
POLITECNICO DI TORINO

Master of Science in Electronic Engineering

Master Thesis

FPGA integration of a
compressing system for satellite

applications

Supervisors
prof. Maurizio Martina
prof. Enrico Magli

Candidate
Marco Cornelio

December 2019

Compiled with LATEX on December 2, 2019.

Ringraziamenti

Ringrazio innanzitutto il professor Maurizio Martina che durante i vari corsi di
studio mi ha fatto appassionare al mondo dell’elettronica digitale, portandomi per
questo a sceglierlo come relatore del mio lavoro di tesi. Inoltre, mi ha dato la
possibilità di partecipare a un progetto europeo in ambito aereospaziale, di cui ho
sempre nutrito un notevole interesse. Infine lo ringrazio per essere stato sempre
presente e a disponibile durante questi mesi di lavoro.

Un altro ringraziamento va dedicato al professor Enrico Magli e al professor
Tiziano Bianchi, sempre pronti a supportarmi, qualora sorgesse qualsiasi dubbio
sul codice da implementare.

Non potrei non ringraziare tutti i ragazzi del laboratorio del VLSI, che mi hanno
aiutato con le loro competenze a risolvere problemi relativi ad argomenti per me
sconosciuti, in quanto mai affrontati in nessun corso durante il mio percorso di
studi. Oltre a questo sono stati degli ottimi compagni di laboratorio e hanno reso
produttivi e molto più leggeri i giorni più difficoltosi.

Uno speciale ringraziamento va ai miei compagni di corso dell’università e agli
amici di sempre, che mi hanno aiutato a concentrarmi e mi hanno sempre spronato
ad andare avanti e a concludere il mio percorso di studi.

Devo ringraziare mio papà e mia mamma, che hanno sempre fatto tutto il
possibile per far sì che io potessi concludere il mio percorso di studi e mi hanno
sempre supportato in ogni momento di sconforto, incoraggiandomi a non mollare.

Infine ringrazio la mia ragazza Giorgia, che in questi anni è stata sempre presente
ed, essendo anche lei un ingegnere, ha sempre compreso la fatica per raggiungere
il fatidico traguardo. Un grande aiuto mi è stato dato durante la stesura di questo
documento ed è soprattutto grazie a lei che sono riuscito a riportare nel modo
corretto e nel tempo richiesto tutto il lavoro conseguito.

3

4

Summary
Earth observation is the use of a satellite, capable to scan the earth turning around
the orbit in order to acquire information retrieving images. Nowadays Earth obser-
vation is considered a fundamental tool for many applications. In fact today’s data
retrieve from satellites analyses, for no-military use, is involved in different areas
of application, for instance environmental monitoring, meteorology and map mak-
ing. Its importance can be also confirmed by the big amount of financial resources
invested in the sector. When some natural disasters occur, an additional aid may
be provided by the implication of satellite images, which may be useful to analyse
the situation and to supply suggestions to resolve the problem. One example of
this may be the huge fire in Siberia and in the Amazon forest occurred in summer
2019, where satellite images were used to identify pyres that were already burning
in order to extinguish them.

The EO-ALERT project is an H2020 European Union research activity coor-
dinated by Deimos Space, started in January 2018 and lasting three years. The
aim of this project is to build a next gen satellite architecture, changing the EO
data chain to reduce latency in images production and delivery, reaching higher
performances.

The extreme weather monitoring and ship detection are two possible fields of ap-
plication for this type of satellite. In the former, information about meteorological
phenomena can support more precise forecasts, allowing quicker alerts for extreme
events like earthquakes, tsunamis and convective storms. In addition, informa-
tion about surface winds can be useful for offshore wind farms and for hurricanes
monitoring.

The latter instead may be used for coastal monitoring, focusing on maritime
safety or illegal immigration. Moreover, also ship control as cargo monitoring and
hampering illegal activity, such as fishing in conservation area or drug trade, may
be another useful field of application.

Over the past 50 years, the approach used was to take earth images and to
send them to ground for the post processing phase. The proposed chain implies
images acquisition and a direct processing of them on board, sending elaborated
images directly to ground. The system has to acquire SAR and optical images,
processing, compressing and encrypting them before sending to the ground control.
The goal of this process is to reach a latency less than or equal to 15 minutes for
the image processing, starting from the end of sensor acquisition to the receiving
time at ground control.

The best solution to perform on board processing is to use a processor with
FPGA support, on which an hardware accelerator should be implemented.

The partners of the project are Deimos Space, DLR, Technische Universität
Graz, Politecnico di Torino, OHB Italia and Deimos Imaging. Each partner has to
work on a different subsystem of the satellite architecture and has at disposition

5

a Zynq ultrascale+ MPSOC ZU19EG, which has lots of space on the FPGA and
two processors: ARM Cortex-A53 with 1.5 GHz clock and ARM Cortex-R5 with
600 MHz. This board has been chosen considering the resources needed by the pro-
cessing subsystem, which is the most resource-consuming. This board is composed
by a motherboard which allows to connect the Zynq board with some extension
boards, in order to increase the available resources. The whole system is composed
of several Zynq boards, each of them representing a different satellite subsystem.
Each board has at disposition many components. The memory part is provided
by two DDR4 memories, for a total of 9 Gbytes, allowing a proper elaboration of
the image. In addition three extension boards are implied, in order to increase the
mutual communication with other boards: one with two Gbit Ethernet ports, an-
other with two QSFP connectors on which a PCIe communication is implemented
on and a final one with another Gbit Ethernet and SATA ports. In particular the
last one is useful for storing processed and compressed images before sending them
to ground.

Politecnico was assigned the compression and encryption parts. The task to per-
form is related to the compression code to implement on the board, then converting
most of it into hardware.

The first part of the thesis is about connecting and running the Zynq board
with all the extension boards plugged. This part was focused on understanding
how to use and program the board, in order to define an hardware architecture to
run the compression code on.

Firstly the motherboard was programmed with the aim of establishing a comu-
nication between the FPGA and the processor with all the extension boards. Using
the tool provided, it is possible to generate the pin mapping file, useful to connect
the extension boards to the motherboard, and in addition to provide power supply
to each part of the system without exceeding the recommended limits.

Once this part has been performed, each extension board was configured and
debugged. An OS was also created on the hardware description, in order to facilitate
the device control.

After the hardware architecture has been defined, all the C code was compiled
in board architecture and tested on it in order to check the compatibility. This
part may be considered as a backup of the project, in case of some issues occurred
during hardware implementation.

The second part of the thesis is about converting the C code of the compressor
into VHDL code, so that it can be loaded on the FPGA, allowing the processor
to perform other tasks at the same time while the compression is executed on the
hardware.

Compression of optical and SAR images is based on the CCSDS lossless and
near-lossless compression standard for space data system. This standard is based
on Differential Pulse Code Modulation (DPCM) prediction loop that, using a spa-
tial/spectral predictor, can compute current pixel to encode. This may be possible

6

with a function which involves some previous encoded neighbouring samples of
the spectral channel and some of the previous encoded spectral channels. Once
the preceding steps are performed, the prediction residuals are encoded and then
encrypted using Keccak functions.

The Vivado synthesizer it is not able to convert the previous code from C
language to VHDL, due to some high level functions and the complexity of Keccak
library. Since it is not considered wise to modify a certificated and validated library,
it has been chosen to modify the VHDL code provided by Keccak authors and to
implement the required part by hand.

From the remaining part of the project, among all the blocks, it was decided
to pass to the synthesizer only the predictor function. Such a choice was taken in
order to at least synthesize a reduced part of the compressor, since the synthesizer
is still not able to understand the whole code.

After simplifying some functions, a synthesizable version of the predictor was
obtained.

This caption represents the current work state. Additional efforts have to be
done in order to complete the conversion of all the compressor blocks to assemble,
also including the Keccak hand made part. This study outlines the Zynq ultra-
scale+ functions in all their parts and complexity. At the state of art this thesis
represents a crucial starting point for the comprehension of this family board, hop-
ing it will pave the way for completing the current project state.

7

8

Contents

List of Tables 11

List of Figures 13

List of acronyms and abbreviations 17

1 Introduction, Reasons and Goal 20
1.1 Introduction on EO-ALERT project 20
1.2 Purpose of this thesis . 26
1.3 Thesis outlines . 26

2 Overview on EO-ALERT architecture, compression/encryption code
and FPGA board 27
2.1 Avionic architecture . 27
2.2 Compression . 30

2.2.1 Compression structure . 31
2.2.2 Compression code . 34

2.3 Encryption and Keccak algorithm 37
2.3.1 The sponge construction . 38
2.3.2 Keccak family sponge functions 39
2.3.3 Padding rule . 44
2.3.4 Duplex sponge and PRGsponge 45

2.4 Hardware equipments . 49
2.4.1 Zynq Ultrascale+ MPSoC 49
2.4.2 proFPGA motherboard . 51
2.4.3 Extension boards . 52

3 Tools programs 55
3.1 ProFPGA builder . 55
3.2 Vivado . 58

3.2.1 Problems . 60
3.3 Vivado SDK . 61

3.3.1 Problems . 63

9

3.4 PetaLinux . 63

4 Hardware structure 69
4.1 Base tests : FPGA (PL), processor (PS) and together (PS + PL) . 69
4.2 Test of the interrupt functions . 72
4.3 GBit Ethernet Board (EB-PDS-GBITETHERNET-R1) 72
4.4 DDR4 5 Gbytes ram Board (EB-PDS-DDR4-R6) 76
4.5 Custom AXI slave VHDL implementation controlled by OS 77

5 Code implementation 81
5.1 Keccak C code analysis . 82
5.2 VHDL Keccak implementation . 83

5.2.1 Compression code implementation 91

6 Conclusions and future work 93

Appendix A Configuration file generated by ProFPGA 95

Appendix B Script for automatic generation 101
B.1 Tcl file that instantiate Zynq IP block in Vivado block diagram . . 101
B.2 Bash for petalinux to create OS system for the Zynq board 103

Appendix C Base tests 107
C.1 Only FPGA test files . 107
C.2 Processor and FPGA first design 109
C.3 Processor and FPGA second design 112
C.4 Test of processor interrupts . 122
C.5 Test of Gbit Ethernet . 128
C.6 Test of DDR4 . 136
C.7 Test of Custom slave device . 143

Appendix D Configuration file generated by ProFPGA 161

Bibliography 169

10

List of Tables

2.1 Rho rotation offset corresponding to X and Y coordinates with w=64. 42
2.2 Round constant used for Iota function with w=64. 44
2.3 Preliminary evaluation of used resources and comparison with avail-

able resources on ZCU106 board. 49
2.4 Available resources on ZU19EG board 49

11

12

List of Figures

1.1 Difference of EO data chain for EO image production: (left) classi-
cal data chain based on raw data compression and transfer, (right)
innovative data chain showing its key elements and new data flows
(in red). 22

1.2 EO-ALERT architecture. 24

2.1 EO-ALERT system architecture updated. 28
2.2 Compression and encryption block diagram. 29
2.3 Block diagram of prediction-based near-lossless compression. 32
2.4 Coordinates system used for input samples. 33
2.5 Coordinates system used for input samples. 33
2.6 Basic concept of hashing function. 37
2.7 Sponge construction diagram. 38
2.8 State 3D vector of Keccak function. 40
2.9 Definition of smallest block of state array with an example with w=8.

