
 

 

  POLITECNICO DI TORINO 
 

 

 

 

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

MASTER THESIS 

DEVELOPMENT OF A 3-DOF                     

SPHERICAL ACTUATOR 

 

 

 

 

 

 

 

CANDIDATE:     SUPERVISOR:   

SILVIO TISATO    PROF. MICHELE ANGELO PASTORELLI 

                

ACADEMIC YEAR 2018/2019 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 
 

ABSTRACT 

 

Permanent magnet spherical actuators have seen an increase in interest due potential applications in 

areas like robotics, satellite control and sensors.  

This work presents one such actuator, along with approaches to multi-dof actuation.  

A review of relevant magnetic field equations is presented along with modelling methodologies. Selected 

existing designs are also presented: firstly, the ball-joint like design, which uses a single row of 

permanent magnets distributed along the equator. Then the deflection-type is presented, which 

comprises a rotor made up of the spherical tile permanent magnet, and the E-Shape stator design, which 

uses blade shaped back iron for the rotor to reduce weight, and finally an overview of a reaction sphere 

design for satellite attitude control is given, which used spherical top shaped permanent magnet 

positioned on the vertex of a dodecahedron.  

The designed actuator is also presented, along with a 3D model and its magnetic and torque modelling, 

as well as comparison between the obtained magnetic flux density values with the ones obtained by 

means of FEM. Finally, some variations on the design are analysed.   
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1 SPHERICAL MOTION 

 

Spherical motion occurs frequently in many mechanical systems such as orientation mechanisms, 

robotic wrists, etc, and actuators that can produce multi-dof rotations in a single joint presents 

numerous potential applications in a variety of industries, such as robotics, advanced manufacturing, 

medical and automotive. 

Spherical motion is the rotation of a system about a common point, the center of rotation, and it is 

characterized by an angle and an axis passing through the center of rotation. 

Spherical motion generators can be categorized following different rules [1], for example by the 

mechanism by which the spherical motion is generated, by the actuation principle employed, or by the 

number of degrees of freedom they provide. Figure 1 shows one possible way to consider these 

categories. 

 

Figure 1 Categorization of SMG [1] 

The simplest way spherical motion generators can be categorized is by actuation principle, dividing 

them into electromagnetic, piezoelectric and mechanically driven systems. 
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1.1 PIEZOELECTRIC 
 

The piezoelectric effect converts an electrical stimulation into a mechanical actuation. This is possible 

thanks to the properties of some materials to produce a variation in the interatomic distance inside a 

crystal of material when its electrical equilibrium is altered by applying an external electric dipole. An 

example of piezoelectric material is PZT (lead zirconate titanate). 

This kind of actuators is especially useful for camera modules and adaptive optics, as it allows to 

generate motions in the range of nanometers to millimiters. While conventional electromagnetic 

motors are more conventionally used for motion generation, at millimetre scales they show poor 

performances, and piezoelectric motors become competitive regarding power density, driving force 

and displacement resolution when compared to conventional electromagnetic micromotors. 

Piezoelectric motors are thus good candidates for use in micro-mechanical system that need high 

precision, for example in surgical devices or joint in robot manipulators. 

Figure 2 shows one proposed piezoelectric actuator for surgical use[2]. It is a type of ultrasonic 

spherical motor, with a bar-shaped piezoelectric stator and a sphere-shaped rotor. The three natural 

vibrations of the stator allow it to move the rotor. The rotations around the axes are given by 

combining bending and/or translation modes of the stator, for example rotation around the z-axis is 

obtained by combining the bending mode on plane xz and yz, while the rotation around the x-axis is 

obtained by combining the longitudinal mode along the z axis and the bending mode in the yz plane. 

 

Figure 2 (a) Piezoelectric actuator for surgical use and (b) multi-stator spherical motion motor 

 

Another kind of spherical motion motor that employs the piezoelectric effect can be seen in Figure 2. It 

is composed of three ring shaped piezoelectric ultrasonic stators and a spherical rotor[3]. The angular 

velocity of the motor is determined by combining the angular velocities produced by the three stators. 

This kind of motor is promising as an alternative to servomotor-based gimbals. 
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1.2 MECHANICALLY DRIVEN 
 

 

Figure 3 Wheel-driven spherical actuator 

Mechanically driven spherical motors are usually obtained by multiple single degree of freedom motors 

in series or parallel.  

One such motor is shown in Figure 3 above. This motor is called SAMM[4] and presents three single 

degree of freedom motors connected to wheels, and these wheels produce a contact force on a sphere, 

producing the spherical motion. This kind of system have the disadvantage of being structurally complex 

and also dissipating energy by friction between the wheel and the sphere. The weight of the wheels and 

the sphere also decreases the motion dexterity of the system due to inertial effects. 

Note that the wheels are omniwheels, as they incorporate rollers such that they allow free rotation on 

the axes perpendicular to the main wheel axis, which can be controlled. 

Another kind of mechanically driven motor is the one called wire-driven spherical motor[5]. This motor 

presents wires attached to a sphere. By acting on the wires, spherical motion can be achieved. 

 

Figure 4 wire-driven spherical actuator 
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1.2.1 Electromagnetic 

 

Electromagnetic spherical motors obtain the spherical motion by electromagnetism. Some examples 

are induction, DC, stepper and permanent magnets based motors. 

Electromagnetic spherical motors are the main topic of this work, and as such they will be discussed in 

more details in the following chapters. 

This category can be further broken down subdividing the electromagnetic spherical motors by the 

working principle they employ[6]: 

- Orthogonal type 

- Stepping type 

- Tiered type 

 

Figure 5 Types of spherical motors[6] 

 

Orthogonal type motors employ windings orthogonal to each other, producing a 3D rotating 

electromagnetic field. 

Stepping type motors have a very high number of rotor poles and stator coils, usually symmetrically 

distributed.  

Tiered type motors have multiple layers of stator coils or rotor permanent magnet poles, distributed 

evenly. The coils in the stator may be air or iron cored. 

Tiered type motors usually only allow a limited range of tilt angle, while allowing continuous spinning 

rotation. For this reason, they are more suited for applications such as machine tools. 
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2 SPHERICAL PM ACTUATORS 

Magnetic actuators are a class of devices that include various technologies. Actuators that can achieve 

3-DOF motion are increasingly used in industry. These kinds of devices are usually built with multiple 

conventional motors, each adding one DOF, reducing the position accuracy, efficiency and dynamic 

performance of the system. For these reasons, multi-DOF actuators have received growing interest, 

however their operating mechanism and control algorithm are of course very different from 1-DOF ones. 

Spherical actuators, a type of magnetic actuators, have the advantage of compact size and high precision 

motion and can provide multi-DOF motion. They can assume very different forms, like induction, 

reluctance, ultrasonic and more. The most commonly used kind is reluctance spherical actuators thanks 

to their relative simplicity and compactness, but they present problem like nonlinear rotor dynamics, 

complex magnetic field and complicated actuating system. 

The air-gap magnetic field is a determinant quantity for predicting the performance of a magnetic 

actuator, and to optimize actuator performance an analytical model of the magnetic field must be 

established, as despite the advancements in computing power, using techniques such as finite element 

method (FEM) is still too time consuming and doesn’t  easily allow for parametric design studies. 

2.1 FUNDAMENTAL EQUATIONS 
The electromagnetic behaviour for devices with permanent magnets can be described starting with 

Maxwell’s Equations, which in differential form can be stated as 

∇ × 𝐻 = 𝐽 +
𝜕𝐷

𝜕𝑡
2. 1 

∇ ⋅ 𝐵 = 0 2. 2 

∇ × 𝐸 =  −
𝜕𝐵

𝜕𝑡
2. 3 

∇ ⋅ 𝐷 = 𝜌𝑐 2. 4 

And the equations  

𝐵 = 𝜇0(𝐻 + 𝑀) 2. 5 
𝐷 = 𝜀0𝐸 + 𝑃 2. 6 

𝐽 = 𝜎𝑒𝐸 2. 7 

The flux density can be written as 

𝐵 = 𝜇0𝐻 + 𝐵𝑟 2. 8 

Since we consider a magnetostatics case, in which field changes are assumed to happen instantaneously, 

the term 𝜕𝐷/𝜕𝑡 is negligible and so 

∇ × 𝐻 = 𝐽 2. 9 

∇ ⋅ 𝐵 = 0 2. 10 

We can state the field equation as Poisson’s Equation 

∇2𝜑 = 𝑓 2. 11 

Which in magnetization free regions becomes known as Laplace’s Equation: 

∇2𝜑 = 0 2. 12 
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2.2 MAGNETIC FIELD ANALYTICAL MODELS 

2.2.1 Magnetic Equivalent Charge Model 

 

The magnetic charge model can be used to obtain the spatial distribution of the magnetic flux density 

produced by permanent magnet arrays. In this model, the permanent magnets are replaced by an 

equivalent distribution of “magnetic charges”, and this charge distribution is used as a source term in 

the magnetostatics field equations 

∇ × 𝐻 = 0 2. 13 

∇ × 𝐵 = 0 2. 14 

In the case of spherical permanent magnet, first a complete solution for the spherical tile is calculated, 

and then thanks to the superposition principle the magnetic flux density of the spherical magnet array 

is obtained. In the following, it is assumed that the permanent magnets are uniformly magnetized and 

have a relative permeability of 𝜇𝑟 = 1. With this assumption, a small error is made because permanent 

magnets usually have a relative permeability in the order of 1.03–1.05.  

