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Abstract

The present work discusses different approaches for implementing software-based
redundancy schemes using the FlexGrip open-source GPGPU model to improve
GPGPU reliability.

Most GPGPUs do not feature hardware support for error detection, and in a
device such as a GPGPU a corrupted result could be unacceptable, as applications
such as machine vision rely on the correctness of the processed image. A fault could
occur at any time during the operation of the device, and it is critical that it is
either masked or detected. Therefore, improving the reliability of GPGPUs using
software redundancy seems to be the only way to avoid errors.

In this thesis work several approaches for matrix multiplication were produced,
recording and analysis the performance of each. The three approaches differ in the
method by which they guarantee the correct result: The first case is Duplication
With Comparison (DWC) which implies repeatedly performing operations and com-
paring the results, storing the result in memory only if the two match. The second
method is Triple Modular Redundancy (TMR). It is based on the triplication of
resources and a voter who establishes by a majority which element is the correct
one. The last method studied is Algorithm Based Fault Tolerance (ABFT) which
through comparisons identifies in which cell the error occurred and corrects it.

Each code was tested on the FlexGrip model after the injection of static faults
inside the register file of each streaming multiprocessor. The expected result of each
program obtained in simulation - the ”golden output” - was compared to the same
result in presence of injected static faults.

Results were finally collected and the fault coverage analysed, along with the
time required and memory space. Future tests may be performed with different
fault models, such as transient or delay faults, since the behaviour of the circuit
would vary unpredictably.[4] [8]
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Chapter 1

Introduction

The present introduction will provide the reader with a summary of the contents
of this work of thesis.

Summary
Nowadays, GPUs have a great impact on our life, from the most trivial areas,

such as video games, to the most critical such as aeronautics or medicine. Generally,
GPU usage is desirable in all fields that require processing very large amounts of
pictures or graphical data per second. Libraries such as CUDA expose GPU features
to programmers, which can exploit them to accelerate conventional computing; this
approach is defined as General Purpose GPU (GPGPU) programming.

In video games the correctness of the image is not so fundamental, as some wrong
pixel can not create great problems. Instead in the last two examples the accuracy
of the image is fundamental. Every pixel must reflect reality and must be free of
errors. Reliability becomes the main point, therefore it is mandatory to guarantee
the proper operation of the GPGPUs in a defined period of time.

Background
Working with GPGPUs is not simple, as they present multiple streaming multi-

processors and work with parallelized threads. Therefore try to identify and correct
an error could be an hard job.

One of the most used technique employed to improve reliability is the software
redundancy. Software redundancy are the simplest techniques. The main idea is
to replicate the code, in this way it is valid suppose that the replicated units are
independent each others. Therefore if a fault occurs in a unit, the others are faults
free, and so a valid result is always present. In case of more than two units a voter
can be used. The voter selects the result produced by more units. Thinking that
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Introduction

just one of the unit produces a corrupted output and so a different result, the
output will be the correct result. This technique is easiest, as all the codes can be
used without any adapting. A complete different approach is Algorithm based fault
tolerance - ABFT. This technique is based on the input encoding. The coding is
used to check the result. The corrupted output is identified and corrected. ABFT
is commonly used as error’s detection in CPUs, but it is innovative in GPGPUs’
environments.

Goal of thesis
Increase the reliability is a delicate job, as in most of the cases it implies a wors-

ening in the execution time and/or in the occupied memory space. The presented
work of thesis analyses the evolution of time and memory parameters respect to
the improvement of the fault coverage.

Three different approaches to improve reliability were chosen and applied to
matrix multiplication. The three techniques implemented are : Duplication with
comparison - DWC, Triple modular redundancy - TMR (used to test redundancy’s
skills) and a modified version of the ABFT.

Due to some issues, codes were not tested on a real GPGPU but on FlexGrip,
a soft GPGPU architecture which has been optimized for FPGA implementation.
FlexGrip is based on the NVIDIA G80 architecture and it is implemented in VHDL.
The advantage of using this FPGA-based is the possibility to customize at multiple
level the hardware.

Case of study
Codes were written in CUDA - Compute Unified Device Architecture - an

high level language able to manage the execution of multiple threads at the same
time. CUDA uses particular functions called, Kernel-call, which pass the execution
control to the GPGPU. Some test were performed on VisualStudio-2015 to check
the correct behaviour of the code without any faults in a real GPGPUs.

In a real GPGPU the high-level code is transformed in an intermediate pseudo-
assembly language, the Parallel Thread Execution - PTX. Virtual registers and
pseudo-instructions mapped by PTX are transformed by binary language. The
virtualization of register could create some issues depending on the system used
to compile the code. Each codes were compiled in Linux-system and adapted for
Windows-system. The binary languages obtained during the compilation are used
as instructions to feed the FlexGrip. Through Modelsim, a VHDL-simulator, the
three implementations are tested at low-level. At each simulation a Golden Mem-
ory is obtained, that is the ideal output without any errors.

In order to check the behaviour of the techniques an injection faults is required,
which simulate the codes in presence of a fault. For each code was collected each
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bit in which a stuck-at can occur. Therefore a simulation was performed for each
position taken into account. At the end of the injection fault simulation a Cor-
rupted Memory is obtained, which is a result with errors caused by the fault. To
check how much the Corrupted is different from the Golden memory, a comparison
is performed. Faults can cause three kind of errors, the thesis is focused on SDC
- Silent Data Corruption. The presence of an SDC means that the simulation
reaches the end but with a mismatch in the comparison.

The ABFT implementation is different from the others as it requires a triple
kernel calls. Due to this difference simulation and also the fault injection needs
some variations in the procedure.

Conclusion
Results demonstrates that the ABFT is not the best implementation, moreover

it requires more time and space than the others. Taking care that three kernels
are involved in the injection and therefore the starting matrices can be faulted and
therefore the result, the partial fault coverage is not the worst. The goodness of
this technique is due to the fact that the error can be detected and localized, so
corrected. It is reasonable thinking that with some adjustment in the PTX-code,
and so protecting the some registers, it could be improved. As expected, considering
software redundancy technique, TMR is better than DWC, and also better that
ABFT. Obviously TMR needs three times the parameters required by the DWC.
To be faster, the DWC was modified, unfortunately the Nvidia compiler try to
optimize the binary code. The optimization eliminates the voter presented in the
code, making the code worse of the matrix multiplication without any improving
technique. Some future improvements could be done. As example rewriting the code
in ”PTX-language” avoiding the elimination of the voter is one solution, or trying
as for the ABFT to protect delicate registers, maybe using more of them avoiding
to employ the same register for different purpose.

Chapter 2 overviews the internal structure of a Graphics Processing Unit, high-
lighting the difference with respect to CPUs and CUDA, the programming language
that exposes the features to the programmer. Moreover, Chapter 2 introduces Flex-
Grip, the open-source model onto used for the present research.
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Chapter 2

Graphics Processing Units

The present chapter is intended as a brief introduction to the architecture and
operation of a Graphics Processing Unit (GPU).

A general-purpose GPU (GPGPU) is a graphics processing unit (GPU) perform-
ing non-specialized calculations, whereas such kind of device would be traditionally
employed to perform image processing. The peculiarity of these devices is the abil-
ity to efficiently scale highly parallel workloads, which makes them preferable to
CPUs for such tasks.

2.1 CPU vs GPU
In order to have a better comprehension of the future paragraphs, this section

will outline the differences between a Central Processing Unit (CPU) and a Graphics
Processing Unit (GPU).

GPUs and CPUs are devices with very different architectures, the former is de-
signed for running a large number of same operation, whereas the latter is designed
to simultaneously execute at most a handful of potentially complex tasks.

CPUs traditionally have a single core, with modern devices featuring two or
four cores typically. On the other hand, the FlexGrip Fermi architecture features
16 Streaming Multiprocessors (SMs) executing code in parallel, and therefore pro-
ducing 32 pieces of data per SM.