/ Keccak-images . 40
2.10 Application of Theta round on the state vector with w=8. / Keccak-

images . 41
2.11 Application of Rho round on the state vector with w=8. / Keccak-

images . 42
2.12 Application of Pi round on the state vector with w=8. / Keccak-

images . 43
2.13 Application of Chi round on the state vector with w=8. / Keccak-

images . 43
2.14 a) Padding rule 10*1 applied when the input message is equal to r

bits and b) when it is less than r bits, in case of little-endian and
big-endian. 45

2.15 The Duplex construction. 46
2.16 Generating the output of a duplexing call with a sponge. 47
2.17 Zynq UltraScale+ MPSoCs: EG Block Diagram 50
2.18 Example of proFPGA modular hardware approach system. 51
2.19 ProFPGA uno motherboard. 52

13

https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html
https://keccak.team/figures.html

2.20 Scheme of the coordinate system used on the board to identify ex-
tension boards plugged. 53

3.1 ProFPGA builder graphic environment with all the boards connected
with their details. 56

3.2 Functional block digram of the programmable clock generator SI5338. 57
3.3 Vivado GUI. 59
3.4 Vivado GUI showing block diagram. 59
3.5 Vivado tlc part in which the code and description of the error are

reported. 61
3.6 Vivado Zynq UltraScale+ MPSoC IP block customization. 61
3.7 Vivado Zynq UltraScale+ MPSoC IP block customization. 62
3.8 Command line showing settings after petalinux–get-hw-description. 65
3.9 Command line showing settings after petalinux–get-hw-description. 66
3.10 Command line showing settings after petalinux–get-hw-description. 66

4.1 Gbit Ethernet board. 73
4.2 Diagram of interface communication between FPGA and Ethernet

port with the three possible positions to add skew: 1)FPGA, 2)PCB
and 3)PHY. 74

4.3 Gmii To Rgmii IP block design with relative possibility to add skew. 75

5.1 On the upside there is the keccak VHDL code, while in the bottom
side there are the graphical representations of the taken block in the
state vector in order: output,rate and capacity. Red blocks represent
the first for cycle, while green the second. 85

5.2 Block diagram of Keccak block with all the components and signals
used. In dark grey the input block (6a bits) and the output vector
(256 bits) sections are highlighted. 87

5.3 ASM chart of the keccak test. 89
5.4 ASM chart of the keccak controller. 91
5.5 Times taken for having valid data at the output and for completing

the reading all 1016 output bits. 92

C.1 Block diagram of the test_hello design. 111
C.2 Block diagram of the test_up_down design. 121
C.3 Block diagram of the test_interrupt design. 126
C.4 Block diagram of the test_client design. 131
C.5 Zynq Ip settings for the Ethernet port pins. 131
C.6 Test of the Ethernet with client running on the Zynq. 132
C.7 Test of the Ethernet with server running on the Raspberry. 132
C.8 Test of the Ethernet with server running on the Zynq. 132
C.9 Test of the Ethernet with client running on the Raspberry. 133

14

C.10 Ping test from Zynq to raspberry. 133
C.11 Block diagram of the test_DDR design. 142
C.12 Block diagram of the test_calc design. 146
C.13 Test on OS of the multiplier with positive numbers. 159
C.14 Test on OS of the multiplier with negative numbers. 159

15

16

List of acronyms and
abbreviations

API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASM Algorithmic State Machine
AXI Advanced eXtensible Interface
BIL Band Interleaved by Line
BSQ Band SeQuential
CAN Controller Area Network
CCSDS Consultative Committee for Space Data Systems
CPU Central Processing Unit
DDR Double Data Rate
DMA Direct Memory Access
DMBI Device Message Box Interface
DPCM Differential Pulse Code Modulation
ELF Executable and Linkable Format
EO Earth Observation
FDIR Fault Detection, isolation and recovery
FPGA Field Programmable Gate Array
FSBL First Stage Boot Loader
FSM Finite State Machine
GPIO General Purpose Input/Output
GPS Global Positioning System
GUI Graphical User interface
IP Intellectual property
IR Infrared
LSB Least Significant Bit
MAC Media Access Control
MAC Message Authentication Codes
MIG Memory Interface Generator
MSB Most Significant Bit
MSE Mean Square Error
NIST National Institute of Standards and Technology

17

NRT Near Real-Time
OHB Orbitale Hochtechnologie Bremen
OS Operating System
PCIe Peripheral Component Interconnect Express
PHY PHYsical layer
PL Programmable Logic
PLL Phase Locked loop
PMUFW Platform Management Unit FirmWare
PRG Pseudo Random Generator
PS Processing System
QSFP Quad Small Form-Factor Pluggable
RAM Random Access Memory
RGMII Reduced Gigabit Media-Independent Interface
SAR Synthetic Aperture Radar
SATA Serial Advanced Technology Attachment
SD-card Secure Digital card
SDK Software Development Kit
SHA-3 Secure Hash Algorithm
SO-DIMM Small Outline Dual In-line Memory Module
TCP Transmission Control Protocol
TX/RX Transmitter/Receiver
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
VHDL VHSIC Very high speed integrated circuits Hardware Descriptio Language

18

19

Chapter 1

Introduction, Reasons and Goal

1.1 Introduction on EO-ALERT project
The first occurrence of satellite remote sensing can be dated to the launch of the
first artificial satellite, Sputnik 1, by the Soviet Union on October 4, 1957 [1].
Once sent this metal sphere in earth orbit, Russian scientists could not estimate
the success of the mission would have. After reaching a low elliptic orbit around
the world, the satellite stayed in trajectory for three weeks till the depletions of
the battery and then, after two other weeks of uncontrolled flight, fell down to the
earth. By tracking the position of Sputnik and by considering the resistance on the
orbit, scientists were able to estimate the density of the atmosphere and to analyse
the ionosphere for the first time, thanks to the study of the propagation of the radio
signals emitted from the antennas. After this achievement, United States started
their space program and the so called "space race" began between the two Cold War
rivals. During this period huge improvements and discoveries were accomplished
and the use of satellites became very widespread.

Nowadays Earth Observation (EO) is considered a fundamental tool for many
applications. In fact today’s data retrieve from satellites analyses, for no-military
use, is involved in different areas of application, for instance environmental moni-
toring, meteorology and map making. For example, Hera company, that manages
water distribution in some Italian regions, was able to detect and repair water losses
over all the distribution with very high accuracy [2], thanks to satellite images that
highlighted soaked fields with huge level of chlorine. During ’80, after those infrared
sensors were mounted on satellites,the hole in the ozone was detected, discovering
the correlation between them and the emission of fridge and spray gases in the
atmosphere. These are only some examples of the importance of satellites used in
modern times.

There are two new applications of satellites that may respectively create two new
businesses. The former was developed by Sarah Parcak, an American archaeologist
who uses satellites infrared images to identify potential archaeological sites; in fact

20

1.1 – Introduction on EO-ALERT project

clay bricks absorb the water under the soil and leave a difference trace in the
infrared images. This is also the same method used by spacecraft Mars Express in
2018 to detect water liquid presence under Mars’s glaciers. This can be considered
as the birth of "space archaeology". The second new application was provided by
the American Space-Know start-up and it is about the financial sector. For many
years, analysts had difficulties in studying the Chinese’s economy growth due to
the incomplete documents provided by the industries, till when this start-up found
a new solution. Indeed, it started to evaluate with satellites imaging the variation
of goods stocking, trucks movements, roads and warehouse size changes. These
measurements became so accurate to be part of an official index of Bloomberg,
known as Satellite Manufacturing Index (Smi).

Over the past 50 years, the EO data chain consisted in the acquisition of data
from sensors of the satellite, compression, storage on-board, sending to ground for
processing and creation of the EO image. Due to the huge quantity of data, their
transfer required significant amount of time. With the increasing demand, more re-
sponsivity and accuracy are required, with consequent increase of data management
in less time. In this condition, the classical EO data chain generates a severe bottle-
neck problem: the more large the data obtained from sensors (raw data), although
its compression, the more slow the EO product availability becomes, increasing
latency and hampering applications to grow in accordance with the increased user
demand for EO products. The EO-ALERT project [3], an H2020 European Union
research activity, addresses the challenge of a “high speed data chain” and the need
for increased EO data chain throughput.

In order to obtain these results, a combination of innovations in the on-board
elements of the data chain and in the communications link is needed. The main pos-
sibilities provided are on-board reconfigurable data handling, on-board image gen-
eration, on-board image processing, high-speed on-board avionics, on-board data
compression and reconfigurable high data rate communication links to ground.
These innovations also provide a possible optimisation of the classical EO data
chain towards a data chain with greatly improved data throughput.

Data latency is one of the most important parameters used to characterize
performances of EO chain. In fact for a useful system, final users require data with
low errors available in a very short time interval. Some examples are reported in
order to make performances comparison with already known working systems.

In case of polar platform satellites, the provision of image products is in the
range of 1 to 3 hours, known as near real-time Near Real-Time (NRT); for instance,
Sentinel-1 makes ocean products available within 1 hour of observation over NRT
areas. Nowadays technology latency is going beyond NRT applications with laten-
cies in the range of 30 minutes to 15 minutes. In order to go ahead in performances,
the concept behind EO-ALERT is to achieve latencies below 15 minutes for the EO
products.

In the EO chain, latency can be defined as the interval between the time of

21

Introduction, Reasons and Goal

the collection of the last photons and the time in which the data is all converted
to a specified EO product and delivered to the user portal. In particular with
this latency definition, EO-ALERT has the aim of reaching a maximum latency of
less than 5 minutes, for both Synthetic Aperture Radar (SAR) and optical image
products.

