratio 𝑎
𝑑
≥ 2.5, being 

𝑎 the shear span [6]. 

The shear resistance, 𝑉𝑅𝑑,𝐹, is assumed to be not smaller than the minimum value, 

𝑉𝑅𝑑,𝐹,𝑚𝑖𝑛, obtained from: 

 
𝑉𝑅𝑑,𝐹,𝑚𝑖𝑛 = (𝜈𝑚𝑖𝑛 + 0.15 ∙ 𝜎𝑐𝑝) ∙ 𝑏𝑤 ∙ 𝑑 Eq. (2.21) 

 
𝜈𝑚𝑖𝑛 = 0.035 ∙ 𝑘

3
2 ∙ 𝑓𝑐𝑘

1
2  Eq. (2.22) 
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In MC2010, for structural members with transverse reinforcements is considered the 

following relation: 

 
𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑠 + 𝑉𝑅𝑑,𝐹 ≤ 𝑉𝑅𝑑,𝑚𝑎𝑥 Eq. (2.23) 

where, 𝑉𝑅𝑑,𝑠 is the shear resistance provided by the transversal reinforcement and 𝑉𝑅𝑑,𝑚𝑎𝑥 

is the maximum shear capacity without concrete crushing. 

The shear reinforcement resistance, 𝑉𝑅𝑑,𝑠, is determined according to the following 

expression [8]: 

 
𝑉𝑅𝑑,𝑠 =

𝐴𝑠𝑤
𝑠𝑤

∙ 𝑧 ∙ 𝑓𝑦𝑤𝑑 ∙ (cot 𝜃 + cot 𝛼) ∙ sin 𝛼 Eq. (2.24) 

where 𝐴𝑠𝑤 is the shear reinforcement area; 𝑠𝑤 is the longitudinal spacing between shear 

reinforcement bars; and 𝑓𝑦𝑤𝑑 is design value of the yield strength of the shear 

reinforcement. 

 The FRC shear resistance, 𝑉𝑅𝑑,𝐹, is the result of the added shear resistance of the 

concrete matrix, 𝑉𝑅𝑑,𝑐, and fiber reinforcements bridging the shear cracks, 𝑉𝑅𝑑,𝑓, and is 

determined from [8]: 

 
𝑉𝑅𝑑,𝐹 = 𝑉𝑅𝑑,𝑐 + 𝑉𝑅𝑑,𝑓 =

1

𝛾𝐹
∙ (𝜈𝑅𝑑,𝑐 + 𝜈𝑅𝑑,𝑓) ∙ 𝑧 ∙ 𝑏𝑤 Eq. (2.25) 

where, 𝑧 is the internal lever arm, that can be estimated as 𝑧 = 0.9 ∙ 𝑑 [8]. The concrete 

matrix shear strength is provided by the aggregate interlock, which is dependent on the 

concrete compressive strength, size of aggregate particles and on the shear crack width, 

namely [8]: 

 
𝜈𝑅𝑑,𝑐 = 𝑘𝜈 ∙ √𝑓𝑐𝑘 Eq. (2.26) 

where 𝑘𝜈 is the parameter that determines the contribution of the aggregate interlock 

mechanism for the shear strength of the cross section (Eq. (2.27)). The parameter 𝑘𝜈 is 

function of the parameter that considers the aggregate size influence (Eq. (2.28)), 𝑘𝑑𝑔, 

and of the longitudinal strain at the mid depth of the effective shear area, 𝜀𝑥.  
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𝑘𝜈 =

{
 
 

 
 0.4

1 + 1500 ∙ 𝜀𝑥
∙

1300

1000 + 𝑧 ∙ 𝑘𝑑𝑔
    𝑓𝑜𝑟  𝜌𝑤 < 0.08 ∙ √𝑓𝑐𝑘/𝑓𝑦𝑘

0.4

1 + 1500 ∙ 𝜀𝑥
                                  𝑓𝑜𝑟   𝜌𝑤 ≥ 0.08 ∙ √𝑓𝑐𝑘/𝑓𝑦𝑘

 > 0     Eq. (2.27) 

𝑘𝑑𝑔 = {

32

16 ∙ 𝑑𝑔
≥ 0.75    𝑓𝑜𝑟  𝑓𝑐𝑘 ≤ 70 𝑀𝑝𝑎

2.0                          𝑓𝑜𝑟   𝑓𝑐𝑘 > 70 𝑀𝑝𝑎

 Eq. (2.28) 

In Eq. (2.27), the term 𝜌𝑤  represents the transverse reinforcement ratio of the cross-

section, that is given by [8]: 

 
𝜌𝑤 =

𝐴𝑠𝑤
𝑏𝑤 ∙ 𝑠𝑤 ∙ sin 𝛼

 Eq. (2.29) 

where, 𝐴𝑠𝑤 is the shear reinforcement area; 𝑠𝑤 is the longitudinal spacing between shear 

reinforcement bars; and 𝛼 is the inclination of the transverse reinforcements with the 

element longitudinal axis. In Eq. (2.28) the term 𝑑𝑔 is the maximum aggregate dimension 

in the concrete matrix. 

 The strain, 𝜀𝑥, at mid-depth of the effective shear depth can be defined as: 

 
𝜀𝑥 = 0 ≤

1

2 ∙ 𝐸𝑠 ∙ 𝐴𝑠𝑙
∙ (
𝑀𝐸𝑑

𝑧
+ 𝑉𝑒𝑑 +𝑁𝑒𝑑 ∙ (

1

2
±
∆𝑒

𝑧
)) ≤ 0.03 Eq. (2.30) 

MC2010 presents the following conditions for application of Eq. (2.30): 

- 𝐴𝑠𝑙 comprises the main longitudinal reinforcement in the tensile chord, while any 

other distributed longitudinal reinforcement must be disregarded; 

- If longitudinal reinforcement bars do not respect the required development length, 

𝑙𝑝, (§6.1.8.6 MC2010) from the section under consideration, the value of 𝐴𝑠𝑙 must 

be reduced proportionally to the lack of development length; 

- If the strain 𝜀𝑥  is negative (compression), it must be taken as zero; 

- When analysing sections within a distance 𝑧/2 of a significant rebar curtailment, 

the value 𝜀𝑥 must be multiplied by 1.5; 

- If the axial tension is large enough to crack the flexural compression face of the 

section, the value of 𝜀𝑥  must be multiplied by 2. 
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The shear strength provided by the fiber reinforcements bridging the shear diagonal 

cracks is obtained from [8]: 

 
𝜈𝑅𝑑,𝑓 = 𝑘𝑑𝑓 ∙ 𝑓𝑇𝑘(𝑤𝑢) ∙ cot 𝜃 Eq. (2.31) 

where, 𝑘𝑑𝑓 is a fiber dispersion reduction factor, assuming the value of 𝑘𝑑𝑓 = 0.8 [8]; 

𝑓𝑇𝑘(𝑤𝑢) is the characteristic value of the post-cracking tensile capacity of FRC, evaluated 

at the ultimate crack width, 𝑤𝑢, that can be determined from direct tensile tests. As the 

execution of direct tensile tests is quite cumbersome, alternatively, 𝑓𝑇𝑘(𝑤𝑢) can be 

estimated according to Eq. (2.32), considering 𝑤 = 𝑤𝑢 [6]: 

 
𝑓𝑇𝑘(𝑤) = 𝑘𝐺 ∙ min (0.4 ∙ 𝑓𝑅2𝑘 + 1.2 ∙ (𝑓𝑅4𝑘 − 𝑓𝑅2𝑘) ∙ 𝜉(𝑤) Eq. (2.32) 

 𝜉(𝑤) = 𝛼 ∙ w − 0.25 Eq. (2.33) 

The value of 𝑘𝐺  is presented in Table 1, considering the different prism bending test 

standards. The value of factor 𝛼 also depends on the prism bending test configuration and 

is presented in the same table. 

Table 1 - Value of 𝑘𝐺 and 𝛼 depending on prism bending test standard [6]. 

 

The residual flexural strength 𝑓𝑅2𝑘 and 𝑓𝑅4𝑘, can be estimated from analysis of the results 

of 3PNBBT. 

According to MC2010, the value of  𝜃 can be freely chose in the interval of 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤

45°, while the value of 𝜃𝑚𝑖𝑛 is related with the longitudinal strain level in the mid-depth 

of the cross-section, 𝜀𝑥, which can be obtained from [8]: 

 
𝜃𝑚𝑖𝑛 = (29° + 7000 ∙ 𝜀𝑥) Eq. (2.34) 
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The design shear resistance cannot exceed the crushing capacity of concrete in the web, 

determined as [8]: 

 
𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝑘𝑐 ∙

𝑓𝑐𝑘
𝛾𝑐
∙ 𝑏𝑤 ∙ 𝑧 ∙

cot 𝜃 ∙ cot 𝛼

1 + 𝑐𝑜𝑡 2𝜃
 Eq. (2.35) 

where, 𝑘𝑐 is a strength reduction factor, defined by:  

 𝑘𝑐 = 𝑘𝜀 ∙ 𝜂𝑓𝑐 Eq. (2.36) 

where 𝑘𝜀 is a factor that takes into account the strain in the web of the structural element, 

and is determined according to the level approximation defined in MC2010 (level of 

approximation I: 𝑘𝜀 = 0.55; level of approximation II and III : Eq. (2.37)); 𝜂𝑓𝑐 is a factor 

to consider the effect of more brittle failure for high strength concrete compositions, and 

is determined from Eq. (2.39); and  𝜃 is the inclination of the principal compressive stress 

in the web, relative to the longitudinal axis of the member. 

 
𝑘𝜀 =

1

1.2 + 55 ∙ 𝜀1
≤ 0.65 Eq. (2.37) 

 
𝜀1 = 𝜀𝑥 ∙ (𝜀𝑥 + 0.002) ∙ 𝑐𝑜𝑡 

2𝜃 Eq. (2.38) 

 
𝜂𝑓𝑐 = (

30

𝑓𝑐𝑘
)
1/3

≤ 1.0   (𝑓𝑐𝑘 𝑖𝑛 𝑀𝑝𝑎) Eq. (2.39) 
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Chapter 3 
3. Experimental Program  
 

3.1. Introduction 
 

The tasks associated with the design of fiber reinforced concrete beams (FRC) are 

described in previous chapter. The experimental program carried out with these beams is 

presented in this chapter. These beams were subjected to compression, bending and shear 

tests. With these tests, intended to make a contribution to the knowledge of non-linear 

behaviour of reinforced concrete bar elements subjected to multiaxial stress states. The 

results obtained were used in the calibration of the developed numerical model, described 

in chapter 4. 

Reinforced concrete structures, when subjected to multiaxial loads, have a 

nonlinear behaviour, especially after cracking starts. The characterization, either 

experimental or numerical, of the post-cracking behaviour of the elements that constitute 

such structures is still scarce. 

In the first part of this chapter, the test system used is presented, describing the 

equipment, as well as the procedures adopted. The second part of this chapter is dedicated 

to the presentation and analysis of the results obtained. 

 

3.2. Tests carried out 
 

Different types of tests have been conducted.  

- Compression tests, for the characterization of the compressive strength and 

Young’s module of concrete.   

- Tensile tests, for the characterization of the tensile strength of GFRP bars. 
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- Three-point notched beam bending tests (3PNBBT), for the characterization of 

the shear capacity and post cracking behaviour of fiber reinforced concrete (FRC). 

- Four-point bending tests (4PBT) of a slab, for the characterization of the load – 

displacement diagram and consequently, bending resistance.  

