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A B S T R A C T

The aim of this thesis is to introduce a new concept of distributed radiating
and oscillating device by investigating and manipulating some dispersive
properties of particular periodic structures based on planar technology.

Floquet-Bloch modes describe the propagation of electromagnetic waves
in periodic transmission lines. Two-port periodic guiding structures allow
the occurrence of regular band edge (RBE), that is a fundamental class of
exceptional point of degeneracy (EPD). Under these special dispersion con-
ditions, both the two system eigenvectors and eigenvalues coalesce. This rep-
resents a standing wave where energy is not flowing through the periodic
circuit.

A description of the wide range of applications in which dispersive de-
generacy conditions have crucial importance is presented. As an example
the reader will notice how it is possible to have better control of beam and
directivity in fast travelling wave radiators, to allow the design of high Q-
factor and high spectral purity oscillators and obtain sensors with enhanced
sensitivity.

After a basic introduction to radio frequency and microwave oscillators,
leaky wave antennas and to the basis of the periodic structures mathemat-
ical model, the attention is eventually focused on the general transmission
line theory of exceptional points of degeneracy. For these structures, the
central concept of gain (introduced by active devices) and loss (ohmic and
radiation) balance is presented, pointing out how symmetries are involved
in determining whether or not an EPD can exist.

As a final result of the study, two microstrip ladder oscillators schemes
based on regular band edge are proposed. Microstrip lines, interdigitated
capacitors and non-linear active devices are conveniently arranged in asym-
metric and folded structures able to provide a stable oscillation, high spec-
tral purity, high loaded Q-factor, ability to radiate at the oscillation frequency
along with a simple design.

Finally, a last section presents some considerations about the possibility
of having oscillation in looped ladder structures. Where the behaviour of an
infinitely long periodic structure is reproduced, EPD can be ideally retrieved
by providing gain. Operating near such special degeneracy conditions fur-
ther improvements appear, leading to potential performance enhancement
in a broad variety of microwave and optical devices.
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1 I N T R O D U C T I O N

1.1 background and thesis aim

An exceptional point of degeneracy (EPD) is a singularity in waveguiding struc-
tures dispersion diagram (DD) at which eigenvectors are collinear and eigen-
values degenerate [1]. Waves travelling in systems able to operate at these
points experience substantial reduction of group velocity. Hence, structures
capable of supporting these extremely slow modes, exhibit very high quality
factor Q [2], [3] and spectral purity, being also very well suited for appli-
cation including filters-resonators [4], high-power microwave generation [5]
and oscillators [6].

background Coupled periodic transmission lines [7], periodically loaded
waveguides [8], anisotropic dielectric stacks and microwave cavities [3] are
some example of one dimensional periodic structures exhibiting EPDs. All
the information regarding wave propagation and frequency dispersion are
contained in the unit cell, the basic block defining the periodicity, and can be
extracted through its ABCD parameters, also known as transmission matrix
(T) [9]. The diagonalization of T provides the system eigenvalues λ and its
associated eigenvectors ψe(z). This set of parameters represents the complex
wave number λ = α + jβ and the associated orthonormal basis that defines
all the possible combinations of waves that can propagate in the structure,
expressed as ψ(z) = ψ0e±λz. Wherever two or more eigenvalues and they
relative eigenvectors degenerate in the DD, i.e. they collapse in a set of one
only (λ,ψe), there an EPD is found [10]. Moreover, the number of coalescing
eigenvalues defines the order m of the EPD, for instance: 2nd order in case of
a regular band edge (RBE), 4th order in case of degenerate band edge (DBE) [2].
If the degeneracy appears T becomes defective and looks as a Jordan Block
[10]. These degeneracies usually are located at the edges of first Brillouin
zone (FBZ) where the propagating wave phase shift is βd = 0, π, and disper-
sion relation can be approximated as (ω − ωe) ∝ (β− βe)m. Group velocity
vg = dω / dβ is null at (ωe, βe) and much more smoother close in the vicinity
of this point for increasing values of m. Therefore, at EPDs group velocity
vanishes, group delay dramatically in a narrower bandwidth inducing an
increment in quality factor Q and frequency selectivity of the periodic struc-
ture. EPDs do not exist in practice both because infinite periodic structures
do not exist and because the presence of losses and the and in RF, MW and
optic devices. By compensating losses through gain [10] or manipulating
structures topology [4] an EPD can be ideally retrieved also in real cases.

motivations and aim of the thesis Recent research interest in struc-
tures exhibiting EPDs has arised in a number of applications, spanning from
particles sensing [11] ad high transmission gain Fabry-Pérot lasers in optics
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2 introduction

[3] to narrow beam antennas [10] and high power electron beams [5], [12] in
electronics. Many research papers have laid the foundation and the formal-
ism to better understand how to engineer and recognise the presence of an
EPD in finite periodic structure and coupled transmission lines [4], [7], [13].
In particular, the design of EPD oscillators has recently received a surge of
interest thanks to their capability of exhibiting ultra-high quality factors, ex-
tremely pure oscillation spectra and very low noise characteristics [8], [14].
An example is in [6], where two topologies of ladder oscillators are realised
by means of purely LC circuits exhibiting oscillation around RBE frequency
for the former and DBE frequency for the latter, respectively. In particular, it
must be recalled that the order of degeneracy is at most equal to the number
of terminations of a given cell (two in case of a single ladder and four, in
case of a double ladder).

The single ladder, has N cascaded cells closed on a termination load and
its topology exhibits some very peculiar properties uniquely related to the
presence of an RBE, namely: the minimum driving point admittance, gs,
scales as 1/N3, the total Q-factor is proportional to N3, the voltage waveform
peak is barely independent on the used driving point admittance above sturt-
up threshold and load change are very well sustained and mode jumping is
not present. Besides, the oscillation frequency ωr shift from RBE frequency
ωe is proportional to 1/N2. Even if this structures have been proven to ex-
hibit EPDs they are or realised with lumped elements, or by means of loaded
waveguides. No mention in literature is present about the realization of this
kind of topology by means of microstrip lines. Relying on the previous as-
sumptions, one question may be posed: (i) is it possible to design any other EPD
oscillating structures based on microstrip technology?

Another challenging aspect can be brought to light. Previously it has been
mentioned that loss (conduction, dielectric and radiation) can be ideally com-
pensated by inserting gain in the structure. At input port this would make
the circuit to look very similar to a purely reactive resonator. However, loss
compensation would not be distributed, but rather present in a discrete lo-
cation. Therefore, a consistent part of the circuit could still present radiation
loss if conveniently designed. Moreover, it is necessary to recall that an high
Q-factor implies a small amount of losses, whereas the presence of radiation
resistance is in contrast to this. So, the next design question would be: (ii)
is it an EPD condition sufficient oscillator also able to radiate, even if this is in
contrast to having a large Q-factor?

The aim of this Thesis is then to answer to both design questions (i) and (ii)
through the derivation, simulation and characterization of novel oscillator schemes
based on exceptional points of degeneracy.

personal contribution In order to answer to design questions (i) and
(ii) an eight cells single ladder RBE oscillator have been realised. The EPD
is located at βd = 0. The first design step of a suitable resonating element.
An interdigital capacitor has been employed and designed to maximise its
radiation resistance and minimize phase shits among radiating edges on its
surface. After that, two access lines have been added to realise the unit cell.
Asymmetric access lines turned out to be more convenient to obtain EPD at
centre FBZ. The final layout area is approximatively 18 mm× 18 mm. Then,
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the unit cell is then simulated in full wave simulator and characterized to
successfully verifying that an EPD could be retrieved by adding gain.

Next, a certain number of unit cell is cascaded to realize the actual res-
onator. The characterisation of the loaded quality factor suggests that using
8 cells loaded with a short circuit the structure behaves almost as an infinite
periodic structure. After gain is added, provided by means of the equiva-
lent model of a nonlinear cubic voltage controlled current source, it is then
proved that the structure is an RBE oscillator. In fact, the figures of merit
related to single ladder RBE oscillators are verified to be featured by the de-
sign (for instance gs = 1/N2.7). In particular the phase shift between each
cell is 8 deg, meaning that the oscillator is actually working very close to
βd = 0, i.e. the band edge (each cell in phase with the others). Moreover,
resonance frequency fr = 2.535 GHz is slightly shifted from EPD frequency
fe = 2.4561 GHz. Besides, maximum loaded quality factor is Qt,max ≈ 2000
and minimum driving point impedance is ge,min = 5.8 mS.

The next step it to perform eigenmode simulation by means of fullwave
simulator to verify the T-matrix method validity and analysing field topol-
ogy of the radiating mode. The radiating mode turns out to be the first
n = −1 Floquet harmonic (see Chapter 5 for reference).

Full wave frequency domain simulations eventually suggest that the os-
cillator does not show particularly remarkable radiation properties. In fact
even if the radiating mode is a leaky wave and the structure is working
as leaky wave antenna (LWA), radiation efficiency is low due to large con-
duction and dielectric losses (ηnc ' −15 dB for the lossless structure versus
ηnc ' −30 dB in lossy). This result suggests that the oscillator may be used
as nearfield source rather than farfield (|Epk| ' 0.7 V/m at 0.5 m from the
structure, with an excitation of 0.5 W). Keep in mind that this result has been
obtained without the addition of gain, because of simulation limitation. The
actual structure could therefore present significant enhancements. Further
steps such as a prototype realization and topology improvements are under
investigations.

1.2 thesis outline

The Thesis is organized in eight chapters:

• Chapter 1: an overview on the work developed is outlined, along with
the Thesis motivations and aims.

• Chapter 2: the state of art about the research on EPDs is presented,
along with some applications based on this concept.

• Chapter 3: some basic details about RLC resonators are given. The
interdigital capacitor resonator is presented.

• Chapter 4: theory of oscillators is presented along with some figure
of merit. Some configurations of negative resistance oscillators are de-
scribed.
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• Chapter 5: the detailed and rigorous mathematical model for periodic
structures based on transmission matrix method is presented. EPD the-
ory in periodic structures is deeply analysed. This is the core theoreti-
cal chapter and the reader is invited to start the reading from here.

• Chapter 6: basic antenna theory and formalism is developed. Working
principles of periodic leaky wave antennas are explained in detail.

• Chapter 7: the design and characterisation of an RBE oscillator is pre-
sented. At the chapter end two more circuits are introduced and they
are currently under investigation.

• Chapter 8: conclusion about the developed work and future works are
introduced.
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2 T H E S TAT E O F T H E A R T

2.1 exceptional points of degeneracy: overview
and applications

In literature an exceptional point of degeneracy (EPD) is defined as a point
in the parameters space describing frequency dispersion of a structure, in
which two or more system eigenmodes and eigenvalues coalesce [1]. This
particular condition usually takes place at singularities of the dispersion
diagram, where group velocity vanishes and some properties of the system
may be enhanced. In practice, they can be found in lossless waveguides
operating at cutoff frequency or at the band edge of periodic structures and
more in general in both electronic [7], [8], [12] and optical [2], [4], [15] devices
conveniently engineered.

Figure 2.1: Sketch of the dispersion diagram with three different degeneracies: sec-
ond order (RBE), third order (SIP) and fourth order degeneracy (DBE),
respectively [4].

Simple degeneracy, regarding eigenvalues or eigenmodes only is a much
weaker state than what one has with EPDs. In fact, the former condition
originates a diabolic point (DP) or double semi-simple eigenvalue, where two
eigenvalues coalesce in the dispersion diagram [11]. Whether the former
condition is less demanding, on the contrary to have an EPD two conditions
must concurrently verify [10]:

• Eigenvalues, λi, geometrical multiplicity is larger than algebraic multi-
plicity, i.e. they degenerate;

• Eigenmodes, ψi, associated to λi coalesce (they are superposed).

Another key difference between the two kinds of singularities lies in the
different response that a system operating around and EPD shows in case of
different perturbation. A perturbation ε can be a change in the system design
parameter, a variation in working condition or in external excitations. The
effect produced by ε traduces in a degeneracy disappearance and also known
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8 the state of the art

as mode splitting. In case of DP the eigenmode splitting is proportional to
perturbation strength ε, whereas in case of EPD the splitting scales as ε1/m,
with m the order of degeneracy, i.e. the number of coalescing eigenmodes
and eigenvectors. The result is that for a sufficiently small perturbation ε, the
splitting at the exceptional point is larger meaning that they exhibit larger
sensitivity to external stimuli, if they are sufficiently small [11]. Though, this
property represents both a benefit and a drawback. In fact, EPDs result to be
extremely sensitive to change in system and external parameters, meaning
that they are very difficult to observe in practice.

A first proof of EPDs existence and measurability has been observed in
microwave microcavities by Dembowski et al. in 2001 [16]. After this experi-
ment, a surge of interests on this topic arised in solid state physics, and EPDs
have became to be observed in many different systems such as in coupled
atom-cavity systems [17], microwave cavities [18], [19] and optical microcav-
ities [20], [21].

The simplest EPD can be found in uniform hollow waveguides, having
in mind the dispersion relation close to cutoff frequency [8]. In this case
backward and forward modes coalesce approaching β = 0 in the dispersion
diagram. In this instance, two eigenmodes and two eigenvalues degenerate
represents a 2nd order degeneracy (figure 2.1), i.e. a regular band edge (RBE)
[22]. Applications of RBE can be also found in high power electron beam
oscillators such as [5]. Similarly a 3rd order degeneracy, or stationary inflec-
tion points (SPI), can be defined if the degeneracy is threefold. Evidences of
third order degeneracies can be found for instance in coupled resonator op-
tical waveguides [4]. The same applies to a fourth order EPD, also known as
degenerate band edge (DBE), that can be observed for example in Fabry-Pérot
cavities based on anisotropic stratified dielectric stacks [2] and coupled trans-
mission lines [7].

The feature that makes EPDs so valuable if present in a system, is a set
of properties related to frequency dispersion. For instance, a structure that
exhibits an EPD of order m, shows a dispersion relation that can be asymp-
totically approximated around the singularity as:

(ω−ωe) ∝ (β− βe)
m (2.1)

where ω and β are the angular frequency and the guided wavenumber,
whereas the point (βe, ωe), designed by the subscript e, defines the degen-
eracy location [10]. Moreover, modelling a device operating with its system
matrix, one has that it is defective at EPD. Under this assumption (demon-
strated in [10]) the matrix is a Jordan block, whose solution eigenmodes
can be expressed as ψ(z) ∝ zq−1ejkzψ

q
0(z), with q = 2, 3, . . . , m, and ψ

q
0(z)

the generalized eigenvector [23]. As a matter of fact, RBEs usually occurs at
band edge and this condition is associated with slow-wave properties, mean-
ing that group velocity reduces there, eventually vanishing when reaching
β = 0, π/d [24]. This is one of the key properties of EPD systems. For in-
stance distributed and waveguide resonators exploiting this working prin-
ciple can support modes with extremely high group delay, featuring very
high quality factors [2], [25], [26], being hence suitable to application like
narrowband filters, high power microwave generation [5], [8], ultra high-
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(a) (b)

Figure 2.2: (a) FPC realized in [8] (top) and giant transmission gain obtained com-
pare to standard and RBE FPC (bottom). (b) CROW structure used in
[4].

Q resonator [3], ultra low-threshold oscillators [6] and narrow-beam leaky
wave antennas [7].

An example of giant Q-factor can be found in [8], where a Fabry-Pérot
cavity (FPC) resonator made of unconventional photonic crystals, composed
by three anisotropic dielectric layers, is realised (figure 2.2a). The structure
is periodic and each unit cell is a stack of three misaligned anisotropic (bir-
infrangent) layers. This kind of structure, unlike a standard or two-layers
unit-cell structure (RBE) FPC, is proved to support DBE and the authors
demonstrate that the giant enhancement in the Q-factor and transmission
power gain is related to this property.

Exceptional point of degeneracies do not exist in practice, since losses and
imperfections are omnipresent in real devices [10]. Moreover, as previously
mentioned, EPD systems are extremely susceptible to parameters variation
and perturbation.

Real systems may be reconducted to EPD by introducing gain (figure 2.3),
in a localized or distributed way, retrieving the degeneracy. This require-
ment also satisfy the Parity-Time (PT) symmetry to develop exceptional
points with gain and loss balance [7]. Coupled uniform waveguides (CW)

(a) (b)

Figure 2.3: (a) Second order degeneracy retrieved by the addition of gain [10]. (b)
Fourth order degeneracy retrieved by adding gain [7].

have been demonstrated to sustain second order EPDs thanks to gain and
loss balance condition. Normally, CW do not show EPDs except from zero
frequency, where four eigenmodes are collinear. Suppose now to have the
system in figure 2.4. One can observe that two coupled lines are present:
one of them is lossy and the other one is fed by distributed gain element.
In this condition, energy is transferred from the active line to the lossy line,
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and a second order EPD can be obtained [10]. Moreover, the use of such
a structure, paved the way to new concept of leaky wave antennas (LWA)
where ultra narrow beam and enhanced directivity can be achieved. By con-

Figure 2.4: (a) Two uniform coupled transmission lines: one is lossy whereas the
other one is active. (b) A second order EPD is obtained (the metric
|det(U)| is close to zero where degeneracy appears). (c) Extremely nar-
row beam LWAs can be conceived with EPD coupled transmission lines.
(d) Beamwidth varying with different values of mutual capacitance Cm
[10].

veniently designing periodic coupled transmission lines it is also possible
to theoretically observe fourth order degeneracy [7]. Figure 2.5 shows that
the periodic structure unit cell is made of a modulated line coupled to a
uniform microstrip by means of a metal connection. Also in this case gain
is needed to retrieve the EPD, but degeneracy can be achieved even if no
perfect PT symmetry is respected. The DD obtained is meaningful for an in-
finite structure only. Experimental demonstration of the dispersion diagram
exhibiting four quasi-coalescing eigenmodes have been reported. To obtain
resonance close to EPD frequencies, th realisation of a discrete structure re-
quires enough cascaded unit cells. The effect of having finite structure is the
shift induced in resonance frequency. Gain elements are still required induce
the EPDs and the design is currently under investigation [27].

Some coupled structures such as coupled resonator optical waveguides
(CROW) also exhibit the possibility to sustain second, third, fourth and even
sixth order EPDs, depending on the employed design [4]. The added value
of this device, showed in figure 2.2b, is the possibility to induce EPDs with-
out the need of satisfying gain and loss balance, thus breaking PT symmetry.
The proposed geometry consists of a chain of coupled ring resonators with
outer radius R. They are coupled side-by-side to a uniform optical waveg-
uide. Coupling is assumed to be present in discrete points , where the rings
are close to each other and to the uniform line. By conveniently design the as-
pect ratio of these structures large Q-factors a giant scaling can be obtained.
The word giant is used referring to the anomalous scaling law that can be
encountered dealing with geometries supporting DBEs. In particular, in this
structures Q-factor is inversely proportional to Floquet-Bloch mode group
velocity, i.e. Qvg = const, therefore, approaching a DBE, where vg = 0 one
ideally has Q = ∞ as reported in [4].