As mentioned before, usually data handling is characterized by the collection
of raw data, and then by the compression and the scheduling for the transmission
to the ground segment, where data processing takes place. This flow of image
production requires lots of time, and due to the significant delay in the generation,
this can introduce a wrong representation of the acquired image. In fact if the
image is available after long time, it may represent old scan conditions, not more
useful for real-time analysis.

With new powerful computational systems for onboard data handling, it is
possible to change the processing chain. The most relevant improvement consists in
the direct generation of data products, from raw data, on-board, reducing the time
needed to generate them, from hours to a few minutes. In figure 1.1 improvements
to data chain are illustrated and the difference with classical flow is highlighted.

Figure 1.1. Difference of EO data chain for EO image production: (left) classical
data chain based on raw data compression and transfer, (right) innovative data
chain showing its key elements and new data flows (in red).

In order to evaluate the performances of the new data chain, EO-ALERT is
tested on two different environments: ship detection and extreme weather moni-
toring, that are briefly described below.

Ship detection
In ship detection the most important aspects are the reduced size of the pixel, at
least 1m, and the low revisit time. With these requirements SAR satellites become
the most suitable for ship detection. Moreover thanks to very high resolution

22

1.1 – Introduction on EO-ALERT project

of optical imagery, false positive are reduced and ship detection is allowed. In
particular, two tests are proposed for Mediterranean sea:

• Ship Monitoring: the objective is focused on illegal fishing and cargo moni-
toring between 10-20 meters.

• Coastal Monitoring: the objective is focused on maritime safety and illegal
migration.

The generated EO products should be a text file, in which the following infor-
mation is included:

• Position Information;

• Movement Information;

• Ship details;

• Ship identification;

• Clipping ship.

The ship detection is divided in two steps: coarse detection and discrimination.
The coarse detection consists in limiting the searching area instead of analysing
all the image, by reducing the number of ships considered at the same time. This
approach allows to divide in smaller subsets all the ships to be analysed, reducing
the complexity and, at the same time, decreasing false positive detection caused by
the presence of land in the image. This part uses the Otsu’s method, an algorithm
that finds an optimum threshold value in order to define two different classes.
Employing this technique it is possible to separate ships from land; in fact water
presents a low reflectivity compared with land and clouds, allowing fast water non-
water segmentation.

Then each subset is analysed in the discrimination step, in which ships are
separated from false positive detection, in order to generate correct information
about the image. If the target is recognized as a ship, it can be described by a set
of features designed to encode its gradient distribution, by analysing the direction
of the edges inside a pixel neighbourhood.

Extreme weather
The other scenario where EO-ALERT can be very useful is meteorology. Infor-
mation about meteorological phenomena can support more precise forecast and it
can allow quicker alerts for extreme event like earthquake,tsunami and convective
storms. In addition, information about surface winds can be useful for offshore
wind farms and monitoring of hurricanes.

23

Introduction, Reasons and Goal

Two meteorological phenomena are going to be detected in this scenario: con-
vective storms and surface ocean winds and overseas. In case of convective storms,
four stages of convection should be detected: pre-convective environments, convec-
tion initiation, mature and dissipation stages of the storms. Data get from SAR are
used for surface wind speed estimations overseas and oceans, in order to perform
storm detection and monitoring, which may be very useful in providing specific
information on individual storm location, trajectory and characteristics.

For extreme weather detection, Infrared (IR) images will be used together with
optical images, in order to retrieve the information on the cloud top temperature.
The first step of the image process is to detect some cold cells by using the same
approach of ship detection: all the areas colder than a threshold are marked as
possible storms. Then, the identified cold cells are tracked over time by analysing
visual features, extracted from the optical images, and the temperature profile,
extracted from IR images.

EO-ALERT architecture
The aim of EO-ALERT project is to define a flexible data-handling architecture,
managing both optical and SAR data, in order to use on-board resources for pro-
viding high-speed data acquisition, processing, and generation of rapid alerts.

Figure 1.2. EO-ALERT architecture.

In figure 1.2 is described the proposed architecture, designed following three key
points:

• Modular: the architecture is divided into blocks, each with a defined function.
In this way every section is divided by the others and any modification to a
block or function has a minimal or no impact on the others;

24

1.1 – Introduction on EO-ALERT project

• Scalable: the architecture can be adapted to different data types, e.g. op-
tical/SAR, and to different sensor types for each kind of data (e.g., images
from different sensors or having different sizes), within the maximum memory
and computational capabilities provided by the avionics;

• Reconfigurable: the architecture allows to modify the computing resources for
the optical and SAR processing functionalities. Reconfiguration can be done
on-the-fly through download of new software from the Central Processing Unit
(CPU) to the board that has to change the software. With this approach it
is also possible to provide Fault Detection, isolation and recovery (FDIR):
if a board has an irreparable failure, it can be possible to reconfigure the
software and to perform the previous tasks in another board, avoiding the
problems due to the failure. This method is very innovative and convenient,
with respect to conventional ones employing redundant boards. In this way
the cost and weight can be reduced with a little effort in software design.

Based on the remarks above, the architecture was designed using three main
blocks: the Sensor Board, the processing Board and the Transmitter/Receiver
(TX/RX) subsystem.

The Sensor Board acquires the optical/SAR raw data and transfers it to the
acquisition buffer.

The Processing Board consists of a CPU board and some Field-Programmable
Gate Array (FPGA) boards, each one with its own Random Access Memory (RAM)
and different functions, in particular they are dedicated to:

1. Compression/encryption;

2. Optical processing;

3. SAR processing;

4. Storage.

All other added boards are used to increase computational power for image
processing. All boards are connected with the CPU with point-to-point data link, in
order to realize data transfer and to allow reconfiguration. This type of links allows
to avoid the use of shared buses, preventing possible congestions during the data
transfer and guaranteeing a low latency. In the figure 1.2 connections are illustrated
between the Sensor Board, the Processing Board, the TX/RX subsystem and all
the internal connections in the Processing Board with arrows. As it is possible to
notice, the star point of the system communication is the CPU. Moreover storage
and compression/encryption tasks can be put on the same board, in order to reduce
the number of boards involved or to reuse uninitialized boards for image processing,
increasing the performance. All this information and more details can be found in
the presentation paper of EO-ALERT project [4].

25

Introduction, Reasons and Goal

1.2 Purpose of this thesis
The purpose of the thesis is to build and to make the hardware system running. It
is composed of motherboard, FPGA and extension boards, on which the compres-
sion code for satellite images will work. Once the system is completed, the aim is
to implement the compression code on the FPGA as an hardware block. The im-
plementation can be considered as an HW accelerator that the OS system, running
on the board, can use without being stuck during the running of other programs.
The target is to convert the compression code into VHDL language and, if it is
possible, most of it, in order to achieve the best performances.

1.3 Thesis outlines
In order to better visualize the content of this thesis, the topics that will be analysed
in the various chapters are reported below.

In chapter 2 an overview of the satellite architecture, a description of the compres-
sion code that has to be implemented on the board, a description of the encryption
code and Keccak library and the hardware used with the board to realize the hard-
ware system will be provided.

In chapter 3 instead, a list of the tools, used to develop the system configuration and
the code implementation, will be described. For each of them the common steps
for configuring and using the system will be given, moreover also the problems
encountered are listed with corresponding solutions to solve them.

All the steps followed to make running the board and to connect all the extension
boards in the correct way, by ensuring the proper functioning, will be reported
in chapter 4. The description starts from the first test using only the FPGA or
the processor for the creation of the OS to run on the board with an hardware
accelerator.

In chapter 5 the encryption VHDL code implementation will be described, starting
from the VHDL Keccak hash function.

At the end, the conclusions of the achieved goals and the future work are listed.

26

Chapter 2

Overview on EO-ALERT
architecture,
compression/encryption code and
FPGA board

2.1 Avionic architecture

In the project paper [4] the architecture suggested has compression/encryption stor-
age separated from the CPU scheduling and different type of PCIe communication
links. After some reviews, a new architecture has been proposed by OHB in D3.8
document [5].
In figure 2.1 a scheme of the architecture is provided; in this version compres-
sion/encryption storage is put with CPU scheduling on the same board. The system
consists on: CPU scheduling and compression/encryption storage, master optical
processing, master SAR processing and spare processing board. As mentioned
above, the system can be reconfigured in case of irreversible damage of the board,
avoiding redundant boards, although a redundant system, equal to the main one,
is used anyway in the architecture, in order to reduce risk of failure.

The CPU scheduling (Main and Redundant) is used mainly for the data trans-
fer management. The CPU is the centre of the star and can communicate with all
the other boards. The raw data generated by SAR and the optical sensors are sent
to the CPU scheduling board through TTethernet (grey arrow) and then forwarded
respectively to the SAR and to the optical processing boards through Peripheral
Component Interconnect Express (PCIe) Gen3 type (red arrows). In particular
TTethernet is an Ethernet-based communication system, developed for time criti-
cal application and for managing data rates up to 1000Mbps. After the processing,

27

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Figure 2.1. EO-ALERT system architecture updated.

the images produced return to the CPU board where they are compressed, en-
crypted and stored in the mass storage, forwarding relevant data to the TX/RX
subsystem in order to transmit them to Earth. The CPU scheduling retrieves also
ancillary data from the relevant subsystems (e.g., Global Positioning System,time),
used for processing and rearranging images sequences. These communication links
(green arrow) are universal asynchronous receiver-transmitter (UART) type. From
TX/RX subsystem, through TTethernet, CPU scheduling obtains ground control
data, parameters, configurations, and, generally, any information needed to exe-
cute properly a given mission. There is also a Controller Area Network (CAN) link
(brown arrow), used as a redundant communication, that connects all the boards
with the CPU scheduling for configuration, monitoring, telemetry/commands and
low data rate link purposes. In addition, a set of General Purpose Input/Output
(GPIO) (purple arrow) are exchanged between the boards for generic purposes.
When the CPU scheduling sends image data to the SAR and to the optical pro-
cessing boards, images can be also forwarded to additional processing boards in
order to parallelize the calculations with subsequent improvement of the perfor-
mances. For this reason a further PCIe link is used (yellow arrow) for the exchange
of image/product data between processing boards. For instance Optical 1 Process-
ing board is a redundant board used for the processing of the optical images and, in
nominal condition (i.e. no failure), it receives image data from the master one for
the parallelization of the algorithm. In case of master board failure, it is switched
off and the subsystem is reconfigured such as the redundant board becomes the

28

2.1 – Avionic architecture

new master optical processing board.
The Spare Processing board instead can be configured as both optical processing

board and SAR processing board, depending on the application.
In particular, the thesis is focused on the implementation of the compression and
on the encryption algorithm, thus an accurate description of the architecture is
required.

Figure 2.2. Compression and encryption block diagram.

