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Introduction

Granular materials, i.e. agglomerations of discrete, macroscopic particles, are
omnipresent in both industry and nature. They range from natural materials
like snow, sand, soil, coffee, rice and coal to artificial materials such as medicinal
tablets, catalysts or animal feed: they are, indeed, the second most most
manipulated raw materials after water. Furthermore, they are involved in
physical phenomena like sandstorms, avalanches and earthquakes, concerning
respectively sand, snow and soil. The distinction between granular materials and
fine particulates (or molecules) is obviously made taking into account the size of
their constituent particles: the constituents that compose granular material must
be large enough such that their movement is not subject to thermal fluctuations.
Thus, the lower size limit for granular materials can be defined as 1µm. On the
other hand, there is no upper size limit, considering that the physics of granular
materials have been applied to the formation of solar systems, galaxies and the
universe. When studying this kind of matter, the massively high number of
degrees of freedom takes to wildly non-linear behaviour. For this reason, it is
quite challenging to characterize such materials with a continuum mechanics
approach (for example Finite element method, FEM): considering a continuum
model, indeed, movements and rotations of particles inside the material are
not considered; thus, in order to capture its micro-mechanical behaviour, it
is needed to couple the model with complex contact laws. Differently, when
using Discrete Element Method (DEM) this is not needed and capturing the
micro-mechanical behaviour of those materials is quite easy. For this reason
throughout this study DEM has been used in order to simulate the changes to
the micro- and macro-scale of active clays, when mechanical loads are applied
to a sample. Furthermore, given the good results obtained when simulating
experimental tests of uniaxial compression, chemical loads have been simulated,
with particular stress on the relation between micro- and macro-porosity.
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Chapter 1

Mechanical behaviour of
active clays

When taking into account the mechanical behaviour of active clays many
are the factors that play an important role in its characterization: clays are in
fact composed by solid particles, liquid and gas; furthermore particles are very
small in size, given that the upper size limit is d = 2µm and in order to see
them it is necessary the aid of the electron microscope. Particle shapes also
vary with a wide range going from nearly spherical, bulky grains to thin, flat
plates and long streamlined needles. Finally, also the chemical composition needs
to be considered as humidity and short range chemical interactions can make
a significant difference in the mechanical response of clays. Mineralogy is the
primary factor controlling all of this characteristics and a knowledge of the role
of minerals in a soil provides an intuitive insight of its behavior. For this reasons
in this chapter clays mineralogy and the role of chemical interactions will be
discussed, before characterising the mechanical behaviour of active clays.

1.1 Mineralogy
Clay minerals in soils belong to the mineral family termed phyllosilicates.

This family also contains other layer silicates such as serpentine, pyrophyllite,
talc, mica, and chlorite. One important property of this kind of soil is that its
particles have a residual negative charge that is balanced by the adsorption of
cations from solution. Regarding their structure it consists in combinations of
simple structural units, which could be for example silicon tetrahedron with the
aluminum or magnesium octahedron, both defined below. What characterises
each mineral group is the stacking of these sheets or units and the way in which
two successive two- or three-sheet layers are held together; therefore in order to
properly characterize clay minerals it is necessary to define the sheets that can
compose them.

Silica Sheet

The silica structure is formed by multiple interconnected tetrahedral units.
In figure 1.1 the way multiple silica tetrahedra are assembled is displayed: by

1
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shearing three oxygens out of the four of which they are composed, an hexagonal
net is formed. This structure is based on a single plane and for this reason the
only oxygen which is not shared in each tetrahedron points in the same direction,
i.e. perpendicularly to the base plane. There is no limit to the repetition of this
scheme.

Figure 1.1: Silicon tetrahedron and silica tetrahedra arranged in a hexagonal network
[8].

Octahedral Sheet

As can be seen in figure 1.2 (a), the octahedral unit is composed by six
oxygens or hydroxys and one aluminium or magnesium. When composed by a
trivalent cation, such as aluminium, the octahedral structure in figure 1.2 (b)
forms the mineral called gibbsite which is called gibbsite sheet if united with
silica sheets. Coherently, when composed by a divalent cation, for example
magnesium, the octahedral structure forms the mineral called brucite which is
called brucite sheet if united with silica sheets.

Figure 1.2: Octahedral unit and sheet structure of octahedral units [8].

Pattern and classification of the clay minerals

A simple representation of the schemes discussed above is shown in figure
1.3: it is important to notice that this kind of visualization is useful in order
to understand the structure obtained, but it is not reliable when considering
the relative size between sheets. Furthermore, the picture shows an idealized
structure: in reality minerals are characterized by substitutions and mixed-layer

2
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Figure 1.3: Schematic representation of simple mineral sheets [8].

structures. For this reasons this approach, called building block, is useful just to
understand conceptual models. This being said, a good representation of this
approach is shown in Figure 1.4: in particular in the last line different groups
of clays are represented. Another advantage of this kind of grouping is that
minerals that share crystal structure also have similar mechanical and engineering
properties. Minerals can be divided into different categories according to their

Figure 1.4: Synthesis pattern for the clay minerals [8].

complexity, since they can be made of multiple sheets, ranging from two to
four. The two-sheet minerals, as briefly stated before, are composed by a silica
sheet and an octahedral sheet. The three-sheet minerals are composed of either
a dioctahedral or trioctahedral sheet between two silica sheets. Finally, the
four-sheet structure is now briefly introduced: it can be found in the mineral
called chlorite and it is composed by a 2:1 layer plus an interlayer hydroxide
sheet. Other than these possibilities clay-like materials with no clear crystal
structure could also be found; those materials are referred to as allophane or
noncrystalline clay.

3
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1.1.1 The 1:1 structure
Minerals whose structure is composed by one silica sheet and one octahedral

sheet alternating are called 1:1 structure minerals. One main example of this
particular material is kaolinite, as can be seen in Figure 1.5. Between different
layers, sheets are connected by van der Waals forces and hydrogen bonds. It
is important to notice that this kind of bonding is strong enough not to have
swelling in presence of water. Characterising also the octahedral sheet there are

(a) (b)

Figure 1.5: Scheme of kaolinite structure: (a) sheet scheme, (b) diagrammatic chemical
scheme [8].

two possibilities in the resulting mineral: when it is brucite, in fact, the result is in
the serpentine subgroup, otherwise if it is gibbsite the mineral is in the kaolinite
subgroup. Anyway the former is quite rare and often is found mixed with other
minerals like kaolinite or illite and for this reason is hard to identify. As stated
before, even if they are pretty useful in order to understand the structure of these
minerals, schemes like the one portrayed in Figure 1.5 are extremely simplified:
in reality there are some differences in the distances among oxygens in kaoline
minerals and this results in a triclinic and not monoclinic structure. Furthermore,
different members in the kaolinite groups can be obtained with changes in the
stacking of layers and also with different positions of aluminium ions within the
available sites in the octahedral sheet.

1.1.2 The 2:1 structure
Minerals whose structure is composed by two silica sheet around one oc-

tahedral sheet are called 2:1 structure minerals. One main example of this
particular material is smectite, as can be seen in Figure 1.7. In both the silica
sheets oxygens point toward the center of the cell and they are shared with
the octahedral sheet. Between different cells the bonding is obtained by van
der Waals forces but also by cations: in particular cations manage to balance
charge deficiencies in the structure. This kind of bonding is weak and can be
easily separated by the absorption of water or other polar liquids. Finally it
is now important to define another property of this structure: when the solid
particles composing the clay are very small in size (d < 2µm) and the pore fluid
is distilled water or a different polar fluid, the weak inter-layer bonds are easily
separated and the clay swells; this behaviour is absent in case the polar fluid is
a saline solution, as will be seen in section 1.2; clays that present this kind of
behaviour are called active clays.

4
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In the next pages a characterisation of some 2:1 minerals will be provided,
dividing them in active minerals and inactive minerals.

inactive minerals

A clay can be called inactive (or non-active) when its activity ac is below
0.75, with

ac =
Ip

Content (%) of clay size fraction < 2µm

Ip = wL − wP , wL = liquid limit, wP = plastic limit

Where the liquid limit is the percentage of water at which clay starts behaving
like a liquid, while the plastic limit is the water moisture content at which a
thread of soil with 3.2mm diameter begins to crumble. In this case swelling
minerals are probably not present inside the clay and its swelling potential is
very low. Examples of this clay mineral are illite and kaoline.

Illite The basic structural unit of this mineral is made by three layers, with
tho silica layers around a gibbsite one. All the silica tips point towards the center
and are in common with the gibbsite layer. One out of four of the silica positions
are instead filled by aluminium, creating a charge deficiency, which is balanced
by potassium between different structural units; a scheme of this structure is
shown in Figure 1.6. As stated before, this kind of scheme representation doesn’t

(a) (b)

Figure 1.6: Scheme of illite structure: (a) sheet scheme, (b) diagrammatic chemical
scheme [8].

match with reality, where imperfections are often present. In particular in illite
the stacking has some randomness and some illite may contain magnesium and
iron other than aluminum in the octahedral sheet. Regarding its morphology,
illite is composed by very small and fragile particles mixed with other materials,
both clay- and non clay-like.

5
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Active minerals

A clay can be called active when its activity ac is over 1.25, with ac defined
as before. In this case there is a strong chance swelling minerals are present
inside the clay and it has a high swelling potential. Examples of this kind of
clays are smectite and bentonite; the latter will be the focus of this work.

Smectite Smectite minerals have a structure consisting in an octahedral
gibbsite sheet between two silica sheets as shown in Figure 1.7 with both sheet
scheme and chemical scheme. Silica sheets’ tips are made by oxygens and they
all point toward the center of the unit cell; furthermore these oxygens are in
common with the octahedral sheets. Between different layers van der Waals
forces balance the charge deficiency that are present in the structure. In case
of absorption of water (or other polar liquids) this forces are easily overcome
given that they are very weak. Smectite minerals are characterised by the widely

(a)

(b)

Figure 1.7: Scheme of smectite structure: (a) sheet scheme, (b) diagrammatic chemical
scheme [8].

6
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presence of isomorphous substitution for silicon and aluminum by other cations.
In particular, aluminium may be substituted by magnesium, iron, zinc, nickel,
lithium, or other cations. Regarding its morphology, smectite comes in very
small and thin particles and its shape can be associated with the one of little
films.

Bentonite Similarly to smectite, bentonite is a highly swelling clay material.
It it used in many engineering processes, one example being its employ as
drilling mud, but also in slurry walls in the clarification process of beer and wine.
Bentonite is a very plastic, colloidal and expanding material with a liquid limit
that can overcome the 500%. For these reasons, if it is present in large quantity
in soft shale or as a seam in rock formations, it can be cause of continuing
slope instability (one example of this phenomenon could be found in Portugese
bend, California). Moreover, high swelling capacity, low permeability and high
absorption capacity make it a material suitable to be used as a barrier for the
disposal of nuclear waste, as well as being normally used in landfills. In this work
a great focus will be placed on this particular soil mineral and on its behaviour.

1.2 Ion distributions in clay-water systems: double-
layer theory

On the surfaces of negatively charged clay particles adsorbed cations are
tightly held; furthermore, cations in excess of those needed to neutralize the
electronegativity clay particles and associated anions are present as salt precipi-
tates. This cations try to diffuse away throughout the pore fluid because of their
high concentration near the surfaces of particles. At the same time, the negative
electrical field originating in the particle surfaces and ion-surface interactions
oppose to this behaviour. The charged surface and the distributed charge in
the adjacent phase are together termed the diffuse double layer. The most cited
ionic distribution theory was developed by Gouy (1910) and Chapman (1913);
their study was later extended by Derjaguin and Landau (1941) and Verwey
and Overbeek (1948) with the description of repulsive forces among colloidal
particles and stability of colloidal suspensions. Their theory is now referred to
as DVLO.

1.2.1 Mathematical description
Taking into account platy clay particles the assumption of diffusive double

layer on planar surfaces is reasonable: from now on the theory will be based on
this assumption. Furthermore a few simplifying hypotheses are made:

– ions in the double layer are considered as point charges, and there are no
interactions between them;

– charge on the particle surface is uniformly distributed;

– the particle surface is a plate that is large relative to the thickness of the
double layer (one-dimensional condition);

7
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– the permittivity of the medium adjacent to the particle surface is indepen-
dent of position.

The concentration of ions (ions/m3) of type i, here defined as ni, in a force field
at equilibrium is given by the Boltzmann equation:

ni = ni0exp
(Ei0 − Ei

kT

)
(1.1)

The subscript 0 represents the reference state, taken to be at a large distance
from the surface, E is the potential energy, T is temperature (K), and k is the
Boltzmann constant (the gas constant per molecule) (1.38 · 10−23JK−1). The
potential energy of an ion in an electric field Ei is

Ei = vieΨ

where vi is the ionic valence, e is the electronic charge (1.602 · 10−19C), and Ψ
is the electrical potential at the point. Potential varies with distance from a
charged surface in the manner shown by Figure 1.8.

Figure 1.8: Variation of electrical potential with distance from a charged surface [8].

Considering then the one-dimensional Poisson equation, which relates poten-
tial, charge, and distance

d2Ψ

dx2
= −ρ

ε
(1.2)

where ε is the static permittivity of the medium (C2J−1m−1 or Fm−1) and ρ is
the charge density, defined as:

ρ = e
∑
i

vini . (1.3)

Substituting Eq. 1.1 in Eq. 1.3 it is possible to obtain a relation between density
ρ and ions concentration ni:

ρ = e
∑
i

vini0exp
(Ei0 − Ei

kT

)
(1.4)

8
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Finally, substituting Eq. 1.4 in Eq. 1.2 it is possible to obtain:

d2Ψ

dx2
= −e

ε

∑
vini0exp

(−vieΨ
kT

)
(1.5)

which is the differential equation for the electric double layer adjacent to a planar
surface. This equation describes a roughly exponential decay of potential with
distance from the surface. The center of gravity of the diffuse charge is at a
distance x = 1/K from the surface, where K is defined as

K2 =
2n0e

2v2

εkT

and so:
1

K
=

(
εkT

2n0e2v2

) 1
2

(1.6)

This distance is a measure of the thickness of the double layer. According to
Equation 1.6, the value of 1/K depends on the characteristics of the dissolved
salts and the fluid phase which are influenced, obviously, by the type of clay and
the conditions in pore solution. Breaking down each factor controlling 1/K, we
have:

– particle surface charge;

– surface potential;

– specific surface;

– dissolved ion interactions and concentration.