Lately, also the possibility to have EPDs induced by time-varying parame-
ters, rather has been proposed in [13]. A recent practical application of EPDs
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Figure 2.5: Design proposed in [7]: (a) unit cell, (b) realised discrete periodic struc-
ture, (c) simulation and measurement of dispersion diagram, (d) shift
from ωd in reflection and transmission parameters.

Figure 2.6: (a) Double ladder oscillator realised in [6]. (b) Minimum driving admit-
tance scales as 1/N5 for DBE structure. (c) Q-factor versus the number
of cells for different loads.

is reported in [6], where a double ladder oscillator is realised using lumped
elements (figure 2.6). Moreover single and double ladder are compared. A
gain element is introduced at the node in which the driving point impedance
is minimum, compensating for losses and guaranteeing oscillation. Being a
double ladder, this structure support four modes. In particular, thank to
DBE the double ladder presents also some enhanced features with respect
the single ladder, such as:

• Minimum value of the driving point impedance proportional to 1/N5.

• Total quality factor proportional to N5 (with maximum value propor-
tional to 104).
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• Lower oscillation threshold compared to a single ladder structure.

• Strong reduction of mode jumping, meaning that the oscillation fre-
quency is independent on the load value.

Currently a printed elements variant of the circuit is under investigation.
Even if this application is particularly well suited for low power (low thresh-
old) and low noise purposes (large Q-factor, [28]), EPDs can be also exploited
in high power applications such as distributed backward wave oscillators [5].

2.2 thesis motivation

Even if the presence of EPDs is known since the last two decades [16], [18],
[19], a recent research interest in EPDs has arised in a number of applications,
spanning from particles sensing [11] ad high transmission gain FPC lasers in
optics [2] to narrow beam antennas [10] and high power electron beams [5],
[12] in electronics. Many recently published papers have laid the foundation
and the formalism to better understand how to engineer and recognise the
presence of an EPD [4], [6], [7], [10], [13].

As mentioned in the previous section, in many application related to ra-
diofrequency, microwave electronics and optics the presence of EPDs is a
benefit. Many of the properties related to devices operation may be enhanced
because of the coalescence of system eigenmodes, paving the way to a new
class of sensors, filters, pulse forming networks. In particular, the dramatic
reduction of group velocity and the increase in loaded quality factor is a
crucial enhancement in the realization of novel oscillator schemes in which
giant resonance and ultra high spectral purity are both present, along with
low oscillation thresholds and load effect minimization.

Although some example of EPD oscillators can be found in literature [6],
[12], they are mainly based DBE and usually designed as periodic structures
of lumped elements or in bulky hollow metallic waveguides. Moreover, no
mention to radiation properties in this devices has been highlighted till now.

The aim of this Thesis is to study new single ladder oscillator schemes
based on EPDs in a simple monolithic microstrip technology, analysing how
the main figures of merit behave with respect design parameters and demon-
strating, if possible, the evidence of exceptional points of degeneracy. Fur-
thermore, the design is oriented toward topologies also able to provide ra-
diation, in order to verify if oscillation and radiation may be concurrently
present in an EPD system.
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3.1 series and parallel resonant circuits

RF and microwave resonators are widely employed in the design of filters,
frequency meters, tuned amplifiers and oscillators [9]. Although these cir-
cuits undergoes to distributed parameters circuit theory in short wavelength
regime, their working principles are very similar to those of series and par-
allel lumped RLC circuits. Figure 3.1 and figure 3.2 show two basic circuit of
series and parallel resonator respectively.

3.1.1 Series resonant circuits

1/jωC
jωLR

Zin

Figure 3.1: Series RLC resonator.

Looking at figure 3.1, the input impedance is given by:

Zin = R + jωL− j
1

ωC
(3.1)

with complex power delivered equal to:

Pin =
1
2

VI∗ =
1
2
|I|2
(

R + jωL− j
1

ωC

)
= Ploss + 2jω(Wm −We) (3.2)

where Ploss = 1
2 |I|2R is the power dissipated by the resistor, We = 1

4 |I|2
1

ω2C
is the total electric energy stored in C and Wm = 1

4 |I|2L is the total mag-
netic energy stored by the inductor. Substituting 3.2 in 3.1 and recalling that
resonance appear when Wm = We, on has:

Zin =
Ploss + 2jω(Wm −We)

1
2
|I|2

= R (3.3)

Moreover, having Wm = We one has the resonant pulsation defined as ω0 =

1/
√

LC.

15
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An important figure of merit is the resonant circuit quality factor, Q, de-
fined as:

Q = ω
average stored energy

power loss

= ω
Wm + We

Ploss
(3.4)

From which it appears that the higher is the loss the lower is Q. At resonance,
if no additional resistive loads are connected to the resonator, Q has the
maximum possible value and it is called unloaded Q, denoted by Q0. In fact:

Q0 = ω0
2Wm

Ploss
=

ω0L
R

=
1

ω0RC
(3.5)

Next, considering a small variation from ω0 given by ω = ω0 + ∆ω one can
rewrite Zin as:

Zin = R + jωL
(

ω2 −ω2
0

ω2

)
' R + j

2RQ0∆ω

ω0
(3.6)

We can finally define the half-power fractional bandwidth as the bandwidth
at which the power is 3dB below the power delivered at resonance. At this
condition ω0 ± BW/2, then ∆ω/ω0 = BW/2 and:

|Zin|2 = 2R2

|R + jRQ0(BW)|2 = 2R2

BW =
1

Q0
(3.7)

A series resonant circuit acts as a stop band filter at pulsation ω0 [9].

3.1.2 Parallel resonant circuits

1/jωCjωLR

Zin

Figure 3.2: Parallel RLC resonator.

Looking at figure 3.2, the input impedance is given by:

Zin = Y−1
in =

(
1
R
+

1
jωL
− jωC

)−1

(3.8)

Given Ploss =
1
2
|V|2

R the power dissipated by the resistor, We =
1
4 |V|2C the

total electric energy stored in C and Wm = 1
4
|V|2
ω2L the total magnetic energy

stored by the inductor, one has at resonance (or antiresonance):

Zin =
Ploss + 2jω(Wm −We)

1
2
|I|2

= R (3.9)
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The unloaded quality factor at antiresonance ω0 = 1/
√

LC is given by:

Q0 = ω0
2Wm

Ploss
=

R
ω0L

= ω0RC (3.10)

Close to resonance the input impedance can be approximated as follows:

Zin '
R

1 + j2Q0∆ω/ω0
(3.11)

Moreover the half-power fractional bandwidth is BW = 1/Q0.

3.1.3 Loaded and unloaded Q-factor

The addition of a series or a parallel load RL has the effect of lowering the
total resonator Q-factor, which takes the name of loaded Q, or QL. If a series
connection of a load with a RLC resonator is present then external Q is given
by:

Qe =
ω0L
RL

(3.12)

whereas, in case of parallel RLC group Qe is:

Qe =
RL

ω0L
(3.13)

The total loaded quality factor is thus:

QL =

(
1

Qe
+

1
Q0

)
(3.14)

3.1.4 The Coupling Coefficient and Critical Coupling

With coupling it is intended how much a resonator is matched to its attached
circuitry and how effective is the power transfer between them (not to be
confused with coupling in coupled transmission lines). A measure of the
amount of coupling is given by the coupling coefficient, defined as:

g =
Q0

Qe
(3.15)

Depending on the two Q-factors three conditions can hold:

• g < 1: undercoupled resonator.

• g = 1: critically coupled resonator.

• g > 1: overcoupled resonator

Moreover, the loaded Q-factor is:

QL =
Q0

1 + g
= Qe

g
1 + g

(3.16)

Power transfer is maximum provided that a resonator is matched with its
feeding line at resonance frequency. The resonator is said critically coupled if
this happens [9] . Moreover, it is possible to define the normalized frequency
shits corresponding to the quality factors as:

δ0 = ± 1
Q0

δL = ± 1
QL

δe = ±
1

Qe
(3.17)
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3.2 interdigitated capacitor as resonant unit

Electromagnetic coupling between closely placed lines can be exploited to
obtain capacitors in printed technology (figure 3.3a shows an example). Sev-
eral strips (fingers) are put in parallel separated by a thin gap in order to
form a periodic structure whose electrical parameters are dispersive and
nonlinear functions of the number of coupled elements. The advantage of
printed capacitors is that they can be fabricated in monolithic microwave
integrated circuits (MMIC), besides the possibility to have higher quality
factors [29]. Actually, the model describing this kind of devices is quite com-
plex, [30][29] therefore only the main approximated results are shown here.
Supposing to having a microstrip technology operating in sub-wavelength

(a) (b)

Ric
s Lic

s
Cic

s

Cic
p Cic

p

(c)

Figure 3.3: (a) Printed interdigital capacitor in microstrip technology with mi-
crostrip access lines [29]. (b) Interdigital capacitor design parameters
[29]. (c) Interdigital capacitor equivalent circuit.

regime whose parameters are defined in figure 3.3b, a possible equivalent
circuit that describes a center-tap interdigitated capacitor, CIDC, is shown
in figure 3.3c. The circuit is valid for low frequency, in order to consider
the circuit as lumped. Having a substrate with thickness h, dielectric relative
permittivity εr and N fingers with length l < λ0/4, the total gap capacitance
is given by:

Cic
s = (εr + 1)l[(N − 3)A1 + A2] (pF) (3.18)

where:

A1 = 4.409 tanh
[

0.55
(

h
W

)0.45]
× 10−6 pF/µm (3.19a)

A2 = 9.92 tanh
[

0.52
(

h
W

)0.5]
× 10−6 pF/µm (3.19b)

Instead, for what concerns the series resistance R is:

Ric
s =

4
3

l
WN

Rsq (3.20)
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where Rsq is the sheet resistivity in ohms per square for the employed con-
ductor used in the technology. Series inductance Lic

s and shunt capacitance
Cic

p are calculated through transmission line theory:

Lic
s =

Z0
√

εre

c
l (3.21a)

Cic
p =

1
2

√
εre

Z0c
l (3.21b)

It is now useful to notice that the circuit in figure 3.3c is the Π-equivalent of
the interdigital capacitor, with components:

Yic
Π1 = Yic

Π2 = jωCic
p (3.22a)

Yic
Π3 =

jωCic
s

1 + jωCic
s Ric

s −ω2Lic
s Cic

s
(3.22b)

whose associated Y matrix is given by [31]:

Yic
Π =

(
Yic

11 Yic
12

Yic
21 Yic

22

)
=

(
Yic

Π1 + Yic
Π3 −Yic

Π3

−Yic
Π3 Yic

Π1 + Yic
Π3

)
(3.23)

where:

Yic
11 = Yic

22 =
jω(Cic

s + Cic
p )−ω2Ric

s Lic
s Cic

p − jω3Lic
s Cic

s Cic
p

1 + jωRic
s Lic

s −ω2Ric
s Lic

s
(3.24a)

Yic
12 = Yic

21 = − jωCic
s

1 + jωCic
s Ric

s −ω2Lic
s Cic

s
(3.24b)

for which transformation to transmission matrix parameters can be easily
performed following well known conversion rules [9]. The quality factor Qic

and the series resonance frequency fse for the resonator are given by:

Qic
c =

1
ωCic

s Ric
s
=

3WN
ωCic

s 4lRsq
(3.25a)

fse =
1

2π
√

Lic
s Cic

s
(3.25b)

Depending on the interdigitated capacitor area and number of fingers, the
obtainable value of series capacitances and inductances are around hundreds
of fF and pH, respectively. Usually these devices are treated as lumped ele-
ments in the majority of their applications, a part for some special cases, such
as J-inverter networks used for filtering purposes [29]. Being sub-wavelength,
many loss contributions can be neglected, such as radiation losses. However,
conduction loss is kept into account through Rs, even if it can be minimized
by increasing the number of fingers. This also produces an increment in the
series capacitance. However, the capacitor could be employed as unit cell in
periodic structures. In this case, radiation could be present since electromag-
netic properties, would depend on the topology of the new circuit rather
than the single element.
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The integrated capacitor can be used as unit cell resonanting element in
a microstrip resonator. To do so, it must obviously connected to two mi-
crostrip access line. Transmission matrix satisfy the group property, there-
fore, given the series cascade of two two-ports whose transmission matrix
are TA(z0, z1) and TB(z1, z2), the overall transmission matrix is defined as
Ttot(z0, z2) = TB(z1, z2)TB(z1, z2). Therefore, by connecting the interdigital
capacitor, transmission parameters Tic, to two access lines whose T-matrix is
Ttlone has:

T = TtlTicTtl (3.26)

where the expression and the derivation for Ttl is reported for simplicity
in appendix D. The complete circuit representing the cascade of the three
blocks is reported in figure 3.4.

Ztl
T1 Ztl

T2 Yic
Π3 Ztl

T1 Ztl
T2

Ztl
T3 Ztl

T3Yic
Π1 Yic

Π2

Figure 3.4: Equivalent T −Π− T circuit for a microstrip interdigital capacitor pro-
vided with access lines.
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4.1 kurokawa’s criteria for oscillation

Oscillators are nonlinear circuits in which the interplay between an active
device and a resonating circuit produces as a result an output waveform
whose frequency content and amplitude are fixed by the circuit itself. In
particular, the purer is the output spectrum (ideally one-tone), the better is
the oscillator performances.

Usually, this kind of system can be described as an amplifier circuit in
which part of the output energy is fed back though the feedback loop (whose
feedback gain is F) to the active device (with open-loop gain A) in phase with
the input signal. The linear feedback circuit has closed-loop gain:

Av =
Vo

Vi
=

A
1− AF

(4.1)

The simpler requirement to have a stable oscillation without waveform dump-
ing or saturation is the Barkhausen stability criterion on loop gain AF [32],
that reduces to:

|AF| = 1 (4.2a)

arg(AF) = 2nπ, n = 0, 1, 2 . . . (4.2b)

Therefore the loop gain must be unitary and the loop phase equals zero,
guaranteeing the presence of a pole of the transfer function right half-plane
(unstable region). However, the presence of a pole in the unstable region
only allows any perturbation or noise to start-up a sinusoidal oscillation
that exponentially diverges to infinite amplitude. A more detailed analysis
requires to keep into account nonlinear behaviour too, that are in fact re-
sponsible of gain saturation. In fact, this phenomenon self limits the output
and decreases (increases) the gain in which 4.2 are satisfied, self-regulating
the process.

VS

RS + jXS

RL + jXL

(a)

IS

GS + jBS GL + jBL

(b)

Figure 4.1: Negative resistance (a) series and (b) parallel oscillator circuit model.

To have a simpler and complete description of the system under analy-
sis, Kurokawa introduced the concept of negative resistance oscillators [33].

21
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Figure 4.1a and 4.1b represent the model of a one-port negative resistance
oscillator,in series and parallel configuration respectively. It is possible to
distinguish two sides, namely: the active device (on the left) and the fre-
quency selective load, that is a resonator, on the right. The active device can
represent a two-port solid state device, such a Gunn or a tunnel diode, ex-
hibiting negative output conductance in some working regions [34]. Other
possibilities include the use of operational amplifier in negative resistance
configuration or FET equipped with a phase inversion network [32].

Referring to figure 4.1a, the load impedance ZL(I0, jω) = RL(I0, jω) +

XL(I0, jω) is linear, whereas the active device output impedance ZS(I0, jω) =

RS(I0, jω) + XS(I0, jω) is in general nonlinear with respect the fundamental
current component I0. Both the quantities also linearly depend on frequency.
ZS can be considered linear with respect I if the current high order harmon-
ics are weakly effective in the source output waveform. A first necessary
condition to have oscillation [9] in the circuit is:

RL(I0, jω0) + RS(I0, jω0) = 0 (4.3a)

XL(I0, jω0) + XS(I0, jω0) = 0 (4.3b)

Usually start-up requires |RS| > 1.2RL [28]. Since load is a passive device
with RL > 0, implying energy dissipation, the condition RS < 0 must
be satisfied, meaning that the source is providing energy to the system.
Given the start-up oscillation frequency ωp, it is initially necessary that
RL + RS(I, jωp) < 0. The condition suggests that the system is unstable
at start-up and it eventually encounters a transient due to noise or a given
external excitations. As the current I increases, |RS| decreases, stabilizing to
a value of current I0, that finally brings the circuit to steadily oscillate at
ω0 6= ωp. The drop of |RS| is a necessary condition, since, waveforms cannot
reach infinite amplitude as I0 rises. The difference in the final frequency is
due to the resonator reactance, that is both current dependent and responsi-
ble of selecting the oscillation frequency (XS(Iosc, jωosc) 6= XS(I0, jω0)).

Figure 4.1b shows the equivalent parallel model of a negative resistance
oscillator. Here, it is possible to distinguish two sides, namely: the active de-
vice, whose input admittance is YS(V, jω) = GS(V, jω) + BS(V, jω) and the
frequency selective load, embodied by YL(V, jω) = GL(V, jω) + BL(I, jω). In
this case, the condition to have oscillation is given by:

GL(V0, jω0) + Gin(V0, jω0) = 0 (4.4a)

YL(V0, jω0) + Yin(V0, jω0) = 0 (4.4b)

Usually start-up requires |GS| > 1.2GL [28]. A stable oscillation is only en-
sured by systems where every perturbation is dumped out. In practice active
device reactive impedance (admittance) reactive components are due to para-
sitic that often happen to be nonlinear with respect to device operating point
[35]. The behaviour of this elements is known, not the exact value though,
meaning that conditions 4.3b and 4.4b could be valid for frequency other
than ω0. However the use of high-Q resonators makes this effect often negli-
gible [32], since ImZL rapidly vary close to resonance avoiding frequency de-
viations. Another condition to determine if the oscillation is stable at a given
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Figure 4.2: Example of V-I non linear third order characteristic around a given bias
point.

frequency, is proposed by Kurokawa [9] and demonstrated in Appendix A.
It gives:

∂RS

∂I
∂

∂ω
(XL + XS)−

∂XL

∂ω

∂RS

∂I
> 0 (4.5)

The condition 4.5 is valid, provided that ZL (YL) is slow varying with respect
to the current (voltage). Since ∂RS/∂I > 0 and ∂XL + XS/∂I >> 0 the re-
sult is always verified if resonator quality factor is large, confirming what is
stated above. It is important to notice that the concept of stability has not to
be intended in its classical significance. In this case - and only with nonlin-
ear circuits - the whole system is unstable in order to allow oscillation and
the effort is focused in obtaining a bounded waveform, whose magnitude
returns to its steady state even if perturbations appear.

Equivalent conditions for oscillation can be derived by using scattering
parameters measured at the source output port and reflection coefficient at
the input of the tank, S′11 and ΓL respectively [28]. Having:

S′11 =
RS + jXS − Z0

RS + jXS + Z0
(4.6)

ΓL =
RL + jXG − Z0

RL + jXG + Z0
(4.7)

then, if 4.3 holds:

ΓLS′11 =
−RL − jXL − Z0

−RL − jXL + Z0
· RL + jXG − Z0

RL + jXG + Z0
= 1 (4.8)

4.2 negative resistance from active elements

The modelling of the source into oscillators often require to consider that
as a two-port network. This two port needs to be unstable in the classical
sense and many well known stability criteria such as the, Nyquist, k-∆S or
the two µ parameters model [36] . The alternative approach is to consider
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diodes, transistors or other active circuits as one-port networks with negative
output conductance or resistance.

