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Abstract

Deep learning in the last years has allowed to reach very high performances in the task

of image classification in Computer Vision, through the widely used Convolutional Neural

Networks. While the traditional algorithms are very accurate when the test samples are

similar to the training data, their performances are significantly lower when test and train-

ing data have a different visual appearence and belong to different domains. This work

introduces a solution to this problem in the context of scene recognition, starting from the

recently introduced JiGen approach that has shown very good improvements in the object

recognition context, and shows that with some variations also in this context the accuracy

can be improved, both in Domain Generalization and Domain Adaptation settings. The

experiments are performed on the COLD and the BDD100K datasets.
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Chapter 1

Introduction

Computers are becoming more and more powerful over the years, such that today they can
perform in a few seconds operations that only some years ago required so much time that
they were considered impossible. This improvement led to a revolution in the deep learning
field, because it allowed to train deeper and deeper neural networks, that are becoming
able to solve harder and harder tasks. These networks have reached great performances
in many different tasks such as object classification [1], semantic segmentation [2], motion
tracking [4] and human pose estimation [3], and these are just some examples of the huge
variety of fields where neural networks are reaching important goals.

This work focuses on the problem of semantic place categorization, which consists in
identifying the semantic category of a certain place. This problem has a huge variety
of applications, especially in robotics given the ever increasing focus on long-term mobile
robot autonomy and rapid improvements in visual sensing capabilities and cost [9]. Another
important application where this task is highly relevant is the self-driving context, where
for a car for example is fundamental to understand if it’s travelling on a urban road or in
a highway. But there are more and more applications that are emerging in the last years.
A place to be recognized can be either an indoor place, such as an office or a corridor, or
an outdoor place such as a road, a mountain and so on. The scene recognition task is very
challenging, due to the complexity of the concepts to be recognized and the variability
of the conditions in which the images can be captured [10]. For example, often scenes
from the same category may look different, while scenes from different categories may look
similar, and different scenes could share the same objects, as shown in figure 1.1.

We can observe that this problem is often more challenging than the common object
recognition task. For example, considering an object to be recognized, it’s not so difficult
to find a particular set of parts disposed in a certain way for each object category that
define that category. Let’s think about for example to a horse, which can be of different
sizes, different colors etc. but it’s always characterized by four legs, a tail, a head and a
certain body shape. Another example can be a car, which can vary a lot in its appearances
(for example, a 40 years old car is quite different from a car that is produced nowadays),
but it’s always characterized by a certain number of wheels disposed in a certain way and
other well-recognizable elements. A scene instead is a very complex environment that can
vary a lot according to the number of objects that it contains, the location, the weather,
the time of the day, the season and so many other factors. An example of this is shown in

(



1 – Introduction

figure 1.2.

Figure 1.1: Examples of scenes exhibiting high degrees of class similarity. Images annotated
with “living” belong to the scene category “living room”, while scenes annotated with
“dining” belong to the scene category “dining room”. Picture taken from [10].

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Example of variability for an urban road according to the time of the day
and weather conditions. Pictures a, b and c are taken in a sunny environment, and c in
particular is characterized by the road covered by snow. Pictures d, e and f are taken during
night, and are very different from the previous ones. Images taken from the BDD100K
dataset [45].

In general, we call domain the condition in which a particular image is taken (e.g. all
the images taken in a sunny condition belong to the domain sunny). The problem related
to the complexity and variety of the scene recognition task is the following: if a network
is trained with images belonging to a certain set of domains, that we call source domains,
at test time it will be very accurate if we ask it to recognize an image belonging to one of
those domains and traditional approaches [5]-[8] obtain great results in this case, but what
if the domain in which the network will operate (i.e. the target domain) has never been
seen during training? What happens for example if we train a network to recognize sunny
images and we test it during night? The answer to this question is that if the two domains

)*
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are quite different, of course the performances of the network will decrease significantly and
it will struggle to recognize properly the classes. This issue is not a significant problem
in simple scenarios where the target domain is known, and so we know exactly in which
domain the network will be tested: for example, if we consider a robot that has to recognize
the rooms of a certain laboratory and that will be used always in the same laboratory, it
doesn’t matter if it’s able to recognize the same room classes also in other laboratories or
not, the only important thing is that it works in that one. It becomes a problem instead
in more complex scenarios, where we don’t know a priori where the network will be tested
and so it must be able to generalize through different domains. The brute-force approach
to solve this issue is of course to collect a dataset containing millions of images, that covers
all the classes that the network is asked to classify and for each class all the possible
domains in which that class could appear. The issue of this solution is that collecting
data is expensive, and the more data the network receives the more time it takes to be
trained. Let’s take for example the case of figure 1.2 where we have to recognize an urban
road: it’s impossible even to imagine which are all the possible domains in which the scene
could appear, we should consider all the possible weather conditions, in different times of
the day (because the light condition at night is completely different from the one during
the day, but also during the day we can imagine very different light conditions such as
sunrise, noon, sunset and so on). For each of these environmental conditions we should
then consider other variations such as traffic conditions, different types of roads and also
the differences on the cities where the road is located (the roads of an American city are
usually quite different from the ones of an European city or an Asian city). Then, given the
previous considerations, we can state that it’s impossible to cover in the training dataset
al the possible domain shifts that we could face in a complex real world scenario.

To address this problem, the recent algorithms exploit the so called domain adaptation

technique [11]-[13], which consists in developing a model that has to be effective in the
domain where it will be tested (target domain). The issue in this case is that usually few
labeled samples from the target domain are available, because labeling the images is often
a very expensive operation, so DA attempts to transfer useful knowledge from a larger set
of source data, which can be for example data previously collected from other sources or
derived from datasets available on the web. Domain adaptation can be used in different
contexts, either if some labeled samples from the target domain are available or if only
unlabeled samples are available. The problem of this solution is that in any case it requires
some prior knowledge of the target domain at training time, that means to have some
target data available either labeled or unlabeled, but unfortunately target data are not
always available as we saw before in the example of the urban road, because in complex
scenarios like that it’s not possible to collect data for every possible target domain because
the possibilities are too many and are unpredictable.

The alternative to DA then is the so called Domain Generalization, whose main idea
is «to learn a domain agnostic model applicable to any unseen target domain» [46]. In
other words, the purpose of DG is to find a model that can learn certain features from
the source domains such that they allow it to generalize to the target domains without
exploiting any target domain prior. Some domain generalization approaches are described
in [14] and [15], while [46] developed a deep learning framework for domain generalization
by designing a convolutional neural network architecture with novel layers performing a
weighted version of batch normalization.

))



1 – Introduction

This work, after giving a brief introduction to neural networks and particularly to
CNNs, explores Domain Generalization and Domain Adaptation solutions for the place
categorization task starting from the recently introduced JiGen approach [37], which will
be described in detail in chapter 3, that gave great results in the context of object detection
through different domains.

)!



Chapter 2

Neural Networks

2.1 Introduction

A neural network is a predictive model directly inspired by how the biological nervous
system operates and processes information. The brain can be imagined as a collection
of neurons wired together, where each neuron receives some output generated from other
neurons, does some kind of calculation and then performs one of these two actions: if the
calculation exceeds some threshold the neuron fires, otherwise it doesn’t. This behaviour
can be reproduced with an artificial neural network, which is composed by an arbitrary
number of artificial neurons that receive some input and perform similar calculations over
them, as can be seen in figure 2.1.

Figure 2.1: Picture taken from [16], representing on the left a cartoon drawing of a biological
neuron and on the right it’s mathematical model.

Neural networks allow to solve a huge variety of problems, and they are more and
more used especially in the last years, because the CPUs and the GPUs are more and
more powerful and allow to train bigger networks. Unfortunately most neural networks
are "black boxes", which means that given a result that the network produced, it’s not so
easy to understand how and why it computed that result. So they can be the right choice
in some contexts, but not in the ones where the result has to be explainable.

)"



2 – Neural Networks

2.2 Artificial Neural Networks

2.2.1 Simple perceptron

In order to start understanding a neural network, the first phase is to analyze the percep-
tron, which is a simple type of artificial neuron. A perceptron takes several inputs and
produces a binary output. Let’s consider the example in figure 2.2: the perceptron takes
three inputs (x1, x2, x3) and generates a single output.

Figure 2.2: Schema of a perceptron, taken from [17]

For computing the output, at each input is assigned a weight (w1, w2, w3) that de-
fines how much that particular input will contribute to the output, that is computed by
performing the sum of the weighted inputs, as shown in equation 2.1.

ÿ

j

wjxj (2.1)

Once the result is computed, the perceptron’s output is 0 or 1 according to whether it’s
less than or greater than some threshold value, which is a parameter of the neuron:

output =
I

0, if
q

j wjxj Æ threshold
1, if

q
j wjxj > threshold

(2.2)

The same condition can be expressed in a different way, by moving the treshold to the
other side of the inequality and by replacing it by the so called bias:

output =
I

0, if
q

j wjxj + b Æ 0
1, if

q
j wjxj + b > 0

(2.3)

The bias can be then seen as an input that states how easy is to get the perceptron to
output a 1. At this point, we can create a network composed by several layers containing
perceptrons, as shown in figure 2.3, and use it to solve a problem. In order to work
and to make the learning possible, the condition is that applying a small change to some
weights/biases will cause only a small corresponding change in the output from the network,
so that given an output we can make some small changes to the weights and biases to obtain
a result closer to the one that has to be reached. Unfortunately, this doesn’t happen with a
network composed by simple perceptrons, because a small change could change the output
of a perceptron from 0 to 1, and this change could affect considerably the final output. To
avoid this issue, we must introduce an activation function.

)#



2.2 – Artificial Neural Networks

Figure 2.3: Schema of network composed of three layers of perceptrons, taken from [17]

2.2.2 Activation function

In the previous section we saw that the output values of a simple perceptron could be only
0 or 1 (xj œ {0, 1}), and this caused the issue described before. A way to solve the problem
is to introduce an activation function, for example the sigmoid, that allows the inputs of
the neurons to be a real number (xj œ [0, 1], xj œ R). The sigmoid is a function defined in
equation 2.4:

‡(z) = 1
1 + e≠z

(2.4)

Figure 2.4: Graph of a sigmoid, image from [16]

In this case, considering a neuron which receives as input a vector x œ Rm and performs
a dot-product with the weights vector w œ Rm, the output of each neuron is then rewritten
in the form:

y = ‡(
ÿ

j

wjxj + b), with y œ [0, 1] (2.5)

Other commonly used functions are the tanh, the ReLU and the step function (figure
2.5).

