
  

POLITECNICO DI TORINO 
 
 

Collegio di Ingegneria Matematica 
 

Corso di Laurea Magistrale 
in Ingegneria Matematica 

 
Tesi di Laurea Magistrale 

 

Fuzzy transcript annotation with  

domain-specific contextual learning 
 
 
 
 

 
 

Relatore 
 

firma del relatore (dei 
relatori) 

prof. Laura Farinetti 

.....................

...... 

.....................

...... 

 
 
 
 

Candidato 
 
firma del candidato 

XU LIANG



 II 

 

Marzo, 2020 

 

 

  



 III 

Index 

1  Introduction                                                    1 

2   Context                                                         3  

3  Literature of related fields                                        4 

3.1 Named entity recognition(NER) .  .  .  .  .  .  .  .  .  .  .  .  .  . 6 

3.2 Named entity disambiguation (NED).  .  .  .  .  .  .  .  .  .  .  .  7 

        3.2.1 NED approaches glimpse  .  .  .  .  .  .  .  .  .  .  .  .  .  8 

3.2.2 Brief introduction on knowledge base .  .  .  .  .  .  .  .  .  10 

3.3 Practical need of transcript annotation : Fuzzy match .  .  .  .  .  . 11 

3.4 Domain-specific set of contextual keywords learning .  .  .  .  .  .  11 

4  The IR methods and tools used                                   13 

4.1 Google custom search engine .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14 

4.2 MediaWiki .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16 

4.3 Web Crawler on resources of books .  .  .  .  .  .  .  .  .  .  .  .  17 

4.3.1 The composition of python web scrawlers .  .  .  .  .  .  .  . 17 

4.3.2 urllib: the built-in URL handling module of python .  .  .  .  . 18 

4.3.3 Requests: make HTTP requests more human-friendly .  .  .  . 18 

4.3.4 Selenium .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20 

4.3.5 Beautiful Soup .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  21 

4.4 ElasticSearch .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22 

4.4.1 Full-text search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22 

 

4.4.2 Lucene  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   23 

4.4.3 Index documents .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25 



 IV 

4.4.4 Inverted Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26 

4.4.5 Search index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27 

4.4.6 ElasticSearch : Expansion and simplification of Lucene .  .  .  28 

5  Methods proposed and experiments                              29 

5.1 Fuzzy search with Elastic Search .  .  .  .  .  .  .  .  .  .  .  .  .  30 

   5.1.1 A brief start of ES .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30 

        5.1.2 Indexing DBpedia labels into ES .  .  .  .  .  .  .  .  .  .  .  32 

        5.1.3 A try to extend the max Levenshtein distance limit of fuzziness 

more than 2 in 

ES .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .35 

    5.1.4 Current solution : tri-gram analyzer fuzzy search .  .  .  .  . 37 

5.2 Domain specific contextual learning                             40 

        5.2.1 Google custom search on Coursera .  .  .  .  .  .  .  .  .  .  40 

        5.2.2 Web Scrawler on domain specific books on-line .  .  .  .  .  . 44 

        5.2.3 MediaWiki API to retrieve domain specific context .  .  .  .  . 47 

6  Conclusions and future work                                     50 

7  Acknowledgement                                              52 

8  Reference                                                      53                                                



 V 



 1 

Chapter 1  

Introduction 

In recent years, as the on-line study becomes more and more popular among 

students at university and people who continue their self-study after work. Both 

the quantity and the quality of on-line open courses have been continuously 

increasing.  
In Politecnico di Torino, more and more on-line courses have been provided to 

the students for the purpose of after-class study and the preparation for the 

exams. As we know, as long as we have a good understanding of the key concepts 

and topics of a specific course, it will benefit us a lot to obtain a better result 

during the final exam. As a result, the text mining group of Politecnico di Torino 

launched a project which implements a search function within each individual 

video lecture, in order to make it possible for the students can retrieve all the 

time slots which are related to the word they search. For the implementation of 

that purpose, a possible way is to give semantic annotation to the transcripts of 

video lectures, which means to highlight the important words with interpretive 

notations. 

 

For the purpose addressed above, techniques of related fields such as Natural 

language processing, semantic web and information retrieval should come into 

consideration. Especially two of the NLP techniques may become the key to solve 

the problem : named entity recognition(NER) and named entity linking(NEL). 

Since the procedure of giving semantic annotation to each word or phrase in the 

transcript can be seen as the procedure of linking between the raw text word 

and named entities in knowledge base such as Wikidata or DBpedia. Then there 

are mainly two different needs of the project. The first one is to recognize as 

many as possible named entities according to the mentions that appear in the 

transcript text. And the second one is to link the recognized named entities to 

knowledge base. 

 

There are many different aspects of work we can do to help the progress of the 

whole project . And among the different directions, there are mainly two 

contributions of the work in this thesis to our whole project. The first is to find a 

feasible way to tackling the problem of misspellings in the transcript, since 

nowadays the transcripts automatically obtained through means like ‘Google 

transcribe’ usually still contain plenty of incorrect spellings, which will make the 

tasks NER and NEL much more difficult. As a result there’s the need of finding a 

way to recognizing the possible correct spelling of the original word in order to 

make convenience for the NER or NEL tasks. Here we finally reach to the point 



 2 

that we utilize tri-gram analyzer in ElasticSearch which is one of the current 

most popular search engine to implement fuzzy search in DBpedia labels. As a 

result, we can get a ranked list of named entity labels when searching a raw text 

word even in the case of mis-spelling. 

 

The second contribution of this thesis is to implement a prototype framework 

with several different information retrieval methods to obtain a collection of 

domain-specific named entities. Since to give semantic annotation to video 

lectures of a specific course, it usually means that most of the named entities 

which appear in that series of lectures should belong to the same or highly 

related scientific subjects or fields. According to the principle above, it can be 

really helpful and meaningful to get a collection of domain-specific named 

entities and to continuously populate the obtained collection in order to cover as 

many named entities belong to the specific domain as possible. In this thesis, we 

found a way of utilizing multiple information retrieval tools and combining them 

in a heuristic way. And the method we proposed mainly used three different 

kinds of tools : web scrawler , Google custom search engine and MediaWiki API. 

In addition, after obtaining the domain-specific text, we use several open named 

entity extractors to extract named entities, such as DBpedia spotlight, Babelfy, 

etc. 

The article is organized as following : Chapter 2 introduce the reason and the 

context of the project more in details. Chapter 3 introduce the literature of the 

work of this thesis and related research areas. Chapter 4 introduce the basic 

knowledge and part of starting of the tools and methods have been used. Chapter 

5 is the part of the methods we proposed and the relevant experiments we have 

done. And Chapter 6 draws the conclusions of the thesis and depict the further 

insights for future work.  
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Chapter 2 

Context 

The Politecnico di Torino provides many services which can help students about 

their studies during their university years. One of the most helpful could be the 

online video lectures service, which has been offered more and more in recent 

years. As the result, students are not only facilitated to follow the courses 

comfortably at home in case of illness or some other reasons outside the campus, 

but also during the study phase, when some topics are not clearly understood at 

classroom. 

 
 

Figure 2.1: the page of the database video lecture site, in which shows the 

framework that how the video lectures are structured.  
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On this page, students are able to choose the lecture that they prefer and review 

the parts of greatest interest for study purposes. In addition, some other 

functions are also provided, including the brief description of a specific lecture, 

in order to help students to access to the a specific page, or to conveniently 

download the video lectures locally in order to watch them offline. Among the 

different functions, there is a function that could be regarded as really essential: 

a search bar which allows you searching for some specific content within the 

course. 

 

With this function, a student could search for a specific interested topic by 

writing some keywords, which will get a list of links as the result, corresponding 

to the precise moments in which the professor talked about the topic searched. 

Then in general, during the final study phase, the preparation for the exam, the 

students are usually interested in clarifying their understandings on some 

specific topics and concepts, and often there is no enough time to go through and 

look for all the paragraphs in which these have actually been depicted, in order 

to not miss the most essential parts.  

 

The function that we want to implement in some way fulfills this kind of need. 

And an basic idea is to divide each single lecture into time slots, characterized or 

labeled by a specific topic, so that, when a certain topic is being searched for, the 

student could see all the time slots related to the concepts searched. Dividing a 

lecture into fixed time slots, where each one corresponds to a specific topic, is 

not appropriate enough, since in general during the procedure of a specific 

teaching explanation, the professors usually tend to make references to many 

different topics at the same time, which can be all useful to understand the main 

topic or the whole field in some degrees. 

 

As the result, the actual goal is to find a way to recognize and extract the key 

concepts within the video lecture. And the approach is that starting from the 

transcription of the professor's speech (transcript) during the lecture and having 

every matching between word and instant of time in which it is pronounced, 

then analyzing this text in search of key concepts. In this kind of context, these 

key concepts have a domain specific name in natural language processing : 

entities. 

 

In a word, the main target of our project is to give semantic annotation to the 

raw text of transcripts using techniques about named entities. 
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Chapter 3 

Literature of related fields 

Information extraction (IE) from a text is linked to the problem of simplifying 

the unstructured or semi-structured content in order to create a structured view 

of the information present in a free text. In most of the cases this activity 

concerns processing human language texts by means of natural language 

processing (NLP). IE techniques can be applied to many different fields, such as 

newspaper, comments in the social networks, digital books on the web, scientific 

papers, and job advertisements, etc. And what kind of information should IE 

techniques extract from all these kind of information resource ? There is a core 

conception in the IE or NLP context which is called named entity that plays a key 

role. Usually the term named entity identifies a unit information such as the 

name of something with useful meaning, including people, organizations, 

locations, etc. With these named entities in a text content, the semantic meaning 

of the whole sentence or text then can be expressed in a relatively 

understandable way. The research about named entity has been a key role in the 

area of NLP for a long time, also in the area of semantic web the case is the same. 