Regardless of the two-terminal circuit, that can be described as controlled
generator or a non linear resistor, the required output V-I in case of negative
output resistance device is:

v(t) = I0 − rm(I0)i(t) + αnr(I0)i(t)3 − βnr(V0)i(t)5 + . . . (4.9)

whereas for negative output conductance devices the I-V relations is ex-
pressed as:

i(t) = V0 − rm(V0)i(t) + αnc(V0)v(t)3 − βnc(V0)v(t)5 + . . . (4.10)

From figure 4.2 it appears that the output characteristics above, depict the
general case in which a circuit is operating around its DC operating point,
presenting a odd non linear behaviour. High order terms - larger than the
third order - can be in general neglected, unless information about harmonic
distortion are required (as in non-linear amplifier design [36]).

4.2.1 Negative Resistance from Tunnelling Diodes

(a) (b)

Figure 4.3: (a) Esaki diode small signal equivalent circuit model and (b) output
characteristic [37].

Tunnel diodes are elements well suited for RF and low millimeter appli-
cations. They are mainly fabricated in GaAs technology and they and the
range of application spans from hundreds of MHz to some tens of GHz [28].
Microwave diodes are another class of one port semiconductors devices, often
used in high frequency applications. Examples of these kind of devices are
Gunn diodes, and transit time diodes. In this case oscillation, derives from
the built-in physical mechanism rather than the presence positive feedback
loops [36].

Esaki diodes main feature regards the output I-V characteristic depicted
in figure [tunnel diode IV and equivalents], to which the linear circuit model
is associated . In fact, although the diode junction resistance is positive, the
differential resistance can be negative for a certain range of input voltages.
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The reduced equivalent circuit in figure 4.3 [37] is a series impedance whose
real and imaginary parts are:

RO = RS −
R−

1 + ω2C2R2
−

(4.11a)

XO = − ωCR2
−

1 + ω2C2R2
−

(4.11b)

Where R− is the negative junction resistance and it can be obtained by the
diode model itself by calculation at the resistive cutoff frequency, at which
RO becomes null.

4.2.2 Negative Resistance from Transistor Model

Figure 4.4: Negative resistance BJT with capacitive feedback equivalent circuit.

A feedback loop can be used to provide negative resistance in a circuit
with transistors. An example, using a BJT transistor linear model is reported
in figure 4.4 where a capacitive loop is employed [28]. In this case the input
impedance is:

Zin '
−gm

ω2C1C2
+

1
jω[C1C2/(C1 + C2)]

(4.12)

where, besides Rin = −gm/(ω2C1C2) an equivalent series capacitance Cin =

C1C2/(C1 + C2) appears. BJT transistors are usually preferred in microwave
applications, thanks to their superior phase noise characteristic [36].

4.3 q-factor in oscillators

The quality factor of an oscillator strongly depend on the presence of a load,
different from a the standard 50 Ω termination. This traduces into an os-
cillation frequency and phase shift. For an external load whose VSWR is
S, oscillation frequency f0 and frequency deviation ∆ f , the external quality
factor is:

Qext =
f0

1∆ f

(
S− 1

S

)
(4.13)

This figure of merit is a measure of the average stored energy into the oscilla-
tor circuit and it different from the external Q of the resonator. The definition
follows:

Qext = 2π
time-averaged stored energy

energydeliveredtotheloadpercycle
(4.14)
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That is different from the definition of QL that considers the power dis-

Figure 4.5: Noise power versus frequency for a transistor amplifier operating at
frequency f0 [28].

sipated by the whole oscillator per each cycle. Even though the oscillator
output power is difficult to predict, it is expected to to be less than the satu-
rated power that the employed active element would have in a large signal
amplifier application [28].

4.4 noise in oscillators

Practical oscillators can have short term amplitude and frequency instabili-
ties due to noise. In particular there are:

• Intrinsic noise, mainly due to thermal effect, shot noise and Flicker
noise.

• Extrinsic noise, due to power supply and substrate noise.

Real oscillators output waveform suffer both amplitude and phase modula-
tion. Therefore, one has:

vout = V0(1 + A(t)) cos(ω0t + ϕ(t)) (4.15)

Noise can be seen as a random input to the oscillator and can affect the
oscillation frequency, modulating the instantaneous working point. Flicker
noise is ubiquitous and present in many physical systems. It is associated
to a variety of causes [36] and its typical power spectrum is depicted in
figure 4.5. This noise, whose law is proportional to 1/ f is effective until the
corner frequency, fc, that is the point at which white (thermal) noise, power
spectrum becomes higher. Being fc around few GHz, Flicker noise is only
effective in RF circuits [36]. Diodes offer noise too, mainly due to shot noise,
proportional to diode bias and inverse saturation current.

Low frequency noise is up-converted in oscillators. Having a carrier at
frequency f0 and a modulating signal at frequency fm, two frequency con-
tributions appear at f1 = f0 − fm and f2 = f0 + fm (figure 4.6). A useful
formula introduced by Leeson gives the ratio of sideband power in 1 Hz
bandwidth at fm. Sideband power power level is measured from f0 [28]:

L( fm) =
1
2

[
1 +

ω2
0

4ω2
m

(
Pin

ω0We
+

1
Q0

+
Psig

ω0We

)2
](

1 +
ωc

ωm

)
FkT0

Pavs
(4.16)
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Figure 4.6: Modulation of the oscillation frequency fc due to phase noise [28].

where: ωm is the pulsation offset (with respect to the carrier), ω0 the centre
frequency, ωc the Flicker corner pulsation, Q0 the unloaded Q, F the noise
factor of the transistor, kT the thermal noise per unit bandwidth (at 300 K),
Pavs the average power at oscillator output, Psig the signal power, Pin the
input power and ω0We the reactive power.

4.5 some oscillator design considerations

A part for satisfying Kurokawa’s stability and oscillation conditions, some
other design considerations can be pointed out [28]:

• Maximize the unloaded Q employng well suited free running sources
for the desired frequency band operation.

• Maximize the reactive energy by means of high ac voltage drops across
the resonator or by minimizing the LC ratio. The limits are set by the
operation limits of the active device.

• Avoid saturation to a prevent Q and spectral purity degradation.

• Choose active devices with a low noise figure.

• High impedance devices such as FETs can minimize phase perturba-
tions.

• Use devices with low corner frequency. Usually BJT are preferred in
these applications, since they have a lower corner frequency than FETs.
Systems that use feedback benefit of a strong noise reduction.

• Energy should be coupled to the resonator, rather than other parts of
the circuit. This allows the resonator to also limit the bandwidth of the
circuit, being it a filter.





5 P E R I O D I C S T R U C T U R E S A N D E P D S

One Transmission lines and waveguides if loaded at periodic intervals with
identical obstacles are referred as periodic structures. Besides the possibility
to have a variety of shapes, these structures are interesting for two aspects
[38]:

• Passband and stopband characteristics;

• Capability of supporting slow-waves whose propagation depends on
the topology of the whole structure.

A passband is a frequency range in which a wave can propagate without
attenuation, whereas stopbands are bands through which wave is cut off
and does not propagate.

5.1 infinite periodic structures

UNIT
CELL

N

UNIT
CELL
N+1

UNIT
CELL
N-1

0 d z

Vn(z) Vn+1(z)
++

--

In(z) In+1(z)

Figure 5.1: Infinite periodic structure blocks model.

First, the propagation of waves in a one dimensional, reciprocal, infinite
and periodically loaded line is derived. The basic constitutive element, called
unit cells have length d. The structure is oriented along the z axis, as depicted
in figure 5.1. The line can be considered as a cascade of identical two-ports,
modelled by a transmission matrix. Current and voltages at the input and
output of a single cell are related as follows:[

Vn(ω)

In(ω)

]
=

[
A(ω) B(ω)

C(ω) D(ω)

] [
Vn+1(ω)

In+1(ω)

]
= T

[
Vn+1(ω)

In+1(ω)

]
(5.1)

For a reciprocal network, the T-matrix determinant is unitary, [9] therefore
det(T) = AD − BC = 1, the matrix T is non singular and diagonalizable.
Being a piece of transmission line, the two-port supports wave propagating
in both forward and backward direction, with complex propagation con-
stant ±γ(ω). The + sign stands refers to backward propagation, whereas
the minus sign refers to forward propagation. Moreover, since the structure

29
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is periodic, voltages and current will be periodic as well passing from the
n-th to the n+1-th cell. Supposing to start the propagation from the initial
position z = 0, one has the following boundary condition:

V(z, ω) = V(0)e−γ(ω)z (5.2a)

I(z, ω) = I(0)e−γ(ω)z (5.2b)

Therefore after passing n cells of length d:

Vn+1(ω) = Vn(ω)e−γ(ω)d (5.3a)

In+1(ω) = In(ω)e−γ(ω)d (5.3b)

The propagation constant γ = α + jβ takes into account both the harmonic
(periodic) and lossy behaviour of the line, with β and α respectively. Notice,
from now on all the quantities will be considered function of frequency ω,
so for the sake of simplicity the notation f (ω) will be drop. Obtaining Vn

and In from 5.3 and substituting into 5.1, one has:

T

[
Vn+1

In+1

]
=

[
Vn+1eγd

In+1eγd

]
= eγd

[
Vn+1

In+1

]
(5.4)

Therefore, by defining:

ψn+1(ω) =

[
Vn+1(ω)

In+1(ω)

]
λ±(ω) = e±γ(ω)d

the following 2× 2 eigenvalue problem is obtained:

T(ω)ψn(ω) = λ(ω)Iψn(ω) (5.5)

where ψn is the state vector, λ± is the eigenvalue of the system and I is the
2× 2 identity matrix. Moreover, the transfer matrix satisfy the group prop-
erty T(z2, z0) = T(z2, z1)T(z1, z0), the symmetric property T(z1, z0)T(z0, z1) =

I and the J-unitary property:

T†(z1, z0) = JT−1(z1, z0)J, J = J−1 = J† =

[
0 1

1 0

]
(5.6)

that comes from the reciprocity restriction on the two-port [10]. Being the
two-port reciprocal, the system is diagonalizable. Given that, the matrix T
can also be rewritten in term of its similarity transformation as:

T = UΛU−1 (5.7)

where:

U =

[
Ve− Ve+

Ie− Ie+

]
Λ =

[
e−γd 0

0 e+γd

]
Where U is a nonsingular transformation matrix. The columns of this ma-
trix represent the set of two column eigenvectors [ψe−, ψe+ that form one
orthonormal basis for the system. They are defined as follows:

ψe−(ω) =

[
Ve−(ω)

Ie−(ω)

]
ψe+(ω) =

[
Ve+(ω)

Ie+(ω)

]
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Each normalized eigenvector also represent the voltage and current eigen-
modes that can propagate along the line. Since they are associated to their
relative eigenvalues - i.e. to their propagation constants - it is possible to no-
tice that: ψe− is a forward propagating mode related to λ− = e−γd and ψe+

is a forward propagating mode related to λ+ = e+γd. To solve the eigenvalue
problem in 5.5 the characteristic polynomial is derived:

(T− λI)ψn = 0 (5.8)

Excluding the trivial solution ψn = 0, one has:

det(T− λI) =

∣∣∣∣∣A− eγd B

C D− eγd

∣∣∣∣∣ = 0

AD + e2γd − (A + D)eγd − BC = 0

e2γd − tr(T)eγd + det(T) = 0

where tr(T) = A + D si the matrix trace and det(T) = 1. Then:

e2γd − tr(T)eγd + 1 = 0 (5.9a)

eγd + e−γd = tr(T)

cosh γd =
tr(T)

2

cosh αd cos βd + j sinh αd sin βd =
tr(T)

2
(5.9b)

Alternatively it is possible to solve for 5.9a as follows, looking for the roots
of the second order polynomial:

e±γ(ω)d =
tr(T(ω))±

√
tr(T(ω))2 − 4

2
(5.10)

The right-hand side in 5.9ab is in general a complex quantity. In that case
α 6= 0 and β 6= 0. However, if tr(T) is real two cases exist:

• α = 0, β 6= π: this case correspond to a non attenuated propagating
wave (no loss), defining the pass band of the periodic structure. More-
over, equation 5.9ab reduces to:

cos βd =
tr(T)

2
=

A + D
2
∈ Re (5.11)

Since | cos βd| = |(A + D)/2| ≤ 1, thus:

|A + D| ≤ 2⇒ no attenuation (5.12)

that is the condition for a two-port to allow propagation without atten-
uation, meaning that either the two-port does not contain resistances
or positive and negative resistance are balanced so that the overall re-
sistance is null (A = D∗). If no loss is present, it can be proved that
both A and D are real, whereas B and C are both imaginary quantities
[39].
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• α 6= 0, β = 0, π: this condition defines the stop band of the periodic
structure. Power is reflected back rather than dissipated and 5.9ab re-
duces to:

cosh αd =

∣∣∣∣ tr(T)2

∣∣∣∣ ≥ 1 (5.13)

which has solutions for positively travelling waves, α > 0, and back-
ward travelling waves, α < 0.

It is important to notice that voltages and currents defined by 5.4 are defined
only if measured at the terminals of the unit cell. Under this assumption
the structure has similar properties to any uniform transmission line. Wave
having this behaviour in periodic structures are called Bloch waves [38] .

It is also possible to define a characteristic impedances for these waves,
the Bloch impedance:

ZBL(ω) = Z0
Vn(ω)

In(ω)
(5.14)

where Vn and In are normalized quantities. To obtain ZBL the system 5.5 is
solved for the state vector ψn:

(A− eγd)Vn + BIn = 0

CVn + (D− eγd)In = 0

that, from the first equation, yields:

Vn

In
= − B

A− eγd = −D− eγd

C

hence, in two equivalent forms:

Z±BL = Z0
2B

tr(T)±
√

tr(T)2 − 4
(5.15)

Z±BL = Z0
1
C

[
1
2
(A− D)± j

√
1− 1

4
(A + D)2

]
(5.16)

That are the general expressions for the two ZB referring to the forward
mode (+) and backward mode (-). The two quantities are in general different,
provided that the network is asymmetrical. On the contrary, if the network
is reversible one has A = D and then:

Z±BL(ω) =
±B(ω)Z0√
A(ω)2 − 1

= ±Z0

√
B(ω)

C(ω)
(5.17)

In case of pass band and no loss B = jb and C = jc, therefore ZBL is real. By
converting transfer matrix parameters to transmission matrix parameters [9],
the following relations for propagation constant and Bloch impedance hold:

cosh γd =
Z11 + Z22

2Z12
(5.18)

Z±BL =
Z11 − Z22

2
± Z12 sinh γd = ζ ± Z (5.19)

where:
ζ =

Z11 − Z22

2
Z = Z12 sinh γd
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5.2 discrete periodic structures

A more realistic description of infinite periodic structures refers to the case in
which they are truncated, having then a discrete number of cells and closed
on a load ZL. At the terminals of the n-th unit cell operating in a pass band
one has:

Vn = V+
0 e−jβnd + V−0 e+jβnd = V+

n + V−n (5.20a)

In = I+0 e−jβnd + I−0 e+jβnd = Vn =
V+

n

Z+
BL

+
V−n
Z−BL

(5.20b)

then, at the load terminals, after N cells, one has:

VN = V+
N + V−N = ZL IN = ZL

(
V+

N
Z+

BL
+

V−N
Z−BL

)
(5.21)

It is now possible to define the characteristic voltage reflection coefficient at
the load as:

ΓL =
V+

N
V−N

= −

ZL

Z+
BL
− 1

ZL

Z−BL
− 1

=
Z− ζ

Z + ζ

ZL − Z− ζ

ZL + Z− ζ
(5.22)

At the nth terminal, the Bloch wave reflection coefficient is:

Γn =
V+

n

V−n
= ΓLe−2(N−n)γd (5.23)

Whereas the input impedance seen at the nth two port is:

Zn =
Vn

In
=

V+
n + V−n
I+n + I−n

=
V+

n (1 + Γn)

V+
n /Z+

n + V−n /Z−n

=
ZB + ZB(1 + Γn)

Z−B ++Z+
B Γn

(5.24)

Discrete periodic structures used for filtering or as frequency selective cir-
cuits could require a matched load, in order to deliver the maximum power
delivery. Any matching network can be used as termination [9], recalling
that:

• Symmetric discrete structures require a load ZL = Z+
B = Z−B .

• Asymmetric structures require a load ZL = Z+
B at the end of the

positive z-direction termination (right side). On the contrary, a load
ZL = Z−B is used if matching is required for backward waves, i.e. to
negative z.
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Figure 5.2: Dispersion diagram for a lossless unitcell where stop and pass bands
are highlighted. (a) Phase shift (propagation constant). The first three
harmonics are plotted and frequencies ωei limit the boundaries between
passbands and stopbands. (b) Attenuation constant.

5.3 dispersion diagram of a periodic structure

A useful visual representation of the dispersive behaviour of the propagation
constant γ, for both real and imaginary part, can be obtained by plotting
the dispersion diagram (DD), also called Brillouin Diagram. This graph is
meaningful for infinite periodic structures only [39]. Frequency is mapped
as a function of the phase delay, i.e. the Bloch wave vector imaginary part
like:

ω = f (β(ω)) (5.25)

of which, on example is plotted in figure 5.2. Equation 5.25 is often difficult
to express explicitly and the solution of the eigenmode system 5.5 could not
be unique, meaning that different frequencies may share the same wave num-
ber β, producing the characteristic band structure of the diagram [40]. The
number of bands is, as rule of thumbs, equal to the number of resonating
element contained in the unit cell [39]. The reason why βd is called phase de-
lay, comes from equation 5.5: supposing to be in passband and in a lossless
system, i.e. α = 0, βd is the argument (phase) of the harmonic eigenfunc-
tion e−jβd, that represents that delays the Bloch wave from input to output
terminal though the unit cell.

Equation 5.11 is the function that describes the behaviour of the propaga-
tion constant in pass band. It is a bounded function whose limits are [0,+1]
for the forward mode and [-1,0] for the backward mode, in fact:

− 1 < cos βd = tr(T(ω))/2 < 1 (5.26)

Equation above is real and defined provided that the right-hand side has
value in the interval [-1,1] only. The set of βd values for which the relation
above is true is −π < βd < π. This interval is also known as first Brillouin
zone (FBZ) or irreducible BZ. Figure 5.2 shows that the limit of pass and
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stopbands occur at multiple values of π and that this is the periodicity of the
FBZ. In particular, one edge of the passband always occur when the electrical
spacing between discontinuities (two-port terminals) is equal to one half of
the guided mode wavelength, or, more in general, where symmetry in the
system are defined [41]. Since the structure is continuous and 5.11 periodic,
solution with βd = βd+ 2nπ, with n arbitrary integer, are still valid and they
are associated to Bloch wave spatial harmonics, in which the guided mode
can be expanded.

