
Master Degree in Electronic Engineering

Proximity-based resource
sharing in high level synthesis

for FPGAs

Roberta Priolo

Supervisors
prof. Luciano Lavagno
prof. Jordi Cortadella

Politecnico di Torino
December 2019

2

Abstract

Resource sharing is a well known and commonly used method employed dur-
ing the design of a circuit in order to reduce its area. Usually, this happens
to the expense of the delay of the involved path that, if corresponding to the
critical path, may affect the minimum clock period.

The goal of this thesis is to prove that applying a smart resource sharing
to the biggest units of the circuit, it is possible to achieve better results in
terms of both area and clock period.

The smart resource sharing solution that has been employed in this project
relies on proximity. The algorithm is based on the belief that a cluster of
units placed closer to each other should be replaced by one shared unit, while
units that are located further apart should use different resources. This pro-
cess leads to shorter connection wires that result in less area occupancy and,
hopefully, shorter delays.

Acknowledgements
Fist of all, I would like to express my deep gratitude to Professor Luciano
Lavagno and Professor Jordi Cortadella, my research supervisors.
Their patience and enthusiasm in guiding me through the months of research
have been inspiring. They have always been more than supportive, available
for debate and willing to answer my questions.

I am eternally grateful to my parents and my sister Irene for their immense
support. You have always encouraged me to take up challenges and not to
back off for fear of failure. The path I chose was demanding and I wouldn’t
have had the courage to take it without you.

Furthermore, I would like to thank the rest of my big family for having
always believed in me, even when I didn’t.

I would also like to thank my new family in Turin: Francesca and Arianna
who shared with me every single day, laughter and tears; Giacomo, Paolo and
Giorgio who welcomed me in their home; and Loris, Giovanni and Daniele
with whom I started and finished this chapter of my life.

Moreover, I am so thankful to all my lifelong friends from Catania who made
me feel their love even from afar, in particular to my best friends Angela,
Elisabetta, Claudia, Lucrezia, Ruggero, Valeria and Chiara. I know I can
always count on you.

Finally, I want to thank Manfredi for standing by my side all these years
and for being my role model and my home. These last years of uni have been
really tough, I can’t count how many times I felt like giving up, but you have
always kept me going and helped me in so many ways I’ll never thank you
enough for. I am so happy to be sharing this achievement with you.

2

Contents

List of Tables 5

List of Figures 6

1 Introduction 9

2 High Level Synthesis Design 13
2.1 High Level Synthesis (HLS) 13
2.2 Vivado HLS . 15

2.2.1 Inputs for the synthesis 15
2.2.2 Vivado HLS limits . 17
2.2.3 Vivado HLS outputs 17

2.3 FPGA . 18

3 Smart Resource Sharing 21
3.1 Advantages of Resource Sharing 21
3.2 Proximity-based Resource Sharing 22

3.2.1 Definition of proximity and expected advantages 22
3.2.2 Smart sharing effectiveness validation process 24

4 Simulations and results 33
4.1 FIR filter . 33

4.1.1 FIR filter cpp code . 38
4.1.2 Synthesis without resource sharing 42
4.1.3 Rendering of the DFG and K-Means Clustering 42
4.1.4 Generation of new code files 46
4.1.5 Synthesis and Place & Route 47
4.1.6 Results comparison and behaviour analysis 48
4.1.7 Clustering Cost Diagrams 51

4.2 KNP_MOD . 56

3

4.2.1 Detecting and isolating units to be shared 56
4.2.2 Synthesis without sharing 56
4.2.3 Comparison of different sharing arrangements of int

and float MACs . 57
4.2.4 Smart Sharing through K-Means Clustering 61
4.2.5 Generation of new code files 63
4.2.6 Synthesis and Place & Route 66
4.2.7 Results comparison and behaviour analysis 67

4.3 LDL . 71
4.3.1 Units isolation and loop unrolling 71
4.3.2 Synthesis without sharing and DFG analysis 72
4.3.3 Generation of new code files, Synthesis and Place &

Route . 73
4.3.4 Results comparison and behaviour analysis 74
4.3.5 Conclusions on LDL analysis 76

5 Conclusions 79

Bibliography 83

Appendices 85

A C++ example codes 87
A.1 cpp_fir.h . 87
A.2 cpp_fir.cpp . 93
A.3 knp.h . 97
A.4 knp_mod.cpp . 101
A.5 ldl_top.h . 107
A.6 ldl_top.cpp . 110

B Data-processing python codes 117
B.1 Finding optimal proximity solution through clustering - knp_mod

2+2 . 117
B.2 Comparison of post implementation timing and resource usage

- FIR filter . 122

4

List of Tables
4.1 FIR filter - Delay-Area table1 49
4.2 FIR filter - Delay-Area table2 50
4.3 knp_mod - Delay-Area table - sharing arrangements 61
4.4 knp_mod - Delay-Area table1 67
4.5 knp_mod - Delay-Area table2 68
4.6 knp_mod - Delay-Area table1 70
4.7 knp_mod - Delay-Area table2 70
4.8 LDL unroll of the 2nd loop - Delay-Area table 76
4.9 LDL unroll of the 3rd loop - Delay-Area table 76

5

List of Figures
3.1 Ex: clustering algorithm application - n=6, k=3 26
4.1 Direct form FIR filter of order n 34
4.2 8th order FIR visually rendered through dot 36
4.3 FIR filter Multipliers unbalanced K Means Clustering 37
4.4 FIR filter Multipliers balanced EqualGroupsKMeans Clustering 37
4.5 Direct form FIR filter whose operators are replaced with MACs 38
4.6 8th order FIR with only MAC units rendered through dot . . 39
4.7 FIR filter MAC units K Means Clustering 40
4.8 8th MAC FIR visually rendered through sfdp 40
4.9 8th MAC FIR visually rendered through circo 41
4.10 8th MAC FIR visually rendered through patchwork 41
4.11 FIR fMACs - dot - n=6, k=3 43
4.12 FIR fMACs - dot balanced - n=6, k=3 44
4.13 FIR fMACs - sfdp - n=6, k=3 44
4.14 FIR fMACs - sfdp balanced - n=6, k=3 45
4.15 FIR fMACs - circo - n=6, k=3 45
4.16 FIR fMACs - patchwork - n=6, k=3 46
4.17 FIR fMACs - patchwork balanced - n=6, k=3 46
4.18 FIR filter - Delay-Area diagram 49
4.19 Computation of the Clustering Cost 52
4.20 dot Max path delay - Clustering Cost diagram 53
4.21 sfdp Max path delay - Clustering Cost diagram 53
4.22 dot Max percentage resource usage - Clustering Cost diagram 54
4.23 sfdp Max percentage resource usage - Clustering Cost diagram 55
4.24 knp_mod 2+3 - dot float MACs k=3 58
4.25 knp_mod 2+3 - dot float MACs k=3 59
4.26 knp_mod - Sharing Arrangements Comparison 60
4.27 knp_mod 1+3 - dot float MACs k=3 62
4.28 knp_mod 1+3 - dot int MACs k=1 63
4.29 knp_mod 2+2 - dot float MACs k=2 64

6

4.30 knp_mod 2+2 - dot int MACs k=2 64
4.31 knp_mod 2+2 - dot float MACs k=2 - balanced 65
4.32 knp_mod 2+2 - dot int MACs k=2 - balanced 65
4.33 knp_mod 1+3 - Delay-Area diagram 68
4.34 knp_mod 2+2 - Delay-Area diagram 69
4.35 LDL DFG where only the multsub units are shown 72
4.36 LDL DFG: closeup of a multsub units octet 73
4.37 LDL unroll of the second loop - Delay-Area diagram k=4 . . . 75
4.38 LDL unroll of the 3rd loop - Delay-Area diagram k=4 76

7

8

Chapter 1

Introduction

Electronic systems are becoming increasingly complex and they require ever
more power and area occupation. Now that it is no longer possible to rely
on Moore’s law, it is necessary to employ new methods in order to reduce
the number of resources required for a chip. This can result in a smaller flat
area of the circuit or in reduced resource usage in an FPGA, and therefore
it may be possible to use a smaller one.

One of the most effective methods to tackle this major challenge is resource
sharing. It consists in reducing the number of instances of one type of com-
ponent and arranging the requests to use the remaining units.
Reducing the number of components may result in a longer latency if some
of them were scheduled to be used at the same time. It is of the utmost
importance that the delay increase does not affect the critical path, for it
would cause a longer clock period and therefore an inferior clock frequency.
In order to avoid a significant increase in the path delay, it is crucial to plan
the arrangement of the remaining units with the aim of reducing the impact
on timing.

The purpose of this thesis is to find a clever algorithm with which to set
up the groups of operations that must be allocated to each remaining unit
after the implementation of the resource sharing. In this case, the compo-
nents taken into account are the biggest units present in the circuit such as
multipliers or multiply and accumulate units (MACs), that require a great
amount of resources allocation in an FPGA.
Decreasing the number of the largest units can highlight the performance

9

1 – Introduction

gap, in terms of area and timing gradient, between different sharing arrange-
ments.

The smart resource sharing algorithm taken into account in this report re-
lies on the proximity method: the hypothesis is that a cluster of units placed
closer to each other should be replaced by one shared unit, while units that
are located further apart should use different resources.
This results in an even greater improvement in area reduction since this
method leads to shorter connections. In fact, the wires connecting elements
that used to interact with the original units have been replaced with only
one element to be shared.
Using the smart sharing algorithm the new shared unit will be placed in
proximity of all the elements that need to reach it.

As well as resource usage, the proximity method may be able to limit the
path delay increase inevitably caused by the employment of the sharing.
Indeed, the employment of shorter wire connections translates into quicker
communications and shorter delays.

Lastly, three examples are reported in order to highlight the effectiveness
of proximity-based resource sharing.
The first example consists in a direct form FIR filter. The Finite Impulse
Response (FIR) filter’s architecture is an optimum model to test the smart
resource sharing since it is simple and some of the best sharing configura-
tions are already known. The sharing is applied on a modified architecture
obtained grouping each couple of Multiplier and Adder as a MAC unit.
The filter architecture is described as a loop but, in order to separate its
different components, it is necessary to unroll the loop. As a result, each
MAC is seen by the compiler as an independent unit and their instances can
be detected in the dfg and shared.

The second example is a study of a knp_mod code. Kahn process net-
works (KPNs) are models of computation that describe sequential processes
connected between each other by FIFO channels.
Its cpp code is full of chained loops with numerous multiplications and addi-
tions, therefore it was useful to isolate multiply and accumulate units (MACs)

10

1 – Introduction

and apply the sharing to these units. Implementing a proximity-based re-
source sharing instead of a random sharing could lead to significant improve-
ments in terms of Area Usage of the resulting chip.
The main loop includes two kinds of MAC operations: the first one is a mul-
tiplication and addition of integer variables, while the second involves float
variables. Therefore, two mac functions are created: imac and fmac.

Finally, the third example consists in an LDL, a Cholesky decomposition
used to deconstruct a matrix into a product of matrices. It is an ideal study
code since it describes a complex and realistic design though chained loops
with numerous operations that could be optimized through sharing.
The most worthwhile units to isolate and share are multiply and subtract
blocks, called multsub.
As well as for the previous example code, the unrolling of the main loop is
necessary to see each multsub as a separate functional unit and, subsequently,
to apply the sharing.

11

12

Chapter 2

High Level Synthesis
Design
The aim of the following section is to introduce the reader to the world of
High level Synthesis (HLS) and to illustrate the main characteristics of the
employed HLS tool, Vivado HLS.
Furthermore, a brief presentation on FPGAs is given, since the method ex-
posed in this work is expected to be implemented on this kind of devices.

2.1 High Level Synthesis (HLS)
An electronic system is a collection of electronic components working to-
gether in order to fulfill a common purpose. Their behaviors are interde-
pendent from one another and therefore each component cannot be designed
singularly but it is necessary to take into account the relationship and com-
munications with the other elements.
A system usually is not made up by a single kind of components but it
combines elements from different fields: it can include software as well as
mechanical, electric or electronic hardware.

The design of the hardware of electronic systems has become more and
more complex every year. At the beginning the circuits were small and the
number of transistors was limited, therefore designers were capable of de-
scribing each transistor and their connection inside the chip.

13

2 – High Level Synthesis Design

Nowadays, the manufacturing of transistor increased exponentially and it is
no longer possible to work on single transistors while designing a whole elec-
tronic system that contains billions of them.

Therefore, designers are relying on increasingly sophisticated tools that are
capable of helping them in the design phase. Rather than projecting every
single transistor, it is possible to specify only a general circuit and let the
electronic design automation (EDA) tool create a physical layout out of the
given instruction.
This allowed to work on new levels of abstraction and to design bigger cir-
cuits more efficiently.

Since the hardware complexity has continued to increase, new and more
abstract hardware programming languages have become necessary. Register
Transfer Level (RTL) is the first level of abstraction after the Gate Level, it
consists in the describing the circuit registers and operations as blocks whose
internal structure will be automatically created by an EDA tool.
The tool automatically translates the RTL instructions into specifications for
another tool that is able to implement the digital circuit. These instructions
can be used to create a new electronic device or can be used to program a
field-programmable gate array (FPGA).

High Level Synthesis is a further level of abstraction that designers use
to focus on wider architectural issues and global behaviors of the electronic
system rather than managing the structure of every register and connection.
At first, only hardware description languages like Verilog were supported by
HLS tools able to generate detailed RTL architectures, but later also C/C++
started to be widely used.
An algorithmic HLS tool is supposed to handle numerous RTL matters au-
tomatically such as: exploiting concurrency; implementing interfaces to the
rest of the system; limiting the critical path delay to the desired one through
the insertion of registers; or achieving the most efficient implementation by
mapping operations into the best logic configuration.

All of these decisions are made by the HLS synthesis tool automatically
based on user directives and design constraints. However, there are several

14

2.2 – Vivado HLS

HLS tools that implement these operations through distinct methods reach-
ing different levels of effectiveness. The HLS tool that has been used in this
work is Xilinx Vivado HLS.

2.2 Vivado HLS
Vivado High-Level Synthesis is a Xilinx HLS tool that starting from C, C++
or System C specifications is able to translate the HLS instructions directly
into a file synthesizable on Xilinx programmable devices without having to
manually describe the RTL.

2.2.1 Inputs for the synthesis
Vivado HLS requires an input code written in C, C++ or SystemC. The
input function must be tested through an exhaustive test bench code that
receives the results generated by the code and compares them with the cor-
rect ones. If the outputs correspond the test is passed and Vivado HLS can
proceed with the synthesis.
The user must declare a target FPGA device on which the synthesis will be
carried out, as well as a maximum clock period bound: the tool will arrange
the logic and insert registers were necessary to stay below the given clock
margin.

In order to better customize the hardware design to the user purpose, it
is possible to insert some directives guiding the implementation of the cir-
cuit by Vivado. These directives are called #pragmas and through them,
the designer can give hints to the tool on how to generate the most efficient
hardware layout.
Pragmas can be added directly in the source code kernel and include multiple
optimization types such as:

• pragma HLS allocation: this pragma indicates a limit to the number
of resources allocated inside the kernel. It can be placed inside a specific
loop or function to limit the Register Transfer Level (RTL) hardware
components instances employed for the synthesis of the specific code
section. For example, it is possible to limit the number of multiplier,
adder or function instances implemented in a loop of the code.

15

2 – High Level Synthesis Design

Some common operations such as additions, multiplications, array reads
and writes can be automatically detected and limited through an alloca-
tion pragma, while more complex operands must be manually enclosed
in a function and later its instances can be limited.

• pragma HLS latency: this pragma declares a minimum and/or max-
imum latency value for the function, loop or region to complete its exe-
cution.

• pragma HLS inline: this pragma forces the tool to consider the func-
tion where it is declared as a part of the main code, from where the
function is called, and no longer as a separate entity.
Often, inlining a function leads to improvements in terms of area re-
duction of the circuit since it allows the sharing and optimization of
operands within the function with the rest of the code. On the other
hand, an inlined function cannot be shared and this can increase the
required area.
The pragma inline can also be used with the suffix "OFF" to specify
that the function must NOT be inlined into any calling function. It
is mandatory to insert this command if the function must be consid-
ered a separate entity in order to share it in the RTL implementation,
otherwise, it could be automatically inlined by the tool.

• pragma HLS pipeline: this pragma sets the initiation interval (II) of a
function or loop to an inferior value than the total number of clock cycles
needed to complete its execution. This allows the concurrent execution
of operations and therefore pipelining.
A pipelined function or loop can start a new execution every N clock
cycles, where N is the II of the loop or function set by the user. The
default II of the pragma is 1, which means that a new process is started
every clock cycle.

• pragma HLS unroll: this pragma unrolls loops in order to generate
multiple and separated statements from the original assortment of op-
erations. The unroll pragma remodels loops by reproducing multiples
copies of the original loop body, this allows to manage the execution of
the operation more freely.
It is possible to force the loop body operations to be executed in parallel
or implement them as independent components in the register transfer
level (RTL) design. In fact, rolled loops are synthesized with logic for

16

2.2 – Vivado HLS

only one iteration and it is executed for each repetition of the loop.
The pragma allows the loop to be fully or partially unrolled, in this case,
the user must specify an unrolling factor N, to create N copies of the
loop body.

2.2.2 Vivado HLS limits
As seen previously Vivado HLS provides tools to perform a closer control on
the RTL and enhance the expressiveness of the language employed through
pragmas. Nevertheless, it limits the designer possibilities in some other as-
pects since the input code cannot support some features, such as:

• Dynamic memory allocation (operations like malloc(), free(), new)(),
and delete());

• Recursive function calls;

• System calls (like abort(), exit(), printf()) are ignored by the synthesis;

• Limited use of some libraries and pointers;

• All interfaces must always be accurately defined;

2.2.3 Vivado HLS outputs
Vivado HLS is a powerful tool capable of exploiting the synthesis of an HLS
design into an RTL layout and subsequently the place & route.
The Place and Route (PAR) is a complex process that consists of the deter-
mination of each hardware component location on the board and the relative
connections between them. The PAR must be carried out on a specific target
device on which the resources will be mapped.

The main output that Vivado HLS, or any other HLS tool, provides is an
RTL hardware design obtained after the compilation of the input function
and its simulation through an exhaustive testbench. It is a VHDL or Verilog
synthesizable code.
Furthermore, the tool automatically generates some RTL simulations based
on the testbench.

Starting from the RTL design file the synthesis can be carried out on a tar-
get FPGA through a command where the desired clock period is specified.

17

2 – High Level Synthesis Design

The Verilog/VHDL design is translated into a netlist of the FPGA logical
elements and the connections between them.
Lastly, Vivado HLS provides some assessment on path delays and resource
usage. These files are obtained from the synthesis before the place and route
process, therefore they are only estimates.