To control the displacement of the barycentric axis of the specimens during the tests, 

it’s used two types of electric displacement transducers (LVDT’s – Linear Voltage 

Displacement Transducer), which differ in the reading field: amplitude linear ± 12.5 mm 

and ± 2.5 mm, as shown in Figure 12. 

  

  Figure 12 - Electric displacement transducers: a) ± 12.5 mm; b) ± 2.5 mm. 

 

3.2.1. Compression tests. 

The compressive strength of the concrete is evaluated by the crushing with the 

press of standard specimens (cubic or cylindrical) obtained from the same material used 

for the other specimens during the casting (Figure 13). 

In any case, before the test, the sample must be prepared by mechanical rectification. It 

consists in making the two surfaces of the cylinder perfectly flat, so that the applied 

compression is homogeneous on the whole surface of the specimen. 
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Figure 13 – Specimen for compression test and mechanic press. 

The specimen adopted for the test are cylindric and the dimension are 150x300, 

where the first number indicate the diameter of the specimen and the second one is the 

height (Figure 14). The total number of specimens tested are 5. 

 
Figure 14 – Dimension of the cylindric specimen and position of LVDTs. 
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The test is in displacement control and the results provided by them are the trend 

of the load during the test and the displacement associated with it. For these tests are not 

necessary to use the LVDTs, but is enough the displacement rated by the press.  

The compressive strength value, 𝑓𝑐, is obtained after breaking the specimen using the Eq. 

(3.1). 

 
𝑓𝑐 =

𝐹𝑚𝑎𝑥
𝐴𝑐

 Eq. (3.1) 

where 𝑓𝑐 is expressed in Mpa; 𝐹𝑚𝑎𝑥 is the breaking load and 𝐴𝑐 =  17662 𝑚𝑚2is the 

cross-section area of the specimen.  

 The LVDTs presented in these tests (Figure 14) are necessary for find the value 

of the Young’s module.  In this test a cyclic load is applied up to about the 30% of the 

maximum capacity of the specimen for 5 cycles (Figure 15).  

 
Figure 15 – Loading in the time during the compression tests for the evaluation of Young’s module. 

The Young’s module, 𝐸, is calculated as the ratio between the increases in tension, 

∆𝜎, and deformation, ∆𝜀, both in loading and unloading phase recorded at the third cycle.  

 
𝐸 =

∆𝜎

∆𝜀
 Eq. (3.2) 
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3.2.2. Tensile test 

The tensile test on GFRP bars consists in subjecting the specimen to a tensile load 

applied with a certain amount speed of increase until it breaks, in order to determine the 

strength, elasticity and deformability (Figure 16).  

In this test all the components of the 3D-SRT were examined, in particular bars of Ø5 and 

Ø3. The main properties that can be obtained from the test are the Young's module and 

the tensile strength of the bars. 

 

Figure 16 – Tensile test for a GFRP bar. 

The test is in displacement control and the results provided by them are the trend 

of the load during the test and the displacement associated with it. Adopting Eq. (3.3) can 

be obtained the tensile stress, 𝜎,  during the test. 

 
𝜎 =

𝐹

𝐴𝐺𝐹𝑅𝑃
 Eq. (3.3) 

where 𝐴𝐺𝐹𝑅𝑃 is the section area of the bar and F is the load applied. 
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Instead, the Eq. (3.4) is used to obtain the strain, 𝜀. 

 
𝜀 =

∆𝐿

𝐿0
 Eq. (3.4) 

where ∆𝐿 is the displacement of the bar during the test and 𝐿0 is the initial length of the 

specimen.  

 

3.2.3. Three-point notched beam bending test (3PNBBT) 

The specimens adopted for this test have dimensions 600x150x150 mm, in 

according to RILEM 162 TDF [12]. It has the configuration shown in Figure 17. The 

beam specimens were subjected to a three-point bending test configuration by using a 

servo-hydraulic actuator of 150 kN loading capacity under monotonic loading condition. 

The notch at the bottom of the specimen have dimension 5x25x150 and is situated in the 

middle of the spam.  

 

Figure 17 – Schematic representation of position of LVDTs in the 3PNBBT (measures in mm). 

The tests are displacement-controlled by imposing a speed of 0.01 mm/sec to the 

piston of the actuator. Three linear variable differential transducers (LVDTs) were 

installed on the specimen, according to the schematic representation in Table 2.  



29 
 

 

Figure 18 - Position of LVDT in a mid-span in the 3PNBBT. 

 

Figure 19 – Position of LVDT between the crack in the 3PNBBT. 

 

Figure 20 – Position of LVDT on the actuator in the 3PNBBT. 
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        Table 2 - Description of position of LVDTs on three-point bending test.  

Serial number Position Main purpose Figure 

152393 Mid span, vertical 
Vertical displacement of 

mid span point 
18 

150319 
Mid span, bottom, 

between the crack 
Crack opening 19 

176600 On the actuator 
Vertical displacement of 

the press 
20 

 

3.2.4. Four-point bending test (4PBT) 

For this test the specimen adopted is a slab of dimensions 700x350x100 mm 

(Figure 21). The beam specimens were subjected to a four-point bending test 

configuration using a servo-hydraulic actuator of 250 kN loading capacity under 

monotonic loading condition.  

 
Figure 21 - Sizes of the specimen for 4PBT. 
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The tests are displacement-controlled by imposing a speed of 0.01 mm/sec to the 

piston of the actuator. Four linear variable differential transducers (LVDTs) were 

installed along the span length of the slab and one LVDT was installed on the actuator, 

according to the schematic representation in Table 3.  

In Figure 22 is shown the disposition of the LVDT’s installed on the materials for 

measuring the strain during loading. The distance between the two loading points is 150 

mm. 

 

Figure 22 – Schematic representation of position of LVDTs in the 4PBT. 

 

Figure 23 – Position of horizontal LVDT on the slab in the 4PBT. 

 
Figure 24 – Position of LVDT on the actuator.  
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        Table 3 – Description of position of LVDTs. 

Serial number Position Main purpose Figure 

197869 Mid span, vertical 
Vertical displacement 

of mid span point 
22 

176621 
Between the left support 

and force, vertical 

Vertical displacement 

of left point 
22 

198379 
Between the right support 

and force, vertical 

Vertical displacement 

of right point 
22 

152466 
Mid span, horizontal, 25 

mm from bottom 

Horizontal 

displacement of point 
23 

147586 On the actuator 
Vertical displacement 

of the press 
24 

 

The three-dimensional reinforcement is composed in 3 main parts: the top grid, 

the bottom grid and the central bars. The top and the bottom greed are composed by GFRP 

bars with diameter of 5 mm and 35 mm distance between them, in both the directions 

(Figure 25). The central bars aim to confine all the reinforcement system, joining top and 

bottom grid.   

 
Figure 25 - Dimensions of textile reinforcement in GFRP: a) Top view; b) Frontal view. 
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3.3. Results 
 

3.3.1. Compressive strength  

For the characterization of the constitutive law of FRC, compression tests are 

executed as described in chapter 3.2.1. The number of tested specimens is 5, they have 

all the same size and come from the same casting used also to create the specimens for 

the other tests. The results of these tests are shown in Figure 26. 

 

Figure 26 – Results of compression test of the FRC specimens.  

From the results obtained in this way it is possible to obtain the maximum compressive 

strength using Eq. (3.1) The values thus obtained are shown in table 4. 

Table 4 – Values of maximum compressive strength of the specimens. 

Test Number 𝑭𝒎𝒂𝒙 [𝒌𝑵] 𝒇𝒄 [𝑴𝒑𝒂] 

1 796.6 45.078 

2 843.4 47.727 

3 757.6 42.871 

4 855.4 48.406 

5 783 44.309 
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The medium compressive strength of the FRC was obtained from the values in table 4, as 

described in Eq. (3.5). 

 
𝑓𝑐𝑚 =

∑ 𝑓𝑐
𝑛
𝑖=1

𝑛
= 45.68 𝑀𝑝𝑎 Eq. (3.5) 

where n is the number of the specimens tested. 

For the determination of the modulus of young, the tested specimens are 4 because 

the first one was used to get an idea of the maximum compressive strength, in order to be 

able to reach 30% of it to carry out the tests correctly. 

Through suitable software, it is possible to extrapolate the value of Young's module. 

Table 5 shows the average values of the modulus of elasticity obtained in the tests. 

Table 5 - Values of Young’s module of the specimens. 

Test Number 𝑬𝒄 [𝑴𝒑𝒂] 

1 34563 

2 35160 

3 34046 

4 34385 
 

The medium Young’s module of the FRC was obtained from the values in table 5, as 

described in Eq. (3.6). 

 
𝐸𝑐𝑚 =

∑ 𝐸𝑐
𝑛
𝑖=1

𝑛
= 34700 𝑀𝑝𝑎 Eq. (3.6) 

where n is the number of the specimens tested. 

 

3.3.2. Tensile strength 

For the characterization of the constitutive law of GFRP bars, tensile tests are 

executed as described in chapter 3.2.2.  



35 
 

The samples tested are 4 with a diameter of 5 (Ø5) mm and 4 with a diameter of 3 mm 

(Ø3). The results of these tests are shown in Figure 27. 

 

Figure 27 – Load-Deflection diagram: a) bars of Ø5; b) bars of Ø3. 

From the results obtained, using Eq. (3.3) and Eq. (3.4) is possible to find stress and strain 

respectively. Therefore, it is possible to create the stress-strain diagram of the specimens 

for the bars Ø5 and Ø3, as shown in Figure 28 and Figure 29, respectively. 

 

Figure 28 – Stress-Strain diagram for Ø3 bars in GFRP. 

Table 6 shows the values of the tensile strength and the elastic modulus of each specimen 

regarding Ø5 bars. 
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Table 6 - Values of tensile strength and Young’s module of Ø5 bars in GFRP 

Test Number 𝝈𝒎𝒂𝒙 [𝑴𝒑𝒂] 𝑬 [𝑴𝒑𝒂] 

1 908.76 45660 

2 732.49 44620 

3 917.57 44200 

4 741.31 35610 

Average 825.03 42520 
 

 

Figure 29 - Stress-Strain diagram for Ø5 bars in GFRP. 

Table 7 shows the values of the tensile strength and the elastic modulus of each specimen 

regarding Ø3 bars. 

Table 7 - Values of tensile strength and Young’s module of Ø3 bars in GFRP 

Test Number 𝝈𝒎𝒂𝒙 [𝑴𝒑𝒂] 𝑬 [𝑴𝒑𝒂] 

1 849.29 77590 

2 708.05 91030 

3 708.50 75050 

4 850.23 81990 

Average 825.03 42520 
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3.3.3. Crack patterns and failure modes 

For the characterization of FRC, 3-point notched beam bending tests (3PNBBT) 

are executed according to EN 14651 [10]. From the execution of 3PNBBT, it is possible 

to evaluate the post-cracking tensile strength of FRC. The test setup and typical load vs. 

crack mouth opening displacement (CMOD) relationship are presented in Figure 4. Based 

on the force values, 𝐹𝑗(𝑗 = 1,2,3,4) corresponding to specific values of CMOD, the 

residual flexural tensile strength, 𝑓𝑅𝑗 , is determined from Eq. (3.7). 

 
𝑓𝑅𝑗 =

3 ∙ 𝐹𝑗 ∙ 𝑙

2 ∙ 𝑏 ∙ ℎ𝑠𝑝2
 Eq. (3.7) 

where 𝑙 is the span length of the test beam; 𝑏 is the width of the specimen’s cross section; 

and ℎ𝑠𝑝 is the distance between the notch tip and the beam top face. In the Table 8 are 

showed the geometric values adopted.  