5.4 phase and group velocity

Recalling that the free space the following relation hold:

k0 = ω
√

ε0µ0 = ωc (5.27)

it is possible to define the phase velocity for a periodic structure as:

vp =
ω

β
=

k0d
βd

c (5.28)

that, as depicted in figure 5.3 it represent the slope of a line from the origin
to a point P in the dispersion diagram. It represent the speed at which a
single harmonic (tone) moves in the periodic structure.

Recalling that γ is a function of frequency, one has that the group velocity
is different from the phase velocity. The definition follows:

vg =
dω

dβ
= c

d(k0d)
d(βd)

(5.29)

Group velocity is equal to the slope of the function ω(γ) and as it appear
from figure 5.3 it is null at FBZ and it tends to zero close to its edges. Ev-
ery time vg or vp deviate from equation 5.27, called light line, the system is
defined dispersive. Moreover, vg is the speed at which a signal can propagate
through a waveguiding structure, with a group delay:

τ =
d
vg

(5.30)

It can be shown that the same rules are valid in periodic transmission line,
and that vg is the speed at which energy flows throughout the line [38]. The
demonstration is reported in Appendix B. Moreover, it is necessary to point
out that phase and group velocity are meaningful quantities as long as the
medium is purely dispersive, then ω = ω(β). If absorption also occurs, the
two quantities cease to have a physical meaning. On the contrary, energy
velocity meaning remains valid [39].

5.5 floquet’s theorem and spatial harmonics

Floquet’s theorem introduces the possibility of expressing the field as super-
position of field harmonics in a periodic structure. Having the total electric
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Figure 5.3: Visual difference between phase velocity vp and group velocity vg.

(magnetic) field defined in the periodic structure, with periodicity d, as fol-
lows:

E(x, y, z) = E(x, y, z)e−γz (5.31)

with Ep periodic vector function along z such that:

Ep(x, y, z + nd) = Ep (5.32)

Then, the periodic field vector Ep(x, y, z) is expressed through Floquet’s the-
orem as:

Ep(x, y, z) =
∞

∑
n=−∞

Epn(x, y)e−jβz−j 2nπz
d

=
∞

∑
n=−∞

Epn(x, y)e−jβnz (5.33)

The amplitudes Epn are periodic vector function along z with periodicity d
associated to the n-th mode. Each element of the expansion is an Hartree or
spatial harmonic propagating with βn and phase velocity:

vpn =
ω

βn
=

ω

β + 2nπ/d
(5.34)

Notice that this quantity can be negative, depending on which n is selected.
The group velocity of each Hartree harmonic will be:

vgn =

(
dβn

dω

)−1

=

(
dβ

dω

)−1

= vg (5.35)

from where it is easy to notice that each harmonic propagates with the same
dispersive law, even if vp and vg could have opposite signs. A visual repre-
sentation of the Floquet expansion is given in figure 5.4.
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Figure 5.4: Dispersion diagram expanded in for n spatial harmonics. Solid lines
are for forward propagating modes, dashed lines for backward propa-
gation.

5.6 n-th order epds

Now that some of the mathematical and physical aspects of periodic struc-
tures have been highlighted, it is possible to focus on specific properties that
such a system can have and what are the necessary conditions to make them
appear. In particular, it is interesting to consider how to model and describe
a periodic circuit working at the edges of its pass and stopbands. It is also
useful to consider a more complete version of the dispersion diagram that
represents the FBZ only like the one in figure 5.2. As it appears both real
part βd (phase shift) and attenuation αd are reported on the same graph.1

In a lossless structure, attenuation is null in passbands whereas <γ is non
zero. On the contrary the phase shift becomes null (and meaningless) in
stopbands, where αd is positive for forward Floquet modes and negative for
backward waves. It is also noticeable how the dispersion diagram of a peri-
odic structure exhibits a mirror symmetry around the band edges (namely:
βd = 0, π); the origin of this fact comes from the Floquet theory, as presented
in the previous section. The dispersion diagram shows that there are two
independent periodic eigenstates, associated to four distinct periodic eigen-
values. However, a periodic structure, described by a two-port presents this
behaviour in all the dispersion diagram except to the points located at the
edges of each passband-stopband transition. These specific frequencies are
denoted as band edges. In fact, provided that the system is gainless and loss-
less, at this points both eigenvalues and eigenvectors coalesce originating a
degeneracy condition known as exceptional point of degeneracy, or EPD.[2]–[4],
[8], [10], [13] Notice that having an EPD is different than having just a degen-
erate eigenmode condition in a system. For example, two different uniform
transmission line can share the same eigenvalues, having though different
field distributions [10].

The simplest degeneracy condition can happen in two-ports described by
a 2x2 transmission matrix T, in which two Floquet modes with having eigen-

1 Notice that, conversely to the phase shift, attenuation exponential term is not a periodic
function, meaning that the graph only serves as qualitative reference to the following analysis
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Figure 5.5: Coalescence of two Floquet harmonics at FBZ edge (βd = π) in a lossless
structure.

values +β and −β + 2π/d coalesce (as in figure 5.5). Manifesting at the
border or at the centre of the FBZ, this condition represent a second or-
der degeneracy an it is referred as regular band edge (RBE) [8]. Higher order
degeneracy conditions can happen in circuit that can support more modes
[6], [7], [10]. Also in this case the idea at the basis of EPDs remains the
same: system eigenvectors coalesce forming a unique eigenvector for a spe-
cific frequency (that in this case can be far from FBZ edges), at which also
eigenvalues degenerate. Even though EPDs with order higher than four have
not been observed yet [7], a general formulation to model the mathematics
behind this problem exists, and it is proposed below.

Considering a generic N-port, whose state vector at port i is denoted by:

Φi(z) = [φ1(z), φ2(z), . . . , φn(z)]T (5.36)

its N × N transmission matrix T will be such that the following eigenvalue
problem can be written:

(T− ξiI)Φi = 0 (5.37)

The diagonalizability of matrix T as been assumed. State vectors Φi(z) are
also called regular eigenvectors, corresponding to Floquet-Bloch multipliers
ξi = e+jkid, with i = 1, 2, 3, ..., N, where both k and −k wave vector are
solutions, defined in the FBZ in [−π, π]. It is then possible to define the
diagonal matrix Γ as:

Γ =


ξ1 0 . . . 0

0 ξ2 . . .
...

...
...

. . . 0

0 . . . 0 ξN

 (5.38)

such that:
T = VΓV−1 (5.39)
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where V is a N× N non singular similarity transformation matrix that diag-
onalizes T. Outside band edge, each column of V contains one of the N inde-
pendent eigenvectors that are solution for the system, i.e. V = [Φ∗1 |Φ∗2 | . . . |Φ∗N ]
(the symbol ∗ denotes the normalized eigenvector of the system).

Though, this condition is no more valid at an EPD: eigenvalues algebraic
and geometric multiplicity become equal, eigenvectors degenerate, T be-
comes defective and non diagonalizable and V become singular. From linear
algebra it is well known that Jordan Blocks exhibit one degenerate eigenvec-
tor only, and N-1 other generalized eigenvectors [23]. ({valid for each value
of N?}) The solution for the N generalized eigenvectors can be found by
solving the Floquet-Bloch form [7]:

[T− ξdI]qΦ
g
q(z) = 0, q = 1,2,3,...,N (5.40)

where Φ1
g = Φ1 is the regular eigenvector, whereas Φ

g
2 , Φ

g
3 ,. . . ,Φg

N are the
generalized eigenvectors of ranks 2,3,. . . ,N, respectively. It can be proven
that in such a condition the transmission matrix T is similar to a Jordan
canonical matrix, for which the following transformation is valid:

T = SΓdS−1, Γd =


ξd,1 1 0 0

0 ξd,2 1 0

0 0 ξd,3 1

0 0 0 ξd,4

 (5.41)

where V = [Φ
g
1 |Φ

g
2 | . . . |Φg

N ]. Even in this case degeneracy can occur both at
centre or at the edge of the FBZ.

ω
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α β

GAIN
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Figure 5.6: Detail on half FBZ edge (βd = π) for a periodic lossy structure with and
without loss and gain balance.

5.7 epds in practice

It is important now to recall that a perfect degeneracy condition corresponds
to an infinite lossless structure and it does not exists in practice (figure 5.6).
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Whenever a discrete periodic structure is taken into account or losses are
present (substrate, conduction or radiation) external gain may be added in
order to retrieve, only at some frequencies, the main features typical of hav-
ing EPDs.

Moreover, EPDs are very sensitive to any kind of tolerances in components
parameters [7]. In particular, willing to design an antenna whose working
principle is based on EPDs, losses become a necessary presence, in a dis-
tributed form. Regardless the kind of perturbation that is affecting the circuit,
a certain degree of degeneracy can be still retrieved and evaluated through a
mathematical tool proposed in [7], where the concept of hyperdistance between
four eigenvectors of the transfer matrix is developed. This quantity, denoted by
DH can be generalized to an N-th order degeneracy as follows:

DH(ω) =
1
k

N

∑
m=1,n=1,m 6=n

| sin θmn| (5.42)

θmn(ω) = acos
(

Re{〈Φm|Φn〉}
||Φm||||Φn||

)
(5.43)

where k = N(N − 1)(N − 2)...(N − j + 1). Where 〈Φm|Φn〉 represents the
generalized scalar vector between complex vectors. The hyperdistance van-
ishes whenever the complex angle between all the eigenvectors becomes null.
This quantity is better suited for evaluating the degree of degeneracy than
det(U). In fact, to make the latter quantity approaching zero it is enough that
two only eigenvectors coalesce at a certain frequency ω (this could be useful
to recognise a RBE, not higher order EPDs though). Conversely the former
quantity, keeps into account the angle between all the system eigenvectors.
Though, in case of a two-port with N=2, det(U) is sufficient to recognise co-
alescence, since two eigenvectors only are present. DH(ωe) is null in lossless
and periodic structures, though it can only approach zero in practical cases.
Therefore, a threshold εe, whose value depends on the application, such that
an EPD is present whether DH(ωe) < εe.

As mentioned, the particular condition that allows the existence of an
EPD requires the addition of gain. Basically, this gain is provided by means
of active elements, that can compensate part of the losses naturally present
in the circuit. The goal to be achieved is the perfect loss and gain balance, that
ideally would bring back the hyperdistance at zero at EPD frequency. Notice
that gain compensation condition does not imply parity-time symmetry in
the circuit [7], therefore gain and loss could not be exactly symmetric in
magnitude.

Moreover, loss and gain balance does not imply that the circuit is unsta-
ble, providing self-oscillation in a finite-length structure. One remark, is that
perfect compensation could not even be necessary to achieve the benefits
provided by an EPD [7].

5.8 regular band edge, rbe

A regular band edge is a point of degeneracy in which two states present
the same eigenvectors and eigenvalues. Taking the graph in figure 5.5 as ref-
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erence, the EPD frequency is indicated as ωe (associated to a wave vector βe).
It is possible to identify the transition from two states with phase progres-
sion at ω < ωe into two purely evanescent states for ω > ωe. The transition
frequency is represented by ω = ωe, in which the corresponding eigenstate
represents a standing resonant mode with infinite group delay [10]. It has
been demonstrated that a system working at EPD regime can offer much
sharper resonance, then higher Q-factor, compared to other system in which
degeneracy is not exploited. Working close to an EPD imply low group ve-
locity, increasing the round-trip travel time inside a resonator meaning large
quality factors [38]. Moreover, the higher the degree of degeneracy is, the
more properties related to frequency response of the circuit are enhanced
[4], [6], [7]. Although dispersion relation and dispersion diagram is exact for
infinite structures only, the benefits of EPDs are still noticeable with a dis-
crete number of unit cells. It has been demonstrated in [2] that resonances
take place in the vicinity of the band edge. Furthermore, fields behave very
similarly to standing wave at each of these frequencies. Under this assump-
tion the wave vector for both forward and backward Floquet-Bloch modes,
at resonance can approximated as:

βs ≈ βe ±
π

Nd
s, s=1,2,... (5.44)

where s is he order of the number of resonant peaks before or after ωe, βe is
the wave number at FBZ edge, hence ke = π/d and N is the number of cells
employed in the discrete periodic structure. Below (or above) band edge, the
dispersion relation ω(β) can be approximated by a quadratic parabola as:

ω ≈ ωe +
1
2

(
∂2ω

∂β2

)
β=βe

(β− βe)
2 (5.45)

Where the second order derivative is negative if the passband is defined for
ω < ωe and positive if the passband is defined for ω > ωe. Substituting 5.44

in 5.45 one has:

ωs(N) ≈ ωe +
1
2

(
∂2ω

∂β2

)
β=βe

(
π

Nd
s
)2

, s=1,2,. . . (5.46)

Equation 5.46 suggests that for a structure with a sufficiently high number
of unit cells, resonance frequency ωs would be close to ωe. Notice that this
quadratic approximation is valid for second order degeneracy. Higher orders,
would bring to even more sharper response, thanks to the wider range of β

for which the group velocity would be closer to zero (larger group delay).
As already stated, in RBE condition both eigenvectors and eigenvalues

must be degenerate. The former condition is guaranteed by:

|det(U(ωe))| < εe (5.47)

whereas the latter is obtained from the general case of equation 5.10, with
det(T) 6= 1:

λ1,2 =
tr(T)

2
±

√(
tr(T)

2

)2

− det(T) (5.48)

from where one has that λ1 = λ2 if and only if trT/2 = ±
√

det(T).





6 A N T E N N A T H E O R Y A N D L E A K Y
W AV E A N T E N N A S

6.1 antenna parameters

This chapter aims to define the basic formalism useful to understand the
most important antennas parameters used to qualify the performance of
these structures in farfield. Farfield is define as a region in which longitu-
dinal component of the radiated field can be neglected and fields can be
approximated by their θ and ϕ components only in the form:

E(r, θ, ϕ) ' B0pe(θ, ϕ))
e−jkr

4πr
(6.1)

where: B0 is a quantity that includes information on field intensity and an-
tenna geometry, p(θ, ϕ)) is the generalized electric moment given by the
field distribution on the source, and e−jkr

4πr is the Greens spheric function. The
derivation of 6.1 can be found in appendix C. Commonly farfield region is
taken as a distance R f f > 2D2

A/λ to infinity from the antenna, in which DA
is the larger dimension and λ the radiated frequency.

6.1.1 Radiation Power and Intensity

Electromagnetic waves are used to carry informations trough wireless or
guiding media, from one point to the other. The radiated power per unit
area can be evaluated by means of the Poynting vector, that is defined as
follows for both time domain (instantaneous) on the left and its complex
counterpart, on the right (phasor):

S (x, y, z; t) = E ×H S(x, y, z) =
1
2

Re(E×H∗) (6.2)

Both relations are defined in [W/m2]. Weather the left hand side defines
an instantaneous value, the right hand side represent the averaged power
density per unit area. To obtain the total radiated power it is sufficient to
integrate over a spherical surface S as follows:

Pr =
∮

S
S · ds = 1

2

∮
S

Re(E×H∗) · ds [W] (6.3)

One can now define the radiation intensity as the power radiated from and
antenna per unit solid angle as:

U = r2|S| = r2Wr [W/unit solid angle] (6.4)

43
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where Wr is the radiation density ([W/m2]) and r the radius of the sphere. Re-
calling that Wr = |E(r, θ, ϕ)|2/(2Z0) (where Z0 is the characteristic impedance
of the medium), one has:

U(θ, ϕ) =
r2

2Z0
|E(r, θ, ϕ)|2 ' r2

2Z0
[|Eθ(r, θ, ϕ)|2 + |Eϕ(r, θ, ϕ)|2] (6.5)

' [|E0
θ(θ, ϕ)|2 + |E0

ϕ(θ, ϕ)|2]
= B0F(θ, ϕ)

where E(r, θ, ϕ) = E0(θ, ϕ) e−jkr

r is the farfield electric field radiated from the
antenna. The approximations made in the equation before come from the
farfield fields derivation as reported in appendix C. Total radiated power
can be evaluated by integrating over the solid angle:

Pr =
∮

Ω
UdΩ =

∫ 2π

0

∫ π

0
U sin θdθ dϕ (6.6)

6.1.2 Beamwidth, Directivity, Efficiency and Gain

There exist two main parameters defined by IEEE to evaluate the beamwidth
of an antenna. The half power beam width, HPBW, is defined as "In a plane
containing the direction of the maximum of a beam, the angle between the
two directions in which the radiation intensity is one-half value of the beam"
[42]. The second important quantity is referred as first null beam width, FNBW,
that is the angle at which the first null of the main lobe is located.

Directivity is meaningful for non-isotropic sources and it is defined as:

D =
U
U0

=
4πUmax

Pr
(6.7)

The quantity is dimensionless and it is calculated as the ratio between the
maximum of the radiation intensity in a given direction and the total power
radiated by the antenna as it was radiated by an isotropic point source. This
quantity is always greater than one in the direction of maximum radiation
and it is referred as max4π(D) = D0. Actually, this is a figure of merit that
gives indications about the directional properties of an antenna compared
with those of an isotropic source radiating the same power [43]. To consider
sources whose farfield depend on spherical coordinates, one can define:

Umax = B0F(θ, ϕ)|max (6.8)

therefore:

D0 =
4πF(θ, ϕ)|max∫ 2π

0

∫ π
0 F(θ, ϕ) sin θdθ dϕ

=
4π∫ 2π

0

∫ π
0 Fn(θ, ϕ) sin θdθ dϕ

(6.9)

where

Fn(θ, ϕ) =
F(θ, ϕ)

F(θ, ϕ)|max
(6.10)
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is the normalized radiation pattern.
Simpler expressions are available to estimate directivity for antennas in

which sidelobes level is well below main lobe. Given that, the main lobe
HPBW is taken for the two main cuts (e.g. E-plane or H-plane1) One has:

D0 ≈
72.815

HPBW2
E + HPBW2

H
(6.11)

where HPBWE and HPBWH are defined for E and H-plane, respectively
(degrees).

Antenna efficiency is used to consider losses and the input terminal and
within the antenna itself:

η0 = ηcd(1− |Γ|2) (6.12)

where (1 − |Γ|2) is the reflection missmatch efficiency, defined at the an-
tenna input terminals, whereas ηcd is the radiation efficiency, that includes
information about the antenna loss due to conduction and dielectric. In
fact an antenna can be seen as a lossy one-port whose input impedance
is ZA = Rr + RL + jXA, in which Rr is the radiation resistance of the an-
tenna, i.e. the loss component converted in radiation. The remaining part of
the impedance is needed to take into account conduction losses and reactive
behaviour. Maximum power delivery, with Γ = 0 is obtained in case of con-
jugate matching. In this case given a generator whose output impedance is
Zg = Rg + jXg, then Rg = Rr + RL and Xg = −XA.

