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Abstract 

The Modern Portfolio Theory (MPT) was first developed to solve the problem of 

investment allocation in the financial sector. In short, it says that diversifying the types of 

investment decreases the overall risk of the portfolio, advising investors to do not put “all eggs in 

the same basket”.  

In this thesis, the idea is to apply the same concept in the energy sector, treating each 

source of energy as sort of investment. The hypothesis is that one could create an optimization 

model to guide the decision of how much energy should be produced by each source in order to 

decrease the expected cost of production and associated risks. 

In this sense, the purpose of the present thesis is to explore the composition of energy 

portfolios in Brazil, which tells about how much electricity is produced (or can be produced) by 

each source in the country. In order to do this, the evolution of the Brazilian energy supply 

structure and its projections for 2027, 2030 and 2050 are analyzed in terms of diversity and 

compared with efficient portfolios under the perspective of the MPT. 

 To achieve this goal, an optimization model is proposed, and its results (efficient 

portfolios) are used to evaluate projections for Brazilian energy supply structure in terms of 

expected cost of producing energy and risk (variance of cost). The optimization model was 

programed using MATLAB (R2018b) following MPT, using a computer with microprocessor 

AMD E1-1500 APU with RadeonTM HD, 1.48GHz and 4 GB RAM. The analysis of evolution of 

diversity in the Brazilian energy supply structure and its projections is made by calculating the 

entropy indices (Shannon-Weiner Index, Shannon’s Equitability and Herfindahl-Hirschman 

Index) for each portfolio throughout the years. The evolution of these indices indicates how is the 

development of the diversity of the Brazilian energy matrix in terms of diversity of energy 

source. 

 

Keywords: Modern Portfolio Theory (MPT), entropy, energy supply structure, Brazil. 

  



 
 

Resumo 

A Teoria Moderna do Portfólio (MPT) foi desenvolvida pela primeira vez para resolver o 

problema de alocação de investimentos no setor financeiro. Em resumo, a teoria diz que a 

diversificação diminui o risco total da carteira, aconselhando os investidores a não colocar “todos 

os ovos na mesma cesta”. 

Neste Trabalho de Conclusão de Curso, a ideia é aplicar o mesmo conceito no setor de 

energia, tratando cada fonte de energia como um investimento. A hipótese é que se pode criar um 

modelo de otimização para orientar a decisão de quanta energia deve ser produzida por cada fonte 

energética, a fim de diminuir o custo esperado de produção e os riscos associados. 

Nesse sentido, o objetivo do presente trabalho é explorar a composição de portfólios de 

energia no Brasil, isto é: como a eletricidade está distribuída entre fontes no país, tanto em termos 

de geração em si como em termos de capacidade instalada. Para isso, a evolução histórica da 

estrutura de suprimento de energia brasileira e suas projeções para 2027, 2030 e 2050 são 

analisados em termos de diversidade com portfólios eficientes na perspectiva do MPT. 

Para atingir esse objetivo, é proposto um modelo de otimização e seus resultados 

(portfólios eficientes) são utilizados para avaliar as projeções da matriz energética brasileira em 

termos de custo esperado da produção de energia e risco associado (variação de custo). O modelo 

de otimização foi programado com MATLAB (R2018b) seguindo MPT, usufruindo de um 

computador com microprocessador AMD E1-1500 APU com RadeonTM HD, 1.48GHz e 4 GB 

RAM. 

A análise da diversidade da matriz e suas projeções é feita calculando índices de entropia 

(Shannon-Weiner Index, Shannon’s Equitability e Herfindahl-Hirschman Index) de cada 

portfólio. A evolução desses índices indica como está o desenvolvimento da diversidade na 

matriz energética brasileira em termos de diversidade de fonte energética. 

 

Palavras-chave: Teoria Moderna de Portfólio (MPT), entropia, matriz energética, Brasil. 
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1. Introduction 

Under the threat of global climate change international arrangements such as the Paris 

Climate Agreement have taken place highlighting the energy planning relevance. In a broader 

context, stakeholders of different levels have been triggered to review the world’s energy system. 

On one hand, there are the energy producers, who have to choose the amount of investment 

allocated to different projects [1].  On the other hand, there are the governments which can 

expedite the marketplace response to the threats of climate destabilization through regulation, 

limitation over greenhouse gas emissions, subsidies for alternative energy sources or related 

research and development activities. These actors are planning and heavily investing under 

excruciating uncertainty which makes essential the development of effective frameworks and 

tools to analyze the underlying risks, namely: financial, social, technological and environmental 

risks besides the uncertainty associated to production costs and security of supply. 

The aim of the present thesis is to explore the composition of energy portfolios, 

specifically Brazilian electricity generation portfolios and installed capacity through an 

optimization model. It was used both the well established MPT and newly proposed entropy 

indexes.  These tools are applied to analyze the historical and projected Brazilian energy supply 

structure in terms of cost, risk and diversity. The contribution of this work is to better 

understanding about the evolution of the Brazilian supply structure over the past decades and its 

possibilities for the future. 

 

 
[1] This group includes some of the most important oil and gas producers which are surprisingly heavily 

investing in Renewable Energy Sources (RES). Royal Dutch Shell, Equinor and Total, are the companies which most 
distinguishes themselves by investing billions of dollars per year in RES in the last decade. Equinor have even 
changed its name as a commitment towards a future not based on oil exploitation: before it was called Statoil. 
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2. State of the Art 

2.1. Modern Portfolio Theory (MPT) 

The MPT developed by Markowitz (1952), is a well know methodology which aids the 

selection and prioritization of investments focusing on the balance between overall risk and 

return. 

Markowitz (1952) recommends the use of the mean-variance rule both as a hypothesis to 

explain well-established investment behavior as a maxim to guide one's choice of portfolio. The 

mean-variance rule suggests that instead of analyzing only the expected return and ending up 

allocating all budget in a single investment which has provided high historical returns, it would 

be better to make balance between overall portfolio’s return and its associated risk. Thus, the 

model’s objective can be set in two different ways: 

1. To minimize the overall risk given a minimum acceptable level of return or 

2. To maximize expected return given a maximum acceptable level of risk. 

In this work, only the first approach will be shown, since the second can be easily derived 

from the first one. The model (M1) related to the first approach is characterized be a quadratic 

function and is presented below. 

Objective function: 

min 
 ௫

𝑉௉ = ∑ ∑ 𝑥௜ . 𝑥௝ . 𝜎௜௝௝∈ℐ௜∈ℐ   Function 1 

Subject to: 

∑ 𝑥௝ . 𝜇௝௝∈ூ ≥  𝑅௠௜௡  Constraint 1 

∑ 𝑥௝௝∈ூ = 1  Constraint 2 

0 ≤ 𝑥௝ ≤ 𝑢௝         ∀ 𝑗 ∈ 𝐼 Constraint 3 

Where: 

𝜇௝ is the expected return of asset 𝑗 

𝑥௝ is the fraction of the budget allocated to asset 𝑗; 
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𝜎௜௝ is the covariance between returns of assets 𝑖 and 𝑗; 

𝐼 is the set of possible investments; 

𝑅௠௜௡ is the minimum acceptable return; 

𝑢௝  is the maximum acceptable investment on asset 𝑗. 

Constraint 1 guarantees that the expected return is greater than or equal to a defined 

minimum limit (𝑅௠௜௡); Constraint 2 defines that the sum of investments’ fractions is equal to 1 – 

that is, it guarantees that all available capital will be invested; while Constraint 3 prevents short-

selling of investments and limits each one of them to a certain ceiling (𝑢௝). 

For the sake of completeness, follows an exercise adapted from the one proposed by 

Fávero & Belfiore (2013), as an example of the model’s application on finance. This example is 

helpful to present relevant elements of the MPT. In this exercise, ten different stocks were 

analyzed; their name and respective Bovespa’s code follows on Table 1. Their expected return 

and covariances were estimated based on time series concerning their daily return from 

01∕14∕2009 to 01∕13∕2010. These estimates can be found on Table A1 and Table A2 in the Annex. 

Investments were limited to a maximum of 𝑢௝ = 30% and the expected daily return was limited 

to be not smaller than 𝑅௠௜௡ = 0.25%. The resulting allocation of investment can also be found 

on Table 1. The standard deviation of daily returns achieved was 1.660%.  

Table 1 – Stocks' names, Bovespa’s codes and investment allocation. 

Stock Code Allocation (𝑥௝) 

Banco Brasil ON BBAS3 0.2295 

Bradesco PN BBDC4 0.0163 

Eletrobrás PNB ELET6 0.2339 

Gerdau PN GGBR4 0.0033 

Itausa PN ITSA4 0.0042 

Petrobras PN PETR4 0.1206 

Sid Nacional ON CSNA3 0.0049 

Telemar PN TNLP4 0.2194 

Usiminas PNA USIM5 0.1576 

Vale PNA VALE5 0.0102 
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The efficient frontier can be seen in Figure 1. The efficient frontier is defined as the set of 

portfolios that present the best possible return for each level of risk. In order to draw such graph, 

one could vary the level of expected return on the model and save the value of each 

correspondent risk. The minimum risk portfolio is characterized by a risk of 1.560% and return of 

0.1878% (it can be found by the described model without the constraint on expected return). 

Figure 1 – Efficient frontier 

  

 (Source: author's own calculation) 

It is important to highlight the fact that this model already implies diversification in most 

of the cases. For example, one could consider a portfolio where only two alternatives of assets are 

available. Then the portfolio’s variance would be given by Equation (1). 

 

𝑉௣ = 𝑥ଵ
ଶ. 𝜎ଵ

ଶ + 𝑥ଶ
ଶ. 𝜎ଶ

ଶ + 2. 𝑥ଵ. 𝑥ଶ. 𝜎ଵ. 𝜎ଶ. 𝜌ଵଶ (1) 

 

Where: 

 𝑉௣ is the portfolio variance; 

 𝑥௜ is the weight associated to investment 𝑖, with 𝑖 = 1 or 2; 

 𝜎௜ is the standard deviation associated to investment 𝑖, with 𝑖 = 1 or 2; 

𝜌ଵଶ is the correlation coefficient between assets 1 and 2. 
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The correlation coefficient is calculated by Equation 2. 

 

𝜌ଵ,ଶ =  
𝑐𝑜𝑣(𝜇ଵ ∗ 𝜇ଶ)

𝜎ଵ ∗ 𝜎ଶ
   (2) 

 

Where: 

𝜌ଵଶ is the correlation coefficient between assets 1 and 2; 

 𝜇௜ is the return associated to investment 𝑖, with 𝑖 = 1 or 2; 

𝑐𝑜𝑣(𝜇ଵ ∗ 𝜇ଶ) is the covariance between 𝜇ଵ and 𝜇ଶ; 

 𝜎௜ is the standard deviation associated to investment 𝑖, with 𝑖 = 1 or 2. 

. 

By analyzing Equation 1, one can realize that the variance of a portfolio with two different 

assets is not higher than the one of a portfolio consisting of only one investment, since in the first 

case 𝜌ଵଶ < 1, while in the second 𝜌ଵଶ = 1, by definition (covariance between two identical series 

is equal to their variance, which is exactly the denominator value, in this case). Thus, in general, 

the greater the number of investments, the lower the variance of the portfolio's return. 