Furthermore, the number of registers in a CPU to be used during the execution
of a given task is relatively small, requiring the CPU to perform what’s known as
a context switch. When a subroutine is called, the entire set of registers must be
saved and later restored. When tasked with several simple operations, CPUs switch
between them, spending most of the time performing the context switches than
actually performing the execution. GPUs instead have multiple banks of registers,
and that coupled with increased number of ”cores” removes the context switch
overhead.
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2.2 GPU architecture
The follow section is meant to detail a GPGPU as generally as possible, taking

as reference the NVIDIA Tesla microarchitecture. Programmable using CUDA or
OpenCL APIs, this architecture unifies both vertex and pixel processors, both of
which will be covered in the present section, in the graphics pipeline.

2.2.1 Graphics Pipeline
A graphics pipeline is a sequence of steps performed to map a perspective of

a 3D environment onto a 2D screen. The main steps are two, represented in the
image below.

Geometry

Geometry is defined as what is meant to be displayed on the screen. Points
and shapes can be used for this purpose and they are called geometric primitives.
Such objects are then converted into points or vertices and the result is stored in
memory. One should note that vertices carry colour information, along with spatial
references.

Figure 2.1: Information of a vertex in a 2D space.

Vertex shaders process the geometry further, mapping the position of each ver-
tex in the 3D virtual space to the 2D coordinate at which it appears on the screen
as well as the illumination of that point. The output of such program is fed to the
rasterizer.[1]
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Rasterisation

The final step preceding the pixel pipeline, a rasterizer maps the infinitely precise
vectorial 2D representation to a finite amount of pixels. As can be seen in Figure
2.2, a triangular shape is broken down into the fragments composing it, coloured
in grey.

Figure 2.2: The rasterization process

An overview of the pipeline can be seen in figure 2.3. [2]

Figure 2.3: The graphics pipeline
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2.2.2 Tesla microarchitecture

Figure 2.4: TPC block diagram

The present microarchitecture was employed
in NVIDIA’s GeForce 8800 Series, specifically
in the 8800 GTX graphics card, which will be
taken as reference in the following analysis. This
device features eight independent units named
Texture Processing Cluster (TPCs), each com-
posed by 16 streaming multiprocessors (SMs)
for a total of 128 SMs. [12]

Moreover, a geometry controller, an SM con-
troller (SMC), two streaming multiprocessors
(SMs), a texture unit and two blocks of cache
memory are built into each TPC.

Streaming Multiprocessors are the units
executing vertex, geometry, and pixel-fragment
shader programs and parallel computing al-
gorithms. As Figure 2.4 shows, each SM in-
side a TPC includes two Special-Function Units
(SFUs), containing floating-point multipliers.

An SM concurrently executes different
threads, each having their own thread execution state, enabling for multithreading.

Stream Processors (SP) are the primary thread processors, performing all basic
operations, such as addition, multiplication and multiply-and-accumulate, both in
integer and floating point formats.

Single-Instruction Multiple-Thread (SIMT) is a processor architecture in-
troduced by NVIDIA in the Tesla architecture. This unit is used to manage and
execute all the threads. The threads are divided in groups of 32 elements, called
warps. Each element inside of the same warp is scheduled to be executed in parallel.

Threads belonging to the same warp are started together but are free to branch
and execute independently. The SIMT selects a warp to execute an instruction and
issues the next one to another warp. SPs are mapped by the SM to manage a warp.

Memory

A Streaming Multiprocessor implements memory load/store instructions to sup-
port C/C++-like languages. For this reason to compute load/store instructions,
the access to three different memory is allowed. In the following they are presented:

10



Graphics Processing Units

Figure 2.5: WARP execution diagram

Figure 2.6: GPGPU high level schematic

• Local memory is owned by each thread, and it’s a private space, where the
others threads can’t access. This particular memory is implemented in external
DRAM.

• Shared memory is the second type of memory. This is a space where each
thread of the same SM can make the access. Shared is useful to share data
and create cooperation.

• Global memory can be accessed by all the threads, even if they are not in
the same block.

In order to use Global and Shared memory some synchronization instructions
are used to avoid issues.

2.3 CUDA
Compute Unified Device Architecture(CUDA) is an API designed by NVIDIA to

augment C and C++ languages, by means of CUDA-accelerated libraries or com-
piler directives. CUDA allows for direct access to the GPU’s parallel computational
elements. Therefore, a programmer can write a single instance of a CUDA program
and scale it to multiple threads simultaneously.[16],[7].
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A CUDA program may be split in two sections, one executed by the CPU in
the system memory (the Host) and the other by the GPU (the Device). The main
steps executed in a CUDA code can be summarized as:

1. Declare and allocate host and device memory.

2. Initialize host data.

3. Transfer data from the host to the device.

4. Execute one or more compute kernels.

5. Transfer results from the device to the host.

A kernel is a particular function that when called are executed several times
in parallel by threads on the device. A kernel function is formally defined by
“”__global__”” and describes the operations to perform. Such function is called
by <<<.....>>>.

Figure 2.7: Example of a kernel-function

2.3.1 Threads, Blocks and Grid
This section will discuss and define the concept of thread. A thread is the fun-

damental building block of parallel programming, meaning that multiple instances
of one may be executed simultaneously, each with their own index. Threads exist
in all the three dimensions, therefore have an index per each dimension.

• ThreadIdx.x

• ThreadIdx.y

• ThreadIdx.z

Threads are grouped in blocks, also existing in the three dimensions, in turn are
indexed in the three coordinates.

12
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• BlockIdx.x

• BlockIdx.y

• BlockIdx.z

When a kernel is called, CUDA allows to decide how many blocks instantiate
and how many threads per block.

<<<N_blocks,N_thread_x_block>>>

The number of threads per block is defined by “blockDim.x/y/z”, feeding the
three dimensions with the elements. A block cannot contain more than 1024 threads.
Multiple blocks may be instantiated, determining their position along each axis with
”GridDim.x/y/z”. Different blocks in the same grid can not communicate with each
other.[altro2]

Figure 2.8: Block structure
Figure 2.9: Grid organization

Each kernel has its own grid with its own specifications, meaning that kernels
can not be executed concurrently, but only one at a time.

A set of blocks is assigned to a SM and each block is split in warps, therefore
the number of threads in each block must be a multiple of 32. Each SM executes a
pool of warps, with a separate instruction pointer for each warp.

Figure 2.10: Blocks’ organization
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During the years different versions of CUDA have been realized and updated.
As you will see in the next section, the thesis work was done not on a real GPGPU,
but on FlexGrip.

This ”device” simulates the behaviour of a real GPGPU, Nvidia G80. The version
of CUDA that works on the architecture of the G80 is version 1.0.

In this first generation CUDA compute capability 1.x (sm_1.0) device, some
instructions and operations are not supported. For example, donormal numbers are
unsupported, the precisions of the division and square root operations are scarce.
Moreover this kind of architecture - FERMI -, does not support atomic operations
in any of the three memory types, and does not allow the use of the command
__synchronize(). This command is used to create a synchronization between
threads, which try to work on the same space in global or shared memory, avoiding
race condition.

2.4 FlexGrip

The present section describes the soft GPGPU architecture on which the work
of thesis was performed.

FlexGrip is a soft GPGPU architecture optimized for FPGA implementations. It
is based on the NVIDIA G80 architecture, and implemented in VHDL. The benefits
of using such soft processor is the ability to specify the functionality in a high-level
language (e.g. C or CUDA) and the flexibility to tailor such functionality to the
FPGA target. FlexGrip provides the test engineer with the ability of specifying the
amount of parallelism at multiple levels, changing a file namedpickBench.vhd[4].