Table 8 – Geometric values of specimens in the 3PNBBT. 

𝒍 500 𝑚𝑚 

𝒃 150 𝑚𝑚 

𝒉𝒔𝒑 125 𝑚𝑚 

In the execution of 3PNBBT the midspan deflection (𝛿) of the beams is, usually, 

also recorded, and the following average relationship between 𝛿 and CMOD can be used 

in the post-peak region of the load-CMOD curve [10]. 

 𝛿[𝑚𝑚] = 0.85 ∙ 𝐶𝑀𝑂𝐷 + 0.04 Eq. (3.8) 

In the Table 9 is presented the conversion of the 𝐶𝑀𝑂𝐷𝑗 = (𝑗 = 1,2,3,4) to 𝛿. 

Table 9 – Relationship between CMOD and 𝛿 [10] 
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The LVDT number 150319 in the 3PNBBT have the purpose to measure the crack 

opening during the tests (Figure 19).   

In the Figure 30 is shown the diagram load – crack opening of the specimen during the 

3PNBBT. 

 
Figure 30 – Diagram Load–crack opening. 

Is possible to compare the displacement at the mid span (LVDT 152393) with the crack 

opening due to LVDT 150319 and the CMOD obtained inverting the Eq. (3.8). 

 

Figure 31 – Deflection – CMOD diagram. 
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Using Eq. (3.7), it’s possible to find the residual flexural tensile strength, 𝑓𝑅𝑗. The results 

are shown in Table 10. 

Table 10 – values of post-cracking tensile strength. 

𝒇𝑹𝟏 6.56 𝑀𝑝𝑎 

𝒇𝑹𝟐 6.35 𝑀𝑝𝑎 

𝒇𝑹𝟑 5.50 𝑀𝑝𝑎 

𝒇𝑹𝟒 4.78 𝑀𝑝𝑎 

 

3.3.4. Flexural capacity  

For evaluate the flexural capacity it was tested 4 specimens with the four-point 

bending test (4PBT). By this test is possible to obtain the Load-deflection diagram shown 

in Figure 32. 

 

Figure 32 – Load-deflection diagram of FPBT. 

With this graphic is possible to obtain the following values: 

- Maximum force applied, 𝐹𝑚𝑎𝑥; 

- Peak displacement, 𝑑𝐹, associated at the maximum force applied; 

- Maximum bending resistance, 𝑀𝑚𝑎𝑥, calculated through Eq. (3.9); 
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 𝑀𝑚𝑎𝑥 =
𝐹𝑚𝑎𝑥
2

∙ 𝑏 Eq. (3.9) 

where 𝑏 is the distance from the force and the support, equal to 200 mm. 

- Maximum shear applied, 𝑉𝑚𝑎𝑥, calculated through Eq. (3.10); 

 𝑉𝑚𝑎𝑥 =
𝐹𝑚𝑎𝑥
2

 Eq. (3.10) 

In Table 11 are shown all the main values previously listed. 

Table 11 – Values of maximum capacity of the specimen in 4PBT.  

Test number 𝐹𝑚𝑎𝑥  [𝑘𝑁] 𝑑𝐹[𝑚𝑚] 𝑀𝑚𝑎𝑥 [𝑘𝑁𝑚] 𝑉𝑚𝑎𝑥 [𝑘𝑁] 

1 149.05 10.25 14.90 74.52 

2 138.40 10.57 13.84 69.20 

3 118.80 8.68 11.88 59.4 

4 137.10 11.36 13.71 68.55 

Average 135.84 10.21 13.58 67.92 

  To have an idea if the test was performed correctly, i.e. with loads and geometry 

as symmetrical as possible in order to cancel the presence of cutting in the central part of 

the specimen, it is possible to compare the left and right LVDTs, number 176621 and 

19379 respectively (Figure 22).  Figures 33 and 34 show the responses of the two LVDTs 

during the tests. 

 

Figure 33 - Load-deflection diagram during FPBT supplied by external LVDTs: a) Test n°1; b) Test N°2. 
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Figure 34 - Load-deflection diagram during FPBT supplied by external LVDTs: a) Test n°3; b) Test N°4. 

In the four-point bending test (4PBT) is not possible to evaluate the crack opening 

by a LVDT because it’s not known where will appear the cracks during the test, but it’s 

possible to sign the moment and where they will appear (Figure 35). 

 
Figure 35 - Specimens collapsed after 4PBT. 
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Chapter 4 
4. Analytic Model 
 

4.1. Model of 3D Timoshenko’s beam 
 

The structures, when subjected to certain series of stresses, show a non-linear 

behaviour after a certain level of strain. This non-linear behaviour derives from the 

consideration of second order deformations and/or the fact that the materials have not 

linear constitutive laws, designating nonlinear geometric behaviour as the first case and 

material nonlinear behaviour the second. 

Timoshenko’s prismatic model based on the finite element method (FEM). This model 

considers the behaviour of the various materials that constitute the section as it is 

discretized into that each mesh is given a law that characterizes material behaviour of this 

element. 

Considering a curved part defined in a global axis system 𝑔𝑖(𝑔1, 𝑔2, 𝑔3), by its 

guideline e and the geometry of the different planar cross sections of area 𝐴(𝑒) and 

orthogonal to e (Figure 36). First, it is necessary to define the various systems coordinates: 

- Global coordinates system 𝑔𝑖(𝑔1, 𝑔2, 𝑔3): cartesian coordinate system used to 

define structure geometry in the space, node displacements, stiffness matrix and 

nodal force vector of the structure. 

- Normalized coordinates system - 𝑠1: coordinate system that underpins the 

definition of element shape functions. The normalized coordinate 𝑠1 ranges from 

–1 to +1 along the axis of the element, which coincides with the line containing 

the centres of gravity of the part sections. 

- Local coordinates system 𝑙𝑖(𝑙1, 𝑙2, 𝑙3): cartesian coordinate system defined locally 

in any section of the element. The definition of this referential at numerical 
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integration points (sampling points) serves as a reference for defining stress and 

strain states. 

 
Figure 36 – Timoshenko beam in the space. 

 

4.1.1. Linear static analysis model 

The displacement field of a generic point in the section is defined by the following 

expressions: 

 

{

𝑢1
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 ) = 𝑢1𝐺
𝑙 (𝑥1

𝑙) + 𝑥3
𝑙 ∙ 𝜃2

𝑙(𝑥1
𝑙) − 𝑥2

𝑙 ∙ 𝜃3
𝑙(𝑥1

𝑙)

𝑢2
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 ) = 𝑢2𝐺
𝑙 (𝑥1

𝑙) − 𝑥3
𝑙 ∙ 𝜃1

𝑙(𝑥1
𝑙)                         

𝑢3
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 ) = 𝑢3𝐺
𝑙 (𝑥1

𝑙) + 𝑥2
𝑙 ∙ 𝜃1

𝑙(𝑥1
𝑙)                         

 Eq. (4.1) 

where the centre of shear coincides with the barycentre [13]. 𝑢𝑖𝐺𝑙  is the i-th local 

displacement of the barycentre of the section; 𝑥𝑖𝑙 are the i-th coordinates of the generic 

point P of the section and 𝜃𝑖𝑙 are the rotations around the i-th axis (Figure 37).  
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Figure 37 – Local coordinates. 

In fact, the local and global displacement vectors are, respectively, the following 

components. 

 {𝑈𝑙} = [𝑢1𝐺
𝑙  𝑢2𝐺

𝑙  𝑢3𝐺
𝑙  𝜃1

𝑙  𝜃2
𝑙  𝜃3

𝑙 ]
𝑇
 Eq. (4.2) 

 
{𝑈𝑔} = [𝑢1𝐺

𝑔
 𝑢2𝐺
𝑔
 𝑢3𝐺
𝑔
 𝜃1
𝑔
 𝜃2
𝑔
 𝜃3
𝑔
]
𝑇
 Eq. (4.3) 

Consequently, the local and global vector of velocity are defined in Eq. (4.3) and Eq. 

(4.4), respectively. 

{𝑈̇𝑙} = [
𝑑𝑢1𝐺

𝑙

𝑑𝑡
 
𝑑𝑢2𝐺

𝑙

𝑑𝑡
 
𝑑𝑢3𝐺

𝑙

𝑑𝑡
 
𝑑𝜃1

𝑙

𝑑𝑡
 
𝑑𝜃2

𝑙

𝑑𝑡
 
𝑑𝜃3

𝑙

𝑑𝑡
]

𝑇

= [𝑢̇1𝐺
𝑙  𝑢̇2𝐺

𝑙  𝑢̇3𝐺
𝑙  𝜃̇1

𝑙  𝜃̇2
𝑙  𝜃̇3

𝑙 ]
𝑇
 Eq. (4.3) 

{𝑈̇𝑔} = [
𝑑𝑢1𝐺

𝑔

𝑑𝑡
 
𝑑𝑢2𝐺

𝑔

𝑑𝑡
 
𝑑𝑢3𝐺

𝑔

𝑑𝑡
 
𝑑𝜃1

𝑔

𝑑𝑡
 
𝑑𝜃2

𝑔

𝑑𝑡
 
𝑑𝜃3

𝑔

𝑑𝑡
]

𝑇

= [𝑢̇1𝐺
𝑔
 𝑢̇2𝐺
𝑔
 𝑢̇3𝐺
𝑔
 𝜃̇1
𝑔
 𝜃̇2
𝑔
 𝜃̇3
𝑔
]
𝑇
 Eq. (4.4) 

The local and global vector of acceleration are defined in Eq. (4.5) and Eq. (4.6), 

respectively. 

{𝑈̈𝑙} = [
𝑑𝑢̇1𝐺

𝑙

𝑑𝑡
 
𝑑𝑢̇2𝐺

𝑙

𝑑𝑡
 
𝑑𝑢̇3𝐺

𝑙

𝑑𝑡
 
𝑑𝜃̇1

𝑙

𝑑𝑡
 
𝑑𝜃̇2

𝑙

𝑑𝑡
 
𝑑𝜃̇3

𝑙

𝑑𝑡
]

𝑇

= [𝑢̈1𝐺
𝑙  𝑢̈2𝐺

𝑙  𝑢̈3𝐺
𝑙  𝜃̈1

𝑙  𝜃̈2
𝑙  𝜃̈3

𝑙 ]
𝑇
 Eq. (4.5) 

{𝑈̈𝑔} = [
𝑑𝑢̇1𝐺

𝑔

𝑑𝑡
 
𝑑𝑢̇2𝐺

𝑔

𝑑𝑡
 
𝑑𝑢̇3𝐺

𝑔

𝑑𝑡
 
𝑑𝜃̇1

𝑔

𝑑𝑡
 
𝑑𝜃̇2

𝑔

𝑑𝑡
 
𝑑𝜃̇3

𝑔

𝑑𝑡
]

𝑇

= [𝑢̈1𝐺
𝑔
 𝑢̈2𝐺
𝑔
 𝑢̈3𝐺
𝑔
 𝜃̈1
𝑔
 𝜃̈2
𝑔
 𝜃̈3
𝑔
]
𝑇
 Eq. (4.5) 

 

Eq. (4.6) 
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The Eq. (4.1) can be written in the matrix formulation.  