Moreover, Markowitz (1952) considers that, since the model takes into account the 

covariance between assets, the MPT implies the “right kind” of diversification: not only the 

number of assets suggested is larger, but the assets to be chosen has provided significantly 

disconnected returns overtime. In this work (MARKOWITZ, 1952) he says that: 

[…] in trying to make variance small it is not enough to invest in many securities. It is 

necessary to avoid investing in securities with high covariances among themselves. We 

should diversify across industries because firms in different industries, especially 

industries with different economic characteristics, have lower covariances than firms 

within an industry. 

Though generally MTP suggests a fairly diversified portfolio, one can conceive some 

exceptions. For example, a situation in which one asset has significant larger returns and lower 

variance in comparison with others. In this case, MTP would recommend that all budget should 

be allocated in this distinctive asset, which consists in an extreme case of undiversified portfolio. 
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Besides, the choice of variance as a risk measure can be considered questionable by some: 

it does not meet most of the requirements of coherent risk measures[2] and it is symmetric, 

penalizing equally returns above and below the expected value, although the first one is desirable 

while the second is not.  

Another possible problem is that the historical variances, covariances and returns might 

not well represent their future value. Markowitz (1952) considers that the estimates based on 

historical data should be adjusted according to opinion of specialists, which is a rather subjective 

mean, considering that covariance is not easily (numerically) forecasted by experience. 

  

 
[2] It does not meet with the requirements of monotonicity, translation invariance, positive homogeneity and 

subadditivity. These are not going to be explored here since it falls far beyond the scope of this work. More 

information about variance, its drawbacks and other risk measures can be easily found in the literature. 
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2.2. Application of MPT in Energy Planning 

The MPT was primary developed for the financial sector, nevertheless it is possible to 

amplify the domain of its application by adapting the methodology to cope with different sectors’ 

specificities.  

As a matter of fact, the MPT has already been applied specifically to the energy planning 

problem, being widely studied besides being strongly criticized as it can be seen in the exhaustive 

review of the state of the art developed by deLlano-Paz et al. (2017).  

The application of MPT in energy planning presumes that one could estimate the costs 

and risks associated to each technology (e.g. solar, wind, hydro) and use this information as an 

input of an optimization model to find the best energy matrix in terms of capacity and electricity 

generation by source and by territory. In this specific case, the optimization model is the one 

proposed in MPT, with some required adaptations. 

In this section, the most significant adaptations required to apply MPT in energy planning 

are explained: mainly, how the estimates of risk and cost are calculated. Additionally, an example 

of a complete model is presented by the end of this section, model which will serve as a reference 

in the methodology of this thesis. 
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2.2.1. Portfolio Cost 

To apply the MPT in the Energy Planning problem, the concept of expected return is 

replaced by a measure of expected cost of producing energy. The expected cost of the portfolio is 

given by the sum of the expected costs of each type of technology contained in the portfolio (see 

Equation 3).   

𝐸ൣ𝐶௣൧ = ෍

௧∈்

𝐸[𝐶௧] =  𝐸[𝐶௦௢௟௔௥] + 𝐸ൣ𝐶௛௬ௗ௥௢൧ + ⋯ + 𝐸ൣ𝐶௚௔௦൧ (3) 

Where: 

 𝐸[∙] refers to the calculation of the expected value of a variable; 

𝐶௣ is the cost of the portfolio; 

𝐶௧ is the cost embedded in the technology 𝑡; 

𝑇 is the set of relevant technologies being considered. 

 

The types of technology usually considered are nuclear, coal, natural gas, oil, wind, 

hydro, biomass and solar. It is possible to create subdivisions in these groups, differentiating 

small power plants from large ones, old from new or onshore from offshore. These subdivisions 

are justified by the fact that new/large plants are more efficient than old/small plants, for 

example. Besides, the type of cost which should be considered [3] and the risks associated to each 

subdivision might be different between subdivisions.  

The expected cost of a technology is given by the sum of the expected cost of specific 

aspects for the given technology (see Equation 4). That is, the total cost associated to a source is 

assumed to be composed by supposedly known minor costs. The expected value of these minor 

costs can be estimated by analyzing related data-series, through simulation or estimated by 

experts’ experience. 

𝐸[𝐶௧] = ෍

௖∈𝒞

𝐸ൣ𝐶௧,௖൧ = 𝐸ൣ𝐶௧,ி௨௘௟൧ + 𝐸ൣ𝐶௧,ை&ெ൧ + ⋯ + 𝐸ൣ𝐶௧,஼ைమ
൧             (∀ 𝑡 ∈ 𝑇) (4) 

 
[3] For example, sunk costs should not be taken into account when evaluating old plants since they are 

already sunk. However, when evaluating new plants, sunk costs should indeed be considered, since investors must 
verify if the investment can be recovered with a reasonable margin. 
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Where: 

 𝐸[𝐶௧] is the expected cost of technology 𝑡; 

 𝐶௧,௖ is the cost of the specific aspect 𝑐 related to the technology 𝑡; 

 𝒞 is the set of relevant types of cost being considered (fuel, O&M, CO2 or other costs). 

 

The types of minor costs being considered vary from author to author. deLlano-Paz et al. 

(2014), for example, considers costs related to both production costs and externality costs. Where 

the former includes Fuel Price, Operation and Maintenance (O&M), Investment and 

Complementary costs; the latter includes indirect costs incurred by the society of environment 

(CO2 emission, radioactivity, land use and others). 
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2.2.2. Portfolio Risk 

Originally, the portfolio risk is assessed through the weighted sum of variance and 

covariance values of assets’ returns, where the weights are the fractions of capital allocation into 

each asset. Conversely, when dealing with energy planning, the portfolio risk is given as the 

weighted sum of variances and covariance values of technologies’ cost, where the weights 

represent the fraction of electricity generation (or capacity) of each technology in the portfolio 

(see Equation 5). 

That is, instead of analyzing the covariance values of assets returns one should analyze 

the covariance of assets cost. Besides, the concept of capital allocation is replaced by a sort of 

production allocation (or capacity allocation): the fraction of each technology (𝑥௜) could be 

measured either in terms of capacity or in terms of electricity generated. 

𝜎௣
ଶ = ∑ ∑ 𝑥௜ . 𝑥௝ . 𝜎௜௝௝∈்௜∈்    (5) 

Where: 

 𝜎௣
ଶ is the portfolio risk; 

𝑥௜ is the fraction of the technology 𝑖 in relation to the overall portfolio; 

 𝜎௜௝ is the covariance between costs of technology 𝑖 and 𝑗. 

The variances and covariance values for each technology (𝜎௧
ଶ and 𝜎௜௝ respectively) are 

given by the simple sum of the variances and covariance values of specific aspects, as follows in 

Equation 6 and 7 respectively. A sound explanation of these formulas can be found in the study 

developed by Costa et al. (2017). 

𝜎௧
ଶ = ∑ 𝜎௧,௖

ଶ  ௖∈஼      (∀ 𝑡 ∈ 𝑇)  (6) 

𝜎௜௝ = ∑ 𝜎௜௝
௖

௖∈஼        (∀ 𝑖, 𝑗 ∈ 𝑇)  (7) 

Where: 

 𝜎௧,௖
ଶ  is the variance of costs of type 𝑐 embedded in technology 𝑡 and 

 𝜎௜௝
௖  is the covariance of cost of type 𝑐 between technologies 𝑖 and 𝑗. 
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2.2.3. Example of MPT’s Application 

By aggregating all these adaptations, one way of writing the MPT to solve an Energy 

Planning problem is the given optimization model (M2): 

Objective function: 

min
௫

𝜎௣
ଶ = ∑ ∑ 𝑥௜ . 𝑥௝ . 𝜎௜௝௝∈𝒯௜∈𝒯  =  ∑ ∑ 𝑥௜ . 𝑥௝ . ൫∑ 𝜎௜௝

௖
௖∈𝒞 ൯௝∈𝒯௜∈𝒯    Function 2 

Subject to: 

𝐸ൣ𝐶௣൧ =  ∑ 𝑥௧ . 𝐸[𝐶௧]௧∈𝒯 =  ∑ 𝑥௧ . ൫∑ 𝐸ൣ𝐶௧,௖൧௖∈𝒞 ൯௧∈𝒯 =  𝐶௧௔௥௚௘௧    Constraint 4 

∑௧∈𝒯 𝑥௧ = 1  Constraint 5 

𝑥௧ ≥ 0         (∀ 𝑡 ∈ 𝑇)   Constraint 6 

Where: 

 𝜎௣
ଶ is the portfolio variance; 

𝑥௧ is the fraction of the energy produced by technology 𝑡;4 

𝜎௜௝ is the covariance between costs of technologies 𝑖 and 𝑗; 

 𝒯 is the set of possible energy sources; 

𝒞 is the set of types of costs; 

 𝜎௜௝
௖  is the covariance between specific costs of technologies 𝑖 and 𝑗; 

 𝐸ൣ𝐶௣൧ is the expected portfolio cost; 

𝐸[𝐶௧] is the expected cost of technology 𝑡; 

𝐸ൣ𝐶௧,௖൧ is the expected value of a specific aspect 𝑐 in technology 𝑡; 

𝐶௧௔௥௚௘௧ is a defined target for expected cost. 

Constraint 4 guarantees that the portfolio expected cost is equal to a defined target 

(𝐶௧௔௥௚௘௧); Constraint 5 defines that the sum of energy production fractions is equal to 1 while 

Constraint 6 prevents a sort of short-selling of energy production. 

 
4 𝑥௧, 𝑥௜ and 𝑥௝ mean the same thing. 
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This model (M2) was used by deLlano-Paz et al. (2014). The “Pure Markowitz” scenario 

is replicated in this thesis, using the same model and data of the mentioned authors, in order to 

check the formulation, the meaning of each variable and the procedure of data collection. 

In Annex (see from Table A3 to Table A6) it can be found a table presenting the set of 

possible energy sources, the set of type of costs and the related values of specific cost per type of 

technology. The annex also contains the cost correlation matrixes and cost standard deviation 

matrix. 

The following graph (Figure 2) presents the efficient frontier for the concerning model 

(M2) and data (Table A3 to Table A6). One can notice that, when dealing with Energy Planning, 

the efficient frontier is given by the lower part of the attainable set (instead of the upper part, as 

usually occurs). This happens because the model deals with cost instead of returns.  

Figure 2 – Efficient frontier: Pure Markowitz case 

 

 (Source: Author's own calculations)  
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2.3. MPT’s Advantages and Drawbacks  

According to deLlano-Paz et al. (2017), MPT stands out in comparison to other methods 

due to both its easiness to be put on practice and the fact that it deals explicitly with the trade-off 

risk versus return. The study also concludes that some relevant critiques rely on limitations 

derived from the different nature of the assets being analyzed (financial versus real assets), 

though these can be surpassed with simulation techniques, demand-side models and inclusion of 

different parameters in the optimization model. 

However, one of the main problems in the application of MPT relies on its tricky 

dependence on probabilistic estimates. Stirling (1994) for example, highlights that the 

probabilistic estimates embedded in this methodology tends to be opaque to critical examination, 

vulnerable to error, to unconscious bias or even manipulation. 
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2.4. Diversity Indexes (DI) 

A diversity index is a mathematical measure of elements diversity in a given system. Such 

definition is broad since diversity is a property if any system whose elements may be apportioned 

into categories (STIRLING, 2009).As such, the application of these indexes is well known in 

fields like taxonomy, paleontology, archeology and conservation biology. In the latter field, for 

example, these indexes asses the species diversity in a given community. 