FlexGrip is able to execute both Integer and Floating Point instructions on 16
or 32 bits and perform arithmetic and logic operations, move entries between the
different levels of memory and other instructions. [15]

2.4.1 Architecture and Functionality

Figure 2.11 depicts the architecture of FlexGrip, a briefly description of the main
concept is presented. The warp unit coordinates the instructions in the pipeline.

14
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Figure 2.11: Architecture of FlexGrip

The SM pipeline architecture is composed by five stages: Fetch, Decode, Read,
Execute and Write. Since the SIMT model is employed, an instruction is fetched
and mapped on multiple scalar processors simultaneously. Blocks of threads are
scheduled in a Round Robin fashion.

Each warp has its own program counter, therefore can follow its own conditional
path.

One of the abilities of FlexGrip is managing the conditional branch that could
cause a divergence, a ”barrier” that only some threads can pass through.

Figure 2.12: Software Flow

Should such event occur, execution for some SPs con-
tinues (i.e. branch taken), when the divergence is re-
solved, the execution switches to the other SPs (i.e.
branch not taken).

Software Flow

Being FlexGrip a hardware model, it must be pro-
vided with binary code to execute. CUDA code is
compiled with nvcc, the NVIDIA compiler that con-
verts the high-level C-like code into an intermediate
pseudo-assembly language, named Parallel Thread
Execution (PTX). [15]

Optionally, the programmer may choose to write
programs in PTX directly. The program compiling
PTX virtual registers and pseudo-instructions to bi-
nary language is copyrighted by NVIDIA, hence its
source code is not available to the public. The vir-
tualization of the registers, meaning their position
in global memory, changes according on the system
used. In fact Windows and Linux allocate registers in
different methods.
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This process is performed by the CUDA driver API, that using cuobjdump tool,
realizes a human-readable hardware language, named Source and ASSembly code
(SASS). This represents the actual code executed on NVIDIA devices.

The described process is shown in Figure 2.12. Note that during the creation
of SASS files, the compiler may perform some optimizations, which may inadver-
tently alter the program structure and cause unexpected behaviours. This topic is
discussed further in Chapter 3

Using the software Nsight Eclipse Edition the process above description is per-
formed, moreover a file called TP_instructions is created. This file feeds the Flex-
Grip hardware and it is used as set of instructions to be performed.
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Chapter 3

Reliability

This section will provide a brief introduction to software redundancy. Let us
start with the definitions of the core concepts of such topic.

A generic device can be seen as a system communicating and interacting with
other systems. A defect is a distortion of the physical structure at the hardware
level. A fault is defined as an abstraction to model and represent defects [5]. Faults
can be categorized as:
• Permanent - it remains present until the system is repaired or replaced. (i.e

stuck-at)

• Intermittent - appears repeatedly in regular and non-regular time intervals.

• Transient - occurs once and disappears.
When a fault occurs in a system, it may deviate its behaviour from its specifica-

tions, manifesting in what’s defined a failure. A failure implies that an external
state differs from the expected state. This variation is called error.

Reliability is the probability that a system provides its correct service during
a specified period of time. [5] Fault prevention and fault tolerance are approaches
aimed at increasing reliability, that is preventing faults before they occur. Fault
tolerance focuses on error detection and error recovery.

Figure 3.1: Scheme of concepts

The goal of this thesis is to improve the reliability of GPU matrix operations.
To achieve this, different approaches were followed.

17
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3.1 Software Redundancy
Software redundancy is the first technique that was experimented with. Such

approach may be implemented either in hardware or software, by means of replica-
tion of components in the hardware domain, or functionalities in software. While
the latter technique does not require any modification to the physical system, it is
as susceptible to failures as an unprotected system.

The assumption that programming faults are fully independent and therefore
will unlikely fail on the same input is at the base of these techniques. While the
approaches considered are based on code redundancy, other forms of redundancy
may be employed, such as the environment or data.

Redundancy may be deliberate or intrinsic, the difference being the developer’s
intention. [13]

3.1.1 Deliberate Redundancy
This case implies the intention in the engineer to introduce redundancy in the

system for a specific purpose. All the techniques that replicate the design process
to produce redundant functionalities are part of this category.

As an example, let us consider a program performing a task. For this purpose,
one may employ N different algorithms, for N-way redundancy. This way, that is
using several versions separately, it is assumed that they will be based on entirely
different designs, and thus not susceptible to correlated failures. [11] Implementing
this procedure is significantly more expensive, and for this reason it is used exclu-
sively in environments where any failure is not acceptable, such as in the aerospace
industry.

3.1.2 Intrinsic Redundancy
On the other hand, intrinsic redundancy is not deliberate, but rather is a natural

consequence of the aspects of the design combining. Several executions of a program
are considered redundant when they have the same observable behaviour, that is
the user can not tell the two outputs apart.[6]

Several approaches exploiting software redundancy techniques exist. This work
of thesis considered Duplication With Comparison (DWC) and Triple Modular
Redundancy(TMR) both of which will be explained in detail in the following sec-
tions.

3.2 Duplication With Comparison (DWC)
Duplication With Comparison is the easiest software redundancy technique to

implement, simply consisting of performing the same operation or set of operations
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twice. In the present case study, matrix multiplication instructions are doubled,
and the computed results are compared at the end. If a match occurs, the now
confirmed correct result is stored, else both the two results are discarded.

The advantage of this technique is its simplicity, as it can be applied to any kind
of program without any major change in its structure. On the other hand, large
pieces of code may not fit on the available memory if duplicated.

3.3 Triple Modular Redundancy (TMR)
Triple Modular Redundancy is a technique used to improve systems’ reliability

using software redundancy approach.
The use of redundancy is not meant to be a replacement, but as a complement

to the two cardinal principles of reliable design [14], [9]:

1. Use the most reliable components.

2. Reduce complexity as much as possible.

Figure 3.2 shows a scheme illustrating the concept of TMR, which will be used
to explain this approach.

Figure 3.2: Scheme of TMR

The main idea is to triplicate the units that could be affected by faults. Supposing
that an error is produced by one of the units, while the other two will produce a
correct one. A voter decides what the correct result is and outputs it, effectively
masking the error.

As can be seen in Figure 3.2, the box called M - the module - is replicated
three times. Each of them are fed with the same set of inputs, and will produce a
result.[10],[3]

All three results are in fed to entity V, defined as majority organ or majority
voter. The voter takes as inputs the three preliminary outputs and, using a major-
ity approach, produces the ”true” output. Since the number of sources is odd, in the
event of single fault occurrence there must be an unambiguous majority opinion.
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This approach works if none of the units are affected by faults, or if just one of
them is affected, meaning that it is assumed that the failures on the three modules
are uncorrelated.

Voter ideality is another important assumption performed, but in fact if this
module fails, the output will always be corrupt.

Some changes can be done to the scheme to improve the system, and therefore
take into account the possibility that the voter may also fail.

Figure 3.3: Scheme of improved-TMR

As Figure 3.3 shows, the voter can be instantiated multiple times. Each of the
instances receives as inputs the outputs of each unit. This new scheme takes into
account the possibility that the voter may fail. Obviously, this second TMR iteration
is more expensive than the first, as in this case not only the modules, but also the
voters are replicated.

This last approach can be employed when small matrices are considered. When
the size grows beyond 256x256, a significant performance degradation occurs, not to
mention an increase in the total power consumption of the system. These drawbacks
are compensated by the generality of this approach, as the modules may implement
an arbitrary algorithm without the need for re-engineering the system structure.
[14]

1 output_c [ row ∗ B_w + c o l ] =
2 ( temp1 & temp2 ) | ( temp1 & temp3 ) | ( temp2 & temp3 ) ;

Figure 3.4: Example of the used voter

The voter used in the present work of thesis is depicted in Figure 3.4. As one can
see, each element is compared with the other two, and only one output is stored,
(a matrix multiplication in this case, that will be discussed later), as the majority
dictates.
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3.4 Algorithm based fault tolerance - ABFT
This approach is tolerant to fail-continue failures: in this operation mode, appli-

cations are modified to operate on encoded data, which allows for error detection
and correction. This kind of approach does not employ any redundancy, but instead
applies algorithm to linear algebraic computations, with the advantage of having a
very low overhead.