The flux density can be written as 

𝐵 = 𝜇0𝐻 + 𝐵𝑟 = 𝜇0𝐻 + 𝑀 2. 15 
𝐵 = −𝜇0∇𝜑𝑚 + 𝑀 2. 16 

The magnetic scalar potential can be written as [7] 

𝜑𝑚 =
1

4𝜋
∫

𝜌𝑚

|𝑥 − 𝑥′|
d𝑣′ +

1

4𝜋
∮

𝜎𝑚

|𝑥 − 𝑥′|
d𝑠′

𝑆𝑉

2. 17 

𝜌𝑚 = −∇ ⋅ 𝑀 =
2

𝑟′
𝑀0 

𝜎𝑚 = 𝑀 ⋅ 𝑛̂ 

𝑥 = (𝑟, 𝜃, 𝜑) ; 𝑥′ = (𝑟′, 𝜃′, 𝜑′) 

|𝑥 − 𝑥′| = √𝑟2 + 𝑟′2 − 2 𝑟 𝑟′(sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′) 

Using the Maxwell equations together with the constitutive relation 𝐵 = −𝜇0∇𝜑𝑚 + 𝑀  the magnetic 

flux density field can be obtained as  

𝐵 = −𝜇0∇ (
1

4𝜋
∫

𝜌𝑚

|𝑥 − 𝑥′|
d𝑣′ +

1

4𝜋
∮

𝜎𝑚

|𝑥 − 𝑥′|
d𝑠′

𝑆𝑉

) 2. 18 

𝐵 = −
𝜇0

4𝜋
∫ 𝜌𝑚∇

1

|𝑥 − 𝑥′|
d𝑣′ +

1

4𝜋
∮ 𝜎𝑚∇

1

|𝑥 − 𝑥′|
d𝑠′

𝑆𝑉

2. 19 

2.2.2 Harmonic Expansion Model 

 

Starting from the Laplace equation in spherical coordinates 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝜑

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝜑

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2𝜑

𝜕𝜙2
= 0 2. 20 

The general solution is written as [8] 

𝜑(𝑟, 𝜃, 𝜑) = ∑ ∑ (𝐶 𝑟𝑛 + 𝐷 𝑟−(𝑛+1))𝑌𝑛
𝑚(𝜃, 𝜑)

𝑛

𝑚=−𝑛

∞

𝑛=0

2. 21 
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𝜑(𝑟, 𝜃, 𝜑) = ∑ ∑ ⋅ (𝐶 𝑟𝑛 + 𝐷 𝑟−(𝑛+1))𝑆𝑛
𝑚 𝑃𝑛

𝑚(cos 𝜃)𝑒𝑖 𝑚 𝜑

𝑛

𝑚=−𝑛

∞

𝑛

2. 22 

where 𝑆𝑛
𝑚 is 

𝑆𝑛
𝑚 = √

2𝑛 + 1

4𝜋
⋅

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
2. 23 

And 𝑃𝑛
𝑚(𝑐𝑜𝑠𝜃) is the associated Legendre polynomial. 

The radial component of the magnetization vector can be approximated using spherical harmonics[9] 

𝑀𝑟(𝜃, 𝜙) = ∑ ∑ 𝐶𝑛𝑚𝑌𝑛
𝑚(𝜃, 𝜑)

𝑛

𝑘

∞

𝑛

2. 24 

Where the spherical harmonic coefficients can be obtained by 

𝐶𝑛𝑚 = ∫ ∫ 𝑀0𝑟(𝜃, 𝜑)𝑌𝑛
𝑚∗(𝜃, 𝜑) sin 𝜃 𝑑𝜃𝑑𝜑

𝜋

0

2𝜋

0

2. 25 

Where 𝑌𝑛
𝑚∗ is the complex conjugate of the spherical harmonic 𝑌𝑛

𝑚. 

By reordering the integral we get to 

𝐶𝑛𝑚 = ∫ 𝑓(𝜑)𝑒−𝑖 𝑚 𝜑𝑑𝜑
2𝜋

0

∫ 𝑆𝑛
𝑚 𝑃𝑛

𝑚(cos 𝜃) sin2 𝜃
𝜋

0

𝑑𝜃 2. 26 

By imposing boundary conditions, expressions for C and D parameters can be derived, with 𝐶 ≡ 0 and 

𝐷 = 𝐶𝑛𝑚𝑑𝑛, so 

𝜑(𝑟, 𝜃, 𝜑) = ∑ ∑ 𝐶𝑛𝑚𝑑𝑛𝑟−𝑛−1 𝑌𝑛
𝑚(𝜃, 𝜑)

𝑛

𝑚=−𝑛

∞

𝑛

2. 27 

And finally  

𝐵1𝑟 = −𝜇0

𝜕𝜑

𝜕𝑟 
= −𝜇0 ∑ ∑ (−𝑛 − 1) ⋅ 𝐶𝑛𝑚𝑑𝑛𝑟−𝑛−2 𝑌𝑛

𝑚(𝜃, 𝜑)

𝑛

𝑚=−𝑛

∞

𝑛

2. 28 
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2.3 TORQUE ANALYTICAL MODEL - LORENTZ FORCE METHOD 
 

Lorentz force is commonly defined as the combination of electric and magnetic force on a point charge 

due to electromagnetic fields, so considering a single charge 𝑞 moving with speed 𝑣 we have: 

𝐹 = 𝑞 𝐸 + 𝑞 𝑣 × 𝐵 

For a continuous charge distribution, the equation becomes 

𝑑𝐹 = 𝑑𝑞 (𝐸 + 𝑣 × 𝐵) 

Or dividing by the volume 𝑑𝑉:  

𝑓 = 𝜌(𝐸 + 𝑣 × 𝐵) 

And since the we can write the current density as 𝐽 = 𝜌 𝑣 we obtain the volume integral 

𝐹 = ∫ (𝜌𝐸 + 𝐽 × 𝐵)𝑑𝑉
𝑉

 

And by using the definition of electric current 𝐼 and considering a stationary wire, we can write 

𝐹 = 𝐼 ∫ 𝑑ℓ × 𝐵
𝑉

 

The torque can be written as the cross product of the moment arm 𝑟 and the force 𝑑𝐹 so 

𝑑𝑇𝑖 = 𝑟 × 𝐼𝑑ℓ × 𝐵𝑟 

And the torque generated by the i-th coil is then 

𝑇𝑖 = ∫ 𝑟 × 𝑑ℓ × 𝐵𝑟𝑑𝑉
𝑉
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2.4 FINITE ELEMENT MODEL 

2.4.1 Introduction to Ansys Maxwell 

Ansys Maxwell is one of the leading electromagnetic field simulation softwares. It can be used to solve 

various kind of electromagnetic problems, such as electrostatic, magnetostatic and transients by using 

the Finite Element Method, both in 2D and 3D.  This allows Maxwell to be used to perform design of 

electric motors, sensors, transformers and other electrical devices, reducing prototyping cost.  

The major steps to perform an analysis with Ansys Maxwell are 

- Choice of the problem type 

- Definition of the geometry 

- Definition of the material properties 

- Definition of the excitations and boundaries 

- Define parameters 

- Analysis setup 

- Post processing 

Maxwell uses different solvers for different problem types.  Some examples are static, transient, eddy 

current. 