Regarding ion concentration, it is possible to say, according to Equation 1.6, that
1/K varies inversely with the square root of n0. Moreover, in the hypothesis of
constant surface charge, an increase in electrolyte concentration reduces surface
potential and the decrease of potential is faster, resulting in a thinner diffusive
layer. Applying these considerations to clay behaviour it is possible to say that
an increase in concentration, and so in electrical potential, between different clay
particles (here considered as flat plates) leads to a decrease in repulsive forces
and to an increase of the flocculation phenomenon. This kind of behaviour has
large influence on clay swelling: it in fact depends, at least in part, on electrolyte
concentration in the water. This topic has great importance for the present work
and will be dealt with in depth in the next section.

1.3 Evidences of the influence of the pore fluid
chemistry on the mechanical behaviour of ac-
tive clays

As anticipated in the previous section, there is a strong causality effect be-
tween the pore fluid composition and the changes in the behaviour of clays. In
particular it is possible to modify the mechanical behaviour of active clays chang-
ing the chemical composition of the pore fluid. In this section this phenomenon
will be characterised considering a volume element of bentonite, prepared in two
different ways:

9
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– remoduled bentonite: the sample is prepared mixing it with distilled water,
obtaining a clay with an high water content (ratio of water mass to solid
mass).

– compacted bentonite: the sample is compacted at a low water content by
applying a mechanical load; it is afterwards saturated with some solution
(distilled water or saline solution).

Particular stress during this characterisation will be put on the effects that
chemical changes in the interstitial fluid have on the volume of clay samples
macroscopically and on whether or not these effects are reversible; moreover,
also of great importance it will be the analysis of the role played by the structure
(compacted or remoduled) and by the previous mechanical loading history on
the chemical and mechanical behaviour. After this short dissertation it will be
possible to acknowledge that the type of response is analogous when considering
compacted clay or remoduled clay but results are strongly influenced by the
micro-structure.

1.3.1 Remoduled bentonite

(a) (b)

Figure 1.9: SEM images of Ponza bentonite: (a) sample saturated with a NaCL
solution and then exposed to distilled water, (b) sample saturated with
distilled water [3].

The remoduled bentonite whose behaviour will be discussed in this paragraph
is the Ponza bentonite characterised by Di Maio in [3]. It is a material with 80%
of clay fraction and a plasticity index of 320%. Two SEM (Scanning Electron
Microscope) images of this particular material are shown in Figure 1.9: on the left
it is possible to see a sample firstly exposed to a saturated solution of NaCl and
subsequently to distilled water, while on the right a sample exposed on distilled
water; it is interesting to notice that it is not possible to recognize aggregates
and the structure of the sample is uniform in both cases, unlike what, as will be
shown in the next section, it is possible to observe in a compacted material (Fig.
1.13). Taking into account its mechanical behaviour, in Figure 1.10 it is shown
the process of repeated cell fluid changes on this particular bentonite: keeping
the stress constant at 40KPa and changing from distilled water to NaCl causes
a major change in strain percentage which implies a change in void ratio. These
macroscopic changes are directly influenced by the microscopic behaviour: adding
a NaCl saline solution to the sample causes an increase in ion concentration

10
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Figure 1.10: Osmotic volumetric strain produced by repeated cell fluid replacements.
After an initial mechanical load, stress is kept constant at 40KPa [3].

of the interstitial fluid and so, as seen in the previous section, a decrease of
the double layer thickness and of the repulsive forces among particles. These
microscopical behaviour is responsible for the macroscopic volume decrease. On
the contrary, changing interstitial fluid from saline solution to distilled water
causes a decrease in ions concentration and consequently and increase in the
repulsive forces, leading to a macroscopic increase of volume. These changes are
obviously not immediate and indeed are characterized by a long transition phase
in which the void ratio increases or decreases. It is also important to remark that
multiple cycles of substitutions in pore fluid lead to an amplification of strain
ranges and consequently volume changes; this effect expresses that changes in
void ratio don’t depend only on the chemical composition of the pore fluid but
also on the previous chemical loading history of the clay: even if this phenomenon
is currently under study, it is due to progressive substitution of heterocations
initially present in the natural bentonite by Na+, increasing the double layer
thickness and so repulsive forces among particles. One more factor influencing
the phenomenon of swelling in clays is the level of stress applied on the sample.
In Figure 1.11 it is possible to observe how different mechanical loads affect
the process: each one of the five plots shows the process of exposing bentonite
to NaCl and re-exposing it to distilled water for different values of stress. For
relatively small values of stress, like in Figure 1.11 (a) and (b), respectively
40KPa and 160KPa, it is possible to observe an almost complete recovery in
strain percentage, with the latter reaching a plateau before the former. With a
significant value of stress, like in Figure 1.11 (c), where it is equal to 320KPa,
results are different: after 30 days the process can be considered completed
but there hasn’t been a complete recovery in volume, with a residual strain of
about 7% from a maximum being around 13%. Finally, Figure 1.11 (d) and
(e) show a situation where recovery is almost absent, with values of stress of
640KPa and 960KPa. It is interesting to remark, moreover, that each one
of the five plots of Figure 1.11 have something in common: while the gain in
strain after changing pore fluid to NaCl is quite fast, the same cannot be said
when the bentonite is re-exposed to distilled water; the reason behind this is
that, because of repulsive forces in the micro structure, the average pore size is
bigger when pore fluid is distilled water and this facilitate the motion of fluids.

11



i
i

“output” — 2020/3/12 — 21:09 — page 12 — #15 i
i

i
i

i
i

(a) (b)

(c) (d)

(e)

Figure 1.11: Strain percentage results obtained with chemical load for different values
of uniaxial stress [3].

Contrarily, when distilled water is added, bentonite micro-structure is tighter,
with smaller pores, which are not easily reached by the "new" fluid (i.e. distilled
water). Concluding this paragraph, figure 1.12 shows a comparison between
mechanical loadings for both distilled water and NaCl saturated samples and a
combination of mechanical and chemical loading. In particular, in the top plot,
after a mechanical compression reaching 1200KPa the sample was exposed to
NaCl and, once at equilibrium, loaded up to 2500KPa. Subsequently, it was
unloaded to 40KPa and re-exposed to water. The comparison shows that, while
the unloading curve is parallel to the NaCl mechanical loading, after re-exposing
to distilled water the sample was able to reach the unloading curve of distilled
water mechanical load. The bottom plot of Figure 1.12 shows the same process
but exposing the sample to NaCl at a lower stress: results are similar to the
ones obtained in the top plot. Furthermore, Figure ref fig1: 12 shows some
interesting properties related to the behavior of the clay when the interstitial
fluid changes: first of all, it is evident that the interstitial fluid influences the
compressibility of the material, the latter being bigger in the case of distilled
water; secondly, the saline solution introduced in a structure prepared with
distilled water does not allow to obtain the same compressibility as the one of
the material prepared with saline solution from the beginning.
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Figure 1.12: Comparisons of consolidation and swelling for four samples: one in distilled
water, one saturated with NaCl and two with replacement of cell fluid [3].

1.3.2 Compacted bentonite

Figure 1.13: ESEM pictures of statically compacted FEBEX samples: (a) as-compacted
at hygroscopic water content, (b) after saturation with 0.5 mol/l NaCl
solution; (c) after saturation with distilled water. Black bar is 150µm in
(a) and 100µm in (b) and (c) [5].

The compacted bentonite whose behaviour is discussed in this paragraph is the
FEBEX bentonite, which is studied in the context of radioactive waste disposed
by the Spanish Nuclear Agency: this material has a content of montmorillonite
higher than 90%, a liquid limit of 102 ± 4% and a plastic limit of 53 ± 3%.
Analysing the three ESEM (Environmental Scanning Electron Microscope) images
in Figure 1.13 it is easy to understand the changes in micro-structure caused

13
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Figure 1.14: MIP pore size distributions of bentonite saturated with NaCl solutions
having different concentrations [5].

by different preparations of samples and different pore fluids: in image (a) it
is possible to distinguish different aggregates of clay particles, while in image
(c) it is not. This effect is mainly due to pore fluid: the presence of a saline
solution as interstitial fluid causes a shortening in the double layer and so a drop
down of repulsive forces, making it possible for clay micro-particles to flocculate.
Figure 1.14 shows the differences in pore size caused by different interstitial
fluids measured by MIP (Mercury Intrusion Porosimetry) test. Switching from
distilled water to an NaCl saline solution makes the distribution change largely:
if indeed the distilled water distribution has only one mode, the saline solution
one is bimodal. Starting from these observations, micro- and macro-pores will
hereby defined, and consequently micro and macro porosity or void ratio. Pores
inside a single clay aggregate will be denoted with the word micro-pore, while
macro-pore will refer to all voids among different clay aggregates. Given the
difficulty of dividing the two categories, a few assumptions will be made:

– it is supposed the existence of a single size threshold between the two
categories, without taking into account pore shape;

– The mode of the distilled water distribution will be used as a deciding
criterion;

This way, from now on every pore that is on the left side of the distilled water
distribution mode will be considered a micro-pore, while each one on the right
will be considered a macro-pore. Consequently it is important to define micro
and macro void ratio, em and eM respectively. For e, em and eM holds:

e =
VV
VS

, em =
VVm

VS
, eM =

VVM

VS (1 + em)
,

where V m is the volume of micro-pores, VM is the volume of macro-pores, VV
is the total volume of pores, VV = VVm + VVM and VS is the total volume of
solids. The term 1+em in the last equation is needed because macro void ratio is
defined as the volume of macro-pores over the total volume of aggregates, which
is the volume of solids plus the volume of micro-pores [2]. It is now possible to
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define e starting from em and eM :

e =
VV
VS

=
VVm + VVM

VS
= em + eM (1 + em) = em + eM + emeM

Taking into account the mechanical behaviour of FEBEX bentonite, Figure 1.15
shows the process of swelling for different pore fluids, measuring different stress
responses. As it is possible to see, when the swelling process is concluded, higher

Figure 1.15: Evolution of swelling pressures measured for different NaCl concentration
in the pore fluid [4].

NaCl concentrations are associated with lower values of swelling pressure: the
suppression of the thickness of the double layer corresponds to a smaller swelling
potential. Vice versa, distilled water saturated clay shows a greater swelling
potential and a great residual swelling pressure. Furthermore, four different types
of FEBEX bentonite samples were exposed to salinisation-desalinisation cycles
in [6], in an attempt of investigate the role of the type of structure (matrix as
due to remoduled conditions or aggregated as due to compaction). Two different
loading histories were applied to the remoduled samples (MC samples in Table
1.1) and two different initial densities were imposed on compacted samples (C
samples in Table 1.1). Mechanically consolidated samples MC1 and MC2 are

Sample Initial Void ratio Applied
void ratio at saturation vertical net

stress (KPa)

C1 0.87 1.23 200
C2 0.60 0.84 200
MC1 1.35 1.35 200
MC2 1.25 1.25 500

Table 1.1: Testing conditions of FEBEX samples. [6]

obtained loading slurries of FEBEX powder and distilled water with a vertical
net stress of 1500KPa. The stress was then reduced ti 200KPa for MC1 and
500KPa for MC2 in order to obtain the desired void ratio and the mechanical
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conditions imposed during the chemical cycling. Figure 1.16 shows a chemical

(a) (b)

Figure 1.16: Deformations imposed by the chemical cycle on FEBEX bentonite samples
[6].

cycle made with a constant mechanical load for each one of the for bentonite
samples described in Tabular 1.1. In Figure 1.16 (a) the two MC samples are
compared: for MC1, after it is re-exposed to distilled water, there is a complete
volume recovery and moreover it swells more than what previously consolidated,
while the opposite holds for MC2. In both cases irreversible strains are present.
In Figure 1.16 (b) the two C samples are compared: the curve representing the
process of C1 is completely analogous to the one representing MC1 while C2
shows an almost reversible behaviour.
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Chapter 2

Discrete Element Method
DEM

In this chapter an overview of the Discrete Element Method will be given. In
particular, after a section in which granular materials properties will be discussed
along with the reasons why it is convenient to simulate those kind of materials
with DEM, the basis of the method will be provided, taking into account its
mathematical formulation and its possibilities. A particular stress will be put in
the contact model that has been used in numerical simulations exposed in next
chapters. Finally, a brief introduction to the code used for the implementation
will also be provided.

2.1 Granular materials and DEM
Granular materials, i.e. agglomerations of discrete, macroscopic particles, are

omnipresent in both industry and nature. They range from natural materials
like snow, sand, soil, coffee, rice and coal to artificial materials such as medicinal
tablets, catalysts or animal feed: they are, indeed, the second most most
manipulated raw materials after water. Furthermore, they are involved in
physical phenomena like sandstorms, avalanches and earthquakes, concerning
respectively sand, snow and soil. The distinction between granular materials and
fine particulates (or molecules) is obviously made taking into account the size of
their constituent particles: the constituents that compose granular material must
be large enough such that their movement is not subject to thermal fluctuations.
Thus, the lower size limit for granular materials can be defined as 1µm. On the
other hand, there is no upper size limit, considering that the physics of granular
materials have been applied to the formation of solar systems, galaxies and the
universe. When studying this kind of matter, the massively high number of
degrees of freedom takes to wildly non-linear behaviour. For this reason, it is
quite challenging to characterize such materials with a continuum mechanics
approach (for example FEM): considering a continuum model, indeed, movements
and rotations of particles inside the material are not considered; thus, in order
to capture its micro-mechanical behaviour, it is needed to couple the model
with complex contact laws. Differently, when using DEM this is not needed and
capturing the micro-mechanical behaviour of those materials is quite easy.
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(a) Sandstorm in Kuwait. (b) Avalanche near Vancouver, Canada.

Figure 2.1: Sandstorms and Avalanches are both characterised by the convection of
granular materials (sand and snow).

The DEM (Discrete Element Method) consists in simulating the interactions
among a large number of discrete particles or bodies. During numerical simula-
tions particles are free to move, rotate, get and loose contact with each other. In
DEM, even if simple contact laws and simple particle shapes (e.g. spheres) are
adopted, it is still possible to capture salient response characteristics of granular
material behaviour. Moreover, given the simplicity of the model, it is possible to
involve in the simulation a relatively large number of particles without heavily
increasing the computational cost of the simulation. The usage of this method
has been exponentially increasing during the last decade, as can be seen in Figure
2.2a. The main reason behind this is the increasing in computational power:
when it was firstly formulated and published by Cundall and Strack (1979) it
was very difficult to simulate large number of particles because of the lack in
computational power, but today it is possible to easily simulate systems with up
to 105 particles. In Figure 2.2b it is possible to notice that the increase in usage
of DEM has been particularly relevant in the soil mechanics framework.