In figure 2.2 a reference design for the compression and encryption board to imple-
ment is provided, obtained from the specific delivered in the data chain description
[20].

The Compression/Encryption Block receives the raw data from the sensor board
and it stores it in the acquisition buffer, which is defined in the RAM connected to
the board and used to save intermediate calculations of the compression/encryption
processes. In general the block has to do the following tasks :

• Inform the CPU about the receiving of raw data;

• Prepare the data for processing (e.g., tiling);

• Compress/Encrypt data;

29

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

• Store processed data in the mass storage;

• In case of alert, after compressing/encrypting the products generated by the
optical processing board and the SAR processing board, forward them to the
tx/rx subsystem in order to send them to ground.

In general, compression/encryption blocks have to work with all the data type
available on the system, including both optical and SAR raw data, optical and SAR
images products, generated after image processing, ancillary and Global Positioning
System (GPS) data and finally images products and alerts that have to be send to
ground. There is a mass storage, connected to the board through Serial Advanced
Technology Attachment (SATA) connection, used to store the data to be forwarded
to the TX/RX subsystem. Every image generated is compressed and sent to the
mass storage, while images containing important information are also forwarded
to the TX/RX board. In order to perform this task and use an efficient data-
handling policy, a controller is implemented on the board. The controller receives
information of date, time and GPS location from the CPU and through them it
rearranges the data to be queued for transmission, removing from the storage also
data that doesn’t need to be transmitted.

The queuing order is based on "normal" and "high" priorities, typically associated
to image data and product data respectively. High priority data may be transmitted
first, causing the consequent interruption of normal priority data transmission in
order to reduce latency.

2.2 Compression
Compression of optical and SAR images is based on the CCSDS lossless and near-
lossless compression standard for space data system [6]. This standard is based on
a Differential Pulse Code Modulation (DPCM) prediction loop that, using a spa-
tial/spectral predictor, can compute current pixel to encode. This may be possible
with a function which involves some previous encoded neighbouring samples of the
spectral channel and some of the previous encoded spectral channels. In order to
obtain the most accurate prediction, which is the smallest difference between cur-
rent pixel and the predicted one, the prediction algorithm is adaptive. This means
that for every pixel neighbouring coefficients are combined linearly and evaluated
every time. After this prediction, residuals are quantized, while entropy is coded
by using the Golomb coder. For encryption, two applications are used. One is used
in the compression for the sign randomization algorithm of prediction residuals and
for the randomization of the entropy encoder. In the second case, encryption is used
to encrypt message alerts before sending them to receivers, without compression.

The term near-lossless compression refers to a kind of lossy compression, in
which the maximum error between each original and reconstructed pixels is bounded

30

2.2 – Compression

by some user defined parameters. Due to this constraints, it is possible to control
the image quality and to avoid more serious errors that can affect the image in-
terpretation during the reconstruction phase, like false detection or anomalies. In
particular near-losses algorithm can be considered as a trade off between lossless
and lossy compression, borrowing the high quality reconstruction from the former
and the large compression ratio from the latter, which is impossible to reach in
lossless.

CCSDS defines a standard for multicomponent images in lossy compression
algorithms, such as multispectral and hyperspectral images [6]. These algorithms
are defined for application to on-board satellite compression [7], where there are
restrictive constraints in terms of memory, computational capability and available
hardware.

Usually low encoder complexity is preferable, since on board system there are
limited resources due to the power capability, available space and radiation hard-
ening. Moreover, since in the project a FPGA is used, on which the algorithm is
hardware mapped in VHDL, it is preferable to have an encoder with low complexity
and an algorithm with easy operations to map to a VHDL description.

Generally in this type of algorithm it is preferable to send to earth a first low-
quality version of the subimage of interest, allowing the user to carry out a first
evaluation of the image, rejecting all the useless ones without wasting time, if
communication problems allows a fast communication.

The near-losses algorithm have to minimize the Mean Square Error (MSE),
reducing the bit rate during the compression process and bounding the maximum
error during the reconstruction phase. In particular the user defines a parameter
∆, used to specify the maximum acceptable error between the original image and
the decoded one such as the following condition is respected:

maxi,j,k ‖xi,j,k − x̂i,j,k‖ ≤ ∆

where x is the original pixel and x̂ is the reconstructed one. If ∆ is chosen
in a proper way, then the compression is very similar to a lossless one. Indeed if
the maximum error introduced by compression is smaller than the noise, the image
reconstructed has a quality very similar to an image reconstructed with lossless
compression.

2.2.1 Compression structure
As aforementioned, the compressor can be schematized as in figure 2.3 on a DPCM
prediction loop [9]. The compression is based on the spatial/spectral predictor,
with which it is possible to estimate the value of the current pixel to encode. The
more the predicted pixel is near to the correct value, the more the energy of the
residual can be reduced. To obtain the most accurate prediction, the predictor
is implemented with an adaptive mechanism, which changes for every pixel the

31

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

coefficients of the prediction. After the sample is predicted, this value is subtracted
to the original one, using the sign algorithm. Indeed, it changes the coefficients
considering the sign of the prediction residual, minimizing its value. The decoded
values are the input of the predictor, instead of the original pixel. This allows the
decoder to adapt the linear combination coefficients without passing them explicitly.
After the predictor residual are evaluated, they are the only one to be quantized,
while the entropy is encoded and written in the compressed file.

Figure 2.3. Block diagram of prediction-based near-lossless compression.

In the backward loop the quantized predictor residuals are dequantized and
summed to the estimate value, obtaining the decoded samples, set as input of the
local decoder. This construction allows to have, for both encoder and decoder,
the same sequence of decoded inputs. Compression is performed in a single step,
processing all the image that can be provided in two different scan orders: Band
Interleaved by Line (BIL) and Band SeQuential (BSQ).

Samples used for the calculation are in the current and in the P previous spectral
bands, where P is a user defined parameter that defines the number of bands used for
prediction. Typically, this value is P=3, while bigger values are justified only when
the spectral correlation is higher, like in case of atmospheric sounders. Prediction is
performed using an adaptive linear prediction which updates the weight, according
to the sign algorithm. Each pixel is defined using three coordinates in this way
Sz,y,x where x is the horizontal position in the image, y is the vertical one and z is
related to the spectral band as show in figure 2.4. The input passed to the predictor
is not the original image pixel, but the decoded sample, which is indicated as S ′′

z,y,x.
In order to remove the mean value of data, the "local sums θ" are computed

for each pixel in the same spectral band. There are three different procedures to
evaluate these sums: wide neighbor-oriented, narrow neighbor-oriented and colum-
noriented. A visual description of them is provided in figure 2.5. In particular the

32

2.2 – Compression

Figure 2.4. Coordinates system used for input samples.

main differences are that wide neighbor-oriented allows to reach the best coding ef-
ficiency, narrow neighbor-oriented permits a easier hardware implementation since
it avoids data dependencies, while column-oriented reduces the effect of striping
noise.

Figure 2.5. Coordinates system used for input samples.

There is another vector defined as local differences, that consists in the difference
between a sample representative in the neighborhood of the current pixel and the

33

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

average local mean. Differences are computed in the same spectral band (same z
value), using the neighbouring pixel on the top (y-1), on the left (x-1) and top left
(x-1, y-1), with respect to the current pixel to encode. In order to avoid division,
which can be expensive in terms of time delay and hardware implementation, the
local difference is computed as 4 times the sample representative, minus the local
sum.

There are two ways to use the local differences: full and reduced. In the full
mode, all local differences are used (three in the same spectral channel and P in
the previous channels), providing better performances for multispectral imagers,
whisk-broom imagers and calibrated imagery. In the reduced mode instead, only
the P local differences from the previous spectral channels are employed, which it
is preferable for raw data from pushbroom hyperspectral imagers.

In a nutshell, the local difference vector contains the spatial/spectral neighbour-
ing samples of the one to be estimated with their (estimated) mean value removed.

The prediction residual can be evaluated as ∆z(t) = Sz(t)− Ŝz(t), where Sz(t)
is the original pixel, while Ŝz(t) is the predicted sample. Ŝz(t) can be evaluated
from the predicted local differences Ŝz(t) = W T

Z (t) ·UZ(t), where W T
Z is the weight

vector, while UZ(t) is the local differences vector.
The prediction residual is used to update the weight vector by means of the sign

algorithm; the new weight vector will be used for the prediction of the next sample
to compress.

2.2.2 Compression code
The compressor C code is divided into multiple files that will be briefly described
in this section. Since the fastest way to validate compression performance is to
decompress the compressed image and compare it with the original one, also the
decompressor is implemented in C code.

Compressor Main: This is the main file in which each function of the com-
pressor is called. This program is intended to perform all the operations needed for
a single image that has to be compressed. For instance if there are five images to
process, this program must be run five times. In the file, the first part is dedicated
to the parse and to the validity check of the input, output, encoder and decoder
parameters. If all the parameters are inserted correctly, then the algorithm of
compression starts, which is called predict_NO_RC (contained in file predictor.c).
Subsequently, dump residuals are written in a file and all the structures are deallo-
cated.

For the inputs, the first parameter to set is the image path, from which the
image parses. Input image can be provided in BSQ or BIL order and this parameter
has to be specified after all other image parameters are reported, like the spatial
dimensions of the image in number of pixels, the number of spectral bands, the
number of bits, the endianness and the dynamic range used to represent the pixel

34

2.2 – Compression

values.
Input pixel value can be provided as unsigned or signed, in the latter they are

converted into unsigned by summing an offset equal to half of the dynamic range
of the values.

Output parameters are linked to the output image path, in which the image is
stored. For this reason the name of the compressed image must be specified.

The predictor must receive some working parameters among them, such as the
number of prediction bands to be used, the prediction mode (full/reduced) and the
type of local sum (wide/narrow and neighbour oriented/column oriented). Also
weights file path and their parameters, such as the resolution and optionally custom
initialization values, must be provided.

The encoder algorithm must be set with a parameter that selects among sample
adaptive encoding, hybrid encoding or range encoding. Subsequently, also proper
working parameters for the chosen algorithm must be passed.

Predictor: The predictor function iterates over the image pixels following a
BIL ordering (Band Interleaved by Line). The high level routine, that performs
the prediction, is the function predict_NO_RC, in which all sub functions are
called step by step. The first function is the local_sum with which the differences
for all the prediction bands are evaluated. As abovementioned before, the local
sum is computed on representative samples, not with the original values, and it is
performed differently in accordance with the mode chosen among narrow/wide and
neighbour oriented/column oriented. If the full mode is chosen, local differences are
evaluated, otherwise this step is skipped with the reduced mode. Then the function
compute_predicted_sample is called, in which the predicted local differences are
computed using weights, obtaining predicted samples from them. If the encryption
is selected, there are some functions calling the SpongePRG function, that generate
random bits used to flip the sign before quantizing the predicted samples. The next
step is to compute residuals and map them to unsigned integer, using the function
compute_mapped_residual. Finally, mapped residual are passed as input to en-
code_pixel_sample (contained in sample_adaptive.c) that encoded them using an
entropy coder.