)$
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(a) ReLU (b) tanh

(c) Step function

Figure 2.5: Graphs of the most common activation functions, images from [16] and [17]

More in general equation 2.5 can be rewritten in 2.6, where f is the activation function
adopted:

y = f(
mÿ

j=1
wjxj + b), with y œ [0, 1] (2.6)

2.2.3 Neural networks architecture

As mentioned earlier, a neural network is composed of different layers: an input layer, an
output layer and optionally n hidden layers. An example with two hidden layers is shown
in figure 2.6. The layers are connected such that the output of layer li is the input of li+1.
This example in particular shows a fully connected network, because each neuron of layer
li is connected with every neuron of layer li+1, but there are also other networks where not
all the neurons are connected. Another clarification is that in this kind of networks each
layer takes as input only the outputs of the previous layer, which means that there are no
loops in the network: such networks are called feedforward neural networks. There are also
the so called recurrent neural networks which have loops, but they have not been used in
this work.
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2.2 – Artificial Neural Networks

Figure 2.6: Schema of a neural network with two hidden layers, taken from [16]

2.2.4 Training process

The process of training a network consists in learning the weights and the biases for each
neuron, such that the difference between the output produced from the network and the
desired one is minimized. The training begins with a random initialization of the weights
and the biases: it’s important to initialize the weights to small values while the biases
may be initialized to zero or to small positive values. After the initialization, the process
evolves by alternating two phases: forward propagation and back-propagation [20]. The
forward propagation is the phase where the information flows forward through the network,
starting from the input layer up to the output layer, passing at each hidden layer in the
network. As soon as the last value is computed, the output generated is evaluated by a
loss function that computes how far is the predicted result from the desired one. The loss
function in general has a form like this, assuming a training set x = {xi, yi}m

i=1:

C(w, b) = 1
2

mÿ

i=1
|fw,b(xi) ≠ yi| (2.7)

where fw,b(xi) is the predicted value and yi is the true value. The loss can never assume
a negative value, and is very close to zero when the predicted value is almost equal to the
target one.

After computing the loss, the back-propagation phase begins: the error that was com-
puted by the loss function is propagated backwards up to the first layer, and the weights
and the biases of the neurons are updated according to some policy. The purpose of the
whole process is to find the set of weights and biases which minimize the loss function
(2.7), and to do so the most common used technique is the Gradient Descent, which is
a specific technique to solve minimization problems. This allows to obtain an update rule
for the weights and the biases of each neuron:

wi,j = wi,j ≠ ÷
ˆC

ˆwi,j
(2.8)
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bi = bi ≠ ÷
ˆC

ˆbi
(2.9)

where ÷ is a small and positive parameter known as learning rate, which controls how
much to change the value of the weight/bias in response to the estimated error each time
the model weights are updated. Commonly ÷ has an higher value in the first iterations of
the training, because at the beginning the loss is high and we are far from the minimum,
and it decreases as the loss goes down to reach the convergence. The gradients with respect
to each parameter correspond then to the contribution of that parameter to the error, and
so they are subtracted. Figure 2.7 Illustrates a schematic representation of the whole
training process, while figure 2.8 shows an illustration of the gradient descent algorithm,
which repeats step by step by computing the gradients and updating the weights in order
to go in the opposite direction to the gradient, getting closer and closer to the minimum
until the value of the parameter reaches a point beyond which the loss function cannot
decrease.

Figure 2.7: Illustration of how the gradient descent works. Image taken from [18].

Figure 2.8: Illustration of how the gradient descent works. Image taken from [18].

The gradient descent can be applied in different ways: let’s consider the cost function
introduced in equation 2.7, this has the form C = 1

n

q
x Cx, which is an average over the

costs for the individual training samples. This means that in this way the gradients have
to be computed on each training sample, but this is not always feasible, especially when
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the training samples number is huge. This case is known as online learning. To speed
up training, it can be used the so called Stochastic Gradient-Descent (SGD), where the
gradients are computed only after processing batches of data. In this case the the batch size
is a very important parameter, that affects considerably the performances of the algorithm.
Commonly it assumes values between 16 and 256. This approach works because, provided
that the batch size is large enough, the average value of the gradient of the batch will be
roughly equal to the average over the whole set. In mathematical terms, considering ÒC
the average overall gradient and ÒCx the gradient over sample x, we can randomly pick
m training inputs from the whole training set, calling X = X1, X2, ..., Xm the selected
samples, and considering ÒCXj the gradient over the sample Xj we can say:

ÒC =
q

x ÒCx

n
¥

qm
j=1 ÒCXj

m
(2.10)

This confirms then that the overall gradient can be estimated by computing gradients
just for the batch. So, in case of SGD, the training has the following schema: the training
dataset is split randomly in m batches, which are used one by one for training and updating
the weights. After the weights have been updated with batch 1, the process is repeated
with batch 2 and so on until all the batches have been used. Once this process ends, it is
said that an epoch of the training has completed, and the training can be repeated for a
new training epoch.

Another technique is called Batch Gradient Descent which consists in using a batch that
corresponds to the entire dataset, so that the weights are updated after the computation
of the loss function over the whole dataset, but this is not efficient in applications that
involve large datasets containing million of samples.

2.2.5 Optimizations for neural networks

The backpropagation procedure described so far can be improved with some techniques,
that include the use of a better cost function known as cross-entropy and some "regular-
ization" methods.

Starting from the cost function, the easiest way to implement it would be to use a normal
quadratic cost function, but this choice sometimes presents an issue, as explained by [17].
Normally we would expect a network to learn slower when the error is small, and faster
when the error is huge, but the use of the sigmoid as activation function in combination
with this loss function could generate some problems. Let’s consider for example a single
neuron, whose expected output is 0: depending on the initialization of the weight and the
bias the predicted output will converge to 0 as the training proceeds, but if the initial
predicted output is very close to 1 (so the error is huge), it happens that the learning
starts out very slowly and requires a lot of epochs to drive down the cost of a few points,
and at some point it starts to drop fast up until reaching a value very close to zero. This
behaviour is strange and is known as slowdown problem. The cause is that, when the
learning is slow and the predicted output is very close to 1, the partial derivatives of the
cost function ˆC/ˆw and ˆC/ˆb are very small and so it takes a lot of time to decrease
the value. The derivatives are small because they depend on the derivative of the sigmoid,
which is a very low value when the output is very close to zero or very close to one, as can
be seen in figure 2.9.

)(



2 – Neural Networks

Figure 2.9: Graph of the sigmoid and it’s derivative.

In the example of the single neuron defined above, it’s not a problem if the output is
very close to zero, because it means that it’s very close to the true label, but it’s a problem
if the output is close to one, because it will require a lot of epochs to converge. This issue
can be avoided by using the so called cross-entropy loss, which is defined as:

C = ≠ 1
n

ÿ

x

[y ln a + (1 ≠ y) ln (1 ≠ a)] (2.11)

where n is the size of the training data, y is the target output and a = ‡(z) is the
output of the neuron, with z =

q
j wjxj + b. It can be derived that with this cost function,

the rate at which the neuron learns is controlled by ‡(z)≠y, that is the error in the output
and so the problem has been solved.

Another major issue that can be encountered with neural networks is overfitting. [19]
says that «the factors determining how well a machine learning algorithm will perform are
its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning: un-

derfitting and overfitting. Underfitting occurs when the model is not able to obtain a
sufficiently low error value on the training set. Overfitting occurs when the gap between
the training error and test error is too large».

When there is overfitting, the networks learns about peculiarities of the training set,
not just recognizing the classes of the samples, and this of course is not good and generates
problems. This is a major problem in neural networks, especially in the modern ones that
have more and more layers and neurons, which results in having more weights and biases.
A first way to deal with this problem is to use a validation set separated from the training
set and the test set, so that the network is trained on the train samples and at the end
of each epoch is tested on the validation set. Overfitting will occur when the accuracy
on the validation saturates to 100% while the one of the test stops growing or starts to
decrease. So the accuracy on the validation can be used as an overfitting alert, when it
saturates the training has to be stopped. This strategy is called early stop. Of course, the
best solution to overfitting would be to increase the training set dimension by collecting
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more and more samples, but training data can often be difficult and expensive to acquire,
so it’s not always feasible.

Another way to reduce overfitting is to use one of the so called regularization tech-
niques. The most commonly used are L2 regularization (known also as weight decay), L1

regularization, dropout and data augmentation. L2 regularization consists in adding to the
cost function an extra term that penalizes large weights and so makes the network to prefer
small weights, as the equation below shows:

C = C0 + ⁄

2n

ÿ

w

w2 (2.12)

where C0 is the original loss function, which can be the quadratic loss, cross-entropy
or any loss function. ⁄ is the regularization parameter and it decides how much the
regularization term will impact the loss. So this operation can be viewed as finding a
compromise between having small weights and minimizing the minimizing the original cost
function. This technique has shown to help the network to prevent overfitting and to
generalize better.

Another technique is L1 regularization, which is very similar to L2, but in this case the
regularization term is a bit different:

C = C0 + ⁄

n

ÿ

w

|w| (2.13)

In this case, the operation is still penalizing the large weights, but the way the weights
shrink is different from L2: when a weight has a large value |w|, L1 shrinks it much less
than L2, while when the value is small, we have the opposite behaviour.

The third possible regularization technique is called dropout, introduced in [21] and [22],
which doesn’t change the loss function as the previous techniques, but the network itself.
With dropout, when a batch of images has to be forward propagated through a network,
a percentage of random neurons are deleted from the network ([23] found out that for the
hidden layers «p=0.5 is the value that provides the highest level of regularization», where
p is the probability for a neuron to be cut off from the network at each iteration). Figure
2.10 shows the comparison between a standard neural network and a network that uses
dropout, where some of the neutrons are cut off.

The important thing is that the neurons are cut off only at training time, while at test
time all of them are used. The explanation of the improvement given by dropout is given
in [24], one of the papers that first used this technique: «This technique reduces complex
co-adaptations of neurons, since a neuron cannot rely on the presence of particular other
neurons. It is, therefore, forced to learn more robust features that are useful in conjunction
with many different random subsets of the other neurons.».

The last optimization technique presented in this section is data augmentation, which
consists in artificially expanding the training data by performing some transformations on
the samples such as random rotations, crops, horizontal flips and so on, operations that
reflect real-world variation.
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Figure 2.10: Comparison between a standard neural network and a one that uses dropout.
Image taken from [21].

2.3 Convolutional Neural Networks

Convolutional neural networks [25] are a category of neural networks specialized to clas-
sify images. The name indicates that these networks use the convolution mathematical
operation. The convolution in general is defined as:

s(t) =
⁄

x(a)w(t ≠ a)da (2.14)

In the case of convolutional networks, the first argument (x) is the input, the second
argument (w) is defined as kernel and the output (i.e s, often defined as feature map).
CNNs are composed by different types of layers, that are described one by one in this
section.