Lastly, the netlist can be used by the tool to perform the Place & Route
of the design on the desired FPGA device. The PAR determines the resource
used on the FPGA, their exact location and their connections. The infor-
mation on the FPGA configuration is enclosed in a bit-stream that can be
loaded on a physical FPGA of the target type to program it as intended in
the original HLS design.

2.3 FPGA
A field-programmable gate array (FPGA) is an integrated circuit character-
ized by the possibility to be configured by the user after the manufacturing.
It is an incredibly versatile tool for engineers that have been using it as a first
step in the design of specialized circuits before the hard-wired production for
large-scale distribution.
The FPGA can be customized to the user needs loading a bit-stream con-
taining the design configuration, written in a hardware description language
such as VHDL or Verilog.
Afterwards, it can be reprogrammed to implement different logic design al-
lowing to work on hardware with the same flexibility of software computing.

FPGAs are composed of an array of programmable logic blocks and mem-
ory elements connected between each other through programmable intercon-
nections that allow different wirings configurations. The simple logic blocks
can be assembled to implement logic gates or more complex combinatorial
functions.
Most FPGAs also include memory elements: simple flip-flops or more com-
plete blocks of memory such as block RAMs (BRAMs).

The flip-flops (FF) are the basic memory elements in the FPGA and they

18

2.3 – FPGA

are typically implemented as a lookup table (LUT), a memory where the
inputs are the address signals and the outputs are stored in the memory en-
tries.
A more complex and powerful programmable logic element, called a config-
urable logic block (CLB) or Slice, can be obtained assembling FFs, LUTs,
multiplexers and possibly other specialized functions.
A slice may also incorporate a complex unit like a full adder, this is an op-
eration of "hardening" of the FPGA since that resource cannot be used as
programmable logic but only as a full adder, obtaining better performances
at the expense of flexibility.

A programmable interconnect network is used to link the different Slices.
Their ports are connected to a routing channel that holds a set of config-
uration bits that can be switched to connect or disconnect the slice to the
interconnections. Routing channels are linked to switchboxes which are a set
of switches enabling the connection paths to change routing channel.

As more sophisticated FPGAs started to appear, they have begun to in-
corporate more complex units as "hard" resources. An example is the DSP48,
a complex and efficient component specialized in arithmetic operations like
multiplication, addition and multiply and accumulate, that implements big-
ger operations in a much more efficient way than programmable logic.
Another hardened resource commonly used in FPGAs is the block RAM
(BRAM). BRAMs are configurable random access memory units that can
be customized by the user since they support different memory layouts and
interfaces.
These complex blocks highlight the problem of hardening in FPGAs. Even
though they are programmable for some aspects, they are not nearly as flex-
ible as typical FPGA logic blocks. On the other hand, "hard" blocks can
lead to great improvement in the FPGA efficiency and performance at the
expense of flexibility.

19

20

Chapter 3

Smart Resource Sharing
The aim of this chapter is to present the proximity-based resource sharing
employed in this study.
Firstly, a brief introduction about the benefits introduced by a classic re-
source sharing is inserted.
Moreover, the theory that leads to the smart resource sharing based on prox-
imity hypothesis are outlined.
Lastly, all the necessary steps to implement the proximity-based resource
sharing algorithm are described in detail in the following sections.

3.1 Advantages of Resource Sharing
Resource Sharing is a common technique used by designers to reduce the
number of resources used in a circuit and consequently its area.
It consists in replacing 2 or more identical components with just one of them.
The consequently "shared" item must be used by the compiler for the same
number and kind of operations as it was doing with the previous configura-
tion. If two or more operations had to be necessarily performed at the same
time, the sharing of only one resource can increase the latency and therefore
the clock period.

Nevertheless, not always resource sharing affects the clock frequency: this
only happens if it impacts the critical path delay making it longer than it
was with the previous hardware configuration. Since the clock period must
be longer than the critical path delay this will force a lower working frequency.

21

3 – Smart Resource Sharing

Consequently, not all of the resource sharing configurations are equally effec-
tive. The best sharing combinations are the ones that lead to the smallest
area occupation on the FPGA, this includes the smallest number of mul-
tiplexers, shortest routing and, of course, maximum reduction of allocated
resources.

The goal of the smart resource sharing exposed in this thesis is to find the
best sharing solution in order to exploit its main advantage in terms of area
savings and at the same time reduce the newly generated paths.
The idea that allows the smart resource sharing to do so is the awareness of
the importance of proximity.
Replacing closest elements instead of random or furthest one with only one of
them results in shorter connections. Shorter wiring is not only fundamental
to obtain a smaller area demand but also to achieve quicker communication
delays that influence the timing of the circuit.

3.2 Proximity-based Resource Sharing
The Smart Resource Sharing Algorithm presented in this thesis aims to re-
duce the area consumption of a circuit and coherently the critical path delay
through the sharing of resources exploiting proximity.

3.2.1 Definition of proximity and expected advantages
Proximity indicates the spacial closeness of elements in a planar surface that
can be either the virtual space of the DFG graph or the physical board where
the electronic components are installed.
The position of the instances of a selected type of component is the data un-
der study, from which the distance between them can be computed. A group
of components of the same typology that are placed closer to each other in
the planar space, compared to the rest of them, is called a cluster.

The optimal proximity clusters are found by an iterative algorithm called K-
Means that generates groups of items based on their closeness. The process
consists in identifying randomly a target number of centroids and redefining
iteratively their position until the algorithm converges. Afterwards, K-Means
associates each element to the closest centroid through the calculation of the
mean.

22

3.2 – Proximity-based Resource Sharing

The solution is found through a heuristic algorithm, therefore it is not guar-
anteed to be the optimal one.

The developed smart resource sharing aims to find the optimum sharing
configuration that leads to the smallest FPGA area occupation. This is ex-
pected to be achieved through the study of the proximity of the components:
closest elements should share the same unit, while furthest elements should
use separate ones.
Applying the proximity resource sharing to an electronic design is antici-
pated to result in the shortest possible routing and the smallest number of
employed multiplexers. These factors have a strong impact on FPGA re-
sources allocation, area usage and path delays.

Whereas, forcing a "bad" resource sharing configuration, such as letting one
unit being shared by components that are placed far apart in the chip, is
expected to cause higher muxing and longer wiring. This happens because
further areas of the circuit must be connected through longer routings that
take up a significant amount of additional area. In addition to larger FPGA
resources allocation and area usage, these factors cause longer path delays,
due to longer wires, that may result in a lower clock frequency.

In order to obtain the maximum effectiveness of the smart resource sharing
employed, it is necessary to detect which are the biggest and most time-
consuming units in a given code, such as Digital Signal Processors (DSPs) or
Multiplier-Accumulators (MACs). The sharing of big components and their
consequent number reduction leads to a greater impact on the reduction of
resource usage and, accordingly, area occupation.
The chosen elements must be isolated from the rest of the code so that they
can be used as physical components whose number must be reduced.

The Proximity-based Resource Sharing consists in the assumption that while
applying resource sharing on a kind of component: a cluster of units placed
close to each other should be replaced by a shared one, while units that are
located further apart should use different resources.

23

3 – Smart Resource Sharing

3.2.2 Smart sharing effectiveness validation process
The process followed in order to prove the effectiveness of the proximity-
based resource sharing consists of multiple steps described in the sections
below.

Detect units to which apply resource sharing

Given a realistic code to be synthesized, the most demanding operations in
terms of area and energy consumption must be detected.
These units are often the ones that require a bigger number of DSPs allocated
in the FPGA layout and those that are most likely to affect the maximum
path delay. An example of a big operation unit is a Multiply and Accumulate
(MAC) which requires a large amount of area and time especially due to the
presence of a multiplier.

If the DSPs units are in a loop, it can be necessary to manually unroll the
loop in order to obtain visibly separated instances of the units under study.

Prevent the inlining of the chosen function

Each operational unit must be enclosed in an external function that is called
from the core of the code. Every function must contain a #pragma that
prevents its "inlining", that is to say inhibiting the compiler from inserting
the function code at the address of each function call.

The inlining is usually useful in order to save the overhead of a function
call, but this will prevent the distinction of the different units that must be
shared. Therefore, this process allows to highlight the presence of the big
units individually inside the circuit and, more importantly, in the Data Flow
Graph (DFG) generated after the synthesis. The DFG represents graphically
all the operations that must be synthesized in the chip, connecting each data
object to the right operating unit displaying sequential or concurrent execu-
tions.

Synthesis of the code before resource sharing

In order to apply a smart resource sharing, it is necessary to know the position
in which the big units under study would be placed after the synthesis of the
original code.

24

3.2 – Proximity-based Resource Sharing

Therefore, the code, where the units have been isolated as described in the
previous step, is imported in the hls tool Vivado HLS. The tool is able to
carry out the synthesis on a chosen FPGA through a previously written script
that defines the FPGA and some basic parameters, such as a target clock
period.
After the synthesis, the DFG is generated and saved in a DOT file.

Visual rendering of the DFG through Graphviz

The DFG is described in a DOT file generated by Vivado HLS after the syn-
thesis of the circuit.
The DOT language is a graph description language that defines a graph but
it is not sufficient to visually render it, therefore it is necessary to use a
package called Graphviz (Graph Visualization Software) that provides a set
of tools to process a DOT file.
Some of these tools have been used to visually render the DOT file, each of
them has different characteristics that affect the resulting graphical repre-
sentation:

• dot: a tool that produces layered drawings of directed graphs. It places
the nodes in layers sorted in a hierarchical way.

• sfdp: a tool that visually renders undirected graphs into a non-layered
structure.

• circo: a tool that, from the original DOT file, produces drawings with
a circular graph layout.

• patchwork: a tool that visually renders the original DOT file depicting
a graph as an implementation of squarified tree-maps.

Find the optimum proximity solution through clustering

After the graphical rendering of the Data Flow Graph the nodes indicating
the chosen operation units must be detected in the graph.
A Python code has been created to extract their coordinates from the DOT
file opened through one of the Graphviz processing tools.
A chosen number of clusters is generated using K-Means, an algorithm based
on proximity. The clusters may be composed of an uneven number of ele-
ments, for this reason, the EqualGroupsKMeans library is adopted to obtain
balanced clusters, when possible.

25

3 – Smart Resource Sharing

According to the proximity theory, the function calls related to elements
belonging to the same cluster are the ones that must share the same func-
tional unit.
In Figure 3.1 it is shown an example of the K-Means algorithm employed on
6 items to be divided into 3 groups. The elements belonging to the same
cluster are identified as dots of the same light colour, while the darker spots
indicate the location of the centroids. The centroid is the point that may be
considered the center of the plane figure created by the cluster’s units.

Figure 3.1. Ex: clustering algorithm application - n=6, k=3

Generation of new code files

Once the optimum locality solution is found through the clustering algo-
rithm, a new .cpp file can be generated on the basis of the original one.
For some examples such as the FIR filter, it is necessary to modify also the
header file since the structure and the units are described there. This is
carried out employing a similar process to the one used for the cpp file.

A python code has been written to open the original code file and to read
it in order to detect the name of the units to be shared (MAC). The name
of each MAC instance is replaced with a new name representing the cluster
it has been mapped in. For example, the function "mac1" belonging to the
second cluster is changed into "mac_new2".

26

3.2 – Proximity-based Resource Sharing

Subsequently, in order to simulate the sharing of one unit for a chosen group
of MACs, the number of instances of the new functions must be limited to
1. This restriction is applied to each new function through a #pragma com-
mand: the compiler can only have 1 instance for each cluster function as if
it was a physical resource being used from different lines of the code.

Once the optimum solution according to the locality method has been gener-
ated, it is useful to compute some random cluster solutions in order to assess
its goodness.
The easiest way to do so is shuffling the vector "labels": it is an array whose
positions correspond to the original units and the content of each cell to the
clusters to whom that unit belongs.
Afterwards, the .cpp or the header file can be printed as explained before.

Synthesis and Place & Route

The next step is to import the new codes in Vivado and to carry out the
synthesis and place & route. This process requires a script for each solution
to be synthesized and some hours to exploit the placement and routing of
every project.
At the end of all of the simulations, Vivado returns different files from which
it is possible to get information on the key features of the resulting circuit
such as:

• The resource usage required by each process and therefore the chip area
occupation.
This information can be extracted from the "_utilization_routed.rpt"
report file that contains the Utilization Design Information. The report
is obtained after the place and rout and shows how many items are
needed in order to synthesize a project. They are classified into 10
categories:

– Slice Logic
– Slice Logic Distribution
– Memory
– DSP
– IO and GT Specific
– Clocking

27

3 – Smart Resource Sharing

– Specific Feature
– Primitives
– Black Boxes
– Instantiated Netlists

These quantities are also expressed as a percentage of the used resources
over the available ones.
The value used to assess the goodness of a solution is the maximum
percentage of utilization of one kind of resource. This quantity is funda-
mental in this study because the research is based on a resource sharing
method for FPGA application mainly. Therefore, since the FPGAs con-
tain a finite number of resources, this becomes a decisive parameter.

• The minimum and maximum latency, measured in number of clock cy-
cles. This information is included in the "_csynth" file, a report file
generated by Vivado after the synthesis.

• The maximum path delay, that corresponds to the critical path delay of
the circuit. This parameter is included in the "_timing_paths_routed"
file, a report file generated by Vivado after the place and route where
the delays of the 10 longest paths are illustrated.
This value puts an upper bound to the frequency of the designed circuit.

Computation of the Clustering Cost

Another parameter that can be used to assess the goodness of a solution is
the Clustering Cost: the sum of distances of each unit to its centroid.

The Clustering cost is computed through a Python code from the coordi-
nates of the graph drawing for each balanced combination.

Results comparison and behaviour analysis

Another Python code has been created to compare the computed values and
to graphically plot the results.

All the report files "_timing_paths_routed" from all the different solutions
are read and the path timings are extracted. They include 10 paths each, for
every solution the maximum delay and the root mean square of the delays is
computed and printed in the output file "_random_delay.txt".

28

3.2 – Proximity-based Resource Sharing

The first one is the optimal solution found through the clustering method
and it is analyzed individually, while the following 10 values are related to
the 10 random combinations.

Afterwards, the post-implementation resource usage is evaluated from the
"_utilization_routed.rpt" file.
The report files from the different solutions are read to extract the maximum
percentage of FPGA resources, such as Slices, DSPs, Flip Flops, BRAMs or
Shift Register, employed for the system place and route.

The graphs that have been plotted are of different kinds:

• Delay-Area diagram: In the y-axis, the total execution time of a solu-
tion is plotted as the multiplication of the maximum path delay and the
numbers of clock cycles. There could be two versions of this graph since
Vivado provides a minimum and a maximum latency value, therefore
it is possible to use both and see if this leads to some changes in the
diagram.
In the x-axis is plotted the Resource Usage maximum percentage, this
parameter gives an impression of how much the chip area increases or
decreases changing the sharing arrangements.

The resulting graph includes several points, one for each resource sharing
arrangement, marked with the name of the respective solution or with
a number if related to a random solution.

• Delay-Clustering Cost diagram: The total execution time of each
solution is plotted in the y-axis as the multiplication of the maximum
path delay and the numbers of clock cycles.
In the x-axis is plotted the Clustering Cost, the sum of distances of
each unit to its centroid. This parameter quantifies the goodness of the
clustering solution found: the closer the items are to their clustering
centroid the smallest is the clustering cost.
The resulting graph is composed of several dots, one for each resource
sharing arrangement, marked with their solution name or with a number
if they are related to a random solution.

From these data, it is possible to extract the linear regression in order
to model the evolution of the results as a line that shows an increasing

29

3 – Smart Resource Sharing

or decreasing trend along with the increasing of the clustering cost.

• Area-Clustering Cost diagram: The Resource Usage maximum per-
centage of each solution is plotted in the y-axis. This parameter indicates
how much the chip area increases or decreases changing the sharing ar-
rangements.
In the x-axis, the Clustering Cost is plotted. It is the sum of distances
of each unit to its centroid.
The resulting graph is composed of one dot for each resource sharing
arrangement, and they are marked with the respective solution name or
with a number if related to a random solution.

The linear regression can be extracted from the obtained dots. It is
useful in order to model the evolution of the results as a line that can
show an increasing or decreasing trend along with the increasing of the
clustering cost.

From these graphs, it is possible to draw some conclusions on the smart
resource sharing theory that was assumed from the outset. The smart sharing
based on proximity. The assumption is that, While applying resource sharing,
replacing closer units instead that further units with a single shared resource
may results in a shorter path delay, due to shorter interconnections, and
smaller resource usage.

K-Means Clustering Algorithm

The clustering algorithm that has been employed in order to decide which
items would be replaced by the same shared resource is the K-Means clus-
tering [1].
A cluster is a group of items that share a certain characteristic: in this case
proximity.
The aim of K-Means is to partition an original collection of units spatially
placed in 1, 2 or more dimensions into a given number of clusters.
Each cluster is built around a centroid, a point in space that represents the
center of the cluster. The used algorithm starts from these points to build
the cluster through an iterative technique.

Starting from the whole collection of points in space, the K-Means algorithm
identifies randomly a target number of centroids. Subsequently applying an

30

3.2 – Proximity-based Resource Sharing

iterative computation, the position of the centroids is redefined until the al-
gorithm converges: the position of the centroids remains the same after the
iteration. The solution is found through a heuristic algorithm, therefore it is
not guaranteed to be the optimal one.
Afterwards, K-Means creates clusters associating each element to the closest
centroid through the calculation of the mean and the least squared Euclidean
distance.

Clusters may, therefore, be unbalanced since the number of elements belong-
ing to each of them is decided individually by locality. Nevertheless, for some
applications, it might be necessary to work with clusters that are made up
of the same number of units. Therefore, it is possible to force the assembling
of balanced clusters through another Python library: EqualGroupsKMeans

Equal Groups K-Means Clustering is a variation of the K-Means algorithm
that generates balanced clusters: groups of items of the same size.
It uses the same logic employed by K-Means but computes the maximum
number of items per cluster at the beginning and distributes the elements
according to this bound.

31

32

Chapter 4

Simulations and results
In this chapter three examples are reported in order to test and to prove the
effectiveness of the proximity-based resource sharing.

The first example code describes a direct form FIR filter. The smart shar-
ing is applied on a modified architecture of the filter obtained grouping each
couple of multiplier and adder as a MAC unit.
Since the filter architecture is described as a loop, an unrolling procedure is
mandatory to work on the single fir cells.

The second example is a study of a Kahn process network code, full of
chained loops with numerous multiplications and additions. Combining them
into MAC units and applying the smart sharing on these components leads
to significant improvements in terms of area saving.
The main loop includes two kinds of MAC operations, one using integer vari-
ables and one float variables: imac and fmac.

The third example is an LDL code, a Cholesky decomposition used to decon-
struct a matrix. It is a complex and realistic design with chained loops with
numerous operations. The smart sharing is implemented on multiply and
subtract blocks, called multsub. As well as for the FIR code, the unrolling of
the main loop is necessary to access each multsub unit.