(a) Evolution of global DEM usage. (b) Evolution of DEM usage in soil me-
chanics.

Figure 2.2: Evolution over time of DEM method: the increasing over the last 20 years
is exponential.

Two main reasons can be considered when taking into account the usage
of DEM in soil mechanics (or more in general in geotechnical fields): the first
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one is the possibility to simulate physical laboratory tests, for example applying
loads and deformations to virtual samples, monitoring and analysing particle
scale mechanism. It is indeed very difficult (and in some cases impossible) to
access information like particle positions and orientation, micro void ratio, the
evolution of contact forces, etc., during a physical laboratory test. The second
motivation for the usage of DEM in soil mechanics is that it allows the analysis of
the mechanism involved in large-displacement problems in geomechanics, which
cannot be easily modelled using a continuum approach model, such as FEM.

2.2 Soft-Particle Discrete Element Method
When taking into account the mesostructure of granular material it can be

defined as grains that deform under stress. Given the extreme difficulty of realis-
tically modelling shapes and their deformation, a few simplifying assumptions
are made: firstly particles are all convex and in particular they will be spheres
and secondly the interaction force will be related to the overlap δ of two particles
as a first order approximation, as can be seen in figure 2.3.

δ

r

ri

j

Figure 2.3: Two particle contact with overlap δ.

Knowing the total force ~fi acting on particle i, either due to the contact
with other particles and boundaries or from external forces (e.g. gravity), the
problem is reduced to the integration of Newton’s equations of motion, for the
translational and rotational degrees of freedom,

mi
d2

dt2
~ri = ~fi +mi~g, and Ii

d

dt
~ωi = ~ti, (2.1)

with mi the mass of particle i, ~ri its position, ~fi =
∑
c
~f ci the total force acting

on it due to contacts with other particles or with the walls, ~g the acceleration
due to volume forces like gravity, Ii the spherical particle’s moment of inertia,
~ωi its angular velocity and ~ti =

∑
c

(
~lci × ~f ci + ~qci

)
the total torque, where ~qci are

torques/couples at contacts other than the torques due to the tangential force,
e.g., due to rolling and torsion, and ~lci the vector from the particle’s centre of
mass to the contact point. After computing all forces, accelerations and velocities
of each particle are computed and their velocities and positions are updated, then
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Step 1:
Identify

contacting
particles

Step 2:
Determine
contact
forces

Step 3:
Compute
accelera-
tions and
velocities

Step 4:
Update
positions

Figure 2.4: Flow chart of the DEM algorithm.

the algorithm starts back with a new time step identifying contacting particles
(a scheme of the algorithm is shown in Figure 2.4).

If the simplifying hypothesis of no long-range interactions is adopted, two
spherical particles i and j, with radii ai and aj , respectively, interact only if
they are in contact, that is, their overlap

δ = (ai + aj)− (~ri − ~rj) · ~n (2.2)

is positive, δ > 0, with the unit vector ~n = ~nij = (~ri − ~rj)/|~ri − ~rj | pointing
from j to i. Note that the force on particle i, from particle j, at contact c, can
be decomposed into a normal and a tangential part as ~f c := ~f cij = fn~n+ f t~t: in
the following section fn and f t will be characterised.

2.2.1 Linear Normal Contact Model
The contact model used to define fn takes into account excluded volume and

dissipation, yet it is quite simple. The normal force is indeed defined based on
the spring dashpot model [12]:

fn = kδ + γ0vn , (2.3)

with a spring stiffness k, a viscous damping γ0, and the relative velocity in normal
direction vn = −~vij ·~n = −(~vi−~vj) ·~n = δ̇. With this model particle interactions
are considered as a damped harmonic oscillator. As such, the half-period of a
vibration around an equilibrium position can be computed, obtaining a typical
response time on the contact level,

tc =
π

ω
, with ω =

√
(k/mij)− η2

0 , (2.4)

with the eigenfrequency of the contact ω, the rescaled damping coefficient
η0 = γ0/(2mij), and the reduced mass mij = mimj/(mi +mj). Computing the
velocity at the half period of the oscillation, it is also possible to obtain the
coefficient of restitution,

r = −v′n/vn = exp (−πη0/ω) = exp (−η0tc) , (2.5)

which quantifies the ratio of relative velocities after and before the collision. The
contact duration in Eq. (2.4) is also of practical technical importance, since the
integration of the equations of motion is stable only if the integration time-step
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∆tDEM is much smaller than tc. Taking into account the tangential force f t, it
is defined based on fn, coupling the two via Coulomb’s law:

f t <= fC = µfn

where µ is the sliding friction coefficient. Defining the tangential displacement
here, anyway, it is not easy: it is indeed necessary to rotate the spring obtained
above projecting it on the tangential plane. This way it is possible to define a
tangential spring ~ζ starting from the one defined in the previous iteration ~ζ ′ of
the method:

~ζ = ~ζ ′ − ~n
(
~n · ~ζ ′

)
where |~ζ| = |~ζ ′| thanks to rotation. It is now possible to state the tangential the
tangential contact law as:

~f t = −kt~ζ − γt~vt , (2.6)

where kt it the tangential stiffness, γt is tangential dissipation, and ~vt = ~vij −
~n (~n · ~vij).

2.2.2 Adhesive, Elasto-Plastic Normal Contact Model
In this section a different contact model will be defined: the adhesive, elasto-

plastic normal contact model. It is a simplified version of more complicated
nonlinear-hysteretic models which take into account plasticity; in particular this
contact model is able to describe plastic deformations that take place at the
contact point defining two different forces in loading and unloading. Figure 2.5
shows a scheme of the loading and unloading process.

δ

k1δ

−k

(δ−δ )*
2        0k

δmax

f hys

minδ

min
f

f
0

0

δ0

cδ

Figure 2.5: Scheme of the adhesive, elasto-plastic normal contact model.

When two particles get in contact, force increases linearly with overlap,
having a slope K1, until the overlap δmax is reached. When unloading yet the
slope is different, being equal to K∗2 , resulting in a situation of overlap δ = δ0 > 0
when F = 0; δ0 will be a parameter of fundamental importance in this work,
as will be seen in the next chapter, and from now on it will be referred to as
penetration depth max. In addition to that, the model hides a nonlinear feature:
when unloading from a generic δ < δmax the slope K will be K∗2 ≥ K ≥ K1
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proportionally with δ. The repulsive (hysteretic) force can thus be defined as

fhys =

 k1δ for loading, if k∗2(δ − δ0) ≥ k1δ
k∗2(δ − δ0) for un/reloading, if k1δ > k∗2(δ − δ0) > −kcδ ,
−kcδ for unloading, if − kcδ ≥ k∗2(δ − δ0)

(2.7)
with k∗2 ≥ k1 > 0. If after the unloading phase (and so after reaching an
equilibrium overlap δeq) the overlap is decreased (δ < δeq) the force will become
negative, and so attractive until the minimum force −kcδmin is reached at the
overlap δmin = (k∗2 − k1)δmax/(k

∗
2 + kc). From this point on, if the process of

unloading continues, the attractive force will become fhys = −kcδ, because of
the switch on the adhesive branch with slope −kc.
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Chapter 3

Clusters

In order to get a good characterization of dual porosity problems simple
spherical particles are not enough representative: even if it is very simple to use
theme in a simulation, changes in micro- and macro-structure can’t be simulated.
In this study usual spherical elementary particles will be substituted by clusters
[9]. The term cluster in this context is used to define a collection of particles
"glued" together forming a single unit: particles indeed are pulled together
thanks to the cohesive force of the elasto-plastic normal contact model discussed
above.

Figure 3.1: Example of a cluster composed by 300 particles.

When modelling soil (but also particles of pharmaceutical interest or catalysts
for example) this particular entity has a a series of characteristic that makes it
quite appealing:

• relative positions among particles are not fixed: the complex internal struc-
ture inside the cluster can, for this reason, change during the simulation,
modelling variation of the micro structure;

• changes in the shape of the cluster can be useful to characterize changes
in the meso-structure of the material;
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• even if the complex internal structure can’t be known a priori, it is possible
to analytically determine the void fraction of the cluster, influencing not
only dimensions but also the stiffness of the cluster;

• differently from multi-spheres and super-quadrics, which are different
possible approaches both able to define complex structures, clusters are
breakable, deformable and there is no need to compute their rigid body
dynamics.

These are the reasons why the study proposed is this work is carried on with
the usage of clusters and in this chapter their properties will be explained.

3.1 Creation of a single cluster
As explained in Chapter 2, thanks to the adhesive elasto-plastic normal

contact model, if two particles collide, after the collision their overlap is grater
than zero (given that no external forces are applied). Moreover, its value can be
known a priori : if indeed during the process the overlap gets bigger than δmax,
at the end it will be equal to δ0. This is the central idea behind the creation of
a single cluster. In order to create a single cluster, a separate DEM simulation
is needed and this are the principal steps required:

• firstly, particles are placed into an empty domain with random spherical
coordinates

R =
3
√
rand (0, 1) · L

2
θ = π · rand (0, 2)

φ = arccos rand (0, 1)

where: R, θ and φ are the spherical coordinates, rand (a, b) is a uniform
distributed random number in the interval (a, b) and L is the dimension
of the cubic domain. As can be seen R and φ are rescaled with the cubic
root and the arc cosine respectively: this has been done in order to get a
particle distribution as uniform as possible inside the domain.

• a force pointing towards the center of the domain is than applied to each
particle: the magnitude of the force and the duration of this process are
computed so that each interaction will have a final overlap δ : δ > δmax:
firstly a maximum value for the force Fmax and the total time T are
calculated

Fmax = δmaxk
∗
2

T = k1
2

√
k2mL

Fmax

where k1 = 5 and k2 = 100 are two safety factors and m is the mass of a
single particle. After that, the force applied to the particles f depends on
time t and on their distance from the center of the domain d, such as:

f (d, t) = Fmax
d

r

t

T
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where r is the radius of the micro-particle composing the cluster;

• after compressing, force is slowly removed; in this process, which takes
a total time T , the value of the force applied to a single particle is also
depending on time t and distance from the center of the domain d:

f (d, t) = Fmax
d

r

T − t
T

• finally, for a few time steps velocities are damped until the value of the
ratio between kinetic energy and potential energy is smaller than 10−8:
this is done in order to be sure of the stability of the cluster after its
creation.

At the end of this process, the average overlap among the particles of the cluster
δ̄ will be:

δ̄ =
1

M

M∑
j=0

δj ' δ0

with δj being the overlap in the j-th interaction and M being the total number
of interactions. Before proceeding with the presentation of clusters’ properties it
is necessary, given their discrete nature, to state a proper way to define clusters
dimensions, and in particular their radius R. Taking into account a cluster
composed by N particles Pi , with position pi, i = 1, . . . , N , all having radius
r (i.e. with no size dispersity) and all with the same density, it is possible to
define its center of mass C as

~C =
1

N

N∑
1

~pi,

where pi is the position of the i-th particle’s center. Similarly, it is possible to
define the distance from the center of mass of the farthest particle d as

d = max
i

∥∥∥~pi − ~C
∥∥∥ .

After this definitions, it is now possible to state the measure for the cluster
radius used in this work: considering the particles Pj , with j = 1, . . . , n, n ≤ N
whose distance dj from the center of mass C is dj = ‖pj −C‖ > d− r, cluster
radius R can be defined as:

R =
1

n

n∑
j=1

dj (3.1)

Clusters can be created taking into account many different properties, such as
particles dispersity, sliding friction, normal and tangential stiffness, etc., but
when considering its dimension R and volume ratio ζ two properties are the most
important: δ0, which is the penetration depth max, and obviously the number of
particles N . Considering this two properties it is indeed possible to analytically
determine the relative cluster radius R̂ = R/r and also its volume ratio ζ. In
order to do so, a few geometrical considerations are required. Before proceeding
it is necessary to specify that throughout this discussion no size dispersity among
the elementary particles will be considered and every radius is set to be unitary
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(r = 1). In this way the radius of the cluster will be equal to its relative radius
and the same can be stated for the penetration depth max:

R = R̂ =
R

r
, with r = 1

δ0 = δ̂0 =
δ0
r
, with r = 1

If a particular value for the cluster radius will be needed it can be simply
computed according to the radius of the elementary particle, as R = rR̂. It
is also important to point out that in the pair (N, δ0) only the first one is an
extensive quantity, while the second is intensive and the same can be said about
(R, ζ). For this reason, the relation between ζ and δ0 will be independent from R
and N and they will be linked from their spacial arrangement. Finally, entering
into details, for a homogeneous and isotropic bulk, ζ can be calculated in the
limit of δ0 −→ 0 as the ratio between the total volume of single elementary
particles and the total volume of the cluster [9]

ζ
δ0−→0−−−−→ ζ0 =

NVP
V0

=
N

R3
0

(3.2)

where R0 is the radius of the cluster when δ0 −→ 0, V0 its volume and VP is the
volume of a single elementary particle. Increasing δ0 leads to an increasing of
ζ as well. With the previous assumptions ζ0 is constant and independent from
the cluster size, and represents the packing of the elementary particles inside
the cluster. For δ0 −→ 0 the cluster radius will also become independent on the
average overlap, and by re-arranging Eq. 3.2 the following relation is obtained
[9]:

R
δ0−→0−−−−→ R0 =

3

√
N

δ0
Given the cluster homogeneity and isotropy, crossing a cluster in radial direction
ζ represent the possibility of finding at least one particle in a single point;
moreover the number of particles on a diameter n is proportional to ζ0 and 2R0,
that is n ≈ ζ0R0. Compressing a cluster of a quantity ∆ = 2 (R0 −R) would
result in an average particle deformation of δ = ∆

2N , where the 2 factor in the
lower member of the fraction accounts for each particle for being overlapped twice
in the direction of compression. Combining these last statements, a measure of
R depending on the overlap is obtained:

R = R0 −R0ζ0δ

As explained before, during compression particles are pushed together so that at
the end of the process δ = δ̄0 ' δ0. Then it holds

R = R0 −R0ζ0δ0 =
3

√
N

δ0
(1− ζ0δ0) (3.3)

Similarly for the solid fraction, approaching linearly because of small overlaps
between particles, it holds:

ζ = ζ0 + 3ζ2
0δ0 , (3.4)

where ζ0 = 0.58 has been empirically determined. Concluding, it is interesting to
notice, as stated before, that variations in values of R and ζ can be also produced
by changing the value of sliding friction coefficient µ, tangential stiffness kt and
cohesive stiffness kc but their contribution is small and can be neglected.
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3.2 One dimensional compression for a single clus-
ter

(a) µ = 0.5, δ = 0.1, σs = 1.2. (b) µ = 0.5, δ = 0.3, σs = 1.2.