Radiation efficiency ηr is the link between directivity and antenna gain.
Gain, is defined as:

G =
4πU(θ, ϕ)

Pin(lossless isotropic source)
(6.13)

and it is the ratio between the radiation intensity of the antenna and the
input power accepted by an isotropic source. It can be also defined with
respect to power accepted by other kind of reference antennas (such as horn
antennas). Noticing that Pr = ηcd/:

G(θ, ϕ) =
4πU(θ, ϕ)

Pr/ηcd
= ηcdD(θ, ϕ) (6.14)

In the direction of maximum radiation:

G0 = ηcdD0 (6.15)

G0abs = η0D0 (6.16)

In case of input matching at antenna terminals, one has Γ = 0, hence G0 =

G0abs In case of directive antennas an empirical estimation for G0 is:

G0 '
30000

HPBWEHPBWH
(6.17)

1 Actually, these two reference planes are defined for linearly polarized sources only, but they
can be used for other kind of polarizations [42].
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6.1.3 Polarization

Polarization of a radiated wave is defined as a curve traced by the end point
of the vector representing the instantaneous electric field, once it is observed
along the direction of propagation [43]. This quantity may vary depending
on which pattern direction is chosen. In particular, for distance large enough
from a transmitting antenna, an observer would receive the polarization of
a plane wave. In fact, increasing the radial direction of propagation, the ray
of curvature of a radiated wave approaches infinite, therefore appearing as
a plane wave front.

Figure 6.1: Polarization plane for an electromagnetic wave and its polarization el-
lipse as a function of time [42].

Field variables in time-harmonic regimes at any point appear like:

E (x, y, z, t) = Re{(Ex0ejkxxx̂+ Ey0ejkyyŷ + Ez0ejkzzẑ)ejω0t}
= Re{(E′ + jE′′)ejω0t} = Re{Eejω0t}
= E′ cos ω0t− E′′ sin ω0t (6.18)

Therefore, the electric field can be defined as the sum of two vectors with
arbitrary directions on the polarization plane. This representation is useful
to have information about the vector polarization of a given time-harmonic
field. Depending on the phasors E′ and E′′ one can have three different con-
ditions:

• Linear polarization if E′× E′′ = 0.

• Circular polarization if E′ = E′′ and E′ · E′′ = 0.

• Elliptical polarization if E′ 6= E′′ and the two vectors are neither parallel
or perpendicular.

An example of polarization plane for an elliptical polarization is shown in
figure 6.1. The plot domain is the (θ,ϕ) plane and the two main axis are
visible in the polarization ellipse: OA, the major axis and OB, the minor axis.
The ratio of the length of these two quantities gives the axial ratio [43]:

AR =
OA
OB

, 1 ≤ AR ≤ ∞ (6.19)
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where:

OA =

√
1
2

[
E2

θ + E2
ϕ +

√
E4

θ + E4
ϕ + 2E2

θ E2
ϕ cos(2∆ϕ)

]
(6.20)

OB =

√
1
2

[
E2

θ + E2
ϕ −

√
E4

θ + E4
ϕ + 2E2

θ E2
ϕ cos(2∆ϕ)

]
(6.21)

This quantity is calculated in CAD like CST MW Studio, and can be used to
understand the polarization. In fact, the field is:

• Circularly polarized if AR = ∞ (∆ϕ = ±π/2).

• Linearly polarized if AR = 1 (∆ϕ = 0, π).

• Elliptically polarized otherwise.

6.2 leaky wave antennas

Leaky wave antennas (LWA) are a class of antenna based on travelling wave
and use them to obtain radiation. The main advantages of this kind of radia-
tors are the possibility of frequency controlled beam steering and beamwidth
sharpness along with feeding and structural simplicity (waveguide or printed
technology). Leaky wave antennas can support fast or slow waves where the
phase constant is less than the free-space wavenumber k0. This property al-
low the travelling wave to leak power in a continuous way along the guiding
structure. From there the name leaky. The propagation constant can only be
complex for this kind of waves since loss is required to have radiation. The
wavenumber along the propagation direction is defined by kz = β − jα.2

Depending on weather the structure is uniform, quasi-uniform or periodic dif-
ferent kind of physical mechanism take place leading the antenna to radia-
tion. Another way to classify LWAs comes by considering weather they are
one or two-dimensional. This chapter is focused on one dimensional leaky
wave antennas, since the main goal of the thesis is the development of such
a structure. Though the same principles can be applied to two-dimensional
structures that represent a possible development of the proposed design [44].

One-dimensional Uniform LWAs

The structure can be fed at one edge or in the middle. In both cases an
absorbing termination is required for residual propagating power. What vi-
sually characterize this antennas is a longitudinal uniform geometry along
the propagation direction, z (the structure can be uniform or even tapered
for beam shaping purposes). This kind of structure supports wave radiation
in one quadrant only, with a continuous power leakage along the extension
of the aperture. Radiation is forward directed if β > 0 or backward directed
if β < 0. In case of centre feeding, the radiation is mirrored with respect the
symmetry axis (x). Broadside radiation is possible with composite right/left-
handed structures only [44].

2 Here the convention is opposite to what is used in chapter 5, where the wavenumber is
indicated by γ = α + jβ.



48 antenna theory and leaky wave antennas

One-dimensional Periodic LWAs

The antenna can be fed at its centre or at the edges and power matching loads
are required. One-dimensional periodic LWAs present uniform structures
where a slow propagating wave with β > k0 is periodically modulated along
the longitudinal direction. Radiation takes place along the structure where
the slow wave encounters discontinuities introduced by the periodic mod-
ulation. In chapter 5 the theory behind Floquet waves has been presented
and it now clear how a periodic modulation allows one to expand the prop-
agating field in a superposition of infinite harmonics whose wavenumber is
represented by kzn = k0 + 2πn/d, where d is periodicity, and k0 = β − jα
the wave vector of the fundamental Floquet mode (n = 0). The fundamental
mode must be a slow wave incapable of radiation, but one of the higher order
harmonics is usually designed to be fast and produce radiation. Usually the
n = −1 harmonic is used for this purpose, for which −k0 < β−1 < k0. The
wavenumber sign decide the direction of propagation and usually this LWA
can support both forward and backward modes. Beam steering is controlled
by tuning the operation frequency spanning from the negative (z < 0) to the
positive (z > 0) quadrant. Radiation at the edges of the radiation (endfire) is
usually conically shaped, whereas the broadside farfield approaches a donut
shaped. Unfortunately, radiation is usually degradated at broadside since
this direction corresponds to the edge of the periodic structure stop-band in
frequency domain. Previously, stop band condition has been analysed, point-
ing out that it correspond to a zero-group velocity point, hence to a standing
wave into the structure. The same happens here, where the LWA turns into
a standing wave antenna, where, having attenuation constant close to zero,
radiation is degradated. An additional drawback is that the same radiator
used as LWA presents a different radiation pattern if used as standing wave
antenna. Moreover, matching is usually difficult in the second design [43],
requiring also the presence of reactive loads to obtain the correct field phase
in each radiating element.

One-dimensional Quasi-Uniform LWAs

Feeding is can be provided at both one edge or at the end of the line and
absorbers are also required. The main difference between periodic and quasi-
uniform LWAs is that the former has uniform geometry, whereas the latter
shows a periodic shaping along the waveguiding structure. Besides, the fun-
damental Floquet tone is a fast wave and radiation occurs because of this
one.

6.3 field behaviour of leaky waves

In order to achieve radiation, a leaky wave antenna must support a fast wave
with β < k0. Given an infinitely extended aperture with a TM electric field
Ey(x, z), at the metal-air interface (x = 0) one has:

Ey(0, z) = Ae−jkzz (6.22)
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(a)

(b)

Figure 6.2: Ray picture used as a physical interpretation of field behaviour and
radiated power in leaky-wave antennas: (a) forward leaky wave and (b)
backward leaky way [43].

where the wave vector the wave vector is kz = β− jα and A a constant. The
power leakage of such an LWA is associated to the attenuation constant α.
Above the aperture, for x > 0 one has:

Ey(0, z) = Ae−jkzzejkxx (6.23)

where the x component of the wavenumber is:

kx =
√

k2
0 − k2

z (6.24)

where k0 = ω
√

ε0µ0 is the free space wave number. Defining kx = βx − jαx,
squaring and equating imaginary parts in 6.24:

βα = −βxαx (6.25)

Supposing forward propagation along z, one has β > 0 and α > 0, there-
fore it follows that αx < 0, meaning that the wave in the air region is
exponentially increasing (figure 6.2). As it appear, a decaying propagation
along z, must be accompanied by an exponential increase in the surround-
ing medium. This behaviour is often referred as improper or non-spectral [43].
The reason why the imaginary part of the wave vector vertical component is
negative, can be easily explained. Being the LWA radiating, the power flow
is directed outside the boundary of the guiding medium, along a direction
pointed by the phase vector:

β = x̂βx + ẑβz = Re(k̄) = Re(x̂kx + ẑkz) (6.26)

in which β = βz. One can define:

tan θ0 =
βx

βz
(6.27)
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the angle between the phase vector β̄ and the guiding medium (yz plane).
Provided that the attenuation factor is small, one has:

cos θ0 =
β

k0
[rad] (6.28)

that is a useful relation to understand the radiation inclination for the LWA.
Moreover, half power beam width (HPBW) can be evaluated by means of an
empirical formula proposed by Oliner in [45]:

HPBW ≈ 1
Lk0

2π
cos
(π

2
− θ0

) [rad] (6.29)

where L is the length of the LWA. Equation 6.28 predicts weather radiation
takes place or not. In particular, whenever |β| < k0 it exists a real value θ0 at
which the LWA radiates. On the contrary, if |β| > k0 the propagating mode
is a slow wave whose leakage angle is complex, meaning that no leakage
angle exist in the visible space. The corresponding mode is a surface wave
whose amplitude is exponentially decaying and diffused in near field only
above the aperture. Slow waves are still able to radiate at discontinuities (for
example from the source), but they are referred as non-physical and are non
likely to be physically significant (no radiation except for discontinuities).

Antenna length is usually chosen in order to satisfy specific requirement
on radiation efficiency. In fact, given α, usually a good design approach is
to look for a radiation efficiency around 0.90− 0.95, with the remaining part
absorbed by the load [45]. Given Pr(z) the power radiated along the LWA:

Pr(L)
Pr(0)

= e−2αL = e−4π α
k0

L
λ0 (6.30)

from where it appears that α and L should not be decided arbitrarily. Radia-
tion efficiency is then given by:

ηr = 1− e−2αL (6.31)

Going back to relation 6.23, one has that the radiated power flow is stronger
from areas closer to the feeding point for forward propagating waves. In case
of backward propagating waves, group velocity is still directed along posi-
tive z direction, whereas phase velocity is directed in the opposite direction.
Although in this case βx is still positive, αx is positive as well and in this
case the fields are called proper, since they attenuate moving far from the
source. In both cases power leakage is more intense close to the antenna
feeding, only the phase shift of the radiated field will be different in the
two radiation mechanisms. The same reasonings can be applied in case of
periodic LWA, where the first negative harmonic can be proper or improper
depending on which radiation quadrant is chosen. For centre fed LWA the
TM1 field at x = 0 is given by:

Ey(0, z) = Ey(0, 0)e−jkz|z| (6.32)

and in this case field is propagating from z = 0 to z = ±∞. In this case,
radiation takes place within a cone defined by an angle θ0 (starting from yz
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plane). For angles θ0 < θ < π/2 a shadow region appear, shadow boundary,
in which field intensity is strongly reduced. The TM field distribution in 6.32

can be calculated as:

Ey(x, z) =
1

2π

∫ +∞

−∞
Ẽy(0, k′z)e

−jk′xxe−jk′zz dk′z (6.33)

where the Fourier transform on the aperture is:

Ẽy(0, k′z) = A
[

2jkz

k′2z − k2
z

]
(6.34)

with the vertical wavenumber given by k′x =
√

k2
0 − k′2z , that can be either a

positive real number or a negative imaginary number [43].

6.3.1 Field Behaviour in Periodic LWA

A previously mentioned this antenna exploits a travelling wave, whose fun-
damental mode is slow and periodically modulated along thee structure.
Because of Floquet theorem, the modal field can be expanded in a Fourier
series as follows:

E(x, y, z) =
∞

∑
n=−∞

An(x, y)e−jkznz (6.35)

with
kzn = kz0 +

2πn
d

(6.36)

wavenumber of the n-th Floquet harmonic. Fundamental mode has kz0 =

β0 − jα = β− jα. Radiation is achieved provided that the LWA unit cell pe-
riodicity is well designed (see later) and that one of the high order space
harmonics is a fast wave, usually the space harmonic with n = −1. In this
case the first negative harmonic wavenumber is the one of a fast wave, there-
fore: −k0z < β−1 < k0 with β−1 = β0 − 2π/d. The beam direction is auto-
matically controlled by means of frequency from backward to forward end-
fire. Provided that, n = −2 space harmonic must remain a slow wave with
β−2 < −k0 as well as the fundamental tone with β0 > k0 [43]. This condition
requires two constraints: the first regards the LWA unit cell periodicity that
must be decided so that d/λ0 < 1/2, where λ0 is the wavelength correspond-
ing to the higher forward endfire frequency [44]; the second condition is a
limit on the effective relative permittivity experienced by the guided mode.
For a TEM mode one has:

ε
e f f
r > 9 (6.37)

that is equivalent to the condition β0/k0 > 3 [44].
In general, broadside radiation can be challenging to be achieved by means

of LWA, since this beam direction corresponds in frequency to the open stop-
band of the periodic structure, at which: β−1 = 0 that is β0d = 2π (FBZ
edge). The name comes from the fact that at this frequency the harmonic
n = −1 would radiate, though this is not possible since the attenuation
constant α drops to zero. What happens is that a perfect standing wave
ideally sets up within each cell (each cell is in phase with the others) of the
periodic structure, without radiation. [to be clarified] As a matter of fact, in
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LWA with pure series or shunt radiating elements only, stop-band problems
cannot be reduced effectively [44]. A solution to avoid this is to put two
radiating elements per each cell, spaced by d/4 or to use composite right/left-
handed metamaterials, CRLH metamaterials, in which radiation occurs from
the fundamental and scanning is continuous from endfire to broadside [43].

k0d

βzd
π-π 3π2π-3π -2π

π

2π radiation cone

Figure 6.3: Brillouin diagram plotted as k0d vs βnd in which shadow and radiation
region are highlighted. Radiation cone is defined above the solid yellow
lines.

Brillouin diagram, BD, can be used to identify at which frequency, guided
modes radiate. As mentioned in chapter 5, the plot for each n-th mode, is
shifted by 2π from the others. Moreover, Floquet theory suggests that it is
sufficient to print the diagram within the FBZ to obtain all necessary in-
formation about the modes sustained by the periodic structure. Figure 6.3
shows the BD for the n-th harmonic.3 The bold lines represent the light line,
defined by the linear relation k0 = βn. Basically, it divides the BZ into two
regions: one above the cone, where fast modes radiate, being coupled to the
surrounding medium modes, the radiation region; one underneath the cone
(shaded area), in which modes are bounded, o slow and cannot propagate.
The diagram indicates that if a mode has frequency high enough, hence
k0d > π, it is a leaky mode.

Graph in figure [DD n=0 and n=-1] may help in understanding some of the
concepts presented above. As it appears, mode n = 0 phase shift starts from
β0d = 0 reaching at β0d = π the closed stop band, that is usually located below
light line. Basically, this means that the mode is bounded and non-leaky,
even if β0d is not perfectly constant and the stop-band is not well defined. In
particular, the condition is equivalent to have a perfectly shielded periodic
structure, then closed without possibility of radiation leakage. Actually, in
this region fields are reactive with an evanescent decay from the guiding
structure.

The open stop band occurs instead for β−1 = 0 (the same as β0 = 2π),
in this region there is a sharp phase shift transition and a fast variation of
the attenuation constant, that is null at the stop-band null points. Propagation,

3 The BD shows k0d, not ω, as a function of the phase shift βnd. The two representation are
equivalent.
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Figure 6.4: Closed stop band occurs at β0 = π, corresponding to bounded modes.
Open stopband occurs around β0 = 2π, where radiation is possible [43].

along with loss, produces then leaky wave radiation, i.e. β−1 6= 0 and α 6= 0.
Moreover, modes are proper when β−1 < 0 and improper when β−1 > 0.

In addition, to obtain the scan angle for a given frequency, relation 6.28can
be adapted as follows:

cos θ0 ≈
β−1

k0
[rad] (6.38)

Hence, by substituting β−1 = β0 − 2π/d:

cos θ0 ≈
β0

k0
− 2π

k0d
(6.39)

that exhibits the possibility to change the beam direction depending on how
the right hand side elements compare to each other [45].
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7 D E S I G N A N D S I M U L AT I O N O F
S I N G L E - L A D D E R R B E R A D I AT I N G
O S C I L L ATO R S

7.1 motivation

Is it possible to design an RF periodic structure based distributed oscillator,
whose topology allows also to have acceptable radiation? To give an answer
to this question it is necessary to recall that a device capable of performing
this task should be able to:

1. Exhibit a high Q-factor in order to have a sharp frequency response at
the required oscillation frequency;

2. Exhibit low conduction losses, in order to maximise the time during
which power is maintained inside the resonant structure;

3. Exhibit high radiation losses in order to increase radiation efficiency
(along with low conduction losses);

4. Exhibit, depending on the application, a large area in order to improve
gain and beamwidth.

As it appears, the first two conditions stated above are in antithesis with 3

and 4. In fact, 1 and 2 are necessary conditions to have a good oscillation. A
large Q-factor is hallmark of good frequency selectivity and a small amount
of loss insides a resonant structure. Moreover, it is worth to recall, that the
energy "flow" into an oscillating ideal LC circuit is purely reactive. This result
can only be achieved by compensating the resistive part of the resonator
input impedance and requires the employment of low loss technologies. In
case of monolithic or hybrid microstrip technology, this is translated into
substrates with low loss tangent, δL, and very good conductors for the metal
layer [36].

On the other hand, a good radiating device, i.e. an antenna, is usually a
lossy structure, in which radiation losses are preferred and maximized with
respect to conduction and substrate losses [42]. The measure of how good a
radiator operates is the radiation efficiency, close to 1, if loss if unwanted loss
is minimized. Basically, this parameter quantify the amount of input power
that is converted into radiated power. Besides condition 3, 4 Moreover, an-
tenna gain can be somehow related to the area occupied by the radiating
elements [42]. Unfortunately, larger circuit are translated in higher conduc-
tion losses. Therefore, condition 3 requires something obviously in contrast
with 1 and 2.The obvious conclusion is that a compromise between the above
requirements must be found.

In chapter 2 and 5 it has been presented how periodic structures and EPDs
can help in achieving high performances in oscillators, resonators, sensors

57
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and even antenna designs. In particular, the following sections of this chapter
are focused on the realization of two different oscillator topologies in which
an interdigital capacitor is used either as resonant unit and radiating element.
Both the topologies are designed so that RBE oscillation is preferred:

• RBE oscillator at βd = 0: in this case the oscillation frequency fe0 close
to the frequency at which the n = −1 Floquet harmonic eigenvalue
exhibits a degeneracy, at the centre of the FBZ.

• RBE oscillator at βd = π: in this case the oscillation frequency feπ

is located in the neighbourhood of frequency at which the n = −1
Floquet harmonic eigenvalue exhibits a degeneracy, at the edge of the
FBZ.