4.1 FIR filter
Finite Impulse Response (FIR) filters are a widely known digital signal pro-
cessing (DSP) application. It is a filter characterized by a finite duration

33

4 – Simulations and results

impulse response.
It is an optimum model for hardware implementation as well as academic
applications since it has a highly optimized and simple architecture.

The FIR filter has been picked for this study because the best sharing

Figure 4.1. Direct form FIR filter of order n

configurations for its direct form are already known. This allows to demon-
strate that the congestion oriented resource sharing algorithm leads indeed
to area saving and delay reduction.

Modifying its architecture grouping each couple of Multiplier and Adder as a
whole MAC unit, the well known best sharing combinations for a FIR filter
in direct form are:

• In order optimal solution Dividing the ordered group of MACs in k
groups simply isolating the first cluster (MAC1, MAC2, ..., MACn/k)
and so on collecting k items per group until the last one (MAC(n/k)+1,
MAC(n/k)+2, ..., MACn). Each set of components must share one MAC
unit.

This sharing solution is the simplest and yet most effective one. Forc-
ing ordered groups of cells to share the same components, the muxing
and routing are minimized due to the closeness of the cells between each
other and, therefore, the proximity of the elements that communicate
with them.

34

4.1 – FIR filter

• Alternate optimal solution Dividing the ordered group of MACs in k
groups picking the elements alternately from the ordered architecture of
the filter. For example, in the case of k=2, the clusters will be [MAC1,
MAC3, ..., MACn-1] and [MAC2, MAC4, ..., MACn]. Each set of com-
ponents must share only one MAC unit.

This second sharing solution is another configuration that guarantees
an optimal trade-off between area saving and path delay reduction. Dis-
tributing the cells alternately in the sharing groups that are to be re-
placed by the same component, minimizes delays while reducing area
requirement. This process allows to use different components from dif-
ferent parts of the circuit in consecutive clock cycles and, therefore,
minimizes the waiting time necessary to use the same resource again.

A simple DOT representation of a direct form discrete-time FIR filter of or-
der 8 has been created following the architecture shown in Figure 4.1. Its
structure includes 8 Multipliers and 7 Adders, for a total of 8 cells.

The Graphviz tool dot has been used to open the file and generate the
multi-layered structure depicted in Figure 4.2. Since dot produces layered
drawings form directed graphs, the nodes are placed in layers sorted in a
hierarchical way.
Consequently, the Adders are represented as nodes placed on a diagonal,
while the Multipliers are distributed in parallel to them. It appears clear
that the layers of this structure have been generated following the stages of
the scheduled operation Data Flow Diagram, as shown in Figure 4.2.

It was worthwhile applying the K-Means clustering algorithm for k=4 to
the Multipliers, for they are the biggest and most time-demanding compo-
nents of the FIR filter architecture.
The obtained clusters are not balanced [0-1-2, 3-4, 5-6, 7] as portrayed in
Figure 4.3.

Therefore, it was necessary to apply the EqualGroupsKMeans algorithm
that resulted in a non-expected cluster combination [0-1, 2-4, 3-5, 6-7], Fig-
ure 4.4.

These solutions do not match the anticipated optimal sharing combina-
tion for a direct form FIR filter, hence the FIR architecture needs to be

35

4 – Simulations and results

Figure 4.2. 8th order FIR visually rendered through dot

modified as follows.

A second DOT representation of a direct form discrete-time FIR filter
of order 8 has been created following the architecture shown in Figure 4.5.
This time its structure is depicted grouping each couple of Multiplier and
Adder as a whole MAC unit, for a total of 8 MACs. The first Multiplier
is replaced with a MAC unit as well, even though it is not coupled with an
Adder. The area overhead is indeed minimal, for the number of MACs will
be dramatically reduced through the Smart Resource Sharing.

36

4.1 – FIR filter

Figure 4.3. FIR filter Multipliers unbalanced K Means Clustering

Figure 4.4. FIR filter Multipliers balanced EqualGroupsKMeans Clustering

The dot Graphviz tool has been used to open the file and the generated
image, Figure 4.6, shows a graph whose nodes are disposed in a hierarchical
structure. Since dot produces layered drawings form directed graphs, MACs
units are represented as nodes placed on a diagonal.

Applying the K-Means clustering algorithm for k=4, the clusters obtained
are [0-1, 2-3, 4-5, 6-7], as displayed in Figure 4.7. This configuration cor-
responds to one of the optimal sharing solutions taken into account at the

37

4 – Simulations and results

Figure 4.5. Direct form FIR filter whose operators are replaced with MACs

beginning of this chapter.

Some other Graphviz tools have been employed to highlight the difference
of each rendering method.

From Figure 4.8 it is possible to appreciate how the same DFG is rendered
using the sfdp Graphviz tool. The generated structure does not resemble a
tree, since sfdp renders undirected graphs into a non layered structure.

In Figure 4.9 it is pictured the DFG of the 8th order FIR composed by
MACs rendered through circo Graphviz tool. The generated structure re-
sembles a circle, since circo produces drawings in a circular graph layout.

In Figure 4.10 it is possible to appreciate how the same DFG is rendered
using the patchwork Graphviz tool. The tool generates a squared structure
where each component is a block inside of it, in fact patchwork renders graphs
into an implementation of squarified tree-maps.

4.1.1 FIR filter cpp code
In order to carry out the simulation on a FIR architecture, a cpp code of a
simple FIR filter has been taken from the Vivado examples, A.1 A.2.

38

4.1 – FIR filter

Figure 4.6. 8th order FIR with only MAC units rendered through dot

The code includes a header file where the FIR filter architecture is described
as a loop limited by N-1, the order of the filter and number of cells. Each cou-
ple of operators described in the filter architecture, Multipliers and Adders,
must be replaced with a MAC unit, previously defined as an external func-
tion.

In order to separate the different components of the filter, it is necessary to
unroll the loop. In this example, the order of the filter is set to 84 (N=85),
while the order of unrolling is 6. These numbers have been chosen because

39

4 – Simulations and results

Figure 4.7. FIR filter MAC units K Means Clustering

Figure 4.8. 8th MAC FIR visually rendered through sfdp

6 is a divisor of 84 so that the whole filter can be described in exactly 14
executions of the loop.

The 6 MAC units, now explicitly described in the header file, must be en-
closed in different external functions called mac0, mac1, mac2, mac3, mac4

40

4.1 – FIR filter

Figure 4.9. 8th MAC FIR visually rendered through circo

Figure 4.10. 8th MAC FIR visually rendered through patchwork

and mac5. Each function must contain a #pragma that prevents its "in-
lining", that is to say inhibiting the compiler from inserting its code at the
address of each function call.
As a result, each MAC is seen as a separated unit by the compiler and their
instances are portrayed in the Data Flow Graph generated after the synthesis.

41

4 – Simulations and results

4.1.2 Synthesis without resource sharing
In order to apply a smart resource sharing, it is necessary to know the po-
sition in which the MAC units would be placed after the synthesis of the
unmodified code.
Therefore, the unrolled code containing the isolated functions is imported in
Vivado and synthesized on the kintex7 FPGA xc7k160tfbg484-1. This FPGA
has been chosen because it is the smallest one on which this circuit can be
synthesized: it is composed of 600 DSP Slices and 650 18k RAM blocks.
Working on a small FPGA is useful because it is very likely that a hard-
ware alteration, like different resource sharing configurations, may result in
a visible effect on its performances. This allows to obtain a more relevant
feedback to each change done in the resource sharing configuration.

In Vivado it is possible to carry out the synthesis on the chosen FPGA
through a previously written script. After the synthesis, the DFG is gener-
ated and saved in a DOT file.

4.1.3 Rendering of the DFG and K-Means Clustering
The Data Flow Graph is described in a DOT file that can be visually rendered
by 4 different Graphviz tools: dot, sfdp, circo and patchwork. Afterwards,
through a Python code, the nodes indicating the MAC units must be de-
tected in the graph and their coordinates extracted.

Using the K-Means Clustering Algorithm 3 clusters have been created from
the 6 original MACs of the FIR architecture.
In order to obtain balanced clusters, composed of the same number of ele-
ments, it is possible to use Equal Groups KMeans Algorithm with k=3.

This means that the filter area will be reduced by 3 MAC units and each
couple of the former operations will have to share a single MAC.
From the following images is possible to appreciate how the two clustering
algorithm work. The components are shown in a diagram depicting a 2-
dimensional plane and are placed in the same position they occupy in the
DFG. The items belonging to the same group are represented as dots of the
same light colour, while the centroid of each cluster with the respective colour
in a darker shade.

• dot In Figure 4.11 is shown the clustering generation on the MAC units

42

4.1 – FIR filter

of the FIR filter DFG rendered through dot. The total number of ele-
ments is 6 and they are divided in 3 groups. This is achieved employing
the K-Means clustering algorithm with k=3 that does not guarantee
clusters composed by the same number of elements.

Figure 4.11. FIR fMACs - dot - n=6, k=3

On the other hand, Figure 4.12 shows the MAC units taken from the
dot FIR filter architecture. The total number of elements is 6 and they
are grouped in 3 couples employing the EqualGroupsKMeans clustering
algorithm with k=3. This algorithm guarantees clusters composed by
the same number of elements.

• sfdp In Figure 4.13 are shown the MAC units taken from the sfdp FIR
filter architecture. The total number of elements is 6 and they are di-
vided in 3 groups. This is achieved employing the K-Means clustering
algorithm with k=3 that does not guarantee clusters composed by the
same number of elements.

Whilest, in Figure 4.14 the MAC units taken from the sfdp FIR filter
architecture are shown. 6 elements are grouped in 3 couples employing
the EqualGroupsKMeans clustering algorithm with k=3. This algorithm
guarantees clusters composed by the same number of elements.

• circo Figure 4.15 depicts the MAC units taken from the circo FIR filter
architecture. The 6 units are grouped in 3 couples employing the simple

43

4 – Simulations and results

Figure 4.12. FIR fMACs - dot balanced - n=6, k=3

Figure 4.13. FIR fMACs - sfdp - n=6, k=3

K-Means clustering algorithm (k=3). This time it was not necessary to
use the EqualGroupsKMeans algorithm to obtain clusters composed by
the same number of elements.

• patchwork Figure 4.16 highlights the MAC units taken from the patch-
work FIR filter architecture. The 6 MAC units are divided in 3 groups
through the K-Means clustering algorithm (k=3) that does not ensure
balanced clusters.

44

4.1 – FIR filter

Figure 4.14. FIR fMACs - sfdp balanced - n=6, k=3

Figure 4.15. FIR fMACs - circo - n=6, k=3

Whereas, in Figure 4.17 the MAC units taken from the patchwork FIR
filter architecture are depicted. 6 elements are grouped in 3 couples
using the EqualGroupsKMeans clustering algorithm that leads to the
creation of balanced clusters.

45

4 – Simulations and results

Figure 4.16. FIR fMACs - patchwork - n=6, k=3

Figure 4.17. FIR fMACs - patchwork balanced - n=6, k=3

4.1.4 Generation of new code files

Taking into account the 4 optimum clustering solutions obtained through the
4 different Graphviz tool DFGs, it is possible to generate new header files on
the basis of the original one.

In this case, also the cpp file has to be modified as well as the header since,

46

4.1 – FIR filter

even though the architecture is described in the header file, the function def-
initions must be in the .cpp. This is carried out employing a similar process
to the one used for the header file.

A Python code called "generate_clusters" has been written to read the orig-
inal header code file and to detect the functions called "mac" followed by a
number.
The name of each MAC instance is replaced with a new name represent-
ing the cluster it has been mapped in. For example, the function "mac1" is
turned into "mac_new2" if it has been mapped into cluster 2 by K-Means.

Subsequently, a #pragma command is written to limit each new mac func-
tion to only 1 instance. This command is inserted in order to simulate the
sharing of one MAC for each chosen group of function calls: the compiler
can only have 1 instance for each cluster of functions as if it was a physical
resource being used from different lines of the code.

Lastly, it is useful to create some random cluster solutions in order to assess
the goodness of the optimum ones found through the smart resource sharing.
This is obtained shuffling the vector "labels", it is an array generated by the
K-Means algorithm in which each position corresponds to one original unit
and the content of each cell to the clusters to whom the unit belongs.
Afterwards, the .cpp and the header file can be printed modifying the func-
tion names using the same process described previously.

4.1.5 Synthesis and Place & Route
The new codes, optimal solutions and random ones, are imported in Vivado.
One script for each solution has been generated in order to carry out the
synthesis and place & route. This process requires some hours to exploit the
placement and routing of each project.
At the end of all the simulations, Vivado returns different report files from
which it is possible to get the information necessary to evaluate the resulting
circuits.

• The resource usage required by each process, that can be extracted from
the "fir_utilization_routed.rpt" report file that contains the Utilization
Design Information. The report is obtained after the place and route
and shows how many items are needed in order to synthesize a project,
these quantities are expressed as a percentage of the used resources over

47

4 – Simulations and results

the available ones.
As previously outlined, the value used to assess the goodness of a solution
is the maximum percentage of utilization of one kind of resource, since
this is the fundamental limit for the synthesis on FPGAs.

• The minimum and maximum latency, measured in number of clock cy-
cles. This information is included in the "fir_csynth" file, a report file
generated by Vivado after the synthesis.

• The maximum path delay, that corresponds to the critical path delay of
the circuit. This parameter is included in the "fir_timing_paths_routed"
file, a report file generated by Vivado after the place and route where
the delays of the 10 longest paths are illustrated.
This value puts an upper bound to the frequency of the designed circuit.

4.1.6 Results comparison and behaviour analysis
Another Python code called "compare_reports" is created to compare the
computed circuit parameters and to generate new graphs to visually con-
front them.

All the "fir_timing_paths_routed" report files from all the different solu-
tions are read and the path timings are extracted. They include 10 paths
each, for every solution the maximum delay and the root mean square of the
delays is computed and printed in the output file "fir_random_delay.txt".
First, the optimal solutions found with the clustering method are analyzed,
followed by the 10 random ones.

Afterwards, the post-implementation resource usage is evaluated from the
"fir_utilization_routed.rpt" file. All the report files from different solutions
are read to extract information about the percentage of FPGA resources em-
ployed such as Slices, DSPs, Flip Flops, BRAMs and Shift Register.

Once all of the parameters have been extracted from the report files, it is
possible to plot a Delay-Area diagram. In the y-axis, the total execution
time of each solution is plotted as the multiplication of the maximum path
delay and the numbers of clock cycles. There could be two versions of this
graph since Vivado provides a minimum and a maximum latency value, but
in this case, both values lead to the same graph proportionally.

48

4.1 – FIR filter

In the x-axis is plotted the Resource Usage maximum percentage, this pa-
rameter gives an impression of how much the chip area increases or decreases
changing the sharing arrangements of the MAC units.
The resulting graph includes several points, one for each resource sharing
arrangement, and they are marked with the name of the respective solution
or with a number if related to a random one.

Figure 4.18. FIR filter - Delay-Area diagram

Dot DotBal Sfdp SfdpBal Circo Patch PatchBal
Tex[µs] 2.434 2.243 2.150 2.449 2.432 2.521 2.238
res[%] 1.02 1.08 1.00 1.03 1.00 1.05 1.09

Table 4.1. FIR filter - Total execution time [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

Conclusions on FIR filter analysis

From the graph in Figure 4.18 and Tables 4.1 and 4.2, it is possible to draw
some conclusions on the smart resource sharing employed.

49

4 – Simulations and results

0 1 2 3 4 5 6 7 8 9
Tex[µs] 2.412 2.358 2.270 2.420 2.158 2.408 2.466 2.468 2.420 2.466
res[%] 1.01 1.02 1.08 1.07 1.00 1.02 1.06 1.04 1.07 1.06

Table 4.2. FIR filter - Total execution time [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

First of all, it is worthwhile to examine the performance results obtained by
the two theoretical optimal FIR sharing solutions.

• In order optimal solution This solution corresponds to the sfdp bal-
anced configuration: [0 0 1 1 2 2].
This simple combination was expected to minimize the muxing and rout-
ing due to the closeness of the shared cells between each other and the
proximity of the elements that communicate with them
On the basis of the reported simulation results, it is possible to confirm
that the In order sharing configuration leads to a great resource-saving
confronted with the majority of the other cases, 1,03% of FPGA Slices
allocated, even if it does not correspond to the best trade-off found in
the study.

• Alternate optimal solution This solution is obtained distributing the
components alternately into the sharing clusters: [0 1 2 0 1 2].
This second sharing configuration was expected to guarantee an optimal
trade-off between area-saving and path delay reduction since this dis-
tribution allows to use different components in consecutive clock cycles.
Therefore, the waiting time necessary to use the same resource again is
minimized.
The hypothesized delay reduction is particularly evident in the obtained
results: the Alternate solution is confirmed to be one of the best resource
sharing configurations for a direct form FIR filter, both in terms of area
occupation and maximum path delay.

Furthermore, from the obtained plotting it appears clear that the Alter-
nate solution is not the only sharing configuration that finds an optimum
compromise in terms of both timing delay and resource usage.
The other best resource sharing configurations for a direct form FIR filter
correspond to the SFDP solution: [0 0 1 2 2 2].
It is an unbalanced solution, detected applying the K-Means algorithm to the
direct form FIR filter DFG visually rendered through the sfdp Graphviz tool.

50

4.1 – FIR filter

Another remarkable solution is the unbalanced dot one [0 0 0 1 1 2], found
through the rendering of the DFG using dot Graphviz tool. It leads to a
great resource-saving confronted with the majority of the other cases.

In the end, it results clear that the first two combinations taken into ac-
count are the ones that minimize both area usage and the maximum path
delay.
Therefore, this example highlights the goodness of the clustering algorithm
applied to a DFG opened through the SFDP Graphviz tool.
On the other hand, the dot solution results in a significant Resource saving
in spite of some increase in the critical path delay.

4.1.7 Clustering Cost Diagrams
In order to prove that the proximity method hypothesized at the beginning
of this study produces improvements in Area Usage and, probably, also on
Timing, a new parameter is computed:
The Clustering Cost, defined as the sum of the distances of each unit to its
centroid. This parameter gives an impression of the goodness of the sharing
configuration found: the closer the items are to their clustering centroid the
smallest the clustering cost is.
The clustering cost of each solution is then plotted with the respective re-
source usage and maximum path delay. From these graphs, it is possible
to analyze if there is a positive or negative correlation of the clustering cost
with area and delay.
In order to obtain the desired plots some steps are required:

1. Some random cluster combinations are generated through the already
outlined procedure. In this case, the clusters are kept balanced, 2 MACs
each, in order to have a coherent comparison of their clustering costs.
It is not possible to mix different graphical representation tools for this
analysis because the various solutions must be allocated to the same
Data Flow Graph drawing. Therefore two graphical tools, dot and sfdp,
are adopted separately and only the final resulting graphs can be com-
pared.