(c) µ = 0.0, δ = 0.1, σs = 1.2. (d) µ = 0.5, δ = 0.1, σs = 1.0.

Figure 3.2: Picture of the four different clusters mentioned before: as can be seen the
major difference in shape occurs when changing values of penetration depth
max δ0 (b).

In the previous section variations in solid fraction and cluster radius have been
defined and in particular an analytic relation between them and and plasticity
depth was shown. Anyway, considering the cluster as a single entity, other
physical and mechanical properties can be studied. Since a single cluster is made
by several elementary particles its behaviour and the results obtained when a
stress is applied to it are very different from what is obtained when compressing
a single elementary particle. Its discrete nature and the frictional and cohesive
interactions among the elementary particles led to a mechanical behaviour which
is far apart from the one of the single particle. For these reasons a parameter
called equivalent cluster stiffness keq is now defined:

keq =
1

Z̄

∫ Z̄

0

F (z)dz
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Table 3.1: Values obtained for equivalent stiffness keq and radius R in uniaxial com-
pression of a single cluster.

µ δ0 σs R keq Figure
KN
m

0.5 0.1 1.2 80.4 8.01 3.2a
0.5 0.3 1.2 71.0 39.7 3.2b
0.0 0.1 1.2 80.2 3.46 3.2c
0.5 0.1 1.0 79.5 6.04 3.2d

where F is the force measured during a uniaxial compression, z is the vertical
displacement and Z̄ is the total vertical displacement (here Z̄ = 0.3R). This
parameter, anyway, is useful to characterize differences among different clusters,
but is not related to other results in this study. Various simulations were
performed in which a single cluster was compressed uniaxially in order to measure
the dipendency of keq and R from some basic parameter, such as: sliding friction
µ, particle size dispersity σs and penetration depth max δ0. Micro parameters
and output results are shown in Table 3.1, in which the stiffness of a single
microparticle is set to 10KNm . As can be seen, while changing µ and σs lead to
minor changes in radius and stiffness, changing the value of the penetration
depth max δ0 leads to major changes both in radius and stiffness. The same can
be said when taking into account the appearance and shape of those clusters,
shown in Figure 3.2. The steps needed to create and use clusters with the
MercuryDPM software are shown in Appendix A.2 along with a few useful lines
of code.
One more important step, in the characterization of one dimensional compression
of clusters, is to define the effect of size and strain rate on results: as will be
seen these parameters not only modify the shape of the simulation and its
computational time, but also the reliability and the accuracy of the obtained
results. In the next sections the outcome obtained for different values of strain
rate and cluster size will be shown and the chosen values will be defended, but
before proceeding it is necessary to state the definition of stress for a DEM
simulation. Stress tensor in a DEM simulation with a set M of interactions
among particles is defined as [13]:

σij =
1

V

∑
m∈M

filj (3.5)

where V denotes the volume of the simulation, m denotes a single interaction in
the set M , ~f is the force transmitted by the contact, defined in Eq. 2.7 and ~l is
the branch vector connecting the two centers of the particle being in contact in
interaction m. Isotropic stress and vertical stress will be consequently defined
respectively as:

σI =
trσ

3
, σ′ = σZZ
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3.2.1 Study of size effects
The size of a single cluster composing the domain of the simulation can

influence results not only because of a change in the shape of the domain but also
because clusters composed by a different number of particles behave differently.
For this reason, in this section the size of a cluster will be characterized by the
number N of particles composing it, instead of its relative radius R̂. In figure
3.3 it is shown a comparison in the results of a single cluster compression, for
clusters made by a number of particles that varies from 50 to 350. The value
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Figure 3.3: Compression comparison for different clusters sizes.

of stress showed are obtained imposing k1 = 103, k2 = 5 · 103, kc = inf. As can
be seen the uniaxial compression of a single cluster does not present significant
differences with the variation of the size; nevertheless it is interesting to notice
the presence of jumps in the stress values in each of the four cases: this is because
of internal breakages which occur during the compression. Given the absence of
significant differences among these results the present work will be carried on
using clusters composed by 50 particles: this way, for the same total number of
elementary particles (and so a similar computational time), it will be possible to
simulate more clusters, reducing the fluctuations given by breakages and possible
inhomogeneities within the domain.

3.2.2 Strain rate effect
Similarly to what has been done for cluster size, it is also important to verify

the influence of strain rate ε̇ on the simulation. All the simulations proposed in
this work are indeed performed compressing the computational domain with a
constant strain rate (as will be seen in detail in Chapter 4). Before proceeding
with the results it is important to clarify that values for strain rate defined from
now on are defined as strain per iteration and not strain per time:

ε̇ =
Ln+1 − Ln

Ln

where L represents the simulation domain length and the superscripts n and
n + 1 refers respectively to the n-th and n + 1-th time step and not to the
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Figure 3.4: Comparison of results for compression in a single cluster with three different
strain rate values.

simulation time. In Figure 3.4 it is shown a comparison of a compression process
with three different strain rate values: 10−5, 10−6 and 10−7. As can be seen,
also in this case it is not possible to find significant differences. Nevertheless, it
is important to remember that an oedometric compression, which is what will
be simulated in the next chapter, is a very slow process and it can indeed be
considered as static. When such a test is simulated with DEM it is necessary to
verify two more requirements:

– the first one involves the ratio between the kinetic energy K and elastic
energy U of the discrete system; it is good practice to verify that

K

U
≤ 10−5, K =

N∑
i=1

1

2
mi ‖vi‖22 , U =

M∑
j=1

1

2
k1δ

2
j

where N is the total number of particles in the system, mi and vi are mass
and velocity of the i-th particle, M is the total number of interactions in
the system and finally δj is the j-th interaction.

– the second one involves the inertia I of the discrete system; similarly in
this case it is good practice to verify that

I =
−2rε̇√
σZ
ρ

≤ 10−3

where σZ represents the stress in the vertical (Z) direction in the system
and ρ is the density of a single particle.

In Figure 3.5 it is shown a comparison among these values for each one of the
studied strain rate values. As can be seen, while for ε̇ = −10−6 and ε̇ = −10−7

the requirements listed above are respected, when ε̇ = −10−5 the inertia and
energy ratio values are higher than the desired ones. For this reason the value
use for strain rate in this work will be ε̇ = −10−6. Following the considerations
made in the previous sections, the clusters in this work will be made by 50
particles and the strain rate applied to the domain will be ε̇ = −10−6.
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(a) ε̇ = −10−5.
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(b) ε̇ = −10−6.
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(c) ε̇ = −10−7.

Figure 3.5: Comparison of energy ratio K
U and inertia I values for the three different

strain rates.

3.3 Workable characteristics
In the previous section strain rate and size of the cluster were studied. It

is important to notice, anyway, that those parameters are related more to
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the simulation than to the cluster itself. In this section the two main factors
influencing the cluster shape and size will be discussed and analysed: mass
fraction and cluster radius.

Mass fraction

(a) k1 = 1KN , k2 = 5KN , kc =

1KN , δ̂0 = 0.1.
(b) k1 = 1KN , k2 = 5KN , kc =

1KN , δ̂0 = 0.2.

(c) Cluster composed by 50 particles
created with CM1.

(d) Cluster composed by 50 particles
created with CM2.

Figure 3.6: Contact models M1 and M2 and corresponding 50 particles clusters.

The first parameter that needs to be studied is the mass fraction of a single
cluster. When simulating soil or powders or any structure characterised by dual
porosity, i.e. a structure composed by discrete agglomerations with internal
porosity, micro void ratio is defined by the void ratio of a single cluster. As
discussed in Section 3.1 the mass fraction of a single cluster can be defined
starting from the average overlap among the pasticles composing the cluster as:

ζ = ζ0 + 3ζ2
0δ0

A natural consequence of this behaviour is that the mass fraction of a single
cluster is directly related to the contact model specified in the simulation. In
Figure 3.6 two different contact models CM1 and CM2 are shown by their
scheme: while k1 = 1KN , k2 = 5KN and kc = 1KN for both contact models,
relative penetration depth max δ̂0 is different, being δ̂0 = 0.1 for CM1 and
δ̂0 = 0.2 for CM2. In addition two clusters created with CM1 and CM2 are
shown.
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Cluster radius

The radius of a cluster depends on more than one parameter: it is affected by
the number of particles N , by the average overlap among particles δ̂ and by the
radius of a single particle r. It is important to notice however that the first one
of these parameters is already fixed: the total number of particles composing
a cluster will be set to N = 50 throughout this study. Regarding the value of
the average overlap among particles, it is directly controlled by the value of
penetration depth max delta, and so by the contact model. This same parameter
anyway will be tuned in order to define the mass fraction of the cluster, given
that it is the only parameter that can fulfill this purpose. For these reasons the
radius of a cluster will be only tuned modifying the radius of a single particle r.
This way if a certain mass fraction ζ̄ is needed, the required δ0 will be:

δ̂0 =
ζ̄ − ζ0

3ζ2
0

and consequently the relative cluster radius will be:

R̂ = 3

√
N

δ̂0

(
1− ζ0δ̂0

)
Remembering that the normalised cluster radius R̂ is defined as R̂ = R

r the
desired value for the cluster radius is easily obtained as: R = rR̂
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Chapter 4

Mechanical loading

In this chapter the results obtained by the numerical simulations of mechanical
compression of clays will be shown. In particular, after a first section in which
the inadequacy of a single porosity model in reproducing experimental results
relating to the uniaxial compression of a clay will be shown, the double porosity
simulations will be characterized: chosen micro-parameters will be presented,
obtained after a first phase of calibration, and the numerical results will be
compared directly with the experimental tests. Finally, the validation of the
numerical model will be proposed, obtained by simulating experimental data
coming from the uniaxial compression of the same clay sample, placed under
different chemical conditions. Throughout the discussion, great importance will
be given to the relationship between the behavior of the clay at the micro-scale
and the macroscopic behaviour under the effects of mechanical loads.

4.1 Parameter calibration
A great problem encountered during the simulations was to define the param-

eters that could better define the experimental data. The number of parameters
that can be defined is indeed large; a few examples of parameters that can
be tuned are: k1, k2, kc, friction µ, tangential stiffness kt and particles size
dispersity Ds; with such a large set of parameters, finding the values that better
approximate the experimental values is very complicated; moreover, using clus-
ters to simulate clay particles agglomerates, each one of those parameters can
be defined taking into account the interaction both between particles belonging
to the same cluster and between particles belonging to different clusters. This
way the set of parameters becomes: ki1, ki2, kic, µi, kit, Di

s and kI1 , kI2 , kIc , µI , kIt ,
DI
s where superscrips i and I define intra-cluster and inter-cluster interactions

respectively (this will not be true in case of single porosity simulations, where
only inter-cluster parameters will come into consideration). In addition to this,
some parameters may have a greater influence on the simulation than other,
or it is possible that some parameters may have a minimal influence on the
simulation results to the point that it is convenient to fix them. Therefore,
a software called GrainLearning [7] was used to calibrate parameters: it is a
Python language written toolbox based on an iterative Bayesian filter able to
find optimal parameters for DEM simulations, which are often characterised by
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Table 4.1: Void ratio e and vertical stress σ′ measured during uniaxial compression of
FEBEX bentonite samples obtained by [4], taking into account two different
interstitial fluid compositions.

Distilled water Saline Solution
5.5M NaCl

e σ′ e σ′

[KPa] [KPa]

0.96 500 0.72 500
0.93 1000 0.68 1000
0.85 2000 0.60 2000

nonlinearities and whose parameters are usually difficult to calibrate. Starting
from results obtained by a set of simulations computed with random values, the
first iteration of the GrainLearning will provide a new set of values on which
simulations will be computed again and so on. If the set of parameters chosen
is able to define the problem sufficiently accurately, the optimal values will be
obtained after about three iterations, which means running simulations four
times. Further explanation about GrainLearning and its properties can be found
in Appendix B.

Experimental data

The first objective of this study is the reproduction of experimental data
obtained from the mechanical compression of a FEBEX clay sample. In particular
the experimental data refers to two different samples: one saturated with distilled
water, while the other one with a 5.5M concentration of NaCl saline solution.
Changes in void ratio and vertical stress are presented for both samples in
Table 4.1. In order to get a better representation of the data they have been
interpolated with a polynomial in order to get a compression curve. Experimental
points and compression curves are represented in Figure 4.1.

Dimensions of clay aggregates

The first step in order to set parameters for the numerical simulation is to
define a radius r for particles. Considering that in this preliminary study no
micro-porosity is taken into account, a single spherical particle represent a single
clay agglomerate: for this reason, in order to define a good measure for r it is
necessary to define an acceptable value for the average size of a clay particle. In
order to do so, the two MIP (Mercury Intrusion Porosimetry) tests for FEBEX
clay shown in Figure 4.2 were taken into account; these tests were carried out on
two different samples: the first one obtained after the preparation for compaction
and the second one after the introduction of distilled water into the sample. As
it is possible to see, after the swelling process, the curve changes from having two
modes to having only one. Moreover, it is safe to say that the swelling caused
by distilled water is larger that the one that would be obtained substituting a
saline solution. For these reasons, as a threshold between micro and macropores
it has been chosen 1000nm, corresponding to the value for which the PSD (Pore

35



i
i

“output” — 2020/3/12 — 21:09 — page 36 — #39 i
i

i
i

i
i

DW

5.5 M NaCl

500 1000 2000
0.5

0.6

0.7

0.8

0.9

1.0

Vertical stress, σ ' [KPa ]

V
o
id

ra
ti
o

,
e
[-
]

Figure 4.1: Experimental compression data and compression curve.