Entropy Coding: The used coder is based on the sample adaptive entropy cod-
ing algorithm, all coding and initialization functions lies in the sample_adaptive.c
file.

Sample Representative Evaluation and weight update: Starting from the
mapped residual, samples are passed to the local decoder that reconstructs the origi-
nal dequantized samples. They are passed to the function compute_sample_representative,
which computes the sample representative. These values are useful to evaluate dif-
ferences for the following samples. After, all weights are updated with the function
update_weights, adapting this way the weights to the current sample. Once all
the previous functions are called, the algorithm repeats them until all pixels of the
image are processed. This was the last step.

35

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Once the image is compressed, the software deallocates all the variables and the
data structures, ending the process.

Only the compressor requires a VHDL code implementation on the FPGA, but,
in order to debug the correctness of the compressor, also the decompressor should
be designed in C code. Decompressor Main: Its function is to reconstruct the
original image, starting from the compressed file. This code receives less parame-
ters with respect to the compression main, because many parameters are obtained
reading the header of the compressed file with the function readHeader.

Decoding Entropy Coding: this is the specular part of the entropy coding.
The function decode_sample_adaptive contained in sample_adaptive.c file is used
to reverse the entropy coding. These functions decode the whole body and they
store all the decoded residuals in an allocated vector called residuals.

Unprediction: This is the reciprocal of the predictor. Starting from the resid-
ual, it is possible to reconstruct the original image. Functions contained in un-
predict.c repeats the same logical step of the predictor and they iterate functions
untill the whole pixels are reconstructed, using a BIL ordering. When the whole
image has been reconstructed, the software deallocates all the used variables and
terminates.
All these codes are called by bash file test and codec2_NL, in particular the fol-
lowing parameters are used :

• Number of Bands per Prediction P = 3;

• Register Size R(inbits) = 64;

• Weight Resolution Ω = 19;

• Weight update scaling exponent change interval tinc = 64;

• Initial weight update scaling exponent parameters vmin = −1;

• Final weight update scaling exponent parameters vmax = 3;

• Prediction mode Full Wide/Neighbour Oriented;

• Sample representative parameters all set to 0;

• Use of non-band dependent absolute error limit.
Sample adaptive Encoder with the following parameters:

– Unary length limit Umax = 18;
– Initial count exponent Y0 = 1;
– Accumulator Initialization Constant K = 3;
– Rescaling Counter size Y ∗ = 6.

36

2.3 – Encryption and Keccak algorithm

2.3 Encryption and Keccak algorithm
The main task of the code to implement on the board consists of compressing re-
ceived raw images and encrypting them in a secure way. The encryption is based
on the Keccak library, that refers to a family of sponge functions [10] deriving from
a generalization of hash functions, which are fundamental in modern cryptography.
Generally, starting from a message of random length encoded as a binary string, a
hash function will compute another binary string of fixed length, which is conven-
tionally called a digest. In figure 2.6 there is a graphic representation of hashing
procedure.

Figure 2.6. Basic concept of hashing function.

Usually hash functions are used in message authentication where the digest is
used as a fingerprint for the original message and sent with it to a receiver. The
receiver of the message can check its integrity by hashing the received message
and comparing the obtained digest with the sent one. If the digests are equal,
the message is then identical to the original one, otherwise it has been altered by
someone or corrupted during the transmission.

In order to use this method, the hash function must fulfil some important rules,
in particular the code should be accessible and understandable by anyone, so that
the functions can be distributed and used by both senders and receivers. Further-
more, hash function should be robust enough in such a way that the same digest
corresponds to two different messages.

Using the idea of hash function, which has a fixed output length and stream

37

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

ciphers with a fixed input length, the sponge function has been created. It per-
forms the same operation with the benefits of variable input and output length
management.

2.3.1 The sponge construction
Keccak functions can be used as stream ciphers, hash functions, Message Authen-
tication Codes (MAC) and pseudo-random number generators, depending on the
configuration. The main part of the function is based on a fixed length transfor-
mation and a padding rule for the input, which are capable of mapping from a
variable-length input to a variable length output. In general the function sponge
refers to the way in which it elaborates input messages, in fact it is iteratively
absorbed into the state with a fixed size throughout multiple rounds of a simple
round function before the digest is squeezed out.

The sponge construction [11] is described as a function sponge[f, pad, r] that
uses a fixed-length transformation, also called transformation f, a known rule for
padding the input that can change with the use of the function and a parameter r,
called bitrate. A finite-length output can be obtained by truncating it to its l first
bits.

Figure 2.7. Sponge construction diagram.

The permutation f works on a fixed number of bits with width b called state.
In figure 2.7 the schematic blocks of the sponge construction are provided. M is
referred to the input message, Z is the output message, b is the length of the state
and f the permutation function. The state is divided into two blocks of bits that
are processed in a different way: the inner state, also called capacity part of c bits,
that are never modified and can not be read, and the outer state, known as rate
part of r bits, that are permuted by the function f and sent to the output. At the
beginning, the state vector is initialized to zero. Then the input message is divided

38

2.3 – Encryption and Keccak algorithm

into r bits blocks and padded. After these initialization procedure, sponge method
can be divided in two main phases:

• Absorbing phase, in which input message block of r bits is XORed with
the rate part of the state and passed to the permutation function, which
overwrites this value with the permuted one, while the capacity part remains
unmodified in the state. When all blocks of the subdivided input message are
processed, sponge construction passes to the squeezing phase;

• Squeezing phase, where the rate part is returned to output and interleaved
with the applications of the permutation function f . The number of iterations
depends on the number of bits l requested at the output.

The capacity part c actually establishes the security level of the sponge con-
struction. Requesting l < c bits at the output it is possible to avoid multiple
squeezing phase, in particular if the output length is l = c

2 the sponge function
reaches the maximum security level.

2.3.2 Keccak family sponge functions
The main advantages of the sponge construction are the high flexibility and security.
Any instance of Keccak sponge function family [12] uses one of the seven Keccak
permutations defined as Keccak-f [b]. Starting from the same input message and
changing the permutation, the digest differs. This is due to the fact that each
permutation defines different parameters for the sponge construction, in particular
it specifies the size of the state, the partition of rate, the capacity part of the state
and the number of rounds of the functions.

These Keccak-f permutations are iterated constructions based on a sequence
of almost identical rounds. The number of rounds nr depends on the permutation
width, given by nr = 12+2l, where 2l = b/25. These seven permutations are defined
using the b parameter that changes in range b ∈ {25,50,100,200,400,800,1600} and
corresponds to the width of the permutation, that is the number of bits used in the
state.

The state vector can be considered like a 3D parallelepiped array with coordi-
nates rule, as illustrated in figure 2.8. Each bit of the state is represented by one
cube of the 3D array. b parameter is defined as b = 5x5xw where w is the length of
the data input, also called lane, and it can be in range w ∈ {1,2,4,8,16,32,64} and
is placed along the z axis. This can be easily understood in figure 2.9, where there
is the representation of basic blocks.

Due to the definition of b, each plane x-y, called slice, can be considered a
square with 5 cubes (bits) and this remains fixed for all Keccak definitions. The
only variable that changes is the input word length w, which consequently changes
the lane (z axis) dimension. When the input message is read lane by lane, all the

39

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Figure 2.8. State 3D vector of Keccak function.

Figure 2.9. Definition of smallest block of state array with an exam-
ple with w=8. / Keccak-images

state is filled up and Keccak rounds are applied to this structure using 5 equations :
Theta,Rho,Pi,Chi,Iota. In particular Theta supplies diffusion by XORing adjacent
columns in bits, Rho and Phi provide dispersion, Chi using AND,XOR and NOT
logic operator to each bits applies a non-linear mapping, while Iota merely makes

40

https://keccak.team/figures.html

2.3 – Encryption and Keccak algorithm

each round different for the others changing the terms in the middle lane and using
different constants.

Since the strength of Keccak depends on the length of state, the most safe
permutation is the Keccak−f [1600], which is used in the code for the same reason.
Moreover it is the safest encryption function adopted in Secure Hash Algorithm
(SHA-3) [13] by National Institute of Standards and Technology (NIST) [14] [15].
With b = 1600 the number or round required for a secure algorithm is 24 and the
length of input words is w = 64.

For sake of simplicity the state vector will be described as a 3D vector with
coordinates x,y,z: state[x, y, z].

Theta
θ is the first round applied and it takes as input the state vector. This step basically
consists on overwriting the state vector by XORing the parities of two adjacent
columns with each bits of the third column in the middle as illustrated in figure
2.10. All Theta round can be synthesized in three different steps:

1. Parity of each column is evaluated P [x, z] = state[x,0, z] ⊕ state[x,1, z] ⊕
state[x,2, z]⊕ state[x,3, z]⊕ state[x,4, z];

2. A second plane [x, z] is generated, where each bit is a XORing result between
[x − 1, z] and [x + 1, z − 1] parity bit previously evaluated plane[x, z] =
P [(x− 1), z]⊕ P [(x+ 1), (z − 1)];

3. Finally original bits of the state are XORed with evaluated bits of the new
plane. Theta[x, y, z] = state[x, y, z]⊕ plane[x, z].

Figure 2.10. Application of Theta round on the state vector with w=8.
/ Keccak-images

41

https://keccak.team/figures.html

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Rho
ρ is the second step, whose effect is to shift the bits of each lane by a length,
called offset, that depends on the coordinates x and y of the lane as in table 2.1.
Therefore each bit of a lane is shifted along z-axis by adding to z coordinates an
offset, extracted from this table using modulo of lane size. After modifying by Theta
the inputs of this function, it becomes the state vector and the result is passed to Pi.
This can be described as Rho[x, y, z] = Theta[x, y, (z − table_constant) mod w].

X=3 X=4 X=0 X=1 X=2
Y=2 25 39 3 10 43
Y=1 55 20 36 44 6
Y=0 28 27 0 1 62
Y=4 56 14 18 2 61
Y=3 21 8 41 45 15

Table 2.1. Rho rotation offset corresponding to X and Y coordinates with w=64.

A display explanation of Rho mapping procedure is in figure 2.11. The black
dots indicate the bit on which the offset is added, while the tip of the arrows points
the position after adding of offset.