2. The newly written codes are imported in Vivado and the synthesis and

51

4 – Simulations and results

place & route are carried out.

3. Among all the simulations the solutions whose synthesis resulted in the
same Initiation Interval (II) value were grouped. The Initiation Interval
is the number of clock cycles that must pass between the start of two
consecutive loop iterations.

4. The Clustering Cost is computed, from the coordinates of the MACs
in the original DFG graph, as the sum of distances of each unit to its
centroid, as shown in Figure 4.19
Even if the DFG is the same, the distances computed for each sharing

Figure 4.19. Computation of the Clustering Cost

solution are different from one another since the clusters and centroids
change every time.

5. In a Python code two kinds of diagrams for each Graphviz tool are
plotted:

• Delay-Clustering Cost diagram: The total execution time of
each solution is plotted as the multiplication of the maximum path
delay and the numbers of clock cycles on the y axis. Once again
there could have been two versions of this graph since Vivado pro-
vides a minimum and a maximum latency value but using one or
the other did not bring any changes in the diagram.
The Clustering Cost, the sum of distances of each unit to its cen-
troid, is plotted on the x axis.

52

4.1 – FIR filter

The resulting graphs, in Figure 4.20 and Figure 4.21, include several
points, one for each resource sharing arrangement. They are marked
with the name of the respective solution or with a number if related
to a random solution.

From these data it is possible to extract the linear regression in

Figure 4.20. dot Max path delay - Clustering Cost diagram

Figure 4.21. sfdp Max path delay - Clustering Cost diagram

order to model the evolution of the results. The resulting line shows

53

4 – Simulations and results

a decreasing trend along with the increasing of the clustering cost,
both using dot and sfdp. This reflects the fact that applying a smart
proximity-based resource sharing to a FIR filter architecture the de-
lay is likely to increase.

• Area-Clustering Cost diagram: The Resource Usage maximum
percentage is plotted on the y-axis, this parameter gives an impres-
sion of how much the chip area increases or decreases changing the
sharing arrangements. Whereas, the Clustering Cost is plotted on
the axis.
The resulting graphs, Figure 4.22 and Figure 4.23, include one dot
for each resource sharing arrangement. Each spot is marked with the
respective solution’s name or with a number if related to a random
one.

From these data it is possible to extract the linear regression

Figure 4.22. dot Max percentage resource usage - Clustering Cost diagram

in order to model the evolution of the results. The resulting line
shows an increasing trend along with the growth of the clustering
cost, both using dot and sfdp. This reflects the fact that applying a
smart proximity-based resource sharing to a FIR filter architecture
the FPGA Resource Usage is likely to decrease more the closer the
items are to their cluster centroids.

54

4.1 – FIR filter

Figure 4.23. sfdp Max percentage resource usage - Clustering Cost diagram

Clustering cost analysis conclusion

The goal of this analysis was to find if there was a strong relationship be-
tween the Clustering Cost and the Resource Usage and the Maximum path
delay of the resulting circuit.
The test has been carried out only on balanced cluster arrangements and has
been repeated for two DFG representations generated through two Graphviz
tools, dot and sfdp.
The resulting data have been plotted and compared in the previously shown
diagrams. Extracting the linear regression it is easy to highlight the evolu-
tion of the area and delay along with the growth of the clustering cost.

The most important result is that employing both dot and sfdp the gra-
dient of evolution is the same.
The total execution time tends to decrease with the increment of the clus-
tering cost while the Area occupation increases.

These results confirm that the proximity based smart resource sharing works
of this FIR filter example code reducing the resource allocation in an FPGA,
while it may not have the same benefit on timing.

55

4 – Simulations and results

4.2 KNP_MOD
Kahn process networks (KPNs) are models of computation that describe
sequential processes connected with each other by FIFO channels. The pro-
cess network is characterized by a deterministic behaviour, this means that
its computation results do not depend on the delay of each process.

4.2.1 Detecting and isolating units to be shared
The knp_mod cpp code A.4 is full of chained loops with numerous multipli-
cations and additions. Therefore, it was evident that isolating and sharing
multiply and accumulate units (MACs) could lead to significant improve-
ments in terms of Area Usage of the resulting chip.

The main loop includes two kinds of operations that can be useful to iso-
late and share: the first one is a multiplication and subsequent addition of
integer variables, while the second involves multiplication and accumulation
of float variables. Therefore, two kinds of mac functions are created: imac,
for integer MAC operations, and fmac, for float MAC operations.

There are 5 integer MAC operations and 6 floating ones, so 11 correspond-
ing functions are created to cover all the biggest computational units of the
main chained loop. Each newly written function must include a #pragma
command that prevents the inlining in order to make the compiler consider
each MAC as a separate functional unit: #pragma HLS inline off.

In this case, the operations are described in the .cpp file, therefore it is
the one that must be modified. As a first step, the 11 functions must be
written with different names in order to be distinguished between one an-
other, so they are called: fmac0, fmac1, fmac2, fmac3, fmac4, fmac5 and
imac6, imac7, imac8, imac9, imac10.

4.2.2 Synthesis without sharing
In order to properly apply the smart resource sharing, it is necessary to know
the position in which the MAC units would be placed after the synthesis of
the last version of the knp_mode code. At this point, each MAC is de-
scribed as an independent hardware component either computing integers or
float variables.

56

4.2 – KNP_MOD

Afterwards, the code is imported in Vivado where it is possible to carry out
the synthesis on the zynq FPGA xc7z007sclg400-1. This FPGA has been
chosen because it is the smallest one on which this circuit can be synthe-
sized: it is composed of 66 DSP Slices and 100 18k RAM Blocks.
The perks of working on a well-fitted FPGA have already been exposed in
the previous chapter: it allows to have relevant and visible feedback to the
hardware changes introduced by the resource sharing configurations.

In Vivado it is possible to carry out the synthesis on the chosen FPGA
through a previously written script. After the synthesis, the DFG is gener-
ated and saved in a DOT file.

4.2.3 Comparison of different sharing arrangements of
int and float MACs

Multiple sharing configurations can be applied to the knp_mod architecture.
Finding the best one is not trivial, in fact, it must satisfy both area and
timing constraints.
This study aims to find the sharing solution that optimizes both these factors.
Nevertheless, it is not possible to minimize area and delay at the same time
for they have a negative correlation. Therefore, the goal is to find a good
trade-off between the two parameters.

Development of different sharing arrangements

For each sharing arrangement, i.e. number of fMACs and iMACs, it was
useful to analyze two solutions. The former one is the optimum proximity
solution, obtained through the employment of the K-Means clustering algo-
rithm on the DFG opened using dot. An example of the optimal sharing
combination found for the 2+3 solution can be observed in Figure 4.24 and
4.25. The latter is the worst proximity solution, this configuration is achieved
by observing the graphical representation of the dot DFG and manually al-
locate the furthest apart units to the same cluster. This procedure is meant
to obtain exactly the opposite sharing configuration than the one achieved
through the locality method.
Each solution is created modifying the original cpp code file.

First of all, the functions called "fmac" and "imac" followed by a number
are renamed, their new name represents the cluster they have been mapped

57

4 – Simulations and results

into. For example the function "fmac1 " might be turned into "fmac_new2 "
if it has been mapped into the cluster 2.

Subsequently, a #pragma command is written to limit each new mac func-
tion to only 1 instance. This command is inserted in order to simulate the
sharing of one fMAC or iMAC for each chosen group of function calls: the
compiler can only have 1 instance for each cluster of functions as if it was a
physical resource being used from different lines of the code.

Subsequently, some #pragma commands, one for each cluster function, are
written to limit function instances to only 1. E.g. #pragma HLS allocation
instances=fmac_new0 limit=1 function.
This procedure is fundamental to create several .cpp code files that describe
different sharing configuration of the knp_mod. Limiting the number of
instances for fmac and imac functions corresponds, in fact, to forcing the
sharing of resources: the compiler can only create one instance for each func-
tion as if it was one physical resource being used from different lines of the
code.

Figure 4.24. knp_mod 2+3 - dot float MACs k=3

Synthesis and parameters computing

The codes are imported in Vivado where the synthesis and Place & Route
are carried out on the zynq FPGA xc7z007sclg400-1.

58

4.2 – KNP_MOD

Figure 4.25. knp_mod 2+3 - dot float MACs k=3

When all the simulations have been developed, Vivado returns different re-
port files.

• "knp_utilization_routed.rpt" is the report file that contains the Utiliza-
tion Design Information. The report is obtained after the place and route
and shows how many items are needed in order to synthesize a project.
These quantities are expressed as a percentage of the used resources over
the available ones.

• "knp_csynth" is the report file generated after the synthesis where it
is possible to find information on the minimum and maximum latency,
measured in number of clock cycles.

• "knp_timing_paths_routed" is the report file generated by Vivado after
the place and route where the delays of the 10 longest paths are illus-
trated. The maximum path delay corresponds to the critical path delay
of the circuit.

Sharing Arrangements Comparison

Once all the parameters have been obtained from the report files, it is possi-
ble to plot a Delay-Area diagram. The total execution time of each solution
is plotted on the y-axis as the multiplication of the maximum path delay and
the numbers of clock cycles.

59

4 – Simulations and results

On the x-axis is plotted the Resource Usage maximum percentage, this pa-
rameter gives an impression of how much, in percentage, the FPGA employed
resources increase or decrease changing the sharing arrangements of the MAC
units.

The resulting graph includes several points, one for each resource sharing
arrangement, and they are marked with the name of the respective solution.
The first number refers to the number of int MAC units while the second
to the number of float MAC units. The ones marked with the "w" are the
worst locality solutions, while the other ones are the results of the optimum
clustering combinations.
E.g. 1+2 : 1 int MAC and 2 float MACs, the optimal solution for locality
obtained through clustering. 1+3w: 1 int MAC and 3 float MACs, wrong
solution for locality obtained manually from the DFG.

Figure 4.26. knp_mod - Sharing Arrangements Comparison

From Figure 4.26 and Table 4.3, it is possible to appreciate that, as ex-
pected, the worst version of each combination, indicated with w, is always
employing a bigger number of resources and in some cases it requires a longer
period.

60

4.2 – KNP_MOD

1+1 1+2 1+2w 1+3 1+3w 2+2 2+2w 2+3 2+3w 5+6
T[ns] 8.836 8.939 9.156 8.641 8.338 8.909 8.737 7.999 8.42 9.072
res[%] 53.11 56.43 56.79 58.04 59.43 54.23 55.68 60.41 58.91 69.70

Table 4.3. knp_mod - Maximum path delay [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

From the diagram it results evident that the Pareto Optimal solutions are
the ones arranged in a quarter-circle closer to the origin of the axes.
The 2+3 solution consists in sharing 2 integer MAC units and 3 MAC units,
this arrangement is the best in terms of reduction of critical path delay but
one of the worst in terms of Resource Usage.
The 1+1 solution, on the other hand, consists in sharing only 1 integer MAC
unit and 1 MAC unit, this arrangement is the best in terms of Resource Us-
age, as can be easily imagined, but it results in the a longer critical path delay.

In order to obtain a good trade-off between area consumption and path de-
lay, the solution 1+3 has been chosen as the best solution. It consists in the
sharing of 1 int MAC and 3 float ones and must to be thoroughly analyzed
though further simulations.
Also the 2+2 solution, 2 int and 2 float MACs, is studied as the previous
arrangement in order to confront their results.

4.2.4 Smart Sharing through K-Means Clustering
The Data Flow Graph is described in a DOT file that can be visually ren-
dered by 4 different Graphviz tools: dot, sfdp, circo and patchwork.
Afterward, through a Python code, the nodes indicating the int MAC units
and the float MAC units must be detected in the graph and their coordinates
extracted in two different arrays. The procedure of generating the optimal
solution through a clustering algorithm can be repeated for each Graphviz
tools, since they produce different outcomes.

It is possible to compose different sharing configuration to be applied to
the knp_mod architecture, in particular, 2 combinations have been picked:

• 1 int MAC and 3 float MACs: Using the K-Means Clustering Algo-
rithm 3 clusters have been created from the 6 original float MACs while
all the integer MAC units are grouped together.

61

4 – Simulations and results

This means that the filter area is reduced by 3 float MAC units and each
couple of the former operations have to share a single fMAC, whereas all
the former integer multiply and accumulate operations must share the
same iMAC.

This solution has been chosen because it is the best trade-off between
area consumption and path delay. Moreover, it seems clever to favour
more complex units such as float MACs that require longer delays rather
than the integer MAC units that need less computing time. Therefore, it
seems reasonable to reduce the number of imac function instances down
to 1 in order to keep the number of fmac instances up to 3.

In order to obtain balanced clusters, composed of the same number of
elements, it is possible to apply Equal Groups KMeans Algorithm (k=3)
to the float MACs.

In Figure 4.27 and 4.28 is shown the application of the K-Mean al-
gorithm to the DFG opened through dot Graphviz tool.

Figure 4.27. knp_mod 1+3 - dot float MACs k=3

• 2 int MACs and 2 float MAC: Using the K-Means Clustering Algo-
rithm 2 clusters have been created from the 6 original float MACs and
2 from the original integer MAC units.
This means that the filter area is reduced by 4 float MAC units and each

62

4.2 – KNP_MOD

Figure 4.28. knp_mod 1+3 - dot int MACs k=1

triplet of the former operations have to share a single fMAC, whereas
a couple and a triplet of the former integer multiply and accumulate
operations must share the same iMAC.

This solution has been chosen because it seems reasonable to keep the
number of imac and fmac the same, scaling the total amount of MAC
units in the circuit down to 4.

In order to obtain balanced clusters, composed of the same number of
elements, it is possible to apply Equal Groups KMeans Algorithm (k=3)
to the float MACs.

In Figure 4.29 and 4.30 is shown the application of the K-Mean al-
gorithm to the DFG opened through dot Graphviz tool.
In Figure 4.31 and 4.32 is shown the application of the EqualGroup-
sKMean algorithm to the DFG opened through dot Graphviz tool.

4.2.5 Generation of new code files
Taking into account the 4 optimum clustering solutions obtained through the
4 different Graphviz tool DFGs, it is possible to generate new .cpp files on
the basis of the original one.
In this case, it is not necessary to change the header file since it only contains

63

4 – Simulations and results

Figure 4.29. knp_mod 2+2 - dot float MACs k=2

Figure 4.30. knp_mod 2+2 - dot int MACs k=2

the function declarations and it can be done once for all of the simulations.

A Python code called "generate_clusters" has been written to read the orig-
inal cpp file and to detect the functions called "fmac" and "imac" followed by
a number.
The name of each MAC instance is replaced with a new name representing
the cluster it has been mapped in. For example the function "fmac1 " might

64

4.2 – KNP_MOD

Figure 4.31. knp_mod 2+2 - dot float MACs k=2 - balanced

Figure 4.32. knp_mod 2+2 - dot int MACs k=2 - balanced

be turned into "fmac_new2 " if it has been mapped into the cluster 2 by K-
Means, or the function "imac7 " might be turned into "imac_new6 " .

Subsequently, a #pragma command is written to limit each new mac func-
tion to only 1 instance. This command is inserted in order to simulate the
sharing of one fMAC or iMAC for each chosen group of function calls: the
compiler can only have 1 instance for each cluster of functions as if it was a
physical resource being used from different lines of the code.

65

4 – Simulations and results

In the same way, as the optimum solution has been described in the cpp
file, it is useful to create some random cluster solutions in order to assess the
goodness of the generated solutions.
This is obtained shuffling the vector "labels", it is an array generated by the
K-Means algorithm in which each position corresponds to one original unit
and the content of each cell to the clusters to whom the unit belongs.
In case of the 1 iMAC - 3 fMACs arrangement only the float labels vec-
tor must be shuffled, while for the 2 iMACs - 2 fMACs arrangement both
the float labels vector and the integer labels vector must be randomly shuffled.

Afterwards, the .cpp and the header file can be printed modifying the func-
tion names using the same process employed for the optimal solutions.

4.2.6 Synthesis and Place & Route
The new codes, optimal solutions and random ones, are imported in Vivado.
One script for each solution has been generated in order to carry out the
synthesis and place & route. This process requires some hours to exploit the
placement and routing of each project.
At the end of all of the simulations, Vivado returns different report files from
whom it is possible to get the necessary information to evaluate the resulting
circuits.

• The resource usage required by each process, that can be extracted from
the "knp_utilization_routed.rpt" report file that contains the Utilization
Design Information. The report is obtained after the place and rout and
shows how many items are needed in order to synthesize a project, these
quantities are expressed as a percentage of the used resources over the
available ones.
As previously outlined, the value used to assess the goodness of a solution
is the maximum percentage of utilization of one kind of resource, since
this is the fundamental limit for the synthesis on FPGAs.

• The minimum and maximum latency, measured in number of clock cy-
cles. This information is included in the "knp_csynth" file, a report file
generated by Vivado after the synthesis.

• The maximum path delay, that corresponds to the critical path delay of
the circuit. This parameter is included in the "knp_timing_paths_routed"

66

4.2 – KNP_MOD

file, a report file generated by Vivado after the place and route where
the delays of the 10 longest paths are illustrated. This value puts an
upper bound to the frequency of the designed circuit.

4.2.7 Results comparison and behaviour analysis
Two new Python codes called compare_reports1+3 and compare_reports2+2
are created to compare the computed circuit parameters of the two sharing
arrangements: 1 iMAC + 3 fMACs and 2 iMACs and 2 fMACs.

1 int MAC + 3 float MACs

All of the parameters are extracted from the report files in order to plot a
Delay-Area diagram.
The total execution time of each solution is plotted on the y-axis as the
multiplication of the maximum path delay and the numbers of clock cycles.
There could be two versions of this graph since Vivado provides a minimum
and a maximum latency value, but in this case, both values lead to the same
graph proportionally.

In the x-axis is plotted the Resource Usage maximum percentage, this pa-
rameter gives an impression of how much the chip area increases or decreases
changing the sharing arrangements of the MAC units.

The resulting graph includes several points, one for each different sharing
solution. Some of them are marked with the name of the respective solution,
these correspond to the optimal solutions obtained using K-Means combined
with the various Graphviz tools. If the name is followed by "balanced", Equal-
GroupsKMeans has been employed. When the label is just a number, the
solution is obtained by the random sharing combinations.