The use of this approach is innovative in a GPGPU’s environment, as tradition-
ally it was reserved to CPUs. [14], [9]

As previously stated, ABFT requires the inputs to be encoded using a procedure
that enables the test engineer to verify that the outputs were computed correctly
exploting the mathematical properties of the encoding. If a fault were to occur,
and therefore the output be incorrectly produced, the failure would be caught and
masked before being propagated to memory.

Specifically, in matrix multiplications the input matrices A and B are encoded
before being processed. As Figure 3.5 shows, an extra row Ac and an extra column
Br are merged with A and B respectively. These additional elements are defined as
check-sums vectors. The jth element of the added row of A contains the sum of all
the elements in the jth column of A. Similarly, the ith element of the extra part of
B is used to store the sum of all the elements in the ith row of B.

Figure 3.5: ABFT overview

Arithmetic operations are then performed normally on the operands, and if no
errors occurred the resulting matrix would also be encoded. Much like the modified
inputs, the output matrix M would be larger by an entry of each dimension; the
additional row and column are defined as Mc and Mr.
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Additionally, the element-wise summations of the n rows and columns of M is
computed and stored in vectors M Í

c and M Í
c respectively.

nØ
i=1

mi
c = Mc

nØ
j=1

mj
r = Mr

Comparing these two checksum vectors with a known reference can detect an error
occurrence and correct it.

A × B = M

However, such simple encoding can’t correct more than one fault at a time, and
is therefore not as efficient as more advanced techniques. If a fault is not correctable,
the system must perform the entire matrix multiplication again, reducing the overall
performance.

3.4.1 ExtABFT

Since the occurrence of multiple transient faults is a real possibility for some
applications, more advanced techniques are employed to avoid repeating operations
more often.

Overview

ExtABFT is an extension of the ABFT approach, computing multiple check-
sums providing additional coverage to certain matrix regions. The cost for such
operations progressively grows as more and more corrections are required higher
[4]. This enhanced version is able to detect multiple errors and correct them, the
recomputation is done only if strictly necessary.

The principle of operations does not differ dramatically from plain ABFT, in-
creasing the input size by one dimension each with the additional row vector
faulty_col and column vector faulty_row. During checksum calculations, if an error
is found a counter is incremented, and then used as pointer in the faulty vector.

After all the errors are identified, they must be corrected. The faulty vectors are
used as indexes and corrected using M Í

r or M Í
cas necessary. Only the corrupt cell

is accessed, and all the other cells in that row (or column) are subtracted from it.
This system can correct errors occurring not only in a single cell location, but also
any other in the same row or column.

For more sparse error correction, one must employ even more refined solutions,
which will not be covered in the present thesis.
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Modifications

The ExtABFT approach followed underwent some tweaking, specifically The
code used is able to identify only one error, but can be easily modified to recognize
multiple errors.

Similarly to the aforementioned version, during the comparison faulty_col and
faulty_row are used to take trace of the error. A counter also in this case is present
and used as index in the two vectors. Differently from vanilla ExtABFT, the index
of the corrupted cell is not overwritten, instead just setting a cell.

During the correction phase, the two faulty vectors are visited looking for a high
bit. The index in faulty_col is the x-coordinate and the index in faulty_row is the
y-coordinate of the error in M . As in the original version Mc or Mr are used to fix
the cell.
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Chapter 4

Case Study

The present chapter will outline the experimental work performed during the
thesis, whose purpose is finding ways of improving a system’s reliability using soft-
ware redundancy.

4.1 Software

Figure 4.1: How threads manage
matrices

Initially, the algorithms implemented in
CUDA were Duplication With Comparison
(DWC), Triple Modular Redundancy (TMR)
and Algorithm-Based Fault Tolerance (ABFT),
using in Visual Studio IDE. During this phase
different strategies were analysed. Each code
was written considering the three types of mem-
ory and matrices of different size.

Varying the dimension of a matrix also
changes the number of threads per kernel, as
showed in Figure 4.1.

When a multiplication between two matrices
is performed, each cell of the resulting C-matrix
is computed by a single thread. The Index-x of
this thread represents the row of the first matrix
(A), and the Index-y the column of the second
matrix (B) involved in the multiplication.

Therefore, as each thread manages a single cell of the C-matrix, there are many
threads as the number of cells in the resulted matrix. Obviously, increasing the
size of the input matrices, also the size of the resulted one is increased, and so the
number of threads involved in the multiplication.
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In order to consider the worst case global memory was chosen, as this is the case
that requires more time. Summarizing:

• DWC requires six accesses to the memory, two load instructions for the ma-
trices A, two load instructions for the matrices B and two store instructions
for c matrices.

• TMR requires nine accesses. Six load instructions for inputs matrices and three
store instructions for the outputs.

• ABFT requires just three accesses to the memory, two for inputs and one for
the store.

The approaches above share some similarities, as some functions were used for
all of them. As already said, the main is the part of the code executed by the Device
or CPU. The pointers to the memory of the input and output matrices are created
in this space. The main is also in charge to feed with random values the input
matrices. As Figure 4.2 shows, the dimension of the C matrix is given taking care
of A’s heigh and B’s width.

1 i n t a [ a r r a y S i z e ] = { 0 } ;
2 i n t b [ a r r a y S i z e ] = { 0 } ;
3

4 f o r ( i n t j = 0 ; j < a r r a y S i z e ; j++)
5 {
6 a [ j ] = 1 ;
7 b [ j ] = 10 ;
8 }

Figure 4.2: Matrices creation

Pointers, (e.g the matrices), are passed to the the host or GPU, using addWithCuda
function. All the operations computed by the host are in this function.

At the beginning some checks to verify the correctness of the communication
between GPU and CPU are done. After this step, the host allocates some space
in its global memory for the matrices. Input matrices were already created by the
device, therefore they are just copied from the device’s memory to the host’s global
memory.

As already said, multiple multiplications were performed changing the size of
the matrices involved. At every time the same kernel with different description was
called.

Figure 4.3 shows the calling of function dimension(). The size of matrices may
be significant, in turn the number of threads managing them; a block may be
composed by only 1024 elements.
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1 d imens ion ( A_heigh128 , B_width128 , GX, GY, BX, BY) ;
2 p r i n t f ( ”GX=%d , GY=%d , BX=%d , BY=%d \n” , GX, GY, BX, BY) ;
3 dim3 block_x128 (BX, BY, 1 ) ; // Threads pe r b l o ck
4 dim3 gr id_x128 (GX, GY, 1 ) ; // B locks pe r g r i d
5 Matr ixMul <<< grid_x128 , b lock_x128 >>> ( dev_a , dev_a2 , dev_b ,
6 dev_b2 , dev_128c , dev_128c2 , A_heigh128 , B_width128 , A_width ) ;
7

8 d imens ion ( A_heigh256 , B_width256 , GX, GY, BX, BY) ;
9 p r i n t f ( ”GX=%d , GY=%d , BX=%d , BY=%d \n” , GX, GY, BX, BY) ;

10 dim3 block_x256 (BX, BY, 1 ) ; // Threads pe r b l o ck
11 dim3 gr id_x256 (GX, GY, 1 ) ; // B locks pe r g r i d
12 Matr ixMul <<< grid_x256 , b lock_x256 >>> ( dev_a , dev_a2 , dev_b ,
13 dev_b2 , dev_256c , dev_256c2 , A_heigh256 , B_width256 , A_width ) ;

Figure 4.3: Same kernel, different dimension

”Dimension” describes the number of blocks used by a specific kernel. This func-
tion takes as input the dimension of A and B matrices and derives the dimension
of the C -matrix. If the size is bigger than 1024, it divides the threads in smaller
blocks. As the division between the number of elements and 1024 could be a non-
integer number, Rounding_up() function is used. The purpose of this new function
is just to guarantee that the number of blocks involved is an integer number.