2.3.1 Convolutional layers

In a CNN, the input image is considered as a matrix of pixels, where each pixel corresponds
to a cell of the matrix. Let’s consider an example of a 5x5 px image, with just one color
channel to simplify the case: the image will be saved as a 5x5 matrix, then a convolution
is performed between this matrix and a so called kernel, which is a filter that recognizes a
particular pattern of the image.

Figure 2.11 shows the result of the convolution by using the kernel k =

------

1 0 1
0 1 0
1 0 1

------
An important parameter in the convolution is the stride, which indicates the number

of pixel shifts over the input matrix: in the example above it was equal to 1, so the kernel
shifted 9 times. So in this case the first layer after the input layer generates a 1x3x3 output,
because only one kernel has been used, but usually a layer has to detect more than just
one feature, so more kernels can be used. For example, if it uses three kernels, the output
generated will be 3x3x3. Optionally can be added also the padding parameter, which adds
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Figure 2.11: Convolution of a 5x5 matrix with a 3x3 kernel, using stride=1.

zeroes to the edge of image depending on the stride and the dimensions of the image. Given
an input of size NxN, the dimensions of the feature maps can be obtained by 2.15:

w = N ≠ F + 2P

S
+ 1 (2.15)

where w is the output width, N is the width of the input matrix, F is the kernel size,
P is the padding and S is the stride. An important concept in CNN is non-linearity,
because images are non-linear by nature (e.g. transition between pixels, the colors, the
borders etc.), so usually the output of the convolutional network is is given to a non linear
function. One of the most used is the ReLU, defined as:

f(x) = max(0, x) (2.16)

Other commonly used non-linear functions are the sigmoid, tanh and leaky ReLU.

2.3.2 Pooling layers

In addition to convolutional layers, a CNN also contains pooling layers, which are usually
used immediately after the previous ones. These layers have the scope to simplify the
output of the convolutional layers, by reducing the size of the feature maps.
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Figure 2.12: Example of usage of relu after the convolutional layer.

Given an input of size NxN, the dimension of the output of the pooling is given by the
formula:

w = N ≠ F

S
+ 1 (2.17)

There are different types of pooling, the most commons are the average pooling and the
max pooling. An example of max pooling is shown in figure 2.13.

Figure 2.13: The pooling layer receives a 64x224x224 input from the convolutional layer
and performs a max pooling operation with 2x2 filters and stride=2. Image taken from
[25]

Max pooling, as stated in [17], can be seen «as a way for the network to ask whether
a given feature is found anywhere in a region of the image. It then throws away the
exact positional information. The intuition is that once a feature has been found, its
exact location isn’t as important as its rough location relative to other features. A big
benefit is that there are many fewer pooled features, and so this helps reduce the number
of parameters needed in later layers.».
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Average pooling is very similar, with the difference that instead of taking the max, the
average value is taken.

2.3.3 Fully Connected (FC) Layers

A FC is the classical layer of a neural network, whose neurons are connected to all the
neurons of the previous layer. In CNNs they are used in the final part of the network, after
the last pooling layer, and there can be only one or more than one. To be given to the FC,
the w x h x d output of the pooling layer must be flattened to obtain a 1 x 1 x n array.
The only parameter of the fully connected layer is the number of the neurons, K, which
states how many outputs the layer will generate. The last FC has always K = number of
classes.

Figure 2.14: Example of a simple cnn. Image taken from [26].

Figure 2.14 shows a complete example of a very simple CNN, that receives in input
images of size 64x64 px. This simple network is composed by two convolutional layers
(both of them including a ReLU operation) and two pooling layers. After the last pooling
layer, there are two fully-connected layers. The softmax at the end allows to obtain as
output for each class the probability p œ [0, 1] that the image belongs to that class.

2.3.4 Batch Normalization Layers

In 2015 [27] introduced a special kind of layer, called Batch Normalization Layer, that is
frequently used in the modern networks after each convolutional layer. This layer has the
scope to simplify the training of a CNN by reducing the so called internal covariance shift,
defined in the paper as «the change in the distribution of network activations due to the
change in network parameters during training. To improve the training, we seek to reduce
the internal covariate shift. By fixing the distribution of the layer inputs x as the training
progresses, we expect to improve the training speed». Batch Normalization is based on the
idea that the training of a network converges faster if the inputs are normalized (linearly
transformed to have zero means and unit variances), as discovered by [28]. This layer then
is responsible of the normalization of its inputs: during the training phase, for each batch,
all the elements are subtracted by the batch mean and divided by the batch variance. For
example, considering a batch B, composed by x = {xi, ..., xm}, the normalized value ‚x is
given by equation 2.20 [28]:
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µB = 1
m

mÿ

i=1
xi (2.18)

”2
B = 1

m

mÿ

i=1
(xi ≠ µB)2 (2.19)

‚x = x ≠ µBÒ
”2

B + ‘
(2.20)

where ‘ is a small constant added for numerical stability. The final output of batch
normalization is given by 2.22:

‚y = “x + — © BN“,—(x) (2.21)

where E[x] and V ar[x] use all the input data.
where “ and — are two learnable parameters. As [28] says, «The normalization of ac-

tivations that depends on the mini-batch allows efficient training, but is neither necessary
nor desirable during inference; we want the output to depend only on the input, determin-
istically.» For this reason, once the network has been trained, the normalization used at
test time is:

‚y = “
x ≠ E[x]


V ar[x] + ‘

+ — (2.22)

where E[x] and V ar[x] refers to the whole population, not just the single batches. [28]
discovered also that batch normalization allows to use higher learning rates and makes the
training more resilient to parameter scale.

2.4 Transfer learning

Transfer learning is very popular technique in the last years in the computer vision field,
because it allows to build very accurate models in less time and with less data. This
technique consists in exploiting a model that was already trained to solve another problem
to solve the current one, instead of training a new network from scratch. Transfer learning
is expressed through the use of pre-trained models, which are models that were trained
on very large datasets containing millions of images (e.g. ImageNet [30]). [29] presents a
comprehensive review of the performances of several pre-trained models on computer vision
problems using data from the ImageNet challenge. The pre-trained models are adapted to
the new problem through the so called fine-tuning process: the CNN is trained on the new
dataset by keeping the weights that were learnt before, by removing the last FC layer (the
classifier) and replacing it with a one that has the proper number of outputs according to
the number of classes of the problem to handle. There are several fine-tuning strategies
that can be used: retrain the entire model, train some layers and leave the others frozen
or freeze the convolutional base and retrain only the classifier. The choice of one of these
strategies must be taken according to the dataset size and also its similarity to the dataset
that was used to pre-train the network, as figure 2.15 shows:
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Figure 2.15: Usage policies of pre-trained convolutional neural networks. Image taken from
[31].

2.5 Popular Convolutional Neural Networks

As said before, it’s a common practice in the last years to use a model that was already
tested in other contexts and that proved to be good. The advantage can come both from
the weights that were learnt in the pre-training phase (if a pre-trained network is used),
but also from the structure of the network itself. Today a lot of models are available, and
some of the most used among these are breefly described in this section.

2.5.1 AlexNet

The AlexNet architecture was proposed in 2012 by [32], when it competed in the ImageNet
Large Scale Visual Recognition Challenge where it reached top-1 and top-5 error rates of
37.5% and 17.0% which was considerably better than the previous state-of-the-art. The
network structure is shown in figure 2.16:

Figure 2.16: Architecture of the AlexNet, image taken from [32].

«The neural network, which has 60 million parameters and 650,000 neurons, consists
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of five convolutional layers, some of which are followed by max-pooling layers, and three
fully-connected layers with a final 1000-way softmax.» [32]. In the fully-connected layers
it uses the dropout regularization method.

2.5.2 VGGNet

The VGGnet was developed in 2014 by [33], in the context of object recognition and
detection. The network was proposed in different configurations, as shown in image 2.17

Figure 2.17: Different configurations of VGG. Image taken from [33].

The network won the ImageNet Challenge 2014, where it allowed the team to reach
the first and the second places in the localization and classification tasks respectively.
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The convolutional layers make use of filters with a very small receptive field: 3x3, with
stride=1 and padding=1. The max pooling layers use filters 2x2 with stride=2. All the
configurations shown in 2.17 follow the same design and «differ only in the depth: from
11 weight layers in the network A (8 conv. and 3 FC layers) to 19 weight layers in the
network E (16 conv. and 3 FC layers). The width of conv. layers (the number of channels)
is rather small, starting from 64 in the first layer and then increasing by a factor of 2 after
each max-pooling layer, until it reaches 512.» [33]. The configuration that achieved the
best results is D.

2.5.3 GoogLeNet

GoogLeNet [34] is a 22-layers deep network that won the ImageNet Large-Scale Visual
Recognition Challenge 2014 (ILSVRC14) by reaching a 6.7% top 5 error. This network has
12x less parameters (only 5 million, it removes FC layers completely) than the AlexNet
and is 2x more accurate. This network makes use of the so called Inception Layers: the
main idea of these layers is to cover a bigger area but at the same time also keep fine
resolutions for small informations on the images. This goal is reached by using a series of
filters with different sizes, as shown in figure 2.18, while figure 2.19 shows the details of
the parameters for each layer.

Figure 2.18: Inception module. Image taken from [34].

2.5.4 ResNet

Residual networks [35] were first presented in 2015 and won the 1st place on the ILSVRC
2015 classification task. These networks were built to face the vanishing gradient problem
[36]: if a network depth is very large, the gradient is back-propagated in many layers and it
could then became very small, making the training process very difficult. For this reason,
usually increasing the number of layers in a normal network allows to obtain an improved
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Figure 2.19: Inception module. Image taken from [34].

accuracy, but at some point the vanishing gradient problem will make it decrease, as shown
in figure 2.20:

Figure 2.20: Training error (left) and test error (right) on CIFAR-10 with 20-layer and
56-layer “plain” networks. The deeper network has higher training error, and thus test
error. Image taken from [35].