In this work, the attention will be given to Shannon-Wiener Index, Shannon’s Equitability 

and Herfindahl-Hirschman Index (HHI). More information about diversity indexes can be found 

in the work of Chuang & Ma (2013) or Stirling (2009). 

The Shannon-Wiener Index accounts for both abundance and evenness of the element 

present in the concerning system. The abundance, also said as variety, is the number of different 

categories into which a system may be apportioned; the evenness, also said as balance, tells about 

the distribution of elements among categories. All else being equal, the grater the system’s 

variety or balance, the greater the system’s diversity. 

 The Shannon-Wiener Index (𝐻) is calculated as follows in (8): 

𝐻 = − ∑ 𝑝௜ . ln 𝑝௜ ௜∈ூ    (8) 

 Where 𝑝௜ is the proportion of the category 𝑖 in the system (“how many elements in 

relation to the total elements are allocated in this category?”) and 𝐼 is the set of all categories 

available in the system. 

A deriving index, Shannon's Equitability (𝐸ு), express the evenness of a system. It can be 

calculated by dividing the current value of 𝐻 by the maximum value that 𝐻 would assume if the 

system where completely balanced (𝐻௠௔௫). Thus, considering 𝑁 as the total number of categories 

within the system, the index would be (see Equation 9): 

𝐸ு =
ு

ு೘ೌೣ
=  

∑ ௣೔.୪୬ ௣೔೔∈಺  

୪୬ ே
          (0 ≤ 𝐸ு ≤ 1) 

(9) 

Just like the Shannon-Wiener Index, the HHI measures abundance of categories and 

evenness in the distribution of elements among categories. However, the HHI decreases as 

diversity goes up – which can be counter intuitive. In order to avoid confusion, often 
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transformations of HHI that increase with increasing diversity have been used instead. For 

example, the inverse Simpson index (1/λ) and the Gini–Simpson index (1 – λ). In order to 

compare HHI with the Shannon-Weiner Index, one can also use the inverse of 𝐻, maintaining the 

usual behavior of HHI. 

Equation 10 shows how HHI (𝜆) is calculated. It can be interpreted that the index equals 

the probability that two elements randomly taken from the system of interest represent the same 

category. 

𝜆 =  ∑ 𝑝௜
ଶ

௜∈ூ           (0 ≤ 𝜆 ≤ 10,000) (10) 

In this thesis, one example from Beals, Gross & Harrell (2000) is adapted to a more 

generic case in order to illustrate the effects in the Shannon-Weiner Index and Shannon’s 

Equitability when variety or balance changes in a given system. 

Considering four hypothetical systems with 100 elements. The systems are composed of 

5, 10, 20 and 50 categories, respectively. For each system H and EH have been calculated for two 

cases: one in which elements are distributed evenly among the different categories (maximum 

balance), and another in which one category has 90% of the elements, and the remaining 

elements are distributed evenly. Table 2 explains the systems’ composition in each case, while 

results (values for H and EH ) are shown in Figure 3. 

Table 2 – Hypothetical systems and its elements’ distribution for cases 1 and 2 

  Case 1 Case 2 

Total 
elements 

Nº of 
categories 

Nº of elements in each 
categories 

Nº of elements in the 
large category 

Nº of elements in 
other categories 

100 5 20 90 2.5 

// 10 10 90 ~1.11 

// 20 5 90 ~0.52 

// 50 2 90 ~0.20 

    (Source: Author’s own development) 

  



25 
 

Figure 3 – Diversity Indexes for hypothetical systems in cases 1 and 2 

 
 (Sources: Author’s own development) 

For the case in which elements are equally distributed among categories: EH is constant 

and equal to one, as expected; H increases dramatically solely because of the increase in variety. 

Here one can notice that EH is insensible variety, since it is not affected by changes in the number 

of categories in a system. 

For the case in which one category makes up 90% of the system: clearly, for all systems 

EH is lower if compared to the first case because of the decrease in balance. The index becomes 

even smaller as the number of existing categories goes up, as only the remaining 10% of the 

elements are distributed among the remaining categories – the fraction of elements allocated to 

the other categories becomes smaller and the overall inequality increases. H is also lower if 

compared to the first case. It does increase with higher numbers of existing categories, reflecting 

the growth of variety; however, it does it with a significant lower rate than in the first case, 

compensating the reduction on balance. 
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2.5. Disparity 

Until now only two aspects of diversity have been discussed: variety and balance. 

However, according to Stirling (2009), there is a third aspect, which is the most important, yet 

most frequently neglected: disparity between categories. Disparity refers to the manner and 

degree in which categories may be distinguished. That is, it is the bases for establish the criteria 

to aggregate a set of elements into a category. 

The Shannon-Wiener Index does not explicitly consider the disparity within a system. 

However, the first step before calculating the index is to define the existing categories: one must 

cluster the elements which are similar in given aspects.  

 This partition, though, can be quite subjective: one category can be partitioned in several 

subcategories increasing the diversity index without having any justifiable change in the system. 

In order to illustrate how this subjectivity could be problematic Figure 4 was elaborated. It 

illustrates a hypothetical example where the level of precision and sensitivity to differences are 

high when partitioning specific cluster leading to its subdivision into new categories, while 

comparable differences within another cluster are neglected remaining as a single category. Such 

a biased analysis would probably conclude that a system with more elements in the former cluster 

(more subdivided) is more diversified than a system with more elements in the latter cluster (less 

subdivided). 
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Figure 4 – Systems with comparable diversity and biased partitioning choice 

                     

 (Source: author’s own development) 

In this example, although both systems are comparable in terms of diversity, the biased 

method of partitioning the elements into categories would suggest that System 1 has a greater 

diversity in comparison with System 2.  

The disparity can be assessed with less sensitivity to arbitrary conventions by using 

covariances, when suited data are available. An alternative approach is based on a scalar distance 

measure between categories and other measures of diversity which explicitly accounts for 

disparity can be found in the work developed by Stirling (2009).   
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2.6. Diversity Indexes and Energy Planning 

Stirling (2009) recognizes that energy planning depends on a set of unknowable 

information and proposes diversification as a robust response to these forms of uncertainty, 

ambiguity and ignorance. Such diversification has been quantified by measures of entropy. 

Doherty (2005), for example, uses Shannon-Wiener index and concludes that it enriches the 

robustness of the model by decreasing the dependence over the probability estimates. Some 

authors also propose the Shannon-Wiener index to evaluate the energy security5. 

Shannon-Wiener index is not the only one being used: HHI and other dozens of 

alternatives are studied. In fact, Chuang & Ma (2013), for example, review the concept of 

diversification and propose different indexes to give more weight to certain aspects such as the 

dependence on external energy supply (non-indigenous). 

In Energy Planning, one deals with the energetic supply system, where the categories are 

the different type of sources (e.g. type of technology, origin) and the elements are the unit of 

energy produced (e.g. MWh). Therefore, the proportion 𝑝௜  found in Shannon-Wiener Index 

formula (Equation 8) refers to the proportion of energy produced by the type of source 𝑖 in the 

energy system (“how much energy in relation to the total produced comes from this source?”) 

and 𝐼 refers to the set of all types of source available in the system. 

Usually the application of the diversity index is to assess past energy portfolios or 

compare alternative future ones. Chuang & Ma (2013), for example, analyze the evolution of the 

Taiwanese energy supply structure, measuring its diversity through different indexes over time – 

including three new indexes created by themselves. 

The evaluations with Shannon-Wiener Index and HHI developed by Chuang & Ma (2013) 

were replicated in this work, in order to create a better understanding with respect to these 

Indexes and their application in Energy Planning. The data used and calculation can be found in 

 
5 Energy security: an uninterruptible supply of energy, in terms of quantities required to 

meet demand at affordable prices. Europe’s Vulnerability to Energy Crises, World Energy 

Council 2008 
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Table A7 in Annex 1. The graphical representation of the result found by the present author are 

shown in Figure 5 (compare with the one found by Chuang & Ma, in Figure 6). 

  

Figure 5 – Exercise: HHI and Shannon-Weiner Index for the Taiwanese energy supply structure 

 
 (Source: Author's own calculation) 

 

Figure 6 – Comparison of HHI and Shannon-Weiner Index for the Taiwanese energy supply structure 

  
 (CHUANG & MA, 2013)

 

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1/SWI1

HHI1*



30 
 

3. Methodology 

In order to provide an adequate diagnosis of the Brazilian energy supply structure, the 

methodology starts with its historical analysis in terms of technologic composition and diversity, 

offering a review on the system’s evolution until recent years. Then, an evaluation of the 

projections for the matrix in terms of composition and diversity is performed, elucidating how the 

system might change from now on. Projections of electricity generation and capacity were also 

evaluated in terms of cost and risk, allowing the evaluation of the system’s efficiency and 

possibly indicating an estimate for governmental risk aversion level and budget level acceptance. 

Finally, these same projections are compared with efficient portfolios, following the MPT. The 

methodology used to develop this thesis can be seen in Figure 7. 

 

Figure 7 – Methodology 

(Source: Author’s own development) 
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3.1. Historical Analysis of Brazilian Electricity Matrix 

For the historical analysis, it is considered the evolution between 2009 and 2017 of 

the installed capacity and electricity generation by source, all collected from official annual 

reports6. The data is presented in Table A8 and Table A9 in the Annex of this work. 

Electricity generation tells about how much energy is actually produced by a certain 

source; it is typically measured in gigawatt hours (GWh). Installed capacity, on the other 

hand, tells about how much energy could be produced by a certain type of technology (“by 

source”); it is typically measured in gigawatts (GW). 

All these series were analyzed in order to access the evolution of the Brazilian 

energy matrix’s diversity. Firstly, the percentages of each source in the distribution of 

electricity generation and installed capacity were computed. Then, these percentages were 

used to calculate the Shannon-Weiner Index (H), Shannon’s Equitability (𝑬𝑯) and HHI (𝝀) 

for each time period and for each set of data. The output of this procedure consists in a 

collection of series representing the evolution of diversity in terms of energy sources for 

energy generation and installed capacity. Table 3 presents a rapid description of the 

methodology. 

Table 3 – Series to be computed during the Historical Analysis of Brazilian Energy Matrix 

  Output: time-series of territorial and technological diversity 

Data from annual reports Percentages (𝑝௧) Shannon Index (𝐻௧) S. Equitability (𝐸௧) 𝜆௧ 

Evolution of Electricity 
Generation by Source 

𝑝௧
ாீ  𝐻௧

ாீ  𝐸௧
ாீ  𝜆௧

ாீ  

Evolution of Installed 
Capacity by Source 

𝑝௧
ூ஼  𝐻௧

ூ஼  𝐸௧
ூ஼  𝜆௧

ூ஼  

(Source: Author’s own development) 

 

 

 

  

 
6 2014 and 2018 Statistical Yearbook of electricity, developed by the Energy Research Company 

(Empresa de Pesquisa Energética – EPE). 
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3.2. Assessment of Projections for the Brazilian Electricity Matrix  

In order to examine the projections of the Brazilian Energy Matrix, the forecasted 

electricity capacity and generation by source for the years 2020, 2030 and 2040 provided 

by WEO 20167 were evaluated in terms of composition, diversity, risk and cost. Such 

calculation of risk and cost is in accordance to the model proposed by deLlano-Paz (2014), 

based on MPT. The evaluation in terms of technology diversity uses the Shannon-Weiner 

Index (𝑯), Shannon’s Equitability (𝑬𝑯) and HHI (𝝀). Table 4 presents the methodology. 