 

Figure 6 General View (left) Solution Type Selection window (right) 

The problem can be defined either as 2D or 3D geometry, drawn directly with Maxwell or imported 

from common CAD or 3D modelling software. In particular, Maxwell 3D modeller makes uses of 

Boolean geometry to define the structure, as the geometry is made up basic “block” like cylinders or 

boxes that are combined into single entities by Boolean operations like unite, subtract, intersect etc. 

Material properties can be assigned to every body via the properties window, and they can be chosen 

either from the extensive built in material library or added as custom materials. For magnetic 

materials, its also possible to define the B-H cure by imputing points. 

Excitations can be defined either as voltage, current or permanent magnet, while boundary condition 

can be for example symmetry, tangential H field, insulating, etc. 

Maxwell can solve for most common parameters, like torque, force and inductance. 

The analysis setup defines the number of passes and the percentage of error allowed, as well as the 

mesh refinement to be performed after each pass. 
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Figure 7 Post processing graph options (left) Excitation configuration (right) 

After running the simulation, different kinds of solution graphs can be obtained by post processing the 

results. Some example are B and H-field density or vector plots. 

2.4.2 Maxwell FEM formulation 

 

Finite Element Analysis can be performed using various different electromagnetic field formulations to 

solve Maxwell’s equations. The one used in Ansys Maxwell starts from the basic field equations 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
2. 29 

∇ ⋅ 𝐵 = 0 2. 30 
∇ × 𝐻 = 𝐽 2. 31 

The numerical solution of these equations is based on T-Ω formulation.  

In this formulation, Ω is the nodal magnetic scalar potential, defined on the solution domain, while T is 

the edge-based electrical vector potential, which is only defined in the conducting region. 

In the conducting region then 

∇ ×
1

𝜎
∇ × 𝐻 + 𝑗 𝜔 𝐵 = 0 2. 32 

The magnetic field intensity can be expressed as 

𝐻 = ∇Ω + 𝑇 + 𝐻𝑝 2. 33 

where T is the electric vector potential due to the induced current, Ω is the magnetic scalar potential and 

𝐻𝑝 is the electric vector potential for source currents. 

Substituting in the basic equations, we obtain the following formulation of the problem: 

∇ ⋅ (μ∇Ω) = −∇ ⋅ (𝜇𝐻𝑝) 2. 34 

∇ ×
1

𝜎
∇ × 𝑇 + 𝑗 𝜇 𝜔(∇Ω + T) = −∇ ×

1

𝜎
∇ × 𝐻𝑝 − 𝑗𝜇𝜔𝐻𝑝 2. 35 

The main advantages of this formulation are: 

- The use of edge elements for modelling source components avoid unphysical solutions 

- In the nonconducting region only the scalar potential is calculated, increasing computing 

efficiency 

An important point in T-Ω formulation is that the domain needs to be single-connected to allow using 

the scalar potential. To obtain this property, Ansys Maxwell automatically generate cut domains to allow 

handling multiple-connected domains. 
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2.5 DESIGNS IN LITERATURE 

2.5.1 Ball-joint type  

 

Spherical actuator can realize multiple DOF motions in a single joint. Once there is current in stator coils, 

the PM poles in the rotor can be driven by the Lorentz force between them. 

The rotation can be observed by energizing coils alternatively of just one layer. Similarly, for pitch and 

yaw, different longitudinal position current can be supplied to coils. Thus 3-DOF motions can be 

achieved by changing the order in which the current is supplied to the coils. 

In the design of actuators, both the number of permanent magnets and the number and layout of coils 

are of great importance[10]. In Figure 8 and Figure 9 two layout are presented, one with two layers of 

equispaced coils and spherical tile-shaped permanent magnet poles[11], while the others presents three 

layers of coils and shell-shaped permanent magnet poles. 

 

Figure 8 Actuator (a) stator with 2 layers of poles (b) rotor with spherical tile magnet (c) 

 

Figure 9 Actuator, stator with 3 layers of poles (left), rotor with conical magnet (right) 
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2.5.2 Deflection Type 

 

This actuator is mainly constituted by stator and rotor spherical shells and an output shaft. The stator 

shell contains the magnet winding coils, while the rotor is made up of the magnets. Between the stator 

and the rotor there’s a thin film of oil to reduce friction and adjust damping[12]. 

 

Figure 10 Actuator cross-section view 

The motor works by leveraging the force generated between the magnetic field due to the coils and the 

permanent magnets [13]. The structure is shown in figure 4. 

 

Figure 11 Actuator structure with rotor (inner) and stator (outer) 

Energizing coils 2 and 5’ will generate a N pole, while energizing coil 2’ and 5 will produce an S pole. 

Pairs of poles with the same polarization generate mutually repulsive forces, while pairs with opposite 

polarization generate attractive forces, and the forces will in turn generate the torque that allows the 

motor to perform a movement. In the case in which coil 2, 5’, 2’ and 5 are energized, the resulting 

torque achieves a deflection about the X-axis [14]. 

To perform a deflection about the Y-axis, coils 3, 4, 1 and 6’ need to be energized, generating an S pole, 

as well as energizing coils 3’, 4’, 1 and 6, generating N poles. 

Finally, to achieve rotational movement about the Z-axis, the coils need to be energized in orders. 
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2.5.3 E-shaped stator and blade shaped rotor structure 

 

The structure in the figure below has been presented in an effort to greatly reduce the weight of the 

rotor structure. This structure is similar to the impeller-shaped model and the common spherical-

shaped case, in which the yoke and extra parts that have a lot of weight have been removed. The 

proportion between the stator poles to rotor poles is taken to be 6 to 8 [15].   

The reason that the stator poles have been chosen to be less than the rotor poles is to increase wiring 

space in the stator.  The magnet used is of the NdFeB type which has higher flux density amongst 

magnets available. 

 

Figure 12 Actuator structure model 

In the actuator structure presented, the coils are placed in the stator and this will widen the freedom of 

action of the system. In the stator, 6 E-shaped cores are placed. In order to be able to move in a certain 

direction in the simplest way, two of these cores must be excited at the same time[15]. 

 

Figure 13 Actuator in rotated position 

The figure above represents the rotation of the rotor thanks to the coils which are excited according to 

the flux applied in a certain moment relative to the x-axis and will provide the torque required to move 

to a certain direction. In order to set up the actuator in all directions, there will be at least a need for 6 

different phases. The maximum amount of rotation for the rotor, due to the plates being dodecahedron 

(having 12 flat faces), will be between (-90, 90) degrees from the vertical.   
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2.5.4 Reaction Sphere 

 

Attitude and orbit control systems (AOCSs) are some of the main satellite subsystems, as the orbital 

behaviour and pointing precision of stabilized satellites depends on them. Depending on the mission, 

AOCS of three-axis stabilized satellites normally require a minimum of three reaction wheels (RWs) or 

control moment gyroscopes (CMGs). The attitude of the satellite is changed by the reaction of the 

satellite main system to the torque generated by the wheels by the conservation of the total angular 

momentum [16]. A reaction sphere (RS) supported by magnetic bearings was proposed as an alternative 

to traditional momentum exchange devices.  

As it can be accelerated in any direction, only a single device is needed to control all three axes of the 

satellite, without the disadvantage of friction due to mechanical joints [17].  

The proposed device is a synchronous permanent magnet 3DoF motor. The PM and electromagnets are 

placed on the vertices of a regular polygon. The PM motor is made up of an 8-poles rotor and a stator 

composed by 20 air-core electromagnets, placed on the vertex of a dodecahedron.  The Reaction Sphere 

proposed can be categorized as a three degree of freedom electromagnetic spherical actuator, and 

thanks to the spherical symmetry both of the magnetic and mechanical designs, it is isotropic, which 

means that its behaviour is the same independently of the axis of rotation considered, as its inertia 

matrix is diagonal with all diagonal terms equal [18]. 

 

Figure 14 Schematic diagram of actuator (left) and stator (right) 

The spherical rotor consists of eight bulk PM poles with truncated spherical shape adjusted on the back-

iron structure with truncated octahedral shape. The 20 electromagnets that make up the stator are 

simultaneously employed to levitate the rotor inside the stator and to accelerate it to about any desired 

axis in order to produce the appropriate torque[19]. 

 

Figure 15 Rotor schematic drawing 
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3 DESIGNED CONFIGURATION 

3.1 3D MODEL 
The proposed design presents similarities with the deflection-type and reaction sphere type spherical 

actuators. The 3D model can be seen in the figure below. 