1 i n t rounding_up ( i n t x , i n t y )
2 {
3 i n t r e s u l t = 0 ;
4 i f ( x != 0)
5 {
6 r e s u l t = ( ( x − 1) / y ) + 1 ;
7 }
8

9 e l s e
10 {
11 r e s u l t = 0 ;
12 }
13 r e t u r n r e s u l t ;
14 }

Figure 4.4: rounding_up() function
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1 vo i d d imens ion ( i n t A_h , i n t B_w, i n t& G_X, i n t& G_Y, i n t& B_X, i n t& B_Y)
2 {
3 i f (B_w∗A_h > 1024)
4 {
5

6 i n t numBlocks = rounding_up (A_h∗B_w, 1024) ;
7 i n t numThreadsPBlock = rounding_up (A_h∗B_w, numBlocks ) ;
8 i n t x = rounding_up (A_h , B_w) ;
9

10 i n t w2 = rounding_up ( numThreadsPBlock , x ) ;
11 i n t w = rounding_up ( s q r t (w2 ) , 1) + 1 ;
12 i n t h = w ∗ x ;
13

14 i n t IBx = rounding_up ( (B_w − h − 1) , h ) + 1 ;
15 i n t IBy = rounding_up ( (A_h − w − 1) , w) + 1 ;
16

17 B_X = w;
18 B_Y = h ;
19

20 G_Y = IBy ;
21 G_X = IBx ;
22 }
23

24 e l s e
25 {
26 B_X = B_w;
27 B_Y = A_h ;
28 G_X = 1 ;
29 G_Y = 1 ;
30 }
31 }

Figure 4.5: dimension() function

One may instantiate more threads than necessary, but to avoid issues with the
extra elements, some limits were put in place, in the form of IF-Statements. The
purpose of ”IF” is to check if the thread’s index is bigger, and so identified as
extra element, than the matrix dimension. As the matrix has two dimensions ”IF-
Statements” checks two limits, as follows:

1 i f ( row < A_h && c o l < B_w)

In the next section the peculiarity of ”ABFT” code and ”DWC” will be taken
into account.
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4.1.1 DWC
In the previous section was told that different approaches changing the type of

memory were performed. At the end all the codes were implemented using global
memory.

Respect to the other codes, two version of the DWC were tested. One imple-
mented using global memory, as for the other cases, and one using local memory.

In the first version the result for the two versions were computed and stored
respectively in ”output_c” and ”output_c2”. Then the two results were compared.
The comparison were performed between two global memory locations, that means
load from the memory and comparing. Therefore these steps are required:

1. Two store instructions for ”output_c” and ”output_c2”.

2. Two load instructions to takes values to compare.

3. Comparison.

4. Other steps in case of a discrepancy between the two values.

Global memory is the slower memory of the GPU, and the multiple accesses
listed above make the process slow.

The purpose of the second version was to optimize and try to make the process
faster. To reach this goal, local memory was used.

In this second version, called DWC2, only three accesses to global memory was
performed. Two reads for inputs and one write for the output. In contrast to the
”global-DWC”, DWC2 computes the results in temporary variables. Temporary
variables are variable stored in local memory, therefore existing only inside that
thread, and not accessible from others.

The comparison is made between two local variables. If they are equal, only the
result of the first multiplication is stored in the global memory. Therefore this step
does not require to load the results form global memory. Referring to the list of
operations listed above step 2 is not any more required.

Using this second version a step was skipped, and the operations were made
faster as performed between local memory.
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4.1.2 ABFT code
Generalities

The functionalities of the ABFT was already explained, this subsection’s purpose
is to give an overview of how the code working.

Differently from the other codes, the ABFT requires three different kernels.
The first kernel is used to create the last row (i.e check-columns) of matrix A.
The second kernel is similar to the fist one, its purpose is to calculate the last
column (i.e check-rows) of matrix B. In the last kernel the matrix multiplication
is computed using the outputs of the first two kernels. In the other codes, after a
kernel finished, the memory allocated for matrices in GPU were cleaned. In this
case, instead, memory is conserved and passed to the third kernel.

• Check-Sum A = first kernel.

• Check-Sum B = second kernel.

• MatrixMul = third kernel.

As for the other codes, also in this case multiple matrix’s dimensions were im-
plemented. Due to divergence’s problems, the size is smaller than the others case.
The maximum size used is 32x32. This dimension is the maximum reached because
it is the warp’s size, therefore all the threads execute the same instructions avoiding
divergence.

Every time the size is changing, each one of the three kernel must be called
again. In this section a call to the ABFT means a call to three different kernels.

1 cudaSta tus = cudaMemcpy ( dev_a , a , s i z e ∗ s i z e o f ( i n t ) ,
2 cudaMemcpyHostToDevice ) ;
3 i f ( cudaSta tus != cudaSucces s ) {
4 f p r i n t f ( s t d e r r , ”cudaMemcpy f a i l e d ! ” ) ;
5 goto E r r o r ;
6 }
7 cudaSta tus = cudaMemcpy ( dev_b , b , s i z e ∗ s i z e o f ( i n t ) ,
8 cudaMemcpyHostToDevice ) ;
9 i f ( cudaSta tus != cudaSucces s ) {

10 f p r i n t f ( s t d e r r , ”cudaMemcpy f a i l e d ! ” ) ;
11 goto E r r o r ;
12 }
13 d imens ion ( A_width , 1 , GX, GY, BX, BY) ;
14

15 dim3 block_a (BY, BX) ;
16 dim3 gr id_a (GX, GY) ;
17 // s i s t ema po i 1 pe r b l o c c h i p i ù g r o s s i
18 checkSumA <<< grid_a , b lock_a >>> ( dev_a , A_heigh , A_width ) ;
19

20 d imens ion (1 , B_heigh , GX, GY, BX, BY) ;
21 dim3 block_b (BY, BX) ;
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22 dim3 gr id_b (GX, GY) ;
23 checkSumB <<< grid_b , block_b >>> ( dev_b , B_heigh , B_width ) ;
24

25 d imens ion ( A_heigh + 1 , B_width + 1 , GX, GY, BX, BY) ;
26 dim3 block_x (BX, BY, 1 ) ; // Threads pe r b l o ck
27 dim3 gr id_x (GX, GY, 1 ) ; // B locks pe r g r i d
28 Matr ixMul <<< gr id_x , b lock_x >>> ( dev_Faulty_row , dev_Fau l ty_co l ,
29 dev_Mcc , dev_Mrc , dev_a , dev_b , dev_32c , A_heigh +1, B_width +1, A_width ) ;

Listing 4.1: Steps to compute matrix multiplication using ABFT

As the figure 4.1 shown, an new function is used. In the others codes matrices
A and B were every time equal. As they were defined as a long vector, changing
the dimension means using just part of the vector. In this case Check-sum A and
Check-sum B add elements to the original matrices. For that reason it is impossible
define just a long vector. matrix_a_b() solves this issue.

1 vo i d matrix_a_b ( i n t ∗a , i n t ∗b , i n t ha , i n t wa , i n t hb , i n t wb)
2 {
3 i n t value_random =0;
4 f o r ( i n t i = 0 ; i < 400 ; i ++)
5 { // c l e a r mat r i x
6 a [ i ] = 0 ;
7 b [ i ] = 0 ;
8 }
9 // f e ed A

10 f o r ( i n t j = 0 ; j < ( ha∗wa ) ; j++)
11 {
12 a [ j ] = value_random ;
13 value_random++;
14 }
15 // f e ed B
16 i n t value_random2 = 0 ;
17

18 f o r ( i n t j = 0 ; j < hb ; j++)
19 {
20 f o r ( i n t p = 0 ; p < wb + 1 ; p++)
21 {
22 i f ( p == wb)
23 b [ v a l u e ] = 0 ;
24

25 e l s e
26 b [ v a l u e ] = value_random2 ;
27

28 value_random2++;
29 }
30 }
31 }

Listing 4.2: Input matrices definition
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Figure 4.2 explains how this function works. At every time this function is used,
the memory allocated in the device is cleaned. So A and B are fed taking in account
that B must have the last column empty, and A must have the last row empty.