Figure 2.11. Application of Rho round on the state vector with w=8.
/ Keccak-images

Pi
Third step is function π, in this phase, as described in figure 2.12,the position of
lanes of state vector are shuffled and rows are turned in columns. Basically, this
function can be seen as Pi[(2x+ 3y) mod 5, y, z] = Rho[y, x, z]

Chi
χ takes in input the state vector modified by Pi and applies a non linear transfor-
mation. As it can be seen in figure 2.13, this function is based on NOT,AND,XOR

42

https://keccak.team/figures.html

2.3 – Encryption and Keccak algorithm

Figure 2.12. Application of Pi round on the state vector with w=8. / Keccak-images

logic operators and it performs XOR operation of each bit with a non linear
function of the other two bits in its row. Chi can be written as Chi[x, y, z] =
Pi[x, y, z]⊕ Pi[(x+ 1) mod 5, y, z]⊕ Pi[(x+ 2) mod 5, y, z].

Figure 2.13. Application of Chi round on the state vector with w=8.
/ Keccak-images

Iota
ι is the last step. This function receives as input the state after being permuted by
all other functions. In this step the central lane is XORed with round constant that
can be obtained by table 2.2. This final phase is important because in this way
diversity of rounds and no symmetry along the z axis are guaranteed. Iota[0,0, z] =
Chi[0,0, z]⊕ round_constant[z]

Actually, NIST has approved for the SHA-3, four versions of Keccak sponge
function family : SHA3-224,SHA3-256,SHA3-384 and SHA3-512 [16]. The number
added to SHA3 specifies the length l of digest requested by user at the output. All
these versions use the same permutation Keccak-f[b], where b = 1600 is the largest

43

https://keccak.team/figures.html
https://keccak.team/figures.html

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

1 : X "0000000000000001" 13 : X "000000008000808B"
2 : X "0000000000008082" 14 : X "800000000000008B"
3 : X "800000000000808A" 15 : X "8000000000008089"
4 : X "8000000080008000" 16 : X "8000000000008003"
5 : X "000000000000808B" 17 : X "8000000000008002"
6 : X "0000000080000001" 18 : X "8000000000000080"
7 : X "8000000080008081" 19 : X "000000000000800A"
8 : X "8000000080008009" 20 : X "800000008000000A"
9 : X "000000000000008A" 21 : X "8000000080008081"
10 : X "0000000000000088" 22 : X "8000000000008080"
11 : X "0000000080008009" 23 : X "0000000080000001"
12 : X "000000008000000A" 24 : X "8000000080008008"

Table 2.2. Round constant used for Iota function with w=64.

one. What differs between each version is the subdivision in rate and the capacity
part of the state. Security depends on the size of the capacity part c, in particular
for sure if l < c

2 the digest can be tampered.
The relation between the capacity and the rate part is r = b−r. For this reason,

four versions are characterized by :

• l = 224 : r = 1152 , c = 448, d = 28;

• l = 256 : r = 1088 , c = 512, d = 32;

• l = 384 : r = 832 , c = 768, d = 48;

• l = 512 : r = 576 , c = 1024, d = 64.

d parameter is called diversifier and, as the name suggests, it is used to diversify
Keccak function and it is in range 0 ≤ d ≤ 256. For example two Keccak instances
with same value of r and c parameters, but with different value of d, behave as two
independent hash functions. If no parameter of Keccak function is defined, default
values r = 1024, consequently c = 1600− 1024 = 576 and d = 0 are used.

2.3.3 Padding rule
Keccak sponge functions apply a multi-rate padding rule to the input message.
This rule, called pad10*1, is used to adjust input length and also as termination
sequence for input message.

If the length of input message is equal to the rate length r, all bits of the message
are copied in an inner vector and then XORed with the state. In this case a new

44

2.3 – Encryption and Keccak algorithm

string with length r with all pad bits must be inserted, after the previous input
string in order to advise that the input message is terminated.

In the other case if the input message is shorter than rate part, it has to be
extend and fitted to the size of the rate part. Essentially the pad rule consists on
appending a 1-bit after the last bit of the input message, after this other n 0-bits are
appended to the string so that input message length plus 10... reaches r−1. At this
point a final 1-bit is added to terminate the string. Usual bit ordering convention
is little-endian, so the LSB of a byte is at the lower address. The internal Keccak
convention on the other hand is big-endian, so the MSB of each byte is located at
the lower address, bringing a reordering of each bit. A better explanation can be
provided by the figure 2.3.3.

(a) (b)

Figure 2.14. a) Padding rule 10*1 applied when the input message is equal to r
bits and b) when it is less than r bits, in case of little-endian and big-endian.

2.3.4 Duplex sponge and PRGsponge
In the code the spongePRG function is used as a variant of Keccak sponge family.
In particular this function implements a pseudo-random bit generator based on
Keccak. This is based on the duplex construction Duplex[f, pad, r] [17] that, like
in the sponge construction, uses a fixed-length transformation (or permutation)
f , a padding rule “pad” and a parameter bitrate r. Differently from the sponge
function, in which there is no state memory between calls, the duplex function has
function calls that take an input string and return an output string, depending on
all previous inputs.

Each instance call of duplex construction is considered as a duplex object, de-
noted as D with a state of b bits, σ as input string, Z as output and l the requested
number of bits as in figure 2.15.

45

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Figure 2.15. The Duplex construction.

The maximum number of bits l that can be requested from a duplex block is
r, allowing each block to process a single r-bit input block. For instance, if the
input message is subdivided into 5 r-bit blocks, duplex requires 5 D blocks. After
initializing the state at zero like for sponge, input message is padded and sent to
a D duplex block, where it is XORed with the first r bits of the state. Then f
permutation is applies to the state, like in sponge construction, and it returns the
asked bits.

It can be demonstrated that the same output of a duplex construction call can be
obtained from a sponge call, assuming some conditions on the input message. If the
input of the i-th duplex function call is called as (σi, li) and Zi is the corresponding
output. it can be assert that:

Zi = D(σi, li) = sponge(σ0||pad0||σ1||pad1||....||σi, li)

This can be proved by considering that, at the begging, both sponge and duplex
functions have to initialize the state to zero. After that both functions take as input
a block of r-bits with padding rule, which is XORed with the first r bits of the state
and finally the f permutation is applied to the state in both constructions. At this
point, sponge function and duplex object have the same state and both return the
same output, that are the first r bits of the state. Since the sponge function stops
at this point while the duplex can proceed with other additional call, it can be
considered that the call of D(σ0, l0) is equal to the sponge call that has absorbed
a single input σ0||pad0.

Now with the same idea, it is possible to extend the demonstration to a larger
message, assuming that after a call of a duplex function D(σi−1, li−1), its state is
equal to the state of sponge function, after absorbing sponge(σ0||pad0||σ1||pad1||....||σi−1, li−1).

46

2.3 – Encryption and Keccak algorithm

Once made a new call D(σi, li), the block σi||padi is XORed with the actual r bits
of the state and then the f permutation is applied to the current state. This demon-
strates what it is asserted in the equation before and it proves that a duplex call
D(σi, li) is equal to a sponge call with input σ0||pad0||σ1||pad1||....||σi, li. Moreover
the function spongePRG, that is used in the code, based on the duplex construc-
tion, can be built on the sponge function with a little modification, as can be seen
in figure 2.16.

Figure 2.16. Generating the output of a duplexing call with a sponge.

A pseudo-random bit generator (PRG) is an essential block in cryptography.
Usually random bits are used to generate keys or unpredictable sequence of num-
bers. In order to guarantee security, since the use of this block in cryptography,
generated bits need to be unpredictable, even if PRG functions are known. More-
over, it is suggested to gather the seed using different source of entropy, in a similar
way as in cryptography hash functions. At the beginning PRG is initialized with
a seed and this is used as a known starting condition from which the generation of
random number begins. The main idea of SpongePRG is to built a PRG on the
duplex construction. This can be easily done assuming that the seed is the input
message and the random numbers are the r output bits, generated in the state
after the Keccak permutation. Internally, the function consists of an input buffer
and an output buffer. When a feed function is called, seed bits are puts in the
input buffer and ,once full of r bits, they are passed to the duplex function call.
With fetch function, l bits are requested from duplex output function stored in the
output buffer. Using duplex function, it is possible to perform multiple feed and
fetch request with the limitation that the input seed must be a block of r bits.

All c code and Keccak library information and implementation are provided on
GitHub [18] by the Keccak team. Now a brief presentation of main SpongePRG
functions [19] used for encryption code will be provided to clarify theory discussion

47

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

and to describe how are used.
Since the permutation chosen is the Keccak-f [1600], this will be the prefix to

all SpongePRG functions used.

KeccakWidth1600_SpongePRG_Initialize(& instance , KECCAK_CAPACITY) ;

This function is used to initialize an object SpongePRG[Keccak−f [1600], pad10∗
1, r, ρ]. KECCAK_CAPACITY is used to define the capacity parameter and in
the code it is defined as c = KECCAK_CAPACITY = 512. After this, all
the other parameters are evaluated, in particular rate parameter r = b − r =
1600− 512 = 1088 and the available bits that can be read as output with only one
call ρ = 8 ∗ floor((r − 2)/8) = 8 ∗ b135.75c = 1080 bits. The pointer points to a
Keccak instance that creates the duplex structure.

KeccakWidth1600_SpongePRG_Feed(& instance , sharedKey , KEY_LENGTH) ;
KeccakWidth1600_SpongePRG_Feed(& instance , iv_vector , KEY_LENGTH) ;

This function is used to feed the generator with an input seed. KEY_LENGTH
is an unsigned int that defines the size of the key. SharedKey and iv_vector are
defined as vectors of char of size KEY_LENGTH = 32, so each of them is an
array of 256 bits. As specified above, in order to have a key with different entropy
source, two calls to feed function are performed with a different key. SharedKey
is a key vector that is known to both the sender and the receiver, which must be
kept secret and it is changed after a determinate time to maintain security. This is
the first part of seed given to the SpongePRG function. Iv_vector , instead, is a
key that changes every time a new file has to be encrypted, generating a random
number, which is passed as second key to the SpongePRG function. Since this
vector changes every times it is generated by the sender, so it has to be passed
unencrypted as first part in the encrypted file to the receiver.

KeccakWidth1600_SpongePRG_Fetch(& instance , bytes , bu f f e r_length) ;

This function is used to ask to SpongePRG bufferlength bits and to store them
in a vector bytes. After the feed with the seed is completed, this function passes
the whole bits fed and starts the Keccak computation to return the permuted bits.