 

And what is semantic web? What is the difference between original World Wide 

Web and semantic web? In fact, semantic web as a concept was originally 

expressed by Tim Berners-Lee in 1998, who was also the inventor of World Wide 

Web in 1990. As described in reference[1], the core idea of semantic web is : by 

adding semantics (metadata) that can be understood by computers to 

documents on the World Wide Web (such as HTML documents), the entire 

Internet becomes a universal information exchange medium. And to enable the 

encoding of semantics with the data, technologies such as Resource Description 

Framework (RDF) reference[2] and Web Ontology Language (OWL) reference 

[3] are used. As a result, named entity extraction from a text and adding 

semantic content on text, with the support of different ontologies and knowledge 

bases (KB), such as Wikipedia, DBpedia, and Freebase, has always attracted 

more and more attention from researchers. 

 

Another area called natural language processing intersects the area of semantic 

web a lot, which always can be a kind of technique support to help the machine 

understand and recognize import information of human-being language. But 

usually the NLP problem can be really complicated to cope with, since there’s 

always big intrinsic ambiguity of human language and characters. As a result, the 

NLP area usually can be divided into different sub areas or phases, which 

cooperate organically together to understand natural language.  
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And usually the NLP area can be divided into these phases : 

• lexical analysis: decomposition of a token linguistic expression (in this 

case the words). 

• grammatical analysis: association of the parts of speech to each word in 

the text. 

• syntactic analysis: arrangement of tokens in a syntactic structure 

• semantic analysis:  is the process of relating syntactic structures, from 

the levels of phrases, clauses, sentences and paragraphs to the level of 

the writing as a whole, to their language-independent meanings.  

In our project, the NLP techniques that we use are focused on the sub area of 

lexical analysis. The main purpose of lexical analysis is to cut out words from 

sentences, find out the individual morphemes of words, and determine their 

meanings. Lexical analysis includes word segmentation, part-of-speech tagging, 

named entity recognition, and word sense disambiguation. Lexical analysis 

includes two aspects: morphology and vocabulary. Generally speaking, 

morphology is mainly reflected in the analysis of word prefixes and suffixes, 

while vocabulary is expressed in the control of the entire lexical system. 

Different languages have different requirements for lexical analysis, for example, 

there is a large gap between English and Chinese or between Italian and Chinese.  

3.1 Named entity recognition (NER)  

The reason we introduce NER here is that the task of NER is strongly related to 

the work we do in our project, in the meanwhile also quite different. As depicted 

above, NER is one of the main task of lexical analysis. And it has been one of the 

most popular NLP tasks among these years. Plenty of methods and papers were 

given about NER, both from statistical learning and deep learning. And what is 

NER? 

Named Entity Recognition (NER), also known as "proper name recognition", 

refers to identifying entities with a specific meaning in the text, mainly including 

person names, place names, agency names, and proper nouns. Simply speaking, 

it is to identify the boundaries and categories of entity references in natural text. 

As introduced in reference[4], from 1991 to 2006, there was a change of the 

research hot point from rules and dictionaries to machine learning methods, 

such as HMM, CRF. Even though with machine learning methods, there’s less 

human work to construct dictionaries or design rules, but there are still plenty of 

work of feature Engineering. In recent years, there are a lot of works with deep 

learning methods, for example the bi-LSTM + CNN architecture designed in 

reference[5], also eliminate the cost of human work for feature engineering. 
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Usually NER task can be modeled as a classification task for each token in the 

sequence. And the biggest problem why we cannot directly map the problem in 

our project to a traditional NER task is that the set of categories of the 

classification of NER is usually very limited, otherwise there’s the need to 

construct a domain-specific method for each different domain. Usually there are 

3 big categories and several small categories for traditional NER task : 

• ENAMEX : limited to names, acronyms, and other unique identifiers, 

which are characterized with the TYPE attribute via PERSON (personal, 

family names), ORGANIZATION (names of corporations, governments 

and other organizational entities) and LOCATION (names of political or 

geographical locations, such as regions, cities, continents, mountains, 

lakes, etc. and astronomical locations). 

• TIMEX : refers to temporal expressions, which can be characterized by 

the TYPE attribute, in DATE (complete or partial date), TIME (complete 

or partial time of day), DURATION (measure of time spent during a 

known period). 

• NUMEX : and useful for numeric expressions, including values with units 

of measure. Through the TYPE attribute it is characterized in MONEY 

(monetary expression), MEASURE (standard for measurements, such as 

age, area, distances, energy, speed, temperature, volume, pressure, etc.), 

PERCENT (percentages), CARDINAL (number or numerical quantity of 

some object). 

Although there already have been many relatively matured and powerful 

methods and algorithms of NER, but in our case when we want to extract and 

give some semantic annotations to the transcript of different courses from 

different subjects, other than if we build NER system for each of the subjects on 

purpose, we cannot provide a generalized useful NER system for most of the 

different domains at the same time. But there is still some help point that NER 

methods and tools can support our project. 

3.2 Named entity disambiguation (NED)  

Named entity disambiguation or linking is a NLP task to determine the identity of 

the entity mentioned in a context. This is done by linking the mention to an 

entity in a knowledge base. And one of the most difficult problem of NED is that a 

single word or mention may have several different meanings. For example, ‘I 

bought a new iphone in the apple store’, in this sentence, apple means the 

American technology company instead of the fruit. It’s quite easy for human 

being to recognize the actual meaning of the mention. But for machine, this work 

mainly rely on the capable NED system.  
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3.2.1 NED approaches glimpse 

Many approaches have been proposed to perform NED. All of them can be 

grouped into three macro-strategies: local, global and collective. The local 

methods act on each word mentioned, independently from the others, based on 

the compatibility between the subject and his candidate entities, using some 

general features to improve the selection. Global and collective methods assume 

that disambiguation decisions are interactive and that there is consistency 

between entities that occur in the same text, allowing the use of semantic 

relationship measures for disambiguation. Collective methods make 

disambiguation decisions simultaneously, while global methods disambiguate 

only one mention(entity) at a time. 

But whatever these types of approaches of NED, usually there are two phases in 

a NED system. The first one is candidate generation, which means through some 

strategy like lookup some entity dictionary derived from a knowledge base or 

Wikipedia structured links. The second one is to select the best candidate from 

the set of candidate entities derived from the first step, which usually is more 

focused by the research interests of the NLP researchers. 

Usually a typical local approach is to evaluate the similarity between a mention 

and the candidate entities, with the context. First, the contextual characteristics 

of the entities within the text are extracted. Then, they are weighted and 

represented as numerical features in a model. Finally, every mention in the text 

is linked to the candidate entity that has the highest similarity with it.  

 

Bunescu and Pasca reference[6] described the first system to resolve entity 

mentions to Wikipedia pages. They proposed a method that uses an SVM kernel 

to compare the context around the mention, in combination with the estimate of 

the correlation of the word with the categories of the candidate entities. Each 

candidate entity is an entry in Wikipedia and its lexical context is the content of 

the article. Later in TAC 2009, Honnibal and Dale reference[7] designed two 

different kinds of strategies in the phase of candidate generation, the first one is 

designed to get a minimal set of candidates to get the minimum degree of 

ambiguity by using a series of Wikipedia dictionary lookups. The other one is the 

high coverage strategy involves simply looking up the mention string in a set of 

reverse index of Wikipedia markup which consists of the name, redirection, 

truncated name and disambiguation dictionaries. And in the phase of ranking the 

candidates, they experimented two different measures also ,finally they found 

cosine similarity was better than overlap between the strings. And in this work, 

they also first introduced BOW(bag of words) in NED to represent both the 

Wikipedia article and the document of the mention. In TAC-KBP 2011, Cassidy 



 9 

and Chen reference[8] introduced the popularity of the candidate entities, 

which made the final decision of NED biased on the more popular candidates. 

Global approaches leverage interdependence between disambiguation decisions 

of different entities and exploit two main types of information: the context of 

disambiguation and the semantic relationship between entities. In 2011, 

Cucerzan reference[8] was the first to use an interdependence model between 

disambiguation decisions of different entities. In reference[8] the context of 

disambiguation is composed of all the contexts of Wikipedia that occur in the 

text and the semantic relationship is based on the overlap in categories of 

entities that could be referred to the mention in the text. Wikipedia contexts 

include inlink labels, outlink labels and the titles of all articles. In 2009, Kulkarni 

reference[9] premised that documents largely refer to topically coherent 

entities, which means within a single document there may appear many different 

entities at the same time, but usually the different entities should be in the same 

or related domain or topic. For example, While Michael Jordan and Stuart Russell 

can refer to seven (basketball player, footballer, actor, machine learning 

researcher, etc.) and three (politician, AI researcher, DJ) persons respectively in 

Wikipedia (as of early 2009), a page where both Michael Jordan and Stuart 

Russell are mentioned is almost certainly about computer science, 

disambiguating them completely. 

 

In 2011, Han and Sun reference[10] proposed a graph-based collective NED 

method, which modeled and exploited the global interdependence between NED 

decisions of different entities that co-occurred in the same document. And they 

first proposed a graph-based representation, called Referent Graph. In addition, 

they proposed a collective inference algorithm, which was capable to jointly infer 

the referent entities of all name mentions by exploiting the interdependence 

captured in Referent Graph. A little bit more in details, the collective algorithm 

proposed collects the initial evidence for each mention and then strengthens this 

evidence by the propagation of the initial evidence through the arcs of the 

Referent Graph. The initial evidence of each mention is defined as its popularity 

on the other mentions and its value is the TF-IDF11 score normalized by the sum 

of the TF-IDF scores of all the mentions in the text.  
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3.2.2 Brief introduction on knowledge base 

In general, the knowledge bases used for implementing NED are divided into two 

different categories. The first one is curated knowledge base represented by 

Freebase, Yago2. They extract a large number of entities and entity relationships 

from knowledge bases such as Wikipedia and WordNet. They can be understood 

as a structured Wikipedia. In fact, a knowledge base like Wikipedia is still only a 

small part of the entire Internet information. Another type of knowledge base is 

extracted knowledge base represented by Open IE and NELL. They extract 

entity-relationship triples directly from hundreds of millions of web pages. 