Opt Furthest Sfdp SfdpBal Circo CirBal Patch PatBal
Tex[s] 138.4 199.2 202.4 174.0 194.4 181.6 137.3 178.9
res[%] 58.05 58.20 59.39 60.64 59.36 60.50 50.09 61.55

Table 4.4. knp_mod - Total execution time [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

67

4 – Simulations and results

Figure 4.33. knp_mod 1+3 - Delay-Area diagram

0 1 2 3 4 5 6 7 8 9
Tex[s] 128.8 192.5 139.8 181.6 189.7 186.8 194.2 135.4 136.2 139.8
res[%] 59.52 57.36 58.43 60.50 57.14 60.66 59.27 59.32 59.43 59.50

Table 4.5. knp_mod - Total execution time [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

From the graph in Figure 4.33 it is possible to draw some conclusions on
the smart resource sharing employed on the configuration with 1 int MAC
and 3 float MACs. It is evident that the configuration marked as "OPT",
that corresponds to the optimal clustering solution opened with dot, is the
best trade-off in terms of both timing delay and resource usage.
Whereas, the SFDP optimal locality solution and "Furthest", the worst dot
solution, result in a much longer critical path delay.

This highlights the goodness of the clustering algorithm applied on a DFG
opened through "dot" Graphviz tool, that guarantees the best trade-off be-
tween area consumption and path delay.

68

4.2 – KNP_MOD

2 int MACs + 2 float MACs

The parameters are again extracted from the report files in order to plot a
Delay-Area diagram.
The total execution time of each solution is plotted on the y axis as the mul-
tiplication of the maximum path delay and the numbers of clock cycles.
In the x axis is plotted the Resource Usage maximum percentage, this pa-
rameter gives an impression of how much the chip area increases or decreases
changing the sharing arrangements of the MAC units.

The resulting graph includes several points, one for each different sharing
solution. Some of them are marked with the name of the respective solution,
these correspond to the optimal solutions obtained using K-Means combined
with the dot Graphviz tool. If the name is followed by "balanced", Equal-
GroupsKMeans has been employed, while FURTH indicates the worst case
solution in which the furthest items are allocated in the same cluster. When
the label is just a number, the solution is obtained by of the 14 random
sharing combinations.

Figure 4.34. knp_mod 2+2 - Delay-Area diagram

From the graph in Figure 4.34 it is possible to draw some conclusions on

69

4 – Simulations and results

Opt Bal. Furth. 0 1 2 3 4 5
Tex[s] 177.0 190.0 186.7 197.2 194.2 208.5 191.7 208.5 191.7
res[%] 56.36 56.30 56.55 56.66 56.61 57.36 56.66 54.39 56.64

Table 4.6. knp_mod - Total execution time [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

6 7 8 9 10 11 12 13 14
Tex[s] 189.8 203.9 183.7 204.0 178.0 191.7 183.3 194.1 194.2
res[%] 53.73 56.09 55.48 55.55 56.66 55.00 55.09 55.55 56.70

Table 4.7. knp_mod - Total execution time [ns] and Maximum FPGA
Resource Usage percentage [%] of different sharing solutions

the smart resource sharing employed on the configuration with 2 int MACs
and 2 float MACs.
The configuration marked as "OPT" corresponds to the optimal unbalanced
proximity solution opened with dot obtained through the clustering algo-
rithm K-Means. This solution is the one that minimizes the maximum path
delay more that any of the others but is definitely not the best one for area
occupation.
Whereas, the Balanced and Furthest solutions result in a much longer critical
path delay for a similar maximum resource usage percentage.

Results

In conclusion, in this section 2 of the various sharing arrangements have been
further studied.
Applying the smart sharing algorithm to a dot DFG, it results evident that
the "1 int MAC and 3 float MACs" configuration produces better results in
terms of path delay than the "2 int MACs and 2 float MACs" configuration.
Indeed, all the solution of the 2+2 arrangement result in a critical path delay
equal or superior to 1,8 ns while the "Optimal" one of the 1+3 arrangement
stays under 1,4 ns. Nevertheless, this reduction in the timing delay is payed
by a slight increase in area consumption.
In fact, the 1+3 OPT requires 58% of one type of FPGA resources while the
2+2 OPT only the 56,4%.

70

4.3 – LDL

4.3 LDL

The Cholesky decomposition, in linear algebra, is a kind of matrix factoriza-
tion. Matrix decompositions are used to deconstruct a matrix into a product
of matrices.
A variant of the original Cholesky decomposition is the LDL decomposition,
a factorization algorithm that involves two triangular matrices, L, and a di-
agonal matrix, D.
It is a perfect example code on which to apply the smart resource sharing
algorithm since it is a complex and realistic design, that includes a huge
number of hardware resources.

4.3.1 Units isolation and loop unrolling

The LDL cpp code is full of chained loops with numerous multiplications and
subtractions. Therefore, there were several sections of the code that could
have been optimized through sharing.
As a first attempt the middle loop has been unrolled, but the optimization
did not result in significant improvements in the performances.
Therefore, the unrolling has been applied to the third and most internal loop
that leads to the most relevant results in terms of area and time savings.

Since the loop mainly works with multiplications and subtractions the most
worthwhile units to isolate and share are the newly constructed multiply and
subtract units (multsub). The unrolling implemented on the loop is of the
8th order, thus the multsub number of units for each loop that can be opti-
mized is 8.
Each newly written function must include a #pragma command that pre-
vents the inlining in order to make the compiler consider each multsub as a
separate functional unit: #pragma HLS inline off.

In this case, the operations are written in the .cpp file so that is the one
that must be modified. In this first step, the 8 functions must be written
with different names in order to be distinguished between one another, so
they are called: multsub1, multsub2, multsub3, multsub4, multsub5, mult-
sub6, multsub7, multsub8.

71

4 – Simulations and results

4.3.2 Synthesis without sharing and DFG analysis

In order to apply a smart resource sharing, it is necessary to know the po-
sition in which the multsub units would be placed after the synthesis of the
original code.
Therefore, the unrolled code containing the isolated functions is imported
in Vivado and synthesized on the kintex7 FPGA xcvu065-ffvc1517-1. This
FPGA has been chosen because it is the smallest one on which this circuit
can be synthesized: it is composed of 600 DSP Slices, 358.080 CLB LUTs
and 2520 18k RAM blocks.
In this case the code produces a very big design, so a suitable FPGA is re-
quired, anyway, a properly fitted FPGA is useful so that the amendments
introduced through resource sharing may result in a more visible effect on
its performances. This allows to have more relevant feedback to each change
done in the resource sharing configuration.

In Vivado it is possible to carry out the synthesis on the chosen FPGA
through a previously written script. After the synthesis, the DFG is gener-
ated and depicts a huge architecture with multiple octets of multsub units
throughout its layout. In Figure 4.35 is shown the DFG of the LDL structure
highlighting only the multsub octets.
The division of the units in octets is not accurate, the picture is only meant
to give an idea of what the LDL DFG looks like. Despite the chaotic DFG,

Figure 4.35. LDL DFG where only the multsub units are shown

72

4.3 – LDL

it is possible to identify a recurring pattern of the 8 units. They are always
placed in order, one below the other as shown in Figure 4.36.
Therefore it is possible to find an optimal locality clustering solution in case
of k=4: 1-2, 3-4, 5-6, 7-8.

Figure 4.36. LDL DFG: closeup of a multsub units octet

4.3.3 Generation of new code files, Synthesis and Place
& Route

Taking into account the optimum clustering solution obtained, it is possible
to generate a new cpp file on the basis of the original one.
A Python code has been written to read the original cpp code file and to
detect the functions called "sumsub" followed by a number. The name of
each instance is replaced with a new name representing the cluster it has
been assigned to.
Subsequently, a #pragma command is written to limit each new function to

73

4 – Simulations and results

only 1 instance. This command is inserted in order to simulate the sharing
of one unit for each chosen group of function calls.
In the same way, as for the optimum solution, it is useful to create some
random cluster solutions in order to assess the goodness of the optimal one.
This is obtained shuffling the vector of the positions of the opt solution, it is
an array where each position corresponds to one original unit and the content
of each cell to the clusters to whom the unit belongs.
Afterwards, the random .cpp files can be printed modifying the function
names using the same process employed for the optimal solution.

The new codes, optimal solutions and random ones, are imported in Vi-
vado the synthesis and place & route are carried out. This process requires
some hours to exploit the placement and routing of each project.

At the end of all of the simulations Vivado returns different report files from
whom it is possible to get the information necessary to evaluate the resulting
circuits:

• ldl_utilization_routed.rpt: the report file that contains information on
the resources needed in order to synthesize a project, these quantities
are expressed as a percentage of the used resources over the available
ones.
As previously outlined, the value used to assess the goodness of a solution
is the maximum percentage of utilization of one kind of resource, since
this is the fundamental limit for the synthesis on FPGAs.

• ldl_csynth file: the report file containing the number of clock cycles of
the entire execution.

• ldl_timing_paths_routed: the report file where the delays of the 10
longest paths are illustrated.
This value puts an upper bound to the frequency of the designed circuit.

4.3.4 Results comparison and behaviour analysis
Another Python code called "compare_results" is created to compare the
computed circuit parameters and to generate new graphs to visually con-
front them.

All the report files from all the different solutions are read and the result-
ing parameters are extracted: the maximum percentage resource usage, the

74

4.3 – LDL

maximum path delay and the total number of clock cycles.

Once all of the parameters have been extracted from the report files, it is
possible to plot a Delay-Area diagram. The maximum data path delay is
plotted into the y-axis. Vivado provides a minimum and a maximum latency
value that has been used to generate two other versions of the graph taking
plotting the total execution time on the y-axis but in this case, both values
lead to the same graph proportionally.
The Resource Usage maximum percentage is plotted on the x-axis, this pa-
rameter quantifies how much the chip area increases or decreases with differ-
ent sharing arrangements of the multsub units.
The resulting graph includes several points, one for each resource sharing
arrangement, and they are marked with the name of the respective solution
or with a number if related to a random solution.

Figure 4.37 and Table 4.8 show the Area-Delay diagram resulting from the
unrolling of the second loop present in the LDL code A.6.

Figure 4.37. LDL unroll of the second loop - Delay-Area diagram k=4

Whereas, Figure 4.38 and Table 4.9 show the Area-Delay diagram result-
ing from the unrolling of the third and most internal loop present in the LDL
code A.6.

75

4 – Simulations and results

opt 0 1 2 3 4 5 6 7 8 9
T[ns] 9.317 3.237 9.143 8.94 8.879 8.261 8.657 9.515 3.308 9.348 9.415
res[%] 67.61 70.43 66.55 70.27 69.34 68.45 64.64 67.16 68.18 64.32 65.45

Table 4.8. LDL unroll of the 2nd loop - Maximum path delay [ns] and
Maximum FPGA Resource Usage percentage [%] of different sharing solutions

Figure 4.38. LDL unroll of the 3rd loop - Delay-Area diagram k=4

OPT 0 1 2 3 4 5 6 7 8
T[ns] 9.831 9.395 9.826 9.608 9.768 9.646 9.782 9.659 9.687 9.601
res[%] 15.05 14.56 15.05 14.84 15.22 14.52 16.06 15.32 14.93 14.95

Table 4.9. LDL unroll of the 3rd loop - Maximum path delay [ns] and
Maximum FPGA Resource Usage percentage [%] of different sharing solutions

4.3.5 Conclusions on LDL analysis
From the previous graphs, it is possible to draw some conclusions on the
smart resource sharing employed on two different loops in the LDL code.

76

4.3 – LDL

The configuration marked as "OPT" corresponds always to the ordered solu-
tion [1, 1, 2, 2, 3, 3, 4, 4] obtained through the proximity method assuming
that the multsub octet is disposed in order as shown in Figure 4.36.
Nevertheless, this solution is not the one that minimizes the maximum path
delay but it is still among the best solutions in terms of area occupation.
This behaviour is explained by the fact that with such a large and complex
Data Flow Graph it is impossible to predict accurately the disposition of each
octet of units. The only feasible procedure was assuming that every octet is
disposed in the same way: the octet taken under study is composed of units
placed one below the other in order.

Whereas, exploring the third loop unroll solution in Code A.6, the "0" cluster-
ing solution stands out among the other for minimizing both the maximum
path delay and area occupation.
The 0 random solution corresponds to the clustering arrangement: [3, 2, 1,
1, 2, 4, 4, 3] that does not reflect the optimal locality solution.

In conclusion, in this section, various sharing arrangements have been ap-
plied to 2 versions of the LDL code: unrolling 2 different loops of the code
of order 8 and implementing the resource sharing to reduce each octet into
4 units.
The first simulations have been carried out unrolling the second and more
external loop, while the second round of simulation involved the unrolling of
the third and most internal loop, that better allowed to observe the changes
in clustering arrangement into the final performance results.
Applying the smart sharing algorithm to a small section of the DFG obtained
from the unroll of the third loop and repeating it for every octet of multsub
unit, the results reveal that this does not produce better results in terms of
path delay, it is closer to the minimum resource usage percentage found in
this example.
The best configuration found is the [3, 2, 1, 1, 2, 4, 4, 3] configuration
obtained randomly. The improvements that the "0" solution provides con-
fronted with the supposed optimal locality solution are: 0,436 ns reduction
of the maximum data path delay and only a 0,49% reduction of the resource
usage maximum percentage.

77

78

Chapter 5

Conclusions

In the present work, an optimized resource sharing algorithm has been devel-
oped to make the employment of the resource sharing in an electronic system
more efficient.
The smart sharing algorithm implemented is meant to generate the groups
of operations that must be allocated to each remaining unit after the imple-
mentation of the resource sharing.
The method employed to optimally assign each operation to the respective
shared unit is founded on the proximity method. The hypothesis is that a
cluster of units placed closer to each other should be replaced by one shared
unit, while units that are located further apart should use different resources.
This can be reached examining the position in which the original operands
were allocated before the reduction obtained through sharing and allocating
each operation to the closest new operand.

The proximity based resource sharing is supposed to cause a greater im-
provement in the area reduction than a simple resource sharing since this
method leads to shorter connections. The wires under discussion are the
ones connecting the elements that used to interact with the original units
that have been replaced with only one new one to be shared.
Using the smart sharing algorithm the new shared units are placed in proxim-
ity to all the elements belonging to the cluster that needs to reach it resulting
in shorter wires.

A second hypothesized gain was that the proximity method would be able to
limit the path delay increase, as well as resource usage. An increment in the

79

5 – Conclusions

path delay is almost inevitable when implementing a resource sharing, nev-
ertheless, the employment of shorter wire connections translates into quicker
communications and therefore in shorter delays.

The proximity based resource sharing algorithm presented in this work gives
positive results applied to proposed example codes: FIR filter, KNP and
LDL codes. In particular, the simulations carried out on the FIR filter, KNP
codes produced performance data that can validate the theorized proximity
based resource sharing method.

On the basis of this outcome, the main result that has been observed is
that, as hypothesized, the theory of locality gives positive results in almost
every circumstance in terms of decreasing the number of necessary resources.
This means that the proximity based resource sharing results in a greater im-
provement in the area reduction than a simple resource sharing. This is due
to the shorter connections generated by this smart allocation of resources:
the elements that used to interact with the original units are forced to inter-
act with the closest new shared resource.
As a result, the wires are kept short and do not cross the entire chip to reach
the new shared unit.

On the other hand, the simulations did not produce coherent results on
the evolution of the maximum path delay with the employment of the smart
resource sharing. Therefore, it is not possible to draw a model of the rela-
tionship between locality and decreasing of the delay since some results prove
that it tends to decrease with the increment of the clustering cost.
This outcome does not affect the goodness of the smart sharing algorithm
since the path delay is expected to grow at any rate when resource sharing
is employed in an electronic system.

In the perspective of further improvements, the Proximity Based Resource
Sharing Algorithm could be fully automatized and optimized even for bigger
and more complex data flow graphs where the units to be shared are not
easily detectable.
The possible applications are countless, since this resource sharing upgrade
can be implemented on any hardware description code. In particular, the
most effective outcome would probably be obtained implementing the prox-
imity based algorithm on any floating point application, since they involve
time and area consuming units whose number needs to be reduced in a smart

80

5 – Conclusions

way.
For instance, finite elements models simulations, neural network training or
financial simulations.

81

82

Bibliography

[1] Lloyd, Stuart P. Least squares quantization in PCM, Information Theory,
IEEE Transactions on 28.2 (1982): 129-137.

[2] A. Trevino Introduction to K-means Clustering, Oracle Data Science
Blog, URL: <https://blogs.oracle.com/datascience/introduction
-to-k-means-clustering>, December 2016

[3] R. Kastner and S. Neuendorffer, Parallel Programming for FPGAs, 24th
August, 2017.

[4] D. Bufistov, J. Cortadella, M. Kishinevsky and S. Sapatnekar, A gen-
eral model for performance optimization of sequential systems, ICCAD
’07 Proceedings of the 2007 IEEE/ACM international conference on
Computer-aided design, pages 362-369, San Jose, California — November
05 - 08, 2007

[5] Vivado High-Level Synthesis, Vivado High-Level Synthesis, URL:
<https://www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html>

[6] Xilinx, Vivado Design Suite User Guide - High-Level Synthesis, URL:
<https://www.xilinx.com/>, UG902 (v2017.4) February 2, 2018

[7] Xilinx, Vivado Design Suite User Guide - Release Notes, Installation, and
Licensing, URL: <https://www.xilinx.com/>, UG973 (v2019.1) June 7,
2019

[8] Xilinx, Tom Feist, Vivado Design Suite,
URL: <https://www.xilinx.com/>, WP416 (v1.1) June 22, 2012

[9] IEEE Xplore, High-Level Synthesis: Past, Present, and Future, IEEE
Design & Test of Computers (Volume: 26, Issue: 4, July-Aug. 2009)

[10] S. Hadjis, A. Canis, J.H. Anderson, J. Choi, K. Nam, S. Brown, T. Cza-
jkowski, Impact of FPGA architecture on resource sharing in high-level
synthesis, FPGA ’12 Proceedings of the ACM/SIGDA international sym-
posium on Field Programmable Gate Arrays, Pages 111-114, Monterey,
California, USA — February 22 - 24, 2012

83

Bibliography

[11] IEEE, Enabling High-Level Synthesis Resource Sharing Design Space Ex-
ploration in FPGAs Through Automatic Internal Bitwidth Adjustments,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (Volume: 36, Issue: 1, Jan. 2017)

[12] D. Wilson, A. Shastri, G. Stitt1, A High-Level Synthesis Scheduling and
Binding Heuristic for FPGA Fault Tolerance, International Journal of
Reconfigurable Computing Volume 2017, Article ID 5419767, 17 pages

[13] B. Carrión Schäfer, Enabling High-Level Synthesis Resource Sharing De-
sign Space Exploration in FPGAs Through Automatic Internal Bitwidth
Adjustments, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 36(1):1-1, January 2016

[14] B. Liebig, A. Koch High-level synthesis of resource-shared microarchitec-
tures from irregular complex C-code, Conference Paper, December 2016

[15] Graphviz - Graph Visualization Software Graphviz - Graph Visualization
Software, 2001, URL: <https://www.graphviz.org/>

[16] M. Simionato An Introduction to Graphviz and dot,
URL: <http://www.linuxdevcenter.com/pub/a/linux/2004/05/06/
graphviz_dot.html>, June 2004

84

Appendices

85

Appendix A

C++ example codes

A.1 cpp_fir.h

/**
Vendor: Xilinx
Associated Filename: cpp_FIR.h
Purpose:Vivado HLS Coding Style example
Device: All
Revision History: May 30, 2008 - initial release

#- (c) Copyright 2011-2018 Xilinx, Inc. All rights reserved.
#-
#- This file contains confidential and proprietary

information
#- of Xilinx, Inc. and is protected under U.S. and
#- international copyright and other intellectual property
#- laws.
#-
#- DISCLAIMER
#- This disclaimer is not a license and does not grant any
#- rights to the materials distributed herewith. Except as
#- otherwise provided in a valid license issued to you by
#- Xilinx, and to the maximum extent permitted by applicable
#- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
#- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL

WARRANTIES

87

A – C++ example codes

#- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
#- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
#- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
#- (2) Xilinx shall not be liable (whether in contract or

tort,
#- including negligence, or under any other theory of
#- liability) for any loss or damage of any kind or nature
#- related to, arising under or in connection with these
#- materials, including for any direct, or any indirect,
#- special, incidental, or consequential loss or damage
#- (including loss of data, profits, goodwill, or any type of
#- loss or damage suffered as a result of any action brought
#- by a third party) even if such damage or loss was
#- reasonably foreseeable or Xilinx had been advised of the
#- possibility of the same.
#-
#- CRITICAL APPLICATIONS
#- Xilinx products are not designed or intended to be fail-
#- safe, or for use in any application requiring fail-safe
#- performance, such as life-support or safety devices or
#- systems, Class III medical devices, nuclear facilities,
#- applications related to the deployment of airbags, or any
#- other applications that could lead to death, personal
#- injury, or severe property or environmental damage
#- (individually and collectively, "Critical
#- Applications"). Customer assumes the sole risk and
#- liability of any use of Xilinx products in Critical
#- Applications, subject only to applicable laws and
#- regulations governing limitations on product liability.
#-
#- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
#- PART OF THIS FILE AT ALL TIMES.
#- ***

This file contains confidential and proprietary information
of Xilinx, Inc. and

is protected under U.S. and international copyright and other
intellectual

88

A.1 – cpp_fir.h

property laws.