The ResNet faces this problem with the so called residual block, shown in figure 2.21:
As can be seen in the figure, the residual block is characterized by the so called skip

connection identity mapping, that is responsible of adding the output from the previous
layer to the layer ahead. So, considering a layer:

y = F (x, {Wi}) + x (2.23)
where x and y are the input and output vectors of the layers considered, and F (x, {Wi})
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Figure 2.21: Illustration of a residual block. Image taken from [35].

represents the residual mapping to be learned. Sometimes however F (x) and x can have
different dimensions, in this case we can perform a linear projection Ws by the shortcut
connections to match the dimensions:

y = F (x, {Wi}) + Wsx (2.24)

The design of a 34-layers residual network is illustrated in figure 2.22.
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Figure 2.22: Example of a 34-layers ResNet. Image taken from [35].
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Chapter 3

The JiGen approach

This chapter gives an overview over JiGen, an approach recently introduced that gave great
results in the task of object recognition across different domains. This approach was the
starting point of this work, and it was adapted to obtain good results also in the context
of place recognition.

3.1 Introduction

The JiGen approach, presented in a CVPR paper [37] in 2019, is based on the consideration
that «human adaptability relies crucially on the ability to learn and merge knowledge both
from supervised and unsupervised learning: the parents point out few important concepts,
but then the children fill in the gaps on their own. This is particularly effective, because
supervised learning can never be exhaustive and thus learning autonomously allows to
discover invariances and regularities that help to generalize». This means to find a way
to merge supervised and unsupervised learning in an method that will have the ability to
generalize through different domains, and for this purpose JiGen proposes to perform two
kind of operations: a supervised learning by training the model to recognize the labels,
and an unsupervised learning that makes the model learn how to solve jigsaw puzzles on
the same images. As the authors say, «this secondary task helps the network to learn the
concepts of spatial correlation while acting as a regularizer for the classification task», and
their experiments show that the method outperforms previous domain generalization and
adaptation solutions.

3.2 Algorithm overview

As told in the introduction, the main peculiarity of JiGen is the use of a secondary unsu-
pervised task to help the model to generalize better, and this task consists in the recovery
of an original image from its shuffled parts, also known as solving jigsaw puzzles. The
classification task and the jigsaw task share the same network backbone, so the approach
can be used on every kind of network without performing specific architectural changes.
The only change to make is to add to the network the jigsaw classifier, which replaces the
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last FC layer of the network (the standard classifier). Figure 3.1 shows with an illustration
how the method works:

Figure 3.1: Illustration of the JiGen approach. Starting from images of multiple domains,
a 3 ◊ 3 grid is used to decompose them in 9 patches which are then randomly shuffled and
used to form images of the same dimension of the original ones. By using the maximal
Hamming distance algorithm in [38] a set of P patch permutations is defined and an index
is assigned to each of them. Both the original ordered and the shuffled images are fed to a
convolutional network that is optimized to satisfy two objectives: object classification on
the ordered images and jigsaw classification, meaning permutation index recognition, on
the shuffled images. Image taken from [37].

Considering a batch of images that the network receives in input, some images will be
given ordered to be classified normally and some others will be instead given shuffled, and
the proportions of the split in these two groups are given by the parameter — which will be
explained in details later. Considering the shuffled ones, each image is divided in n patches
and shuffled in one of the P possible permutations, where P is a subset of the n2! possible
permutations of the tiles. The network will then receive both shuffled and ordered images,
that will go through the same convolutional network and at the end will be classified by
the object classifier or by the Jigsaw classifier. The object classifier receives and classifies
only the ordered images, while the jigsaw classifier classifies both ordered and shuffled
images (the ordered images are given with a permutation index pi = 0, while the shuffled
ones with the permutation index chosen for that permutation class). The final purpose
of this method, as said in [37], is the following: «starting from the samples of multiple
source domains, we wish to learn a model that can perform well on any new target data
population covering the same set of categories.».

From a mathematical point of view, by following the same notation of the paper, let
let us consider to have S domains, with the i-th domain containing Ni labeled instances
{(xi

j , yi
j)}Ni

j=1, where xi
j is the j-th image and yi

j œ {1, ..., C} is its class label. The primary
goal of the network corresponds to minimize the loss Lc(h(x|◊f , ◊c), y), which is referred to
the error between the true label y and the predicted value h(x|◊f , ◊c), where h is the deep
model function parametrized by ◊f and ◊c. These parameters define the feature embedding
space and the final classifier, respectively for the convolutional and fully connected parts
of the network.
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3.3 – Implementation details

Together with the primary task, the network has also to perform the secondary unsu-
pervised task of the jigsaw puzzles. For this purpose, the images are split in n x n grids
of patches, which are then shuffled considering one of the n2! possible permutations. Out
of the n2! permutations only a subset S is considered by following the Hamming distance
based algorithm in [38], and to each permutation selected an index is assigned. At this
point, a classification task can be defined: considering Ki labeled instances {(zi

k, pi
k)}Ki

k=1
where zi

k indicates the recomposed samples and pi
k œ {1, ..., P} the related permutation

index, the loss to minimize is Lp(h(z|◊f , ◊c), p), where the final fully connected layer dedi-
cated to permutation recognition is parametrized by ◊p and ◊f is the same as before. The
complete loss is given by:

argmin
◊f ,◊c,◊p

Sÿ

i=1

Niÿ

j=1
Lc(h(xi

j |◊f , ◊c), yi
j) + –Lp(h(zi

k|◊f , ◊c), pi
k) (3.1)

where Lc and Lp are both cross-entropy losses, and – is the weight given to the loss of
the jigsaw task. This parameter is very important and must be chosen properly, because
it influences considerably the final accuracy. At training time, the jigsaw classifier receives
both the shuffled images and the normal ones, while at test time only the normal classifier
is used.

3.3 Implementation details

The algorithm has two parameters related to how the jigsaw task is defined (n and P )
and three parameters related to the learning process (–, ÷, —). As mentioned before, n is
the dimension of the grid n x n used to define the image patches, and P is the size of the
chosen subset of the n2! possible permutations of the tiles. In the paper was found that the
optimal values for these two parameters are n = 3 and P = 30. The others parameters are
–, which as said before is the weight given to the jigsaw loss, eta assigned to the entropy
loss when included in the optimization process for unsupervised domain adaptation, and —
which defines the percentage of images that are given shuffled to the network inside each
batch. For example, a — = 0.6 means that for each batch 60% of the images are ordered
and 40% are shuffled.

Finally, JiGen is trained with SGD solver, 30 epochs, batch size 128, learning rate set
to 0.001 and stepped down to 0.0001 after 80% of the training epochs. A simple data
augmentation protocol is used, by randomly cropping the images to retain between 80 -
100% and randomly applying horizontal flipping.

3.4 Results

The JiGen algorithm was tested on different datasets: PACS [39], VLCS [40] and Office-
Home [41]. In particular, figure 3.2 shows the results with Domain Generalization for
PACS, which covers 7 object categories and 4 domains (Photo, Art Paintings, Cartoon and
Sketches). The results are obtained by training the model considering three domains as
source datasets and the remaining one as target.

"$



3 – The JiGen approach

Figure 3.2: Results of JiGen on the PACS dataset and comparison with previous methods.
Image taken from [37].
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Chapter 4

Algorithm overview

4.1 Introduction

For the development of the code used in this work, the starting point was the algorithm of
JiGen of [37], which was described in chapter 3. The algorithm was adapted to work with
the place recognition datasets that I used in the experiments, but unfortunately I wasn’t
able to obtain in this context the same improvements that were obtained in the paper with
the PACS dataset, so we had to make some changes in order to obtain good results in this
context. This chapter explores the algorithm used and the main ideas behind it.

4.2 The algorithm

4.2.1 Data preparation

The first phase in an image classification problem is to analyze the dataset and to decide
how to give the images to the algorithm. In our case the images come from two datasets:
COLD and BDD100K (see Chapter 5). All the images used are resized in order to match
the size 225x225 px, which is required by the pretrained neural network used, and then
normalized. The pictures of COLD in particular are characterized by a thin green line at
the bottom, that causes troubles with the secondary task and makes it too easy (as will be
explained later, the secondary task performs rotations on the images and has to recognize
the original from the rotated ones, but having a regular pattern such as the green line in this
case makes the problem too easy and the network doesn’t learn the proper features). So in
this case instead of a normal resize is performed a random crop to exclude the green line.
Another important step is to decide how to divide the images in training, validation and
test set. Each dataset contains images from three domains, at each run two domains are
considered known (source domains) and the remaining one is considered unknown (target
domain). The test set is composed by the images of the target domain, while the source
domains are split in training set (90% of the images) and validation set (10%).
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4 – Algorithm overview

4.2.2 Convolutional Neural Network

The main component of an algorithm for image classification is the neural network used,
which can be either built from scratch or it can be used an already existing one, by adapting
it to the problem and to the number of classes of the study case (see Chapter 2). The
algorithm of JiGen uses different pre-trained networks to perform the experiments: an
Alexnet and a Resnet-18, both of them pre-trained on Imagenet [30], which is a large
visual database, containing more than 14 million images, designed for use in visual object
recognition. For this work, it was initially used the same Alexnet used there, then we tried
to search if there was a network pre-trained on a dataset specific for the place recognition
task, and we found Places365. This dataset [42] contains over 1.8 million images from 365
scene categories, belonging to three macro classes: indoor, nature and urban. Figure 4.1
shows some examples of classes and images for each of the three macro classes:

Figure 4.1: Image samples from various categories of the Places Database (two samples per
category). The dataset contains three macro-classes: Indoor, Nature, and Urban. Image
taken from [42].

The authors offer different networksú pre-trained on the dataset, among which we choose
the CaffeNet, described in [43], which is a variation of the standard Alexnet. The caffenet
has the structure illustrated in figure 4.2.

It is composed from 5 convolutional layers, each of which is followed by the ReLU
operation (see Chapter 2). The first two layers are followed also by a max pooling layer
and a normalization layer, while the last layer is followed only by a pooling layer. After
the convolutional layers there are two two FC layers with 4096 neurons each, each of them
followed by a dropout layer, and finally one last FC layer that has 1000 outputs, that
in this work is replaced with the rotations classifier or with the classifier adapted for the
number of classes of this problem, which is 4.

úThe pre-trained networks are available at the page: https://github.com/CSAILVision/places365
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4.2 – The algorithm

Figure 4.2: Illustration of the structure of the CaffeNet.

This network on our problem has proved to perform better than the Imagenet version,
so we kept on the experiments using this one.

4.2.3 The rotations approach

The network, following the example of the JiGen [37] architecture, is characterized by two
tasks:

• Primary task, that is the supervised classification task. Given an image and a set
of classes, this task has to determine the class to which the image belongs.

• Secondary task, that corresponds to the unsupervised rotation task. Given an
image, a rotation is performed in one of the 3 possible combinations (90°, 180° and
360°) and then the network has to determine if the image has been rotated or not.
This task is completely unsupervised because the images that it receives don’t need
to be labeled, so it has the advantage that it use any image coming from any source.