Seeing 4.1, it is clear that after matrix_a_b() is performed, the new input
matrices must be stored in the host’s memory before ABFT is called.

MatrixMul

Now MatrixMul kernel is presented. The functionalities of this kernel, can be
distinguished in four phases.

1. Matrix Multiplication

2. Check-sum row and Comparison

3. Check-sum column and Comparison

4. Correction

The second and the third points are equal to what is performed by Check-sum
A and Check-sum B, not considering the comparison stage explained later. Not all
threads involved in the matrix multiplication are present in these phases. In fact
for each point a divergence is created. Check-sum row is performed only by threads
that have ThreadIdx.y equal to zero, in other words only threads that manage the
first C-row. Similarly check-sum column is performed only by threads present in
the first c-coulumn, (i.e ThreadIdx.x equal to zero).

When the comparison vector is computed, it is used to check if a discrepancy
is present. If so an extra vector sets a flag considering the row or the column with
a fail. If an error is present on a row, also a column presents an error. faulty_row
and faulty_col are the vectors used to store the error’s position.

The last step is the most complicated. To avoid race condition, only one thread
is chosen to comparing the last column and the last row of C with the two extra
vectors computed in steps two and three. In particular the thread in position (0,0)
in the C-matrix.

A loop searches in faulty_row and faulty_col high flags and stores in two pointers
the location of the flag. In this way the failed cell is pointed by two coordinates,
and can be corrected.

it is important to notice that multiple errors can be managed only if one coor-
dinates is in commune with the others errors.

4.2 Simulation
The presented codes were tested in a previous phase on Visual Studio, and than

they were run on FlexGrip. In a first moment a real GPGPU was the target of this
thesis but due to some inconveniences it was opted to a FPGA GPGPU-based.
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Simulation was performed using Modelsim and Nsight Eclipse Edition. As al-
ready said FlexGrip is fully configurable, this is essential in fact codes requires
different specifications.

Specifications are initialized using a file called PickBench. This file is written
in VHDL hardware description. The number of threads, blocks and cores are here
described. Furthermore this file has a section to identify variables and pointers to
memory passed from the device to the host in the real GPGPU.

To create input matrices a python script was used. This file, called memGen.py,
generates random integer values that are converted in hexadecimal. Each hexadec-
imal value is divided in four pieces, one under the other and saved in a file called
Global_mem. This file has a particular extension type: Memory Initialization Files
(.mif). Global_mem.mif represents the global memory used by the FlexGrip.

Cuda codes are transformed in machine language using Nsight Eclipse, as de-
scribed in the previous chapter. In this steps two files are created Instructions_TP.vhd
and Configuration_TP.vhd. The process to realize the instruction’s file was al-
ready discussed in the CUDA’s chapter. This section focuses on the problem that
occurs during the creation of this file.

The environment used to create this file is important. In fact, as already said,
some virtual registers are allocated to compute instructions. This step is common
in all the operative systems, the difference is how they allocate them.

Linux is used to place registers in growing order in increasing ad-
dresses, but not using continuous address. Instead, Windows is used to allo-
cate registers in an optimized way, trying to compress them. Then use continuous
increasing addresses.

It is important to notice that the binary codes produces by one system are not
equal to the other.

Unfortunately Nsight Eclipse Edition worked on Linux environment, instead the
Modelsim simulation worked on Windows environment. Therefore most of the time
the binary codes were manually changing. 4.6 shows the correction made to the
addresses from Linux to Windows.

4.2.1 Simulation’s Configuration

Codes were written using matrices with different sizes. Simulations were done
using only one size. In particular matrices had eight elements on the x-axis and
eight elements on the y-axis. Therefore each call kernel required one block, and 6
-threads.

PickBench files are pretty much equal for all the codes, only the constant part
is different. In this part are written input addresses, then it is different depending
on how many inputs and outputs are used (I.e. how many parameters are placed
in the kernel definition.).
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Linux Windows
0x04 0x04
0x06 0x05
0x08 0x06
0x0a 0x07
0x0c 0x08
0x0e 0x09
0x10 0x0a
0x12 0x0b
0x13 0x0c
0x14 0x0d

Figure 4.6: Memory offsets in Linux vs. Windows

Configuration file is common for all the codes. Obviously instruction file is dif-
ferent for all the codes.

At the end of Modelsim simulation a file is generated. rdata_mem.txt is the
resulted of the simulation. It represents the global memory, in the addresses decided
in the pickBench phse, can be seen input and output matrices. The actual operation
of the codes can be checked in the resulted file or looking the waves generated by
the program.

Figure 4.7: ModelSIM waveform example

4.2.2 ABFT
ABFT is different respect to the others three cods. It requires three different

kernel calls. It can not be simulated as the others. The main problems are:

• The three kernel-calls require different parametrises.
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• The input matrices of MatrixMul depends on the first two calls.

• Simulation wants just one .mif file.

In the following the main problems will be explained.

Issues and solutions

Each kernel was passed to Nsight and "transformed" in binary codes. Several
PichBench files were produced in order to be suited to the needs of each call. Then
the first two calls were simulated and the two output files were conserved.

To generate a single .mif file a python code was used. ABunion.py is a python
code that takes as input the results of the first two calls, renamed as rdataA_mem.txt
and rdataB_mem.txt. The output is a suitable memory for the simulator, so global_mem.mif
file.

The new memory is different both the matrix-A’s and matrix-B’s memory. For
this reason the pickBench file requires new addresses in the constant part, that
point to the rearranged locations. Furthermore the first two calls transform the
input matrices, adding a row and a column respectively. At the beginning the
situation was:

dim(A) = dim(B) = dim(C) = 8 ∗ 8 → 64 threads

But now:

dim(A) = 9 ∗ 8, dim(B) = 8 ∗ 9, dim(C) = 9 ∗ 9 → 81threads

ABFT is the only code that has a bigger C-matrix. Also in this case just one
block was used, but the number of threads was increased.

As for the others codes, the simulation was performed and the result was checked.

4.3 Fault Injection
The simulation proves only that the code works in the right mode. To know how

good the code is against fault injection fault is needed.
Faults can occurs in a random position of the vector registers files, but to have

an effect it must occur in an used register.
Fist step was to collect all the register used by each code per each vector registers

file of the FlexGrip. A list of the possible positions in which a fault could generate
an error was written. It is importance to notice that faults are evaluated only at
path level, the injection of fault in the control unit is not a topic of this thesis.

For example:
Consider a code with 4 threads per vector registers file, where each thread uses

6 registers. Each register is a 32-bits, so 32 position where a fault can occurs.
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32*6*4*8= 6144 possible position
The result is multiply by 8 because FlexGrip is composed by 8 vector registers

file.
In the presented example 6144 are the possible positions for a fault, but stuck-at

can be 0 or 1. So at the end 6144*2=12288 faults to examine.
These positions in hardware are represented by signals, as the following image

shown. 4.8

1 sa1 /uGPGPU/ uS t r e am ingMu l t iP r o c e s s o r / g R e g i s t e r F i l e (1)\
2 / u R e g i s t e r F i l e / d p _ r e g f i l e _ i n s t /mem( 0 ) ( 2 6 ) −
3 sa1 /uGPGPU/ uS t r e am ingMu l t iP r o c e s s o r / g R e g i s t e r F i l e (1)\
4 / u R e g i s t e r F i l e / d p _ r e g f i l e _ i n s t /mem( 0 ) ( 2 5 ) −
5 sa1 /uGPGPU/ uS t r e am ingMu l t iP r o c e s s o r / g R e g i s t e r F i l e (1)\
6 / u R e g i s t e r F i l e / d p _ r e g f i l e _ i n s t /mem( 0 ) ( 2 4 ) −

Figure 4.8: Signal definitions

4.3.1 Injection
The main idea is to inject a fault at the time in one of the possible signals of

the list, simulate the affected code, and compare the resulted memory with a non
corrupted memory.[Ontheevaluationofsoft-errors].