Size Distribution) curve has a maximum: it is indeed a good representation of
the maximum value for micropores and of the minimum value for macropores.
Starting from this value it is possible to define the value of the average diameter

Figure 4.2: PSD variation obtained after swelling and assessment of the threshold
between micro and macro void ratio. [5]

for macropores d. This value can be computed considering that during the
execution of MIP tests mercury is injected with a pressure value that increases
linearly with time: as the pressure increases smaller pores are traced. Is is then
possible to associate a generic pressure pi to a particular pore diameter di, which
corresponds also to an incremental void fraction ∆ei. Defining n pore families
it is possible to characterise the cumulative curve shown in Figure 4.3: to each
∆ei increment corresponds a different pore family having diameter di. Starting
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Figure 4.3: Intruded void radio cumulative curve.

from these considerations it holds:
n∑
i=1

∆eidi =

n∑
i=1

d∆ei ;

considering that the total variation of void ratio e can be defined as:

e =

n∑
i=1

∆ei ,

it is now possible to define a measure for the average pore diameter as d:

d =
1

e

n∑
i=1

di∆ei . (4.1)

One more step is necessary for this study: given that in this work clay aggregates
are represented as spherical objects, the average clay aggregate dimension has
to be computed over macro void ratio eM , and the same has to be done for the
average pore dimension:

dM =
1

eM

m∑
j=1

dj∆ej , (4.2)

where m is the number of macropore families and eM is the total variation of
macro void ratio

eM =

m∑
j=1

∆ej .

All results obtained from these considerations are shown in Table 4.2, both for
distilled water and 5.5M NaCl saline solution. In order to define relationships
between the pore diameter, from now on referred to as dpore, and the aggregate
diameter, dagg, and considering that the study will be carried out representing
clay aggregates as spherical objects, the values for eM shown in Table 4.2 have
been compared with those of some regular fabrics, such as: cubic, tetrahedral,
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Table 4.2: Values of the average pore diameters and void ratio obtained by MIP tests.

d e eM em
[nm]

Distilled water 2.50 · 104 0.99 0.37 0.45
NaCl 5.5M 8.10 · 104 0.75 0.46 0.20

pyramidal, tetrahedral cubic, sphenoidal tetragonal. The only fabrics matching
this values are the tetrahedral cubic for distilled water, having eM = 0.35 and a
ratio between the two diameter dpore/dagg = 0.23, and the pyramidal for NaCl
5.5M saline solution, having eM = 0.43 and a ratio between the two diameter
dpore/dagg = 0.46. Therefore it holds:

dH2O
agg =

dH2O
pore

0.23
= 110µm ,

where the superscriptH2O indicates distilled water as interstitial fluid. Regarding
the diameter of the aggregate with saline solution as interstitial fluid, dNaClagg ,
considering that

Vagg = Vs(1 + em) ,

it is possible to define the following ratio

dH2O
agg

dNaClagg

=
3

√
1 + eH2O

m

1 + eNaClm

= 0.94 ,

from which
dNaClagg = 0.94dH2O

agg = 100µm .

Throughout this work, based on the studies just carried out, the radius of clay
aggregates in the case of distilled water rH2O and saline solution rNaCl will be

rH2O = 55µm, rNaCl = 50µm . (4.3)

rH2O = 55µm, rNaCl = 50µm .

4.2 Single porosity: preliminary study
Before proceeding with the double porosity numerical tests, some single

porosity simulations were carried out to verify the ability of these tests to repro-
duce the experimental data. The expression single porosity tests here indicates
those numerical simulations in which the micro-porosity of clay aggregates is not
taken into account. The latter will then be simulated through single spherical,
non-deformable elementary particles. The simulation will be performed through
the following steps:

• deposition: particles are placed in the domain with no interactions among
theme; they are than free to settle and rearrange thanks to the application
of the strain rate that makes them deposit;
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Table 4.3: Results of experimental tests of FEBEX bentonite, taking into account
macro void ratio eM and micro void ratio em.

Distilled water Saline Solution
5.5M NaCl

e eM em σ′ e eM em σ′

[KPa] [KPa]

0.96 0.35 0.45 500 0.72 0.43 0.2 500
0.93 0.33 0.45 1000 0.68 0.40 0.2 1000
0.85 0.28 0.45 2000 0.60 0.33 0.2 2000
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Figure 4.4: Experimental compression data and compression curve for single porosity
simulations.

• isotropic compression: the sample is compressed isotropically thanks to
periodic boundaries in order to get the void ratio value corresponding to
that of the beginning of the experimental tests;

• uniaxial compression: this is the last part of the numerical simulation;
particles are compressed uniaxially in vertical direction until the value of
void ratio is equal to the one of the experimental test.

In Table 4.3 experimental data have been rescaled in order to take into account
only macro void ratio. In the same way as the original ones, they have been
interpolated to obtain a larger dataset. The results are shown in Figure 4.4.
Considering now simulation parameters, with a few preliminary simulations
it has been discovered that kc had quite a low influence on simulation results
and the same could be told about k2. Considering moreover the negligibility of
van der Waals’ attractive forces compared to the Coulomb repulsive forces the
following choice have been made:

k1 = k2 ⇒ kc = 0, δ = 0 .

Therefore four parameters have been tuned in this simulation:
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– particle size dispersity Ds, ranging from 1.2 to 10: in particular, starting
from the average particle radius r, the radius of the i-th particle will be
computed randomly as:

ri = r rand

(
2

1 +Ds
,

2Ds

1 +Ds

)
;

– loading stiffness k1, ranging from 0.1KN to 5KN : this parameter has no
real limits, other than being positive, so the rage has been set as large as
possible;

– sliding friction coefficient µ, ranging from 0 to 0.3: considering values in
table 4.3 in case of distilled water the starting point of the simulation is
eM = 0.35; this value is very low even if compared to random close packing
values ( where e ' 0.66). The small interval for µ here has been set in
order to get a system as dense as possible.

– relative tangential stiffness rkt, ranging from 0 to 1: this parameters sets
the ratio between kn and k1 in a contact between two particles as

rkt =
kn
k1

.

As a value for strain rate ε̇ the same results obtained for cluster strain rate
were used, given that the strain process is the same in the two simulations;
differently, for the number of particles N a study was carried out in order to
verify that the number of particles in the simulation is large enough. In Figure
4.5 a confrontation among simulations having the same micro-parameters but
different number of particles is shown. As it is possible to notice, there is no
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Figure 4.5: Confrontation among simulations having number of particles raging from
1000 to 4000.

great difference in results, and instead they are almost perfectly sovrapposed.
For this reason in single porosity simulations the number of particles will be set
to N = 1000.
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4.2.1 Numerical simulation

Figure 4.6: 3D view of the numerical simulation.

In this section single porosity numerical simulations will be studied with
particular interest in the results obtained thanks with GrainLearning. In Figure
4.6 it is possible to see an isometric view of the computational domain; it is
important to remark here that the domain is defined by periodic boundaries:
each particle placed at the edge of the domain can for this reason be in touch
with a particle placed on the opposite side. This way no walls are present in the
simulation and the edge effects are minimized. In Figure 4.7 all principal stages
of the simulation are shown with a frontal view:

– first row, stage 1: it is possible to see particles in the initial state; no
interactions are present and the domain is in a gas-like state, Figure 4.7a
and 4.7b;

– second row, stage 2: jamming point; particles have got into contact but
interaction forces are still low, Figure 4.7c and 4.7d;

– third row, stage 3: starting of uniaxial compression; the system has void
ratio eM0

= 0.35, Figure 4.7e and 4.7f;

– fourth row, stage 4: ending of simulation; the domain is not a cube anymore
and void ratio eM0

= 0.28, Figure 4.7g and 4.7h.

For each stage, moreover, a section is shown, showing only particles placed in a
slice of the domain having width L = 2r. In order to get the best results, three
iterations of GrainLearning were necessary, after which no improvement were
detected. In figure 4.8 the new parameterizations obtained after each iteration
are shown: in this study, for each iteration of GrainLearning 70 numerical
simulations have been run simultaneously. In all three subplots the blue points
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indicate the numerical values used for the simulations just performed, while the
orange ones represent the new parameters with which the numerical simulations
will subsequently be launched. For this reason blue points of Figure 4.8b match
orange points of Figure 4.8a and blue points of Figure 4.8c match orange points
of Figure 4.8b; blue points in figure 4.8a and orange points in 4.8c represent
respectively the random starting set of values and the final best set of values.
Finally the best three solutions obtained by the third and last iteration are
shown in Figure 4.9. As it is possible to notice, with this model it is not possible
to obtain good results.

(a) Front view of stage 1. (b) Section of stage 1.

Figure 4.7: 3D plot frontal view of compression stages.
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(c) Front view of stage 2. (d) Section of stage 2.

(e) Front view of stage 3. (f) Section of stage 3.

(g) Front view of stage 4. (h) Section of stage 4.

Figure 4.7: 3D plot frontal view of compression stages.
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(a) GrainLearning parameter space iteration 1.

(b) GrainLearning parameter space iteration 2.

Figure 4.8: Evolution of parameter space.
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(c) GrainLearning parameter space iteration 3.

Figure 4.8: Evolution of parameter space.

Figure 4.9: Results obtained by the third iteration of GrainLearning.
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A few considerations anyway can be made analyzing the evolution of parameter
space shown in the maps of Figure 4.8a, 4.8b and 4.8c, for each one of the tuned
parameters:

• loading stiffness k1: it is the parameter that has been most characterized.
final values fluctuate between k1 = 1 · 103 and k1 = 2 · 103;

• particle size dispersity Ds: in all three iteration no effect of dispersity have
been found. This parameter does not have evident effects during numerical
simulations and therefore in the next studies it will be set to Ds = 1.2

• relative tangential stiffness kt: after three iterations optimal values for this
parameter fluctuate between kt = 0.4 and kt = 0.6. In double porosity
simulation this parameter will again taken into account.

• sliding friction mu: apparently an optimal value for this parameter has
not been found. Anyway this could depend on the short initial range on
which it has been tuned. In double porosity simulations it will be again
taken into account with a wider range for intra-cluster interactions (i.e.
between particles belonging to the same cluster).
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4.3 Compression of clusters with water-like fluid
In this section, double porosity simulations will be discussed. Differently

from the previous section, clay agglomerates will now be represented by spherical
clusters defined in Chapter 3, and therefore micro and macro void ratio will be
defined throughout the presentation. Regarding numerical simulations, these
are set differently than in the case of single porosity, as they are carried with
the following steps:

• deposition: clusters are placed in the domain with no interactions among
theme; they are than free to settle and rearrange thanks to the application
of the strain rate that makes them deposit;

• first isotropic compression: the sample is compressed isotropically thanks
to periodic boundaries in order to get the void ratio value corresponding
to that of the beginning of the experimental tests, e = 0.96;

• second isotropic compression: the sample is compressed isotropically thanks
to periodic boundaries in order to get the stress σ corresponding σ =
20σ (e = 0.96). This is done in order to simulate the process of clay sample
compaction;

• system relaxation: periodic boundaries are moved in the opposite direction
with the same strain rate in absolute value until void ratio is e = 1.02;

• uniaxial compression: domain is compressed in the vertical direction in
order to simulate the oedometric test, until e = 0.85. Results obtained
during this step are compared with experimental data showed in figure 4.1
and Table 4.3;

Differently from single porosity simulations, as stated before, for each parameter
two values has to be defined as interactions between elementary particles can
be found both between particles belonging to the same cluster and between
particles belonging to two different clusters; it is important to notice that all
considerations made in the previous section will be now valid for inter-cluster
values, as particles before were representative of a clay agglomerate. Here the
choices made for each parameter will be detailed. Starting from particle size
dispersity Ds, from the previous section it has been discovered that it has not
a strong influence on numerical simulations and for this reason it will be set
constant to:

Di
s = 1.2 , DI

s = 1.2 ;

the choice of imposing a size dispersity also between elementary particles has
been made to avoid the creation of crystal lattice dispositions. Regarding contact
model parameters different considerations have to be made in the two different
cases. For intra-cluster parameters a linear-contact model have been imposed:
ki1, ki2 and kic are proportional to each other as

ki2 = 5ki1 , kic = αki2 .

The reasons behind this choice is that after a few preliminary simulations it has
been discovered that the ratio between Ki

1 and ki2 has no particular influence
on the simulation, while setting kic = αki2 is necessary in order to tune cluster
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Table 4.4: Normalised compression curve values

Distilled water

e σ′ σ′
σref

[KPa]

e0 = 0.96 500 1
ei = 0.93 1000 2
ef = 0.85 2000 4

behaviour, as with α < 1 the cluster is more fragile while with α ≥ 11 it is stiffer.
The only parameter tuned among these is α, from now on referred to as relative
cohesive stiffness rKc = kc

k2
, as k2 will be set constant to k2 = 10KN/m: given

the difficulty of the single porosity simulation in characterize the slope of the
experimental data compression curve, target values will be normalised over a
reference stress σref = 500KPa, as shown in Table 4.4. In order to find the
best parameters, during uniaxial compression values of vertical stress measured
in numerical simulations will be also rescaled over a factor σres = σ′(e0). At
the end of the process, in order to obtain a stress σ′(e0) = 500KPa it will be
enough to rescale k1:

k2NEW
= k2

σref
σres

and all other stiffness parameters accordingly. Regarding penetration depth
max δi, from Table 4.3 the value of em = 0.45 and so mass fraction ζ = 0.31:
reverting Eq. 3.4 and remembering that zeta0 = 0.58 it holds

δi =
ζ − ζ0

3ζ2
0

' 0.123 .

Considering now the inter-cluster parameters kI1 , kI2 , kIc and δI they have been
defined according to the single porosity simulations:

kI1 = kI2 ⇒ kic = 0 , δI = 0 .

In order to define their value it has been set

kI1 = 5ki2 ;

this decision has been driven by the fact that considering a cluster as a single
entity it has a stiffness higher than the particles composing it: setting inter-
cluster stiffness bigger than the intra-cluster one allows to have smaller a overlap
between particles belonging to different clusters compared to the overlap of
particles belonging to the same cluster and thus a better representation of the
cluster as a single entity. Finally for friction parameters, µi and rkit will both
be tuned, ranging in the interval [0, 1] while µI and rkIt will both set to zero in
order to allow clusters to deposit compactly. Regarding the radius of a single
particle r, it has been computed starting from the size of the average cluster (i.e.
a cluster composed by 50 particles) setting it equal to the average size of a clay
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aggregate, from Eq. 4.3. Firstly the relative cluster radius is obtained from Eq.
3.3

R̂ = R0 −R0ζ0δ
i =

3

√
N

ζ0

(
1− ζ0δi

)
= 4.10

and the radius r is then determined as:

r =
rH2O

R̂
= 13.4µm .