Compared with curated knowledge base, the knowledge obtained in this way is 

more diverse. But in the meanwhile there is also a certain noise that is directly 

extracted from the webpage, and its accuracy is lower than that of Curated 

knowledge base. 

 

Here, we only list three of the most popular knowledge bases : 

• Wikipedia : is the most popular and large scale multilingual 

encyclopedia. And is created and evolved by the distributed and collective 

effort from volunteers all over the world. Each Wikipedia article refers to 

a distinguished entity, thus the information contained in Wikipedia article 

can be really useful for NLP tasks about named entities, such as NER, NED. 

Furthermore, the Wikipedia structure provides a set of useful functions 

for linking entities using labels, categories, redirect pages, disambiguation 

pages and links to other Wikipedia pages. 

• DBpedia : as described in reference[11], [12], DBpedia is a multilingual 

knowledge base created from Wikipedia. By leveraging the structured 

information in each article of Wikipedia, such as infobox, category 

hierarchy, geographic coordinates and external links.  

• Wikidata : as described in reference[13], Wikidata is Wikimedia's 

central repository for structured data. This is the place where data, like 

the number of inhabitants of a country, is stored and made accessible to 

humans and computers alike. The data is used across all 287 language 

editions of Wikipedia and its sister projects as well as in projects outside 

of Wikimedia. 

In reference[14], there is a very good survey and comparison between different 

open knowledge bases, in which much more informative details can be found. 
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3.3 Practical need of transcript annotation : Fuzzy match 

In the literature of our whole project, the last student did the research regarding 

the problem as a pure ideal NED problem, and in his work he used a large scale 

clustering method which has a really high computational complexity. Although 

he has reached some degree of acceptable values of f1 score, precision and recall. 

But there’s still long way to go to improve the whole project in several aspects. 

The first one is that there should be the capability of fuzzy match on the tokens 

of the video lecture transcript. It’s not possible to get a large number of video 

transcripts by human labor, since the translation of even only one video audio to 

text will cost more or less several times of the time duration of the video lecture. 

Then nowadays, the transcripts of videos are usually obtained by some 

automatic methods, for example, Google offers a service online called 

‘Transcribing video’ which can automatically transfer audio in the video to text. 

But until now the result text obtained from that kind of service still sometimes 

contains a lot of spelling errors. And since nearly all of the current NED methods 

leverage the string characteristics of the token itself and also the context of the 

token which usually the other tokens around it. Then it will introduce a lot of 

noise as a result of the spelling errors. As a result, there should be some way to 

automatically revise the spelling errors for traditional NED methods or some 

other ideas to recognize and disambiguate named entities from the raw text of 

video transcripts. 

That’s the reason why we think about leverage the convenient and fast indexing 

and searching functions of Elastic Search. Especially it can been seen naturally in 

the phase of candidate generation to use some kind of fuzzy search of ES. In 

addition, the ranking of the search result in ES is also in some way controllable, 

which means one can adjust the ranking of search results according to some 

heuristic criterion of one self by leveraging some characteristics of ES. 

3.4 Domain-specific set of contextual keywords learning 

In our project, usually at each time there is a series of video lectures which 

belong to the same course, which means that the helpful named entities in these 

video lectures of the same course are in the same domain. For example, in the 

course of machine learning, in one of the lectures, the topic is support vector 

machine, and in another lecture the topic is Naïve Bayes, then the named entities 

appear in these two lectures have a high probability to be from the same field, 

machine learning. Moreover, the specific domain’s name usually just directly 

appears in the title of the course. And in our project, the domains are not 

absolutely open field, since the video lectures are certainly about a specific 

subject of engineering, science or social science, etc. 
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Before starting this part of work, a natural idea was to check whether there were 

some domain specific keywords set that already existed. But unfortunately, the 

answer is negative in most of time. Until now there still aren’t enough keywords 

set for most of domains, if there’s the need, one should collect the keywords by 

oneself. But to implement an automatic system to give semantic annotation to 

video transcripts of many different subjects, this can be a really meaningful and 

useful task to automatically collect important domain specific keywords as a set, 

which can be helpful to the following down streaming NLP tasks, such as 

NER,NED. And now some of the heuristic ideas and methods can play an 

important role for this target.  
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Chapter 4 

The IR methods and tools used 

In this chapter, a number of different tools and methods have been used later 

will be introduced briefly, such as google custom search engine, MediaWiki api, 

self-written scrawler to parse books and elastic search. 

Usually the different tools have been used for absolutely different purposes 

separately: 

• Google custom search engine is a platform provided by Google that 

allows web developers to feature specialized information in web services, 

refine and categorize queries and create customized search engines, 

based on Google search. 

• MediaWiki is a set of web-based Wiki engines, which are used by all 

Wikimedia Foundation projects and many wiki sites. MediaWiki software 

was originally developed for the Free Content Encyclopedia Wikipedia 

and is today deployed by some companies as an internal knowledge 

management and content management system. 

• A Web crawler, sometimes called a spider or spiderbot and often 

shortened to crawler, is an internet bot that systematically browses 

the worldwide web typically for the purpose of web indexing (web 

spidering). 

• Elasticsearch is a search engine based on the Lucene library. It provides 

a distributed, multitenant-capable full-text search engine with 

an HTTP web interface and schema-free JSON documents. 

But sometimes they also could be utilized together to fulfill some needs of 

Natural Language Processing or Semantic Web Search functionalities. Since in 

some way, they all can retrieve or cope with the text information on the web. 

Among the above tools ,mediawiki is more domain specific since it can be only 

used for the need of Wikipedia related data, especially for the works which are 

related to named-entities. But in the meanwhile, the other three are more open 

domain tools, that means there is a much bigger flexibility of the way one can use 

them and there are much smaller constraints when using them. For example, one 

can use google custom search engine to get search result from a limited selected 

number of web sited not the whole worldwide web, there’s nearly absolute 

flexibility that one can choose whatever website from which he or she retrieve 

the search result. Another example, one can usually write his or her own web 

scrawler to get the specific web information they want, in different forms and 

from different web resources.   

https://en.wikipedia.org/wiki/Search_engine_(computing)
https://en.wikipedia.org/wiki/Lucene
https://en.wikipedia.org/wiki/Multitenancy
https://en.wikipedia.org/wiki/Full-text_search
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/JSON
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4.1 Google custom search engine  

As depicted above, google custom search engine is a platform based on google 

search but which allows the user to define the set of the web sites where they 

want to get the results from. Since in our case there’s the need of the use of name 

entities of a specific course, here we can define the set of search web sites as the 

web sites which are most probably related to the specific course and contain 

plenty of the labels of the related named entities. And in our work , as a 

basement, we only use a unique web site of Coursera which is a famous open 

course web site that contains a number of courses in different fields such as 

mathematics, physics and computer science, etc. 

Here a brief description about how can one use google custom search engine to 

only search on the web site Coursera: 

• Step 1 : From the Google Custom Search homepage, click Create a custom 

search engine or New search engine. 

Figure 4.1: first step of creating a google custom search engine.  

 

 

 

 

http://cse.google.com/


 15 

• Step 2 : In the Sites to search box, type one or more sites you want to 

include in the search results. You can include any sites on the web, even 

sites you don’t own. Don’t worry, you can always add more later. 

 Figure 4.2 : second step of creating a google custom search engine.  

• Step 3 : In the Name of the search engine field, enter a name to identify 

your search engine. For tips on naming your search engine, see Branding 

guidelines below. 

 

 Figure 4.3 : third step of creating a google custom search engine.  

• Step 4 : Once you’re ready, click Create. Until now the custom search 

engine itself has already been created. 

• Step 5 : Then we go to https://console.developers.google.com/project 

and create a new project and enable an API, here we choose Google 

Custom Search API. 

 

https://console.developers.google.com/project
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Figure 4.4 : 5th step of creating a google custom search engine. 

• Step 6 : Then in the Credentials option we can create an API key for  

public service access of our created Google Custom Search API. 

 

Figure 4.5 : 6th step of creating a google custom search engine. 

Until here, we have already created a Google Custom Search Engine API which 

can be invoked in our own service program in Python, Javascript, etc.  

After installing Google Custom Search API module in the python program or the 

conda environment by command ‘pip install google-api-python-client’, one can 

use the API like the picture of code showed below: 

 
Figure 4.6 : part of python script of using google custom search API 

 

The two main parameters here are the API key and the Custom Search Engine 

key. And here q is the query that one want to search on the custom search 

engine. To see more details about the parameters to help a more customized use 

of the API, one can search the detail information on the Google’s developers site: 

https://developers.google.com/custom-search/v1/overview 

 4.2 MediaWiki  
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MediaWiki is a wiki software, but first we need to know what is actually wiki? 

Wiki is a hypertext system that is open on the World Wide Web and can be co-

authored by multiple people. It was first developed by Ward Cunningham in 

1995. Ward Cunningham defines the wiki as "a social computing system that 

allows a group of users to create and connect a set of web pages with simple 

descriptions". Some people believe that, the Wiki system is a network of human 

knowledge, which allows people to browse, create and change Wiki texts on the 

basis of the web, and the cost of creating, changing and publishing is much higher 

than HTML text small. At the same time, the Wiki system also supports 

community-oriented collaborative writing, providing necessary help for 

collaborative writing. Finally, the writers of Wiki form a community, and the 

Wiki system provides a simple communication tool for this community. 