 

Figure 16 Proposed design 3D model 

Table 1 present a summary of the main characteristics of the actuator. 

𝑹𝒊 𝑹𝒐 𝑹𝒔𝒊 𝑹𝒔𝒐 𝜶 𝜷 
[mm] [mm] [mm] [mm] [°] [°] 

20 26 32 38 60 60 
Table 1 Geometrical properties 

𝝁𝒓 𝝈 M E 
 [S/m] [Am] [GN/𝑚2] 

1.045 625000 -838000 1470 
Table 2 Main material properties of NdFe30 
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3.2 ROTOR 
 

The rotor is spherical in shape. Six permanent magnets made of NdFe30 with alternating radial 

magnetization direction are placed around the equator of the rotor, while two permanent magnets 

made of NdFe30 with vertical magnetization direction are placed on the upper and lower hemisphere. 

The space between the radially magnetized magnets and the vertically magnetized ones is filled with 

aluminium. 

 

 

Figure 17 Rotor model (top) and spinning PM model (bottom) 

The magnets have an inner radius 𝑅𝑏  of 20mm, an outer radius 𝑅𝑟  of 26mm, a horizontal angular 

aperture 𝛼 of 60° and a vertical angular aperture 𝛽 of 60°. 

The main properties of NdFe30 are listed in Table 2. 
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3.3 STATOR 
 

The stator is composed of a total of 10 coils, placed on 2 levels.  

 

Figure 18 Complete stator coils model 

The middle level is comprised of 6 coils, which envelope the equator of the rotor. 

These coils are mainly responsible for the rotational movement around the z-axis. 

 

Figure 19 Spinning coils (left) and tilt coils (right) 

The outer radius of this layer of coils is 31mm with an inner radius of 27mm.  

The coils are shaped to follow the curvature of the rotor. 

The second set of coils, comprised of 4 coils, envelopes the top and bottom of the sphere, enabling tilt 

motion. The coils are shaped to allow a 15° tilting rotation from the z-axis. 
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4 MAGNETIC FIELD MODELING 

4.1 SPHERICAL HARMONICS MODEL 
The magnetic field can be divided in 5 main regions: 

- Air outside the rotor, region 𝐼 

- Equatorial Permanent Magnet Pole, region 𝐼𝐼 

- Hemispherical Permanent Magnet Pole, region 𝐼𝐼𝐼 

- Ferromagnetic (iron) core, region 𝐼𝑉 

- Aluminium spacers, region 𝑉 

In the case of PM regions, the flux density can be calculated as 

𝐵𝑖 = 𝜇0𝜇𝑖𝐻𝑖 + 𝜇0𝑀0 4. 1 

While for the other regions it can be calculated as 

𝐵𝑖 = 𝜇0𝜇𝑖𝐻𝑖 4. 2 

With 𝑖 denoting the 𝑖-th region. 

Considering the field 𝐻𝑖 as irrotational, we can write 

∇ × 𝐻𝑖 = 0 4. 3 

And referencing Helmholtz’s Theorem, we can express the magnetic intensity as  

𝐻𝑖 = −∇Φ𝑖 = − (
𝜕Φ𝑖

𝜕𝑥
+

𝜕Φ𝑖

𝜕𝑦
+

𝜕Φ𝑖

𝜕𝑧
) 4. 4 

And expressing the magnetic intensity in spherical coordinates gives 

𝐻𝑖 = −∇Φ𝑖 = − (
𝜕Φ𝑖

𝜕𝑟
𝑒𝑟 +

1

𝑟

𝜕Φ𝑖

𝜕𝜃
+

1

𝑟 sin 𝜃

𝜕Φ𝑖

𝜕𝜑
𝑒𝜑) 4. 5 

According to Maxwell Equation’s, the magnetic field has the property of being solenoidal, i.e. 

∇ ⋅ 𝐵𝑖 = 0  ∀𝑖 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉, 𝑉} 4. 6 

Substituting the equation shown above, and considering the symmetricity of the magnets in region 𝐼𝐼, 

we obtain Laplace’s Equation for regions 𝐼, 𝐼𝐼, 𝐼𝑉 and 𝑉: 

∇2Φ𝑖 = 0 4. 7 

While for region 𝐼𝐼𝐼 we obtain the Poisson’s equation 

∇2Φ𝐼𝐼𝐼 = ∇ ⋅
𝑀0

𝜇𝐼𝐼𝐼
4. 8 

The Laplace equation in spherical coordinates is 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 Φ𝑖) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Φ𝑖

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕Φ𝑖

𝜕𝜙
= 0 4. 9 

Since the scalar potential Φ𝑖, using separation of variables, can be written as 

Φ𝑖(𝑟, 𝜃, 𝜙) = 𝑅𝑖(𝑟)Θi(𝜃)Ψ𝑖(𝜙) 

The general solution of the scalar potential can be expressed as [9] 
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Φi = ∑ ∑ (𝐶𝑛𝑖
𝑚𝑟𝑛 + 𝐷𝑛𝑖

𝑚𝑟−(𝑛+1))(𝑌𝑛
𝑚(𝜃, 𝜑))

𝑛

𝑚=−𝑛

∞

𝑛=0

 4. 10 

Where the function 𝑌𝑛
𝑚(𝜃, 𝜙) is the spherical harmonic function defined as  

𝑌𝑛
𝑚(𝜃, 𝜙) = √

2𝑛 + 1

4𝜋

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
  𝑃𝑛

𝑚(cos 𝜃) 𝑒𝑖 𝑚 𝜙 = 𝑆𝑛
𝑚 𝑃𝑛

𝑚(cos 𝜃)𝑒𝑖 𝑚 𝜙 4. 11 

With 𝑃𝑛
𝑚(cos 𝜃) associated Legendre function. 

4.1.1 Spherical Expansion of 𝑴𝟎𝒓 

 

Letting 𝑀0 as the magnitude of the residual magnetization vector 𝑴𝟎, the radial component is [20] 

𝑀0𝑟 = (−1)𝑝−1𝑀0 cos [𝜙 − 𝛼0 −
2𝜋

𝑃
(𝑝 − 1)] sin 𝜃 4. 12 

The radial component of the magnetization vector can be approximated using spherical harmonics[9] 

𝑀𝑟(𝜃, 𝜙) = ∑ ∑ 𝐶𝑛𝑚𝑌𝑛
𝑚(𝜃, 𝜑)

𝑛

𝑘

∞

𝑛

4. 13 

Where the spherical harmonic coefficients can be obtained by 

𝐶𝑛𝑚 = ∫ ∫ 𝑀0𝑟(𝜃, 𝜑)𝑌𝑛
𝑚∗(𝜃, 𝜑) sin 𝜃 𝑑𝜃𝑑𝜑

𝜋

0

2𝜋

0

4. 14 

Where 𝑌𝑛
𝑚∗

 is the complex conjugate of the spherical harmonic 𝑌𝑛
𝑚. 

By reordering the integral we get to 

𝐶𝑛𝑚 = ∫ 𝑓(𝜑)𝑒−𝑖 𝑚 𝜑𝑑𝜑
2𝜋

0

∫ 𝑆𝑛
𝑚 𝑃𝑛

𝑚(cos 𝜃) sin2 𝜃
𝜋

0

𝑑𝜃 4. 15 

By imposing boundary conditions, expressions for C and D parameters can be derived, with 𝐶 ≡ 0 and 

𝐷 = 𝐶𝑛𝑚𝑑𝑛, so 

𝜑(𝑟, 𝜃, 𝜑) = ∑ ∑ 𝐶𝑛𝑚𝑑𝑛𝑟−𝑛−1 𝑌𝑛
𝑚(𝜃, 𝜑)

𝑛

𝑚=−𝑛

∞

𝑛

4. 16 

And finally  

𝐵1𝑟 = −𝜇0

𝜕𝜑

𝜕𝑟 
= −𝜇0 ∑ ∑ (−𝑛 − 1) ⋅ 𝐶𝑛𝑚𝑑𝑛𝑟−𝑛−2 𝑌𝑛

𝑚(𝜃, 𝜑)

𝑛

𝑚=−𝑛

∞

𝑛

4. 17 

The rotor design being investigated presents 6 poles (P=6) and the center line angle 𝛼0 is 
𝛼

2
 + 𝛼 ⋅ (𝑝 −

1) where 𝛼 = 60° 

Given the definitions of spherical harmonics and associated Legendre functions [8] 