Finally as a value for strain rate ε̇ the same value obtained for single cluster
compression will be used, while for the number of clusters N = 300 has been set.
This value has been set because of computational time limits: considering 50
particles per cluster on average, indeed, leads to a total number of around 15000
particles and a total time of three days for each simulation.

4.3.1 Numerical simulation

Figure 4.10: 3D view of the computational domain.

In this section double porosity numerical simulations results will be studied
with particular interest in the comparison of results with the experimental
data of Table 4.3. In Figure 4.10 it is possible to see an isometric view of the
computational domain; it is important to remember that in the double porosity
simulations the domain is defined by periodic boundaries and it has a cubic
shape at the beginning of the simulation.

49



i
i

“output” — 2020/3/12 — 21:09 — page 50 — #53 i
i

i
i

i
i

In Figure 4.11 all principal stages of the simulation are shown with a frontal
view:

– first row, stage 1: it is possible to see clusters in the initial state; no
inter-cluster interactions are present and the domain is in a gas-like state,
Figure 4.11a and 4.11b;

– second row, stage 2: jamming point; clusters have got into contact but
interaction forces are still low and their shape is still spheroidal, Figure
4.11c and 4.11d;

– third row, stage 3: compaction compression; the system has void ratio
e ' 0.208 and clusters have changed their shape, Figure 4.11e and 4.11f;

– fourth row, stage 4: relaxation; walls are moved in the opposite direction
with a strain rate equal in modulus until e = 1.02, Figure 4.11g and 4.11h;

– fifth row, stage 5: uniaxial compression; the domain, which is not a cube
anymore, is compressed uniaxially in order to simulate the experimental
tests until e = 0.85, Figure 4.11i and 4.11j;

For each stage, moreover, a section is shown, showing only particles placed in a
slice of the domain having width L = 2rH2O. In order to get the best results,
three iterations of GrainLearning were necessary, after which good accordance
was found between experimental data and simulations’ results. In figure 4.12 the
new parameterizations obtained after each iteration are shown: here parameter
log_rkc is the base-10 logarithm of rkc. In this study, for each iteration of
GrainLearning 140 numerical simulations have been run simultaneously. In
all three subplots the blue points indicate the numerical values used for the
simulations just performed, while the orange ones represent the new parameters
with which the numerical simulations will subsequently be launched. For this
reason blue points of Figure 4.12b match orange points of Figure 4.12a and blue
points of Figure 4.12c match orange points of Figure 4.12b; blue points in figure
4.12a and orange points in 4.12c represent respectively the random starting set of
values and the final best set of values. Finally the best three solutions obtained
by the third and last iteration are shown in Figure 4.13. As it is possible to
notice, this model has much more possibilities in reproducing experimental data,
with respect to the single porosity model.
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(a) Front view of stage 1. (b) Section of stage 1.

(c) Front view of stage 2. (d) Section of stage 2.

(e) Front view of stage 3. (f) Section of stage 3.

Figure 4.11: 3D plot frontal view of compression stages.
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(g) Front view of stage 4. (h) Section of stage 4.

(i) Front view of stage 5. (j) Section of stage 5.

Figure 4.11: 3D plot frontal view of compression stages.

(a) GrainLearning parameter space iteration 1.

Figure 4.12: Evolution of parameterization during iteration
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(b) GrainLearning parameter space iteration 2.

(c) GrainLearning parameter space iteration 3.

Figure 4.12: Evolution of parameterization during iteration
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Figure 4.13: Results obtained by the third iteration of GrainLearning.

Optimal parameters for this simulation are shown in Table 4.5. It is interesting
to notice that kc is quite small if compared to other simulation parameters: this
is because in order to obtain good results clusters had to be able to deform and
so to allow changes in the macro-structure of the computational sample. It is also

Table 4.5: Optimal parameters’ value, obtained by double porosity calibration.

Simulation parameters

rkic 0.019
rkit 0.480
µi 0.120
σres
σref 6.114

Relative parameters

ki1 327N/m
ki2 1637N/m
kic 30N/m
kit 157N/m
kI1 8185N/m
kI2 8185N/m
kIc 0N/m
kIt 0N/m
µI 0

interesting that friction parameters have been set to quite low values (specially
sliding friction µ). This is an indication that the compaction of clusters in the
jamming point has to be dense in order to get good results. Concluding, it is
important to remember that all parameters obtained from the simulation are
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not directly relatable to clay physical parameters: taking into account stiffness
parameters, for example, it is necessary to remember that they are computational
stiffnesses.

4.3.2 Results analysis
In Figure 4.14 the whole simulation is showed, displaying variation of e, eM

and em: after the compaction process, the computational sample is relaxed and
then uniaxial compression takes place; it is interesting to notice that for low
values of vertical stress the change in void ratio e is caused almost exclusively
thanks to the decrease of macro void ratio eM , while micro void ratio em remains
constant. Furthermore, after relaxation em has a completely elastic recovery,
while eM exhibits a plastic behavior: this depends on the fact that, after the
creation of a cluster, all the interactions present inside it are on the elastic branch
of the constitutive model explained in Subsection 2.2.2, having all passed the
value δ∗ during creation. For this reason clusters exhibit the elastic behavior
evident in the figure 4.14c; on the other hand this behaviour does not prevent
clusters from being deformable, confirmed by the fact that macro void ratio has
a plastic behavior. In Figure 4.14b it is shown the detail of uniaxial compression.
As noticed previously, there is a good accordance between numerical simulations
and experimental data: for this reason in the next section a validation of the
numerical method is proposed; proof that it had not been done in the case of
single porosity simulations due to the poor agreement between numerical results
and computational tests.

4.4 Validation: compression of clusters with salt
water-like fluid

In this section a validation for the numerical double porosity model exposed
before will be provided; in particular, setting the same parameters of the distilled
water simulation, a new simulation will be started with the only changes being
radius and mass fraction of clusters, tuned in order to resemble the presence of
a saline solution as interstitial fluid. Starting from data in Table 4.3 the average
value of em in case of saline solution as interstitial fluid is em = 0.2, and so
ζ = 0.83. Similarly to what has been done for distilled water it holds:

δi =
ζ − ζ0

3ζ2
0

' 0.251 .

Regarding cluster radius it is already determined and can not be set equal to
rNaCl: the radius of an elementary particle has indeed been determined in the
previous simulation and the relative cluster radius is automatically determined
from the value of penetration depth max δi.

R̂ = R0 −R0ζ0δ
i =

3

√
N

ζ0

(
1− ζ0δi

)
= 3.77 ;

fortunately anyway this value is quite similar to the one determined in Chapter
3 given that

R = rR̂ = 50.6µm .
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(a) Compression process of distilled water numerical clay sample.
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(b) Detail of uniaxial compression stage: comparison with experimental
data.

Figure 4.14: Distilled water numerical simulation.

All the other parameters are the ones presented in Table 4.5. Results obtained
with the numerical simulation are shown in Figure 4.15. As it is possible to see
in Figure 4.15b there is a good accordance between experimental data and the
numerical simulation of uniaxial compression. Similarly to the case of distilled
water, for low values of vertical stress the change in void ratio e is caused almost
exclusively by the decrease of macro void ratio eM , while micro void ratio em
remains constant; moreover one more similarity is given from the fact that
micro void ratio is completely elastic, while macro void ratio presents a plastic
behaviour, an indication that clusters have undergone deformation following
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(c) Compression process of distilled water: em.
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(d) Compression process of distilled water: eM .

Figure 4.14: Distilled water numerical simulation.

isotropic compression. Given the good reproduction of the experimental results
obtained, a set of preliminary analyses where more complex chemo-mechanical
histories were imposed to the samples has been run: they are shown in the next
chapter. before proceeding with their presentation it is essential to define changes
in mechanical behaviour caused by a different interstitial fluid. Comparing the
two mechanical compression simulations presented in this chapter, Figure 4.16,
it is possible to notice that these simulations are highly influenced by the
presence of a different interstitial fluid, in accordance to what has been said in
Chapter 1; these differences are highlighted by the values of isotropic compression
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(a) Compression process of saline solution numerical clay sample.
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(b) Detail of uniaxial compression stage: comparison with experimental
data.

Figure 4.15: Saline solution numerical simulation.

Table 4.6: Comparison between isotropic parameters for DW and NaCl samples.

sample λ k N

DW 0.679 0.076 3.210
NaCl 0.609 0.064 2.739
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(c) Compression process of 5.5MNaCl: em.
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(d) Compression process of 5.5MNaCl: eM .

Figure 4.15: Saline solution numerical simulation.

parameters λ, k and N shown in Table 4.6, where λ and k are respectively normal
consolidated and overconsolidated compressibility index:

λ = − ∆eNC
log(∆σNC)− log(σ0)

, k = − ∆eOC
log(∆σOC)− log(σ0)

,

with σ0 = 1KPa, and N is the known term of the normal compression line NCL,
which is the line obtained from the linear regression of the normal consolidated
compression curve in a semi-log scale:

e = N + λ(log(σ)− log(σ0)) .
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Comparison among the two tests

Figure 4.16: Comparison of load processes DW and NaCL.

The comparison between the two normal compression linesNCL0
DW andNCLL0

NaCL

is shown in Figure 4.17: in their notation, subscripts indicates the interstitial
fluid present in the sample, while superscript 0 is added to stress the fact that
it was also the interstitial fluid with which they were prepared. The complete
notation for chemical load samples and their parameters will be stated in Chapter
5 . It is evident, therefore, that following the introduction of a saline solution as

NCL0
DW

NCL0
NaCl

0 1 2 3 4 5

log10

σ '

σ0 '
[-]

1

2

3

4

e [-]

Figure 4.17: Comparison between NCL0
DW and NCL0

NaCL.

an interstitial fluid, in addition to micro-structural changes, variations on the
macro-scale of the material are present, due to the decrease in compressibility λ
shown by the NaCl sample.
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Chapter 5

Chemical loading

As seen in Chapter 1, the interstitial fluid has a strong influence in clay
behavior: it indeed not only influences double layer thickness and consequently
repulsive forces among clay particles, but also the compressibility of the clay.
Moreover, a chemical load, i.e. a change in molarity of the interstitial fluid,
leads to further complex changes in the behavior of the clay sample during the
oedometric compression. Given the good accordance obtained in the simulation
of mechanical loads, in this chapter the possibility of characterizing chemical
loads will be explored. Before proceeding with the analysis, given that a few
different chemical and mechanical computational loading tests will be presented,
it is necessary to define a notation that will be consistent throughout the chapter:
from now on the completely mechanical tests obtained in Chapter 4 will be
defined as DW and NaCl indicating respectively the distilled water and the
5.5MNaCl tests. Regarding the names of chemical load numerical simulations,
they will be defined taking into account the following parameters:

– starting configuration: DW or NaCl;

– sample compression configuration: NC for the normal consolidated sample
or OC for the overconsolidated sample;

– interstitial fluid change: Sa for salinisation, i. e. changing from DW to
NaCl or Des for the other way around;

– single process or chemical cycle: respectively Mo or Cy;

– vertical stress measured at the starting of the process in KPa.

Moreover, when taking into account compression parameters λ, k, N and the
normal compression line NCL This way a process of single salinisation starting
from distilled water as interstitial fluid computed on a normal consolidated
sample when σ′ = 1600 will be referred to as DW_NC_Sa_Mo_1600.

In order to characterise changes in the interstitial fluid, in Chapter 4 only
one parameter has been changed in the simulation: penetration depth max δ0.
In other words, in these simulations, a simple change in the contact model is
enough in order to capture micro-structural changes given by a chemical process.
For this reason a salinisation process is computed simply increasing or decreasing
penetration depth max from δ0 = 0.123 to δ0 = 0.251 and/or viceversa, being
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(a) k1 = 1KN , k2 = 5KN , kc =

1KN , δ̂0 = 0.1.
(b) k1 = 1KN , k2 = 5KN , kc =

1KN , δ̂0 = 0.2.

Figure 5.1: Contact models M1 and M2.

those the values describing the presence of distilled water and 5.5M NaCl saline
solution respectively. In figure 5.1 the two resulting contact models are shown:
from this figure it is evident that while δi changes, all other contact model
parameters k1, k2 and kc are kept the same. The process itself of varying δi is
computed as slowly as possible: stopping the compression process (ε̇ = 0) when
the stress is σ = σ, where σ is an arbitrary value, penetration depth max is
modified in each iteration as:

δi(n+1) = (1 + α)δi(n)

where subscript (n) refers to the n-th time step and α = ±10−6, chosen taking
into account computational time: this way a single chemical change requires a
time of around one day. Finally, in order to keep σ = σ a new adaptive strain
rate ε̂ is applied to the domain in all three directions, defined as:

ε̂x = β(σx − σx) , ε̂y = β(σy − σy) , ε̂z = β(σx − σz) ,

where β = 10−7 is a gain factor. In the next section single chemical changes will
be analysed.

5.1 Single chemical load
In this section results obtained from numerical simulations of a single chemical

load will be exhibited; in particular a single (and not cyclic) change in molar
concentration will be simulated, varying from distilled water to 5.5M NaCl and
the other way around. Moreover each one of this processes will be computed for
two different values of vertical stress σ′. Four different simulations will then be
discussed:

– DW_NC_Sa_Mo_1600,

– DW_NC_Sa_Mo_9600,

– NaCl_NC_Des_Mo_2100,

– NaCl_NC_Des_Mo_4100
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(a) DW_NC_Sa_Mo_1600
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(b) NaCl_NC_Des_Mo_2100

Figure 5.2: Single salinisation and desalinisation processes computed for low stress
values on the normal consolidated sample.
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Table 5.1: Comparison in micro and macro parameters for DW_NC_Sa_Mo_1600
and NaCl_NC_Des_Mo_2100.