{𝑢𝑙} = [

𝑢1
𝑙

𝑢2
𝑙

𝑢3
𝑙

] = [

1 0 0 0 𝑥3
𝑙 −𝑥2

𝑙

0 1 0 −𝑥3
𝑙 0 0

0 0 1 𝑥2
𝑙 0 0

]

[
 
 
 
 
 
 
𝑢1𝐺
𝑙

𝑢2𝐺
𝑙

𝑢3𝐺
𝑙

𝜃1
𝑙

𝜃2
𝑙

𝜃3
𝑙 ]
 
 
 
 
 
 

= [𝑅]{𝑈𝑙} Eq. (4.7) 

The matrix [𝑅] does not depend on the time. Therefore, the field of velocity and the field 

of acceleration are defined in Eq. (4.8) and Eq. (4.9), respectively. 

{𝑢̇𝑙} = [

𝑢̇1
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 )

𝑢̇2
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 )

𝑢̇3
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 )

] = [𝑅]{𝑈̇𝑙} Eq. (4.8) 

{𝑢̈𝑙} = [

𝑢̈1
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 )

𝑢̈2
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 )

𝑢̈3
𝑙 (𝑥1

𝑙 , 𝑥2
𝑙 , 𝑥3

𝑙 )

] = [𝑅]{𝑈̈𝑙} Eq. (4.9) 

 Is possible switch from the local to the global reference of the displacements, 

through the transformation matrix, [𝑇𝑙𝑔] (Eq. 4.10). 

 
{𝑈𝑔} = [𝑇𝑙𝑔]{𝑈𝑙} Eq. (4.10) 

The vector of the deformations in the local system is defined by Eq. (4.11) [13]. 
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{𝜀𝑙} = [

𝜀1
𝑙

𝛾12
𝑙

𝛾13
𝑙

] = [

1 0 0 0 𝑥3
𝑙 −𝑥2

𝑙

0 1 0 −𝑥3
𝑙 0 0

0 0 1 𝑥2
𝑙 0 0

]

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑢1𝐺
𝑙

𝜕𝑥1
𝑙

𝜕𝑢2𝐺
𝑙

𝜕𝑥1
𝑙 − 𝜃3

𝑙

𝜕𝑢3𝐺
𝑙

𝜕𝑥1
𝑙 + 𝜃2

𝑙

𝜕𝜃1
𝑙

𝜕𝑥1
𝑙

𝜕𝜃2
𝑙

𝜕𝑥1
𝑙

𝜕𝜃3
𝑙

𝜕𝑥1
𝑙 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

= [𝑅]{𝜀̅𝑙} Eq. (4.11) 

The relationship between the stress and strain is established by means of the 

constitutive matrix, D defined in Eq. (4.12), in the local system (Figure 38). 

{𝜎𝑙} = [

𝜎1
𝑙

𝜏12
𝑙

𝜏13
𝑙

] = [𝐷]{𝜀𝑙} = [
𝐸 0 0
0 𝐺12 0
0 0 𝐺13

] [

𝜀1
𝑙

𝛾12
𝑙

𝛾13
𝑙

] Eq. (4.12) 

where E is the longitudinal elastic modulus of the material; 𝐺12 and 𝐺13 are the modules 

of transversal elasticity of the material in the 𝑙1𝑙2 and  𝑙1𝑙3 planes, respectively. 

 

Figure 38 - Tensions 

The components of stresses in a section of the element, in the local system, are the 

following (Figure 39). 
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{𝜎̅𝑙} = [𝑁𝑙  𝑉2

𝑙 𝑉3
𝑙  𝑀1

𝑙  𝑀2
𝑙  𝑀3

𝑙 ]𝑇 Eq. (4.13) 

where 𝑁𝑙 is the axial force;  𝑉2𝑙 and 𝑉3𝑙 are the cutting force according to the 𝑙2 axis and 

𝑙3 axis;  𝑀1𝑙  is the torsional moment; 𝑀2
𝑙  and 𝑀3

𝑙  are the bending moment according to the 

𝑙2 and 𝑙3 axis; defined by Eq. (4.14). 

 
𝑁𝑙 = ∫𝜎1

𝑙  𝑑𝐴
𝐴

 Eq. (4.14a) 

 
𝑉2
𝑙 = ∫𝜏12

𝑙  𝑑𝐴
𝐴

 Eq. (4.14b) 

 
𝑉3
𝑙 = ∫𝜏13

𝑙  𝑑𝐴
𝐴

 Eq. (4.14c) 

 
𝑀1
𝑙 = ∫(−𝜏12

𝑙 ∙ 𝑥3
𝑙 + 𝜏1

𝑙 ∙ 𝑥2
𝑙 ) 𝑑𝐴

𝐴

 Eq. (4.14d) 

 
𝑀2
𝑙 = ∫𝜎1

𝑙 ∙ 𝑥3
𝑙  𝑑𝐴

𝐴

 Eq. (4.14e) 

 
𝑀3
𝑙 = −∫𝜎1

𝑙 ∙ 𝑥2
𝑙  𝑑𝐴

𝐴

 Eq. (4.14f) 

 

Figure 39 - Stresses in the section of a Timoshenko element. 

The Eq. (4.14) can be write in the following form.  
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{𝜎̅𝑙} = ∫

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1
0 −𝑥3

𝑙 𝑥2
𝑙

𝑥3
𝑙 0 0

−𝑥2
𝑙 0 0 ]

 
 
 
 
 

[

𝜎1
𝑙

𝜏12
𝑙

𝜏13
𝑙

]

𝐴

𝑑𝐴 = ∫[𝑅]𝑇{𝜎𝑙} 𝑑𝐴

𝐴

 Eq. (4.15) 

Replacing Eq. (4.11) and Eq. (4.12) into Eq. (4.15) it results the following expression. 

 
{𝜎̅𝑙} = ∫[𝑅]𝑇[𝐷]{𝜀𝑙} 𝑑𝐴

𝐴

= ∫[𝑅]𝑇[𝐷][𝑅]{𝜀̅𝑙} 𝑑𝐴

𝐴

 Eq. (4.16) 

where the matrix product is:  

[𝐷̅𝑙] = ∫[𝑅]𝑇[𝐷][𝑅] 𝑑𝐴

𝐴

= Eq. (4.17a) 

= ∫

[
 
 
 
 
 
 
 
𝐸 0 0 0 𝑥3

𝑙𝐸 −𝑥2
𝑙𝐸

0 𝐺12 0 −𝑥3
𝑙𝐺12 0 0

0 0 𝐺13 𝑥2
𝑙𝐺13 0 0

0 −𝑥3
𝑙𝐺12 𝑥2

𝑙𝐺13 𝑥3
𝑙 2𝐺12 + 𝑥2

𝑙 2𝐺13 0 0

𝑥3
𝑙𝐸 0 0 0 𝑥3

𝑙 2𝐸 −𝑥2
𝑙𝑥3
𝑙𝐸

−𝑥2
𝑙𝐸 0 0 0 −𝑥2

𝑙𝑥3
𝑙𝐸 𝑥2

𝑙 2𝐸 ]
 
 
 
 
 
 
 

 𝑑𝐴

𝐴

 Eq. (4.17b) 

Starting from the hypothesis that the material of element is isotropic (𝐸 = 𝐶𝑜𝑠𝑡.), solving 

the integral separately, it obtained the results in Eq. (4.18). 

 
∫𝐸 𝑑𝐴
𝐴

= 𝐸𝐴 Eq. (4.18a) 

 
∫𝐺12 𝑑𝐴
𝐴

= 𝛼12𝐺𝐴 = 𝐺𝐴2
∗  Eq. (4.18b) 

 
∫𝐺13 𝑑𝐴
𝐴

= 𝛼13𝐺𝐴 = 𝐺𝐴3
∗  Eq. (4.18c) 

 
∫𝑥3

𝑙𝐸 𝑑𝐴
𝐴

= 𝐸𝑆2
𝑙  Eq. (4.18d) 

 
∫𝑥2

𝑙𝐸 𝑑𝐴
𝐴

= 𝐸𝑆3
𝑙  Eq. (4.18e) 

 
∫𝑥3

𝑙𝐺12 𝑑𝐴
𝐴

= 𝐺𝑆2
∗ Eq. (4.18f) 

 ∫𝑥2
𝑙𝐺13 𝑑𝐴

𝐴

= 𝐺𝑆3
∗ Eq. (4.18g) 
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 ∫ (𝑥3
𝑙 2𝐺12 + 𝑥2

𝑙 2𝐺13 ) 𝑑𝐴
𝐴

= 𝐺𝐼1
𝑙  Eq. (4.18h) 

 ∫𝑥3
𝑙 2𝐸 𝑑𝐴

𝐴

= 𝐸𝐼2
𝑙  Eq. (4.18i) 

 ∫𝑥2
𝑙 2𝐸 𝑑𝐴

𝐴

= 𝐸𝐼3
𝑙  Eq. (4.18l) 

 ∫𝑥2
𝑙𝑥3

𝑙𝐸 𝑑𝐴
𝐴

= 𝐸𝐼23
𝑙  Eq. (4.18m) 

where 𝐴2∗  and 𝐴3∗  are the reduced areas of shear; 𝑆2∗ and 𝑆3∗ are the statics moment around 

the 𝑙2 and 𝑙3 axes; 𝐼1𝑙 , 𝐼2𝑙  and 𝐼3𝑙  are the moment of inertia around the 𝑙1, 𝑙2 and 𝑙3 

respectively;  𝐼23𝑙  is the centrifugal moment of inertia of the section. If the section is 

doubly symmetrical 𝑆2 = 𝑆3 = 0 and 𝐼23 = 0. Then the matrix 𝐷̅ is defined by Eq. (4.19). 

[𝐷̅𝑙] = ∫[𝑅]𝑇[𝐷][𝑅] 𝑑𝐴

𝐴

=

[
 
 
 
 
 
 
𝐸𝐴 0 0 0 0 0
0 𝐺𝐴2

∗ 0 0 0 0
0 0 𝐺𝐴3

∗ 0 0 0

0 0 0 𝐺𝐼1
𝑙 0 0

0 0 0 0 𝐸𝐼2
𝑙 0

0 0 0 0 0 𝐸𝐼3
𝑙 ]
 
 
 
 
 
 

 Eq. (4.19) 

The matrix in the Eq. (4.19) can be subdivided in submatrix according to the structural 

behaviour.  

[𝐷̅𝑙] =

[
 
 
 
 
𝐷̅𝑎 0 0 0

0 [𝐷̅𝑠] 0 0

0 0 𝐷̅𝑡 0

0 0 0 [𝐷̅𝑓]]
 
 
 
 

 Eq. (4.20) 

where 𝐷̅𝑎, [𝐷̅𝑠], 𝐷̅𝑡, [𝐷̅𝑏], are the submatrix associated to axial, shear, torsion and flexural 

stiffness, respectively.  

𝐷̅𝑎 = 𝐸𝐴 Eq. (4.21a) 

[𝐷̅𝑠] = [
𝐺𝐴2

∗ 0
0 𝐺𝐴3

∗ ] Eq. (4.21b) 

𝐷̅𝑎 = 𝐺𝐼1
𝑙  Eq. (4.21c) 
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[𝐷̅𝑓] = [
𝐸𝐼2

𝑙 0

0 𝐸𝐼3
𝑙] Eq. (4.21d) 

 

 In the Timoshenko formulation, the distribution of shear stresses 𝜏12 and 𝜏13 is 

considered constant through the cross section. This fact stems from the assumption that 

the sections the cross sections remain flat after deformation, which in reality does not 

happen distortions occur in the section. So, to take these distortions into account, and 

consequently a non-constant distribution of the stresses throughout the section, the section 

area is multiplied by coefficients 𝛼12 and 𝛼13 respectively. These coefficients are called 

shape or distortion coefficients. The achievement for each direction, 𝑙2 and 𝑙3, is done by 

applying the principle of virtual works, so that the deformation work of the constant 

tangential stress coincides with the exact radius theory [14]. The resulting areas are called 

small cutting areas, 𝐴2∗  and 𝐴3∗ . 