By following the same notation as [37], let us consider to have S domains, with the
i-th domain containing Ni labeled instances {(xi

j , yi
j)}Ni

j=1, where xi
j is the j-th image and

yi
j œ {1, ..., C} is its class label. The primary task will correspond to minimize the loss

Lc(h(x|◊f , ◊c), y), which corresponds to the error between the true label y and the predicted
value h(x|◊f , ◊c), where h is the deep model function parametrized by ◊f and ◊c. These
parameters define the feature embedding space and the final classifier, respectively for the
convolutional and fully connected parts of the network.

In addition to the primary task, the network is also asked to perform the secondary task
of the rotations. For this secondary task, considering Ki labeled instances {(zi

k, pi
k)}Ki

k=1
where zi

k indicates the rotated samples and pi
k œ {1, ..., P} the related permutation index

(pi
k = 0 if the image is not rotated, pi

k œ {1, 2, 3} if the image is rotated). In this case
the loss to minimize is Lp(h(z|◊f , ◊c), p), where the final fully connected layer dedicated to
permutation recognition is parametrized by ◊p and ◊f is the same as before. The complete
loss is given by:
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4 – Algorithm overview

argmin
◊f ,◊c,◊p

Sÿ

i=1

Niÿ

j=1
Lc(h(xi

j |◊f , ◊c), yi
j) + –Lp(h(zi

k|◊f , ◊c), pi
k) (4.1)

where Lc and Lp are both cross-entropy losses, and – is the weight given to the loss of the
rotation task. This parameter is very important and must be chosen properly, because it
influences considerably the final accuracy. At training time, the rotation classifier receives
both the rotated images and the normal ones, which are sent with a rotation index pi

k = 0,
while the normal classifier receives only the non rotated images otherwise the classification
task would be tougher. At test time instead, only the normal classifier is used.

4.2.4 Domain Generalization and Domain Adaptation

The rotation task in the algorithm is used with two different approaches. The first one is the
Domain Generalization approach, where we assume that at training time we have no target
domain sample available, so the images that are rotated and used for the secondary task
belong all to the source domains. This approach works because, by learning to recognize
which images are rotated and which are not, the model learns some features that proved in
the experiments to be useful also in the classification task for images of a different domain,
unknown at training time, which means that these features are domain invariant and so
allow to generalize. The second approach is Domain Adaptation, that can be useful when
at training time we have some unlabeled samples of the target domain in which the network
will be tested. In this case these images can be used for the secondary task, so that the
model can peek into the target domain and improve further the accuracy. In this case,
the secondary task can either use only images of the target domain, or images from both
source and target.

4.2.5 Implementation details

The algorithm receives as input two important parameters: – and —. Alpha as already
mentioned before is the weight of the rotation loss Lp, so an – = 1 means that for the
overall loss the rotation loss has the same importance as the classification one. In the
JiGen paper [37] they tried several combination and found for their setting an optimal
value of – = 0.9, in this work I tried all the values in the range – = {0.9, 0.6, 0.3, 0.1}.
The other important parameter is —, which is a data bias that regulates the ratio between
the number of images that are used for the main task and the ones used for the secondary
task. For instance, — = 0.6 means that for each batch 60% of the images are normal and
40% are rotated. In the JiGen paper they found the best value of beta as 0.6, in this work
I run the experiments by trying all the values in the range — = {0.9, 0.6, 0.3}.

For the other details/parameters I followed [37]: the model is trained with an SGD
solver, 30 epochs, batch size=128 and learning rate=0.001, which is stepped down to 0.0001
after 80% of the training epochs. Data augmentation is performed by randomly cropping
the images to retrain between 80 - 100% and randomly applied horizontal flipping. As
mentioned before, the network used is the CaffeNet pretrained on places365, whose last
fully connected layer is removed and substituted with a layer which can be either the
classifier or the rotations.
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4.2 – The algorithm

4.2.6 Training process

Each run of the algorithm is repeated three times, and the final result is the average over
the three repetitions (split 0, split 1, split 2). The images of the source domains are divided
into training and validation, the network is trained for 30 epoch and on each epoch is tested
on the validation set. After the end of epoch 30, we keep the weights that generated the
best result on the validation set, and use them to test the network onto the test set (target
domain). This is due to the fact that at training time the accuracy on the test set cannot be
used directly to choose the best configuration, because it would make the model dependant
on the test set. For this reason the model considered optimal is the one that gains the
highest score on the validation set.
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Chapter 5

The datasets

5.1 Introduction

The architecture presented in chapter 4 has been tested on two datasets: COLD and
BDD100k, whose details and characteristics are presented in the following sections.

5.2 COLD

COLD [44] is an acronym which stands for COsy (Cognitive Systems for Cognitive Assis-
tants) Localization Database, it’s made up of three datasets (COLD-Freiburg, COLD-
Ljubljana, COLD-Saarbrücken) which contain indoor image sequences collected inside
three laboratories in three different european cities: the Autonomous Intelligent Systems
Laboratory at the University of Freiburg, Germany; the Visual Cognitive Systems Labora-
tory at the University of Ljubljana, Slovenia; and the Language Technology Laboratory at
the German Research Center for Artificial Intelligence in Saarbrücken, Germany. The data
were collected using three different mobile robot platforms and the same camera setup, un-
der three different illumination conditions: cloudy weather, sunny weather and at night.
The pictures were taken over several days.

5.2.1 COLD-Freiburg

The COLD-Freiburg dataset contains 26 image sequences collected by a camera mounted on
an ActivMedia PeopleBot robitic platform. The acquisition was performed in two different
parts of the laboratory environment (part A and part B), and for each part the robot
took the pictures by following two different paths: standard and extended (figure 5.1).
The data were acquired in 14 rooms belonging to 8 room categories, including regular and
omni-directional images, laser range scans and odometry.

Figure 5.1 shows the structure of the laboratory and the paths that the robot followed
while collecting the images. Among the 8 room categories contained in the laboratory, only
four of them are selected for the experiments of this thesis that are: printer area, corridor,
bathroom and office. The reason of this selection is because these are the only classes that
appear in all the selected sequences of the three datasets.
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5 – The datasets

Figure 5.1: Maps of the two parts of the laboratory in Freiburg with approximate paths
followed by the robot during data acquisition. The standard path is represented with blue
dashes and the extended path is represented with red dashes. Arrows indicate the direction
in which the robot was driving. Image taken from [44].

In figure 5.2 and 5.3 are shown some samples for each light condition and for each
selected class analyzed.

(a) corridor (b) printer area (c) office (d) bathroom

Figure 5.2: Cloudy samples from COLD-Freiburg for each class

##



5.2 – COLD

(a) corridor (b) printer area (c) office (d) bathroom

(e) corridor (f) printer area (g) office (h) bathroom

Figure 5.3: Night (row 1) and sunny(row 2) samples from COLD-Freiburg for each class

5.2.2 COLD-Ljubljana

The COLD-Ljubljana dataset is made up of 18 sequences of images taken by a camera
located on an iRobot ATRV-Mini robotic platform, in this case only one part of the en-
vironment was considered (part A) and as before it followed two paths: standard and
extended. The laboratory includes 6 rooms which resulted in 6 categories. Also in this
case the data included come from different sources: regular and omni-directional images,
and odometry.

Figure 5.4 and 5.5 show some samples of the dataset, while figure 5.6 shows the structure
of the laboratory and the paths that the robot followed while collecting the images. Among
the 6 room categories contained in the laboratory, were selected also in this case the same
four classes: printer area, corridor, bathroom and office.

(a) corridor (b) printer area (c) office (d) bathroom

(e) corridor (f) printer area (g) office (h) bathroom

Figure 5.4: Cloudy (row 1) and night (row 2) samples from COLD-Ljubljana for each class
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(a) corridor (b) printer area (c) office (d) bathroom

Figure 5.5: Sunny samples from COLD-Ljubljana for each class

Figure 5.6: Maps of the two parts of the laboratory in Saarbrücken with approximate paths
followed by the robot during data acquisition. The standard path is represented with blue
dashes and the extended path is represented with red dashes. Arrows indicate the direction
in which the robot was driving. Image taken from [44].

5.2.3 COLD-Saarbrücken

COLD-Saarbrücken contains 32 sequences acquired by an ActivMedia PeopleBot robotic
platform at the Language Technology Laboratory at the German Research Center for
Artificial Intelligence in Saarbrücken. The acquisition was performed in two different parts
of the same office environment (part A and part B) and in each part the robot followed
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the standard and the extended path, as in the previous cases. The sequences involve 13
rooms belonging to 9 classes. The structure of the laboratory is shown in figure 5.7, while
figures 5.8 and 5.9 display some samples of the images.

Figure 5.7: Maps of the two parts of the laboratory in Saarbrückenn with approximate
paths followed by the robot during data acquisition. Image taken from [44].

(a) corridor (b) printer area (c) office (d) bathroom

Figure 5.8: Cloudy samples from COLD-Saarbrückenn for each class
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(a) corridor (b) printer area (c) office (d) bathroom

(e) corridor (f) printer area (g) office (h) bathroom

Figure 5.9: Night (row 1) and sunny (row 2) samples from COLD-Saarbrückenn for each
class

5.3 BDD100K

BDD100K [45] stands for "Berkley Deep Drive", it’s a dataset containing 100,000 driving
videos collected from more than 50,000 rides, resulting in about 120,000,000 images. The
sequences were collected by driving across many regions, as shown in figure 6.4.

Figure 5.10: Geographical distribution of sample data in four major regions (1000 samples
in each region). Each dot represents the starting location of every video clip

From each of the videos, the authors extracted and annotated the frame at the 10th
second. The resulting images represent different scenes such as urban roads, residential
areas and highways, in different times of the day and weather conditions, as shown in figure
5.11.

The dataset includes also bounding box annotations for 10 categories and other details,
but they were not considered in this work because it’s purpose is to classify the images just
at scene level. For the experiments in chapter 6 the scene labels listed in 5.11 b couldn’t be
used, because there are too few images for the classes parking lot, gas station and tunnel
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5.3 – BDD100K

(a) weather (b) scene (c) time

Figure 5.11: Distribution of images in weather, scene, and day hours categories. Image
taken from [45].

and I needed at least four classes, so by looking at the dataset I collected the 4 classes that
were more frequent: urban road, suburban road (including the highways), crossroad and
crosswalk. For each of these classes have been considered images in three light conditions:
cloudy, night and sunny. Figure 5.12 shows a sample image for each light condition and
for each class. By looking at the picture it can be noticed that the first two classes (i.e.
crosswalk and crossroad) appear to be very similar, because also the crossroad has almost
always one or more crosswalks. The difference is that the crosswalk class consider only a
pedestrian crosswalk with no roads that cross the main one, while instead the crossroad
covers the cases where there is clearly a road that crosses the one where the car is travelling.