DW_NC_Sa_Mo_1600 NaCl_NC_Des_Mo_2100

λ 0, 516 0, 711
k 0, 047 0, 067
N 2, 483 3, 152
∆e −0, 194 0, 078
∆em −0, 129 0, 074
∆eM −0, 016 −0, 014
σ0
′ 1633 2149

σC
′ 2734 2518

σ0
′

σC
′ 1, 674 1, 172

In Figure 5.2 the salinisation and desalinisation computed at lower stress are
shown. A crucial difference can immediately be noticed between them: right
after the salinisation process DW_NC_Sa_Mo_1600, Figure 5.2a, shows a
seemingly elastic behaviour before connecting back on the plastic path; this
behaviour is less noticeable in NaCl_NC_Des_Mo_2100, Figure 5.2b, where
the process is almost always plastic. Moreover, there is a difference in the
variation of void ratio ∆e, this being bigger in the case of salinisation. In order
to investigate the reason behind these differences, the changes in the micro and
macro parameters were measured: they are shown in Table 5.1. Of particular
interest is the comparison between the ratio between the stress value on which the
chemical change is computed σ0

′ and the value of stress for which the loading can
be considered on the plastic path again σC ′. As expected, the value of σ0

′/σC
′

is bigger for DW_NC_Sa_Mo_1600. This results, as will be discussed in the
following sections, can be associated with a shift in the yield curve happening
during the desalinisation process of NaCl_NC_Des_Mo_2100 which instead
is absent for DW_NC_Sa_Mo_1600. Moreover, it is interesting to notice that
the deformations that occur during desalination are accompanied by a variation
in the macro-void ratio of negative (and so opposite) sign, further proof of the
plasticity of the phenomenon: with the elastic expansive deformation a plastic
compression deformation comes along.

64



i
i

“output” — 2020/3/12 — 21:09 — page 65 — #68 i
i

i
i

i
i

Table 5.2: Comparison in micro and macro parameters for DW_NC_Sa_Mo_9600
and NaCl_NC_Des_Mo_4100.

DW_NC_Sa_Mo_9600 NaCl_NC_Des_Mo_4100

λ 0, 534 0, 712
k 0, 046 0, 067
N 2, 554 3, 151
∆e −0, 082 0, 071
∆em −0, 071 0, 061
∆eM 0, 004 −0, 004
σ0
′ 9680 4135

σC
′ 10090 4217

σ0
′

σC
′ 1, 042 1, 020

In Figure 5.3 the salinisation and desalinisation computed at higher stress are
shown. Considering this two different loading processes, the differences spotted
in the previous comparison are less evident; the reason behind this could be
that for those values of stress the system is too dense and changes are not well
characterised. Values for micro and macro parameters in this confrontation are
shown in Table 5.2. Comparing these two simulations σ0

′/σC
′ is almost the same

in both cases, and both present a change in eM in opposite value with respect
to ∆e

5.2 Chemical loading cycle on normal consolidated
samples

In this section results obtained from numerical simulations of a chemical
loading cycle will be exhibited; in particular a double salinisation-desalinisation
change in molar concentration will be simulated, varying from distilled water to
5.5M NaCl and back to distilled water, and the other way around. Moreover
each one of this processes will be computed for two different values of vertical
stress σ′. Four different simulations will then be discussed:

– DW_N_Sa_Cy_1100,

– DW_NC_Sa_Cy_10300,

– NaCl_NC_Des_Cy_1800,

– NaCl_NC_Des_Cy_4200

In Figure 5.4 the salinisation and desalinisation cycles computed at lower
stress are shown. Just like the single salinisation processes, a crucial differ-
ence can immediately be noticed between them: right after the salinisation cycle
NaCl_NC_Des_Cy_1800, Figure 5.4b, shows a seemingly elastic behaviour
before connecting back on the plastic path; this behaviour is less noticeable in
DW_N_Sa_Cy_1100, Figure 5.4a, where the process is almost always plastic.
Given the presence of two chemical change processes it is necessary to define two
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(a) DW_NC_Sa_Mo_1600
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(b) NaCl_NC_Des_Mo_2100

Figure 5.3: Single salinisation and desalinisation processes computed for high stress
values on the normal consolidated sample.
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(a) DW_N_Sa_Cy_1100
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(b) NaCl_NC_Des_Cy_1800

Figure 5.4: Salinisation and desalinisation cycles computed for low stress values on the
normal consolidated sample.
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Table 5.3: Comparison in micro and macro parameters for DW_N_Sa_Cy_1100
and NaCl_NC_Des_Cy_1800.

DW_N_Sa_Cy_1100 NaCl_NC_Des_Cy_1800

λ 0, 658 0, 574
k 0, 072 0, 068
N 3, 113 2, 565
∆eD 0, 19 0, 078
∆eDm 0, 131 0, 074
∆eDM 0, 01 −0, 014
∆eS −0, 194 −0, 125
∆eSm −0, 128 −0, 09
∆eSM −0, 016 −0, 008
∆e −0, 004 −0, 047
∆em 0, 003 −0, 016
∆eM −0, 006 −0, 022
σ0
′ 1487 2046

σC
′ 2661 2818

σ0
′

σC
′ 1, 790 1, 377

different variations in void ratio: ∆eS will represent the variation obtained during
the salinisation process while ∆eD will represent the variation obtained during
the desalinisation process and the total change at the end of the process will be
defined as ∆e. A relevant difference in ∆e is evident between the two different
samples. In order to investigate the reason behind these differences, the changes
in the micro and macro parameters were measured: they are shown in Table 5.3.
In this case, the value of σ0

′/σC
′ is big for both samples but it is important to no-

tice that for NaCl_NC_Des_Cy_1800 the presence of a bigger and seemingly
elastic path is confirmed by a lower value of λ. This results, as anticipated in
the previous section, can be associated with a shift in the yield curve happening
during the desalinisation process of NaCl_NC_Des_Cy_1800 which instead
is absent for DW_N_Sa_Cy_1100. Moreover, as for the single desalinisation,
the deformations that occur during desalination of NaCl_NC_Des_Cy_1800
are accompanied by a plastic (negative) variation in the macro-void ratio, further
proof of the plasticity of the phenomenon.
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Table 5.4: Comparison in micro and macro parameters for DW_NC_Sa_Cy_10300
and NaCl_NC_Des_Cy_4200.

DW_NC_Sa_Cy_10300 NaCl_NC_Des_Cy_4200

λ 0, 712 0, 538
k 0, 073 0, 069
N 3, 334 2, 419
∆eD 0, 053 0, 071
∆eDm 0, 058 0, 061
∆eDM −0, 015 0, 004
∆eS −0, 082 −0, 116
∆eSm −0, 071 −0, 084
∆eSM 0, 004 −0, 01
∆e −0, 029 −0, 045
∆em −0, 013 −0, 023
∆eM −0, 011 −0, 006
σ0
′ 10344 4223

σC
′ 10431 4514

σ0
′

σC
′ 1, 008 1, 069

In Figure 5.5 the salinisation and desalinisation cycles computed at higher
stress are shown. Considering this two different loading processes, the differences
spotted in the previous comparison are less evident for the same reasons made
explicit in the previous section. Values for micro and macro parameters in this
confrontation are shown in Table 5.4. Comparing these two simulations σ0

′/σC
′

is almost the same in both cases, and both present small changes in void ratio.

5.3 Chemical loading cycle on overconsolidated
samples

In this section results obtained from numerical simulations of a chemical
loading cycle on the overconsolidated samples will be exhibited; in particular a
double salinisation-desalinisation change in molar concentration will be simulated,
varying from distilled water to 5.5M NaCl and back to distilled water, and the
other way around. Two different simulations will then be discussed:

– DW_OC_Sa_Cy_1100,

– NaCl_OC_Des_Cy_1100,

In Figure 5.6 the salinisation and desalinisation cycles are shown. Considering
these salinisation cycles, the biggest difference among the confrontations made
in this work can be observed. Sample DW_OC_Sa_Cy_1100 in fact present
the expected behaviour: given that the sample is overconsolidated, the difference
in void ratio at the end of the process is very small and the chemical cycle
shows an elastic behaviour. On the other hand, after the desalinisation and
salinisation cycle of NaCl_OC_Des_Cy_1100 the change in void ratio is
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(a) DW_NC_Sa_Cy_10300
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(b) NaCl_NC_Des_Cy_4200

Figure 5.5: Salinisation and desalinisation cycles computed for high stress values on
the normal consolidated sample.
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(a) DW_OC_Sa_Cy_1100
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(b) NaCl_OC_Des_Cy_1100

Figure 5.6: Salinisation and desalinisation cycles computed for low stress values on the
normal consolidated sample.
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Table 5.5: Comparison in micro and macro parameters for DW_OC_Sa_Cy_1100
and NaCl_OC_Des_Cy_1100.

DW_OC_Sa_Cy_1100 NaCl_OC_Des_Cy_1100

λ 0, 658 0, 574
k 0, 072 0, 068
N 3, 113 2, 565
∆eD 0, 181 0, 211
∆eDm 0, 132 0, 16
∆eDM 0, 006 −0, 002
∆eS −0, 191 −0, 058
∆eSm −0, 131 −0, 098
∆eSM −0, 014 0, 052
∆e −0, 01 0, 153
∆em 0, 001 0, 062
∆eM −0, 008 0, 054

unexpectedly ∆e > 0: this effect will not be explained in this work and will be
the starting point for further investigations. Changes in the micro and macro
parameters were measured: they are shown in Table 5.5: here the ratio σ0

′/σC
′

is not taken into account give the wildly unexpected results. Results in Table
5.5 are helpful to highlight the great difference in results obtained: while for
DW_OC_Sa_Cy_1100, as expected, ∆e is very small, being ∆e = −0, 01, for
NaCl_OC_Des_Cy_1100 ∆e = 0, 153.

5.4 Comparison of different numerical and chem-
ical loading paths

In this section a further analysis on the results obtained for chemical loads
simulations is carried on. In particular results will be compared with mechanical
tests and finally with experimental tests present in literature. Taking into
account the behaviour of simulations computed on normal consolidated samples,
as anticipated before, there is a difference in the compression process following
chemical loadings: in particular while sample DW_NC_Sa_Mo_1600 presents
an elastic reloading phase after the salinisation process, this is not true for
NaCl_NC_Des_Mo_2100, presenting a plastic behaviour right after the
desalinisation process. This suggests a qualitative characterisation of the yielding
curve as the one proposed in Figure 5.7a: during the salinisation process the
loading is not on the yielding curve anymore and for this reason a further
mechanical loading is necessary in order to see a plastic behaviour in Figure
5.7b. On the other hand, considering the dual chemical load, i.e. the single
desalinisation on a normal consolidated sample, Figure 5.8a shows that in this
case the yielding curve is shifted by the desalinisation process and for this reason
the loading curve showed in Figure 5.8b presents a completely plastic behaviour.
This way of characterising the yielding curve is confirmed by the chemical
loading cycles computed on the normal consolidated samples. Considering the
NaCl_NC_Des_Cy_1800 sample, the elastic phase showed after the chemical
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(a) DW_OC_Sa_Cy_1100 loading scheme and yielding curve.
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(b) DW_OC_Sa_Cy_1100 chemical and mechanical loading curve.

Figure 5.7: DW_OC_Sa_Cy_1100 chemical and mechanical scheme and loading
curve.
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(a) NaCl_NC_Des_Mo_2100 loading scheme and yielding curve.
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(b) NaCl_NC_Des_Mo_2100 chemical and mechanical loading curve.

Figure 5.8: NaCl_NC_Des_Mo_2100 chemical and mechanical scheme and loading
curve.
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cycle is justified buy the shifting of the yielding curve caused by the desalinisation
process. For this reason it is necessary a further mechanical load in order to get
to the plastic path. The loading scheme and load curve are showed respectively
in Figure 5.9a and Figure 5.9b. Once again, considering its dual sample, this
behaviour is not present because the chemical cycle does not alter the position of
the yielding curve. The loading scheme and load curve are showed respectively in
Figure 5.10a and Figure 5.10b. Another very important result that can be noted
is the strong influence of the preparation fluid on the numerical results. From
now on isotropic compression parameters λ, k, N and NCL will be indicated
with a subscript and a superscript, defining respectively the interstitial fluid
present, DW or NaCl, and if it was the preparation fluid, with 0 if no chemical
changes were computed, ∗ if the interstitial fluid is different from the preparation
one and 00 if the fluid is the same of the one used during sample preparation
but a chemical cycle had been computed. For example λ∗NaCl refers to a sample
prepared with distilled water which has undergone a chemical salinisation process.
In Figure 5.11a and Figure 5.11b the effect of the preparation fluid can be noticed:
after the chemical process, load curves tend to be similar with the mechanical
loading test having the same interstitial fluid. This results are coherent with
experimental tests exhibited by [3] and showed in Figure 1.12. Concluding, the
same behaviour can obviously be noticed on chemical cycle simulations, as shown
in Figure 5.12.
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(a) NaCl_NC_Des_Cy_1800 loading scheme and yielding curve.
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(b) NaCl_NC_Des_Cy_1800 chemical and mechanical loading curve.

Figure 5.9: NaCl_NC_Des_Cy_1800 chemical and mechanical scheme and loading
curve.
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(a) DW_N_Sa_Cy_1100 loading scheme and yielding curve.
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(b) DW_N_Sa_Cy_1100 chemical and mechanical loading curve.

Figure 5.10: DW_N_Sa_Cy_1100 chemical and mechanical scheme and loading
curve.

77



i
i

“output” — 2020/3/12 — 21:09 — page 78 — #81 i
i

i
i

i
i

NC Loading DW

Salinisation

NC Loading NaCl

DW

NaCl

50 100 500 1000 5000 1×104 5×104
0.0

0.5

1.0

1.5

2.0

2.5

Vertical stress, σ' [KPa]

V
o

id
ra

ti
o

,
e
[-
]

(a) Comparison among the mechanical loading tests and
DW_NC_Sa_Mo_1600 sample.
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(b) Comparison among the mechanical loading tests and
NaCl_NC_Des_Mo_2100 sample.
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(c) Comparison among the NCL obtained by mechanical loading
tests and single chemical change samples.

Figure 5.11: Single chemical loads compared with mechanical tests.
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(a) Comparison among the mechanical loading tests and
DW_NC_Sa_Cy_1100 sample.
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(b) Comparison among the mechanical loading tests and
NaCl_NC_Des_Cy_1800 sample.
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(c) Comparison among the NCL obtained by mechanical loading
tests and cycle chemical change samples.