Compared with other hypertext systems, wikis are easy to use and open, which 

helps to share knowledge of a certain area within a community. 

MediaWiki is a free and open source wiki suite originally developed for 

Wikipedia, written in PHP. All non-profit Wikimedia projects under the 

Wikimedia Foundation, numerous other wiki sites on the Internet, and the 

MediaWiki homepage are now based on this software. 

 

For making the use of MediaWiki functions in our project, we use an API called 

pywikiapi, which is one of the python client API of MediaWiki, through which we 

can get the same results as when we search in the wikidata homepage, it means 

that we could get a bunch of most relevant named entities by input a probable 

name of the entity you search. 

Here is the brief description of pywikiapi: This is a minimalistic library that 

handles some of the core MediaWiki API complexities like handling 

continuations, login, errors, and warnings, but does not impose any additional 

abstraction layers, allowing you to use every single feature of the MW API 

directly in the most optimal way. The library was written by the original author 

of the MediaWiki API itself. 

 

The use of MediaWiki APIwill be something like this, and the use in our case in 

detail will be illustrated in a next chapter:  
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Figure 4.7 : part of python script of using MediaWiki API 

4.3 Web Crawler on resources of books 

Whenever someone wants to retrieve and store some specific information on a 

specific website, web crawler has always been some kind of first choice. Since in 

our case, more relevant information with high quality may help a lot the 

annotation of the text, it’s natural to think about whether web crawler could be 

used. Here, as a basement example, in our project we only extract useful 

information from one book on Internet. 

4.3.1 The composition of python web scrawlers 

The Python crawler architecture is mainly composed of five parts, namely the 

scheduler, URL manager, web page downloader, web page parser, and 

application. 

• Scheduler: equivalent to the CPU of a computer, mainly responsible for 

scheduling the coordination between the URL manager, downloader, and 

parser. 

• URL manager: includes the URL address to be crawled and the crawled 

URL address to prevent repeated crawling of URLs and circular crawling 

of URLs. There are three main ways to implement URL managers, which 

are implemented through memory, database, and cache database. 

• Web page downloader: Download a web page by passing in a URL 

address, and convert the web page into a string. The web page 

downloader has urllib3 including login, proxy, and cookies, and requests. 

• Web page parser: Parsing a web page string, we can extract our useful 

information according to our requirements, or it can be parsed according 

to the DOM tree parsing method. There are some different kinds of 

parsers, such as regular expressions, beautifulsoup, and lxml, etc. 
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• Application: An application composed of useful data extracted from a 

web page. 

Here we will give some brief descriptions of several most popular python 

libraries to implement a web scrawler. 

4.3.2 urllib: the built-in URL handling module of python  

 
urllib module is the URL handling module for python. It is used to fetch URLs 

(Uniform Resource Locators). It uses the urlopen function and is able to fetch 

URLs using a variety of different protocols. 

 

 

Urllib is a package that collects several modules for working with URLs, such as: 

 

• urllib.request for opening and reading. 

• urllib.parse for parsing URLs 

• urllib.error for the exceptions raised 

• urllib.robotparser for parsing robot.txt files 

In our project, the other libraries could be better choices since the workload are 

usually much less than using urllib. 

4.3.3 Requests: make HTTP requests more human-friendly 

As the warning written in the introduction page of the project Requests by the 

original author Kenneth Reitz : Non-professional use of other HTTP libraries can 

cause dangerous side effects, including: security flaws, redundant code 

disorders, reinvented wheel syndrome, documentary disorders, depression, 

headaches, and even death. Requests allows you to send pure natural, plant-

raised HTTP / 1.1 requests without manual labor. You don't need to manually 

add a query string to the URL, or form-encode the POST data. Keep-alive and 

HTTP connection pools are 100% automated, and all power comes from urllib3, 

which is rooted in Requests. 

It can be said that the biggest feature of Requests is its simple and direct 

elegance. Whether it is the request method or the processing of the response 

result, as well as cookies, URL parameters, and post submission data, all reflect 

this style. 

Here is a simple example: 
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Figure 4.8 : an example of using requests. 

It can be seen that both the initiation of the request and the corresponding 

processing are very intuitive. 

Here the beloved features of the Requests library are list below : 

• Keep-Alive & Connection Pooling 
• International Domains and URLs 
• Sessions with Cookie Persistence 

• Browser-style SSL Verification 
• Automatic Content Decoding 
• Basic/Digest Authentication 
• Elegant Key/Value Cookies 
• Automatic Decompression 

• Unicode Response Bodies 
• HTTP(S) Proxy Support 
• Multipart File Uploads 
• Streaming Downloads 
• Connection Timeouts 
• Chunked Requests 
• .netrc Support 

 

4.3.4 Selenium 

What is Selenium? As the official web page says, Selenium automates browsers. 

That's it! What you do with that power is entirely up to you. Primarily, it is for 

automating web applications for testing purposes, but is certainly not limited to 

just that. Boring web-based administration tasks can (and should!) be automated 

as well. Selenium has the support of some of the largest browser vendors who 

have taken (or are taking) steps to make Selenium a native part of their browser. 
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It is also the core technology in countless other browser automation tools, APIs 

and frameworks. 

Selenium was born for testing. But it wasn’t expected that in the age of scrawlers, 

it turned into a good tool for writing a scrawler. To make a brief summarization 

about Selenium in one sentence: it can control your browser, and it can imitate  

human beings’ action of browsing the web pages. 

Although selenium is a good tool to create a scrawler, but it also has some 

obvious disadvantages:  

• Slow. Each time you run the crawler, you open a browser. If it is not set, it 

will load a lot of things such as pictures, JS, etc. 

• Takes up too much resources. Some people say that when you replace 

Chrome with a headless browser PhantomJS, but the principle is the 

same, still needs opening a browser, and many websites will verify 

parameters.  

• The requirements on the network will be higher. Selenium loads a lot of 

supplementary files (like css, js, and image files) that may not be of value 

to you. This may generate more traffic than just requesting the resources 

you really need (using a separate HTTP request). 

• The crawl scale can’t be too large. It’s rarely seen any company using 

Selenium in the production environment. 

• Difficult to learn. The cost of learning Selenium is too high. The cost of 

learning Selenium is many times more difficult than Requests 

According to the disadvantages depicted above, in our project we only use 

Selenium to find the element of changing to the next page and click the element. 

4.3.5 Beautiful Soup 

Beautiful Soup is a python package for parsing HTML and XML documents 

(including having malformed markup, i.e. non-closed tags, so named after tag 

soup). It creates a parse tree for parsed pages that can be used to extract data 

from HTML, which is useful for web scrawlers. 

As a summarization of the process of crawling the web, so that one have a better 

understanding of the function of BeautifulSoup :  

1.Select the url to crawl 

2.Log in to this URL using python (urlopen, etc.) 

3.Read web page information (read () the information from the page_source) 

4.Put the read information into BeautifulSoup 

https://en.wikipedia.org/wiki/Tag_soup
https://en.wikipedia.org/wiki/Tag_soup
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5.Use BeautifulSoup to select tag information, etc. (substitute using regular 

expressions) 

As a HTML parser tool, from the process depicted above, we can figure out that 

Beautiful Soup only works at the last steps to extract some specific information 

according to the tags or some other rules. 

Beautiful Soup transforms complex HTML documents into a complex tree 

structure. Each node is a Python object. All objects can be summarized into 4 

types: Tag, Navigable String, Beautiful Soup, Comment. 
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4.4 ElasticSearch  

Elasticsearch is a search engine based on the Lucene library. It provides a 

distributed, multi-tenant full-text search engine with an HTTP web interface and 

schemaless JSON documents. Elasticsearch is developed in Java and released as 

open source software under the Apache license. Official clients are available in 

Java, .NET (C #), PHP, Python, Apache Groovy, Ruby, and many other languages.  

According to the ranking of DB-Engines, Elasticsearch is the most popular 

enterprise search engine, followed by Apache Solr, which is also based on 

Lucene. 

4.4.1 Full-text search 

In text retrieval, full-text search refers to techniques for searching a 

single computer-stored document or a collection in a full-text database. Full-text 

search is distinguished from searches based on metadata or on parts of the 

original texts represented in databases (such as titles, abstracts, selected 

sections, or bibliographical references). 

Since usually the normal databases also can fulfill some need of data storage and 

data search, why is there still need of full-text search engines? As some 

reference[15] and [16] introduce, there are mainly two reasons: 

• Full-text search engines are more suitable for unstructured text queries. 

• For document databases like Mongo, full-text search engines are better at 

maintaining indexes. 

Here, we list some of the main advantages of full-text search engine : 

• Sub-second search results indicate which files may contain one or more 

terms (words, numbers, etc.) in millions or billions of user searches. This 

includes a good search of all text fields, and limited functionality for 

searching non-text data. This may also include the classification or search 

results of the payload or search results based on specific values of a 

specific field. 

• Abundant and flexible text query tools and sophisticated ranking 

functions to find the best documents / records. 

• Basic functions for adding, deleting or updating documents / records 

• Basic functions for storing data (rather than simple indexing and 

searching). Not all full-text search systems support this feature, but most 

include Lucene / Solr 

 

https://en.wikipedia.org/wiki/Metadata
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Here, we list some of the main occasions of full-text search engine : 

• Large amount of free structured text data (or records containing such 

data) to search or aspect / category-hundreds of thousands or millions of 

files / records (or more). 

• Supports a large number of interactive text-based queries. 

• Demand very flexible full-text search queries. 