 The coordinates of a point in the space of the element, in the normalized 

coordinates, is obtained by the Eq. (4.22). 

{𝑥𝑔(𝑠1)} = ∑𝑁𝑘(𝑠1) ∙ {𝑥
𝑔}𝑘

𝑛

𝑘=1

 Eq. (4.22) 

where 𝑛 is the number of elements; 𝑁𝑘(𝑠1) is a shape function of the node number 𝑘, 

valuated in the position of the normalized coordinate 𝑠1; {𝑥𝑔}𝑘 is the vector of global 

coordinates of 𝑘-th node. The Eq. (4.22) can be write in the matrix form.  

{𝑥𝑔(𝑠1)} = [

𝑥1
𝑔

𝑥2
𝑔

𝑥3
𝑔

] = [𝑁𝑥(𝑠1)]{𝑋
𝑔} Eq. (4.23) 

where [𝑁𝑥] is the matrix of the shape functions defined in Eq. (4.24). 

[𝑁𝑥] = [

𝑁1(𝑠1) 0 0 ⋯ 𝑁𝑛(𝑠1) 0 0
0 𝑁1(𝑠1) 0 ⋯ 0 𝑁𝑛(𝑠1) 0
0 0 𝑁1(𝑠1) ⋯ 0 0 𝑁𝑛(𝑠1)

] Eq. (4.24) 

and {𝑋𝑔} is the vector of global coordinates of all the nodes of the element. 
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{𝑋𝑔} = [𝑥1𝐺,1
𝑔

𝑥2𝐺,1
𝑔

𝑥3𝐺,1
𝑔

⋯ 𝑥1𝐺,𝑛
𝑔

𝑥2𝐺,𝑛
𝑔

𝑥3𝐺,𝑛
𝑔

]
𝑇
 Eq. (4.25) 

 Known the displacement of the element in the global reference system, {𝑈𝑔}, it’s 

possible to obtain the displacement of generic point of the element, in the normalized 

coordinates.  

{𝑈𝑔(𝑠1)} = ∑𝑁𝑘(𝑠1) ∙ {𝑈̅
𝑔}𝑘

𝑛

𝑘=1

 Eq. (4.26) 

where {𝑈̅𝑔}𝑘 is the vector of displacement of 𝑘-th node. The Eq. (4.26) can be write in 

the matrix form.  

{𝑈𝑔(𝑠1)} =

[
 
 
 
 
 
 
 
𝑢1𝐺
𝑔

𝑢2𝐺
𝑔

𝑢3𝐺
𝑔

𝜃1
𝑔

𝜃2
𝑔

𝜃3
𝑔
]
 
 
 
 
 
 
 

= [𝑁𝑢(𝑠1)]{𝑈̅
𝑔} Eq. (4.27) 

where [𝑁𝑢] is the matrix of the shape functions defined in Eq. (4.28). 

[𝑁𝑢] =

[
 
 
 
 
 
𝑁1(𝑠1) 0 0 0 0 0 ⋯ 𝑁𝑛(𝑠1) 0 0 0 0 0

0 𝑁1(𝑠1) 0 0 0 0 ⋯ 0 𝑁𝑛(𝑠1) 0 0 0 0
0 0 𝑁1(𝑠1) 0 0 0 ⋯ 0 0 𝑁𝑛(𝑠1) 0 0 0

0 0 0 𝑁1(𝑠1) 0 0 ⋯ 0 0 0 𝑁𝑛(𝑠1) 0 0
0 0 0 0 𝑁1(𝑠1) 0 ⋯ 0 0 0 0 𝑁𝑛(𝑠1) 0

0 0 0 0 0 𝑁1(𝑠1) ⋯ 0 0 0 0 0 𝑁𝑛(𝑠1)]
 
 
 
 
 

 Eq. (4.28) 

and {𝑈̅𝑔} is the vector of displacement of all the nodes of the element. 

{𝑈̅𝑔} = [𝑢1𝐺,1
𝑔

𝑢2𝐺,1
𝑔

𝑢3𝐺,1
𝑔

𝜃1,1
𝑔

𝜃2,1
𝑔

𝜃3,1
𝑔

⋯ 𝑥1𝐺,𝑛
𝑔

𝑥2𝐺,𝑛
𝑔

𝑢3𝐺,𝑛
𝑔

𝜃1,𝑛
𝑔

𝜃2,𝑛
𝑔

𝜃3,𝑛
𝑔
]
𝑇

 Eq. (4.29) 

 The strains at a point of the element, in the normalized coordinates 𝑠1, can be 

obtained from the displacement of the nodes, by the Eq. (4.30).  

{𝜀 ̅𝑙(𝑠1)} = ∑[𝐵𝑘(𝑠1)]{𝑈
𝑙}𝑘

𝑛

𝑘=1

 Eq. (4.30) 

where [𝐵𝑘] is the strain matrix of 𝑘-th node, in the normalized coordinates; {𝑈𝑙}𝑘 is the 

vector of displacement of 𝑘-th node in the local coordinates. Considering the Eq. (4.10), 

the Eq. (4.30) can be write in the following matrix form.  



52 
 

{𝜀̅𝑙(𝑠1)} =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑢1𝐺
𝑙

𝜕𝑥1
𝑙

𝜕𝑢2𝐺
𝑙

𝜕𝑥1
𝑙 − 𝜃3

𝑙

𝜕𝑢3𝐺
𝑙

𝜕𝑥1
𝑙 + 𝜃2

𝑙

𝜕𝜃1
𝑙

𝜕𝑥1
𝑙

𝜕𝜃2
𝑙

𝜕𝑥1
𝑙

𝜕𝜃3
𝑙

𝜕𝑥1
𝑙 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= [𝐵(𝑠1)]{𝑈̅
𝑙} = [𝐵(𝑠1)][𝑇

𝑙𝑔]{𝑈̅𝑔} = [𝐵̅(𝑠1)]{𝑈̅
𝑔} Eq. (4.31) 

where [𝐵̅] is the strain matrix. This matrix, with the hypothesis that the barycentre 

coincides with the shear centre, is represented in the Eq. (4.33) [13]. 

[𝐵𝑘̅̅̅̅ ] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 0 0 0 0 0

0
𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 0 0 0 −𝑁𝑘(𝑠1)

0 0
𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 0 𝑁𝑘(𝑠1) 0

0 0 0
𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 0 0

0 0 0 0
𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 0

0 0 0 0 0
𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Eq. (4.32) 

[𝐵̅] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑁1(𝑠1)

𝑑𝑥1
𝑙 0 0 0 0 0 ⋯

𝑑𝑁𝑛(𝑠1)

𝑑𝑥1
𝑙 0 0 0 0 0

0
𝑑𝑁1(𝑠1)

𝑑𝑥1
𝑙 0 0 0 −𝑁1(𝑠1) ⋯ 0

𝑑𝑁𝑛(𝑠1)

𝑑𝑥1
𝑙 0 0 0 −𝑁𝑛(𝑠1)

0 0
𝑑𝑁1(𝑠1)

𝑑𝑥1
𝑙 0 𝑁1(𝑠1) 0 ⋯ 0 0

𝑑𝑁𝑛(𝑠1)

𝑑𝑥1
𝑙 0 𝑁𝑛(𝑠1) 0

0 0 0
𝑑𝑁1(𝑠1)

𝑑𝑥1
𝑙 0 0 ⋯ 0 0 0

𝑑𝑁𝑛(𝑠1)

𝑑𝑥1
𝑙 0 0

0 0 0 0
𝑑𝑁1(𝑠1)

𝑑𝑥1
𝑙 0 ⋯ 0 0 0 0

𝑑𝑁𝑛(𝑠1)

𝑑𝑥1
𝑙 0

0 0 0 0 0
𝑑𝑁1(𝑠1)

𝑑𝑥1
𝑙 ⋯ 0 0 0 0 0

𝑑𝑁𝑛(𝑠1)

𝑑𝑥1
𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 Eq. (4.33) 

and {𝑈̅𝑔} is the vector of displacement of all nodes of the element defined in Eq. (4.29). 
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In order to evaluate the term  𝑑𝑁𝑘(𝑠1)
𝑑𝑥1

𝑙  of the matrix [𝐵̅]𝑘 it’s possible to adopt the Eq. 

(4.29) [13]. 

𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 =

𝑑𝑁𝑘(𝑠1)

𝑑𝑠1

𝑑𝑠1

𝑑𝑥1
𝑙  Eq. (4.34) 

where the term 𝑑𝑥1
𝑙

𝑑𝑠1
, which is the jacobian respect to the normalized coordinates 𝑠1, is 

calculated according to Eq. (4.35). 

𝑑𝑥1
𝑙

𝑑𝑠1
= {[∑

𝑑𝑁𝑘(𝑠1)

𝑑𝑠1

𝑛

𝑘=1

𝑥1𝐺,𝑘
𝑔

]

2

+ [∑
𝑑𝑁𝑘(𝑠1)

𝑑𝑠1

𝑛

𝑘=1

𝑥2𝐺,𝑘
𝑔

]

2

+ [∑
𝑑𝑁𝑘(𝑠1)

𝑑𝑠1

𝑛

𝑘=1

𝑥3𝐺,𝑘
𝑔

]

2

}

1/2

= 𝐽 Eq. (4.35) 

Then, by replacing Eq. (4.35) into Eq. (4.34), the following equation is obtained. 

𝑑𝑁𝑘(𝑠1)

𝑑𝑥1
𝑙 =

𝑑𝑁𝑘(𝑠1)

𝑑𝑠1

1

𝐽
 Eq. (4.36) 

 

4.1.2. Stiffness matrix 

Considering a beam element of volume 𝑉 subjected to generalized forces 

distributed along the volume, {𝑞𝑉
𝑔
}, generalized forces distributed along the surface, {𝑞𝑆

𝑔
}, 

and generalized forces applied to the nodal points of the structure, {𝑄𝑔}. The element is 

subjected to virtual strains and displacements, 𝛿{𝜀} and 𝛿{𝑈}, therefore, applying the 

principle of virtual works, the internal work is equal to work given by external forces.  

𝛿𝑊𝑖𝑛𝑡 = 𝛿𝑊𝑒𝑥𝑡 Eq. (4.37) 

The work given by the external forces is defined by Eq. (4.38). 

𝛿𝑊𝑒𝑥𝑡 = ∫𝛿{𝑈𝑔}𝑇

𝑉

{𝑞𝑉
𝑔
} 𝑑𝑉 + ∫𝛿{𝑈𝑔}𝑇

𝑆

{𝑞𝑆
𝑔
} 𝑑𝑆 + 𝛿{𝑈𝑔}𝑇{𝑄𝑔} Eq. (4.38) 

While, the work given by the internal forces is defined by Eq. (4.39). 

𝛿𝑊𝑖𝑛𝑡 = ∫𝛿{𝜀
𝑙}𝑇{𝜎𝑙} 𝑑𝑉

𝑉

+∫𝛿{𝑢𝑔}𝑇𝜌{𝑢̈𝑔} 𝑑𝑉
𝑉

= 𝛿𝑊𝑖,𝑠𝑡 + 𝛿𝑊𝑖,𝑑𝑖𝑛 Eq. (4.39) 

The static part of the internal work is defined by Eq. (4.40). 
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𝛿𝑊𝑖,𝑠𝑡 = ∫𝛿{𝜀
𝑙}𝑇{𝜎𝑙} 𝑑𝑉

𝑉

= ∫(𝛿𝜀1
𝑙𝜎1

𝑙 + 𝛿𝛾12
𝑙 𝜏12

𝑙 + 𝛿𝛾13
𝑙 𝜏13

𝑙 ) 𝑑𝑉
𝑉

 Eq. (4.40) 

Taking into account the Eq. (4.11), Eq. (4.12), Eq. (4.17), is possible to obtain the 

following expression of the static internal work. 