Figure 5.12: Cycle chemical loads compared with mechanical tests.
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Chapter 6

Conclusions and future work

Throughout this study the chemomechanical response of active clays was
analyzed; in particular great importance was given to the influence of the
interstitial fluid on microstructure, according to the DVLO theory. When
immersed in distilled water, repulsive Coulomb forces are present among particles,
but the permeation of a saline solution, or more generally of a non-aqueous fluid,
with a dielectric constant lower than that of distilled water causes the collapse
of the double layer and consequently the reduction of repulsive actions. For this
reason great changes can be spotted in the two different configurations. This
changes reflect on the macroscopic behaviour of active clays changing not only
the size of micro and macro pores but also isotropic compression parameters like
the compressibility of the material. This changes on the two scales have been
successfully simulated through the Discrete Element Method (DEM). Porous
aggregates have been characterised by conglomeration a elementary particles,
obtaining in this way a structure that could represent porosity both among and
inside clusters. After a calibration phase, good accordance was found between
the numerical method and the experimental data. Moreover the method has
been validated on a different set of experimental data, obtaining again good
results. Finally, thanks to the change of the simple interaction law among
particles, chemical changes were simulated, varying the size of pores inside
particles agglomerates and consequently agglomerates sizes themselves. Different
chemical loads were simulated; the qualitative behaviour obtained by these
simulations allowed to characterise a preliminary definition for the yielding
curve of the material. Future work will be the ulterior validation of the method
on different clay samples, considering also remoduled clays. Moreover while
salinisation processes showed a behaviour similar to the one expected from the
theory, the same cannot be told regarding chemical loads on overconsolidated
samples. This phenomenon will be investigated.
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Appendix A

MercuryDPM

A.1 Software overview
MercuryDPM is the code that has been used throughout this work. It is an

open source program able to expertly operating both two-dimensional and three-
dimensional discrete element simulations, with a user-friendly object-orientated
code, written in C++. Simulations can be easily started setting the required
specification before calling the kernel which runs the simulation: in it, indeed,
all the information required and drivers are stored. Some of the specifications
that could be set for the simulations are: particles positions, inflows, outflows,
contact model, domain dimensions, walls or boundaries, etc.. The main features
of the code include:

• User-friendly implementation (C++): the code is made by a series of
classes whose usage can be easily understood. This gives the user the
possibility to create complex simulations with simple implementations.

• Multiple contact models: Both linear and non-linear contact models are
available and each element of the simulation (like particles or even walls)
can be characterised by a single and unique specie. Interactions among
different species can also be defined (useful when simulating mixtures).

• Built-in geometries: simulating chute flows, rotating drums, periodic bound-
aries and vibrating walls are just a few examples of the geometries that can
be simulated using special classes. Moreover complex walls are available
other than simple flat walls: the code indeed supports axial-symmetric,
polyhedral and helical screw walls. Finally it is possible for users to define
new types of walls themselves.

• Hierarchical grid: a neighborhood search algorithm able to detect interac-
tions among the elements in the simulations with low computational efforts,
even in case of elevated size dispersity. This is one of the best features of
the code, which makes it unique and gives it its name (the name Mercury
comes from the abbreviation of hierarchical grid, hg).

• Statistics package: during the simulation a lot of physical and statistical
values can be extracted thanks to the MercuryCG package like density,
velocity, structure and stress tensors.
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• Access to continuum fields in real time: running the code in live statistics
mode allows to have the macroscopic state of the simulation. This could
be useful in those simulations in which the behaviour of a component (for
example a wall) is determined by the pressure state of the system.

• Handlers: all elements in the simulation (particles, walls, boundaries, etc.)
are stored in particular structures called handlers; this way all particles
and all the information regarding them are stored in the particleHandler,
walls in the wallHandler and so on. Thanks to this storage system the
creation of new objects is simple and all objects of the same type are stored
together even if their properties are different.

• Self-test suite and demos: the code can be tested with more than a hundred
drivers which are useful both for checking the installation and as a tutorial
and guide for beginner users.

• Simple restarting: it is possible to generate restart files that give the
possibility to restart the simulation without compiling again in case of
unexpected breaks of the simulation. This kind of files contain all infor-
mation regarding the code: if a small modification has to be made in the
code (for example changing a density value) the simulation can be easily
restarted.

• Interface to other particle simulation codes: thanks to the restarting
interface, external data can be also loaded in the simulation, such as:
data from other DEM codes, data from molecular dynamics codes or even
experimental data. They can then be post-processed with the MercuryCG
tool.

• Visualisation: the output can be easily visualized by external programs
like Paraview.

Finally a simple example of a code simulating a particle bouncing on a wall is
showed. The implementation process inside MercuryDPM is quite simple: inside
the method setupInitialCondition a spherical particle and a wall are placed inside
the domain, while inside the main function general properties are set, such as
domain’s dimensions, time step and output settings. The simulation starts with
problem.solve().

Listing A.1: Simple code demo.
// ! [T3 : headers ]
#include <Spec i e s / L i n e a rV i s c o e l a s t i c Sp e c i e s . h>
#include <Mercury3D . h>
#include <Walls / I n f i n i t eWa l l . h>
// ! [T3 : headers ]

// ! [T3 : c l a s s ]
class Tutor ia l 3 : public Mercury3D
{
public :

void s e t up I n i t i a lCond i t i o n s ( ) ov e r r i d e {
Sph e r i c a lP a r t i c l e p0 ;
p0 . s e t Sp e c i e s ( spec i e sHand l e r . getObject ( 0 ) ) ;
p0 . setRadius ( 0 . 0 0 5 ) ;
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p0 . s e tPo s i t i o n (Vec3D (0 . 5 ∗ getXMax ( ) , 0 . 5 ∗ getYMax ( ) , getZMax ( ) ) ) ;
p0 . s e tVe l o c i t y (Vec3D (0 . 0 , 0 . 0 , 0 . 0 ) ) ;
pa r t i c l eHand l e r . copyAndAddObject ( p0 ) ;

// ! [T3 : i n f i n i t eWa l l ]
I n f i n i t eWa l l w0 ;
w0 . s e t Sp e c i e s ( spec i e sHand l e r . getObject ( 0 ) ) ;
w0 . s e t (Vec3D (0 . 0 , 0 . 0 , −1.0) , Vec3D(0 , 0 , getZMin ( ) ) ) ;
wal lHandler . copyAndAddObject (w0 ) ;
// ! [T3 : i n f i n i t eWa l l ]

}

} ;
// ! [T3 : c l a s s ]

int main ( int argc , char∗ argv [ ] )
{

// Problem setup
Tutor ia l 3 problem ;

problem . setName ( "Tutor i a l 3 " ) ;
problem . setSystemDimensions ( 3 ) ;
problem . se tGrav i ty (Vec3D ( 0 . 0 , 0 . 0 , −9 .81)) ;
problem . setXMax ( 1 . 0 ) ;
problem . setYMax ( 1 . 0 ) ;
problem . setZMax ( 2 . 0 ) ;
problem . setTimeMax ( 5 . 0 ) ;

// ! [T3 : spec iesProp ]
// The normal spr ing s t i f f n e s s and normal d i s s i p a t i o n
// i s computed and s e t as f o r c o l l i s i o n time tc =0.005
// and r e s t i t u t i o n c o e f f i c e i n t rc =1.0 ,
L i n e a rV i s c o e l a s t i c Sp e c i e s s p e c i e s ;
s p e c i e s . s e tDens i ty ( 2 5 0 0 . 0 ) ; // s e t s the s p e c i e s type_0 dens i t y
s p e c i e s . s e t S t i f f n e s s ( 2 5 8 . 5 ) ; // s e t s the spr ing s t i f f n e s s .
s p e c i e s . s e tD i s s i p a t i o n ( 0 . 0 ) ; // s e t s the d i s s i p a t i o n .
problem . spec i e sHand l e r . copyAndAddObject ( s p e c i e s ) ;
// ! [T3 : spec iesProp ]

problem . setSaveCount ( 1 0 ) ;
problem . da taF i l e . s e tF i l eType ( FileType : :ONE_FILE) ;
problem . r e s t a r t F i l e . s e tF i l eType ( FileType : :ONE_FILE) ;
problem . f S t a tF i l e . s e tF i l eType ( FileType : : NO_FILE) ;
problem . eneF i l e . s e tF i l eType ( FileType : : NO_FILE) ;

problem . setXBal lsAddit ionalArguments ( "− s o l i d f ␣−v0" ) ;
problem . setWallsWriteVTK ( true ) ;
problem . setPartic lesWriteVTK ( true ) ;

problem . setTimeStep (0 . 005 / 5 0 . 0 ) ; // ( c o l l i s i o n time )/50.0
problem . s o l v e ( argc , argv ) ;

return 0 ;
}
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BaseInsertionBoundary

ClusterInsertionBoundary

RandomClusterInsertionBoundaryFixedClusterInsertionBoundary

BaseCluster

Inheritance

InheritanceInheritance

Encapsulation

Figure A.1: Structure of the classes needed for the cluster implementation (in orange);
BaseInsertionBoundary (in red) is an already existing MercuryDPM class.

A.2 Implementation of the cluster creation pro-
cess inside MercuryDPM

As a starting point for this work, the possibility to create a cluster has been
implemented inside the MercuryDPM software. In accordance with the structure
of the program, the insertion of clusters inside a domain is provided by an
insertion boundary which is a sub-domain from which entities are inserted. In
this way, if a starting velocity is set a flow of clusters can be created. Otherwise,
if a fixed amount of cluster is needed, the user can specify positions and velocities
for the insertion. In order to do so four classes have been created:

• BaseCluster.h: it is the core of the implementation and defines the process
of cluster creation;

• ClusterInsertionBoundary.h: inherits from BaseInsertionBoundary, a base
class of MercuryDPM, and defines the process of cluster insertion. An
object of type BaseCluster is encapsulated in it;

• RandomClusterInsertionBoundary.h: this class, which derives from Clus-
terInsertionBoundary.h takes into account the random process necessary
to the random insertion of clusters inside the domain;

• FixedClusterInsertionBoundary.h similarly to the previous one, this class
derives also from ClusterInsertionBoundary.h and takes into account the
process necessary to the insertion of clusters inside the domain in some
specified positions.

A scheme of the architecture among these classes is shown in Figure A.1. In order
to create a cluster just a few information are needed and they can be prescribed
whithin function set, as can be seen in the snip of code reporteb below, in which
the usage of RandomClusterInsertionBoundary.h is shown. Firstly, a Particle
has to be created (insertionBoundaryParticle) and it will be used as a model
for elementary particles composing the cluster: all physical properties will be
copied from it; the second parameter in function set is maxFailed : it is a counter
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which defines how many times the program will try to insert a cluster inside the
simulation, checking that there are no interactions. After that the user has to
specify minimum and maximum of domain, velocity and radius.

Listing A.2: Random Cluster Settings
void s e t up I n i t i a lCond i t i o n s ( ) ov e r r i d e {

Sph e r i c a lP a r t i c l e i n s e r t i onBoundaryPar t i c l e ;
i n s e r t i onBoundaryPar t i c l e . s e t Sp e c i e s (

spec i e sHand l e r . getObject ( 0 ) ) ;

CubeInsertionBoundary insert ionBoundary ;
insert ionBoundary . s e t (& inse r t i onBoundaryPar t i c l e , maxFailed ,

getMin ( ) , getMax ( ) ,
ve loc i tyMin , velocityMax ,
radiusMin , radiusMax ) ;

boundaryHandler . copyAndAddObject ( insert ionBoundary ) ;
}

If differently a fixed number of cluster is needed it is necessary to specify their
positions and radii using FixedClusterInsertionBoundary.h, while there is no
need anymore for the dimension of the boundary.

Listing A.3: Fixed Cluster Settings
void s e t up I n i t i a lCond i t i o n s ( ) ov e r r i d e {

Sph e r i c a lP a r t i c l e i n s e r t i onBoundaryPar t i c l e ;
i n s e r t i onBoundaryPar t i c l e . s e t Sp e c i e s (

spec i e sHand l e r . getObject ( 0 ) ) ;

CubeInsertionBoundary insert ionBoundary ;
insert ionBoundary . s e t (& inse r t i onBoundaryPar t i c l e , maxFailed ,

po s i t i on s , r ad i i ,
ve loc i tyMin , velocityMax ) ;

boundaryHandler . copyAndAddObject ( insert ionBoundary ) ;
}

If no velocity is specified, it will be automatically set to zero.
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Appendix B

GrainLearning toolbox

Granular materials are characterised by a high number of particles and so
of degrees of freedom; during compression tests this leads to wildly nonlinear
behaviour, difficult to characterise. Moreover compression test results are often
history dependent, adding another issue to an already complex matter. For-
tunately Discrete Element Method (DEM) represent a valid tool in order to
simulate granular material behaviour. Differently from continuum mechanics
approach, like Finite Elements Method (FEM) for example, which need to be
coupled with complex contact model in order to characterise efficiently the
behaviour of granular materials, in DEM every microscopic and macroscopic
value is easily accessible, and contact models behind it can be surprisingly simple.
On the other hand the disadvantage of this numerical method is that, even if par-
ticles are defined with stiffness and friction, which are macroscopic parameters,
these does not match any physical value in the actual material being simulated.
They are indeed only numerical parameters and don’t represent any macroscopic
property. For this reason, the process of defining DEM parameters can be quite
challenging. GrainLearning is a valid toolbox in order to avoid this problem
[7]. Thanks to an iterative Bayesian filter and starting from results obtained
with random parameter values, the best value for parameters can be obtained
computing posterior distribution of the model, based on the accordance obtained
by results with target data. For example starting from experimental results of
oedometric compression tests stress, it is possible to define numerical parameters
like stiffnesses, friction or even particle size dispersity. After each iteration
of a DEM simulations set, parameter space, initially uniformly distributed, is
updated, in order to define high probability parameter values. In Figure B.1 a
scheme of Grain learning iterative process is shown. The hole idea behind the
model is to define the posterior probability of parameter values starting from
the expected value for probability:

E[ft(xt)|tt] =

∫
ft(xt)p(xt|yt)ddx

where ft is a p(xt|yt)-integrable function that describes a value of interest
for the simulations, typically compared to experimental data, xt represent
augmented probabilities and yt represents measurements. After computing the
new probability parameter space, DEM simulations are computed again according
to these values. Typically three iterations required to reach convergence; moreover
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Figure B.1: Scheme of Grain learning iterative process. [7]

the beauty of this tool stands in the fact that if no improvement is found on the
parameter space, it is highly likely that the chosen parameters are not able to
reproduce the target values. Finally in Figure 4.12 an example of the iterating
process effect on parameter space is shown.
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