(a) crosswalk (b) crossroad (c) suburban road (d) urban road

(e) crosswalk (f) crossroad (g) suburban road (h) urban road

(i) crosswalk (j) crossroad (k) suburban road (l) urban road

Figure 5.12: Cloudy (row 1), night (row 2) and sunny (row 3) samples from BDD100K for
each class.
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Chapter 6

Experiments

6.1 Introduction

The experiments have been done by using the datasets COLD and BDD100K (see chapter
5). For the COLD database, I followed the experimental settings used in [37] and consid-
ered only a subset of the available images: for each laboratory and light condition were
considered only the standard sequences 1 of part A, except for Saarbrücken Cloudy for
which was used sequence 2 because the authors of the database declared that there were
some acquisition issues with sequence 1, and for Saarbrücken Sunny for which was used
sequence 1 of part B because part A doesn’t contain sunny sequences.

The BDD100K dataset instead was quite challenging because it didn’t have the labels
that I needed for the experiments, so I considered a small part of it and I added the labels
by hand, collecting more or less 2000 images.

Each result presented in the tables in this chapter is the average of three runs of the
same experiment (step 0, step 1 and step 2), in order to minimize the error.

6.2 COLD dataset

For the COLD dataset I considered the only four classes that were shared by all the image
sequences of the three laboratories: printing area, corridor, office and bathroom. The
class office collects the images from both the classes one-person and two-person office that
appear in the original database labeling system.

In figure 6.1 is shown the distribution of the images for each laboratory environment,
according to the different class and light condition. As can be seen, the database is really
unbalanced: the most of the images belong to the class corridor, especially in the case of
Ljubljana (fig. 6.1 b), while the other three classes have a much lower number of samples.
This is due to the structure of the laboratories, where the corridor occupy most of the
space, and so the robot spent much more time on it while taking the pictures.
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(a) Freiburg (b) Ljubljana

(c) Saarbrücken

Figure 6.1: Distribution of the images of the COLD database according to class and light
condition

6.2.1 Problem introduction

The dataset presents two domain shifts: one related to the light condition (Cloudy, Night,
Sunny) and the other related to the laboratory where the pictures were taken (Saarbrücken,
Freiburg and Ljubljana). So two different problems can be analyzed in this case:

• Problem 1: the domain shift is assumed to be on the light condition, the network
is trained on sequences of the same laboratory, training on two light conditions and
testing on the third. The experiment is repeated for each combination of light con-
ditions and for each laboratory (e.g. images from Lab 1, train on Cloudy and Sunny
and test on Night images etc.).

• Problem 2: the domain shift is the change of the laboratory, the network is trained
on sequences of the same light condition, training on two laboratories and testing on
the third. The experiment is repeated for each combination of laboratory and for
each light condition. (e.g. Cloudy images, train on Lab1 and Lab2 and test on Lab3
images etc.).

6.2.2 Domain Generalization

The first way to handle the problem is domain generalization, where it’s assumed that
there are no images of the target domain available during the training phase. First of
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all, I considered Problem 1 where the laboratory is kept constant and the domain shift
is the light condition, and run an experiment without using the secondary task, to see
how accurate is the CNN when tested on a domain that it has never seen during training.
The result is shown in the first row of table 6.1, characterized by the input parameters
alpha=0 and beta=1 (i.e. alpha=0 means that the secondary task will have a weight=0
in the loss, and beta=1 is saying that all the images are used only for classification). This
experiment generates nine results: three results (i.e. one for each light condition) for each
laboratory. The last column (i.e. avg) shows the average of the previous nine results. The
average accuracy in this case is 85.95%, it’s a good result considering that the network was
tested on an unknown domain and means that in general the three domains are similar.
In figure 6.2 are shown the confusion matrices for each of the nine sub-experiments: each
experiment as mentioned before was run three times (step 0, step 1 and step 2), these
matrices are related to the first run (step 0). The matrices show that the results are very
good for Freiburg and Ljubljana, with accuracies that are above 90% when the target
domains are cloudy and sunny, while it’s a bit lower when testing on night images as could
be expected, because it’s the more relevant domain shift among the three. The results on
Saarbrücken (fig. 6.2 g, h, i) instead are lower, especially in the case target=sunny, that
is quite different from the others because it has a different distribution of images in the
four classes: in particular, the corridor has much less pictures compared to the proportions
of the other cases, and many images of the other classes are confused as corridor. The
accuracy in this case is only less than 50%. After this first experiment, the secondary task
was turned on and the algorithm was tested with different combinations of alpha and beta
considering alpha = [0.9, 0.6, 0.3, 0.1] and beta = [0.9, 0.6, 0.3]. The results are shown in
table 6.1, where each row correspond to a different configuration of the input parameters.
By looking at these results, we can see that the secondary task is helping the network to
classify better the images, because the average accuracy is almost always better than the
one of the configuration alpha=0, beta=1. In particular, the best result is obtained with
the combination alpha=beta=0.6, where 60% of the images are used for classification and
the remaining 40% for the secondary task. The worst results are obtained with beta =
0.3, and the reason is that in this case only 30% of the images are used for classification,
a too low percentage that causes a reduction of accuracy. I also tried some experiments
with beta=0.1 and the average accuracy decreased further, giving an accuracy below 85%.

Table 6.2 shows instead the results for Problem 2. This case is similar to Problem 1,
with the difference that here the light condition is kept constant and the domain shift is
the change of the laboratory, so for each light condition the network is trained on images
of two laboratories and tested on the third. As in the previous case the experiment is
repeated for each combination of light condition and for each laboratory, generating nine
results for each run plus their average. The first thing that can be noticed from this table
is that the accuracy is quite lower than in problem 1: considering for example the baseline
case, for problem 1 the accuracy was about 86% while now it’s about 60%. This happens
because the domain shift of the laboratory is much more relevant than the one on the light
condition, because the rooms of the three laboratories are very different. The confusion
matrices of this experiment (step 0) are displayed in figure 6.3, and show that in this case
the network manages to recognize properly only the corridor, while fails in recognizing the
other three classes: the reason of this behaviour is that the features that were learnt for
the classes office, printer area and bathroom are limited to the source domains, because
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(a) target = cloudy1 (b) target = night1 (c) target = sunny1

(d) target = cloudy2 (e) target = night2 (f) target = sunny2

(g) target = cloudy3 (h) target = night3 (i) target = sunny3

Figure 6.2: Confusion matrices of the baseline for Problem 1 (Step 0). The first row shows
the results with target domain td= Freiburg (a, b, c), second row with td=Ljubljana (d, e,
f), third row with td=Saarbrücken (g, h, i).

the obtained accuracy on the validation set is always very high (> 90%), but they are not
suitable for the target domain. In this case we can see that the best result is the one with
alpha=0 and beta=1, that is the one obtained with the secondary task turned off, so here
the task is not only not helping the classification, but it seems that it’s going in conflict
with it. The reason of this behaviour is probably that the domain shift among the source
domains and the target domains is too huge and so the secondary task doesn’t manage to
learn features that can be helpful across all the domains.
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Freiburg Ljubljana Saarbrücken avg

Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

– = 0, — = 1 96.99 90.62 95.85 97.25 81.68 96.33 84.92 83.31 46.53 85.94
– = 0.9, — = 0.9 97.29 92.29 94.33 96.83 83.03 95.56 86.76 84.21 48.21 86.5
– = 0.9, — = 0.6 97.58 89.49 96.17 96.56 82.53 96.21 83.79 84.81 49.98 86.35
– = 0.9, — = 0.3 98.11 89.1 94.7 97.12 82.42 95.63 83.7 85.03 45.15 85.66
– = 0.6, — = 0.9 97.45 92.58 94.65 97.0 82.72 96.07 86.29 83.94 49.23 86.66
– = 0.6, — = 0.6 97.45 90.31 97.48 96.97 82.79 95.86 86.02 84.29 49.89 86.78
– = 0.6, — = 0.3 97.63 90.59 93.63 97.27 82.47 95.86 84.56 84.13 47.72 85.98
– = 0.3, — = 0.9 97.6 92.01 94.96 97.09 82.32 95.74 86.95 83.88 48.74 86.59
– = 0.3, — = 0.6 97.52 93.09 95.1 96.75 82.35 96.5 85.88 83.36 49.18 86.64
– = 0.3, — = 0.3 97.5 88.49 95.77 96.71 82.02 95.65 86.07 83.58 46.04 85.76
– = 0.1, — = 0.9 97.7 92.5 96.24 96.95 81.83 95.94 86.46 81.91 50.2 86.64
– = 0.1, — = 0.6 97.65 92.15 95.42 96.98 82.72 96.21 85.11 84.05 46.92 86.36
– = 0.1, — = 0.3 97.06 92.33 96.1 96.92 82.35 95.81 85.8 82.37 50.07 86.53

Table 6.1: Results obtained by keeping constant the laboratory and by changing the light
condition. Each row represents a run with a different combination of alpha and beta, each
column represents the domain that was used as target. The avg column reports the average
of the nine results for each run.

Cloudy Night Sunny avg

Frei. Ljub. Saar. Frei. Ljub. Saar. Frei. Ljub. Saar.

– = 0, — = 1 57.48 77.24 62.26 54.2 71.92 55.76 55.39 64.28 40.86 59.93
– = 0.9, — = 0.9 59.29 76.56 58.6 57.76 72.65 53.43 57.45 59.9 36.79 59.16
– = 0.9, — = 0.6 57.91 71.38 59.98 57.0 69.37 53.43 56.61 61.78 41.35 58.75
– = 0.9, — = 0.3 57.55 74.33 59.18 55.51 68.82 57.92 56.23 59.93 40.15 58.85
– = 0.6, — = 0.9 58.37 75.92 58.63 57.27 71.11 52.22 55.58 64.07 39.75 59.21
– = 0.6, — = 0.6 57.78 68.75 60.14 55.31 70.69 55.29 54.83 63.26 36.74 58.09
– = 0.6, — = 0.3 57.78 72.19 58.3 54.53 71.53 56.25 55.02 66.77 39.93 59.14
– = 0.3, — = 0.9 58.52 75.7 58.99 56.68 68.75 56.47 57.12 62.59 41.39 59.58
– = 0.3, — = 0.6 57.78 74.63 58.02 56.49 71.46 52.08 56.33 62.18 40.73 58.86
– = 0.3, — = 0.3 57.17 75.36 61.52 54.0 70.07 54.33 56.56 61.24 39.0 58.81
– = 0.1, — = 0.9 58.35 79.39 56.76 56.72 70.61 54.61 55.81 65.57 40.81 59.85
– = 0.1, — = 0.6 57.71 80.56 60.64 54.41 68.87 54.28 54.37 67.22 39.4 59.72
– = 0.1, — = 0.3 57.86 74.06 58.63 54.65 68.33 55.59 55.74 65.83 40.64 59.04

Table 6.2: Results obtained by keeping constant the light condition and by changing the
laboratory. Each row represents a run with a different combination of alpha and beta,
each column represents the domain that was used as target. The avg column reports the
average of the nine results for each run.