𝛿𝑊𝑖,𝑠𝑡 

 

 

= ∫𝛿{𝜀𝑙}𝑇{𝜎𝑙} 𝑑𝑉
𝑉

= ∫𝛿{𝜀̅𝑙}𝑇[𝑅]𝑇[𝐷]{𝜀𝑙} 𝑑𝑉
𝑉

= 

= ∫ 𝛿 {𝜀̅𝑙}
𝑇
[𝑅]𝑇[𝐷][𝑅] {𝜀̅𝑙}  𝑑𝐿 = ∫ 𝛿 {𝜀̅𝑙}

𝑇
[𝐷̅] {𝜀̅𝑙}  𝑑𝐿

𝐿𝐿
 

Eq. (4.41) 

Considering the Eq. (4.33), The Eq. (4.41) could be modified in the Eq. (4.42). 

𝛿𝑊𝑖,𝑠𝑡 = ∫𝛿{𝜀̅
𝑙}𝑇[𝐷̅]{𝜀 ̅𝑙} 𝑑𝐿

𝐿

= ∫𝛿{𝑈̅𝑔}𝑇[𝐵̅]𝑇[𝐷̅][𝐵̅]{𝑈̅𝑔} 𝑑𝐿
𝐿

 Eq. (4.42) 

Converting the Eq. (4.42) in normalized coordinates, it results the following expression. 

𝛿𝑊𝑖,𝑠𝑡 = 𝛿{𝑈̅
𝑔}𝑇 (∫ [𝐵̅]𝑇[𝐷̅][𝐵̅] 𝐽 𝑑𝑠1

+1

−1

) {𝑈̅𝑔} Eq. (4.43) 

where  

[𝐾] = ∫ [𝐵̅]𝑇[𝐷̅][𝐵̅] 𝐽 𝑑𝑠1

+1

−1

 Eq. (4.44) 

is the stiffness matrix of the element. Applying the numerical integration of Gauss-

Legendre to calculation of the stiffness matrix [14] is obtained the Eq. (4.45). 

[𝐾] = ∑([𝐵̅]𝑇[𝐷̅][𝐵̅] 𝐽) 𝑠1
𝑝  𝑊𝑝

𝑁𝑠1

𝑝=1

 Eq. (4.45) 

where 𝑁𝑠1 is the number of the integration points in the direction 𝑠1; 𝑊𝑝 is the weight 

associated with the integration point of coordinates 𝑠1
𝑝. In case of element with two or 

three nodes, the value of 𝐽 is equal to half length of the element (𝐽 = 𝐿/2). 

 

4.1.3. Mass matrix 

 Considering a beam element of volume 𝑉 subjected to generalized forces 

distributed along the volume, {𝑞𝑉
𝑔
}, generalized forces distributed along the surface, {𝑞𝑆

𝑔
}, 



55 
 

and generalized forces applied to the nodal points of the structure, {𝑄𝑔}. The element is 

subjected to virtual strains and displacements, 𝛿{𝜀} and 𝛿{𝑈}, therefore, applying the 

principle of virtual works, the internal work is equal to work given by external forces (Eq. 

(4.37)). 

Starting from the internal work in Eq. (4.39), the dynamic component is defined 

by Eq. (4.46). 

𝛿𝑊𝑖,𝑑𝑖𝑛 = ∫𝛿{𝑢
𝑔}𝑇𝜌{𝑢̈𝑔} 𝑑𝑉

𝑉

 Eq. (4.46) 

Taking into account the Eq. (4.7), Eq. (4.9), Eq. (4.10), Eq. (4.27), is possible to obtain 

the following expression of the dynamic internal work. 

𝛿𝑊𝑖,𝑑𝑖𝑛 

 

 

= ∫𝛿{𝑢𝑔}𝑇𝜌{𝑢̈𝑔} 𝑑𝑉
𝑉

= ∫𝛿{𝑈𝑔}𝑇[𝑅]𝑇𝜌[𝑅]{𝑈̈𝑔} 𝑑𝑉
𝑉

= 

= ∫ 𝛿 {𝑈𝑙}
𝑇
[𝑇𝑙𝑔]

𝑇
[𝑅]𝑇𝜌[𝑅] [𝑇𝑙𝑔] {𝑈̈

𝑙
}  𝑑𝑉

𝑉
 

Eq. (4.47) 

The nodal displacement vector {𝑈𝑙} remains constant along the volume of integration, 

therefore, the Eq. (4.47) can be written in the Eq. (4.48). 

𝛿𝑊𝑖,𝑑𝑖𝑛 

 

 

= 𝛿{𝑈𝑙}𝑇 ∫[𝑁]𝑇[𝑇𝑙𝑔]𝑇[𝑅]𝑇𝜌[𝑅][𝑇𝑙𝑔][𝑁]𝑑𝑉

𝑉

{𝑈̈𝑙} = 

= 𝛿{𝑈𝑙}𝑇∫[𝑁]𝑇[𝑚̃][𝑁]𝑑𝐿

𝐿

{𝑈̈𝑙} 

Eq. (4.48) 

where [𝑚̃]  is the mass matrix of the section, defined by Eq. (4.49). 

[𝑚̃] = ∫[𝑇𝑙𝑔]𝑇[𝑅]𝑇𝜌[𝑅][𝑇𝑙𝑔]𝑑𝐴

𝐴

 Eq. (4.49a) 

[𝑚̃] = ∫

[
 
 
 
 
 
 
1 0 0 0 𝑥3

𝑙 −𝑥2
𝑙

0 1 0 −𝑥3
𝑙 0 0

0 0 1 𝑥2
𝑙 0 0

0 −𝑥3
𝑙 𝑥2

𝑙 (𝑥3
𝑙 )2 + (𝑥2

𝑙 )2 0 0

𝑥3
𝑙 0 0 0 (𝑥3

𝑙 )2 −𝑥2
𝑙𝑥3
𝑙

−𝑥2
𝑙 0 0 0 −𝑥2

𝑙𝑥3
𝑙 (𝑥2

𝑙 )2 ]
 
 
 
 
 
 

𝜌𝑑𝐴

𝐴

 Eq. (4.49b) 
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Solving the integral separately, it obtained the results in Eq. (4.50).  

 
∫𝜌𝑑𝐴 = 𝜌𝐴 = 𝑚

𝐴

 [
𝑘𝑔

𝑚
] Eq. (4.50a) 

 
∫𝜌𝑥3

𝑙𝑑𝐴 = 𝑆𝑥2
𝐴

 [
𝑘𝑔 ∙ 𝑚

𝑚
] Eq. (4.50b) 

 
∫𝜌𝑥2

𝑙𝑑𝐴 = 𝑆𝑥3
𝐴

   [
𝑘𝑔 ∙ 𝑚

𝑚
] Eq. (4.50c) 

 
∫𝜌[(𝑥3

𝑙 )2 + (𝑥2
𝑙 )2]𝑑𝐴 = 𝐼𝑥1𝑥1

𝐴

   [
𝑘𝑔 ∙ 𝑚2

𝑚
] Eq. (4.50d) 

 
∫𝜌(𝑥3

𝑙 )2𝑑𝐴 = 𝐼𝑥2𝑥2
𝐴

 [
𝑘𝑔 ∙ 𝑚2

𝑚
] Eq. (4.50e) 

 
∫𝜌(𝑥2

𝑙 )2𝑑𝐴 = 𝐼𝑥3𝑥3
𝐴

 [
𝑘𝑔 ∙ 𝑚2

𝑚
] Eq. (4.50f) 

 
∫−𝜌𝑥2

𝑙𝑥3
𝑙𝑑𝐴 = 𝐼𝑥2𝑥3

𝐴

   [
𝑘𝑔 ∙ 𝑚2

𝑚
] Eq. (4.50g) 

Therefore, the mass matrix in the Eq. (4.49b) can be expressed as in Eq. (4.51).  

[𝑚̃𝑙] = ∫[𝑅]𝑇𝜌[𝑅]𝑑𝐴

𝐴

=

[
 
 
 
 
 
 
𝑚 0 0 0 𝑆𝑥2

𝑙 −𝑆𝑥3
𝑙

0 𝑚 0 −𝑆𝑥2
𝑙 0 0

0 0 𝑚 𝑆𝑥3
𝑙 0 0

0 −𝑆𝑥2
𝑙 𝑆𝑥3

𝑙 𝐼𝑥1𝑥1
𝑙 0 0

𝑆𝑥2
𝑙 0 0 0 𝐼𝑥2𝑥2

𝑙 𝐼𝑥2𝑥3
𝑙

−𝑆𝑥3
𝑙 0 0 0 I𝑥2𝑥3

𝑙 𝐼𝑥3𝑥3
𝑙 ]

 
 
 
 
 
 

 Eq. (4.51) 

Converting in normalized coordinates, we obtain the Eq. (4.52). 

𝛿𝑊𝑖,𝑑𝑖𝑛 = 𝛿{𝑈𝑙}𝑇 ( ∫ [𝑁]𝑇[𝑚̃𝑙][𝑁] 𝐽 𝑑𝑠1

+1

−1

){𝑈̈𝑙} Eq. (4.52)  

Therefore, the mass matrix of the element is defined by Eq. (4.53). 

[𝑀] = ∫ [𝑁]𝑇[𝑚̃𝑙][𝑁] 𝐽 𝑑𝑠1

+1

−1

 Eq. (4.53)  
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Applying Gauss-Legendre Numerical Integration to calculation of the mass matrix, the 

Eq. (4.53) become the following. 

[𝑀] = ∑{[𝑁]𝑇[𝑚̃𝑙][𝑁] 𝐽}𝑠1
𝑝

𝑁𝑠1

𝑝=1

𝑊𝑝 Eq. (4.54)  

Considering that the element, in its thickness, is discretized in fibers, and applying 

Gauss-Legendre numerical integration, the mass sub-matrices are obtained according to 

the following expressions. 

- The axial component; 

[𝑀]𝑎
𝑏 =∑{𝑁𝑎

𝑇𝑚̃𝑎
𝑏𝑁𝑎 𝐽}𝑠1

𝑝

𝑁𝑠1
𝑎

𝑝=1

𝑊𝑝 Eq. (4.55)  

where 𝑚̃𝑎
𝑏 is axial component of the mass sub-matrix of the section of integration 

point, Eq. (4.56).  

𝑚̃𝑎
𝑏 = ∑ 𝜌𝑖

𝑏

𝑁𝐺sec 𝑡

𝑖=1

𝐴𝐺𝑃,𝑖 Eq. (4.56)  

- The shear component;  

[𝑀]𝑐
𝑏 =∑{[𝑁]𝑐

𝑇[𝑚̃𝑐
𝑏][𝑁]𝑐 𝐽}𝑠1

𝑝
(𝑒)

𝑁𝑠1
𝑐

𝑝=1

𝑊𝑝 Eq. (4.57)  

where [𝑚̃𝑐
𝑏] is the shear component of the mass sub-matrix of the section of 

integration point, Eq. (4.58).  