Table 4 – Methodology of Projections Assessment 

Data Risk-Cost evaluation Technology diversity evaluation 

Source: WEO 2016 Method proposed by de Llano Paz (2014) 𝐻 𝐸ு 𝜆 

Projection of 
electricity 
generation 
by source 

2020 Calculate: 𝐸ൣ𝐶ாீ_ଶ଴൧ 𝜎ாீ_ଶ଴
ଶ  𝐻ாீ_ଶ଴ 𝐸ாீ_ଶ଴ 𝜆ாீ_ଶ଴ 

2030 ∕∕ 𝐸ൣ𝐶ாீ_ଷ଴൧ 𝜎ாீ_ଷ଴
ଶ  𝐻ாீ_ଷ଴ 𝐸ாீ_ଷ଴ 𝜆ாீ_ଷ଴ 

2040 ∕∕ 𝐸ൣ𝐶ாீ_ସ଴൧ 𝜎ாீ_ସ଴
ଶ  𝐻ாீ_ସ଴ 𝐸ாீ_ସ଴ 𝜆ாீ_ସ଴ 

Projection of 
installed 
capacity by 
source 

2020 ∕∕ 𝐸ൣ𝐶ூ஼_ଶ଴൧ 𝜎ூ஼_ଶ଴
ଶ  𝐻ூ஼_ଶ଴ 𝐸ூ஼_ଶ଴ 𝜆ூ஼_ଶ଴ 

2030 ∕∕ 𝐸ൣ𝐶ூ஼_ଷ଴൧ 𝜎ூ஼_ଷ଴
ଶ  𝐻ூ஼_ଷ଴ 𝐸ூ஼_ଷ଴ 𝜆ூ஼_ଷ଴ 

2040 ∕∕ 𝐸ൣ𝐶ூ஼_ସ଴൧ 𝜎ூ஼_ସ଴
ଶ  𝐻ூ஼_ସ଴ 𝐸ூ஼_ସ଴ 𝜆ூ஼_ସ଴ 

(Source: Author’s own development) 

 
7 WEO 2016 can be freely assessed through internet. Its data does not truly reflect Brazilian current 

system, since it refers to the period when Dilma Rousseff was the president of Brazil. Although there is a new 
version of WEO’s annual report (WEO 2018), it is not freely available. Besides, WEO 2018 also does not 
offer projections based on the current government: it refers to the transitional period that has followed ex-
president Dilma’s impeachment. Therefore, in this thesis, WEO 2016 is used as a source, offering an analysis 
of the projections under Dilma’s government. The same methodology could be applied to projections based 
on more recent data, when these projections are made available.   
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The projections for electricity generation and installed capacity by source are presented in Table 

5.  

Table 5 – Projected Electricity Generation and Installed Capacity  

 Generation [TWh]  Capacity [GW] 

  2020 2020 2030 2040 2030 2040 

Total 636,00 170,00 218,00 273,00 835,00 1069,00 

Coal 24,00 5,00 5,00 4,00 22,00 22,00 

Oil 14,00 8,00 7,00 7,00 12,00 12,00 

Gas 55,00 17,00 23,00 33,00 64,00 126,00 

Nuclear 26,00 3,00 4,00 5,00 31,00 39,00 

Hydro 415,00 106,00 128,00 156,00 540,00 648,00 

Bioenergy 48,00 14,00 17,00 19,00 59,00 70,00 

Wind 49,00 14,00 24,00 31,00 88,00 119,00 

Geothermal 0,00 0,00 0,00 0,00 0,00 0,00 

Solar PV 5,00 3,00 10,00 17,00 18,00 30,00 

CSP 0,00 0,00 0,00 1,00 1,00 3,00 

Marine 0,00 0,00 0,00 0,00 0,00 0,00 

(Source: WEO 2016) 

The first step is to calculate ratio between the amount of energy generated by each source 

and the total energy generated in that period (see Equation 11). Then – considering that one has 

estimates for correlation matrixes, mean and standard deviations of associated costs – it is 

possible to calculate estimates for risk and total cost of each projected portfolio total cost in 

Equation 12 and variance in Equation 13. 

𝑥௧,௣ =   𝐺௧,௣ ∕ ∑ 𝐺௧,௣௧∈்   (11) 

𝐸ൣ𝐶௣൧ =  ∑ 𝑥௧,௣. 𝐸[𝐶௧]௧∈் =  ∑ 𝑥௧,௣. ൫∑ 𝐸ൣ𝐶௧,௖൧௖∈஼ ൯௧∈்    (12) 

𝜎௣
ଶ = ∑ ∑ 𝑥௜,௣. 𝑥௝,௣. 𝜎௜௝௝∈்௜∈்  =  ∑ ∑ 𝑥௜,௣. 𝑥௝,௣. ∑ 𝜎௜௝

௖
௖∈஼௝∈்  ௜∈்   (13) 

Where: 

𝑥௧,௣ is the fraction of the electricity generated by technology 𝑡 in the projection 𝑝; 

𝐺௧,௣ is the electricity generated by technology 𝑡 in the projection 𝑝;  

𝐸ൣ𝐶௣൧ is the expected portfolio cost for generating electricity; 
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𝐸[𝐶௧] is the expected cost of electricity production by technology 𝑡; 

𝐸ൣ𝐶௧,௖൧  is the expected cost of a specific aspect 𝑐 of technology 𝑡; 

𝑇 is the set of technologies being considered (solar, wind etc.); 

𝐶  is the set of specific aspects in cost being considered (CO2, O&M etc.); 

𝜎௣
ଶ is the portfolio variance (variance in cost for generating electricity); 

𝜎௜௝ is the covariance between costs of technologies 𝑖 and 𝑗; 

𝜎௜௝
௖  is the covariance between specific costs 𝑐 of technologies 𝑖 and 𝑗; 

 

The same the estimates for correlation matrixes, mean and standard deviations of 

associated costs (𝐸ൣ𝐶௧,௖൧ and 𝜎௜௝
௖ ) applied in the work of deLlano-Paz (2014) are used in this 

thesis (see Annex 1 from Table A3 to Table A6). 

An analogous procedure is performed with the data concerning electricity capacity 

(instead of electricity generation).  The same estimates for the electricity generation problem 

(𝐸ൣ𝐶௧,௖൧ and 𝜎௜௝
௖ ) are used to solve the corresponding model with electricity capacity data. 

To perform this procedure – estimation of risk and cost of projected electricity capacity by 

source – the fractions (𝑥௧,௣) must be measured again. However, now the fractions are measured as 

the ratio between the electricity capacity provided by a technology (𝐾௧,௣) and the total capacity 

provided by the system (see Equation 14). 

𝑥௧,௣ =   𝐾௧,௣ ∕ ∑ 𝐾௧,௣௧∈்   (14) 

Then, by using the same estimates for correlation matrixes, mean and standard deviations 

of associated costs applied previously, it is possible to calculate estimates for risk and total cost 

of each projected portfolio. The equations for cost and risk are the same as in the previous case: 

estimation total cost can variance can be found in Equation 12 and Equation 13, respectively. 
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3.3. Efficient Portfolios 

The WEO (2016) provides six different projections (see Table 6).  

Table 6 - Projections borrowed from WEO 2016 

 Projection of Electricity Generation by source Projection of Installed Capacity by source 

2020 2030 2040 2020 2030 2040 

(Source: Author’s own development) 

For each one of these projections two efficient portfolios were calculated: 

- Portfolio I: same cost but lower level of risk 

- Portfolio II: same level of risk but at a lower cost. 

Thus, in the end there are twelve efficient portfolios: two for each projection from WEO 

(2016). In this way, one can compare each projection with its optimized versions and see what 

would have to change in the energy production to reduce either the cost or the risk (see Figure 8). 

Figure 8 – Optimized portfolios of a projection 

 

 (Source: Author's own development) 

To find such portfolios, the optimization models were written on MATLAB (R2018b) 

following the MPT, using a computer with microprocessor AMD E1-1500 APU with RadeonTM 

HD, 1.48GHz and 4 GB RAM. Like in the historical evaluation, the same correlation matrixes, 
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estimates for mean and standard deviations of total cost from deLlano-Paz (2014) are used here 

(see from Table A3 to Table A6 in the Annex). 

In order to find the first type of portfolio – same cost but lower level of risk –  it was 

applied the same optimization model presented in Section 2.2 (model M2). In the present section 

the model is presented again, modifying only the definition of 𝑥௧, that now depends on whether 

the portfolio is based on electricity capacity or electricity generation data (model M3). 

The objective function is given by Function 3: it is the minimization of portfolio variance. 

The decision variable is 𝑥௧, the fraction of the energy produced (or capacity provided) by 

technology 𝑡.  

Objective function: 

min
௫

∑ ∑ 𝑥௜ . 𝑥௝ . ∑ 𝜎௜௝
௖

௖∈஼௝∈்  ௜∈்     Function 3 

Subject to: 

𝐸ൣ𝐶௣൧ =  ∑ 𝑥௧ . 𝐸[𝐶௧]௧∈் =  ∑ 𝑥௧. ൫∑ 𝐸ൣ𝐶௧,௖൧௖∈஼ ൯௧∈் =  𝐶௧௔௥௚௘௧  Constraint 7 

∑ 𝑥௧௧∈் = 1  Constraint 8 

𝑥௧ ≥ 0         (∀ 𝑡 ∈ 𝑇) Constraint 9 

Where Constraint 7 restraints the budget; Constraint 8 defines that the sum of fractions related to 

electricity production (or capacity provided) by source is equal to 1 and Constraint 9 prevents a 

sort of short-selling of energy production (or capacity provided). 

 Usually, Constraint 7 is relaxed: an inequality is used limiting the expected costs to be not 

greater than a target.  However, since the problem is to find a portfolio with lower risk but at the 

same cost, an equality is used, forcing the expected cost of the portfolio to be equal to a target 

(𝐶௧௔௥௚௘௧). 

 The target (𝐶௧௔௥௚௘௧) changes according to the projection on focus. That is, when looking 

for an optimized version of a projection one must set the target cost as equal to the expected cost 

of this same projection (see Equation 15 and Table 7). 

𝐶௧௔௥௚௘௧ =  𝐸ൣ𝐶௣௥௢௝.൧  (15) 
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Table 7 – Target cost used: expected cost of projected portfolio 

  Projection of Electricity Generation by source Projection of Installed Capacity by source 

 2020 2020 2030 2040 2030 2040 

𝐶௧௔௥௚௘௧ = 𝐸[𝐶ଶ଴ଶ଴
ாீ ] 𝐸[𝐶ଶ଴ଶ଴

ூ஼ ] 𝐸[𝐶ଶ଴ଷ଴
ூ஼ ] 𝐸[𝐶ଶ଴ସ଴

ூ஼ ] 𝐸[𝐶ଶ଴ଷ଴
ாீ ] 𝐸[𝐶ଶ଴ସ଴

ாீ ] 

(Source: Author’s own development) 

To find the second type of portfolio – same level of risk but lower cost – one could try to 

adapt the previous model by simply switching the Constraint 7 and Function 3, transforming the 

objective function into a minimization of portfolio’s expected cost and the constraint into a 

limitation of risk. However, this adaptation would lead to a non-linear constraint since the 

measure of risk used is variance, which is quadratic. In this thesis, such situation is avoided since 

the optimization function used (fmincon) requires the use of linear constraints only. 