A non corrupted memory(Golden Memory) is the result of a Golden Simulation.
A Golden Simulation is a simulation as previously described, where no fault occurs.
4.9

Figure 4.9: Injection process

To simulate a stuck-at 1 (or 0) one bit at simulation is forced to 1 (or 0 in the
other case). The code is simulated again but this time one signal is corrupted. Com-
paring the Golden Memory and the resulted one possible errors can be detected.
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This process is executed multiple time as the number of the signals in the list.
A python code, named Script_Fault_Simulator.py deals with all these steps.

4.3.2 ABFT
ABFT used the same python script but with some changes. Changes are due to

the presence of three kernel-calls.
Injection faults in the ABFT can be done in two different ways.

First method

As said in GPGPU’s architecture, different streaming multiprocessors(SM) are
available. If it is supposed that the three kernel-calls are executed by different SM,
it is reasonable think that just one of the three is affected by a faults, for simplicity
the faulted one is the last kernel-call, the matrixMul.

Figure 4.10: Distribution of kernels

In this case, the easiest one, the injection fault is performed only the matrixMull
kernel. See 4.10.

In the first phase the golden memory is created, this stage is equal to the steps
done in the simulation. The check-sum kernels are executed without any bits forced.
The two memory results are united in a single memory for the input of the third
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kernel. At this point the Golden memory for the ABFT is ready. It is remembered
that ABFT means the union of the three kernels.

The second phase, as for the others codes, it is the injection fault. It is chosen
a signal at simulation between the targets of the matrixMull kernel. The signal is
forced to 0 or 1, and the fault simulation is performed. Golden and faulted memory
are compared.

The process to generate a faulted memory in the ABFT can be summarized as
follow:

1. Initialize simulator with MatrixMul’s parameters.

2. Inject fault in MatrixMul.

3. Collect faulted memory MatrixMul(i.e the ABFT’s result).

In the first point the input matrices are obtained as during the realization of
the Golden Memory, just calling the ABUnion function using the golden results of
Check-sum A and B.

Second method

In this case, instead, it is supposed that the three calls are executed by the
same streaming multiprocessor. This means that if a fault is present, all the calls
will present an error. It is importance notice that an error in the first two kernels
is propagated in the third call. This is due to the fact that MatrixMul directly
depends by the outputs of the first two calls.

The first phase to generate the Golden memory is equal to the first method.
Instead generate a stuck-at in all the kernels is more complex. A signal that can
affect MatriMul is chosen and stuck. Signals are chosen from the MatrixMul’list
because this kernel uses more registers than the others two kernels, therefore a
signal presented in it, it is also presented in the others two.

The process to generate a faulted memory in the ABFT can be summarized as
follow:

1. Initialize simulator with Check-sum A’s parameters.

2. Inject fault in Check-sum A.

3. Collect faulted memory A.

4. Initialize simulator with Check-sum B’s parameters.

5. Inject fault in Check-sum B.

6. Collect faulted memory B.
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7. Call function UnionAB to realize input memory’s file for MatrixMul.

8. Initialize simulator with MatrixMul’s parameters.

9. Inject fault in MatrixMul.

10. Collect faulted memory MatrixMul(i.e the ABFT’s result).

From the list it can be seen how the number of steps is longer than the other
case. In fact each time it is injected a fault in a different kernel, the parameters
must be initialized again to compute the new simulation. Must be remembered that
an injection fault is realized as a normal simulation with a bit forced to 0 or 1, so
it is mandatory doing the steps described in the Simulation section.

As explained before, the result of the MatrixMul kernel depends by the first two.
This implies not only that a faulty value in matrix A or B will be presented in C ,
but also that a crash in one or both the two inputs matrices will create a crash in
the C matrix too.

See the figure 4.11.

Figure 4.11: Presented case

4.4 Results
Errors produced during the injection fault simulation, can be divided in three

main categories.

38



Case Study

• Halt - This kind of error produce a crash in the code, therefore a crash in the
simulation. It can be produced by forcing a bit in an address, so change the
pointed destination. This produces a failed read or writing, making the system
crashes.

• Time Out - Sometimes a fault generates an error that increases the simulation
time, but at the end the system reaches the end with no errors in the memory.

• Silent Data Corruption (SDC) - When an error does not make crashes and
reaches the end, can produce some errors in the resulted values. This kind of
error is the target of this thesis.

In the following the experimental result of each codes is presented. It is a must
to say that values of SDC is not so accurate, as it is subjected to data dependency.
This means that if it is injected a stuck in a bit equal to the stucked value, this will
not produce any error.

4.4.1 Matrix Multiplication
To verify the validity of the redundant codes, a matrix multiplication without

any kind of protection was subjected to injection fault simulation. Obviously matrix
multiplication is the easiest code, and it is part of each of the others codes.

Faults injected SDC FC Registers Time (ns) Instructions
37376 19202 51.4 10 860270 48

In the above table the main relevant parameters in this thesis are reported.

• N°fault injected - It is the number of positions taken into account during the
simulation.

• SDC - This are the SDC founded.

• FC - It is the partial fault coverage, it is computed as FC = SDC/ N°Fault
injected * 100

• Registers - This is the number of registers used.

• Timing - It is the time used to compute the result.

• N°Instructions - It is the number of instructions in binary language used.

During each simulation it has been taken into account the time and the number of
registers and instructions.

The number of registers implies the magnitude of the signals, therefore the num-
ber of possible location for a fault. Instead, instructions are taken into account to
know the space occupied in the memory.
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4.4.2 DWC V1
Faults injected SDC FC Registers Time (ns) Instructions

53248 26448 49.7 13 1540390 59

Comparing the table of Matrix Multiplication and the above one, can be seen
that the number of instructions and registers are increased. Due to the extra code
added to protect the matrix multiplication(i.e the DWC implementation).

As the implementation of the Doubled with comparison is done to high level,
it protects only the matrix’s result without taking into account which registers are
used. Therefore if a fault affects a register used as address, an halt error occurs.
This problem is common in all the codes.

Focusing on the SDC errors, it can be seen that the improving of the Fault
Coverage (FC) is not so better that the matrix multiplication. This is due to the
fact that sometimes faults affect register used for multiple purpose. In the following
will be presented the purpose of each register to better understand the concept.

• R0 - Load IndexThread, Load First limit of thread, Load Input matrices B

• R1 - Load Second limit of thread, Load Input matrices A

• R2 - Load Address matrix B1

• R3 - Load limit of the For-statement

• R4 - Load Address matrix C2

• R5 - Load Address matrix C1

• R6 - Load Address matrix B2

• R7 - Load Address matrix A1

• R8 - Value used to increment the B’s address

• R9 - Loop’s counter

• R10 - Load Address matrix A2

• R11 - Temporary Store C1 and C2’s results.

• R12 - Temporary values

DWC computes two times the C-matrix (C1,C2), using the same inputs repli-
cated two times(A1,A2,B1,B2). At the end C1 and C2 are compared, and in match
case the C1 result is stored.

As it can be seen, some registers are more subjected to create errors than others.
In bold are highlighted the main problems. In fact the real problem is that the
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delicate registers are common in both the computing of C1 and C2. This means
that C1 and C2 are both affected in the same way, therefore the comparison will
produce a match. Comparing the faulted memory and the golden one, an SDC error
is produced.