DISCLAIMER
This disclaimer is not a license and does not grant any

rights to the materials
distributed herewith. Except as otherwise provided in a valid

license issued to
you by Xilinx, and to the maximum extent permitted by

applicable law:
(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL

FAULTS, AND XILINX
HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,

IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR
FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not

be liable (whether
in contract or tort, including negligence, or under any other

theory of
liability) for any loss or damage of any kind or nature

related to, arising under
or in connection with these materials, including for any

direct, or any indirect,
special, incidental, or consequential loss or damage (

including loss of data,
profits, goodwill, or any type of loss or damage suffered as

a result of any
action brought by a third party) even if such damage or loss

was reasonably
foreseeable or Xilinx had been advised of the possibility of

the same.

CRITICAL APPLICATIONS
Xilinx products are not designed or intended to be fail-safe,

or for use in any
application requiring fail-safe performance, such as life-

support or safety
devices or systems, Class III medical devices, nuclear

facilities, applications

89

A – C++ example codes

related to the deployment of airbags, or any other
applications that could lead

to death, personal injury, or severe property or
environmental damage

(individually and collectively, "Critical Applications").
Customer assumes the

sole risk and liability of any use of Xilinx products in
Critical Applications,

subject only to applicable laws and regulations governing
limitations on product

liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART
OF THIS FILE AT

ALL TIMES.

**/
#ifndef _CPP_FIR_H_
#define _CPP_FIR_H_

#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

#define N 85

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

acc_t mac_new0 (acc_t ac, data_t m, coef_t c);
acc_t mac_new1 (acc_t ac, data_t m, coef_t c);
acc_t mac_new2 (acc_t ac, data_t m, coef_t c);
acc_t mac_new3 (acc_t ac, data_t m, coef_t c);
acc_t mac_new4 (acc_t ac, data_t m, coef_t c);
acc_t mac_new5 (acc_t ac, data_t m, coef_t c);

90

A.1 – cpp_fir.h

// Class CFir definition
template<class coef_T, class data_T, class acc_T>
class CFir {
protected:

static const coef_T c[N];
data_T shift_reg[N-1];

private:
//acc_t macx1 (acc_t ac, data_t m, coef_t c);

public:
data_T operator()(data_T x);
template<class coef_TT, class data_TT, class acc_TT>
friend ostream&
operator<<(ostream& o, const CFir<coef_TT, data_TT, acc_TT> &

f);

};

// Load FIR coefficients
template<class coef_T, class data_T, class acc_T>
const coef_T CFir<coef_T, data_T, acc_T>::c[N] = {

#include "cpp_FIR.inc"
};

// FIR main algorithm
template<class coef_T, class data_T, class acc_T>
data_T CFir<coef_T, data_T, acc_T>::operator()(data_T x) {

int i;
acc_t acc = 0;
data_t m,m1,m2,m3,m4,m5;

loop: for (i = N-1; i >= 0; i-=6) {
if (i == 0) {
m = x;
shift_reg[0] = x;

} else {
m = shift_reg[i-1];

91

A – C++ example codes

m1 = shift_reg[i-2];
m2 = shift_reg[i-3];
m3 = shift_reg[i-4];
m4 = shift_reg[i-5];
m5 = shift_reg[i-6];
if (i != (N-1))
shift_reg[i] = shift_reg[i - 1];
shift_reg[i-1] = shift_reg[i - 2];
shift_reg[i-2] = shift_reg[i - 3];
shift_reg[i-3] = shift_reg[i - 4];
shift_reg[i-4] = shift_reg[i - 5];
shift_reg[i-5] = shift_reg[i - 6];

}
acc= mac_new0(acc,m,c[i]);
acc= mac_new1(acc,m1,c[i-1]);
acc= mac_new2(acc,m2,c[i-2]);

acc= mac_new3(acc,m3,c[i-3]);
acc= mac_new4(acc,m4,c[i-4]);

acc= mac_new5(acc,m5,c[i-5]);
}

return acc;
}

// Operator for displaying results
template<class coef_T, class data_T, class acc_T>
ostream& operator<<(ostream& o, const CFir<coef_T,
data_T, acc_T> &f) {

for (int i = 0; i < (sizeof(f.shift_reg)/sizeof(data_T)); i
++)

{
o << "shift_reg[" << i << "]=␣" << f.shift_reg[i] <<

endl;
}

o << "______________" << endl;
return o;

}

92

A.2 – cpp_fir.cpp

data_t cpp_FIR(data_t x);

#endif

A.2 cpp_fir.cpp

/***
Vendor: Xilinx
Associated Filename: cpp_FIR.cpp
Purpose:Vivado HLS Coding Style example
Device: All
Revision History: May 30, 2008 - initial release

#- (c) Copyright 2011-2018 Xilinx, Inc. All rights reserved.
#-
#- This file contains confidential and proprietary

information
#- of Xilinx, Inc. and is protected under U.S. and
#- international copyright and other intellectual property
#- laws.
#-
#- DISCLAIMER
#- This disclaimer is not a license and does not grant any
#- rights to the materials distributed herewith. Except as
#- otherwise provided in a valid license issued to you by
#- Xilinx, and to the maximum extent permitted by applicable
#- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
#- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL

WARRANTIES
#- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
#- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
#- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
#- (2) Xilinx shall not be liable (whether in contract or

tort,
#- including negligence, or under any other theory of

93

A – C++ example codes

#- liability) for any loss or damage of any kind or nature
#- related to, arising under or in connection with these
#- materials, including for any direct, or any indirect,
#- special, incidental, or consequential loss or damage
#- (including loss of data, profits, goodwill, or any type of
#- loss or damage suffered as a result of any action brought
#- by a third party) even if such damage or loss was
#- reasonably foreseeable or Xilinx had been advised of the
#- possibility of the same.
#-
#- CRITICAL APPLICATIONS
#- Xilinx products are not designed or intended to be fail-
#- safe, or for use in any application requiring fail-safe
#- performance, such as life-support or safety devices or
#- systems, Class III medical devices, nuclear facilities,
#- applications related to the deployment of airbags, or any
#- other applications that could lead to death, personal
#- injury, or severe property or environmental damage
#- (individually and collectively, "Critical
#- Applications"). Customer assumes the sole risk and
#- liability of any use of Xilinx products in Critical
#- Applications, subject only to applicable laws and
#- regulations governing limitations on product liability.
#-
#- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
#- PART OF THIS FILE AT ALL TIMES.
#- ***

This file contains confidential and proprietary information
of Xilinx, Inc. and

is protected under U.S. and international copyright and other
intellectual

property laws.

DISCLAIMER
This disclaimer is not a license and does not grant any

rights to the materials

94

A.2 – cpp_fir.cpp

distributed herewith. Except as otherwise provided in a valid
license issued to

you by Xilinx, and to the maximum extent permitted by
applicable law:

(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL
FAULTS, AND XILINX

HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY,

INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR

FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not
be liable (whether

in contract or tort, including negligence, or under any other
theory of

liability) for any loss or damage of any kind or nature
related to, arising under

or in connection with these materials, including for any
direct, or any indirect,

special, incidental, or consequential loss or damage (
including loss of data,

profits, goodwill, or any type of loss or damage suffered as
a result of any

action brought by a third party) even if such damage or loss
was reasonably

foreseeable or Xilinx had been advised of the possibility of
the same.

CRITICAL APPLICATIONS
Xilinx products are not designed or intended to be fail-safe,

or for use in any
application requiring fail-safe performance, such as life-

support or safety
devices or systems, Class III medical devices, nuclear

facilities, applications
related to the deployment of airbags, or any other

applications that could lead
to death, personal injury, or severe property or

environmental damage

95

A – C++ example codes

(individually and collectively, "Critical Applications").
Customer assumes the

sole risk and liability of any use of Xilinx products in
Critical Applications,

subject only to applicable laws and regulations governing
limitations on product

liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART
OF THIS FILE AT

ALL TIMES.

**/
#include "cpp_FIR.h"

// Top-level function with class instantiated
data_t cpp_FIR(data_t x)
{

static CFir<coef_t, data_t, acc_t> fir1;

//cout << fir1;

return fir1(x);
}

acc_t mac_new0 (acc_t ac, data_t m, coef_t c){
#pragma HLS inline off

return ac+m*c;}
acc_t mac_new1 (acc_t ac, data_t m, coef_t c){
#pragma HLS inline off

return ac+m*c;}
acc_t mac_new2 (acc_t ac, data_t m, coef_t c){
#pragma HLS inline off

return ac+m*c;}
acc_t mac3 (acc_t ac, data_t m, coef_t c){
#pragma HLS inline off

return ac+m*c;}
acc_t mac4 (acc_t ac, data_t m, coef_t c){
#pragma HLS inline off

96

A.3 – knp.h

return ac+m*c;}
acc_t mac5 (acc_t ac, data_t m, coef_t c){
#pragma HLS inline off

return ac+m*c;}

A.3 knp.h

/**
Vendor: Xilinx
Associated Filename: knp.h
Purpose:Vivado HLS Coding Style example
Device: All
Revision History: May 30, 2008 - initial release

#- (c) Copyright 2011-2018 Xilinx, Inc. All rights reserved.
#-
#- This file contains confidential and proprietary

information
#- of Xilinx, Inc. and is protected under U.S. and
#- international copyright and other intellectual property
#- laws.
#-
#- DISCLAIMER
#- This disclaimer is not a license and does not grant any
#- rights to the materials distributed herewith. Except as
#- otherwise provided in a valid license issued to you by
#- Xilinx, and to the maximum extent permitted by applicable
#- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
#- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL

WARRANTIES
#- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
#- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
#- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
#- (2) Xilinx shall not be liable (whether in contract or

tort,
#- including negligence, or under any other theory of

97

A – C++ example codes

#- liability) for any loss or damage of any kind or nature
#- related to, arising under or in connection with these
#- materials, including for any direct, or any indirect,
#- special, incidental, or consequential loss or damage
#- (including loss of data, profits, goodwill, or any type of
#- loss or damage suffered as a result of any action brought
#- by a third party) even if such damage or loss was
#- reasonably foreseeable or Xilinx had been advised of the
#- possibility of the same.
#-
#- CRITICAL APPLICATIONS
#- Xilinx products are not designed or intended to be fail-
#- safe, or for use in any application requiring fail-safe
#- performance, such as life-support or safety devices or
#- systems, Class III medical devices, nuclear facilities,
#- applications related to the deployment of airbags, or any
#- other applications that could lead to death, personal
#- injury, or severe property or environmental damage
#- (individually and collectively, "Critical
#- Applications"). Customer assumes the sole risk and
#- liability of any use of Xilinx products in Critical
#- Applications, subject only to applicable laws and
#- regulations governing limitations on product liability.
#-
#- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
#- PART OF THIS FILE AT ALL TIMES.
#- ***

This file contains confidential and proprietary information
of Xilinx, Inc. and

is protected under U.S. and international copyright and other
intellectual

property laws.

DISCLAIMER
This disclaimer is not a license and does not grant any

rights to the materials

98

A.3 – knp.h

distributed herewith. Except as otherwise provided in a valid
license issued to

you by Xilinx, and to the maximum extent permitted by
applicable law:

(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL
FAULTS, AND XILINX

HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY,

INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR

FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not
be liable (whether

in contract or tort, including negligence, or under any other
theory of

liability) for any loss or damage of any kind or nature
related to, arising under

or in connection with these materials, including for any
direct, or any indirect,

special, incidental, or consequential loss or damage (
including loss of data,

profits, goodwill, or any type of loss or damage suffered as
a result of any

action brought by a third party) even if such damage or loss
was reasonably

foreseeable or Xilinx had been advised of the possibility of
the same.

CRITICAL APPLICATIONS
Xilinx products are not designed or intended to be fail-safe,

or for use in any
application requiring fail-safe performance, such as life-

support or safety
devices or systems, Class III medical devices, nuclear

facilities, applications
related to the deployment of airbags, or any other

applications that could lead
to death, personal injury, or severe property or

environmental damage

99

A – C++ example codes

(individually and collectively, "Critical Applications").
Customer assumes the

sole risk and liability of any use of Xilinx products in
Critical Applications,

subject only to applicable laws and regulations governing
limitations on product

liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART
OF THIS FILE AT

ALL TIMES.

**/
#pragma once

#include <math.h>
#include <stdio.h>
#include "param.h"

//2.0 #define of constant variables
#ifndef M_PI
#define M_PI 3.1415926535f
#endif
// Flow vector scaling factor
#define FLOW_SCALING_FACTOR (0.25f) //(1.0f/4.0f)

typedef int mType;

extern "C" void knp(
unsigned char * im1,
unsigned char * im2,
float * out
);

float fmac0(float a, float b, float c);
float fmac1(float a, float b, float c);

100

A.4 – knp_mod.cpp

float fmac2(float a, float b, float c);
float fmac3(float a, float b, float c);
float fmac4(float a, float b, float c);
float fmac5(float a, float b, float c);
int imac6(int a, int b, int c);
int imac7(int a, int b, int c);
int imac8(int a, int b, int c);
int imac9(int a, int b, int c);
int imac10(int a, int b, int c);

A.4 knp_mod.cpp

/**
Vendor: Xilinx
Associated Filename: knp_mod.cpp
Purpose:Vivado HLS Coding Style example
Device: All
Revision History: May 30, 2008 - initial release

#- (c) Copyright 2011-2018 Xilinx, Inc. All rights reserved.
#-
#- This file contains confidential and proprietary

information
#- of Xilinx, Inc. and is protected under U.S. and
#- international copyright and other intellectual property
#- laws.
#-
#- DISCLAIMER
#- This disclaimer is not a license and does not grant any
#- rights to the materials distributed herewith. Except as
#- otherwise provided in a valid license issued to you by
#- Xilinx, and to the maximum extent permitted by applicable
#- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
#- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL

WARRANTIES
#- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING

101

A – C++ example codes

#- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
#- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
#- (2) Xilinx shall not be liable (whether in contract or

tort,
#- including negligence, or under any other theory of
#- liability) for any loss or damage of any kind or nature
#- related to, arising under or in connection with these
#- materials, including for any direct, or any indirect,
#- special, incidental, or consequential loss or damage
#- (including loss of data, profits, goodwill, or any type of
#- loss or damage suffered as a result of any action brought
#- by a third party) even if such damage or loss was
#- reasonably foreseeable or Xilinx had been advised of the
#- possibility of the same.
#-
#- CRITICAL APPLICATIONS
#- Xilinx products are not designed or intended to be fail-
#- safe, or for use in any application requiring fail-safe
#- performance, such as life-support or safety devices or
#- systems, Class III medical devices, nuclear facilities,
#- applications related to the deployment of airbags, or any
#- other applications that could lead to death, personal
#- injury, or severe property or environmental damage
#- (individually and collectively, "Critical
#- Applications"). Customer assumes the sole risk and
#- liability of any use of Xilinx products in Critical
#- Applications, subject only to applicable laws and
#- regulations governing limitations on product liability.
#-
#- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
#- PART OF THIS FILE AT ALL TIMES.
#- ***

This file contains confidential and proprietary information
of Xilinx, Inc. and

is protected under U.S. and international copyright and other
intellectual

property laws.

102

A.4 – knp_mod.cpp

DISCLAIMER
This disclaimer is not a license and does not grant any

rights to the materials
distributed herewith. Except as otherwise provided in a valid

license issued to
you by Xilinx, and to the maximum extent permitted by

applicable law:
(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL

FAULTS, AND XILINX
HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,

IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR
FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not

be liable (whether
in contract or tort, including negligence, or under any other

theory of
liability) for any loss or damage of any kind or nature

related to, arising under
or in connection with these materials, including for any

direct, or any indirect,
special, incidental, or consequential loss or damage (

including loss of data,
profits, goodwill, or any type of loss or damage suffered as

a result of any
action brought by a third party) even if such damage or loss

was reasonably
foreseeable or Xilinx had been advised of the possibility of

the same.

CRITICAL APPLICATIONS
Xilinx products are not designed or intended to be fail-safe,

or for use in any
application requiring fail-safe performance, such as life-

support or safety
devices or systems, Class III medical devices, nuclear

facilities, applications

103

A – C++ example codes

related to the deployment of airbags, or any other
applications that could lead

to death, personal injury, or severe property or
environmental damage

(individually and collectively, "Critical Applications").
Customer assumes the

sole risk and liability of any use of Xilinx products in
Critical Applications,

subject only to applicable laws and regulations governing
limitations on product

liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART
OF THIS FILE AT

ALL TIMES.