 In order to overcome this limitation of fmimcon, another approach of modeling this 

problem was used. Therefore, the optimization function fmincon is maintained and the problem is 

modelled in such a way that all the constraints are linear – the only non-linearity is contained in 

the objective function. 

The approach consists in performing several minimizations of risk varying the limitation 

on budget looking for a portfolio whose minimized risk matches the restriction on risk (with 

some acceptable approximation). This portfolio is close to optimal one. Follows Figure 9 with a 

representation of the mechanism. 

Figure 9 – Optimization procedure to find minimum cost portfolio 

  

 (Source: Author’s own development) 
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4. Results 

4.1. Historical Analysis of Brazilian Electricity Matrix 

4.1.1. Historical Analysis of Brazilian Electricity Generation by Source 

Figure 10 presents how much electricity each source produced in relation to the total 

electricity generated in that year. Conformingly to the procedure described in the methodology, 

the data used to build this figure was taken from Statistical Yearbook of Electricity, from EPE 

(2014, 2018).  In this figure, one can easily notice the importance of hydraulic power plants in 

Brazil, which produces more than 70% electricity. The fluctuations in hydraulic energy 

generation is mainly compensated by natural gas: when hydraulic energy production decreases, 

the consumption of natural gas increases. It is also possible to notice that there is a progressive 

increase in wind energy generation. 

It is important to keep in mind that this figure examines the relative electricity production 

by source, not the absolute: biomass, nuclear, coal and natural gas energy presented a significant 

increase on their production although their relative production may seem unchanged. 

Figure 10 – Electricity Generation by Source (2009-2017)

 

 (Source: Author's own calculation) 
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The following figures (from Figure 11 to Figure 13) show the diversity of electricity 

generation by source from 2009 until 2017. The evolution in terms of diversity is measured again 

through the Shannon-Weiner Index, HHI and Shannon’s Equitability.  

 
Figure 11 – Evolution of electricity generation: 

Shannon-Weiner Index 

 
(Source: Author’s own calculation) 

Figure 12 – Evolution of electricity generation: 
Shannon's Equitability 

 
(Source: Author’s own calculation) 

 

Figure 13 – Evolution of electricity generation by source: HHI 

  
(Source: Author’s own calculation)  

One can notice that the Shannon-Weiner Index and the Shannon’s Equitability vary in the 

same manner in this case. This happens because of the partitioning method used: one cannot see 

exactly how many sources are used to generate energy (see Table A9 in the Annex) since it is not 

possible to assess which sources within the category "Others" are really activated during each 

year. This inadequacy in the nomenclature limits the interpretation of Shannon’s Equitability: the 

equitability counts only the more prominent categories. 

The Shannon-Weiner Index and HHI provide comparable results: diversity in term of 

energy generation by source steadily improves, with two exceptions: the years 2010-2011 and 

2015-2016. Looking at Figure 10, one realizes that during these two periods the relative 

electricity production by Hydraulic Power Plants increased (major source of energy), 
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compensated by a decrease in natural gas electricity generation. The general improvement in the 

diversity is due to the growth of electricity production by wind, biomass, natural gas and coal 

energy.  

 

4.1.2. Historical Analysis of Brazilian Installed Capacity by Source 

Figure 14 presents how much capacity each source has in relation to the total capacity 

available during each year. Again, the data used to build this figure was taken from 2014 and 

2018 Statistical Yearbook of Electricity. It is possible to note that hydropower plants provide the 

larger share of the installed capacity throughout the years, followed by thermoelectric plants. The 

slight decrease in the relative importance of hydropower plants is mainly due to an increase in the 

installed capacity of wind power plants. Nuclear and solar power plants play a marginal role, 

offering less than 2% of the total installed capacity (each).  

Figure 14 – Installed Capacity by Source (2009-2017)

 

 (Source: Author's own calculation)  

The following figures (from Figure 15 to Figure 17) show the evolution of installed 

capacity by source from 2009 until 2017. The evolution is in terms of diversity, measured by the 

Shannon-Weiner Index, HHI and Shannon’s Equitability.  
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Figure 15 – Evolution of installed capacity: Shannon-
Weiner Index 

 
 (Source: Author’s own calculation) 

Figure 16 – Evolution of installed capacity: Shannon's 
Equitability 

 
 (Source: Author’s own calculation) 

 
 

Figure 17 – Evolution of installed capacity: HHI 

  
 (Source: Author’s own calculation) 
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which diversity increases. Conversely, Shannon’s Equitability shows a significant decrease 
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4.2. Assessment of Projections for the Brazilian Electricity Matrix  

4.2.1. Projected Electricity Generation by Source 

Figure 18 presents how much electricity each source produced or is expected to produce 

in relation to the total electricity generated in that year. The figure includes the historical analysis 

already presented in Figure 10 (concerning the period 2009-2017) complemented by the 

projections for 2020, 2030 and 2040 (taken from WEO 2106). The percentages of each source 

can be found in Table A10 in the Annex. In order to complement the graph, years between 

projections and years between 2017 and 2020 received interpolated values – simply a linear 

interpolation between the values from the last year with data and the next projection. 

Figure 18 – Projected Electricity Generation by Source 

 

 (Source: Author's own calculation) 

 The most notable changes that the projections show in relation to the past are: 

I. Reduction of relative importance of natural gas electricity production, followed by its 
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III. Reduction of relative importance of petroleum derivatives, coal and biomass for 

generating electricity (-48%, -25% and -22% from 2017 to 2040);  

IV. Increase of relative importance of nuclear, wind and other alternative sources of energy 

(36%, 54% and 10% from 2017 to 2040). 

Although the dimension of growth and reduction shown in point III and IV seem to be 

expressive, in Figure 18 they are almost null, given the huge relative importance of hydroelectric 

energy in the Brazilian energy matrix.  

Another interesting point to be noticed is that there is a jump between 2017 and 2020, 

with drastic changes in the relative production of nuclear, coal and natural gas energy. This is 

because the 2020 projection was calculated in 2016, and as time goes by the difference between 

projection and reality materializes so that the projection seems to be unreachable. This is not to 

say that the projection is bad, it is just inaccurate as most of projections. In reality, situations 

where projections really predict what will happen in the future are rather rare. 

In addition, it can be noted that the 2020 projection differs slightly from the rest of the 

projections (mainly for coal, nuclear and “others”). That is, aside from the fact that this projection 

is a bit old, it seems to be inconsistent with the other projections. It seems that to get to the 2040 

scenario, one would not have to go through the 2020 scenario. In fact, if 2020 projection data 

were not included in the Figure 18, the transition from 2017 to 2030 or 2040 would be much 

smoother. And this would happen not only because of the temporal distance between 2017 and 

2030 (or 2040) but also because of the similarity between the percentages of electricity 

generation of each source, which are similar in those years. 

This dissonance also does not necessarily indicate a projection error. In fact, the possible 

effects of an uneven transition can explain it: the development of various sources could be 

planned for the long term but nuclear sources and coal plants could be prioritized by 2020. This 

would increase the relative importance of these sources in the short term, which in the future 

could diminish and even lower than 2017, with the development of other energy sources. 
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After the examination of the portfolios composition, the projections were evaluates in 

terms of efficiency, to estimate how much cost efficient and risky each projected portfolio is8.  

 It is important to highlight the fact that, in order to simplify the problem the formulae 

used in this work to calculate cost and risk contain a reduced number of variables. Part of this 

simplification is based on the assumption that estimates do not need vary over time. That is, the 

same estimates are used to analyze all the projections over time – independently if a projection is 

for 2020, 2030 or 2040 – instead of using estimates specifically drafted to each period. It would 

be sensible to use specific estimates to each projection since the power plants’ efficiency is 

expected to increase over time because of either learning economies (in case of old plants) or 

technological improvements (in case of new plants). By improving efficiency, it is expected a 

reduction in both risk and cost. Consequently, the results found in this thesis increasingly 

overestimate the cost and risk portfolios as they become more distant in the time horizon (see 

Figure 19). 

Figure 19 – Growing overestimation of cost and risk for portfolios 

  
 (Source: author's own development) 

Besides, the methodology used in this work does not consider any type of distinction 

within technologies. This choice probably underestimates the differences in risk and cost 

associated to individual plants within the same category. For example, it is assumed that all solar 

power plants have the same cost and risk when it is known that they might differ quite a lot. Of 
 

8 As described in the methodology, the result found in Table 8 and Figure 20 are the result of calculations 
based on data provided by WEO 2016 (the percentage of each source) and data provided by deLlano-Paz (2014) 
(expected cost, variances and covariance matrixes). 
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course, it is expected that some underestimated values compensate some overestimated ones. 

However, it would be better to model the problem considering the data of each individual plant.  

Evidently, all these simplifications were applied since the estimates needed (𝐸ൣ𝐶௧,௖൧ and 

𝜎௜௝
௖ ) cannot be easily found: the problem can only be solved within a reasonable time and budget 

if some information is marginalized; the price for this choice is some imprecision and limited 

interpretation. 

Table 8 and Figure 20 show the result of this evaluation, presenting how projected 

electricity generation behave with respect to their risk and cost. 

Table 8 – Risk and cost of projected portfolios: electricity generation 

  2020 2030 2040 

Cost [Euro∕MWh] 50.0708 52.0630 52.7836 

Risk [Euro∕MWh] 6.9530 6.8833 6.5446 

(Source: Author’s own development) 

Figure 20 – Risk vs. cost of projected portfolios: electricity generation 

  

 (Source: Author's own calculation) 

The first thing to note is that projections are not efficient portfolios: no projection is an 

efficient border point, and, seemingly, it is not close to the border. The apparent trend observed is 

a slight decrease in portfolio risk accompanied by a minor increase in portfolio cost.  This trend, 

however, might be only an effect of the overestimation of future costs and risks, as previously 
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explained (see Figure 21). That is, since the projections are quite close to each other in the risk 

versus cost frame, if the effects of economies of learning and use of new technologies were 

considered, the observed trend possibly would indicate an approximation to the efficient frontier.  

Figure 21 – Effect of overestimation of cost and risk in future  portfolios 

 
(Source: Author's own development) 

The acceptable budget is approximately 50 euros/MWh and the risk acceptance level is 

equivalent to a standard deviation of approximately 7 euros/MWh. 

Figure 22 to Figure 24 show the diversity in the projected portfolios for 2020, 2030 and 

2040. The portfolios project electricity generated by each source. The evolution in terms of 

diversity is measured again through the Shannon-Weiner Index, HHI and Shannon’s Equitability. 

These figures contain also an interpolation for those years without projection – years between 

2017-2020, 2020-2030 and 2030-2040. 
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Figure 22 – Projected electricity generation: Shannon-
Weiner Index 

 
 (Source: Author's own calculation) 

Figure 23 – Projected electricity generation: Shannon’s 
Equitability 

 
 (Source: Author's own calculation) 

 
 

Figure 24 – Projected of electricity generation: HHI 

  
 (Source: Author's own calculation)

 

Projections indicate a stabilization of matrix diversity, in contrast to the significant growth 

in diversity observed since 2009. Between 2017 and 2020, even a slight decrease in diversity is 

projected - explained by the rise in relative importance of hydropower in the period (from 63.1 to 

65.25% of the electricity generated). From 2020 to 2040, diversity increases again, slightly 

surpassing the level of diversity observed in 2017. 