[𝑚̃𝑐
𝑏] =  ∑ [

𝜌𝑖
𝑏𝐴𝐺𝑃,𝑖 0

0 𝜌𝑖
𝑏𝐴𝐺𝑃,𝑖

]

𝑁𝐺sec 𝑡

𝑖=1

 Eq. (4.58)  
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- The torsion component;  

[𝑀]𝑡
𝑏 =∑{𝑁𝑡

𝑇𝑚̃𝑡
𝑏𝑁𝑡𝐽}𝑠1

𝑝
(𝑒)

𝑁𝑠1
𝑡

𝑝=1

𝑊𝑝 Eq. (4.59)  

where 𝑚̃𝑡
𝑏 is the torsion component of the mass sub-matrix of the section of 

integration point, Eq. (4.60).  

𝑚̃𝑡
𝑏 = ∑ 𝜌𝑖

𝑏

𝑁𝐺sec 𝑡

𝑖=1

[(𝑥3,𝑖
𝑙 )

2
+ (𝑥2,𝑖

𝑙 )
2
]𝐴𝐺𝑃,𝑖 Eq. (4.60)  

- The bending component; 

[𝑀]𝑓
𝑏 =∑{[𝑁]𝑓

𝑇[𝑚̃𝑓
𝑏][𝑁]𝑓𝐽}𝑠1

𝑝

(𝑒)

𝑁𝑠1
𝑓

𝑝=1

𝑊𝑝 Eq. (4.61)  

where [𝑚̃𝑓
𝑏] is the bending component of the mass sub-matrix of the section of 

integration point, Eq. (4.62).  

[𝑚̃𝑓
𝑏] =  ∑ [

𝜌𝑖
𝑏(𝑥3,𝑖

𝑙 )
2
𝐴𝐺𝑃,𝑖 −𝜌𝑖

𝑏𝑥3,𝑖
𝑙 𝑥2,𝑖

𝑙 𝐴𝐺𝑃,𝑖

−𝜌𝑖
𝑏𝑥3,𝑖

𝑙 𝑥2,𝑖
𝑙 𝐴𝐺𝑃,𝑖 𝜌𝑖

𝑏(𝑥2,𝑖
𝑙 )

2
𝐴𝐺𝑃,𝑖

]

𝑁𝐺sec 𝑡

𝑖=1

 Eq. (4.62)  

- The interaction axial-bending component;  

[𝑀]𝑎𝑓
𝑏 =∑{𝑁𝑎

𝑇[𝑚̃𝑎𝑓
𝑏 ][𝑁]𝑓𝐽}𝑠1

𝑝

(𝑒)

𝑁𝑠1
𝑎𝑓

𝑝=1

𝑊𝑝 = [[𝑀]𝑓𝑎
(𝑒)
]𝑇 Eq. (4.63)  

where [𝑚̃𝑎𝑓
𝑏 ] is the interaction axial-bending component of the mass sub-matrix 

of the section of integration point, Eq. (4.64).  

[𝑚̃𝑎𝑓
𝑏 ] =  ∑ [𝜌𝑖

𝑏𝑥3,𝑖
𝑙 𝐴𝐺𝑃,𝑖 −𝜌𝑖

𝑏𝑥2,𝑖
𝑙 𝐴𝐺𝑃,𝑖]

𝑁𝐺sec 𝑡

𝑖=1

 Eq. (4.64)  
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- The interaction shear-torsion component; 

[𝑀]𝑐𝑡
𝑏 =∑{[𝑁]𝑐

𝑇[𝑚̃𝑐𝑡
𝑏 ]𝑁𝑡]

𝑇𝐽}
𝑠1
𝑝
(𝑒)

𝑁𝑠1
𝑐𝑡

𝑝=1

𝑊𝑝 = [[𝑀]𝑡𝑐
(𝑒)
]𝑇 Eq. (4.65)  

where [𝑚̃𝑐𝑡
𝑏 ] is the interaction shear-torsion component of the mass sub-matrix of 

the section of integration point, Eq. (4.66).  

[𝑚̃𝑐𝑡
𝑏 ] =  ∑ [

−𝜌𝑖
𝑏𝑥3,𝑖

𝑙 𝐴𝐺𝑃,𝑖

𝜌𝑖
𝑏𝑥2,𝑖

𝑙 𝐴𝐺𝑃,𝑖
]

𝑁𝐺sec 𝑡

𝑖=1

 Eq. (4.66)  

 

4.1.4. Nonlinear static analysis model 

The behaviour of reinforced concrete elements is clearly non-linear. Not this one 

linearity results, fundamentally, from the fact that the constitutive laws of materials are 

nonlinear. 

An element is discretized in a 3D Timoshenko beam with two nodes, with six degrees of 

freedom per node. Deformations and stresses are evaluated in the Gauss points through 

the constitutive laws of the materials of each finite element. Longitudinal reinforcement 

it is also taken into consideration, being discretized by finite elements. The behaviour of 

the transverse reinforcement is governed by constitutive laws no linear. 

The solution of the non-linear equilibrium system of equations was obtained through the 

application of the Newton-Raphson method [13]. 

Taking into account the division of the section into finite elements, the stiffness matrix is 

obtained unlike what is described in section 4.1.1. 

When the response of the elements of a structure becomes nonlinear, stiffness begins 

depending on the state of deformation to which these elements are subject. The state of 

deformation in a section of a structural element can be different at each point, which also 

leads to different stress states. Since the constitutive laws of materials are non-linear, the 

contribution to the stiffness matrix of each section is different. The stiffness matrix 

obtained in this way is a tangent stiffness matrix. 
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The relationship between the stress state and the deformation state established in Eq. 

(4.12) is rewritten in incremental mode to analyse the nonlinear behaviour of material, as 

in Eq. (4.67). 

[∆𝜎] = [𝐷𝑇][∆𝜀]  Eq. (4.67)  

where [𝐷𝑇] is the tangent stiffness matrix. 

 The calculation of the stiffness matrix on each element is carried out using the 

following procedure (Figure 40): 

- Evaluation of generalized displacements {𝑈} in the integration points of each 3D 

element. 

- Known generalized displacements in the nodes, calculation of deformations {𝜀} at 

the level of each Gauss point of the finite elements that discretizes the section; 

- Calculation of the tangent stiffness matrix [𝐷𝑇] at the level of each Gauss point of 

the section, taking into account the constitutive laws of the materials; 

- Calculation of the stiffness matrix of the 3D element,  [𝐾𝑇]. 

 

Figure 40 - Scheme for obtaining the stiffness matrix of an element [13]. 

 The evaluation process of the nodal forces equivalent to the stress state of the 

structure is identical to the calculation of the stiffness matrix.  

To calculate these internal forces in each element, the following procedure is performed 

(Figure 41): 

- Evaluation of generalized displacements {𝑈}  in the integration points of each 3D 

element. 
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- Known the generalized displacements in the nodes, calculation of deformations 

{𝜀} at the level of each Gauss point of the finite elements that discretizes the 

section; 

- Calculation of the stresses {𝜎} at the Gauss point of each section, taking into 

account the constitutive laws of the intervening materials; 

- Integration of tensions throughout the section to obtain efforts generalized 

respondent {𝐹}; 

- Calculation of the internal forces of the 3D element, {𝑓𝑖𝑛𝑡}. 

 

Figure 41 – Scheme for obtaining the internal forces of an element [13]. 

 

4.2. Software for design the element 
 

This chapter is dedicated to the presentation of the software used to simulate the 

behaviour of the slab element in fiber reinforced concrete (FRC) with 3D-SRT 

reinforcement subjected to the four-point bending tests.  

To model the test, explained in chapter 3, the software called Docros (Design Of CROss 

Section) and the program with finished elements DefDocros were used. For the design of 

this model, the guidelines described in chapter 2 were followed and the data obtained 

from the experimental tests described in chapter 3 were used. 

The first software, Docros, uses the constitutive laws and the geometry of the section to 

derive the trend of internal stresses with the increase of internal deformations. The second 

one, DefDocros, takes the data concerning the section from Docros and with them, once 

the geometry of the beam and the boundary conditions have been set, it provides the 

displacement of each node for each increase of load. 
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 A main feature of the software is the possibility to perform a comparative analysis 

between GFRP reinforcements and steel reinforcements of cross sections, to evaluate the 

different behaviour provided by the two materials. 

4.2.1. Analysis of cross-sections 

An essential requirement of an analysis and design software is the development 

of a versatile calculation module to perform analysis of cross-sections. In the present 

section is presented the methodology adopted in Docros to conduct analysis of cross-

sections submitted to bending with or without axial force. The main purpose of this 

software is to provide the section moment-curvature diagram. 

The available cross-section geometry to be adopted is limited to rectangular shapes. 

The input data that the software needs are the following: 

- Geometry of the cross section. 

- Constitutive law of the fiber reinforced concrete. 

- Constitutive law of the GFRP bars. 

The geometry of the cross-section considered is represented in Figure 42. The 

transverse and diagonal elements have been neglected as they do not offer bending 

resistance. Also the longitudinal bars in the top of the section are neglected, because the 

GFRP offer tensile strength only. In fact, the reinforcement is simulated as 8Ø5 at the 

bottom of the section. 

 

Figure 42 – Simplified cross section of slab for analytic model (measure in mm). 

In Table 12 is possible to see the values of the geometry property used for designing the 

cross-section. 
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Table 12 - Values of the geometry property used for designing the cross-section of the slab. 

Base of the cross-section  𝐵 350 𝑚𝑚 

Height of the cross-section 𝐻 100 𝑚𝑚 

Concrete cover 𝑐 22.5 𝑚𝑚 

Total tensile area of the reinforcement (8Ø5)   𝐴𝑠 157 𝑚𝑚2 

 

  The constitutive law and the post-cracking behaviour of the fiber reinforced 

concrete are shown in Figure 43.  The values necessary to model the constitutive law have 

been obtained from the experimental results. In particular, the data relating to the 

compression behaviour were obtained from the compression test described in chapter 

3.2.1; the data relating to the post-cracking behaviour of the FRC were obtained following 

the guidelines described in chapter 2.2 and the results described in the section 3.3.3.  

 
Figure 43 – Model of the constitutive law and post-cracking behaviour of FRC. 

In the following tables are shown the values utilized for realize the constitutive law of 

FRC. In particular in Table 13 the reference values for the compression behaviour are 

shown. 
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Table 13 - Values for the compression behaviour of constitutive law of FRC. 

Concrete initial Young’s modulus 𝐸𝑐 34870 𝑀𝑝𝑎 

Concrete strain at compressive strength  𝜀𝑐𝑐 2.7‰ 

Confined concrete compressive strength 𝑓𝑐𝑐 45.6 𝑀𝑝𝑎 

Non-dimensional critical strain on the compression envelope 𝜀𝑐𝑐𝑟  2.9‰ 

 

After the value of non-dimensional critical strain on the compression envelope,  

𝜀𝑐𝑐𝑟, the law not collapse to 0, but continue linearly following the tangent at that point. In 

fact, this low value is to have a very low tangential value, to decay the curve slowly. This 

behaviour is justified by the fact that the reinforcement 3D-SRT creates an effect of 

confinement to the concrete. 

Instead, in Table 14 the reference values for the tensile and post-cracking behaviour are 

instead shown. 

Table 14 - Values for the tensile and post-cracking behaviour of FRC. 