KeccakWidth1600_SpongePRG_Forget(& in s tanc e) ;

This function ensures irreversibility. After all the needed bits were obtained by
the fetch function, this function is used to reset the state and to make impossible for
un adversary to compute the starting key. Every time a file is completely encrypted,
this function must be called before starting the encryption of a new file.

48

2.4 – Hardware equipments

2.4 Hardware equipments
In the project document [4] there is the description of FPGA requirements. The
system block that requires more computational effort is the image processing and a
preliminary evaluation of the resources used by the implementation of the algorithm
is performed on Xilinx Zynq UltraScale+ MPSoC ZCU106 board.

Resource
Xilinx Zynq

UltraScale+ MPSoC
ZCU106

Algorithm
used

resource
Lookup Tables (LUTs) 230k 92k (40%)

Digital Signal Processing (DSP) 1728 1112 (65%)
Block RAM (BRAM) 312 276 (88%)
Ultra RAM (URAM) 96 96 (100%)

Flip-flops (FF) 460k 70k (15%)

Table 2.3. Preliminary evaluation of used resources and comparison with avail-
able resources on ZCU106 board.

From table 2.3 it is possible to notice how RAM resources (both block and
ultra) are widely used. In order to have enough resources and to achieve future
implementation improvements, the number of minimum resources required is raised
up. For this reason the ZU19EG Xilinx Zynq Ultrascale+ MPSoC (XCZU19EG-
FFVB1517-1-E) board has been chosen, due to the amount of its FPGA resources,
in particular RAM as previously shown in table 2.4

Resource
Xilinx Zynq

UltraScale+ MPSoC
ZCU19EG

Lookup Tables (LUTs) 522k
Digital Signal Processing (DSP) 1968

Block RAM (BRAM) 984
Ultra RAM (URAM) 128

Flip-flops (FF) 1045k

Table 2.4. Available resources on ZU19EG board

2.4.1 Zynq Ultrascale+ MPSoC
The Zynq Ultrascale+ MPSoC is a particular general purpose family of Xilinx
FPGA, created for advanced specific applications. The board can be divided in
two main functional blocks: Processing System (PS) e Programmable Logic (PL).

49

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Figure 2.17. Zynq UltraScale+ MPSoCs: EG Block Diagram

Further information can be retrieved from the product guide provided by Xilinx
[22], in addition to the FPGA characteristic listed above, and from the figure 2.17.

The PL is the FPGA part. Taking into account the characteristic described in
table 2.4, it is dedicated to high performances and to high density general purposes
I/O for extension boards. One of this connector can not be used for general pur-
poses, but it is connected directly to a Kingstone-KVR21SE15S8 4Gbytes DDR4
Small Outline Dual In-line Memory Module (SO-DIMM). This type of memory has
a smaller outline and thickness than standard DIMM’s, a module containing one
or several RAM chips on a small circuit board.

The PS is the processor part, which includes a Quad-core ARM Cortex-A53 used
as application processor, with a clock operating frequency of 1.5GHz. Since this
type of board is multiprocessors, also two other processors are involved: a Dual-core
ARM Cortex-R5 used as real-time processor, working up to 600MHz and a Mali-
400 MP2 graphics processor. The board provides some peripheral communications,
in order to allow debug and communication with the processing unit. In particular
there are high speed connectivities like PCIe, SATA, Gigabit Ethernet, USB 3.0
and display port, general connectivity like USB 2.0, SD/SDIO, UART, I2C, SPI
and GPIO.

50

2.4 – Hardware equipments

2.4.2 proFPGA motherboard
On the satellite all the boards will be connected using the proFPGA quad moth-
erboard. This kind of board is a complete and modular FPGA system, useful for
flexible high speed Application Specific Integrated Circuit (ASIC) prototyping solu-
tion. The FPGA are assembled in the dedicated spots and they are plugged to the
motherboard, allowing the use of multiple FPGA boards at the same time. FPGA
can be all the same or different models, providing high flexibility. Users have fully
access to each FPGA, moreover the system offers extensions on top and bottom
sides for a specific extension board like DDR-4 memory, PCIe gen1/2/3, Gigabit
Ethernet, USB 3.0 or other high performance interface and interconnection boards.

Figure 2.18. Example of proFPGA modular hardware approach system.

From the hardware manual of the proFPGA [21] there is an example of stacked sys-
tem and in figure 2.18 there is a concept scheme, in particular two FPGA boards
and one extension board are connected directly to the motherboard, while two ex-
tension boards are stacked one over the other and plugged to the FPGA board.
Motherboard offers mechanical fixture, power supply, I2C-based system manage-
ment, clocking infrastructure and MMI-64 communication for multiple FPGA mod-
ules. Module connectors (grey for motherboard and white for other board in figure
2.18) provide user I/O, power supply and service. User I/O of top and bottom
sides are connected to each other, allowing a transparent communication from the
FPGA in the top side to the extension board in the bottom side; this way each
board can access directly to the extension board without motherboard operations.
On the other hand, each FPGA module has access to a Device Message Box In-
terface (DMBI) communication, called MMI-64, from the motherboard, based on
a point to point communication. It is responsible for the System setup, FPGA
configuration and for the user communication, offering a high bandwidth and low
latency integration of both user software applications and user HDL designs.

Since only one board is used for both compression and encryption, a proFPGA
uno motherboard (MB-1M-R2) is used for an easier verification. It has a spot for
only one FPGA board.

51

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

Figure 2.19. ProFPGA uno motherboard.

Due to the presence of a single FPGA board, default settings are used for MMI-
64. This type of motherboard provides also :

• 8 extension sites for connecting extension boards (4 on top side and 4 on the
bottom one).

• Only one FPGA module.

• 8 fixed clock generators.

• 2 quartz oscillators for different clock references.

• Possibility to synchronize every clock signal with the other one used.

• JTAG port for the Xilinx programmer for FPGA programming.

• USB,UART,Ethernet port for test and communication with the board.

• Automatic boards detections and power protection, very useful for pin assign-
ment and right power settings.

2.4.3 Extension boards
The peripheral communication provided by the board is not enough to connect all
the boards of the system together. Moreover some of them have a slow connection,
reducing the performances of the entire system. For these reasons some extension
boards are plugged into the motherboard. Each board has to be configured and
setted in the config file of the proFPGA builder, otherwise the system does not
allow power on of the board, and some of them require VHDL block description
in order to be connected with the processor. In this section only a brief overview

52

2.4 – Hardware equipments

of the extension board and the connection with motherboard is provided, further
details about configuration and implementation will be described in next chapters.

The board coordinate system, used by the proFPGA to identify every extension
board connected with extension connector to the motherboard, can be visualized
in the datasheet [23].

Figure 2.20. Scheme of the coordinate system used on the board to identify
extension boards plugged.

Each coordinate consists of 3 letters, that can be schematized in this way : SIDE
– X – Y. The SIDE prefix can be ’T’ for connection on the ’Top-side’ of the board
or ’B’ for the ’Bottom-side’. The remaining two variables can be considered as the
typical X and Y coordinates of a chessboard, the X one is a letter (’A’, ’B’, . . .),
while the Y is a number (’1’, ’2’, . . .). The name of a module is identified by the code
of its coordinate at the top left corner. Since in the project a unoboard motherboard
will be used for the testing part, available connectors for both top and bottom sides
are: XA1,XA2,XB1,XB2 and the FPGA board is called as fpga_module_ta1. Since
the top side is used for the SO-DIMM card reader, TA1 connector is not available.

In order to satisfy technical requirements, the following extension boards have
been provided for the system:

• GBit Ethernet Board (EB-PDS-GBITETHERNET-R1) (TB2)

• QSFP+ Extension Board (EB-PDS-QSFP+-R1) (TA2)

• Debug Board (EB-PDS-DEBUG-R1) (TB1)

53

Overview on EO-ALERT architecture, compression/encryption code and FPGA board

• Zynq US+ Interface Board (EB-FM-XCZUxxEG-R3) (BB1)

• DDR4 Extension Board with 5 Gbyte (EB-PDS-DDR4-R6) (BB2)

The hardware design will be developed by OHB Team. Although, in order to
start testing on the board and using it, a preliminary design will be performed and
extension boards will be connected as described in the list, following the restriction
described into the datasheet [21].

54

Chapter 3

Tools programs

The thesis is based on different levels of design:

• HW level: it is the lowest level. All boards have to be plugged in the right
connector and powered observing datasheet norms;

• VHDL level: this step includes the programming of all FPGA blocks in
VHDL. In addition, a VHDL top level with all board pins mapped has to
be performed to use HW device on the board;

• SW level: C/C++ code is useful to test some functionalities, to use a pe-
ripheral communication device like Ethernet or USB and to perform complex
tasks that can not be done in VHDL;

• OS level: an operating system is advantageous for an easy supervision of
the board, for simplifying the communication between each board and for
providing high level instructions for the device management.

A different software is used for every level, in particular this section provides a
short guide for each.

3.1 ProFPGA builder
The proFPGA builder software is used for the HW level and it supplies a graphical
environment to create and to run user FPGA designs. In the project the version
2018C is used. It is able to scan the motherboard of the proFPGA and to autodetect
all boards connected. After scanning the system, it generates the complete code
framework for multi-FPGA HDL designs, including all the scripts for simulation,
synthesis and running the design.

In figure 3.1the GUI of the software is shown; in the middle the 3D representa-
tion of the system is provided, which is useful to directly identify the boards and

55

Tools programs

Figure 3.1. ProFPGA builder graphic environment with all the boards
connected with their details.

to compare the configuration on the software with the physical system. On the
left, the board/connector project window is displayed, with the description of the
motherboard and all the connectors used, while on the right the properties windows
can be seen, in which, after clicking on the connector, all the details of the board
connected to it are displayed.

The first step to perform is the system planning in which HW connections,
clocks and power supply are configured. After connecting the motherboard to the
PC through the USB cable from port XUSB1 (detailed description on page 55,
figure 35 of [21]), selecting the file and then the new project from system, the user
should select at this point the TCP/IP connection and click on TCP over USB
(in the project the IP address used for the connection is 169.254.0.2). Using this
procedure, the Profpga builder creates a hardware configuration file based on the
scan of the system connected on the USB port at the IP address defined.

Once analysis of the system is terminated, some settings and a check must be
performed in the configuration section. The first thing to define is the FPGA boot
mode, which can be loaded in there different modes when it is powered on:

• JTAG, in this way after the power on of the motherboard, the FPGA can be
programmed with a Xilinx programmer on the XJTAG1 port (the description
can be found on page 55, figure 35 of [21]) in a second time;

• SPI-FLASH, when the motherboard is powered on, it reads from the flash
the design for the FPGA;

• SD-CARD, at the power on the system reads from the sd-card the HW de-
scription for the FPGA.