The Shannon’s Equitability has the same shape as the Shannon-Weiner Index. This is 

because all categories are "activated" from the beginning. One should notice that one of the 

categories is “Other” which includes more than one energy source and acts as a sort of “black 

box”: we do not know what happens within that category. That is, the electricity generated by this 

category may come from one or several energy sources. This difference, hidden within this 

category, would impact Shannon-Weiner Index, Shannon’s Equitability and HHI if it was 

explicit. 
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It is important to note that this does not invalidate the indices that have been calculated in 

this work, rather it limits its interpretation. That is, one must remember when analyzing this data 

that only the most expressive categories were explicitly considered – conversely categories 

representing less than 0.3% of the electricity generated were included in the category named 

“Other”. 

 

4.2.2. Projected Installed Capacity by Source 

Figure 25 presents how much capacity was installed or was expected to be installed for 

each source in relation to the total available capacity in that year. The figure includes the 

historical data already presented in Figure 14 (contemplating the years 2009-2017) 

complemented by the projections for 2020, 2030 and 2040 (taken from WEO 2016). The 

percentages of each source can be found in Table A11 in the Annex. In order to complement the 

graph, years between projections and the years between 2017 and 2020 received interpolated 

values. 

Figure 25 – Projected Installed Capacity by Source 

 
 (Author's own calculation) 
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1) The installed capacity graph has smoother transitions between projections compared 

to the electricity generation graph (Figure 18). 

2) There is a small decrease in the importance of hydropower and thermoelectric power 

(decreased by 10% and 13% respectively, compared to 2017 percentages); 

3) The relative importance of nuclear, wind and solar energy is projected to increase until 

2040 (by 45, 45 and 946% if compared to 2017 percentages). 

 

Here, once again, it can be seen that, although the growth mentioned in item 3 is 

significant, when it is calculated based on the initial values of 2017, in the graph these changes 

are almost insignificant, given the weight of hydropower in matrix. 

Projections for installed capacity go in the same direction as projections for electricity 

generation. Both of them point out to a slight decrease in the importance of hydropower and 

thermoelectric energy (derived from petroleum, coal, biomass and natural gas) and indicate an 

increase in the importance of wind, solar and nuclear energy. 

After the examination of the portfolios composition, the projected installed capacity was 

evaluated in terms of efficiency. It is important to highlight the fact that, in order to perform this 

evaluation, a number of simplifications were used, limiting the results’ interpretation/precision. 

For example, the same values of 𝐸ൣ𝐶௧,௖൧ and 𝜎௜௝
௖  are used for both electricity generation and 

installed capacity9, which is an enormous simplification: it is not known how much costs and 

risks differ when comparing capacity and generation, therefore, by assuming that they simply are 

the same, there is the possibility that quite significant divergences are being neglected. 

Consequently, the procedure provides only a rough estimation of how the risk and cost 

may evolve between projections, purely giving an idea on whether the risks or cost associated 

may increase or decrease over time. Clearly, the results found by analyzing the electricity 

capacity are far less precise than the ones found by analyzing the electricity generation. However, 

it may be useful to compare the behavior of risk and cost of both analyses to see if the results 

corroborate or, maybe, strongly contradict each other. 

 

 
9 One possible interpretation of the outcomes originated by this analysis is the cost and risk associated to the 

matrix if all installed capacity were being used to generate electricity. 
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 Table 9 and Figure 26 show the outcomes of this analysis: how projected installed 

capacity behave in relation to portfolio risk and cost under the models’ perspective.  

Table 9 – Risk vs. Cost of projected portfolios: installed capacity 

  2020 2030 2040 

Cost [Euro/?] 44.2414 49.0320 51.6833 

Risk [Euro/?] 6.6351 6.2985 6.1879 

(Source: Author’s own development) 

 

Figure 26 – Risk vs. cost of projected portfolios: installed capacity 

  

 (Source: Author's own calculation) 

Again, none of the projections is an efficient portfolio. In fact, the projection for 2020 is 

closer to the efficient frontier and the apparent trend is to move away from the frontier over the 

years (2020-2040). This trend translates into a small drop in portfolio risk accompanied by a 

significant escalation in portfolio cost. Again, one must remember that risk and cost might be 

more overestimated for portfolios that are more distant in the time horizon. In this sense, this 

apparent trend might be only an effect of the learning effect’s and technology improvements’ 

disregard. In this case, however, the portfolios are more distant to each other; therefore, it would 

be unlikely to observe an opposite trend (approximation of the efficient frontier) purely due to 

learning effects/technology improvements. 



51 
 

 

The apparent acceptable budget is up to 52 euros/MWh by 2040 and the risk acceptance 

level is equivalent to a standard deviation of 6 to 7 euros/MWh. 

The following figure (from Figure 27 to Figure 29) show the diversity in the projected 

portfolios for 2020, 2030 and 2040, where the portfolios project installed capacity for each 

source. Note that the limitation in interpreting the results seen in the previous analysis is not 

applicable in this evaluation. 

 

Figure 27 – Projection of installed capacity: Shannon-
Weiner Index 

 
 (Source: Author's own calculation) 

Figure 28 – Projection of installed capacity: Shannon’s 
Equitability 

 
 (Source: Author's own calculation) 

 
 

Figure 29 – Projection of installed capacity: HHI 

  
 (Source: Author's own calculation) 

 

One can see that the increase in diversity was more rapid between 2009 and 2017. That is, 

projections point to a slower increase in the level of diversity by 2040. 

Another interesting point to be analyzed is the first value of the Shannon’s equitability. 

This index begins the observation period at a medium-low level and drops sharply the following 

year. This probably happened because in the year of the fall (2010) there was the first non-zero 

value of installed capacity for solar energy.  
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4.3. Efficient Portfolios 

4.3.1. Efficient Portfolios for Electricity Generation 

Table 10 presents the efficient portfolios that are equivalent to the projected portfolios of 

electricity generation by source. The table also contains information about the overall cost and 

return of the portfolio. 

Table 10 – Efficient portfolios for electricity generation  

 
 

Cost Minimization Risk Minimization 

 2020 2030 2040 2020 2030 2040 

Cost 40.51 40.54 40.70 50.07 52.06 52.78 

Risk 6.95 6.88 6.54 2.78 2.66 2.62 

Nuclear 0,00% 0,00% 0,00% 7,39% 7,44% 7,38% 

Coal 0,00% 0,00% 0,00% 7,25% 7,27% 7,20% 

Coal (CCS) 0,00% 0,00% 0,00% 1,71% 3,01% 3,28% 

Natural gas. 52,13% 51,70% 49,37% 14,19% 12,75% 12,26% 

Nat. gas (CCS) 0,00% 0,00% 0,00% 3,59% 4,02% 4,07% 

Oil 0,00% 0,00% 0,00% 0,00% 0,27% 0,65% 

On-shore wind 0,00% 0,00% 0,00% 9,30% 9,73% 9,85% 

Large hydro 36,67% 36,21% 33,76% 4,60% 4,19% 4,07% 

Small hydro 11,19% 12,09% 16,87% 46,33% 43,29% 42,42% 

Off-shore wind 0,00% 0,00% 0,00% 4,21% 5,48% 5,84% 

Biomass 0,00% 0,00% 0,00% 1,45% 2,56% 2,97% 

Solar PV 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

(Source: Author's own calculation) 

The following figures (Figure 30 and Figure 31) illustrate the distribution of energy 

generation between sources contained in Table 10, in addition to the historical data already 

presented in Figure 10 (from 2009 to 2017). These two figures should be compared to Figure 18 

in order to understand how different the efficient portfolios are in relation to the projected 

portfolios.  
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Figure 30 – Electricity Generation by Source: Cost Minimization 

 
 (Source: Author's own calculation) 

 

Figure 31 – Electricity Generation by Source: Risk Minimization 

 
(Source: Author's own calculation) 
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 The first thing one can notice in this result is that minimum-cost portfolios have an 

extremely reduced number of sources generating electricity. This indicates that, although 

diversification might be important to achieve efficient portfolios, in theory, there is the possibility 

to have an efficient portfolio extremely undiversified if the focus is on cost minimization rather 

than risk minimization. However, the “efficiency” of this portfolio might not be applicable in the 

real world: it is quite unimaginable to consider a country as big as Brazil depending on only two 

different sources of energy to generate electricity. Probably the energy security would be hugely 

diminished: any problem with the level of water in the reservoirs would considerably escalate 

costs of electricity production. Besides, probably the amount of natural gas required would not be 

completely internally acquired, generating a dependence on exportation and vulnerability to its 

costs fluctuations. 

On the other hand, minimum-risk portfolios suggest the generation of electricity by a 

larger number of different sources. Further, they suggest a more significant reduction of the 

hydraulic generation’s importance over the next decades, which also improves the system 

diversity. This result is quite intuitive, considering the expected influence of diversity on 

portfolio risk. 

 One interesting similarity observed is that both models (minimization of risk or cost) still 

suggests hydro energy as one of the main source for electricity generation. It is true that all 

portfolios consistently suggest a decrease of this importance, however none of them suggest a 

level lower than 46%. Another point in common between the optimal portfolios is the importance 

given to natural gas: both models indicate that this source of energy should prioritized, together 

with hydro energy. This similarity might indicate that these sources have a great balance of cost 

efficiency and risk in comparison to the other sources. 

Differently from the minimum-cost portfolios, sources based on wind, nuclear and coal 

energy also have significant importance on minimum-risk portfolios. This result suggests that 

these sources might be relatively more expensive than the others, but including them on the 

portfolio might reduce the overall risk in producing electricity. 

Figure 32 shows how these portfolios are arranged along the efficient frontier. Note that 

in order to minimize the portfolios’ risk it is necessary to change the portfolios’ composition – in 

a relatively small variation, if we consider the historical changes that had already taken place in 

the matrix – so that the estimated production risk falls around 4 euros/MWh (a reduction of 
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approximately 57%). On the other hand, to minimize the portfolios’ cost, it is necessary a quite 

drastic change in the matrix (possibly an unfeasible one) so that the estimated production costs 

falls around 10 euros/MWh (a reduction of approximately 20%). 

Figure 32 – Efficient Portfolios for Electricity Generation 

  

 (Source: Author's own calculation) 

 After assessing the efficient portfolios’ composition, cost and risk, the efficient portfolios’ 

diversity was evaluates. The following figures (from Figure 33 to Figure 35) show how diversity 

would vary in a scenario where efficient portfolios materialized rather than projected portfolios. 

It is important to note that the calculated efficient portfolios refer to the years 2020, 2030 and 

2040 only: from 2009 to 2017, the historical series is repeated in the charts for comparison 

purposes. The darker line in the figures shows the diversity in projected portfolios (inefficient 

ones) to understand whether efficient portfolios show greater or less diversity than the projected 

ones (and how large is this difference). 

 



56 
 

 

Figure 33 – Comparison of efficient portfolios and 
projections for electricity generation: Shannon Index 

 
(Source: Author's own calculation) 

Figure 34 – Comparison of efficient portfolios and 
projections for electricity generation: S. Equitability 

 
(Source: Author's own calculation)

 

Figure 35 – Comparison of efficient portfolios and 
projections for electricity generation: HHI  

 
(Source: Author's own calculation)
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between sources, their Shannon’s Equitability is larger than the projected portfolios’ ones.  
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generating electricity – which also goes against the idea of maximizing diversity index. 