Strain at the end of the 1st linear portion of the multilinear tensile envelope 𝜀𝑐𝑡1 0.1‰ 

Stress at the end of the 1st linear portion of the multilinear tensile envelope 𝑓𝑐𝑡1 3,486 𝑀𝑝𝑎 

Strain at the end of the 2nd linear portion of the multilinear tensile envelope 𝜀𝑐𝑡2 0.15‰ 

Stress at the end of the 2nd linear portion of the multilinear tensile envelope 𝑓𝑐𝑡2 3,87 𝑀𝑝𝑎 

Percentage of the tensile strength, for defining the 1st post-peak point 𝛼1 0.93 

1st post-peak point of the crack opening 𝑤1 0.01 𝑚𝑚 

Percentage of the tensile strength, for defining the 2nd post-peak point 𝛼2 0.69 

2nd post-peak point of the crack opening 𝑤2 0.92 𝑚𝑚 

Ultimate post-peak point of the crack opening 𝑤4 11.59 𝑚𝑚 

Non-linear hinge length 𝑙𝑐𝑠 46.38 𝑚𝑚 

 

 The constitutive law of glass fiber reinforced polymer is linear elastic, as shown 

in Figure 44. The values necessary to model the constitutive law have been obtained from 

the experimental results, in particular, the data relating to the tensile behaviour were 

obtained from the tensile test described in chapter 3.2.2. 
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Figure 44 – Model of the constitutive law of GFRP. 

In the Table 15 are shown the values utilized for realize the constitutive law of GFRP.  

                            Table 15 - Values for the behaviour of GFRP. 

Tensile strength 𝑓𝑓,𝑚𝑎𝑥  825.03 𝑀𝑝𝑎 

Elasticity modulus 𝐸𝑓 42520 𝑀𝑝𝑎 

Rupture strain 𝜀𝑓,𝑚𝑎𝑥  1.94 % 

 

 All output data are presented in the form of a datasheet and graphs. It’s possible 

to obtain the tension field in each layer the section; it’s possible to obtain the graphics 

results of the trend of curvature, moment, neutral axis and crack width.  

The main output data necessary for the analysis of the element are the following:  

- The graphic trend of the top layer in compression, to view the maximum 

compression to which the concrete is subjected; 

- The graphic trend of the GFRP bars in tension, to view their contribution within 

the section.  

- The moment-curvature diagram. It’s the most important, to see the maximum 

bending resistance the cross-section and to use its values as input data to be 

inserted in DefDocros. 
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4.2.2. Analysis of the slab 

In the present section is presented the methodology adopted in DefDocros to 

conduct analysis of a beam submitted to differ boundary conditions. The main purpose of 

this software is to provide the section load-deflection diagram to compare it with the 

results obtained experimentally. 

The input data that the software needs are the following: 

- The moment-curvature diagram of the cross-section of the element. 

- The geometry of the beam and the boundary conditions. 

- The increment of load in each step. 

As described in the chapter 4.2.1, the curvature moment diagram is taken from the 

data obtained with Docros. 

The slab is a simply supported beam as shown in Figure 45. For a greater accuracy of 

the results, the beams were divided into 57 nodes and 56 elements. Each element is 10 

mm long except the two elements in the middle which are 5 mm long so as to have one 

node in the middle of the beam.  

 

Figure 45 – Static scheme of the beam subjected to 4PBT. 

 Once geometry and boundary conditions were set, a load increase of 1 kN was 

chosen for each force, therefore ∆𝐹 = 2 𝑘𝑁 in total. 

 The procedure adopted by the finite element program for the evaluation of the 

displacement of the beam in each node is the following (Figure 46) [16]: 

- Update the total load applied. 

- Calculate the value of the moment in each node.  



67 
 

- Once the moment value is known, the tangential stiffness matrix can be obtained 

using the bending moment diagram. 

- Obtained the tangential stiffness matrix it is possible to find the increase of 

displacement using the Eq. (4.68). 

[∆𝑢] = [𝐾𝑇]
−1[∆𝐹]  Eq. (4.68)  

- Obtain the total displacement, adding the increase to the value of displacement of 

the previous step. 

 

Figure 46 - Numerical approach to simulate the deformational behaviour of structural elements. [16] 
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4.3. Numerical Simulation  
 

4.3.1. Comparison between numerical model and experimental results 

To calibrate and evaluate the performance of the developed model, the 

experimental tests performed and described in this chapter were simulated. Some nodes 

(numbers 11, 29 and 47) are positioned in the same place where the LVDTs are, so that 

the results obtained through the numerical model could be compared with the results 

obtained experimentally (Figure 22). 

The results of the numerical simulation have been superimposed on the 

experimental results obtained in chapter 3. 

To check if the numerical model works perfectly, the top layer in compression and the 

tension of the GFRP bars in the cross section were checked. The software is set to stop 

when the maximum compression deformation reaches 0.007. In Figure 47 and Figure 48 

is possible to see the stress field of top layer and GFRP bars, respectively.  

 
Figure 47 – Numerical simulation of top layer of cross-section (compression negative).   
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Figure 48 - Numerical simulation of GFRP bars. 

Figure 49 shows the moment of curvature diagram provided from the software. 

 

Figure 49 – Moment-Curvature diagram of the cross-section in the numerical model. 

As described in the previous section, it is possible to obtain the load-deflection diagram. 

In the following figures the results of the numerical model are shown and compared with 

the results of the experimental test. Figure 50 refers to the half of the beam. While, Figure 

51 and Figure 52 refer to LVDT 176621 and 19379 respectively. 
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Figure 50 - Comparison of the numerical model with experimental results of the center beam. 

 

 

Figure 51 - Comparison of the numerical model with experimental results of the LVDT 176621. 
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Figure 52 - Comparison of the numerical model with experimental results of the LVDT 198379. 

 

With these simulations, it was also intended to show the dependence of the various 

parameters that regulate the constitutive laws of materials, which means that their 

knowledge (and correct determination) is essential to simulate behaviour. 

From this numerical simulation of the experimental tests, it can be verified that the model 

simulates the experimental response of the specimens quite rigorously. 

 In conclusion, it can be said that the model developed is a useful tool in analysis 

of materials with non-linear behaviour of beam elements. Even if only tests on fiber-

reinforced concrete materials with GFRP reinforcement bars have been carried out and 

constitutive laws have been introduced to simulate this type of test, the proposed model 

is a versatile and generalist model. New constitutive laws can be easily introduced and 

therefore simulate, for example the behaviour of concrete elements or elements with 

metallic reinforcement. 
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4.3.2. Comparison between GFRP and steel reinforcement 

Given the reliability of the numerical model, it was possible, by changing the 

constitutive law of the reinforcement, to create elements of fiber-reinforced concrete with 

steel bars. 

Two different quantities of steel reinforcements were compared. The first element has 

approximately the same amount of tensile area, 𝐴𝑠, as the GFRP element described in 

chapter 4.3.1; the second one has the amount of area 𝐴𝑠 necessary to obtain the same 

bending resistance as the GFRP bars. 

In figure 53 the constitutive law adopted for the simulation of steel bars is shown. 

As can be seen, it is an elastic-plastic law with a first linear elastic response and then with 

a polyline that characterizes the plastic region. 

 

Figure 53 - Model of the constitutive law of steel. 

The values used to represent the constitutive law of steel bars respect the parameters 

imposed by Eurocode 2 [7]. In the Table 16 are shown the values utilized for realize the 

constitutive law of steel bars. 
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                             Table 16 - Values for the constitutive law of steel. 

Elasticity modulus 𝐸𝑠 210000 𝑀𝑝𝑎 

Tangent modulus at strain hardening 𝐸𝑠ℎ 2500 𝑀𝑝𝑎 

Yielding strain 𝜀𝑠𝑦 2.38 ‰ 

Yielding stress 𝑓𝑠𝑦 500 𝑀𝑝𝑎 

Hardening strain 𝜀𝑠ℎ 10 ‰ 

Hardening stress 𝑓𝑠ℎ 519 𝑀𝑝𝑎 

Strain at tensile strength 𝜀𝑠𝑢 5 % 

Tensile strength 𝑓𝑠𝑢 550 𝑀𝑝𝑎 

 

The first case concerns the use of 5Ø6, in the second one 5Ø8 are used. Table 17 

compares the tensile area of the model shown in Figure 42 and the area of the steel bars 

used for these models. 

                               Table 17 – Values of tensile area used for the numerical models. 

Reinforcement type Quantity Area 

GFRP bars  8Ø5 157 𝑚𝑚2 

First specimen with steel bars 5Ø6 141 𝑚𝑚2 

Second specimen with steel bars 5Ø8 251 𝑚𝑚2 

 

Analysing the steel bar models with the software, we obtain the stress-stress diagrams 

shown in the figure 54. 

 

Figure 54 - Numerical simulation of steel bars: a) 5Ø6; b) 5Ø8. 
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In figures 55 the moment of curvature diagram of its specimens with steel reinforcement 

is shown. 

 

Figure 55 - Moment-Curvature diagram of the cross-section in the numerical model with steel bars. 

Therefore, it is possible to obtain the load-deflection diagram. In the following figures 

the results of the numerical model are shown and compared with the results of the 

experimental test and the model that represent the specimen with 3D-SRT. 

 

Figure 56 - Comparison of the numerical models, GFRP bars and 5Ø6 steel reinforcement, with 
experimental results in the mid span of the beam. 
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Figure 57 - Comparison of the numerical models, GFRP bars and 5Ø8 steel reinforcement, with 
experimental results in the mid span of the beam. 

From the results obtained, it can be seen that with the same quantity of tensile 

reinforcement, the GFRP bars offer greater resistance. 

The behaviour of the bars in GFRP show better performance during the service 

limit states (SLS), guaranteeing the elastic behaviour under higher loads and 

displacements compared to elements with steel reinforcement. 

A problem with GFRP bars is that they have a fragile collapse, which even if they 

compensate in part for the steel fibers in the concrete matrix, they require high safety 

coefficients at the ultimate limit states (ULS). 
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Chapter 5 
5. Conclusion 
 

5.1. General Conclusion 
 

The main goal of this study is to introduce a new generation material. A durable 

product for future buildings e constructions, made with FRC material reinforced with 

GFRP, in form of reinforcing bars or textile mesh for the construction of prefabricated 

elements.  

During the experimental process, tests were carried out on the beam elements of 

fiber-reinforced concrete subject to bending. To characterize the materials were carried 

out uniaxial compression tests on cylindrical samples, bending tests under three load 

points with notched beams and tensile tests on GFRP bars. 

The work developed was made up of an experimental component e by a numerical 

modelling component in which a code was developed computational for the simulation 

the behaviour of new generation material. 

To simulate the non-linear behaviour of the material, a model based on the finite element 

method was developed. The model allows through constitutive laws appropriate of the 

intervening materials, to represent their nonlinear behaviour of the structures. 

Comparing the numerical results with the results obtained experimentally, it is possible 

conclude that the developed model can evaluate the answer with good approximation of 

the tested beams. 

 

 



77 
 

5.2. Suggestions for future research 
 

The work conducted in this thesis can be further developed, in fact, the following 

list of research topics is proposed: 

- Evaluation of the bond behaviour between GFRP and FRC bars. 

- Implement the analysis of shear behaviour of structures in FRC with 3D-SRT. 

- Deeping in study and creation of numerical models that can evaluate the durability 

and resistance to chemical attacks of GFRP bars. 

- Evaluation of the structural behaviour of prefabricated column elements in FRC 

with 3D-SRT 

- Expansion of a 3D model, so that dynamic analysis can be performed. 

- Assessment of the performance of frame type structures in FRC reinforced with 

3D-SRT and steel bars with a static and dynamic analysis. 

- Pushover analysis of frame type structures in FRC reinforced with 3D-SRT and 

steel bars. 
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