Whether the former design uses a straight ladder, in which all the capaci-
tors are aligned in the same direction, the latter employs a folded structure.
The reason of this difference stands is explained in section 7.3. The main
difficulty operating close to stopband edges is that a quasi-standing wave is
present in the circuit, ideally carrying no power except reactive one and mak-
ing radiation not efficient. However, the proposed designs tries to exploit
the array as a leaky wave antenna1, radiating in broadside direction. Both
the structures present subwavelength designs in which the area occupied by
the interdigital capacitors is maximised, in order to increase, if possible, the
radiation resistance.

7.2 rbe oscillator at βd = 0

In chapter 3 it has been presented how an interdigital capacitor can be used
as resonant unit cell into a periodic structure, in order to realise a distributed
resonator. What allows the use of such a circuit in microwave technology for
this purpose, is the presence of a parasitic inductance and resistances at
RF frequency. Besides, two access line must be provided to each resonant
unit, adding so an equivalent LC circuit at both sides. The resulting unit
cell is a complex LC circuit whose parameters could be extracted by means
of formulas reported in [32]. The same circuit could also be considered as a
high order filter, for which design parameters and figure of merit are difficult
to extract since expression are somewhat cumbersome.

The reasons why a series interdigital capacitor is chosen comes from the
fact that it desired to The reason why a series interdigital capacitor is chosen
as resonant unit are:

• It acts as high pass filter, therefore all the possible oscillation frequen-
cies below a certain value are rejected;

• The topology can be compact (short) along the signal direction of prop-
agation;

• Capacitance can be increased playing on fingers width and number,
rather than their length;

1 The structure is not properly an array, since the devices has no signals fed at the input.
However in the following it referred as an array, for simplicity.



7.2 rbe oscillator at βd = 0 59

• Simplicity of implementation.

On the other hand, this technology brings some drawbacks:

• The circuit model is cumbersome and simplifications may not be pos-
sible;

• Using small fingers (length or width below 0.1 µm) the effect of tech-
nology tolerances could become significant.

In order to obtain high capacitance value with a large occupied area an high
dielectric constant is required. Moreover, small dielectric losses are required,
meaning that loss tangent must be limited. Rogers RO6010 has been chosen
as substrate [46], since its applicability to high frequency ranges. The main
technological parameters are reported in table 7.1. The design is carried on

Table 7.1: Rogers RO6010 main technological parameters.

Quantity Symbol Value Units

Dielectric permittivity εr 10.7

Dielectric loss tangent δd 0.0023

Metal layer thickness t 18 µm

Substrate height h 127 µm

Copper conductivity σ 5.8× 107 S/m

using Keysight Advanced Design System (ADS) and CST Microwave Studio.

7.2.1 Unit Cell Design

The design of the interdigital capacitor, figure 7.1a, is started by using a sym-
metric structure, with the two microstrip lines having the same width and
length. The access lines are directed along the x axis, whereas the capacitor
extension develops along the y axis. The capacitor is extended along one
preferred direction in order to:

1. maximize the number of fingers;

2. minimize the radiated electric field along the y direction;

The two requirements are related to each other. Suppose to connect a voltage
source to one side of the capacitor at x = 0 and to ground the other side, the
instantaneous electric field distribution would be the one in figure 7.1b. Sup-
posing that every dimension of the device is short with respect to the guided
wavelength, one can notice that the electric fringing field on the long sides
of each finger is in opposition of phase to the one distributed on the long
sides of the neighbour fingers, so that this components are cancelled. On the
other hand, the electric field on the width of each finger sums up to the other,
representing the main source of radiation. Actually, having a leaky wave, ra-
diation would be distributed along the whole structure, though losses along
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Figure 7.1: (a) Interdigital capacitor microstrip printed model. (b) Simplified model
for describing radiation from interdigital capacitor fingers. (c) Layout of
the symmetrical unit cell realised in ADS with the parameters in table
7.2.

the lines are considered negligible for now. If the approximation above is
valid each pair of fingers can be considered as a unique radiator. Referring
to the circuit in figure 7.1a, the geometrical parameter for the symmetric
unit cells are reported in table 7.2. Using ADS, the circuit layout is gener-
ated and simulated by means of Momentum Microwave simulator (method
of moments simulator), in order to keep into account every kind of loss
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Table 7.2: Symmetric unit cell design parameters. The total number of fingers is
Np=80.

Quantity Value [mm] Quantity Value [mm]

w 0.200 L1 23.975

G 0.100 w1 1.800

Ge 0.125 L2 23.975

wt 0.400 w2 1.800

Lf 1.000 d 50.000

wcap 23.900

Lcap 2.050

present in the circuit (simulation parameters are provided in appendix E).
The same circuit is also simulated by means of a its circuital model (circuit
model provided by ADS) in order to have a comparison with the lossless cir-
cuit. Notice that the outcome of this kind of simulation is a touchstone file,
therefore the circuit is represented by means of its scattering parameters in a
broadband frequency range. Starting from this representation, the transmis-
sion matrix of the system T is extracted by converting the S-parameters in
ABCD parameters. After that, the dispersion diagram is therefore calculated
referring to the theory presented in chapter 5. Figure 7.2 shows the main re-
sults obtained from the simulation of the symmetrical unit cell. As it appears
in figure 7.2a the circuit presents a first passband located in the frequency
range PB1 = [0.65, 0.9]GHz and after a large stop band a second pass band
in the frequency range PB2 = [1.9, 2.1]GHz. Whereas the former is related
to the fundamental Floquet harmonic(n = 0), the latter is due to the n = −1
spatial harmonic. In particular PB2 is the stop band in which this design
is interested in, being the first Floquet mode above the light line (red line),
therefore representing a leaky mode. The quantity det(U) is a measure of
how close the eigenmode of the system are close to each other (as presented
in chapter 5). The quantity is close to zero around the edge frequency of PB2

meaning that these points could be suitable for looking for an RBE. Previ-
ously, it has been mentioned that the Bloch impedance is the characteristic
impedance of an infinite periodic structure (transmission line equivalent).
Moreover, since the structure is symmetrical, one has Z+

B = Z−B . In practice
it is not feasible to operate with such systems, and the first approximation is
to use a discrete number of unit cell. However, By incrementing enough the
number of cells, the input impedance of the discrete structure approaches
the Bloch impedance becoming a good approximation for this quantity (an
example is reported in picture 7.3). Looking at figure 7.2b it is possible to
notice that a zero of Im{ZB} is located close to PB2 centre (βd ' π/2), mean-
ing that the oscillation frequency may not be close to the ideal RBE. This fact
suggest that this topology may not be ideal for the purpose of this design
(the proof of this fact is given in section [oscillation of structure]).

To overcome this problem and improve the frequency selectivity another
design is proposed. In this case an asymmetrical unit cell is employed. The
need of an asymmetry comes from the fact that it is not possible to move
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Figure 7.2: (a) Dispersion diagram for the lossy symmetrical unit cell (table 7.2). (b)
βd = 0 and ZB are compared. (c)(d) Bloch impedance for the forward
and backward propagating mode.

the zero of Im{ZB} to the edges of the passband by simply modify the var-
ious aspect ratios of the interdigital capacitor. Table 7.3 reports the design
parameters for the new cell; the extracted circuit is instead shown in picture
7.4.



7.2 rbe oscillator at βd = 0 63

Figure 7.3: Input impedance of the cascade of 8, 16, 32, 96 uni cells (last cell termi-
nated on a short circuit).

The circuit has been simulated with both method of moment microwave
(MoM MW) and method of moment RF (MoM RF). The former takes into
account all the losses present in the cell, whereas the latter only considers
conduction and dielectric losses. The MoM RF simulation is useful to con-
sider the ideal behaviour of the unit cell, that is close to the behaviour of a
lossless system and the results are shown in figure 7.5.

As it appears from the comparison of the DD for lossless (figure 7.5a) and
the lossy (figure 7.6a) unit cell, the dispersion changes accordingly to the
theory previously presented. In fact, considering the lossy case, no more
degeneracy is visible close to passbands edges, due to the perturbation in-
troduced by loss. Moreover, Bloch impedance behaviour approaching stop-
bands changes dramatically for the two cases. In particular, a significant
reduction for both real and imaginary part modulus is appreciable with full
loss. On the contrary, the frequencies for which Im

{
Z+

B
}
= 0 remain almost

constant. In addition, the new asymmetric design exhibits some different

Table 7.3: Symmetric unit cell design parameters. The total number of fingers is
Np=60.

Quantity Value [mm] Quantity Value [mm]

w 0.200 L1 8.088

G 0.100 w1 0.700

Ge 0.163 L2 8.088

wt 0.250 w2 1.62

Lf 1.000 d 18.000

wcap 17.900

Lcap 1.825

features with respect to the symmetric one. In particular, by looking at fig-
ure 7.6 it is possible to notice that:
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Figure 7.4: Layout of the asymmetrical unit cell extracted in ADS with parameters
in table 7.3.

• The two passbands have been shifted and reduced shrank. Now, PB1 =

[1.1, 1.25]GHz whereas, PB2 = [2.4, 2.5]GHz. This effect is probably due
to the lower capacitance obtained by reducing the number of fingers
(now 60).

• The unit cell in shorter, therefore the portion of DD in which radiation
is possible is reduced. In other words, the light cone is restricted. How-
ever, the n = −1 Floquet harmonic is still able to radiate within this
region, close to the FBZ centre.

• Z+
B 6= Z−B now, since the structure is not symmetric. Besides, the eigen-

mode are no more symmetric too (proof of this is reported in section
[RBE section]). Notice that the frequency for which Im

{
Z+

B
}

= 0 is
now moved to one edge of PB2, in particular toward the FBZ centre.
Figure 7.6b shows exactly this behaviour.

The last feature of the new structure suggests that by cascading N cells, the
input impedance of the circuit has a sharp frequency response around the
frequency for which Bloch reactance vanishes.

7.2.2 Frequency response of the passive ladder circuit

Now that the unit cell is characterised, it is possible to build the discrete
structure that is in charge to operate as distributed resonator. The circuit is
built as a ladder, with N cascaded elements. The design is divided i two
steps:

1. Simulating and characterising the discrete periodic structure by means
of its circuit equivalent. The circuit is realized cascading N two-ports
representing the S-parameters of the unit cell (figure 7.8a);
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Figure 7.5: (a) Dispersion diagram for the asymmetrical lossless unit cell (table 7.3).
(b) βd = 0 compared with ZB. (c)(d) Bloch impedance for the forward
and backward propagating mode.

2. Simulating and characterising the discrete periodic structure by means
of full wave simulation.

Being the circuit a resonator, the first thing that is useful to know is its in-
put impedance (admittance) and its frequency response (transfer function).
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Figure 7.6: (a) Dispersion diagram for the asymmetrical lossy unit cell (table 7.3).
(b) βd = 0 compared with ZB. (c)(d) Bloch impedance for the forward
and backward propagating mode.

In particular, figure 7.7a shows that the driving point admittance is stable
varying the number of unit cells. The analysis is carried on by closing both
terminations on 50 Ω excitation ports. As it appears, the main resonance
frequency is located where the impedance change more rapidly close to res-
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Figure 7.7: (a) Lossless structure. Discrete structure input impedance varying the
number of unit cells: input resistance (above), input reactance (below).
(b) Lossless structure. Discrete structure input impedance varying the
number of unit cells: input resistance (above), input reactance (below).

onance at fres = 2.53 GHz and this is valid for both the lossless (figure 7.7a)
and the lossy case (figure 7.7a). It appears that more than one resonance
frequency is present. However, using the circuit as resonant unit negative
resistance device would be connected at its input port, that can be modelled
with its Northon circuit equivalent. Supposing to reduce the output conduc-
tance of the device from zero to a finite negative value, the first value of
input admittance that is compensated is the one corresponding to the max-
imum of the input impedance. It is worth it to recall that the presence of a
resonance in the circuit is not a sufficient condition to have oscillation, as pre-
sented in chapter 5. Moreover, since the resonator is seen as a one-port from
the outside, the input impedance is the resonator transfer function itself.
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Figure 7.8: (a) Simulation setup in ADS for Q-factor evaluation (b) Total loaded
Q-factor for the passive ladder structure.

Figure 7.8b shows the behaviour of the total Q-factor for the resonator.
Since no analytical model is available for the circuit, the total Q factor have
been calculated be means of equation 3.1.1 as:

Qtot =
fres

2∆ f
(7.1)

where ∆ f is the half power fractional bandwidth calculated at the input of
the circuit. The lossless structure shows a Q factor close to 7000 for a short
circuit, whereas it becomes almost constant approaching 2200 by introducing
larger loads. On the contrary, the lossy structure shows a constant value, well
below the lossless case, probably because of the large amount of loss present
in the system. Moreover, it can be noticed, that QL ' 14.5 0 in the second
case, regardless the value of the applied load. This relatively low value is
not representing a problem for the oscillator operation, as it is presented in
the next section. Although the behaviour of the structures in different, it is
possible to conclude that:

• Using a number of cell N ≥ 8 a discrete structure of this kind present
almost constant loaded Q-factor.

• A short circuit appears to be the best possible load.

• Resonance is expected around fres = 2.5 GHz, close to the upper edge
of PB2.

7.2.3 Active single-ladder circuit and RBE

Now that the passive resonator is characterized, one step further is to add
an active device in order to obtain oscillation. To do this, an ideal non linear
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Figure 7.9: Block scheme for the time domain simulation of the circuit with asym-
metrical unit cell.

source is connected in parallel at the input of the N cell ladder and a time
transient simulation is performed (figure 7.9 shows a sketch of the whole
circuit.). From Kurokawa condition for the input admittance one has:

Gs( fres) = −Gin( fres)

Bs( fres) = −Bin( fres)

therefore the active device must introduce a negative gain equal to −Gs( fres).
Notice that in this case it is supposed to have Bs( fres) = 0, meaning that only
the resonant circuit is in charge of imposing the oscillation frequency and
paving the way for further future analysis. Basically, the gain source acts as
a negative non-linear conductance, whose output characteristic is:

i(t) = −gsv(t) + αv(t)3, α =
gs

3

Being an oscillator, the circuit is not receiving an input signal. In practice,
noise, that has a wideband spectrum (see chapter 4), would start the oscilla-
tion, after a certain initial transient, whose duration cannot be define a priori.
In this application a linear edge current step is injected at the circuit input
port as initial condition. The parameters are: current high level ih = 1 µA,
current low value il = 0, initial delay td = 0, rise time tr = 25 ps, fall time
t f = 25 ps, hold time th = 55 ps and period tp = 10 µs. An example of the
simulated circuit is reported in figure 7.9. Even in this case both lossless and
lossy circuits are simulated. The main result from the transient simulation
are reported in table 7.4 and figure 7.10 for the lossless case and table 7.5
and figure 7.11 for the lossy case, respectively. Considering the reported

Table 7.4: Main result from simulation of the 8 cells ladder lossless array.

Quantity Symbol Value

Expected resonance frequency f NL
r,e 2.558 GHz

Input conductance GNL
in 45.5 µS

Expected min. source conductance gNL
s,e −45.5 µS

Actual oscillation frequency f NL
r,a 2.563 GHz

Actual min. source conductance gNL
s,a −3.95 µS

Phase shift between cells ∆φNL −6.3 deg

Total Q-factor QNL
T 1282

Oscillation start-up time tNL
su 58 µs

data it is now possible to analyse the obtained results.
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Table 7.5: Main result from simulation of the 8 cells ladder lossy array.

Quantity Symbol Value

Expected resonance frequency f L
r,e 2.534 GHz

Input conductance GL
in 1.70 µS

Expected min. source conductance gL
s,e −1.70 µS

Actual oscillation frequency f L
r,a 2.535 GHz

Actual min. source conductance gL
s,a −5.80 µS

Phase shift between cells ∆φL −8.2 deg

Total Q-factor QL
T 422

Oscillation start-up time tL
su 38 ns

• For both the structure the actual resonance frequency is very close
to the expected oscillation frequency. Figures 7.5b and 7.6b show that
the oscillation takes place very close to the FBZ edge. This result is
confirmed by figures 7.11c and 7.10c. In fact the voltage phase shift at
the periodic structure nodes is small (in lossy case ∆φL = −8.2 deg
and ∆φNL = −6.3 deg in lossless one). The small phase shift should
produce a distortion in the waveforms giving a non monochromatic
oscillation. However, spurious frequency components are located well
far from fr in both cases.

• The actual gain required to trigger the oscillation in larger than what
is expected. Input susceptance vanishes close to, but not exactly, where
the input admittance minimum is located, therefore, larger values are
required.

• Waveforms are attenuated along the structure, by a an amount propor-
tional to e−α( fr)d at each cell. Even if all the cells oscillates almost in
phase, the voltage amplitude dramatically decreases moving toward
the load (around some µm at the last node).

• The total Q-factor for the ideal oscillator is decreased. However, the
lossy structure shows a Q-factor well above the value found for the
isolated resonator. This is a typical benefit provided by the presence of
an EPD [7].

The design has been started with the purpose of realising an RBE oscilla-
tor. As previously mentioned lossy discrete structures do not present EPD
because pass and stopbands cannot be sharply defined. The addition of gain
may eventually bring back the working condition close to an ideal opera-
tion even if perfect EPDs can not be retrieved. Consider now the circuit in
figure 7.12a. From chapter 5 it has been presented that unit cell transmis-
sion parameters can be extracted by scattering parameter simulation. The
reported circuit has to be intended as part of an infinite periodic structure in
which the non linear current source acts as distributed gain element. Notice
that S-parameters are simulated by exciting the circuit with a signal source
whose amplitude is small enough to make non linearities negligible. There-
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(a)

(b)

(c)

Figure 7.10: (a) Time domain response of the lossless ladder oscillator based on
asymmetrical unit cell (N = 8). (b) Fourier transform of the time do-
main response showen in (a). As i appears the spectrum is very pure
in a very large bandwidth. (c) Detail on the voltage wave form and to
the associated phase.
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(a)

(b)

(c)

Figure 7.11: (a) Time domain response of the lossy ladder oscillator based on asym-
metrical unit cell (N = 8). (b) Fourier transform of the time domain
response shown in (a). As i appears the spectrum is very pure in a
very large bandwidth also in the lossy case. (c) Detail on the voltage
wave form and to the associated phase. The phase shift is



7.2 rbe oscillator at βd = 0 73

(a)

-0.5 0 0.5
kd/

2.42

2.43

2.44

2.45

2.46

2.47

2.48

f [
G

H
z]

DD FBZ

Re{kd}
-(k)2 fit

(b)

-1 0 1
Re{kd}/

2.1

2.2

2.3

2.4

2.5

2.6

2.7

f [
G

H
z]

DD FBZ

gain
no gain
light

-1 0 1
Im{kd}/

2.1

2.2

2.3

2.4

2.5

2.6

2.7

f [
G

H
z]

DD FBZ

gain
no gain

10-4 10-3 10-2

|detU|

2.1

2.2

2.3

2.4

2.5

2.6

f [
G

H
z]

det(U)

gain
no gain

X 0.0015714
Y 2.4561

(c)

2 2.5 3
f [GHz]

0.99

0.995

1

1.005

1.01

|V
e|

|Ve
+ |

|Ve
- |

2 2.5 3
f [GHz]

0

0.05

0.1

|I e|

|Ie
+ |

|Ie
- |

2 2.5 3
f [GHz]

-0.1

-0.05

0

0.05

0.1

ar
g{

V
e}

arg{Ve
+}

arg{Ve
- }

2 2.5 3
f [GHz]

-2

-1

0

1

2

ar
g{

I e} arg{Ie
+}

arg{Ie
- }

(d)

Figure 7.12: (a) Unit cell simulated with gain element. (b) Dispersion diagram for
the unit cell with and without gain.

fore, the given current source can be actually modelled as a conductance
resistor whose value is −gs. By simulating the circuit it appears that the
value of gain necessary to retrieve the degeneracy for both eigenvalues and
eigenvectors is exactly ge = −5.8 µS. The chart in figure 7.12c shows this re-
sult. Notice that det(U) is proportional to 10−3, therefore both eigenvectors
and eigenvalues show a non negligible value of degeneracy. The proof of the
eigenvectors degeneracy is in figure 7.12d. Another proof of the presence of
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Figure 7.13: (a) gs parametrization as a function of the number of cell. The driving
admittance can is fit by 1/N2.7 suggesting the presence of a RBE. (b)
Voltage exponential decay along the line for N = 8, 16. The voltage re-
mains almost constant by varying the number of cells. (c) Peak voltage
value is slightly changed by varying ge.

a RBE is in figure 7.12b, in which it is shown how ω ∝ −β2, showing hence
the presence of a second order EPD [2].