Therefore, minimization of risk using MPT does not implicates maximization of diversity. 

 

4.3.2. Efficient Portfolios for Installed Capacity 

Table 11 presents the efficient portfolios which are equivalent to the projected portfolios 

of installed capacity by source. The table also contains information about the overall cost and 

return of the efficient portfolios. Figure 37 and Figure 36 illustrate the distribution of installed 

capacity between sources contained in Table 11, in addition to the historical data already 

presented in Figure 14 (from 2009 to 2017). These two figures should be compared to Figure 25 

in order to understand how different the efficient portfolios are in relation to the projected 

portfolios.  

Table 11 – Efficient portfolios for projections concerning installed capacity  

 
 

Cost Minimization Risk Minimization 

 2020 2030 2040 2020 2030 2040 

Cost 40.51 40.54 40.70 50.07 52.06 52.78 

Risk 6.95 6.88 6.54 2.78 2.66 2.62 

Nuclear 0,00% 0,00% 0,00% 4,55% 7,33% 7,46% 

Coal 0,00% 0,00% 0,00% 5,25% 7,20% 7,30% 

Coal (CCS) 0,00% 0,00% 0,00% 0,00% 0,93% 2,86% 

Natural gas. 49,95% 47,63% 46,90% 20,97% 14,95% 13,01% 

Nat. gas (CCS) 0,00% 0,00% 0,00% 0,00% 3,31% 3,99% 

Oil 0,00% 0,00% 0,00% 0,00% 0,00% 0,07% 

On-shore wind 0,00% 0,00% 0,00% 2,69% 9,05% 9,67% 

Large hydro 34,37% 31,91% 31,15% 6,85% 4,83% 4,25% 

Small hydro 15,68% 20,46% 21,95% 59,70% 48,03% 43,75% 

Off-shore wind 0,00% 0,00% 0,00% 0,00% 3,50% 5,29% 

Biomass 0,00% 0,00% 0,00% 0,00% 0,88% 2,34% 

Solar PV 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

 (Source: Author's own calculation). 
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Figure 36 – Installed Capacity by Source: Cost Minimization 

 
 (Source: Author's own development) 

 

Figure 37 – Installed Capacity by Source: Risk Minimization 

 
 (Source: Author's own development) 
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As previously discussed, the discussion of the results found in this section (“4.3.2 

Efficient Portfolios for Installed Capacity”) is highly limited, since the severity of the 

simplification used. A possible interpretation is that the optimal portfolios found here indicate the 

optimal installed capacity distribution in a scenario where the maximum capacity is used. 

Clearly, the results for installed capacity go in the same direction of the results for 

electricity generation. This is not a surprise since both problems (electricity generation and 

installed capacity) used the same covariance matrixes and the same values of expected costs. The 

only input that changed from one model to the other was the allocation of projected portfolios 

(𝑥௧,௣), however even this input does not vary much numerically. 

The following figure (Figure 36) shows where these optimal portfolios are positioned in 

the efficient frontier. 

 

Figure 36 – Efficient Portfolios for Installed Capacity 

 

 (Source Authors own calculation) 

 

 The following figures (from Figure 37 to Figure 39) show how diversity would vary in a 

scenario where efficient portfolios materialized rather than projections. Again, the calculated 

efficient portfolios refer to the years 2020, 2030 and 2040 only: from 2009 to 2017, the historical 

series is repeated in the charts for comparison purposes.  
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Figure 37 – Comparison of efficient portfolios and 
projections for electricity generation: Shannon Index 

 
(Source: Author's own calculation) 

Figure 38 – Comparison of efficient portfolios and 
projections for electricity generation: S. Equitability 

 
(Source: Author's own calculation)

 

Figure 39 – Comparison of efficient portfolios and 
projections for electricity generation: HHI  

 
(Source: Author's own calculation)

When analyzing the diversity of efficient portfolios for installed capacity, one can notice 

that the results also are similar to the ones observed when analyzing the diversity of efficient 

portfolios for electricity generation. That is, the minimum-cost portfolios generally is 

accompanied by worsened diversity indexes, while minimum-risk portfolio is accompanied by 

ameliorated diversity indexes. However, for installed capacity there are two more exceptions 

(besides the Shannon’s equitability of minimum-cost portfolios, which was already discussed): 

the Shannon-Weiner index and HHI for the 2020 efficient portfolio.  This efficient portfolio, 

specifically, suggests and increase of installed capacity of hydropower plants, which is already 

dominant in the matrix, diminishing diversity in the system.  
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5. Conclusion 

Clearly, the results reaffirmed the historical importance of hydropower plants and 

thermoelectric plants for the matrix. Further, it concluded that the slight decrease in the relative 

importance of hydropower plants throughout the recent years is mainly due to an increase in the 

installed capacity and electricity generation by wind power plants. Nuclear and solar power 

plants still play a marginal role, offering less than 2% of the total installed capacity (each).   

Historically, diversity in installed capacity has consistently improved with small changes 

in the rate at which indexes changed. Energy generation’s diversity has also presented a quite 

consistent improvement, with only two exceptions (2010-2011 and 2015-2016). The general 

improvement in the diversity is mainly due to the growth of electricity production by wind, 

biomass, natural gas and coal energy. 

Projections for electricity generation and for installed capacity go in the same behavior: 

both point out to a slight decrease in the importance of hydropower and thermoelectric energy 

and indicate an increase in the importance of wind, solar and nuclear energy. The results indicate 

none of the projections is an efficient portfolio. Besides, by analyzing diversity index, projections 

indicate either a stabilization of matrix diversity (electricity generation) or a slower increase in 

the level of diversity (installed capacity), in contrast to the significant growth in diversity 

observed from 2009 to 2017.  

When analyzing the efficient portfolios, it was concluded that minimum-risk portfolios 

suggest a more feasible scenario than minimum-cost portfolios, since the diversity offered by the 

latter is extremely low. Minimum-risk portfolios suggest a high importance to hydraulic, natural 

gas energy, wind, nuclear and coal electricity generation; in contrast, biomass, petroleum 

products and other sources of energy have low or zero importance. 

Lastly, it was concluded that increasing portfolio efficiency by MPT is not always 

accompanied by an improvement in portfolio diversity: in this model, risk minimization might 

lead to diversity improvement, while cost minimization leads to quite drastic diversity 

detractions. Besides, although the diversity index has been enhanced in the minimum-risk 

portfolios, it clearly is not the optimal diversity condition. Meaning that, in this model, 

minimization of risk does not necessarily implicates in maximization of diversity. 
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6. Suggestions for Future Works 

As a proposal for future works, it is suggested: 

1) The construction of a model following MPT with data specifically tailored to Brazil 

(expected cost data and covariance matrix), building an efficient frontier which fits better to the 

country’s possibilities; 

2) Use specific estimates for the period of each portfolio, considering the effects of 

learning economies and technology evolution, making the projections for 2030 and 2040 more 

accurate; 

3) Use specific estimates to calculate installed capacity optimization, instead of applying 

the same estimates used for electricity generation; 

4) Use more recent projections, calculated more recently; 

5) Consider the real possibilities of expansion of each source, in order to avoid that the 

model suggestion exceeds a limit imposed by the local geography; 

6) Lastly, verify how the electricity distribution networks, the demand side and the extent 

of power of each stakeholder fit into this effort to optimize the choice of matrix. 
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Annex 

Table A1 – Estimates of expected daily return and risk   

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

𝜇
௝
 3,94262E-03 2,59873E-03 1,16624E-03 3,57215E-03 2,55063E-03 2,28059E-03 3,25907E-03 1,91055E-03 3,31055E-03 2,89873E-03 

𝜎௝  2,50601E-02 2,19063E-02 1,94651E-02 2,95035E-02 2,43129E-02 2,00720E-02 2,63274E-02 2,15657E-02 2,67730E-02 2,48598E-02 

(Source: Authors' own calculation) 

 

Table A2 – Estimate of covariance matrix  

 X1 X2 x3 x4 x5 x6 x7 x8 x9 x10 

x1 6,28007E-04 3,88092E-04 1,70805E-04 4,45088E-04 4,14598E-04 3,16584E-04 4,09129E-04 2,34718E-04 3,11113E-04 3,64700E-04 

x2 3,88092E-04 4,79885E-04 1,92923E-04 4,41810E-04 4,64833E-04 3,24722E-04 3,87803E-04 2,22322E-04 3,18211E-04 3,72084E-04 

x3 1,70805E-04 1,92923E-04 3,78892E-04 2,70694E-04 2,26893E-04 1,46174E-04 2,24935E-04 1,47576E-04 1,76554E-04 1,86610E-04 

x4 4,45088E-04 4,41810E-04 2,70694E-04 8,70457E-04 4,60847E-04 4,31390E-04 6,27634E-04 2,75395E-04 5,21204E-04 5,66950E-04 

x5 4,14598E-04 4,64833E-04 2,26893E-04 4,60847E-04 5,91115E-04 3,52595E-04 4,24195E-04 2,64804E-04 3,50495E-04 4,22760E-04 

x6 3,16584E-04 3,24722E-04 1,46174E-04 4,31390E-04 3,52595E-04 4,02885E-04 3,95311E-04 2,03793E-04 3,16620E-04 3,89222E-04 

x7 4,09129E-04 3,87803E-04 2,24935E-04 6,27634E-04 4,24195E-04 3,95311E-04 6,93130E-04 2,43416E-04 5,13592E-04 5,05323E-04 

x8 2,34718E-04 2,22322E-04 1,47576E-04 2,75395E-04 2,64804E-04 2,03793E-04 2,43416E-04 4,65078E-04 1,40432E-04 2,39989E-04 

x9 3,11113E-04 3,18211E-04 1,76554E-04 5,21204E-04 3,50495E-04 3,16620E-04 5,13592E-04 1,40432E-04 7,16795E-04 4,09241E-04 

x10 3,64700E-04 3,72084E-04 1,86610E-04 5,66950E-04 4,22760E-04 3,89222E-04 5,05323E-04 2,39989E-04 4,09241E-04 6,18008E-04 

(Source: Authors’ own calculation) 
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Table A3 Costs by technology [€∕MWh]  

 Possible energy sources (𝑇) 
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Investment 9.17 8.24 14.42 9.89 20.67 23.58 26.67 26.63 29.96 28.57 20.44 170.21 

O&M 10.24 9.89 21.63 9.89 20.67 16.27 22.00 11.98 12.98 33.21 9.20 29.79 

Fuel 7.48 15.75 20.79 10.11 11.78 39.66 0.00 0.00 0.00 0.00 66.93 0.00 

Complement. 3.15 N/A 19.07 N/A 9.25 N/A 12.03 N/A N/A 12.03 N/A 12.03 

CO2 N/A 18.35 2.52 8.90 1.22 13.66 N/A N/A N/A N/A 0.05 N/A 

SO2 N/A 0.58 0.17 0.07 0.08 0.44 N/A N/A N/A N/A 1.20 N/A 

NOx N/A 1.51 1.44 2.11 2.35 1.13 N/A N/A N/A N/A 3.30 N/A 

PM N/A 0.27 0.22 0.03 0.03 0.20 N/A N/A N/A N/A 5.46 N/A 

Radioactivity 4.16 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Land use N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3.43 N/A 