6.2.3 Domain Adaptation

In the last section we saw that the rotations task helps the classification only in the case
of problem 1, while in the second case the accuracy gets lower. To improve the results
also for problem 2, I looked for a way to extract some features that can be meaningful

$$



6 – Experiments

(a) target = cloudy1 (b) target = cloudy2 (c) target = cloudy3

(d) target = night1 (e) target = night2 (f) target = night3

(g) target = sunny1 (h) target = sunny2 (i) target = sunny3

Figure 6.3: Confusion matrices of the baseline for Problem 2 (Step 0)

also for the target domain, and I decided to try with Domain Adaptation. In the Domain
Generalization case, the images that are used for the secondary task belong only to the
source domain, because it’s assumed that there are no samples available from target domain
at training time. In this case instead, the secondary task receives as input images from
both the source and the target domain, so that the algorithm can use them to peek into
the target domain and to learn some features from the rotations that can be helpful also in
classifying the target samples. Of course the images from the target domain are used only
for the secondary task and not for classification, and they are sent without the label because
the task is completely unsupervised. The architecture is very similar to the previous one,
but this time more images will be available for the secondary task: the parameter beta in
this case represents both the percentage of images used for the rotations from the source
domains, and the percentage of images from the ones available from the target domain
(e.g. beta=0.6 means that for the secondary task will be used 40% of the image of the
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6.2 – COLD dataset

source and 40% of the ones of the target). The results of Problem 1 are shown in 6.3, and
we can notice that they are quite similar to the ones with Domain Generalization, with
a maximum accuracy of 86.86 with alpha=0.6 and beta=0.3. So, in this case where the
domain shift is the light condition, using some images from the target does not improve
significantly the accuracy of the primary task, probably because the target domain is not
so different compared to the source ones, so the features that are learnt with the rotations
on the source images are already sufficient to get an improvement, as we already saw in
Table 6.1.

Freiburg Ljubljana Saarbrücken avg

Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

– = 0, — = 1 96.99 90.62 95.85 97.25 81.68 96.33 84.92 83.31 46.53 85.94
– = 0.9, — = 0.9 97.4 86.85 94.72 96.66 82.8 96.57 86.73 83.91 49.76 86.16
– = 0.9, — = 0.6 96.99 88.12 96.66 97.14 82.68 95.61 84.75 83.42 49.49 86.1
– = 0.9, — = 0.3 97.29 84.32 95.1 96.95 82.7 95.2 83.29 81.55 48.34 84.97
– = 0.6, — = 0.9 97.52 90.6 96.03 97.05 82.63 96.97 84.53 82.95 46.7 86.11
– = 0.6, — = 0.6 97.45 89.94 96.78 96.9 82.35 95.94 85.08 83.99 51.22 86.63
– = 0.6, — = 0.3 97.4 90.57 97.01 96.97 82.61 95.82 84.81 84.65 51.88 86.86
– = 0.3, — = 0.9 97.14 89.23 96.71 97.12 82.16 96.21 87.48 83.66 47.1 86.31
– = 0.3, — = 0.6 97.45 92.27 96.36 96.78 82.53 95.84 85.38 83.25 46.97 86.31
– = 0.3, — = 0.3 97.88 91.43 95.33 96.42 82.67 95.82 83.62 81.17 50.07 86.05
– = 0.1, — = 0.9 97.45 90.43 93.56 97.36 82.37 96.08 86.48 83.42 47.28 86.05
– = 0.1, — = 0.6 97.32 88.67 93.18 96.63 82.3 95.77 85.47 83.66 47.59 85.62
– = 0.1, — = 0.3 97.24 89.0 96.48 96.85 82.39 96.43 83.18 81.66 49.31 85.84

Table 6.3: Results with Domain Adaptation for problem 1, obtained by keeping constant
the laboratory and by changing the light condition. Each row represents a run with a
different combination of alpha and beta, each column represents the domain that was used
as target. The avg column reports the average of the nine results for each run.

The situation changes significantly in the setting of Problem 2, where we noticed in
Table 6.2 that the features learned only on the source domains were not meaningful for the
target. Table 6.4 reports the results with Domain Adaptation, and they show a significant
improvement from the ones with DG. In this case the secondary task allows to obtain an
accuracy slightly higher than the baseline result, but by observing the avg results for each
run where the secondary task is used, the scores are much better than the ones with DG.

The best score of 60.39% is obtained with alpha=0.6 and beta=0.6, which is much
better than the 58.09% obtained with the same parameters with Domain Generalization:
if we look more in details the results, there is a huge improvement especially when we test
on Saarbrücken cloudy, where with DG the accuracy is 68.75%, while with DA is 80.94% .

Also in this case however the results are only slightly better than the baseline, so I
tried to change the configuration in order to see if I could get a bigger improvement. After
many tries, I managed to obtain a better accuracy by changing the beta impact on the
percentage of images of the target used: in the previous results, a beta=0.6 meant that
60% of the source domains images are used for the primary classification task, while the
remaining 40% of the source plus another 40% of the images of the target are given rotated
to the secondary task. My speculation was that the more target images the secondary task
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Cloudy Night Sunny avg

Frei. Ljub. Saar. Frei. Ljub. Saar. Frei. Ljub. Saar.

– = 0, — = 1 57.48 77.24 62.26 54.2 71.92 55.76 55.39 64.28 40.86 59.93
– = 0.9, — = 0.9 57.94 77.85 59.68 55.24 72.83 55.35 55.53 66.53 37.72 59.85
– = 0.9, — = 0.6 57.43 80.56 60.8 54.65 71.79 57.35 54.69 65.97 38.29 60.17
– = 0.9, — = 0.3 56.94 82.75 56.98 55.08 73.5 55.81 54.15 64.75 39.58 59.95
– = 0.6, — = 0.9 57.78 75.53 60.61 54.9 72.48 56.47 56.51 66.35 38.51 59.91
– = 0.6, — = 0.6 57.3 80.94 62.7 55.9 73.28 53.32 53.92 67.12 39.04 60.39
– = 0.6, — = 0.3 57.43 82.9 62.7 55.84 69.72 56.03 55.11 59.03 38.69 59.72
– = 0.3, — = 0.9 58.04 78.94 61.52 55.0 70.5 52.74 57.03 65.19 40.86 59.98
– = 0.3, — = 0.6 57.76 80.22 59.12 54.96 75.29 57.65 54.15 63.08 40.02 60.25
– = 0.3, — = 0.3 57.55 80.95 61.22 55.51 74.51 56.11 53.57 65.99 36.21 60.18
– = 0.1, — = 0.9 57.73 76.53 59.45 55.12 70.4 56.88 55.53 66.32 40.81 59.86
– = 0.1, — = 0.6 58.47 77.58 62.79 55.39 74.35 56.61 54.72 63.57 39.58 60.34
– = 0.1, — = 0.3 57.2 79.83 63.8 55.28 69.76 57.48 55.79 62.52 39.18 60.09

Table 6.4: Results with Domain Adaptation for problem 2, obtained by keeping constant
the light condition and by changing the laboratory. Each row represents a run with a
different combination of alpha and beta, each column represents the domain that was used
as target. The avg column reports the average of the nine results for each run.

Cloudy Night Sunny avg

Frei. Ljub. Saar. Frei. Ljub. Saar. Frei. Ljub. Saar.

– = 0, — = 1 57.48 77.24 62.26 54.2 71.92 55.76 55.39 64.28 40.86 59.93
– = 0.9, — = 0.9 57.63 80.43 60.14 55.55 74.53 57.81 54.65 68.98 34.71 60.49
– = 0.9, — = 0.6 57.15 83.17 62.76 56.0 70.97 57.98 55.49 66.01 39.53 61.0
– = 0.9, — = 0.3 57.15 83.19 59.12 56.49 71.87 55.73 54.44 65.2 38.03 60.14
– = 0.6, — = 0.9 57.27 82.21 61.38 55.26 69.88 57.48 54.44 68.16 36.56 60.29
– = 0.6, — = 0.6 57.2 78.27 61.27 54.84 75.45 57.84 53.9 70.25 37.27 60.7
– = 0.6, — = 0.3 57.45 81.82 60.03 55.12 71.42 57.59 54.93 64.61 37.14 60.01
– = 0.3, — = 0.9 58.01 82.82 60.75 56.0 71.56 56.99 57.0 67.95 38.38 61.05
– = 0.3, — = 0.6 57.73 82.38 59.1 54.9 70.4 55.56 54.27 65.45 37.98 59.75
– = 0.3, — = 0.3 57.38 80.8 59.32 55.33 70.45 56.3 54.46 68.7 38.69 60.16
– = 0.1, — = 0.9 57.53 79.09 61.66 55.65 74.53 55.56 52.26 65.0 40.68 60.22
– = 0.1, — = 0.6 57.38 79.68 62.04 55.51 71.87 56.22 55.79 63.15 41.74 60.38
– = 0.1, — = 0.3 57.17 77.05 61.13 55.43 71.25 54.85 53.29 65.15 38.96 59.37

Table 6.5: Results obtained with the same setting as table 6.4, but using all the available
target images for the secondary task.

gets, the better will be the accuracy of the classification, because the features learned with
the rotations are more and more representative of the target domain. So I tried to remove
beta for the target images, such that at each run the algorithm gets always all the target
images available, while I kept it unchanged for the images of the source domains.

The results of this experiment are shown in Table 6.5, and they prove that the previous
speculation was right: in fact we obtain much better results especially with alpha=0.9,
beta=0.6 and with alpha=0.3 and beta=0.9, that gain more than one point compared to

$’



6.3 – BDD100K dataset

the baseline score. Also in the case of alpha=0.6 and beta=0.6, where before we obtained
the highest accuracy, in this case the network reaches a score of 60.7%, that is higher
than the 60.39% obtained before. I tried to use this configuration also with Problem 1,
but the results were quite similar to the ones presented in table 6.3, without significant
improvements.