**/
#include "knp.h"

int PO(int x, int y){
return x + y * WIDTH;

}
int Px(int x){
#pragma HLS INLINE

if(x >=WIDTH)
x = WIDTH -1;

else if (x < 0)
x = 0;

return x;
}
int Py(int y){
#pragma HLS INLINE

if(y >=HEIGHT)
y = HEIGHT - 1;

else if (y < 0)
y = 0;

return y;
}
int P(int x, int y){

104

A.4 – knp_mod.cpp

#pragma HLS INLINE
return Py(y) * WIDTH + Px(x);

}
int get_matrix_inv(mType* G, float* G_inv){

float detG = (float)G[0] * G[3] - (float)G[1] * G[2];
if (detG <= 1.0f) { return 0; }
float detG_inv = 1.0f / detG;
G_inv[0] = G[3] * detG_inv;
G_inv[1] = -G[1] * detG_inv;
G_inv[2] = -G[2] * detG_inv;
G_inv[3] = G[0] * detG_inv;
return 1;

}
extern "C"
void knp(

unsigned char * im1,
unsigned char * im2,
float* out
)

{
#pragma HLS INTERFACE m_axi port=im1 offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=im2 offset=slave bundle=gmem1
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem2

#pragma HLS INTERFACE s_axilite port=im1 bundle=control
#pragma HLS INTERFACE s_axilite port=im2 bundle=control
#pragma HLS INTERFACE s_axilite port=out bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

loop_main:for(int j=0;j<HEIGHT;j++)
for(int i = 0; i<WIDTH;i++){

float G_inv[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
#pragma HLS ARRAY_PARTITION variable=G_inv complete dim=1

mType G[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
#pragma HLS ARRAY_PARTITION variable=G complete dim=1

mType b_k[2] = { 0.0f, 0.0f };
#pragma HLS ARRAY_PARTITION variable=b_k complete dim=1

loop_column:for (int wj = -WINDOW_SIZE; wj<=WINDOW_SIZE;wj++)

105

A – C++ example codes

{
loop_row: for (int wi = -WINDOW_SIZE; wi<=WINDOW_SIZE;wi++)

{

int px = Px(i+wi), py = Py(j+wj);
int temp6=imac6(py, WIDTH, px);
int im2_val = im2[temp6];

int deltaIk = im1[temp6] - im2_val;
int a=Px(i + wi +1), b=Px(i + wi -1);
int cx=imac7(py, WIDTH,a), dx = imac8(py, WIDTH,b);
int cIx=im1[cx];

cIx-= im1[dx];
cIx >>= 1;
int c=Py(j + wj +1), d=Py(j + wj -1);
int cy=imac9(WIDTH,c,px), dy=imac10(WIDTH,d,px);

int cIy =im1[cy];
cIy-= im1[dy];
cIy >>=1;

G[0] = fmac0(cIx, cIx, G[0]);
G[1] = fmac1(cIx, cIy, G[1]);
G[2] = fmac2(cIx, cIy, G[2]);
G[3] = fmac3(cIy, cIy, G[3]);
b_k[0] = fmac4(deltaIk, cIx, b_k[0]);
b_k[1] = fmac5(deltaIk, cIy, b_k[1]);
}

}
get_matrix_inv(G, G_inv);
float fx = 0.0f, fy = 0.0f;
fx = G_inv[0] * b_k[0] + G_inv[1] * b_k[1];
fy = G_inv[2] * b_k[0] + G_inv[3] * b_k[1];

out[2*(j*WIDTH+i)]=fx;
out[2*(j*WIDTH+i)+1]=fy;
}

}

106

A.5 – ldl_top.h

A.5 ldl_top.h

/**
Vendor: Xilinx
Associated Filename: ldl_top.h
Purpose:Vivado HLS Coding Style example
Device: All
Revision History: May 30, 2008 - initial release

#- (c) Copyright 2011-2018 Xilinx, Inc. All rights reserved.
#-
#- This file contains confidential and proprietary

information
#- of Xilinx, Inc. and is protected under U.S. and
#- international copyright and other intellectual property
#- laws.
#-
#- DISCLAIMER
#- This disclaimer is not a license and does not grant any
#- rights to the materials distributed herewith. Except as
#- otherwise provided in a valid license issued to you by
#- Xilinx, and to the maximum extent permitted by applicable
#- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
#- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL

WARRANTIES
#- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
#- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
#- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
#- (2) Xilinx shall not be liable (whether in contract or

tort,
#- including negligence, or under any other theory of
#- liability) for any loss or damage of any kind or nature
#- related to, arising under or in connection with these
#- materials, including for any direct, or any indirect,
#- special, incidental, or consequential loss or damage
#- (including loss of data, profits, goodwill, or any type of

107

A – C++ example codes

#- loss or damage suffered as a result of any action brought
#- by a third party) even if such damage or loss was
#- reasonably foreseeable or Xilinx had been advised of the
#- possibility of the same.
#-
#- CRITICAL APPLICATIONS
#- Xilinx products are not designed or intended to be fail-
#- safe, or for use in any application requiring fail-safe
#- performance, such as life-support or safety devices or
#- systems, Class III medical devices, nuclear facilities,
#- applications related to the deployment of airbags, or any
#- other applications that could lead to death, personal
#- injury, or severe property or environmental damage
#- (individually and collectively, "Critical
#- Applications"). Customer assumes the sole risk and
#- liability of any use of Xilinx products in Critical
#- Applications, subject only to applicable laws and
#- regulations governing limitations on product liability.
#-
#- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
#- PART OF THIS FILE AT ALL TIMES.
#- ***

This file contains confidential and proprietary information
of Xilinx, Inc. and

is protected under U.S. and international copyright and other
intellectual

property laws.

DISCLAIMER
This disclaimer is not a license and does not grant any

rights to the materials
distributed herewith. Except as otherwise provided in a valid

license issued to
you by Xilinx, and to the maximum extent permitted by

applicable law:
(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL

FAULTS, AND XILINX

108

A.5 – ldl_top.h

HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY,

INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR

FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not
be liable (whether

in contract or tort, including negligence, or under any other
theory of

liability) for any loss or damage of any kind or nature
related to, arising under

or in connection with these materials, including for any
direct, or any indirect,

special, incidental, or consequential loss or damage (
including loss of data,

profits, goodwill, or any type of loss or damage suffered as
a result of any

action brought by a third party) even if such damage or loss
was reasonably

foreseeable or Xilinx had been advised of the possibility of
the same.

CRITICAL APPLICATIONS
Xilinx products are not designed or intended to be fail-safe,

or for use in any
application requiring fail-safe performance, such as life-

support or safety
devices or systems, Class III medical devices, nuclear

facilities, applications
related to the deployment of airbags, or any other

applications that could lead
to death, personal injury, or severe property or

environmental damage
(individually and collectively, "Critical Applications").

Customer assumes the
sole risk and liability of any use of Xilinx products in

Critical Applications,
subject only to applicable laws and regulations governing

limitations on product
liability.

109

A – C++ example codes

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART
OF THIS FILE AT

ALL TIMES.

**/
#define N 32

void ldl_top(float V[N], float L[N][N], float D[N], float A[N
][N]);

A.6 ldl_top.cpp

/**
Vendor: Xilinx
Associated Filename: ldl_top.cpp
Purpose:Vivado HLS Coding Style example
Device: All
Revision History: May 30, 2008 - initial release

#- (c) Copyright 2011-2018 Xilinx, Inc. All rights reserved.
#-
#- This file contains confidential and proprietary

information
#- of Xilinx, Inc. and is protected under U.S. and
#- international copyright and other intellectual property
#- laws.
#-
#- DISCLAIMER
#- This disclaimer is not a license and does not grant any
#- rights to the materials distributed herewith. Except as
#- otherwise provided in a valid license issued to you by
#- Xilinx, and to the maximum extent permitted by applicable
#- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
#- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL

WARRANTIES

110

A.6 – ldl_top.cpp

#- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
#- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
#- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
#- (2) Xilinx shall not be liable (whether in contract or

tort,
#- including negligence, or under any other theory of
#- liability) for any loss or damage of any kind or nature
#- related to, arising under or in connection with these
#- materials, including for any direct, or any indirect,
#- special, incidental, or consequential loss or damage
#- (including loss of data, profits, goodwill, or any type of
#- loss or damage suffered as a result of any action brought
#- by a third party) even if such damage or loss was
#- reasonably foreseeable or Xilinx had been advised of the
#- possibility of the same.
#-
#- CRITICAL APPLICATIONS
#- Xilinx products are not designed or intended to be fail-
#- safe, or for use in any application requiring fail-safe
#- performance, such as life-support or safety devices or
#- systems, Class III medical devices, nuclear facilities,
#- applications related to the deployment of airbags, or any
#- other applications that could lead to death, personal
#- injury, or severe property or environmental damage
#- (individually and collectively, "Critical
#- Applications"). Customer assumes the sole risk and
#- liability of any use of Xilinx products in Critical
#- Applications, subject only to applicable laws and
#- regulations governing limitations on product liability.
#-
#- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
#- PART OF THIS FILE AT ALL TIMES.
#- ***

This file contains confidential and proprietary information
of Xilinx, Inc. and

is protected under U.S. and international copyright and other
intellectual

111

A – C++ example codes

property laws.

DISCLAIMER
This disclaimer is not a license and does not grant any

rights to the materials
distributed herewith. Except as otherwise provided in a valid

license issued to
you by Xilinx, and to the maximum extent permitted by

applicable law:
(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL

FAULTS, AND XILINX
HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,

IMPLIED, OR STATUTORY,
INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, OR
FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not

be liable (whether
in contract or tort, including negligence, or under any other

theory of
liability) for any loss or damage of any kind or nature

related to, arising under
or in connection with these materials, including for any

direct, or any indirect,
special, incidental, or consequential loss or damage (

including loss of data,
profits, goodwill, or any type of loss or damage suffered as

a result of any
action brought by a third party) even if such damage or loss

was reasonably
foreseeable or Xilinx had been advised of the possibility of

the same.

CRITICAL APPLICATIONS
Xilinx products are not designed or intended to be fail-safe,

or for use in any
application requiring fail-safe performance, such as life-

support or safety
devices or systems, Class III medical devices, nuclear

facilities, applications

112

A.6 – ldl_top.cpp

related to the deployment of airbags, or any other
applications that could lead

to death, personal injury, or severe property or
environmental damage

(individually and collectively, "Critical Applications").
Customer assumes the

sole risk and liability of any use of Xilinx products in
Critical Applications,

subject only to applicable laws and regulations governing
limitations on product

liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART
OF THIS FILE AT

ALL TIMES.

**/
#include "ldl_top.h"

float multsubnew1 (float t, float a, float b) {
#pragma HLS inline off

return t-a*b;
}
float multsubnew2 (float t, float a, float b) {
#pragma HLS inline off

return t-a*b;
}
float multsubnew3 (float t, float a, float b) {
#pragma HLS inline off

return t-a*b;
}
float multsubnew4 (float t, float a, float b) {
#pragma HLS inline off

return t-a*b;
}

void ldl_top(float V[N],float L[N][N],float D[N],float A[N][N
])

{

113

A – C++ example codes

#pragma HLS allocation instances=multsubnew1 limit=1 function
#pragma HLS allocation instances=multsubnew2 limit=1 function
#pragma HLS allocation instances=multsubnew3 limit=1 function
#pragma HLS allocation instances=multsubnew4 limit=1 function
#pragma HLS allocation instances=multsubnew5 limit=1 function
#pragma HLS allocation instances=multsubnew6 limit=1 function
#pragma HLS allocation instances=multsubnew7 limit=1 function
#pragma HLS allocation instances=multsubnew8 limit=1 function

float t;
#pragma HLS ARRAY_PARTITION variable=L complete dim=0
for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++) {
if(k < j - 1) {

V[k] = L[j][k]*D[k];
}

}
t = A[j][j];
for (int k = 0; k < j - 1; k+=8) {

if(1) {
t = multsub1(t,L[j][k],V[j]);
t = multsub2(t,L[j][k+1],V[j]);
t = multsub3(t,L[j][k+2],V[j]);
t = multsub4(t,L[j][k+3],V[j]);
t = multsub5(t,L[j][k+4],V[j]);
t = multsub6(t,L[j][k+5],V[j]);
t = multsub7(t,L[j][k+6],V[j]);
t = multsub8(t,L[j][k+7],V[j]);

}
}
D[j] = t;
for (int i = j + 1; i < N; i++) {

t = A[i][j];
for (int k = 0; k < N; k++) {

if(k < j - 1) {
t -= L[i][k]*V[k];

}
}

L[i][j]=t/D[j];

114

A.6 – ldl_top.cpp

}
}
}

115

116

Appendix B

Data-processing python
codes

B.1 Finding optimal proximity solution
through clustering - knp_mod 2+2

All packages required are imported.

In [1]: import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import pydotplus
import random

Firstly, the dot file with the Data Flow Graph is read to extract the
coordinates of the MAC nodes. Reading the label it is possible to select the
float MAC instances and the coordinates are saved in vectors xcoord and
ycoord.

In [2]: G = pydotplus.graph_from_dot_file(’knp_o.dot’)

names = []
xcoord = []
ycoord = []
for n in G.get_node_list():

name = n.get_name()
label = n.get_label();

117

B – Data-processing python codes

if name in [’graph’, ’node’]: continue
if not "fmac" in label: continue
x, y = n.get(’pos’).replace(’"’,’’).split(’,’)
x, y = float(x), float(y)
print ("Position:", name, label, "=", x, y)
xcoord.append(x)
ycoord.append(y)

Position: node_369 "<constant:fmac0>\nfmac0" = 6968.0 2278.7
Position: node_414 "<constant:fmac1>\nfmac1" = 5247.0 2278.7
Position: node_457 "<constant:fmac2>\nfmac2" = 6562.0 2278.7
Position: node_500 "<constant:fmac3>\nfmac3" = 1439.0 2278.7
Position: node_545 "<constant:fmac4>\nfmac4" = 6032.0 2278.7
Position: node_588 "<constant:fmac5>\nfmac5" = 2668.0 2278.7

K-means clustering is a library used to generate an arbitrary number of
clusters, selected at this point.

In [3]: df = pd.DataFrame({’x’: xcoord, ’y’: ycoord})
kmeans = KMeans(n_clusters=3)
kmeans.fit(df)
df

Out[3]: x y
0 6968.0 2278.7
1 5247.0 2278.7
2 6562.0 2278.7
3 1439.0 2278.7
4 6032.0 2278.7
5 2668.0 2278.7

Kmeans generated the clusters indicating each element as a number form
0 to number_clusters -1, this number is then associated to the instance at
the corresponding position. The points and centroids of different clusters are
indicated by different colours.

In [4]: labels = kmeans.predict(df)
centroids = kmeans.cluster_centers_
colmap = {0: ’r’, 1: ’b’, 2: ’g’, 3: ’k’, 4:’y’, 5:’m’}
colors = list(map(lambda x: colmap[x], labels))
labels

118

B.1 – Finding optimal proximity solution through clustering - knp_mod 2+2

Out[4]: array([2, 0, 2, 1, 0, 1])

The points representing the instances of MACs are plotted, the centroids
are highlighted.

In [5]: fig = plt.figure(figsize=(10, 5))
plt.scatter(df[’x’], df[’y’], color=colors, alpha=0.25, edgecolor=’k’)
na=["0", "1", "2","3","4","5"]
for i, txt in enumerate(na):

plt.annotate(txt, (df[’x’][i], df[’y’][i]))
for idx, centroid in enumerate(centroids):

plt.scatter(*centroid, color=colmap[idx])
plt.show()

Afterwards, the same process is repeated for the integer MACs: The co-
ordinates of the MAC nodes are extracted from the Data Flow Graph, then
K-means generates the chosen number of clusters. Finally, the points and
centroids are plotted.

In [6]: names2 = []
xcoord2 = []
ycoord2 = []
for n in G.get_node_list():

name = n.get_name()
label = n.get_label();

119

B – Data-processing python codes

if name in [’graph’, ’node’]: continue
if not "imac" in label: continue
x, y = n.get(’pos’).replace(’"’,’’).split(’,’)
x, y = float(x), float(y)
print ("Position:", name, label, "=", x, y)
xcoord2.append(x)
ycoord2.append(y)

df = pd.DataFrame({’x’: xcoord2, ’y’: ycoord2})
kmeans = KMeans(n_clusters=2)
kmeans.fit(df)

labels2 = kmeans.predict(df)
centroids = kmeans.cluster_centers_
colmap = {0: ’r’, 1: ’b’, 2: ’g’, 3: ’k’, 4:’y’, 5:’m’}
colors = list(map(lambda x: colmap[x], labels2))
labels2

fig = plt.figure(figsize=(10, 5))
plt.scatter(df[’x’], df[’y’], color=colors, alpha=0.25, edgecolor=’k’)
na=["0", "1", "2","3","4"]
for i, txt in enumerate(na):

plt.annotate(txt, (df[’x’][i], df[’y’][i]))
for idx, centroid in enumerate(centroids):

plt.scatter(*centroid, color=colmap[idx])
plt.show()

120

B.1 – Finding optimal proximity solution through clustering - knp_mod 2+2

Position: node_256 "<constant:imac6>\nimac6" = 6941.0 3870.4
Position: node_308 "<constant:imac7>\nimac7" = 6531.0 3870.4
Position: node_310 "<constant:imac8>\nimac8" = 5758.0 3758.4
Position: node_337 "<constant:imac9>\nimac9" = 4959.0 3534.4
Position: node_339 "<constant:imac10>\nimac10" = 3454.0 3870.4

Lastly, a new .cpp with the optimum locality solution is generated modify-
ing the original .cpp file. The name of the MACs instances are replaced with
a new name representing the cluster they have been mapped in. Then that
MAC function is going to be limited to 1 instance only so that the resource
is going to be shared.

In [7]: with open(’knp_mod.cpp’, ’r’) as file:
p = file.readlines()

keyword = "fmac"
for i in range(len(labels)):

original_name=keyword+str(i)
new_name=keyword+"_new"+str(labels[i])
for x in range(0, len(p)):

if "#pragma" in p[x] or "float" in p[x]\
or "int" in p[x]: continue
p[x] = p[x].replace(original_name, new_name)

keyword2 = "imac"
for i in range(len(labels2)):

original_name2=keyword2+ str(i+6)
new_name2=keyword2+"_new"+ str(labels2[i]+6)
for x in range(0, len(p)):

if "#pragma" in p[x] or "float" in p[x] \
or "int imac_new" in p[x]: continue
p[x] = p[x].replace(original_name2, new_name2)

s = open("1+3circo.cpp", ’w’)
for item in p:

s.write("%s" % item)
s.close()

Once the optimum solution according to the locality method has been
generated, it is useful to generate some random cluster solutions in order
to evaluate the goodness of the solution found. To do so, it is necessary

121

B – Data-processing python codes

to shuffle the vector in which the clusters are indicated as a number form
0 to #clusters-1. This number is then associated to the instance at the
corresponding position.