Accident plant 23.00 0.06 0.06 0.09 0.09 N/A N/A N/A N/A N/A N/A N/A 

Total cost by tech. 57,2 54,7 80,3 41,1 66,2 94,9 61,7 38,8 43,3 74,9 109,5 212,6 
(DELLANO-PAZ et al, 2014) 

Table A4 Standard deviation by technology [€∕MWh]  

  Possible energy sources (𝑇) 
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Investment 2.11 1.90 3.32 1.48 3.10 5.42 1.33 10.12 3.00 2.86 4.09 8.51 
O&M 0.56 0.53 1.17 1.04 2.17 3.94 1.76 1.83 1.99 2.66 0.99 1.01 
Fuel 1.80 2.20 2.91 1.92 2.24 9.92 N/A N/A N/A N/A 12.05 0.00 
Complement. 0.29 N/A 5.00 N/A 5.00 N/A 6.07 N/A N/A 6.07 N/A 6.07 
CO2 N/A 4.77 0.66 2.31 0.32 3.55 N/A N/A N/A N/A 0.01 N/A 
SO2 N/A 3.13 3.13 3.13 3.13 3.13 N/A N/A N/A N/A 3.13 N/A 
NOx N/A 3.26 3.26 3.26 3.26 3.26 N/A N/A N/A N/A 3.26 N/A 
PM N/A 2.65 2.65 2.65 2.65 2.65 N/A N/A N/A N/A 2.65 N/A 
Radioactivity 2.39 N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00 N/A 
Land use N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.07 N/A 
Accident plant 6.64 0.14 0.14 0.04 0.04 0.14 N/A N/A N/A N/A N/A N/A 

Standard Dev. by tech. 7.61 7.68 8.59 6.31 8.48 13.54 6.46 10.29 3.59 7.21 13.84 10.50 
(DELLANO-PAZ et al, 2014) 
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Table A5  – O&M correlation coefficients  

  Possible energy sources (𝑇) 
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Nuclear 1.00 0.00 0.00 0,24 0,24 -0,17 -0,07 -0,41 -0,41 -0,07 0,65 0,35 

Coal 0.00 1.00 1.00 0,25 0,25 -0,18 -0,22 0,03 0,03 -0,22 0,18 -0,39 

Coal (CCS) 0.00 1.00 1.00 0,25 0,25 -0,18 -0,22 0,03 0,03 -0,22 0,18 -0,39 

Natural gas. 0,24 0,25 0,25 1.00 1.00 0,09 0.00 -0,04 -0,04 0.00 0,32 0,05 

Nat. gas (CCS) 0,24 0,25 0,25 1.00 1.00 0,09 0.00 -0,04 -0,04 0.00 0,32 0,05 

Oil -0,17 -0,18 -0,18 0,09 0,09 1.00 -0,58 -0,27 -0,27 -0,58 0,01 -0,04 

On-shore wind -0,07 -0,22 -0,22 0.00 0.00 -0,58 1.00 0,29 0,29 1.00 -0,18 0,05 

Large hydro -0,41 0,03 0,03 -0,04 -0,04 -0,27 0,29 1.00 1.00 0,29 -0,18 0,30 

Small hydro -0,41 0,03 0,03 -0,04 -0,04 -0,27 0,29 1.00 1.00 0,29 -0,18 0,30 

Off-shore wind -0,07 -0,22 -0,22 0.00 0.00 -0,58 1.00 0,29 0,29 1.00 -0,18 0,05 

Biomass 0,65 0,18 0,18 0,32 0,32 0,01 -0,18 -0,18 -0,18 -0,18 1.00 0,25 

Solar PV 0,35 -0,39 -0,39 0,05 0,05 -0,04 0,05 0,30 0,30 0,05 0,25 1.00 

(DELLANO-PAZ et al, 2014) 

 

Table A6 – Fuel and CO2 correlation coefficients 
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Nuclear 1.00 0.97 0.99 0.88 -0.31 0.89 

Coal 0.97 1.00 0.92 0.97 -0.53 0.99 

Natural gas. 0.99 0.92 1.00 0.79 -0.15 0.97 

Oil 0.88 0.97 0.79 1.00 -0.72 0.92 

Biomass -0.31 -0.53 -0.15 -0.72 1.00 -0.40 

CO2 0.89 0.99 0.97 0.92 -0.40 1.00 
(DELLANO-PAZ et al, 2014) 
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Table A7  – Taiwanese energy supply structure – case replication (Source: Author’s own calculation). 

 p i * 100 = Energy Supply %     

 

Coal 
& 

deriv. 

Crude 
Oil & 
deriv. 

Natural 
Gas 

Waste 
and 

Biofuel Hydro. Nuclear Wind Solar  HHI1 SWI1 1/SWI1 HHI1* 

1997 28,40 52,47 5,76 0,54 0,58 12,17 0,00 0,08 0,374 1,180 0,966 0,964325 

1998 27,81 52,41 6,55 0,63 0,66 11,86 0,00 0,08 0,370 1,197 0,953 0,954795 

1999 28,70 51,81 6,33 0,83 0,51 11,75 0,00 0,08 0,369 1,198 0,952 0,950271 

2000 29,69 51,59 6,35 0,92 0,43 10,94 0,00 0,08 0,370 1,191 0,957 0,954657 

2001 30,50 51,60 6,54 1,19 0,46 9,65 0,00 0,08 0,373 1,191 0,957 0,961427 

2002 30,85 50,39 6,98 1,21 0,24 10,26 0,00 0,08 0,365 1,201 0,949 0,939791 

2003 30,34 51,85 6,71 1,38 0,24 9,41 0,00 0,07 0,374 1,185 0,962 0,965071 

2004 30,12 52,34 7,36 1,26 0,23 8,61 0,00 0,07 0,378 1,178 0,968 0,97336 

2005 29,63 52,78 7,35 1,24 0,28 8,63 0,01 0,07 0,379 1,178 0,968 0,97778 

2006 30,12 52,10 7,73 1,23 0,29 8,44 0,02 0,07 0,375 1,186 0,962 0,967581 

2007 30,06 52,38 7,79 1,22 0,29 8,15 0,03 0,07 0,378 1,181 0,965 0,973184 

2008 30,29 50,76 8,76 1,29 0,30 8,49 0,04 0,08 0,364 1,211 0,941 0,939341 

2009 28,24 52,56 8,73 1,25 0,26 8,82 0,06 0,08 0,372 1,203 0,948 0,957654 

2010 29,52 50,05 10,34 1,24 0,28 8,43 0,07 0,08 0,356 1,231 0,926 0,916505 

2011 31,66 46,08 11,72 1,30 0,28 8,78 0,11 0,08 0,334 1,272 0,896 0,861329 

2012 30,02 47,79 12,06 1,30 0,38 8,26 0,11 0,08 0,340 1,266 0,900 0,876446 

2013 30,54 47,38 11,88 1,27 0,36 8,36 0,13 0,08 0,339 1,267 0,900 0,8738 

2014 29,57 48,35 12,13 1,20 0,28 8,26 0,13 0,08 0,343 1,257 0,907 0,883766 

2015 29,67 48,16 13,19 1,23 0,29 7,22 0,16 0,08 0,343 1,256 0,907 0,883358 

2016 29,34 48,90 13,66 1,19 0,43 6,25 0,17 0,08 0,348 1,248 0,914 0,896737 

2017 30,17 48,45 15,15 1,15 0,36 4,43 0,22 0,08 0,351 1,227 0,929 0,904197 
(Source: Author’s own calculation) 

Table A8 – Brazil installed capacity by source [GW]  

  2009 2010 2011 2012 2013 2014 2015 2016 2017 

Total 110,44 116,38 117,14 121,10 126,74 133,91 140,86 150,34 157,11 

Hydropower Plants 76,78 78,61 78,37 79,75 81,13 84,09 86,37 91,50 94,66 

Thermoelectric Plants  27,48 30,78 31,24 32,91 36,53 37,83 39,56 41,27 41,63 

SHP  3,40 3,87 3,87 4,30 4,62 4,79 4,89 4,94 5,02 

CHG  0,17 0,19 0,22 0,24 0,27 0,31 0,40 0,48 0,59 

Nuclear Power Plants  2,01 2,01 2,01 2,01 1,99 1,99 1,99 1,99 1,99 

Wind Power Plants  0,60 0,93 1,43 1,89 2,20 4,89 7,63 10,12 12,28 

Solar Power Plants 0,00 0,00 0,00 0,00 0,01 0,02 0,02 0,02 0,94 
(EMPRESA DE PESQUISA ENERGÉTICA, 2014), (EMPRESA DE PESQUISA ENERGÉTICA, 2018) 
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Table A9 – Brazil electricity generation by source [TWh] 

  2009 2010 2011 2012 2013 2014 2015 2016 2017 

Total 466,16 515,80 531,76 552,50 570,83 590,54 581,23 578,90 587,96 

Natural Gas 13,33 36,48 25,10 46,76 69,00 81,07 79,49 56,48 65,59 

Hydraulics 390,99 403,29 428,33 415,34 390,99 373,44 359,74 380,91 370,91 

Petroleum products 12,72 14,22 12,24 16,21 22,09 31,53 25,66 12,10 12,73 

Coal 5,43 6,99 6,49 8,42 14,80 18,39 18,86 17,00 16,26 

Nuclear 12,96 14,52 15,66 16,04 15,45 15,38 14,73 15,86 15,74 

Biomass 21,85 31,21 31,63 34,66 39,68 44,99 47,39 49,24 49,39 

Wind 1,24 2,18 2,70 5,05 6,58 12,21 21,63 33,49 42,37 

Other 7,64 6,92 9,61 10,01 12,24 13,54 13,73 13,81 14,98 
(EMPRESA DE PESQUISA ENERGÉTICA, 2014) and (EMPRESA DE PESQUISA ENERGÉTICA, 2018) 

 

Table A10  – Percentage of projected electricity generation by source  

  2020 2030 2040 

Coal 3.77% 2.63% 2.06% 

Oil 2.20% 1.44% 1.12% 

Gas 8.65% 7.66% 11.79% 

Nuclear 4.09% 3.71% 3.65% 

Hydro 65.25% 64.67% 60.62% 

Bioenergy 7.55% 7.07% 6.55% 

Wind 7.70% 10.54% 11.13% 

Geothermal 0.00% 0.00% 0.00% 

Solar 0.79% 2.16% 2.81% 

CSP 0.00% 0.12% 0.28% 

Marine 0.00% 0.00% 0.00% 

(Source: Author's own calculation) 
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Table A11 – Percentage of projected Installed Capacity by source  

  2020 2030 2040 

Coal 2,94% 2,29% 1,47% 

Oil 4,71% 3,21% 2,56% 

Gas 10,00% 10,55% 12,09% 

Nuclear 1,76% 1,83% 1,83% 

Hydro 62,35% 58,72% 57,14% 

Bioenergy 8,24% 7,80% 6,96% 

Wind 8,24% 11,01% 11,36% 

Geothermal 0,00% 0,00% 0,00% 

Solar 1,76% 4,59% 6,23% 

CSP 0,00% 0,00% 0,37% 

Marine 0,00% 0,00% 0,00% 

(Source: Author's own calculation) 

 