𝑌𝑛
𝑚(𝜃, 𝜑) = √

2𝑛 + 1

4𝜋

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
 𝑃𝑛

|𝑚|(cos 𝜃)𝑒𝑖 𝑚𝜑 4. 18 
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𝑌𝑛
𝑚∗(𝜃, 𝜑) = (−1)𝑚𝑌𝑛

−𝑚(𝜃, 𝜑) 4. 19 

 

𝑌𝑛
𝑚∗(𝜃, 𝜑) = (−1)𝑚√

2𝑛 + 1

4𝜋

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
 𝑃𝑛

|𝑚|(cos 𝜃)𝑒−𝑖 𝑚𝜑 4. 20 

 

𝑃𝑛
𝑚(𝑥) =

(−1)𝑚

2𝑛𝑛!
(1 − 𝑥2)

𝑚
2

𝑑𝑚

𝑑𝑥𝑛+𝑚
(𝑥2 − 1)𝑛 4. 21 

 

Substituting into 1.2 we get: 

𝐶𝑛𝑚 = (−1)𝑚𝑀0√
2𝑛 + 1

4𝜋
 
(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
 ⋅ ∫ (−1)𝑝 −1 𝑐𝑜𝑠 (𝜑 − 𝛼0 −

2𝜋(𝑝 − 1)

𝑃
) 𝑒−𝑖 𝑚𝜑𝑑𝜑

2𝜋

0

 

⋅ ∫  𝑃𝑛
|𝑚|(𝑐𝑜𝑠 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜃

𝜋

0

 4. 22 

 

Which we can transform to  

𝐶𝑛𝑚 = (−1)𝑚𝑀0(𝑎 ± 𝑖𝑏)
𝑐

√𝜋
4. 23 

By setting 

𝑎 ± 𝑖𝑏 = ∫ (−1)𝑝 −1 cos (𝜑 − 𝛼0 −
2𝜋(𝑝 − 1)

𝑃
) 𝑒−𝑖 𝑚𝜑𝑑𝜑

2𝜋

0

4. 24 

𝑐

√𝜋
= ∫ √

2𝑛 + 1

4𝜋
 
(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
 𝑃𝑛

|𝑚|(cos 𝜃) sin2 𝜃 𝑑𝜃
𝜋

0

4. 25 

Considering the case in which 𝑚 = ±3, 𝑛 = 3, 𝑃 = 6 we get: 

𝑃3
3(cosθ) = −15(1 − cos2 𝜃)

3
2 4. 26 

𝑃3
−3(cosθ) =

1

48
(1 − cos2 𝜃)

3
2 4. 27 

𝑎 ± 𝑖𝑏 = ∫ (−1)𝑝 −1 cos (𝜑 − 𝛼0 −
𝜋 (𝑝 − 1)

3
) 𝑒−𝑖 (±3) 𝜑𝑑𝜑

2𝜋

0

 4. 28 

𝑐

√𝜋
= ∫ √

7

4𝜋
 
(3 ∓ 3)!

(3 ± 3)!
 𝑃3

±3(cos 𝜃) sin2 𝜃 𝑑𝜃
𝜋

0

4. 29 

 

with 𝑝 ∈ { 1. .6 } ⊂ ℤ, 𝜑 restricted to 
𝜋

3
(𝑝 − 1) + 𝛼0 −

𝛼

2
≤ 𝜑 ≤

𝜋

3
(𝑝 − 1) + 𝛼0 +

𝛼

2
 and 𝜃 restricted to  

𝜋

2
−

𝛽

2
≤ 𝜃 ≤

𝜋

2
+

𝛽

2
 . 
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So 

𝐶3,3 = −𝑀0

𝑎 + 𝑖𝑏

√𝜋
𝑐 4. 30 

𝐶3,−3 = −𝑀0

𝑎 − 𝑖𝑏

√𝜋
𝑐 4. 31 

And considering that setting 𝑚 = ±3, 𝑛 = 3 and 𝜃 ∈ ℝ+ the spherical harmonics have the following 

expression [1] 

𝑌3
−3 =

1

8
⋅ √

35

𝜋
⋅ 𝑒−𝑖3𝜙 ⋅ sin(𝜃)3 4. 32 

𝑌3
3 = −

1

8
⋅ √

35

𝜋
⋅ 𝑒𝑖3𝜙 ⋅ sin(𝜃)3 4. 33 

Applying the boundary conditions we get that  

𝑑𝑛 =
−𝑑𝑛

⊤

𝑑𝑛
⊥ 4. 34 

𝑑𝑛
⊤ = 𝑅𝑟

𝑛+2 +
𝜇𝑚(2𝑛 + 1)𝑅𝑏

𝑛+2𝑅𝑟
2𝑛+1

(𝜇𝑟 − 𝜇𝑚)𝑛𝑅𝑏
2𝑛+1 − |𝜇𝑟𝑛 + 𝜇𝑚(𝑛 + 1)|𝑅𝑟

2𝑛+1 4. 35 

𝑑𝑛
⊥ = (𝜇𝑚 − 1)(𝑛 + 1) +

𝜇𝑚(2𝑛 + 1)|𝜇𝑟𝑛 + 𝜇𝑚(𝑛 + 1)|𝑅𝑟
2𝑛+1

(𝜇𝑟 − 𝜇𝑚)𝑛𝑅𝑏
2𝑛+1 − |𝜇𝑟𝑛 + 𝜇𝑚(𝑛 + 1)|𝑅𝑟

2𝑛+1 4. 36 

Considering only the first harmonic we have 

ΦI = 𝜉3
−3𝑟−4𝑌3

−3 + 𝜉3
3𝑟−4𝑌3

3 4. 37 

Where 

𝜉3
−3 = 𝐶3,−3𝑑3 = −𝑀0

𝑑3

√𝜋
(𝑎 − 𝑏𝑖)𝑐 4. 38 

𝜉3
3 = 𝐶3,3𝑑3 = −𝑀0

𝑑3

√𝜋
(𝑎 + 𝑏𝑖)𝑐 4. 39 

And substituting 

𝛷𝐼 = −𝑟−4𝑀0

𝑑3

√𝜋
(𝑎 − 𝑖𝑏)𝑐 ⋅

1

8
⋅ √

35

𝜋
⋅ 𝑒−𝑖 3𝜑 ⋅ 𝑠𝑖𝑛3(𝜃)

+𝑟−4 𝑀0

𝑑3

√𝜋
(𝑎 + 𝑏𝑖)𝑐 ⋅

1

8
⋅ √

35

𝜋
⋅ 𝑒𝑖 3𝜑 ⋅ 𝑠𝑖𝑛3(𝜃) 4. 40

 

𝛷𝐼 = 𝑟−4
𝑀0𝑑3

√𝜋
 𝑐

1

8
 √

35

𝜋
𝑠𝑖𝑛3 𝜃 [−(𝑎 − 𝑖𝑏) ⋅ 𝑒−3𝑖𝜑 + (𝑎 + 𝑖𝑏) ⋅ 𝑒3𝑖𝜑] 4. 41 

 

𝛷𝐼 = 𝑟−4
𝑀0𝑑3

𝜋
 𝑐

1

8
 √35 𝑠𝑖𝑛3 𝜃 ⋅ 2 𝑖 [𝑎 𝑠𝑖𝑛(3𝜑) +  𝑏 𝑐𝑜𝑠(3𝜑)] 4. 42 

𝛷𝐼 = 𝑟−4
𝑀0𝑑3

𝜋
 𝑐

1

4
 √35 𝑠𝑖𝑛3 𝜃 ⋅ 𝑖[𝑎 𝑠𝑖𝑛(3𝜑) +  𝑏 𝑐𝑜𝑠(3𝜑)] 4. 43 
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Now, since 

𝐵𝐼 = 𝜇0𝐻𝐼 = −𝜇0∇Φ𝐼 4. 44 

in spherical coordinates we have: 

𝐵𝐼 = −𝜇0 ⋅ (
𝜕Φ𝐼

𝜕𝑟
 𝑟̂ +

1

𝑟

𝜕Φ𝐼

𝜕𝜃
 𝜃 +

1

𝑟 sin 𝜃

𝜕Φ𝐼

𝜕𝜑
 𝜑̂ ) 4. 45 

𝐵𝑟 = 𝜇0𝑟−5
𝑀0𝑑3

𝜋
 𝑐 √35 sin3 𝜃 𝑖 [𝑎 sin(3𝜑) +  𝑏 cos(3𝜑)] 4. 46 

𝐵𝜃 = −𝜇0𝑟−5
𝑀0𝑑3

𝜋
 𝑐

3

4
 √35 sin2 𝜃 cos 𝜃 𝑖 [𝑎 sin(3𝜑) +  𝑏 cos(3𝜑)] 4. 47 

𝐵𝜑 = −𝜇0𝑟−5
𝑀0𝑑3

𝜋
 𝑐

3

4
 √35 sin2 𝜃 𝑖[𝑎 cos(3𝜑) −  𝑏 sin(3𝜑)] 4. 48 

 

Figure 20 B_r by spherical harmonic considering only the first harmonic 
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4.2 MAGNETIC EQUIVALENT CHARGE MODEL 
 

In the magnetic equivalent charge model, a permanent magnet is reduced to an equivalent distribution 

of magnetic “charges” on the surfaces of the magnet, and these charges are then used as sources in the 

magnetostatics field equation.  