• Demand for highly relevant search results is not met by available 

relational databases. 

• Relatively less need for different record types, non-text data 

manipulation, or secure transactions. 

4.4.2 Lucene 

Lucene is an open source library for full-text retrieval and search, supported and 

provided by the Apache Software Foundation. Lucene provides a simple but 

powerful application program interface that can do full-text indexing and 

searching. In the Java development environment, Lucene is a mature free and 

open source tool; for its part, Lucene is now and for several years, The most 

popular free Java information retrieval library. 

Lucene is not a complete full-text indexing application, but a full-text indexing 

engine toolkit written in Java, which can be easily embedded into various 

applications to implement application-specific full-text indexing / retrieval 

functions. 

There are already many applications whose search function is based on Lucene, 

such as the search function of Eclipse's help system. Lucene can index text type 

data, so as long as you can convert the text format of the data you want to index, 

Lucene can index and search your documents. For example, if you want to index 

some HTML documents and PDF documents, you first need to convert the HTML 

documents and PDF documents into text format, then transfer the converted 

content to Lucene for indexing, and then save the created index file to In the disk 

or memory, the index file is finally queried according to the query conditions 

entered by the user. Not specifying the format of the documents to be indexed 

also makes Lucene suitable for almost all search applications. 

In addition, most of the search (database) engines use a B-tree structure to 

maintain the index. Updating the index will cause a large number of IO 

operations. Lucene is slightly improved in the implementation: instead of 

maintaining an index file, it is expanding. During indexing, new index files are 

constantly created, and then these new small index files are periodically merged 

into the original large index (for different update strategies, the size of the batch 



 25 

can be adjusted), so that it does not affect the efficiency of retrieval Under the 

premise, the efficiency of the index is improved. 

Here is a figure from reference[4.4.2.1] which represents the relationship 

between search applications and Lucene, and also reflects the process of building 

search applications with Lucene : 

 

Figure 4.9 : the relationship between search engine application and Lucene 

The Lucene package is distributed as a JAR file, here we will introduce briefly the 

composition of the Lucene Jar file, then we can clearly know the core parts of 

Lucene : 

• Package: org.apache.lucene.document : This package provides some 

classes needed to encapsulate the documents to be indexed, such as 

Document, Field. In this way, each document is finally encapsulated into a 

Document object. 

• Package: org.apache.lucene.analysis : The main function of this package is 

to tokenize documents. Because documents must be tokenized before 

indexing, the role of this package can be seen as preparation for indexing. 
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• Package: org.apache.lucene.index : This package provides classes to assist 

in creating indexes and updating the created indexes. There are two basic 

classes: IndexWriter and IndexReader, where IndexWriter is used to 

create an index and add documents to the index, and IndexReader is 

usedto delete documents in the index. 

• Package: org.apache.lucene.search : This package provides the classes 

needed to perform a search on a built index. For example, IndexSearcher 

and Hits, IndexSearcher defines the search method on the specified index, 

Hits is used to save the search results.  

From the information above, we can easily figure out that the main parts of 

Lucene. Document module only works for what is the form of the unstructured 

input text will be in Lucene. And analysis module works both during the index 

time and the search time. In the next part of this chapter, the index procedure 

and search procedure will be introduced briefly separately. 

4.4.3 Index documents 

Indexing is the core of modern search engines. The process of indexing is the 

process of processing source data into index files that are very convenient to 

query. Why is indexing so important? Imagine that you are searching for 

documents containing a certain keyword in a large number of documents. If you 

do not create an index, you need to read these documents into memory in order, 

and then check whether this article contains To search for keywords, this will 

take a lot of time. Think of the search engine in milliseconds to find the search 

results. This is because the index is established. You can think of the index as a 

data structure that enables you to quickly and randomly access the keywords 

stored in the index, and then find the documents associated with the keywords. 

Lucene uses a mechanism called inverted index. Reverse indexing means that we 

maintain a list of words or phrases. For each word or phrase in this list, there is a 

linked list describing which documents contain the word or phrase. In this way, 

when the user enters the query conditions, the search results can be obtained 

very quickly. 

4.4.4 Inverted Index  

Here, we only give a glimpse on the conception of inverted index, which is the 

core conception and core part of the indexing part of search engine. And the 

reason why inverted index was invented is to improve the speed of response of 

the query when using a search engine. For example, it will cost more or less 

several seconds to find a query keyword in a 10M file using the traditional 

forward index, but it only costs several milliseconds using inverted index during 

the phase of indexing. 
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Here an example of how does the data structure of inverted index look like : 

Documents that we want to index into Lucene(Elastic Search): 

1. Politecnico is a good university. 

2. The students in Politecnico are smart. 

3. Only smart students can come to Politecnico. 

Then, all the distinguished words that appear in the three documents above will 

be stored as a list, and for each of the word, the document ids of the documents 

where the word appears will be linked to the word ids. 

After deleting the stop words, which are not really meaningful from the semantic 

insight, such as ‘is’, ‘a’, ‘in’, ‘the’, etc. And also there are also the procedure of 

stemming which will make the word transform to its original stem version, like 

‘students’ to ‘student’. The words left will be stored as a list but with their ids 

following by the document ids where the words appear. 

1 Politecnico  1,2,3 

2 good       1 

3 university   1 

4 student     2,3 

5 smart      2,3 

6 come       3 

But in fact, the structure of inverted index is much more complicated than the 

description above, since there are also some other kind of useful information 

stored in the meanwhile, such as TF(term frequency, which means how many 

times the word appears in a document), position(where the word appears in a 

document), for the sake of the calculation of the relevance score between the 

word and the document, which is especially important for the ranking of the 

search result in a search system. 

 

4.4.5 Search index  

Here we only do a brief introduction of the search procedure of Lucene(Elastic 

Search).First we will give a little example of how does the procedure look like. 

And then a list of different kind of query types will be depicted and introduced 

briefly. 

In the last part we created an inverted index from three documents, then if we 

search the word/query ‘Politecnico’ on the same index, what will happen?   
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As reference [4.4.5] shows, in fact the list of term of the inverted index is a 

special data structure in Lucene called ‘term dictionary’. When the query 

‘Politecnico’ has been searched, first the analysis module should tokenize the 

query and use some filters(like transform uppercase into lowercase) so that the 

query will be transformed into a list of terms(here since the example query has 

only one word, there’s actually no tokenization happens), then according to 

different types of query, the query terms will be searched in the term dictionary 

and further combine the result of each term in different ways. Finally, there’s a 

model which is in charged of giving a relevance score to each result document in 

the index, and the ranked list of the result documents will be shown as the final 

result of search. 

Here different types of queries are listed : 

• Boolean query : A Query that matches documents matching Boolean 

combinations of other queries, e.g. TermQuerys, PhraseQuerys or other 

BooleanQuerys. 

• Term query : A Query that matches documents containing a term. This 

may be combined with other terms with a BooleanQuery. 

• Phrase query : A Query that matches documents containing a particular 

sequence of terms.  

• Fuzzy query : Implements the fuzzy search query. The similarity 

measurement is based on the Damerau-Levenshtein (optimal string 

alignment) algorithm, though you can explicitly choose classic 

Levenshtein by passing false to the transpositions parameter.At most, this 

query will match terms up to 2 edits. Higher distances (especially with 

transpositions enabled), are generally not useful and will match a 

significant amount of the term dictionary. If you really want this, consider 

using an n-gram indexing technique (such as the SpellChecker in 

the suggest module) instead. 

4.4.6 ElasticSearch : Expansion and simplification of Lucene 

Here we do a brief comparison of Elastic Search and Lucene : 

• Luncene is a single-node API, and Elastic Search is distributed. 

• Lucene focuses on the construction of the underlying search, while 

ElasticSearch focuses on enterprise applications. 

• Luncene requires secondary development before it can be used. It can't be 

like Bing or Google, it just provides an interface that needs to be 

implemented before it can be used. 

• Elasticsearch provides other supporting features like thread-pool, queues, 
node/cluster monitoring API, data monitoring API, Cluster management, 
etc. 

https://lucene.apache.org/core/7_1_0/core/org/apache/lucene/util/automaton/LevenshteinAutomata.html#MAXIMUM_SUPPORTED_DISTANCE
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Here we list some core concepts of the distributed Elastic Search : 

• Cluster : A cluster. An ES cluster consists of one or more nodes, and 
each cluster has a cluster name as an identifier. 

• Node : A node is actually an instance of ES, on one machine there can be 

multiple nodes, but run on different independent enviroments. 

• Index : A collection of documents. 

• Shard : An index has one or multiple shards, which looks like a bucket of 

water are distributed in multiple smaller buckets. 

In fact, each shard of ES is an index of Lucene. The underneath running 

principle of each ES shard is absolutely the same as Lucene index, but ES 

provides some more user-friendly Restful API to hide the complexity of Lucene. 

And ES provides the possibility of a distributed using of Lucene functions so that 

it can be more capable for enterprise level use with large scale of data. 

In our project, since there is the need of fuzzy search, which means there may 

be a lot of misspellings in the transcripts of the video lessons. And if we want to 

recognize the useful entities inside that kind of transcripts, we should at least 

have some capability of recognizing entities even though there are misspellings. 

And in the next chapters, the practical experiments and trying will be discussed 

more in details.  
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Chapter 5  

Methods proposed 

In our context of the project, there are at least two needs that should be fulfilled. 

Since usually in the transcript of the video lectures there are plenty of 

misspelling. For example, the final annotation system should recognize the 

possibility that the string ‘logistic regresion’ may in fact refers to ‘logistic 

regression’, that’s the reason why there’s the first need of fuzzy search. 