In [8]: for y in range(0, 20):
random.shuffle(labels)
random.shuffle(labels2)
with open(’knp_mod.cpp’, ’r’) as file:

p = file.readlines()

keyword = "fmac"
for i in range(len(labels)):

original_name=keyword+str(i)
new_name=keyword+"_new"+str(labels[i])
for x in range(0, len(p)):

if "#pragma" in p[x] or "float" in p[x] \
or "int" in p[x]: continue
p[x] = p[x].replace(original_name, new_name)

keyword2 = "imac"
for i in range(len(labels2)):

original_name2=keyword2+ str(i+6)
new_name2=keyword2+"_new"+ str(labels2[i]+6)
for x in range(0, len(p)):

if "#pragma" in p[x] or "float" in p[x] or \
"int imac_new" in p[x]: continue
p[x] = p[x].replace(original_name2, new_name2)

s = open("2+2random" +str(y)+".cpp", ’w’)
for item in p:

s.write("%s" % item)
s.write("\n //"+ str(labels)+"\n //"+ str(labels2))
s.close()

B.2 Comparison of post implementation tim-
ing and resource usage - FIR filter

Importing all the required packages

In [1]: import pandas as pd
import numpy as np

122

B.2 – Comparison of post implementation timing and resource usage - FIR filter

import os
import math
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import pydotplus
from sklearn.linear_model import LinearRegression
from c.clustering.equal_groups import EqualGroupsKMeans

First of all, the post routing timing report are analyzed from the
cpp_fir_timing_paths_routed.rpt files. All the report files, from different
solutions are read and the path timings are extracted. They include 10 paths
each, for every solution the maximum delay is computed.

Afterwards, the post implementation resource usage is evaluated: all the
report files from different solutions are read to extract information about
the percentage of FPGA resources employed. The maximum percentage is
computed.

In [2]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\fircirco\
\report\cpp_FIR_timing_paths_routed.rpt")

p = pari.readlines()
max_delay=0
array_delay=[]
latencymin=[]
latencymax=[]
array_area=[]

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\
.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\fircirco\
\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6].split("|")[1]\

.strip(" ")))
latencymax=np.append(latencymax,\

123

B – Data-processing python codes

int(p[i+6].split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\fircirco\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5]\

.strip(" "))
if "| Slice Registers" in p[i]:

FF = (p[i].split("|")[5]\
.strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

In [3]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firdot\
\report\cpp_FIR_timing_paths_routed.rpt")
p = pari.readlines()
max_delay=0

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])
print(max_delay)

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firdot\
\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6]\

124

B.2 – Comparison of post implementation timing and resource usage - FIR filter

.split("|")[1].strip(" ")))
latencymax=np.append(latencymax, int(p[i+6]\

.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firdot\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

3.595

In [4]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firdotbal\\
report\cpp_FIR_timing_paths_routed.rpt")
p = pari.readlines()
max_delay=0

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])
print(max_delay)

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firdotbal\
\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()

125

B – Data-processing python codes

for i in range(0, len(p)):
if "+ Latency (clock cycles):" in p[i]:

latencymin=np.append(latencymin, int(p[i+6]\
.split("|")[1].strip(" ")))

latencymax=np.append(latencymax, int(p[i+6]\
.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firdotbal\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

3.314

In [5]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firpatch\
\report\cpp_FIR_timing_paths_routed.rpt")
p = pari.readlines()

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])
print(max_delay)

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firpatch\

126

B.2 – Comparison of post implementation timing and resource usage - FIR filter

\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6]\

.split("|")[1].strip(" ")))
latencymax=np.append(latencymax, int(p[i+6]\

.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firpatch\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

3.724

In [6]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firpatchbal\
\report\cpp_FIR_timing_paths_routed.rpt")
p = pari.readlines()
max_delay=0

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])

127

B – Data-processing python codes

print(max_delay)

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firpatchbal\
\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6]\

.split("|")[1].strip(" ")))
latencymax=np.append(latencymax, int(p[i+6]\

.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firpatchbal\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])
print(array_delay)
print(array_area)

3.306
[3.592 3.595 3.314 3.724 3.306]
[1. 1.02 1.08 1.05 1.09]

In [7]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firsfdp\
\report\cpp_FIR_timing_paths_routed.rpt")
p = pari.readlines()
max_delay=0

128

B.2 – Comparison of post implementation timing and resource usage - FIR filter

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])
print(max_delay)

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firsfdp\
\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6]\

.split("|")[1].strip(" ")))
latencymax=np.append(latencymax, int(p[i+6]\

.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firsfdp\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i]\

.split("|")[5].strip(" "))
area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

3.176

In [8]: pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firsfdpbal\
\report\cpp_FIR_timing_paths_routed.rpt")

129

B – Data-processing python codes

p = pari.readlines()

for i in range(0, len(p)):
if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])
print(max_delay)

pa = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firsfdpbal\
\syn\report\cpp_FIR_csynth.rpt")
p = pa.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6]\

.split("|")[1].strip(" ")))
latencymax=np.append(latencymax, int(p[i+6]\

.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\firsfdpbal\
\report\cpp_FIR_utilization_routed.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

3.617

130

B.2 – Comparison of post implementation timing and resource usage - FIR filter

The other 10 random examples are analized through a for loop.

In [9]: for x in range(0, 10):
pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\

\FIRrandom"+ str(x)+"\\report\cpp_FIR_timing_paths_routed.rpt")
p = pari.readlines()
max_delay=0
for i in range(0, len(p)):

if not "Data Path Delay:" in p[i]: continue
delay = float(p[i].strip(" Data Path Delay: ")\

.split(" ")[0].strip("ns"))
if delay> max_delay:

max_delay=delay
array_delay = np.append (array_delay, [max_delay])
pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\

\FIRrandom"+str(x)+"\\syn\\report\cpp_FIR_csynth.rpt")
p = pari.readlines()
for i in range(0, len(p)):

if "+ Latency (clock cycles):" in p[i]:
latencymin=np.append(latencymin, int(p[i+6]\
.split("|")[1].strip(" ")))
latencymax=np.append(latencymax, int(p[i+6]\
.split("|")[2].strip(" ")))

pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\3mac\
\FIRrandom"+str(x)+"\\report\cpp_FIR_utilization_routed.rpt")

p = pari.readlines()
for i in range(0, len(p)):

if "| Slice LUTs" in p[i]:
LUT = (p[i].split("|")[5].strip(" "))

if "| Slice Registers" in p[i]:
FF = (p[i].split("|")[5].strip(" "))

if "| Slice |" in p[i]:
SLICE = (p[i].split("|")[5].strip(" "))

if "| DSPs" in p[i]:
DSP = (p[i].split("|")[5].strip(" "))

if "| Block RAM Tile" in p[i]:
BRAM = (p[i].split("|")[5].strip(" "))

if "| LUT as Memory" in p[i]:
SRL = (p[i].split("|")[5].strip(" "))

area= max(float(SLICE), float(LUT), float(FF), float(DSP) ,float(BRAM))
array_area = np.append (array_area, [area])

131

B – Data-processing python codes

Lastly, The results in terms of total area usage and maximum delay are
plotted in a Area-Delay diagram. One diagram is relative to the minimum
latency. the other to the maximum one.

In [10]: h= array_delay * latencymax
print(h)
plt.plot(array_area ,h, ’bo’)
plt.ylabel(’Latency * max path delay [ns]’)
plt.xlabel(’Resources usage [max %]’)
n=["Circo","Dot", "DotBal"," Patch"," PaBal"," Sfdp",\
" SfdpBal","0", "1", "2","3","4"," 5","","7",""," 9"]
for i, txt in enumerate(n):

plt.annotate(txt, (array_area[i], h[i]))
plt.show()

[2701.184 2703.44 2492.128 2800.448 2486.112 2388.352 2719.984 2679.376
2619.216 2521.456 2688.4 2397.376 2674.864 2739.536 2741.792 2688.4
2739.536]

In [11]: l=array_delay * latencymin
print(l)

132

B.2 – Comparison of post implementation timing and resource usage - FIR filter

plt.plot(array_area ,l, ’bo’)
plt.ylabel(’Latency * max path delay [ns]’)
plt.xlabel(’Resources usage [max %]’)
n=["Circo","Dot", "DotBal"," Patch"," PaBal"," Sfdp\
"," SfdpBal","0", "1", "2","3"," 4"," 5","","7",""," 9"]
for i, txt in enumerate(n):

plt.annotate(txt, (array_area[i], l[i]))
plt.show()

[2431.784 2433.815 2243.578 2521.148 2238.162 2150.152 2448.709 2412.151
2357.991 2269.981 2420.275 2158.276 2408.089 2466.311 2468.342 2420.275
2466.311]

In order to carry out the Clustering Cost comparision on the dot DFG,
the balanced dot solution and the previously generated 10 random solutions
are used to compute the clustering costs and plot them with the delay and
the area.

In [12]: G = pydotplus.graph_from_dot_file(’opdot.dot’)
xcoord = []
ycoord = []

133

B – Data-processing python codes

cost_array=[]
for n in G.get_node_list():

name = n.get_name()
label = n.get_label();
if name in [’graph’, ’node’]: continue
if not "mac" in label: continue
x, y = n.get(’pos’).replace(’"’,’’).split(’,’)
x, y = float(x), float(y)
xcoord.append(x)
ycoord.append(y)

df = pd.DataFrame({’x’: xcoord, ’y’: ycoord})
kmeans = EqualGroupsKMeans(n_clusters=3)
kmeans.fit(df)

labels = kmeans.predict(df)
centroids = kmeans.cluster_centers_
colmap = {0: ’r’, 1: ’b’, 2: ’g’, 3: ’y’, 4:’k’, 5:’m’}
colors = list(map(lambda x: colmap[x], labels))
labels

fig = plt.figure(figsize=(10, 5))
plt.scatter(df[’x’], df[’y’], color=colors, alpha=0.25, edgecolor=’k’)
na=["0", "1", "2","3", "4", "5"]
for i, txt in enumerate(na):

plt.annotate(txt, (df[’x’][i], df[’y’][i]))
for idx, centroid in enumerate(centroids):

plt.scatter(*centroid, color=colmap[idx])
plt.show()
cost=0
for a in range(0,len(labels)):

for b in range(0,len(labels)):
if labels[a]==labels[b] and (a != b):

distance = np.sqrt((df.iat[b,0]-df.iat[a,0])**2\
+(df.iat[b,1]-df.iat[a,1])**2)/2
cost+=distance

cost_array = np.append (cost_array, [cost])

134

B.2 – Comparison of post implementation timing and resource usage - FIR filter

In [13]: for x in range(0, 10):
pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\codes\
\codici\scarica\FIRrandom"+ str(x)+".h")
p = pari.readlines()
for i in range(0, len(p)):

if not "//[" in p[i]: continue
labell= p[i].split("[")[1].strip("]")
labels=labell.split(’ ’)
cost=0
for a in range(0,len(labels)):

for b in range(0,len(labels)):
if labels[a]==labels[b] and (a != b):

distance = np.sqrt((df.iat[b,0]-df.iat[a,0])**2\
+(df.iat[b,1]-df.iat[a,1])**2)/2

cost+=distance
cost_array = np.append (cost_array, [cost])

Appending the Dot Balanced solution to the “timing” vector

In [14]: timing = np.append (h[3], [h[7:18]])

Plotting of the maximum execution time vs Clustering cost obtained open-
ing the DFGs through “dot”. Afterwards, the linear regression is computed

In [15]: plt.plot(cost_array, timing, ’ro’)
plt.ylabel(’Latency * max path delay [ns]’)

135

B – Data-processing python codes

plt.xlabel(’Clustering Cost’)
n=["DotB", "0", "1", "2","3","4"," 5","6","7","8","9"]
for i, txt in enumerate(n):

plt.annotate(txt, (cost_array[i], timing[i]))
x = cost_array.reshape((-1, 1))
y = LinearRegression().fit(x, timing).predict(x)
plt.plot(x, y, color=’green’)
plt.show()

Computation of the Coefficient of determination Rˆ2

In [16]: LinearRegression().fit(x, timing).score(x, timing)

Out[16]: 0.33931090957003107

Plotting of the maximum resource usage vs Clustering cost obtained open-
ing the DFGs through “dot”. Afterwards, the linear regression is computed

In [17]: areas = np.append (array_area[3], [array_area[7:18]])
plt.plot(cost_array, areas, ’ro’)
plt.ylabel(’Resources usage [max %]’)
plt.xlabel(’Clustering Cost’)

136

B.2 – Comparison of post implementation timing and resource usage - FIR filter

n=["DotB", "0", "1", "2","3","4"," 5","6","7","8","9"]
for i, txt in enumerate(n):

plt.annotate(txt, (cost_array[i], areas[i]))
x = cost_array.reshape((-1, 1))
y = LinearRegression().fit(x, areas).predict(x)
plt.plot(x, y, color=’green’)
plt.show()

Computation of the Coefficient of determination Rˆ2

In [18]: LinearRegression().fit(x, areas).score(x, areas)

Out[18]: 0.016649140067634516

The same procedure has been repeated for the DFGs opened using SFDP
Graaphviz tool

In [19]: cost_array_sfdp=[]
G = pydotplus.graph_from_dot_file(’opsfdp.dot’)
xcoord = []
ycoord = []
for n in G.get_node_list():

137

B – Data-processing python codes

name = n.get_name()
label = n.get_label();
if name in [’graph’, ’node’]: continue
if not "mac" in label: continue
x, y = n.get(’pos’).replace(’"’,’’).split(’,’)
x, y = float(x), float(y)
xcoord.append(x)
ycoord.append(y)

df = pd.DataFrame({’x’: xcoord, ’y’: ycoord})

kmeans = EqualGroupsKMeans(n_clusters=3)
kmeans.fit(df)
labels = kmeans.predict(df)
centroids = kmeans.cluster_centers_
colmap = {0: ’r’, 1: ’b’, 2: ’g’, 3: ’k’, 4:’y’, 5:’m’}
colors = list(map(lambda x: colmap[x], labels))
labels

fig = plt.figure(figsize=(10, 5))
plt.scatter(df[’x’], df[’y’], color=colors, alpha=0.25, edgecolor=’k’)
na=["0", "1", "2","3", "4", "5"]
for i, txt in enumerate(na):

plt.annotate(txt, (df[’x’][i], df[’y’][i]))
for idx, centroid in enumerate(centroids):

plt.scatter(*centroid, color=colmap[idx])
plt.show()

cost=0
for a in range(0,len(labels)):

for b in range(0,len(labels)):
if labels[a]==labels[b] and (a != b):

distance = np.sqrt((df.iat[b,0]-df.iat[a,0] \
)**2+(df.iat[b,1]-df.iat[a,1])**2)/2
cost+=distance

cost_array_sfdp = np.append (cost_array_sfdp, [cost])

138

B.2 – Comparison of post implementation timing and resource usage - FIR filter

In [20]: for x in range(0, 10):
pari = open(r"C:\Users\robyp\Google Drive\Tesi\FIR\\
codes\codici\scarica\FIRrandom"+ str(x)+".h")
p = pari.readlines()
for i in range(0, len(p)):

if not "//[" in p[i]: continue
labell= p[i].split("[")[1].strip("]")
labels=labell.split(’ ’)
cost=0
for a in range(0,len(labels)):

for b in range(0,len(labels)):
if labels[a]==labels[b] and (a != b):

distance = np.sqrt((df.iat[b,0]-df.iat[\
PYna,0])**2+(df.iat[b,1]-df.iat[a,1])**2)/2

cost+=distance
cost_array_sfdp = np.append (cost_array_sfdp, [cost])

Plotting of the maximum execution time vs Clustering cost obtained open-
ing the DFGs through “sfdp”. Afterwards, the linear regression is computed

In [21]: timing = h[6:18]
plt.plot(cost_array_sfdp, timing, ’mo’)
plt.ylabel(’Latency * max path delay [ns]’)
plt.xlabel(’Clustering Cost’)
n=["SfdpBal","0", "1", "2","3","4"," 5","6","7","8","9"]

139

B – Data-processing python codes

for i, txt in enumerate(n):
plt.annotate(txt, (cost_array_sfdp[i], timing[i]))

x = cost_array_sfdp.reshape((-1, 1))
y = LinearRegression().fit(x, timing).predict(x)
plt.plot(x, y, color=’green’)
plt.show()
LinearRegression().fit(x, timing).score(x, timing)

Out[21]: 0.30669511679283074

Plotting of the maximum resource usage vs Clustering cost obtained open-
ing the DFGs through “sfdp”. Afterwards, the linear regression is computed

In [22]: areas=array_area[6:18]
plt.plot(cost_array_sfdp, areas, ’mo’)
plt.ylabel(’Resources usage [max %]’)
plt.xlabel(’Clustering Cost’)
n=["SfdpBal","0", "1", "2","3","4"," 5","6","7","8","9"]
for i, txt in enumerate(n):

plt.annotate(txt, (cost_array_sfdp[i], areas[i]))
x = cost_array_sfdp.reshape((-1, 1))

140

B.2 – Comparison of post implementation timing and resource usage - FIR filter

y = LinearRegression().fit(x, areas).predict(x)
plt.plot(x, y, color=’green’)
plt.show()
LinearRegression().fit(x, areas).score(x, areas)

Out[22]: 0.02447402729604997

141

	List of Tables
	List of Figures
	Introduction
	High Level Synthesis Design
	High Level Synthesis (HLS)
	Vivado HLS
	Inputs for the synthesis
	Vivado HLS limits
	Vivado HLS outputs

	FPGA

	Smart Resource Sharing
	Advantages of Resource Sharing
	Proximity-based Resource Sharing
	Definition of proximity and expected advantages
	Smart sharing effectiveness validation process

	Simulations and results
	FIR filter
	FIR filter cpp code
	Synthesis without resource sharing
	Rendering of the DFG and K-Means Clustering
	Generation of new code files
	Synthesis and Place & Route
	Results comparison and behaviour analysis
	Clustering Cost Diagrams

	KNP_MOD
	Detecting and isolating units to be shared
	Synthesis without sharing
	Comparison of different sharing arrangements of int and float MACs
	Smart Sharing through K-Means Clustering
	Generation of new code files
	Synthesis and Place & Route
	Results comparison and behaviour analysis

	LDL
	Units isolation and loop unrolling
	Synthesis without sharing and DFG analysis
	Generation of new code files, Synthesis and Place & Route
	Results comparison and behaviour analysis
	Conclusions on LDL analysis

	Conclusions
	Bibliography
	Appendices
	C++ example codes
	cpp_fir.h
	cpp_fir.cpp
	knp.h
	knp_mod.cpp
	ldl_top.h
	ldl_top.cpp

	Data-processing python codes
	Finding optimal proximity solution through clustering - knp_mod 2+2
	Comparison of post implementation timing and resource usage - FIR filter