For current-free regions, we have that 

∇ × 𝐻 = 0 4. 49 

∇ ⋅ 𝐵 = 0 4. 50 

In spherical coordinates, we can say that the magnetization vector is 

𝑀 = −𝑀0 𝜌̂ 4. 51 

The scalar potential can be written as [7] 

𝜙𝑚(𝑟) =
1

4𝜋
∫

𝜌𝑚

|𝑟 − 𝑟′|
𝑑𝑣 +

1

4𝜋𝑉

 ∫
𝜎𝑚

|𝑟 − 𝑟′|
𝑑𝑠

𝑠

4. 52 

𝜌𝑚 = −∇′ ⋅ 𝑀 4. 53 

𝜎𝑚 = 𝑀 ⋅ 𝑛 4. 54 

𝐵(𝑟) = 𝜇0(−∇𝜙𝑚) 4. 55 

𝐵(𝑟) = −𝜇0∇ [
1

4𝜋
∫

𝜌𝑚

|𝑟 − 𝑟′|
𝑑𝑣 +

1

4𝜋𝑉

 ∫
𝜎𝑚

|𝑟 − 𝑟′|
𝑑𝑠

𝑠

] 

= −
𝜇0

4𝜋
∫ ρm∇

1

|𝑟 − 𝑟′|
𝑑𝑣 −

𝜇0

4𝜋𝑉

 ∫ M ⋅ n ∇
1

|𝑟 − 𝑟′|
𝑑𝑠

𝑠

4. 56 

with 

∇
1

|𝑟 − 𝑟′|
= −

1

2

1

𝑎
3
2

[
𝜕𝑎

𝜕𝜌
𝑒̂𝜌 +

1

𝜌

𝜕𝑎

𝜕𝜃
𝑒̂𝜃 +

1

𝜌 sin 𝜃

𝜕𝑎

𝜕𝜑
𝑒̂𝜑]  4. 57 

where 

𝑎 = 𝜌2 + 𝜌′2 − 2𝜌𝜌′[sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′] 4. 58 

And substituting we obtain: 

 

∇
1

|𝑟 − 𝑟′|
= −

1

𝑎
3
2

{

𝜌 − 𝜌′(sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′)𝑒̂𝜌

−𝜌′(cos 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) − sin 𝜃 cos 𝜃′)𝑒̂𝜃

𝜌′(sin 𝜃 sin 𝜃′ sin(𝜑 − 𝜑′))𝑒̂𝜑

4. 59 

 

The surface normals in spherical coordinates are expressed by 𝜃, 𝜑 since the surface is also spherical. 

If we call 𝛼, 𝛽, Θ respectively the angular width, angular height, offset angle along 𝜃,  the normals of the 

six faces of a tile become: 

𝑛1 = sin 𝜑 cos 𝜃 𝑒̂𝑥 + sin 𝜑 sin 𝜃 𝑒̂𝑥 + cos 𝜑 𝑒̂𝑧 =  −𝑛3 

𝑛2 = − sin
𝜙0

2
𝑒̂𝑥 + cos

𝜙0

2
𝑒̂𝑧 
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𝑛4 = − sin
𝜙0

2
𝑒̂𝑥 + cos

𝜙0

2
𝑒̂𝑧 

𝑛5 = − sin 𝜃1 𝑒̂𝑥 + cos 𝜃1 𝑒̂𝑦 

𝑛6 = sin 𝜃2 𝑒̂𝑥 − cos 𝜃2 𝑒̂𝑦 

And the infinitesimal surface element 𝑑𝑆 for the integrals are 

𝑑𝑆1 = 𝜌0
2 sin 𝜑 𝑑𝜃𝑑𝜑 

𝑑𝑆3 = 𝜌𝑖
2 sin 𝜑 𝑑𝜃𝑑𝜑 

𝑑𝑆2,4 = 𝜌𝑑𝜌𝑑𝜃 

𝑑𝑆5,6 = 𝜌 sin 𝜃 𝑑𝜌𝑑𝜑 

 

We have that 

𝑛1 =  𝜌̂  

𝑀 = 𝑀0𝜌̂        

Which give the following expressions for magnetic surface charge densities: 

𝜎𝑚1
= −𝜎𝑚2

= 𝑀0 

Considering only surfaces 1 and 2, where the radii are 𝜌1 and 𝜌2 respectively, we get that the radial 

component of the magnetic flux density can be calculated as[21]: 

 

𝐵𝑟(𝑟, 𝜃, 𝜑) = −
𝜇0𝑀0

2𝜋
∭

𝜌′ sin(𝜃′) [𝜌 − 𝜌′(sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′)]

(𝜌2 + 𝜌2′
− 2𝜌𝜌′[sin(𝜃) sin(𝜃′) cos(𝜑 − 𝜑′) + cos(𝜃) cos(𝜃′)] )

3
2

𝑑𝜌′𝑑𝜑′𝑑𝜃′ +  

   +
𝜇0𝑀0

4𝜋
∬

𝜌2
2 sin(𝜃′) [𝜌 − 𝜌2(sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′)]

(𝜌2 + 𝜌2
2 − 2𝜌𝜌2[sin(𝜃) sin(𝜃′) cos(𝜑 − 𝜑′) + cos(𝜃) cos(𝜃′)] )

3
2

𝑑𝜑′𝑑𝜃′ + 

−
𝜇0𝑀0

4𝜋
∬

𝜌1
2 sin(𝜃′) [𝜌 − 𝜌1(sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′)]

(𝜌2 + 𝜌1
2 − 2𝜌𝜌1[sin(𝜃) sin(𝜃′) cos(𝜑 − 𝜑′) + cos(𝜃) cos(𝜃′)] )

3
2

𝑑𝜑′𝑑𝜃′ 4. 60 
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Figure 21 Surface plot of B_r 

 

 

Figure 22 B_r at 𝜃 = 90° 
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4.3 FINITE ELEMENT MODEL 
 

A finite element model is developed using the software Ansys Maxwell[22], which uses FEM to perform 

the magnetostatics analysis. Numerical solution of such equations is based on T-Ω formulation in which 

Ω is nodal-based magnetic scalar potential, defined in the entire solution domain, and T is edge-based 

electrical vector potential, defined only in the conducting eddy-current region 

4.3.1 𝑩𝒓 on plane XY 

 

As can be seen in the graph below, the magnetic flux density along the equator, at a distance 0.5mm 

from the rotor, varies between 0.3T and -0.30T. Notice the significant discontinuities at the boundary 

between different permanent magnets. 

  

Figure 23 Plot of B_r on the XY plane 

 

 

Figure 24 Plot of B_r on the XY plane at r=26.5mm and \theta=90°  
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4.3.2 𝑩𝒓 on plane YZ 

 

As can be seen in the graph below, the magnetic flux density along the meridian, at a distance 0.5mm 

from the rotor, varies between 0.30T and -0.30T. Notice the effect of the equatorial permanent magnet 

and that of the top and bottom magnet. 

 

 

Figure 25 Plot of B_r on the XZ plane 

 

 

Figure 26 Plot of B_r on the XZ plane at r=26.5mm and \phi=0° 
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4.4 COMPARISON OF 𝐁𝐫  
 

The following graph summarizes the result from the two analytical model as well as comparing them 

with the FEM model. 