The oscillation frequency for the discrete periodic structure is still not
exactly located at fe. The reason is that only in the input cell losses are
recovered retrieving frequency selectiveness, whereas in the remaining part
of the array oscillation is imposed by the first cell.

The minimum value of the transconductance varies by changing the num-
ber of cells employed in the structure. In particular, figure 7.13a shows that
the the behaviour is proportional to 1/N2.7:

gs,min(N) ≈ 0.1
N2.7 + 0.0054 S (7.2)

the fitting function above is very close to results reported in literature, for
example in [6], where it is shown that for RBE oscillators, the driving point
admittance is proportional to 1/N3.

Figure 7.13b shows instead the variation of the peak voltage at each node
of the array. The scale is logarithmic, and Vn linearly decreases suggesting an
exponential decay. Furthermore, changing the number of cells slightly affect
the voltage distribution at each node. Besides that, figure 7.13c shows that
by increasing gs of 10 % peak voltage changes of less than 2 %, provided that
the variation is far from the threshold.
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Figure 7.14: (a) ADS MoM simulation is compared with CST FD and TD solver
with employing discrete face ports. (b) ADS MoM simulation is com-
pared with CST FD and TD solver with employing waveguide ports
and de-embedding the scattering parameters. (c) ADS lossless simula-
tion versus CST eigenmode solver.
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(a) |E(x, y, z)| (b) Ex(x, y, z)

(c) Ey(x, y, z) (d) Ez(x, y, z)

Figure 7.15: Mode 2: electric field distribution for interdigital capacitor at fr. The
high value of the electric field are non physical and due to the eigen-
mode solver, in which losses are ignored. A different color map is used
in this plots in order to better understand the field distribution in the
capacitor.

7.2.4 Modes Analysis

The unit cell is now analysed in order to understand how electromagnetic
fields behave at various frequencies. In particular the next steps are focused
on understanding the topology of electromagnetic modes around oscillation
frequency and how they could eventually participate in radiation. In chapter
5 a formalism based on the transmission matrix method as been presented to
study periodic structures. This method allows to obtain information about
frequency and time domain response. Anyway, in this study the procedure
has been strictly related to a circuital analysis until now, since each unit cell
is modelled by its scattering parameters. 2 Full wave simulations carried so
far are based on ADS MoM solver, that does not allow the direct calculation
of eigenmodes. To confirm the validity of the ADS MoM solution, CST is
employed with both frequency domain (FD) and time domain (TD) solvers.
Excitations are provided with both discrete face ports and waveguide ports
(simulation setup is in appendix E). Waveguide ports are located far from

2 The same analysis could be carried on by means of electromagnetic wave formalism [38],
however the complexity of the geometry does not allow to define fields in the unit cell a
priori and the calculation would be cumbersome and out of the scope of this study.
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the unit cell and then scattering parameters are de-embedded at its inputs.
All the CST simulations show a good agreement with the result obtained
with ADS. In particular, DD from TD looks closer to DD from MoM than
what is obtained from FD, for both discrete and waveguide ports.

To obtain a more comprehensive description of the EM fields CST MW Stu-
dio eigenmode solver (EIG) is employed (solver set up in appendix E). This
kind of simulation allows to individuate higher order modes, that would
not be visible by simulating the unit cell as two-port. The same informa-
tion could be extracted by using a multi-mode waveguide port in fullwave
simulation. However, ADS does not include this feature and CST frequency
and time domain simulator would require a very large number of meshcells,
along with very large computational resource demand and simulation time.

The outcome of the EIG simulation is reported in figure 7.14c. Since CST
EIG solver does not take into account losses, the lossless circuit DD (no
conduction, no dielectric, no radiation losses) is also plotted for compari-
son. A good agreement between the two solver is found for the eigenvalues
of modes 1, 2, 3, 7 that are related to the fundamental Floquet wave and its
higher order spatial harmonics. The cut-off frequency for n = 0 spatial har-
monic is located around 1 GHz for both the solver, whereas stop and pass-
bands appear to be similar in amplitude for n 6= 0. Group velocity appears to
be consistent in both the solver for this mode. As expected, harmonic n = −1
is a short wave whose phase velocity is negative approaching fe ' 2.6 GHz,
where group delay tends to infinite.

The plot also shows the presence of three additional modes, namely num-
ber 4, 5, 6, that could seem not expected given the previous results. They are
short waves whose cut-off frequencies are well above fr. They also exhibit a
change in group velocity around βd ' π/2 for 5, 6 and close to βd ' 0.7π for
4. Close to these corner points, group velocity vanish and the quality factor
of the system should increase, yielding strong resonance, leaving the possi-
bility for following investigations. Moreover, the presence of intersections in
modes 4 to 7 eigenvalues also predicts that energy can be exchanged among
them at crossing points [39]. Finally, being the microstrip a quasi-TEM line
[9], and although this modes arise above a certain frequency they are not
detrimental for operation of the oscillator, as it will be shown.

Attention is now focused on mode 2, since it is responsible of carrying
power in the oscillator close to fr. Figure 7.15 shows the electric field distri-
bution in the unit cell both in modulus and in the vector components. The
electric field is mainly concentrated in the capacitor and in particular the
maximum value is located at the end of the capacitor branches. For what
concerns the three field components one can notice that Ex is mainly dis-
tributed along the external edges of the IC and in between the fingers, but
only along the short sides. On the contrary Ey maximum is located in be-
tween the fingers longer side. It appears that the electric field is distributed
as a standing wave along y. The circuit is not periodic in the y direction and
no such an effect is expected. Anyway, it could be blamed to border effects
due to the small substrate (the whole structure is heavily sub wavelength:
λr ' 125 mm� wsub = 38 mm, where wsub is the substrate width3). Ez turns

3 It is importante to notice that the structure is periodic only in the x direction, therefore only
there the periodicity of the cell is defined by the Bloch wave solution.
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out to be the main electric field component. This fact confirms that a large
part of the field can be coupled with the surrounding medium, generating a
leaky mode. Recall that for leaky mode propagating on a periodic structure
with negative group velocity, the generic field distribution is expressed as
[43]:

E(x, y, z) = E0e+jkxxe−jkzz (7.3)

Notice that the electric field maximum value is in the interdigital capacitor,
with values touching Emax ∝ 1010V/m for the fringing areas in between the
fingers. Besides, figure 7.16 shows that the electric field along the two access
lines is four orders of magnitude below with respect to Emax. This strong
field variation could be explained recalling that the lossless unit cell is very
close to its resonance frequency, where the total Q-factor is Qtot ' 104.

By comparing the field in figure 7.16 and 7.17 one can notice that the
overall field distribution is neither a TE nor a TM, but rather a TEM, since all
field components are non null for both H and E on the whole UC extension.
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(a) Ex(x, y, z)

(b) Ey(x, y, z)

(c) Ez(x, y, z)

(d)

(e)

Figure 7.16: (a)(b)(c)Mode 2: electric field distribution for the unit cell at fr. The
high value of the electric field are non physical and due to the eigen-
mode solver, in which losses are ignored. (d) Electric field surrounding
the unit cell at different cutting planes at x = 6.2 mm, x = 9 mm (UC
centre) and x = 15 mm. (e) Electric field surrounding the unit cell at
different cutting planes at x = 18 µm, x = 1 mm and x = 2.5 mm.
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(a) Hx(x, y, z)

(b) Hy(x, y, z)

(c) Hz(x, y, z)

(d)

(e)

Figure 7.17: (a)(b)(c) Mode 2: magnetic field distribution for the unit cell at fr.
The high value of the electric field are non physical and due to the
eigenmode solver, in which losses are ignored.(d) Magnetic field sur-
rounding the unit cell at different cutting planes at x = 6.2 mm,
x = 9 mm (UC centre) and x = 15 mm. (e) Magnetic field surround-
ing the unit cell at different cutting planes at x = 18 µm, x = 1 mm
and x = 2.5 mm.
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7.2.5 Oscillation and Radiation Analysis

Figure 7.18: 8 cell array used as resonant-radiating device. Port 1 is used to feed
the structure, whereas port 2 is used as load. Port 1 is used to feed the
structure, whereas port 2 is used as load.

In the previous sections it has been shown how oscillation can be achieved
in this design, but can radiation be obtained as well with such a structure?
Can eventually the array also work as an antenna? We recall that the need
of having a high quality factor is in contrast to the presence of losses in the
system. Moreover, since the device is oscillating close to band edge, radiation
(broadside in this case), becomes intrinsically impracticable with a standard
periodic structure4.

An 8 cells array is built and simulated by means of CST FD solver, employ-
ing discrete face ports. This solver has proved to give results further than
the TD solver, anyway in this case simulation are faster with respect TD one.
Moreover, the mesh can be more easily customized and adapted to the small
geometry featured by the structure. Waveguide port exitation would bring
to more accurate results, however this method does not allow to impose the
port reference impedance arbitrarily. On the contrary, discrete face port does.
The simulated structure in in figure 7.18, whereas the simulation setup can
be consulted in appendix G.

Table 7.6: Main result from full wave simulation of the 8 cells ladder array.

Quantity Symbol Value CST Value ADS

Expected resonance frequency fr,e 2.6145 GHz 2.534 GHz

Driving point conductance Gin 1.575 µS 1.70 µS

Expected min. source conductance gs,e −1.575 µS −1.70 µS

Actual oscillation frequency fr,a 2.6145 GHz 2.535 GHz

Actual driving point conductance gs,a −5.6 µS −5.80 µS

Phase shift between cells ∆φ N.A. −8.2 deg

Total Q-factor QT 1188 422

Oscillation start-up time tsu 25 ns 38 ns

4 As mentioned before, broadside radiation can be achieved with leaky wave employing right-
left hand transmission line, or through some modification of the unit cell.
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(a)

(b)

(c)

(d)

Figure 7.19: (a) Driving point impedance for the lossy designed array. (b) Output
impendance for the designed array. (c) Voltage in time domain re-
sponse at the input port. (d) Output spectrum: oscillation is located
at fr8 = 2.6145 GHz.
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Figure 7.20: Scattering and loss parameters for (a) lossy and (b) lossless structure:
reflection coefficient (top lef), transmission coefficient (top right), total
loss (bottom left) and VSWR (bottom right).
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The array is simulated and its scattering parameters are extracted. Each
port of the device have resistive input matching at resonance frequency. In
order to evaluate this frequency, the structure is simulated by means of CST
Design Studio transient solver (circuital). To do so, the scattering parameters
from the fullwave simulation are imported in the circuital simulator and then
analysed with the circuit in figure G.1a. The complete circuit shows result in
agreement to those presented in section 7.2.3. The comparison between the
two methods is reported in table 7.6. Resonance frequency is similar for the
two approaches, along with total Q-factor and driving point admittance.

Now that the oscillation has been verified to take place, it is possible to
proceed by evaluating the radiation properties. First of all, array ports are
matched to their input impedances at resonance frequency (driving point
susceptance is null at port one and not considered at port 2). The set of scat-
tering parameters related to this quantity are reported in figure 7.20 for both
lossy and lossless structure. As it appears loss becomes really large around
resonance frequency fr = 2.6145 GHz. It will be shown that such an impor-
tant loss is the reason why this structure cannot be used as antenna with this
substrate, since its radiation efficiency is very low. In fact, referring to figure
7.21, one can have some important information about radiation in farfield
for this device. Although the field distribution on each unit cell is exponen-
tially decaying, the radiation pattern is not the one typical of a leaky wave
antenna. The radiation pattern is almost broadside, with one main beam lay-
ing on the ϕ = 0 plane.5 Side lobes level is around −2.4 dB and HPBW is
36.7 dB in the direction of major radiation. Figure 7.21a shows that the maxi-
mum antenna directivity is D = 6.212 dB. However since radiation efficiency
is ηcd = η0 = −36.71 dB, maximum gain is only G = −30 dB. Even if input
impedance matching is achieved, this gain reflects the presence of a large
loss in conductor and dielectric at the operating frequency. Besides, being
the radiating mode a quasi-standing wave and being the Q-factor of the ar-
ray very high at fr, only a small amount of the input power may be radiated.
A comparison on figure 7.21f and 7.21g helps in understanding conduction
losses are detrimental in determining the radiation efficiency. Close to oscil-
lation frequency, lossless case shows overall low efficiency, anyway this is
due to the frequency selectivity of the resonator and the vanishing group
velocity approaching fr. Some consideration could be done:

• The proposed layout is necessary to realise a frequency selective unit
cell. However some improvement are necessary in the unit cell in order
to increase the gain. For example by introducing ad additional two
resonators shifted by d/4 in the same unit cell may improve broadside
radiation [44].

• Beamwidth is proportional to antenna equivalent area. By increasing
the number of cells, the area occupied by the device would increase
eventually improving directivity.

• Fullwave simulator do not allow the use of non linear negative re-
sistance component, therefore the actual behaviour of the device can
not be tested. Adding a gain element would bring back the system to

5 Spherical coordinate system is used for simplicity.
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(a)

(b) φ = 0, π (c) φ = ±π/2

(d) θ = π/2 (e) Axial ratio

(f ) (g)

Figure 7.21: (a-d)Farfield radiation pattern and related cuts on the main planes for
the lossy array. Radiation efficiency is very low because of the large
amount ohmic and dielectric losses. (e) Axial ratio: the polarization is
mainly elliptical in the main radiation direction. (f) Broadband radia-
tion loss for lossy N = 8 array. (g)Broadband radiation loss for lossless
N = 8 array.

work as a RBE structure, having the benefits of EPDs and increasing
beamwidth [10].

• Low loss substrates may improve overall radiation efficiency.
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• The device could be used as nearfield source, rather than farfield.

The farfield pattern shape, would not suggest the presence of a leaky wave
travelling in the device. However, figure 7.22 confirms that actually a leaky
travelling mode is present. In fact, the electric field is sampled on a cylindri-
cal surface of radius r = 20 cm around the device. A phase variation corre-
sponds to shift in space of the electric field main beam and relative maxima.
Hence, it appears that the field around the radiator is not static, with a peak
value of ' 0.7 V/m located along the normal to the antenna (z axis).

The conclusion is that a travelling wave is indeed present on the oscillator
surface and it is responsible of radiation. This fact may be explained by re-
calling that the device resonates close, but not exactly at, βd ' 0. Given that,
the forward and backward travelling mode would be not perfectly coalesc-
ing, setting a travelling wave in the circuit (perfect coalescence would bring
to a standing wave).

(a) ϕ = 0 (b) ϕ = 60 deg

(c) ϕ = 90 deg (d) ϕ = 120 deg

(e) ϕ = 150 deg (f ) ϕ = 180 deg

Figure 7.22: Radiated field in the vicinity of the array at various phase steps show-
ing the existance of a travelling wave. The cylindrical surface on which
the electric field is evaluated is oriented along th x axis centered
around the device. It has radius equal to 20 cm and height equal to
1 m.

7.3 folded ladder design

The following analysis contains results from design tasks that are still under
investigation. Here the aim is to obtain oscillation at the edge of the FBZ,
hence at βd = ±π. As it has been presented in the previous project, it is
possible to obtain a stable oscillation employing a unit cell made of an inter-
digital capacitor and two microstrip access lines. Although the first aim is
to obtain a sharp oscillation around RBE frequency, also radiation should be
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considered. In particular, being at band edge each node of the periodic struc-
ture is actually in opposition of phase with respect the other. The same can
be say about each resonator. Radiation would be ideally impossible having
each resonator-radiatior in opposition of phase with respect to the others. A
ploy, aimed to solving this issue, would be a 90 deg. rotation of each cell on
the plane (figure 7.23a).

(a)

(b) (c)

(d)

Figure 7.23: (a) Realised folded unit cell. (b) Voltage waveform of an 8 cell struc-
ture. (c) Output spectrum at each oscillator node. (d) Zoom on voltage
waveforms.

As it appear the structure looks symmetric, but also asymmetric designs
could be well suited for this application. This possibility is under investiga-
tion. At this time, the oscillation spectrum for this ladder structure is still
quite impure. Compared to 7.11a the voltage waveforms undergo less atten-
uation along the line. This could be due to the fact the oscillator is working
far from band edge, where losses are not too high. Since each node presents
a different voltage waveform, not in phase to the other, the structure could
still be able to radiate as a LWA. Improvements in oscillation properties is
under investigation for this structure.

7.4 closed loops and distributed gain

Previously we mentioned that gain would be able to better compensate for
losses if provided in a distribute way. In particular, the structure presented
until now are designed so that one only gain element is used at one of
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the oscillator sides. However, gain could be provided at each node through
non linear elements. Discrete structures may still be used, provided that

Short circuit

i v = −GminV4 + αV4
3

Figure 7.24: Looped structure mimicking an infinitely long structure.

each termination is the Bloch impedance ZB seen at each side. Though ZB

is dispersive, hence a frequency dependent load should be used. Since this
would be difficult in practice, another solution could be applied. In fact, each
load could be substituted by means of a zero electrically long connection in
order to realize a looped device. Oscillators based on this kind of structures
are under investigation.
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This work have tried to find a solution to the following questions:

1. Is it possible to design any other EPD oscillating structures based on
microstrip technology?

2. Is it an EPD condition sufficient oscillator also able to radiate, even if
this is in contrast to having a large Q-factor?

An exact answer to both the questions would require a deeper study of
the proposed structures and also the exploration of new solutions.