Secondly, when the students search a query which they are interested in using 

the search function added to video lecture, they may search a different name of 

the same entity. For example, maybe during the lecture the professor used the 

word ‘SVM’ for convenience, but the students may search ‘support vector 

machine’ when using the search function of the video lecture. The final system 

should have the capability of giving as many as possible the time durations 

where the professor explained the same specific topic to help a better 

understanding. That’s the reason why the final annotation system should 

recognize as many as domain-specific named entities and would better also link 

the mentions to a specific entity in a knowledge base. The procedure of giving 

the raw text semantic annotation is called text annotation. For implementing a 

useful search function on video lectures, annotation of the transcript with high 

quality can be the key problem. 

Thus in our project, we did some experiments of fuzzy search using Elastic 

Search, which is one of the most popular search engine based on Lucene. And 

there are different ways to do fuzzy search in ES, but the mechanism under 

different methods of ES are different. From a absolute beginner of ES, as did 

more and more experiments with ES, we became a better beginner gradually. In 

the next pages of this chapter, we will introduce the procedure of the 

experiments we did more in details, such as the beginning with ES, the 

experiment of creating the index, and the different tries of getting a more 

acceptable fuzzy search. 

As depicted in chapter 3, to annotate the lectures of one single course is a 

domain-specific task, which means the named entities appear and should be 

recognized are usually from the same domain or field. As a result, if there are 

some method that can obtain a collection of domain-specific keywords or named 

entities, all the other down streaming NLP techniques can be benefited by 

leverage the domain specific keywords or named entity collection created by our 

domain specific contextual learning methods. 
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5.1 Fuzzy search with Elastic Search 

The work we did using ES is very experimental, and the version of ES we used is 

6.7.2, but there is a annoying fact that the version of ES updates really rapidly 

which will make old characteristic or functions may not work or exist in the new 

version. In this part, since our main target is implementing fuzzy search to 

overcome misspelling in the transcript of video lectures, then this part will focus 

on the fuzzy match functions and principles in ES, but there are still some 

preparation steps before the experiments of fuzzy search. In the next pages of 

this chapter, we will introduce the experiments in a natural order. 

5.1.1 A brief start of ES 

Here we list the steps of installation of ES as a record : 

1.Elasticsearch requires at least Java 8.Before you install Elasticsearch, please 

check your Java version first by running (and then install/upgrade accordingly if 

needed) : 

 

 

2.Download the Elasticsearch 6.7.2 tar as follows : 

 

 

 

 

3. Extract it as follows : 

 

 

 

4. It will then create a bunch of files and folders in your current directory. We 

then go into the bin directory as follows : 

  

 

5. Now we are ready to start our node and single cluster : 

 

 

 

 

java -version 

echo $JAVA_HOME 

 

curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-

6.7.2.tar.gz 

 

tar -xvf elasticsearch-6.7.2.tar.gz 

 

cd elasticsearch-6.7.2/bin 

 

 

 

 

 

 

./elasticsearch 

 



 32 

6. Then we can check the basic information(version of ES, name of cluster, etc) of 

the Elastic Search installed by using : 

 

 

 

Kibana is an open source data visualization dashboard for Elasticsearch. It 

provides visualization capabilities on top of the content indexed on an 

Elasticsearch cluster. Users can create bar, line and scatter plots, or pie charts 

and maps on top of large volumes of data. 

 

For the installation of Kibana : 

 

 

 

 

 

 

 

Now we are ready to start Kibana: 

 

 

 

To visualize the utilization of Kibana, we should open a browser and go to the 

site ' http://localhost:5601' 

 

In our project, we need to import the Wikipedia labels in json form to ES index. 

Open the Kibana in a browser and click the block called 'Dev Tools', that's where 

we can interact with Elastic Search using curl-like command .Here, we create a 

mapping for the json data that will be imported to create the index: 

 

 

 

 

 

 

 

 

 

 

Then we import the json data into the Elastic Search cluster :  

 

 

 

 

curl -XGET 'localhost:9200' 

 

wget https://artifacts.elastic.co/downloads/kibana/kibana-

6.0.0-linux-x86_64.tar.gz 

sha1sum kibana-6.0.0-linux-x86_64.tar.gz  

tar -xzf kibana-6.0.0-linux-x86_64.tar.gz 

cd kibana 

./bin/kibana 

PUT /labels 

{ 

 "mappings": { 

  "doc": { 

       "properties": { 

          "text_entry":{"type":"keyword"} 

       }   

  } 

 } 

} 

`curl -H 'Content-Type: application/x-ndjson' -XPOST 

'localhost:9200/labels/doc/_bulk?pretty' --data-binary 

@out.json 

https://en.wikipedia.org/wiki/Elasticsearch
http://localhost:5601/
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5.1.2 Indexing wiki-labels into Elastic Search 

First we write a python script to transform the original wiki-labels data which is 

stored in txt form to json form in order to make it readable to the elasticsearch, 

and a part of the original labels is like : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 : part of labels which will be indexed in Elastic Search. 

 

But with the raw text form of the wiki labels we cannot directly import it into ES, 

since it’s necessary to transform the raw text to Json format. As a result, a python 

script was written to transform the raw text version in which each row is a 

entities’ label of a named entity. 

 

 

 

 

 

 

 

Christer Englund 

Anaemia in pregnancy: occurrence in two economically different 

clinic populations of Karachi. 

Alison Bell Memorial Award. The nurse as first assistant to the 

surgeon: is this a perioperative nursing role? 

Curtis Monument In Churchyard, 1 Metre North Of Chancel, Church 

Of The Blessed Virgin Mary 

[Imported cases of malaria] 

Zatoichi and the Chest of Gold 

Category:1976–77 in Welsh football 

Mesci_5136 

Inhibiting ERK Activation with CI-1040 Leads to Compensatory 

Upregulation of Alternate MAPKs and Plasminogen Activator 

Inhibitor-1 following Subtotal Nephrectomy with No Impact on 

Kidney Fibrosis. 

The dynamics of cortical folding waves and prematurity-related 

deviations revealed by spatial and spectral analysis of 

gyrification. 

Epiperipatus evansi 

gamma-glutamylputrescine synthase 

BN112_3529 

Orchard Park Projects 

Category:Xiriâna lemmas 

Cornelius Scipio Asiaticus 
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After format transformation, the Json format of wiki labels should be like this : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 : DBpeida labels that have already been indexed in Json form. 

 

When we were trying to index the whole json data of labels into ElasticSearch, 

we met the problem that the size of json data 3.1 GB is larger than the default 

JVM heap size of ElasticSearch 1GB. Then we should revise the setting of heap 

size, since our max memory of ubuntu is 8 GB , then we set the heap size of 

ElasticSearch as 4 GB. And we did it in the file jvm.options in the config folder of 

ElasticSearch : 

 

Figure 5.3 : Check the heap size of Elastic Search.  

{"index":{"_index":"labels","_id":1}} 

{"text_entry":"Christer Englund"} 

{"index":{"_index":"labels","_id":2}} 

{"text_entry":"Anaemia in pregnancy: occurrence in two 

economically different clinic populations of Karachi."} 

{"index":{"_index":"labels","_id":3}} 

{"text_entry":"Alison Bell Memorial Award. The nurse as first 

assistant to the surgeon: is this a perioperative nursing role?"} 

{"index":{"_index":"labels","_id":4}} 

{"text_entry":"Curtis Monument In Churchyard, 1 Metre North Of 

Chancel, Church Of The Blessed Virgin Mary"} 

{"index":{"_index":"labels","_id":5}} 

{"text_entry":"[Imported cases of malaria]"} 

{"index":{"_index":"labels","_id":6}} 

{"text_entry":"Zatoichi and the Chest of Gold"} 

{"index":{"_index":"labels","_id":7}} 

{"text_entry":"Category:1976–77 in Welsh football"} 

{"index":{"_index":"labels","_id":8}} 

{"text_entry":"Mesci_5136"} 
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But even though we set a heap size which is larger than 3.1 GB (json file size), the 

"out of binary memory error" continues to occur , then we decided to write a 

bash script to split the original relative big json file into smaller ones and index 

them individually : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 : Bash script to index large dataset into ES. 

 

Then if the indexing successed, we can check the basic information of the index 

through the command : curl -XGET 'localhost:9200/labels?pretty' 

 
Figure 5.5 : successful index creation in ES. 

# split the main file into files containing 1000,000 lines max 

printf "start split\n"; 

split -l 1000000 -a 3 -d out.json 

/home/parallels/Documents/ElasticSearch_data/split_parts/out_b

ulk; 

printf "split done\n"; 

# send each split file 

BULK_FILES=/home/parallels/Documents/ElasticSearch_data/split_

parts/out_bulk*; 

i=1; 

for f in $BULK_FILES;  

do 

   curl -H 'Content-Type: application/x-ndjson' -s -XPOST 

localhost:9200/labels/type_labels/_bulk --data-binary @$f 

   let i+=1; 

   echo $i 

done 
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And we can also do some search by search query like : 

curl -XGET 'localhost:9200/labels/_search?q=smoothie&pretty' ： 

 
Figure 5.6 : A search example in ES with query ‘smoothie’. 

5.1.3 A try to extend the max Levenshtein distance limit of 

fuzziness more than 2 in ES 

After spending a lot of time trying to break the limit of the max Levenshtein 

distance in ES, we finally find that it seems almost impossible to reach this goal 

directly in ES by writing scripts or plugins nowadays. But during the trip of this 

trying, we finally got into the deep details and also tried to use some alternative 

ways to do the fuzzy search(or simulate the fuzziness more than 2) in ES. 

And actually there are several reasons which make this problem difficult. As we 

know ElasticSearch is based on Lucene which is a strong search engine library 

written by Doug Cutting, and for the fuzziness part of Lucene, a library or 

algorithm called 'Levenshtein Automata' was implemented by Robert Muir and 

used first in Lucene 4.0 in 2011 which made the FuzzyQuery faster 100 times 

than before. 