 

Figure 27 Comparison of finite element, magnetic charge and spherical harmonics models 

Notice how the spherical harmonic result are quite far from the other two models. This is mainly due 

to the fact that only the main spherical harmonic was considered. To improve the results, it’s possible, 

although more computationally expensive, to take into account higher order spherical harmonics. 
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5 TORQUE MODELLING 

5.1 LORENTZ TORQUE 
Lorentz force is commonly defined as the combination of electric and magnetic force on a point charge 

due to electromagnetic fields, so considering a single charge 𝑞 moving with speed 𝑣 we have: 

𝐹 = 𝑞 𝐸 + 𝑞 𝑣 × 𝐵 

For a continuous charge distribution, the equation becomes 

𝑑𝐹 = 𝑑𝑞 (𝐸 + 𝑣 × 𝐵) 

Or dividing by the volume 𝑑𝑉:  

𝑓 = 𝜌(𝐸 + 𝑣 × 𝐵) 

And since the we can write the current density as 𝐽 = 𝜌 𝑣 we obtain the volume integral 

𝐹 = ∫ (𝜌𝐸 + 𝐽 × 𝐵)𝑑𝑉
𝑉

 

And by using the definition of electric current 𝐼 and considering a stationary wire, we can write 

𝐹 = 𝐼 ∫ 𝑑ℓ × 𝐵
𝑉

 

The torque can be written as the cross product of the moment arm 𝑟 and the force 𝑑𝐹 so 

𝑑𝑇𝑖 = 𝑟 × 𝐼𝑑ℓ × 𝐵𝑟 

And the torque generated by the i-th coil is then[19] 

𝑇𝑖 = 𝐼 ∫ 𝑟 × 𝑑ℓ × 𝐵𝑟𝑑𝑉
𝑉

 

5.2 VIRTUAL TORQUE 
To compute the torque on an object, Ansys Maxwell uses the principle of virtual work. In general, this 

can be expressed as  

𝑇𝐵 =
𝑑𝑊(𝜃, 𝑖)

𝑑𝜃
|

𝑖=𝑐𝑜𝑛𝑠𝑡

 

where W is the magnetic coenergy of the system defined as  

𝑊 =
1

2
∫ 𝐵 ⋅ 𝐻 𝑑𝑉

𝑉

 for linear material 

𝑊 = ∫ 𝑤𝑐 ⋅ 𝑑𝑉 = ∫ (∫ 𝐵 ⋅ 𝑑𝐻
𝐻

0

) 𝑑𝑉
𝑉𝑉

 for nonlinear materials 

Unlike the classical virtual work method, the object is not actually rotated during the force computation, 

and only the outside tetrahedra are virtually distorted, without need to solve the system again. This way, 

the change in coenergy is given by the change in the coenergy of these tetrahedra[23]. 
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5.3 SPINNING TORQUE 
 

 

Figure 28 T_z in the range 𝜙 0-60° 𝜃 -16-+16 

In Figure 7 the spinning torque due to the excitation of a single coil is shown.  

Note how the spinning torque increases with the rotational angle up until it reaches 30° and then 

starts to decrease. 

 

Figure 29 T_z at various rotated positions around the z-axis 

From Figure 8 it can be clearly seen that spinning torque has a linear relationship with the current 

applied to the coil. 
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Figure 30 Change in spinning torque with changes in the applied current 

Figure 9 shows the spinning torque obtained when the rotor is in a tilted position. It can be seen that 

the spinning torque has only a slight decrease when the rotor is tilted. By looking at the Torque surface 

in Figure 10, we can see that this holds true for most of the tilting range, even if the surface is 

somewhat rough due to the low number of points caused by the very long computational time require 

by the FEM analysis. 

 

Figure 31 T_z in tilted position ($theta = 12°) 

 

Figure 32 Torque with complete set of coil 
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5.4 TILTING TORQUE 
 

The graphs in this section show tilting torque values when a single set of tilting coil is excited, for 

various angular positions of the rotor and values of the exciting current. 

 

Figure 33 T_y when varying 𝜃 
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6 VARIATIONS CONSIDERED 

6.1 IRON CORE 
 

Figure X shows the variation in B_r when considering a spherically shaped iron core positioned at 

centre of the rotor. While the difference in B_r is significant, the coreless configuration was chosen to 

keep the rotor lightweight. 

 

Figure 34 B_r comparison between air core and iron core 

6.2 EQUATORIAL MAGNETS THICKNESS 
 

Figure X presents the variation of the radial component of the magnetic field 𝐵𝑟, as calculated by the 

magnetic charge model, when the thickness of the permanent magnet is changed. It’s clear that thicker 

permanent magnets provide a stronger magnetic field while thinner ones produce weaker ones. 

 

Figure 35 B_r for different PM thicknesses (from 4 to 8mm, 0 value at 6mm) 
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6.3 STATOR COIL LAYOUT 

6.3.1 Disk Coils 

 

This layout uses 6 disk shaped coils evenly spaced around the z-axis. 

 

Figure 36 Actuator model with disk-shaped coils 

 

Figure 37 Spinning torque with disk coils 

Note how the spinning torque obtained in this configuration quickly drops off outside the maximum 

torque position. This is due to the increase in air gap between the coil and the permanent magnets, as 

the coil does not follow the curvature of the permanent magnets. 
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6.3.2 Close Coils 

 

This layout presents 6 coils evenly spaced around the z-axis of the rotor. The coil is shaped to follow 

the shape of the outer surface of the permanent magnets as close as possible. 

 

Figure 38 Rotor model with close fitting coil 

 

Figure 39 Spinning torque with close fitting coil 

This configuration shows a wide range of almost constant T_z since air gap is constant. 
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6.3.3 Far Coils 

 

The coils in this layout are shaped to have two active vertical sides, placing the horizontal ones far 

enough that their interactions with the permanent magnets is negligible.  

 

Figure 40 Actuator model with "far" coils 

 

Figure 41 Spinning torque with "far" coils 
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6.3.4 Comparison 

 

The graph in Image shows the spinning torque achieved by each of the previous three configurations 

when only one coil is excited with the same current [i][A*turns] 

 

Figure 42 Comparison between coil layouts 

Notice how both “Far” and “Close” have a wider range in which they produce torque, due to better 

following the shape of the rotor. 

The configuration “Close” is the better performing of the three and is the one chosen in this work.  
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7 CONCLUSIONS 

 

Actuators capable of performing spherical motions are increasingly used in industry thanks to their 

applications in areas such as robotics and advanced manufacturing. 

In this work, an overview of spherical motor generators was presented, especially with regards to 

spherical permanent magnet actuators, along with modelling techniques for the magnetic flux density 

field. 

After the overview, a design of spherical permanent magnet actuator is presented that can achieve 

rotation on all three axes. 

Spherical harmonic, magnetic equivalent charge and FEM models were then used in the computation of 

the magnetic field of the designed spherical PM actuator. The spherical harmonic model was 

implemented in Mathematica, the magnetic equivalent charge model was implemented in both 

Mathematica and MatLab, but the MatLab one was used for the final calculations as its numerical 

integrator is faster. Finally, the FEM model was developed with Ansys Maxwell. 

The models show good agreement with each other, but the spherical harmonic model needs a higher 

number of harmonics to be taken in consideration when performing the calculation, increasing its 

computational cost. 

FEM simulations show that a significant rotational torque can be achieved, while tilting torque is much 

lower but still acceptable. Compared to other designs in literature, the torque produced is lower, but the 

structure is smaller and doesn’t contain ferromagnetic components.   

Some design variations were explored, particularly regarding the stator coils responsible for the 

spinning motion. Out of the three coil designs compared, although the shape is more complex than 

other solutions, the one with the highest spinning torque is chosen, as its torque also stays higher in a 

wider angular range.  
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8 APPENDIX – CODE 

8.1 NBR.M 
Numerically solves the integrals to calculate the radial component of the magnetic flux density field 

B_r by the magnetic charge equivalent method in a given position. 

function [br] = nBr(i,r,t,p) 

  mu0 = pi*4e-7; 

  M0 = -8.38e5; 

  

  r1 = 20e-3; 

  r2 = 26e-3; 

  pI = deg2rad([0, 60, 120 , 180, 240, 300]); 

  pF = pI + deg2rad(60); 

  tI = deg2rad(60); 

  tF = deg2rad(120); 

  

  

  vol = @(rp,tp,pp) (-1).^(i-1).*(M0.*mu0.*rp.*sin(tp).*(-

r+rp.*cos(t).*cos(tp)+rp.*cos(p-pp).*sin(t).*sin(tp)))./ ... 