For example:
Register 0 is used to load from the global memory the input value of both A1

and A2. Injecting a fault in any bit of this registers will produce an error in the
matrix multiplication for both C1 and C2. The same happens for register 0, 11 and
12.

Register 8 is used to increment the address of B-matrices (i.e take the next value).
This register can create both halt and SDC errors. If the injection creates a valid
address, a wrong value will be loaded for both C1 and C2, but the multiplication
will finish. Instead if a non-valid address is produced an halt error is generated.

4.4.3 DWC V2
Faults injected SDC FC Registers Time (ns) Instructions

40960 22412 54.7 10 1165320 54

As the table shows, the second version of DWC is the fastest between all the
presented codes. Due to the fact that it uses less accesses to global memory than
the others and works with local memory.

Unfortunately the coverage is worst than all the studied cases, even of the base
case, the matrix multiplication code.

In the following how the compiler used registers is presented:

• R0 - ThreadIndex, Store address.

• R1 - Load input from B, some calculation.

• R2 - Load input from A.

• R3 - Temporary result C1, Final C1 to store.

• R4 - Loop’s counter.

• R5 - Value used to increment the B’s address.

• R6 - Load address of B.

• R7 - Load limit of the For-statement.

• R8 - Load address of A.

• R9 - Temporary operation.
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In the previous chapter was explained that instead working with four matrices
loaded from the global memory, only two loads are done. The two loads are used
by two local temporary variables to compute the matrix-C’s cells. In the list it
can be seen that only one temporary variable is presented. This means that only
one computation is performed. The issue is caused by the compiler. The compiler
optimized the instructions, therefore it deleted the second computation, as it is
equal to the other computation. The elimination of the second temporary variable
means that no-comparison is performed. This explain why the coverage is so high.

This kind of code can not be used in high level (i.e writing only the CUDA code),
but only at low level working with registers directly.

4.4.4 TMR
Faults injected SDC FC Registers Time (ns) Instructions

61440 13870 22.6 19 1658370 73

TMR is the slowest and the longest, in term of execution, between the redundant
code.

• R0 - ThreadIndex, Load input B1, Voter, Store the final value of C.

• R1 - Limit for ThreadIndex, Load input A1, Voter.

• R2 - Limit for ThreadIndex, Load input A2.

• R3 - Load input B2

• R4 - Load input A3

• R5 - Load input B3

• R6 - Load address matrix A1

• R7 - Load address matrix A2

• R8 - Load address matrix A3

• R9 - Load address matrix B3

• R10 - Load address matrix B2

• R11 - Load address matrix B1

• R12 - Value used to increment the B’s address

• R13 - Loop’s counter.

• R14 - Load limit of the For-statement.
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• R15 - Voter

• R16 - Voter

• R17 - Voter

• R18 - Address to store final C-matrix.

As for the DWC version one, the delicate registers are in bold. In the TMR
values from the global memory are loaded in six different local registers, therefore
the issue of the DWC’s version one is not presented. Instead, registers 12, 13 and
14 have the same issues presented for the first case.

The main difference is the presence of the voter. The three results are computed
in three different local variables and the comparison is done two by two. The reg-
isters used as voter are common for all the three cases. Therefore a fault in one of
these produces an SDC error.

Moreover the register 0 is used for voter and store for the final value. This means
that R0 is the most delicate register.

4.4.5 ABFT
The ABFT is the most complex and with more delicate registers than the other

cases, due to the larger amount of instructions than for the other techniques, as
follows:

Faults injected SDC FC Registers Time (ns) Instructions
92160 23953 26 22 4085470 247

As already said in the section ”Injection Fault”, signals used are taken by the
matrix multiplication kernel. But the fault are injected also in the first two kernels,
therefore some cases could create a crash before fault simulation in the matrix-
multiplication starts.

How registers are used by Check-sum-A and B are presented.

• R0 - ThreadIndex, Load destination address.

• R1 - Load input address.

• R2 - Temporary values

• R3 - Value used to increment the A’s address

• R4 - Loop’s counter.

• R5 - Load input value.
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In the following Check-sum-B is presented.

• R0 - ThreadIndex, Load input address.

• R1 - Loop’s counter.

• R2 - Limit

• R3 - Temporary values.

• R4 - Load input value.

Registers that can cause a crash before the matrix-multiplication is performed,
are underline in bold. Obviously an errors in both the two matrices will be propa-
gated in the third process.

The third kernel is really larger, and registers are used for different purposes. In
the previous section were explained that this kernel can be divided in three/four
phases, registers changes their purpose according to the phases.

Purpose of the registers are presented divided in the three phase.

First phase - Matrix multiplication

• R0 - ThreadIndex, Limit, Load input matrix B

• R1 - Limit , Load input matrix A

• R2 - Load input address A

• R4 - Loop’s counter

• R5 - Value used to increment the A’s address

• R6 - For’s limit

• R7 - Load input address B

• R9 - Load input address to store

• R10 - Temporary values, Final value to store

This phase is the normal matrix multiplication, therefore any ”protection” is
present. If the first two kernels do not present any errors, the ones that can occur
in this phase (considering only SDC errors) can be founded in the next phases and
they can be corrected. Obviously an halt error causes the crash, therefore can not
be fixed.
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Second phase A - Comparison vector one creation

• R0 - Load input address

• R1 - Limit for thread that can access to this part of code, Set error

• R5 - Temporary values

• R6 - Value used to increment the address

• R7 - Load store address

• R8 - Loop’s counter

• R9 - Load input value

In this phase one of the two comparison vectors are generated. An error in this
phase is not too dangerous, as it will be fixed during the comparison phase. In fact if
an a mismatch is found between the last row/column and the two vectors, a restore
is performed to correct the matrix. Therefore if the issue affect only this process
and not a value in the matrix, the restore is performed with not a real necessity.
The only exception is done for register 1, as it is used to notified an error.

Similarly for the next registers.

Second phase B - Comparison vector two creation

What said for the previous registers is still valid for these ones. In this case the
exception is represented by the register 0.

• R0 - Limit for thread that can access to this part of code, Set error

• R1 - Loop’s counter

• R2 - Load input address

• R6 - Load input to store values

• R7 - Load input value

• R8 - Loop’s counter

Third phase - Comparison

• R0 - Thread used

• R3 - Temporary values

• R4 - Temporary values
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In this phase the comparison is performed, therefore it is the most critical phase.
As a fault in the ”voter” creates a not-detected error.

The comparison phase uses more registers than presented ones. As the study of
the registers were performed in the simulation phase, when no errors occur.

Some registers are more delicate than others, but the most critical is register 0.
This register is involved in all the process in more purpose. Moreover in the last
phase only thread (0,0) works, but if a fault affect register zero, that represents the
thread index, nobody performs the comparison.

In conclusion this code requires a lot of time and space in memory but it reaches
a good result.
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Conclusion

Looking the graph it can be seen that the TMR reaches the best result. It reaches
the 22 percentage spending less execution time than the other technique using a
moderate space in memory. Obviously the DWC required less time than TMR but
the coverage is only of the 50 percentage. The second version of the DWC is failed,
and therefore it will not be commented. The ABFT reaches a good coverage, even if
worst than TMR. This can be due to the fact that the others techniques start with
two corrected matrices and only one kernel was affected by faults. The ABFT can
have issues also in the beginning matrices, therefore the matrix multiplication starts
with wrong values, so obviously also the result is wrong. Despite the problems of
ABFT, this has achieved excellent coverage, slightly lower than the TMR. Probably
considering the first implementation of the ABFT the coverage could have been
better.

Some improvements and future tests can be made. For example it could rewrite
the DWC2 code in PTX, avoiding the compiler optimizations, or in the ABFT try
to protect register 0 which is the most affected by errors. Moreover also transient
faults can be taken into exam repeating the tests.
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