 

The story of the implementation of 'Levenshtein Automata' has been posted in 

the blog of Michael McCandless: Lucene's FuzzyQuery is 100 times faster in 4.0，

from which we can find that they both struggled a lot reading the paper of Fast 

String Correction with Levenshtein-Automata (2002) by Klaus Schulz and Stoyan 

Mihov, and also implementing the algorithm in Java according to the paper. For 

http://blog.mikemccandless.com/2011/03/lucenes-fuzzyquery-is-100-times-faster.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.652
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.652
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understanding the theory part and the implementation of 'Levenshtein 

Automata', one can directly check the relevant document of Lucene for a glacne 

and then the source code of LevenshteinAutomata Class of Lucene in github for 

the ground-truth details, and from the github repo of Lucene we can figure out 

that nearly all the fuzzy functions of different fuzzy-relevant Classes are all based 

on 'Levenshtein Automata'. 

 

Otherwise, there are also some great explanations and implementations of 

'Levenshtein Automata'. The first is Levenshtein automata can be simple and 

fast(2015), in which Jules Jacobs implemented a version of time 

complexity O(length of string) and an improved version of time 

complexity O(max edit distance). 

 

The second one is Damn Cool Algorithms: Levenshtein Automata(2010), which is 

more in details to illustrate the idea of 'Levenshtein Automata', and this blog 

explained the algorithm in a very intuitive way : first by constructing a NFA(Non-

deterministic finite automaton) with the target word(query) and the max edit 

distance allowed, then since some computational reason the constructed NFA 

should be converted to a DFA(deterministic finite automaton).Then when the 

DFA is constructed according to the relevant NFA with the target word and the 

max allowed edit distance, any incoming word can 'walk' into the 'maze' of the 

constructed DFA to check whether this word can finally access to one of the 

acceptable states which means the incoming word is within the distance less 

than the max allowed edit distance to the target word. 

 

And In the next step, we should know how to use the constructed DFA to check 

which are the acceptable words among the terms from the documents indexed in 

ES. the documents are indexed in ES with the data structure of inverted 

index which looks like a HashMap, the terms can be seen as the keys, the ids of 

documents where a certain term occurs are listed as a posting which can be seen 

as the value of the key. Then we leave the postings aside now, the terms as the 

keys are stored as a sorted list in ES(actually the sorting is within a segment), 

and in ES, during the query time, there's a variant of Binary-Search algorithm has 

been used to search the position of a certain query term in the sorted list of 

terms. After all, with both the constructed DFA of the query word and the terms-

dictionary of the index in ES which can be seen as a sorted list, there are some 

methods illustrated in the blog above can relatively check out the set of 

acceptable terms efficiently. 

 

 

 

 

https://lucene.apache.org/core/7_4_0/core/org/apache/lucene/util/automaton/LevenshteinAutomata.html
https://github.com/apache/lucene-solr/blob/1d85cd783863f75cea133fb9c452302214165a4d/lucene/core/src/java/org/apache/lucene/util/automaton/LevenshteinAutomata.java
http://julesjacobs.github.io/2015/06/17/disqus-levenshtein-simple-and-fast.html
http://julesjacobs.github.io/2015/06/17/disqus-levenshtein-simple-and-fast.html
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
https://codingexplained.com/coding/elasticsearch/understanding-the-inverted-index-in-elasticsearch
https://codingexplained.com/coding/elasticsearch/understanding-the-inverted-index-in-elasticsearch
http://lucene.apache.org/core/3_6_1/fileformats.html#Frequencies
http://lucene.apache.org/core/3_6_1/fileformats.html#Term%20Dictionary
http://lucene.apache.org/core/3_6_1/fileformats.html#Term%20Dictionary
https://stackoverflow.com/questions/12218507/inverted-index-vs-binary-tree-vs
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5.1.4 Current solution : tri-gram analyzer fuzzy search 

After spending a lot of time trying to expend the limit of 2 characters in fuzzy 

match of ES, we temporarily compromise to another methods which is more 

easier to be implemented, and this method is to use Ngram analyzer of ES, which 

can generate the ngrams of each token(label), and create the index with all the 

ngrams, as a result, one can get the original label by searching only a part of it.As 

described in the official site of ES, the ngram tokenizer first breaks text down 

into words whenever it encounters one of a list of specified characters, then it 

emits Ngrams of each word of the specified length. N-grams are like a sliding 

window that moves across the word - a continuous sequence of characters of the 

specified length.  

 

Here is an example about how does Ngram analyzer work in ES, with 

configuration of the ngram tokenizer to treat letters and digits as tokens, and to 

produce tri-grams (grams of length 3): 

 
Figure 5.7 : Setting tri-gram analyzer of ES for fuzzy search. 
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And the result of the analyze with tri-gram will be :  

[ Qui, uic, ick, Fox, oxe, xes ] 

If only analyzer is specified in the mapping for a field, then that analyzer will be 

used for both indexing and searching. If I want a different analyzer to be used for 

searching than for indexing, then I have to specify both.  

Another important and also tricky point is how to set the min and max n-gram 

limit when using the ngram analyzer(n-gram tokenizer or n-gram filter).Until 

now I think to find the optimal min and max n-gram numbers can be only 

achieved by experiments. In the reference link below there is a brief summary 

about the experience of the author on how to set these two parameters: 

Mingram/Maxgram Size 

"Notice that the minimum ngram size I'm using here is 2, and the maximum size 

is 20. These are values that have worked for me in the past, but the right 

numbers depend on the circumstances. A common use of ngrams is for 

autocomplete, and users tend to expect to see suggestions after only a few 

keystrokes. Single character tokens will match so many things that the 

suggestions are often not helpful, especially when searching against a large 

dataset, so 2 is usually the smallest useful value of mingram. On the other hand, 

what is the longest ngram against which we should match search text? 20 is a 

little arbitrary, so you may want to experiment to find out what works best for 

you. Another issue that should be considered is performance. Generating a lot of 

ngrams will take up a lot of space and use more CPU cycles for searching, so you 

should be careful not to set mingram any lower, and maxgram any higher, than 

you really need (at least if you have a large dataset)." 

----more details in : https://qbox.io/blog/an-introduction-to-ngrams-in-

elasticsearch 

And there is a kind of statistics which may be helpful to be a reference to choose 

the min and max n-gram numbers: the distribution of the word length for a 

specific language, here are some examples in the pictures below, and from which 

we can see that almost all of the Italian words have a length from 3 to 16, and 

more than 99% of Italian words have a length from 4 to 15; Meanwhile for 

English words the case is similar but a little bit different: 

 

https://qbox.io/blog/an-introduction-to-ngrams-in-elasticsearch
https://qbox.io/blog/an-introduction-to-ngrams-in-elasticsearch
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Figure 5.8 : Word length distribution of different languages. 

 

the pictures above are from the site: http://www.ravi.io/language-word-

lengths 

Another very useful tool is the _explain API in ES, which can help us understand 

how is a relevance score has been calculated by the calculations of different 

factors. Especially for the default relevance score calculation BM25, which is a 

variant of traditional tf-idf score, the _explain API can explain the details of the 

calculations of each factors in the calculation of the final BM25 relevance score. 

But if someone wants to change the default BM25 relevance to use his own 

custom relevance score, one should write his own Explain Class in Java for the 

use of _explain API. 

Whenever we want to check how the relevance score is calculated in our specific 

cases for a specific pair of query and document in details, the first tool we should 

have a try is the '_explain' API. In our case , although we use n-gram tokenizer to 

do the analysis both in indexing and searching phases, the final relevance score 

is still calculated using the default BM-25 method in ElasticSearch. 
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And the use of _explain API is depicted in the official document of ES 6.7.2 here: 

https://www.elastic.co/guide/en/elasticsearch/reference/6.7/search-

explain.html 

5.2 Domain specific contextual learning  

This is the second contribution of this thesis for the whole project of giving 

semantic annotation to the video lecture transcript and implementing the search 

function to the video lectures. If as many as the named entities or keywords 

which belong to a specific domain can be automatically found and collected, then 

the collection of domain specific named entities can in some way maximize the 

recall of the students’ search using the search function provided by our final 

project. Through implementing a method which leverages several different tools, 

we finally reach a 98% recall on the named entity labels collection related to the 

domain ‘database’. In addition, this method can be easily expanded to other 

different subjects or domains, such as math, physics and machine learning, etc. 

To make a brief summary of the content we have done in this part, there are 

mainly two steps. The first one is the way how could we get the information  

resource which probably contain the information we need, and this part is the 

work we did in this thesis. The second one is the way to extract the named entity 

from the information resource obtained in the first step, and this part was done 

by my college in the project. Then, in this part, we will mainly introduce the work 

of the first step, but the second part will be also introduced briefly to make a 

better understand of the whole system. 

In the first step that automatically collect the most probably useful resource on 

the Internet, there are mainly three different tools that we used from very 

heuristic ideas. And some of the basic introductions were already done in 

Chapter 4. Here we will further address how we use them to fulfill our need of 

the whole annotation and search system in details. 

5.2.1 Google custom search on Coursera  

As we know, Coursera is one of the most popular open course platform or 

website. And Coursera contains plenty of information of different courses from 

different domains, such as the catalog of the courses, the slides and transcripts. 

For example, if we want to annotate the a series of video lecture transcripts of a 

course from Polito, the catalog, the slides and transcripts of all the other open 

course in the same domain may help a lot. More in details, when we want to 

annotate the course ‘Analysis I’ of Polito, the open course ‘Analysis I’ of MIT, or 

https://www.elastic.co/guide/en/elasticsearch/reference/6.7/search-explain.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/search-explain.html
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some other universities can provide many text information very similar in the 

semantic way. 