   (2.*pi)./((r.^2+rp.^2-2.*r.*rp.*(cos(t).*cos(tp)+cos(p-

pp).*sin(t).*sin(tp)))).^(3/2); 

  

  surf1 = @(tp,pp) (-1).^(i-1).*(M0.*mu0.*r1^2.*sin(tp).*(-

r+r1.*cos(t).*cos(tp)+r1.*cos(p-pp).*sin(t).*sin(tp)))./ ... 

   (4.*pi)./((r.^2+r1^2-2.*r.*r1.*(cos(t).*cos(tp)+cos(p-

pp).*sin(t).*sin(tp)))).^(3/2); 

  

  surf2 = @(tp,pp) (-1).^(i-1).*(M0.*mu0.*r2^2.*sin(tp).*(-

r+r2.*cos(t).*cos(tp)+r2.*cos(p-pp).*sin(t).*sin(tp)))./ ... 

   (4.*pi)./((r.^2+r2^2-2.*r.*r2.*(cos(t).*cos(tp)+cos(p-

pp).*sin(t).*sin(tp)))).^(3/2); 

   

  nsu1 = integral2(surf1, tI,tF, pI(i),pF(i)); 

  nsu2 = integral2(surf2, tI,tF, pI(i),pF(i)); 

  nvol = integral3(vol, r1,r2, tI,tF, pI(i),pF(i)); 

  

  br = -nsu1+nsu2-nvol; 

end 
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8.2 NUMERICALCHARGE.M 
Use the magnetic charge equivalent model to graph B_r on the equator and also obtain a 3D graph. 

disp('Section 1') 

clear 

pp = linspace(0,2*pi); 

bi = zeros(length(pp),1); 

br = bi; 

  

for i=1:6 

  j = 1; 

  for p=pp % calculate the value around the equator for the 

i-th magnet 

    bi(j) = nBr(i,26.5e-3,pi/2,p); 

    j = j+1; 

  end 

  br = br+bi; % sum the field due to each magnet 

(superposition) 

end 

  

save('numericalcharge.mat', 'pp', 'br') 

plot(pp, br) 

  

%%  

disp('Section 2'); 

clear 

close 

redo = true; 

if isfile('numericalcharge3D.mat') && ~redo 

  disp('using saved distribution...'); 

  load('numericalcharge3D.mat') 

else 

  disp('recalculating...'); 

  pp = linspace(0, 2*pi,42); 

  tt = linspace(0, pi,21); 

  bi = zeros(length(pp),length(tt)); 

  br3D = bi; 

  

  for i=1:6 

    j = 1; 

    for p=pp  

      k = 1; 

      for t=tt 

        bi(j,k) = nBr(i,26.5e-3,t,p); 

        k = k+1; 

      end 

      j = j+1; 

    end 
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    br3D = br3D +bi;  

  end 

   

  save('numericalcharge3D.mat', 'pp', 'tt','br3D') 

  disp('saved distribution to file'); 

end 

[X,Y] = meshgrid(rad2deg(tt),rad2deg(pp)); 

surf(X,Y,br3D,'FaceColor','interp') 

xlabel('\theta [°]')  

ylabel('\phi [°]') 

zlabel('B_r [T]') 

axis([0 180 0 360 -0.6 0.6]) 

colorbar 

8.3 ACTSPHERICAL.M 
Compare Magnetic Equivalent Charge and FEM models. 

th1=deg2rad(60); 

th2=deg2rad(120); 

ph1=deg2rad(0); 

ph2=deg2rad(60); 

r1 = 20e-3; 

r2 = 26e-3; 

lenBrFEA = csvread('./brHor.csv',1,0); 

len = lenBrFEA(:,2); 

BrFEA = lenBrFEA(:,3); 

x = len; 

br = zeros(length(x),1); 

for i=1:length(x) % loop unrolling 

  p=x(i); 

  br2 = 0; 

  br2 = br2 + -1 * nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(0)*ph2,1*ph2); 

  br2 = br2 + nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(1)*ph2,2*ph2); 

  br2 = br2 + (-1) * nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(2)*ph2,3*ph2); 

  br2 = br2 + nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(3)*ph2,4*ph2); 

  br2 = br2 + (-1) * nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(4)*ph2,5*ph2); 

  br2 = br2 + nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(5)*ph2,6*ph2); 

  br(i) = br2; 

end 

plot(x,br,len,BrFEA); 

grid on; 

legend('CRG','FEM') 
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8.4 VARTHICKNESS.M 
Calculate B_r for differing PM thickness with MCM. 

th1=deg2rad(60); 

th2=deg2rad(120); 

ph1=deg2rad(0); 

ph2=deg2rad(60); 

  

r2 = 26e-3; 

thickness = 6e-3; 

r1 = r2-thickness;  

  

x = linspace(0,2*pi); 

br = zeros(length(x),5); 

for j=1:5 

  if j==2 

      r1 = r2-thickness-1e-3; 

  elseif j==3 

      r1 = r2-thickness+1e-3; 

  elseif j==4 

      r1 = r2-thickness-2e-3; 

  elseif j==5 

      r1 = r2-thickness+2e-3; 

  end 

  for i=1:length(x) % loop unrolling 

    p=x(i); 

    br2 = 0; 

    br2 = br2 + -1 * nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(0)*ph2,1*ph2); 

    br2 = br2 + nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(1)*ph2,2*ph2); 

    br2 = br2 + (-1) * nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(2)*ph2,3*ph2); 

    br2 = br2 + nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(3)*ph2,4*ph2); 

    br2 = br2 + (-1) * nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(4)*ph2,5*ph2); 

    br2 = br2 + nBr(26.5e-3, pi/2, p, r1,r2, th1,th2, 

(5)*ph2,6*ph2); 

    br(j,i) = br2; 

  end 

end 

plot(x,br(1,:),x,br(2,:),x,br(3,:),x,br(4,:),x,br(5,:)); 

grid on; 

legend('0','+1','-1','+2','-2') 
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8.5 SPHERICAL.NB 
Calculate B_r by spherical harmonics method. 

 

μ0 = 4π*10-7; μm = 1.1; 

M0=-8.38*10^5; 

Num = 6; (* Num of magnets *) 

p∈Range[1,Num]; 
(*$Assumptions = {-α/2+λ < φ<α/2+λ,  π/2-β <θ<π/2+β};*) 

Rr = 26*10-3;Rb= 20*10-3; 

α=N[60°];β=N[30°]; 

λ[p_]:=  2π (p-1)/Num; 

 

Cnk[p_,n_,k_]:=Integrate[M0*(-1)p-1*Cos[pp-

λ[p]]SphericalHarmonicY[n,k,tt,pp]*Sin[tt]2, {pp,λ[p] ,α+λ[p]

},{tt, π/2-β ,π/2+β}]; 

 

dxia[n_]:=Rrn+2+(μm (2 n+1) Rbn+2 Rr2 n+1)/(n (μr-

μm) Rb2 n+1-Rr2 n+1 Abs[(n+1) μm+n μr]); 

 

dshang[n_]:=(μm (2 n+1) (Abs[μr n+μm (n+1)] Rr2 n+1))/(n (μr-

μm) Rb2 n+1-Rr2 n+1 Abs[(n+1) μm+n μr])+(μm-1) (n+1); 

 

d[n_]:=-(dxia[n]/dshang[n]); 

 

ξ[p_,n_,k_]:=Cnk[p,n,k]*d[n]; 

 

Φ[p_,n_,k_]:=ξ[p,n,k]*SphericalHarmonicY[n,k,θ,ϕ]*r-

(n+1);(* +ξ[p,n,-k]*SphericalHarmonicY[n,-k,θ,ϕ]*r^-(n+1);*) 

 

Brp[p_,n_,k_] := -μ0*D[Φ[p,n,k],r]; 

 

xx = Table[ϕ,{ϕ,0,2π,π/30}]; 

yy = Table[Sum[Brp[p,3,3],{p,1,Num}]/. {θ->N[90°],r->26.5*10-

3},{ϕ,0,2π,π/30}]; 

ListLinePlot[Transpose[{xx,Re[yy]}],Ticks->{Range[0°,360°,30°

],Automatic}] 

 

Export["C:\\Users\\stisa\\OneDrive\\Universita\\Quinto Anno\\

ThesisM\\spr.csv",N[Transpose[{xx,Re[yy]}]],"CSV"]  
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