6.3 BDD100K dataset

The BDD100K dataset contains 100.000 video sequences taken in different light and weather
conditions in an urban context. I considered a subset of it, containing about 2000 images,
and I identified the most recurrent classes which are: crosswalk, crossroad, urban road and
suburban road. Each class appears in three light conditions: sunny, night and cloudy. The
distribution of the images over the different classes and light conditions is shown in figure
6.4.

Figure 6.4: Distribution of the images of the BDD100K database subset according to class
and light condition

6.3.1 Problem introduction

The dataset presents only one domain shift, the light condition. Another domain shift
interesting to analyze could have been the change of weather conditions, because there are
also some images with snow and rain, but unfortunately they are too few to perform a
good analysis.

The problem to handle then is the following: given the domain shift of the light condi-
tion, the network is trained on sequences belonging to two light conditions and tested on
the third. The experiment, as well as for the COLD dataset, is repeated for each combi-
nation of light condition (e.g. train on Cloudy and Sunny and test on Night images, and
so on).
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6.3.2 Domain Generalization

The first way to deal with the problem is again to try to generalize through domains only by
using the source images, assuming that we haven’t any target sample available at training
time. So we test again our network with the additional secondary task of the rotations,
to see if also in this case this task helps the network to generalize better. First of all, the
experiment is performed with the baseline architecture, so the secondary task is turned off
by setting alpha=0 and beta=1 as already done with the previous dataset. The result is
shown in the first row of table 6.6, which reports an average accuracy of 61.79% over the
three possible combinations of target domains, which is not a very high value because only
a very small subset of the dataset was used for finetuning the network. If more images
were used, the accuracy would of course be higher, but the point of this experiment is not
to reach the highest possible accuracy with the baseline, it’s instead to show that there is
an improvement by including the secondary task in the network, that allows to generalize
better over the different domains. In figure 6.5 are displayed the confusion matrices of step
0 for each combination of target domain.

(a) target = cloudy (b) target = night (c) target = sunny

Figure 6.5: Confusion matrices of the baseline for BDD100K (Step 0)

The figure shows that the most difficult domain, as predictable, is the night condition,
where the average accuracy is about 50%. The confusion matrix shows that the only classes
that are easily recognized are the suburban road and the crosswalk, while the crossroad
is almost always confused with the crosswalk and the urban road is often confused with
crosswalk and suburban road. In the other cases instead the accuracy is higher, especially
when the target is the cloudy domain, where the accuracy is almost 70% and the classes
urban and suburban road are very well separated, while there is still a bit of confusion
between crosswalks and crossroads: this behaviour is expected because the two classes are
very similar, due to the fact that the crossroads that appear in the dataset contain almost
always crosswalks. By looking at the three matrices it also appears that the class that is
classified better is the suburban road, and also this behaviour is expected because it’s the
class that is most different from the others (crossroad and crosswalk are always located
in an urban road). The results with the secondary task activated are listed in table 6.6,
and they are almost always higher than the baseline, with a maximum value of 63.25% of
accuracy with alpha=0.3 and beta=0.6.

Figure 6.6 shows a comparison among the confusion matrices of the baseline and the
ones of the best result for Domain generalization (alpha=0.3, beta=0.6), and we can see
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Cloudy Night Sunny avg

– = 0, — = 1 69.63 53.0 62.75 61.79
– = 0.9, — = 0.9 71.4 53.68 63.54 62.87
– = 0.9, — = 0.6 71.21 55.03 62.46 62.9
– = 0.9, — = 0.3 69.13 57.06 62.75 62.98
– = 0.6, — = 0.9 68.5 52.1 60.27 60.29
– = 0.6, — = 0.6 70.33 55.53 61.76 62.54
– = 0.6, — = 0.3 70.08 50.92 61.9 60.97
– = 0.3, — = 0.9 70.77 54.4 62.98 62.72
– = 0.3, — = 0.6 71.21 56.07 62.46 63.25
– = 0.3, — = 0.3 69.63 50.56 64.15 61.45
– = 0.1, — = 0.9 70.08 53.13 62.98 62.06
– = 0.1, — = 0.6 70.39 53.09 62.7 62.06
– = 0.1, — = 0.3 68.31 54.22 61.95 61.49

Table 6.6: Results obtained for BDD100K with Domain Generalization. Each row is a
run of the experiment with a different combination of the input parameters. Each column
represents the domain that was used as target.

an improvement especially in the first two cases, where the target domains are respectively
cloudy and night.

6.3.3 Domain Adaptation

Also with this dataset, we can try the approach of domain adaptation to see if we can
reach even better results. So the network is trained by giving the images of the source
domains to the classification task, and images both from the source and the target (without
the labels) to the secondary unsupervised task that performs the rotations. The results
are listed in table 6.7, and we can see that they are a bit better than the ones with
Domain Generalization. So also in this case we have the confirmation that performing an
unsupervised task on the images of the target domain allows to learn features that help
the primary classification task to be more accurate than in the case where it works only
with images of the source domains.

With this dataset I tried also an approach a bit different than the one used so far.
In the previous experiments, each batch contained a part of images that was used for
classification and the remaining images were given rotated to be used in the secondary
task, and the percentage of the split was given by the input parameter beta as seen so
far. This implies that the more beta is low, the less images are used for classification
and for that reason with very low values of beta the results are not good (e.g. I tried
with beta=0.1 and the results were lower than the others). So I tried instead to launch
an experiment where the classification task receives always all the source images, but a
percentage of these is duplicated and given rotated to the secondary task according to the
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(a) target = cloudy (b) target = night (c) target = sunny

(d) target = cloudy (e) target = night (f) target = sunny

Figure 6.6: Confusion matrices at step 0 of the baseline (a, b, c) vs Domain Generalization
with – = 0.3, — = 0.6 (d, e, f).

value of beta, plus also a percentage of images from the target domain because we are in
the Domain Adaptation case. With this setting, I obtained very good results (Table 6.8)
that outperform the ones seen in table 6.7, with a best accuracy of 65.05% with alpha=0.9
and beta=0.1, that is the condition where the 90% of images are also used for the rotations
task. Moreover, the results in the table have a predictable trend, because the highest values
of the accuracy appear when we use beta = 0.3 and beta=0.1, that are the cases where
we are using almost all the available images also for the secondary task, while instead in
the runs where beta=0.9 (i.e. only 10% of the images are given rotated to the secondary
task) we obtain an accuracy comparable to the baseline. Figure 6.7 shows a comparison
between the confusion matrices of the best result of table 6.7 (63.76% with – = 0.1 and
— = 0.6) and the best result of table 6.8 (65.05% with – = 0.9 and — = 0.1), and there is
a considerable improvement in all the three cases.
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Cloudy Night Sunny avg

– = 0, — = 1 69.63 53.0 62.75 61.79
– = 0.9, — = 0.9 70.39 55.93 63.03 63.12
– = 0.9, — = 0.6 68.37 58.28 61.39 62.68
– = 0.9, — = 0.3 68.69 58.19 61.44 62.77
– = 0.6, — = 0.9 70.14 54.08 62.14 62.12
– = 0.6, — = 0.6 70.08 57.42 61.81 63.1
– = 0.6, — = 0.3 69.63 53.5 63.31 62.14
– = 0.3, — = 0.9 70.96 55.44 62.56 62.98
– = 0.3, — = 0.6 67.68 53.95 62.98 61.53
– = 0.3, — = 0.3 70.27 54.62 63.26 62.72
– = 0.1, — = 0.9 70.39 56.97 62.0 63.12
– = 0.1, — = 0.6 69.89 57.92 63.49 63.76
– = 0.1, — = 0.3 67.87 52.95 62.56 61.13

Table 6.7: Results obtained for BDD100K with Domain Adaptation. Each row is a run
of the experiment with a different combination of the input parameters. Each column
represents the domain that was used as target.

(a) target = cloudy (b) target = night (c) target = sunny

(d) target = cloudy (e) target = night (f) target = sunny

Figure 6.7: Confusion matrices at step 0 of DA with – = 0.1, — = 0.6 (a, b, c) vs DA
(image duplication) with – = 0.9, — = 0.1 (d, e, f).
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Cloudy Night Sunny avg

– = 0, — = 1 69.63 53.0 62.75 61.79
– = 0.9, — = 0.9 69.63 53.5 62.0 61.71
– = 0.9, — = 0.6 71.02 57.19 61.2 63.14
– = 0.9, — = 0.3 71.02 57.83 63.68 64.18
– = 0.9, — = 0.1 71.34 59.54 64.29 65.05
– = 0.6, — = 0.9 70.9 51.83 62.37 61.7
– = 0.6, — = 0.6 71.78 54.4 62.65 62.94
– = 0.6, — = 0.3 70.83 58.55 63.91 64.43
– = 0.6, — = 0.1 70.33 58.5 63.77 64.2
– = 0.3, — = 0.9 71.15 53.77 62.75 62.55
– = 0.3, — = 0.6 69.82 51.78 64.15 61.92
– = 0.3, — = 0.3 70.77 54.13 63.12 62.67
– = 0.3, — = 0.1 70.14 57.24 63.91 63.76
– = 0.1, — = 0.9 69.13 51.74 62.84 61.23
– = 0.1, — = 0.6 70.52 55.21 62.09 62.61
– = 0.1, — = 0.3 70.14 55.98 64.43 63.51
– = 0.1, — = 0.1 70.14 56.34 64.47 63.65

Table 6.8: Results obtained for BDD100K with Domain Adaptation by duplicating the
images of the source that are selected to be rotated.
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Chapter 7

Conclusions

This work explored the problem of generalizing through different domains in the context
of scene recognition, which is a very recurrent and challenging problem because same
scenes can differ a lot according to the different domains they can belong to, as seen in
Chapter 1. So while developing an algorithm that performs image classification in this
context this aspect has always to be considered and handled in some way, because it’s not
always possible to cover all the possible domains and include them all into the training
set. For this purpose, the JiGen [37] approach has been used to perform both Domain
Generalization and Domain Adaptation solutions: after a brief explanation of its principles
given in chapter 3, in chapter 4 we analyzed its usage in the context of semantic place
categorization by using the rotations as secondary unsupervised task and by using a pre-
trained neural network optimized for the context, an AlexNet pretrained on Places365 [42].
In the experiments in chapter 6 we saw that this approach allows to improve the accuracy
when the model is tested on images that belong to a new and previously unknown domain,
both in the Domain Generalization and in the Domain Adaptation case. The experiments
were performed on subsets of the datasets COLD and BDD100K, described in chapter
5. Additional experiments that should be performed in future should consider first of all
larger subsets of those two datasets, and then also other scene recognition datasets such
as VPC [47] and SPED [48], to verify that this method can improve the results in every
possible setting.
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