But there are many different courses have a name exactly or similar to ‘Analysis 

I’, and they may all can contribute more or less. Then whether there is a way to 

retrieve all the relevant courses of a domain? By set the website on which we 

want to searchin Google custom search(here the website of Coursera), we can 

retrieve all the courses in Coursera automatically using Google custom search 

API. Here is an example when people search the query ‘database’ in Coursera 

website :  

 

Figure 5.9 : Result list of courses searching ‘database’ in Coursera. 

As the picture shows above, there will be a list of courses related to your query 

‘database’. And by set the website of Coursera as the site we want to search in 

CSE, and use the python API of CSE, we can easily launch a query like ‘databse’ in 

our program, then get the list of search results automatically.  
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Here is an example to search in Coursera with python script using CSE, the query 

used here is ‘the content of database course’ :  

 

Figure 5.10 : Using google custom search API to search in Coursera in python. 

As the figure above shows, 10 of the result courses have been listed. The 

maximum number of results in CSE is 500. Then after getting the list of relevant 

courses in Coursera, some kind of crawler techniques can be used to retrieve and 

collect useful information in each of the result courses. Here, we use 

BeautifulSoup which was introduced in Chapter 4 to do this job. 

Here is an example of using BS4 to crawl the information by tags : 

 
Figure 5.11 : Using BS4 to extract text from the result course page.  
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Then after this step, we can get text information with high quality which 

probably contain plenty of labels of named entities related to our query searched 

in CSE API. The next step is to use some kind of NER or NED tools to extract 

named entities from the results obtained in the last step. Here we briefly 

introduce several NER and NED extractors that have been used in our project :  

• Babelfy : Babelfy is a unified, multilingual, graph-based approach to 

making Entity Linking and Word Sense Disambiguation, based on a free 

identification of the candidates' meanings with a heuristic that exploits a 

dense graph. It is based on BabelNet and jointly carries out 

disambiguation and entity linking. 

• DBpedia Spotlight : DBpedia Spotlight is an open source project 

responsible for developing a system for automatic annotation of DBpedia 

entities of text in language  natural. Provides interfaces for sentence 

localization (phrase recognition to be noted) and disambiguation (entity 

link). 

• AIDA : AIDA was born with the idea that Wikipedia in English is only 

suitable for disambiguing general English texts such as news articles in 

English. Developing disambiguation systems for other domains and 

languages requires a great deal of adaptation to adapt to specific 

application scenarios. In addition, Wikipedia editions of many languages, 

such as Arabic, are an order of magnitude lower than the English 

Wikipedia. Therefore, it is essential to exploit inter-language links to 

enrich non-English resources. 

• AGDISTIS : The AGDISTIS framework addresses two of the main 

drawbacks of the linking framework of current entities: time complexity 

and accuracy. AGDISTIS, is a framework that achieves the complexity of 

polynomial time. The framework is knowledge-base-agnostic (that is, it 

can be implemented on any knowledge base) and is also language 

independent. 

Here is an example of using Babelfy to extract named entity from text : 

 
Figure 5.12 : An example using Babelfy extractor to extract named entities. 
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5.2.2 Web crawler on domain specific books on-line 

Besides the domain-specific information obtained from Coursera, there is also 

the heuristic idea to collect domain-specific information from the books available 

on the Internet. For the purpose of obtaining text information from the books 

online, the techniques of web scrawlers must be the first idea comes to one’s 

mind. And usually the books on line have at least two different kinds of versions, 

pdf and html. In order to get the ability of extracting information from different 

form of book resource, with a single book ‘Database design 2nd edition’ 

reference[5.2] derived from the website https://opentextbc.ca/, which provides 

both the pdf and html version of this book. 

 

First, we introduce the web crawler implemented with a python script which is 

dedicated to the extraction of information from the html version of the book. 

Here, bs4 was mainly used as the parser tool of the html, and selenium 

introduced in Chapter 4 was used to change to the next page automatically. 

 

 
Figure 5.13 : The main python functions of the web scrawlers  

https://opentextbc.ca/
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With the python script implemented by us, we can extract and save the useful 

text information into a more structured Json format, which means within a single 

Json file, all the meaningful text contained in the whole book can be retrieved, 

also according to different types of tags. 

 

Here is an example of a part of the result Json file of the book :  

 

Figure 5.14 : Result json format of book scrawled from the HTML version on line. 

 

Then, we will introduce the way how did we extract text information from the 

pdf version.

 
Figure 5.15 : Using Tika to extract text from pdf version of books on line. 

 

For the extraction of plain text from the pdf version of the book, a python library 

called Tika has been used in our project. Apache Tika uses existing parsing 

libraries to detect and extract metadata and structured content from documents 

in different formats (such as HTML, PDF, Doc). After obtaining the text 

information of the book using web crawlers and Tika, the next step is also to use 

different extractors to extract named entities from the text. With a single book, 

we can achieve a 60% recall of the database domain specific named entity set 

manually collected previously by our colleges. And if there is some way to 

implement a generalized web crawler of on-line books someday, a maximized 

progress of recall can be expected using this heuristic method.  
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Here is part of the final named entity extraction script we implemented with 

exist popular extractors : 

 

 

Figure 5.16 : Part of python script of using extractors to extract named entities.  

 

The example above can show us that with the extractors, we can collect a set of 

named entity URI from knowledgebase like Wikidata, which will be merged into 

the whole domain specific context of a specific field or subject. 
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5.2.3 MediaWiki API to retrieve domain specific context 

As introduced in Chapter 4, MediaWiki is a tool to get touch to a lot of different 

kinds of Wikipedia resources which are contained in the knowledgebase of 

Wikidata. Here is the official site of Wikidata knowledge base, from which one 

can view and utilize many features and properties of Wikipedia.  

 
Figure 5.17 : Home page of Wikidata. 

 

Especially with the search box on the up right, one can search a query to retrieve 

a list of named entities which are most related to the text of the query. 

 

Figure 5.18 : Result list of named entities searching in Wikidata. 
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From the figure above we can see a part of the result list searching a query of 

‘sql’, which is the name of a basic programming language of database field.  

And from the result list we can find that this list can be a really high quality 

resource of named entity set collection for a specific domain, but there should be 

some manual design of the queries we search and whether there is some way of 

doing this procedure within python script for the convenience of being a 

composition of the whole project. 

 

Then after spending some time on investigation, we found that there was a way 

to use Wikipedia API to retrieve the same search result as in Wikidata search 

box. 

 

Figure 5.19 : Using MediaWiki API with python. 

 

Then, we can get the labels of the search result entities, the maximum number of 

result entities is 500 :  

 

Figure 5.20 : Part of result list of labels searching ‘SQL’ using Media WikiAPI 
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As we can see in the figure above, the labels of the result entities are really with  

high quality, which are some of the keywords most related and important to the 

domain of database. Also we can get the Wikidata IDs of the result entities : 

 
Figure 5.21 : Part of result list of entity IDs searching ‘SQL’ using MediaWiki API 

 

Also make the labels and IDs together, and can be saved for later use : 

 

Figure 5.22 : Part of result list of labels and IDs searching ‘SQL’ using MediaWiki  

 

After combining all the three named entity resources together, finally we reach a 

recall of 98% on the named entity set on domain ‘database’ pre-collected by our 

colleges. And this heuristic method can be easily generalized to other domains or 

subjects to collect a contextual named entity set for the later use of down 

streaming NLP tasks, such as domain specific NER or NED. 
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Chapter 6 

Conclusions and future work  

The contribution of the work in this thesis are mainly in two different parts. The 

first is to find a temporary feasible way of tackling the problem of misspelling, 

and the second is to find a way to automatically collect the context of a specific 

domain or subject, which means a set of named entities related to a specific 

domain. 

 

For the first part of our work about fuzzy search, actually the current solution 

should be temporary but acceptable, since the tri-gram analyzer works in an 

relative acceptable way of getting results within a certain Levenshtein distance 

from the original query, and after a few hours of indexing the DBpedia 

multilingual labels, each search process cost a time duration only in milliseconds, 

which means to cope with every word in a single transcript it won’t cost a really 

long time. But there must be a lot of future work can be tried in this part. Since at 

the first of the work, we also spent a lot of time on implementing a custom 

relevance score to overcome the limit of the maximum Levenshtein distance 2 in 

fuzzy search of ES, and we temporarily failed to reach the point in a limited time. 

But if later on we become more familiar with ES, more research works on ingest 

API and painless scripting language in ES may lead us to the final target of the 

customized score more consistent with our ideas. 

 

For the second part of our work about contextual learning of a specific domain. 

First, the method proposed to automatically learning the context can be future 

improved. There is a massive improvement can be reached whenever there is a 

way of creating some kind of general we scrawler which can scrawl different 

web sites or books in HTML version with different HTML structures. Then not 

only Coursera but other open course web sites like Udacity, and all other books 

automatically discovered in HTML version can be parsed and much more useful 

information can be extracted automatically. In addition, the way of leveraging 

the result of the set of domain specific named entities can be a much more 

interesting and challenging task to be done for the down streaming NLP tasks 

such as NER or NED. For example, we can use the collected set of domain specific 

named entities as a filter which can help the decision of whether the mention is a 

named entity and how much does a named entity in knowledge base match the 

mention appears in the text. But there is still the problem of this collection 

procedure which will produce so many not domain relevant named entities that 

can be seen as noise.  
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As a result, the future work can be biased to expending the leverage of ES when 

there is more need of coping with misspelling problem. And may also be biased 

to the utilization of the collected set of domain specific named entities for the 

named entity disambiguation work to annotate video lecture transcripts. 
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