In this design, a novel topology for an RBE oscillator has been realised.
An interdigital capacitor has been employed and designed to maximise its
radiation resistance and minimize phase shits among radiating edges on its
surface. After that, two access lines have been added to realise the unit cell.
Asymmetric access lines turned out to be more convenient to obtain EPD at
centre FBZ. The final layout area is approximatively 18 mm× 18 mm. Then,
the unit cell is then simulated in full wave simulator and characterized to
successfully verifying that an EPD could be retrieved by adding gain.

Next, a certain number of unit cell is cascaded to realize the actual res-
onator. The characterisation of the loaded quality factor suggests that using
8 cells loaded with a short circuit the structure behaves almost as an infinite
periodic structure. After gain is added, provided by means of the equiva-
lent model of a nonlinear cubic voltage controlled current source, it is then
proved that the structure is an RBE oscillator. In fact, the figures of merit
related to single ladder RBE oscillators are verified to be featured by the de-
sign (for instance gs = 1/N2.7). In particular the phase shift between each
cell is 8 deg, meaning that the oscillator is actually working very close to
βd = 0, i.e. the band edge (each cell in phase with the others). Moreover,
resonance frequency fr = 2.535 GHz is slightly shifted from EPD frequency
fe = 2.4561 GHz. Besides, maximum loaded quality factor is Qt,max ≈ 2000
and minimum driving point impedance is ge,min = 5.8 mS.

The next step it to perform eigenmode simulation by means of fullwave
simulator to verify the T-matrix method validity and analysing field topol-
ogy of the radiating mode. The radiating mode turns out to be the first
n = −1 Floquet harmonic (see Chapter 5 for reference).

Full wave frequency domain simulations eventually suggest that the os-
cillator does not show particularly remarkable radiation properties. In fact
even if the radiating mode is a leaky wave and the structure is working
as leaky wave antenna (LWA), radiation efficiency is low due to large con-
duction and dielectric losses (ηnc ' −15 dB for the lossless structure versus
ηnc ' −30 dB in lossy). This result suggests that the oscillator may be used
as nearfield source rather than farfield (|Epk| ' 0.7 V/m at 0.5 m from the
structure, with an excitation of 0.5 W). Keep in mind that this result have
been obtained without the addition of gain, because of simulation limitation.
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92 conclusions

The actual structure could therefore present significant enhancements. Fur-
ther steps such as a prototype realization and topology improvements are
under investigation.



Part V

A P P E N D I X





A P R O O F O F K U R O K A W A’ S
S TA B I L I T Y C O N D I T I O N

Here the proof of Kurokawa stability criterion is given, as shown in [9]. Refer-
ring to figure [series oscillator], the load impedance is ZL(I, s) = RL(I, s) +
XL(I, s), whereas the active device output impedance is ZS(I, s) = RS(I, s) +
XS(I, s). Both the quantities can generally depend on the complex frequency
s = α + jω and fundamental current component I. Given a small current
change δI and a small change δs, one has:

ZT(I, s) = ZS(I, s) + ZL(I, s)

= ZT(I0, s0) +
∂ZT

∂s

∣∣∣∣
s0,I0

δs +
∂ZT

∂I

∣∣∣∣
s0,I0

δI = 0 (A.1)

where ZT is null provided that the system is oscillating in S0 = jω0 with
fundamental tone I0. From A.1 it comes that:

ZT(I0, s0) = 0
∂ZT

∂s
= −j

∂ZT

∂ω

Therefore:

δs = δα + jδω =
−∂ZT/∂I
∂ZT/∂s

δI =
−j(∂ZT/∂I)(∂Z∗T/∂ω)

|∂ZT/∂ω|2 δI (A.2)

Supposing that every oscillation transient produced by δI or δs is decaying,
we must have δα < 0 if δI > 0. Therefore, from A.2:

Im
{

∂ZT

∂I
∂Z∗T
∂ω)

}
< 0 (A.3)

or
∂RT

∂I
∂XT

∂ω)
− ∂XT

∂I
∂RT

∂ω)
> 0 (A.4)

Supposing that the load presents ∂RL/∂I = ∂XL/∂I = ∂RL/∂ω and substi-
tuting in A.4:

∂RS

∂I
∂

∂ω
(XL + XS)−

∂XL

∂ω

∂RS

∂I
> 0 (A.5)

that is Kurokawa’s condition for a stable oscillation.
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B E N E R GY F LO W T H R O U G H A
P E R I O D I C S T R U C T U R E

Given a periodic transmission line, its unit cell is considered and placed in a
bounded surface S modelling a perfect electric conducting (PEC) waveguide
walls (figure [unit cell with boundaries, collin]). The surface is chosen such
that S1 and S2 boundaries coincide perpendicularly with the unit cell termi-
nations. Moreover a cylindrical surface Sc, with infinite radius, surrounds
the structure. The unit cell have dispersive parameters ε and µ.Since the
volume is bounded by a perfect conductor the boundary condition for the
electric field holds on the PEC:

n× E|S = 0 (B.1)

From Foster’s reactance theorem, [38] one has:∮
S

(
E× ∂H∗

∂ω
+

∂E∗

∂ω
×H

)
· dS = −j

∫
V

(
H ·H∗ ∂ωµ

∂ω
+ E · E∗ ∂ωε

∂ω

)
= −4j(Wm + We) (B.2)

Where Wm +We is the total time-average energy stored in the volume bounded
by S. Poynting vector is null on Sc and dS = zdS, where z is the unit versor
along z.∮

S1

(
E1×

∂H∗1
∂ω

+
∂E∗1
∂ω
×H1

)
· z dS−

∮
S2

(
E2×

∂H∗2
∂ω

+
∂E∗2
∂ω
×H2

)
· z dS =

= −4j(Wm + We) (B.3)

Where E1,H1 and E2,H2 are the electric and magnetic fields on terminal 1

and 2, respectively. For Bloch modes:

E2 = E1e−jγd H2 = H1e−jγd (B.4)

where γd is the phase shift introduced by the unit cell of length d for the
Bloch mode. Substituting in B.4, one has that the argument of the second
interval becomes:

E2×
∂H∗2
∂ω

+
∂E∗2
∂ω
×H2 =

E1×
∂H∗1
∂ω

+ jd
dβ

dω
E1×H1

∗ +
∂E∗1
∂ω
×H1 + jd

dβ

dω
E1
∗×H1 (B.5)

Therefore:

− 2jd
dβ

dω
Re

{ ∮
S

E1×H1
∗ · z dS

}
= −4jd

dβ

dω
P = −4j(Wm + We) (B.6)

Where:

P =
1
2

Re

{ ∮
S

E1×H1
∗ · z dS

}
(B.7)
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98 energy flow through a periodic structure

is the transmitted power from a terminal plane. Inverting B.6, one has:

vg =
dω

dβ
= d

P
Wm + We

(B.8)

from which it comes that the group velocity vg times the energy density
(Wm + We)/d give the power flowing through one unit cell terminal. Hence,
vg is the energy flow’s velocity.



C FA R F I E L D F I E L D S D E R I VAT I O N

It is given a finite volume with main dimension D, that contains magnetic
source (Jm) or electric sources (Je). Each point of the volume is reached by
means a vector r′. A generic point outside the volume is located at position
P at a distance r from the sources. The solution of the wave equation exited
by an electric or magnetic current densities, at this position P is given by the
convolution integral:

E(r) = −jωµ0

∫
r′

G(r− r′) · Je(r
′) · dr′ + j

∫
r′
∇×G(r− r′) · Jm(r

′) · dr′

(C.1)
where G is the dyadic Green function, that for rhok0 � 1 is given by:

G(r− r′) ' e−jk0ρ

4πρ
It,ρ (C.2)

∇×G(r− r′) = −jk0ρ̂×G(r− r′) ' −jk0
e−jk0ρ

4πρ
ρ̂× It,ρ (C.3)

where e−jk0ρ

4πρ is the scalar Green’s function and It,ρ is the dyadic transverse

identity defined by It,ρ = (ϕ̂θ̂ − θ̂ϕ̂), with ϕ̂ and θ̂ unit vector for the az-
imuth and zenith angles, respectively. The transverse dyadic for very large
ρ is almost constant and can be carried out of the integral. Since ρ = r− r′,
the amplitude ρ is given by:

ρ =
√
(r− r′)(r− r′) =

√
r2 + r′2 − 2r · r′

= r

√
1 +

(
r′

r

)2

− 2r̂ · r′

r
(C.4)

that, in case that r′ � r can be approximated at the first order as:

ρ ' r− r′ · r̂ (C.5)

that is called Fraunhofer approsimation. In this condition, called farfield condi-
tion each vector ρ is considered almost parallel to each other. The phase dif-
ferent introduced by this approximation can be estimated as an error given
by:

∆ϕ = k0∆ρ =
k0

2r
[
r′2 − (r′ · r̂)2] < k0r′2

2r
(C.6)

Each points inside the volume is in a position bounded by r′ < D/2, there-
fore:

4D2

4rλ
(C.7)

and considered ∆ϕ < π/8 an acceptable error one has the Frounhofer ap-
proximation defined as:

r >
2D2

λ
= r f f (C.8)
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100 farfield fields derivation

Substituting the relations obtained till now in C.2, and recalling that ρ ≈ r,
one has:

G =
e−jk0r

4πr
(θ̂θ̂+ ϕ̂ϕ̂)ejk0(r

′·r̂) (C.9)

∇×G = −jk0
e−jk0r

4πr
(ϕ̂θ̂− θ̂ϕ̂)ejk0(r

′·r̂) (C.10)

which, substituted in C.1 yields:

E(r) = −jωµ0
e−jk0r

4πr

[
It,r ·

∫
r′

Je(r
′)ejk0(r

′·r) dr′

−Y0r̂× It,r ·
∫
r′

Jm(r
′)ejk0(r

′·r) dr′
]

(C.11)

where the quantity closed in square brackets is the generalised electric moment,
GEM, indicated with pe(r̂), such that:

pe(r̂) = It,r ·
∫
r′

Je(r
′)ejk0(r

′·r) dr′ −Y0r̂× It,r ·
∫
r′

Jm(r
′)ejk0(r

′·r) dr′ (C.12)

Each integral in C.12 is a three dimensional Fourier transform computed for
k = k0r̂. The relation hence becomes:

pe(r̂) = It,r · F3{Je(r)}k0r̂ −Y0r̂× It,r · F3{Je(r)}k0r̂ (C.13)

Notice that the GEM is a vector that has only transverse components along
θ and ϕ. The polarization of the resulting electric field can be derived by
separating variables as follows:

pe(r̂) = peθ
(r̂)θ̂+ peϕ(r̂)ϕ̂ (C.14)

To sum up, the electric field can be written in term of pe(r̂) as:

E(r, θ, ϕ) = −jZ0
e−jk0r

2rλ
pe(r̂) (C.15)

whereas the magnetic field can be eventually found by means of the well
known conversion formula:

H(r, θ, ϕ) =
1

Z0
k× E(r, θ, ϕ) (C.16)

For what concerns the equivalent electric and magnetic current, they can
be calculated by means of equivalence theorem.[42] Given an arbitrary field
distribution (electric, Es or magnetic, Hs) located on the aperture (extension)
of a radiator, the equivalent sources are given by:

Jm = −2n̂× Es (C.17)

Je = −2n̂×Hs (C.18)

where n̂ is the unit vector normal to the aperture.



D T R A N S M I S S I O N L I N E C I R C U I T
M O D E L

Telegraphers equation solution yields that voltage and current in a transmis-
sion line are given by the superposition of two travelling waves expresses
ad time-harmonic functions: one forward mode with wavenumber −γ and
one backward mode with wavenumber γ. The wavenumber is expressed as
γ = β + jα. The expression for Voltage and current along the line is given
by:

V(z) = V+e−jγz + V−e−jγz (D.1)

I(z) = I+e−jγz − I−e−jγz (D.2)

Relations above can be written in term of transmission matrix. In particular,
for a lossless transmission line we have the T-matrix defined as follows:

Ttl =

(
Atl Btl

Ctl Dtl

)
=

 cos γl −jZ0 sin γl

−j
sin γl

Z0
cos γl

 (D.3)

Moreover,the conversion from T matrix to Z matrix yields:

Ztl
T =

(
Ztl

11 Ztl
12

Ztl
21 Ztl

22

)
=

Atl

Ctl
∆Ttl

Ctl

1
Ctl

Atl

Ctl

 (D.4)

= Z0


1

j tan γl
− 1

j sin γl

− 1
j sin γl

1
j tan γl

 (D.5)

where ∆T = 1 since the network is reciprocal. The corresponding T-equivalent
network follows:

Ztl
T1 Ztl

T2

Ztl
T3

Figure D.1: Transmission line T-circuit equivalent.

Where:

Ztl
T1 = Ztl

11 − Ztl
12 = jZ0 tan

γl
2

(D.6a)

Ztl
T2 = Ztl

22 − Ztl
12 = jZ0 tan

γl
2

(D.6b)

Ztl
T3 = Ztl

12 = Ztl
21 = −j

Z0

sin γl
(D.6c)
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102 transmission line circuit model

Then Ztl
T1 and Ztl

T2 are series inductive components, represented by Ltl , whereas
the Ztl

T3 models a shunt capacitance Ctl in figure D.1.



E R B E O S C I L L ATO R AT β d = 0 ,
S I M U L AT I O N S E T U P

symmetrical uc: ads mom mw solver setup

In the following the screenshots reporting the configuration of ADS in Mo-
mentum Microwave simulation. The total amount of meshcells is 17150.

(a) (b)

(c)

Figure E.1: (a)(b)Simulation configuration for ADS MOM MW solver. (c) Mesh used
for the simulation.
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104 rbe oscillator at βd = 0, simulation setup

Figure E.2: Circuit used for the layout extraction and lossless simulation.

asymmetrical uc: ads mom mw solver setup

In the following the screenshots reporting the configuration of ADS in Mo-
mentum Microwave simulation. The total amount of meshcells is 22500.

(a) (b)

Figure E.3: (a)(b)Simulation configuration for ADS MOM MW solver.



rbe oscillator at βd = 0, simulation setup 105

(a)

(b)

Figure E.4: (a) Mesh used for the simulation. (b) Circuit used for the layout extrac-
tion and lossless simulation.



106 rbe oscillator at βd = 0 , simulation setup

asymmetrical uc: cst mw studio eigenmode solver
setup

(a)

(b)

(c)

Figure E.5: (a) Mesh used for the eigenmode simulation. (b) Mesh setup. Notice, a
denser meshgroup has been used in narrow parts. (c) Boundary condi-
tions employed for the simulation.



rbe oscillator at βd = 0, simulation setup 107

asymmetrical uc: cst mw studio fd discrete port

Solver accuracy parameters is set to 0.02. Total number of meshcells: ≈500k.
Frequency range is f = [0.1 GHz, 6 GHz]. Open boundaries condition is im-
posed.

(a)

(b)

(c)

Figure E.6: (a) Simulation layout (valid also for TD simulator). (b) Mesh used for the
frequency domain simulation. (c) Mesh setup. Notice, a denser mesh-
group has been used in narrow parts.



108 rbe oscillator at βd = 0, simulation setup

asymmetrical uc: cst mw studio td discrete port

Solver accuracy parameters is set to −80 dB. Total number of meshcells:
≈2.5M. Frequency range is f = [0.1 GHz, 6 GHz]. Open boundaries condi-
tion is imposed.

(a)

(b) (c)

Figure E.7: (a) Mesh used for the time domain simulation. (b),(c) Mesh setup. No-
tice, a denser meshgroup has been used in narrow parts.



rbe oscillator at βd = 0, simulation setup 109

asymmetrical uc: cst mw studio fd waveguide port

Solver accuracy parameters is set to 0.02. Total number of meshcells: ≈600k.
Frequency range is f = [0.1 GHz, 6 GHz]. Open boundaries condition is im-
posed. Waveguide port are single mode with extension coefficient k = 7.

(a)

(b)

(c) (d)

Figure E.8: (a) Simulation layout (valid also for TD simulator). (b) Waveguide ports
de-embedding. (c) Mesh used for the frequency domain simulation. (d)
Mesh setup. Notice, a denser meshgroup has been used in narrow parts.



110 rbe oscillator at βd = 0, simulation setup

asymmetrical uc: cst mw studio td waveguide port

Solver accuracy parameters is set to −80 dB. Total number of meshcells:
≈2.5M. Frequency range is f = [0.1 GHz, 6 GHz]. Open boundaries condi-
tion is imposed. Waveguide port are single mode with extension coefficient
k = 7.

(a)

(b) (c)

Figure E.9: (a) Simulation layout (valid also for TD simulator). (b) Waveguide ports
de-embedding. (c) Mesh used for the frequency domain simulation. (d)
Mesh setup. Notice, a denser meshgroup has been used in narrow parts.



F E I G E N M O D E S O LV E R M O D E S
F I E L D C U T S

In the following various cuts of the asymmetrical unit cell are reported, in
order to inspect the internal electric field behaviour for the eigenmode 2

(7.14c).

B

C

A

(a)

(b) |J(x, y, z)| (c) |Jx(x, y, z)|

(d) |Jy(x, y, z)| (e) |Jz(x, y, z)|

Figure F.1: (a) cuts realised to inspect EM field distribution. (b),(c),(d) Surface cur-
rent distribution for mode 2.
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112 eigenmode solver modes field cuts

(a) |E(x, y, z)|

(b) |Ex(x, y, z)|

(c) |Ey(x, y, z)|

(d) |Ez(x, y, z)|

Figure F.2: Electric field distribution absolute value in the plane defined by cut ’A’.
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(a) arg{Ex(x, y, z)}|

(b) arg{Ey(x, y, z)}|

(c) arg{Ey(x, y, z)}|

Figure F.3: Electric field distribution phase in the plane defined by cut ’A’.



114 eigenmode solver modes field cuts

(a) |E(x, y, z)|

(b) |Ex(x, y, z)|

(c) |Ey(x, y, z)|

(d) |Ez(x, y, z)|

Figure F.4: Electric field distribution absolute value in the plane defined by cut ’B’.
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(a) arg{Ex(x, y, z)}|

(b) arg{Ey(x, y, z)}|

(c) arg{Ey(x, y, z)}|

Figure F.5: Electric field distribution phase in the plane defined by cut ’B’.



116 eigenmode solver modes field cuts

(a) |E(x, y, z)|

(b) |Ex(x, y, z)|

(c) |Ey(x, y, z)|

(d) |Ez(x, y, z)|

Figure F.6: Electric field distribution absolute value in the plane defined by cut ’C’.
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(a) arg{Ex(x, y, z)}|

(b) arg{Ey(x, y, z)}|

(c) arg{Ey(x, y, z)}|

Figure F.7: Electric field distribution phase in the plane defined by cut ’B’.





G 8 C E L L A R R AY S I M U L AT I O N
S E T U P

The array is simulated with CST MW Studio in FD. Solver accuracy param-
eters is set to 0.01. Total number of meshcells: ≈ 1.5M. Frequency range is
f = [0.1 GHz, 6 GHz]. Open boundaries condition is imposed.

(a)

(b)

(c)

(d)

Figure G.1: (a) Simulation layout. (b) Mesh used for the frequency domain simu-
lation. (c) Mesh setup. Notice, a denser meshgroup has been used in
narrow parts.
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