56

3.1 – ProFPGA builder

Since JTAG mode allows to reload FPGA design without rebooting the mother-
board, this method is used for testing the HW design. When an OS is mounted on
the board, since it is loaded on the SD card, it is better to use SD-CARD method,
so that OS can automatically boot the FPGA.

In this section the reset at the power on and the reset of the system can be
also defined. From the ProFPGA instruction, it is better to define them using the
physical switch of the board instead of using the software reset.

In the "clock and voltage" section, all the configurations are left as default, so
that the software can set and control that boards work properly, in safe conditions
and without exceeding constraints.

The last step is to define the plug in settings. In this case the ProFPGA provides
two files, that must be used for configuring clock generation SI5338 ,for extension
board and for the FPGA.

Figure 3.2. Functional block digram of the programmable clock generator SI5338.

From the datasheet, the diagram of the functional block in figure 3.2 can be
retrieved. Essentially, this device is a Phase Locked Loop (PLL) with a memory
map in which it is possible to define the working function and to obtain the needed
frequency. Files provided contain register values that need to be stored in the
memory, using an IIC communication, at the power on. Since the system has to
work at high performances, 125 MHz frequency, that is the maximum reachable, it is
set for communications over Buses between boards connected to the motherboard.
For this reason, with the architecture used, SI5338 is programmed in order to
provide 125 MHz clock frequency for QSFP and DDR extension boards and 26 MHz,
27MHz and 125 MHz in order to guarantee synchronization with the frequency of
the bus.

After this last step, it is possible to run generation file board and to create
three different files. The first file generated is the configuration file (.cfg), visible
in appendix A, that contains all the setting description for the motherboards, all
the extension boards connected with their settings and which connector to use to
communicate with the motherboard. At the power on, ProFPGA uses this file to
configure and to check the motherboard. If the system connection with extension

57

Tools programs

boards differs from what is described in this file, the system starting is aborted.
This file must be modified every time the system settings change, on the other hand
if the system remains unchanged all the settings described above can be omitted
and the motherboard can be directly powered on using the configuration file.

The second file generated is the VHDL top level file for the FPGA. This file is
useful for the FPGA code implementation. The top level file contains motherboard
entity called mb_1_TA1, since there is only one FPGA board with the top right
connector defined as TA1. In the port definition of the entity there are all the pins
available on the board, each of them having a logical name referred to their own
function. By default all pins are defined as in-out, so before using them, each pin
must be setted as suggested in the datasheet.

The third file is the XDC constraints file for FPGA, which contains the pin
mapping, linking the logical name associated to each pin with its physical defini-
tion on the board. All other constraints must be added by hand during VHDL
implementation related to datasheet recommendations.

In order to turn on the board, the procedure is to press the run button and then
to click on "connect to system..."; in this way the TCP connection is established
and the command can be sent to the board. After this, by clicking on start system,
the board will be powered on.

3.2 Vivado
In Vivado software it is possible to define the HW block to implement on the FPGA
using VHDL language. For this project the 2018.3 version has been used. In order
to create a new project, the following steps have to be followed:

• Click on "create new project" and follow the guided steps;

• Select "RTL project" and insert, in add sources, the top level file, while in add
constraints insert the xdc file, previously generated with ProFPGA builder;

• Select from the proposed components, in the section part, the used xczu19eg-
ffvb1517-1-e FPGA and click on "finish".

Completed these settings, the Vivado GUI appears like in figure 3.3. If the
project needs only some HW components implemented on the FPGA without using
the processor or extension board, the synthesis and the implementation can be run
in order to create the bitstream to load on the FPGA. On the other hand, an HW
description of the processor has to be provided and this can be performed by clicking
on "create block design" in the section "IP integrator of the project manager".

After that a new blank diagram window appears, in which it is possible to
obtain the VHDL code description by drawing and connecting various IP blocks.
In particular by clicking the right button, in the blank window a menu appears and

58

3.2 – Vivado

Figure 3.3. Vivado GUI.

by clicking on "Add IP..." and selecting Zynq UltraScale+ MPSoC the processor
will be added to the project. Clicking on "Run connection automation" all the pins
are connected to make running the board, obtaining a diagram like in figure 3.4, in
which the generated digram block file design_1.db. can also be seen.

Figure 3.4. Vivado GUI showing block diagram.

Clicking the right button on this file and selecting "create HDL wrapper...", it is
possible to obtain the VHDL code of the designed block diagram design_1_wrapper.vhd.

59

Tools programs

In this file there is simply the creation of the block diagram as a component, which
must be declared in the top file VHDL generated by ProFPGA in order to be used.

The next step is to synthesize and to implement the design, performed by click-
ing on the shortcut that represents a green arrow or by selecting directly the cor-
responding commands in the flow navigator. If no errors are founded during these
steps, a green tick appears on the right in the design runs windows besides the
corresponding step.

The last step for the HW design is to generate the FPGA bitstream that contains
the FPGA programming information. This can be performed by clicking again from
the flow navigator in the "program and debug" session.

At this point the HW prototype is finished and the remaining part to be per-
formed is the board programming, opening the hardware connection and following
the guided steps to complete the procedure.

A briefly sum up of the whole flow to follow can be found on Digilent website.
When implementing the IP processor block, many parameters must be set to

define on which pins the Ethernet and USB device, that are directly connected
to the PS, are connected. Also it is important to define which type of DDR is
connected to the board with relatives working parameters. Since it is a custom
architecture, there is no information on Xilinx site that explains which parameters
to use. From the ProFPGA examples design a command line script is derived, that
instantiates and sets all the useful parameters in order to use the FPGA with the
Zynq interface board directly connected to PS pins (BB1) and the DDR4 memory
via SO DIMM. This file, that can be seen in the appendix B.1, has to be launched
from the Vivado tcl command line after that the block digram has been opened by
typing "source vivado.tcl".

Before passing to SDK, a folder should be created with all the hardware infor-
mation, from which SDK can take the implementation details. In order to do this,
the essential step is to click on the file, then to export and finally export hardware
by also tick to include the generated bitstream. With this procedure in the project
folder will be created a new folder with extension .sdk from which Vivado SDK can
take system information.

3.2.1 Problems
Using the Vivado 2018.3 version, a little bug of the program was found, which
was no reported by any guide or in the Xilinx forum. Launching the program and
selecting different boards, it has been discovered that for the most common boards
there are no problems, while for the other less mainstream boards the problem is
reported in figure 3.5 during the instantiation of the Zynq UltraScale+ MPSoC in
the block diagram.

Since the problem appears just instantiating the block without setting any pa-
rameters and any other details are provided, the first step was to find where the

60

https://reference.digilentinc.com/vivado/getting_started/start

3.3 – Vivado SDK

Figure 3.5. Vivado tlc part in which the code and description of the
error are reported.

value 99,0000 was set in the block in order to identify the problem. By clicking the
right button on the IP, selecting "customize block...", the wanted value is found in
the output clock generation, as it can be seen in figure 3.6.

Figure 3.6. Vivado Zynq UltraScale+ MPSoC IP block customization.

The value was impossible to edit since it is obtained by a mathematical divi-
sion of natural numbers. For this reason, the problem was considered linked to
the operating system mathematical calculation. Indeed the problem is solved by
changing the language (and also mathematical conventions) operating system from
Italian to English (US). Since in the English convention separator between units
and decimals is the dot instead of the comma, the IP block can be instantiated
with no problems.

3.3 Vivado SDK
By clicking on file and than launching SDK, it is possible from Vivado to enter in
the SDK environment. With this tool it is possible to generate code that can be
run on the board, to retrieve HW information from files generated in Vivado and
to communicate from processor (PS) to the FPGA (PL) and vice versa by using
the hardware address. There are two main possibilities to create the software:

61

Tools programs

standalone and Linux, clinking on "file", then "new" and "application project", a
window like in figure will be opened.

Figure 3.7. Vivado Zynq UltraScale+ MPSoC IP block customization.

The standalone application is used to run the C code over the processor in
baremetal mode without any OS running on the board. In this mode it is possible
to use the Xilinx library which contains all standard functions to communicate with
the hardware of the board. If no OS is used, the program can be loaded directly
on the board using the button "program the FPGA" and a communication with it
can be established, using the USB connection XUSB1 or XUSB2, that are directly
connected to the PS as asserted in [21] at page 113. There is the restriction that
both port can not be used at same time.

Communication can be established by using the command screen on Linux:
s c r e en dev/ttyUSB0 115200

Where ttyUSB0 is the name of the USB device, while 115200 is the value for
the baud rate used for the connection, which usually is the higher one. In order
to close the connection, the best choice is to press CTRL-A and then K, so in this
way the connection is terminated closing the stream channel. Otherwise to start a
new communication, it is necessary to unplug the cable and to reconnect it.

The Linux application on the other hand does not allows to use Xilinx library,
but it is possible to use all Linux functions. Compiling the code, an executable file
with extension .elf is generated, which can be directly loaded on the SD card of the
OS boot and run. This is the easiest and fastest method to compile a program for
the board, since the compiler for the board is not common, in particular the tool
uses ARM V8 compiler and assembler with the command aarch64-linux-gnu-gcc.

62

3.4 – PetaLinux

Also in this case the communication with the board can be done through USB
connector and screen command.

In the project explorer there is a folder name_hw_platform that contains all
hardware specifications, in particular there are the files psu_init.c and psu_init.tcl,
that are very important as explained in the following section. In the same folder
there is also the file named system.hdf, in which there are all the names and the
addresses of the hardware design that can be used.

3.3.1 Problems
Some times if the run of the program is launched a second time, this type of error
can appears :

Timeout Reached. Mask poll failed at ADDRESS: 0XFD4023E4 MASK: 0x00000010

There is not a clear explanation about the reason why no guide or no Xilinx
forum post exist. One solution can be found in a forum regarding the Zedboard
[24] in which, without specifying the origin of the problem, the following steps are
suggested:

1. Shut down and Reprogram the board;

2. In the psu_init.c file inside name_hw_platform project, comment out the
following line as shown and save the file;

//mask_poll (SERDES_L0_PLL_STATUS_READ_1_OFFSET,0 x00000010U) ;

3. In the psu_init.tcl file, in the same directory comment out the following line
as shown and save the file;

mask_poll 0XFD4023E4 0x00000010

4. Launch again the program with the run command.

3.4 PetaLinux
After that design is described in Vivado and all codes needed are built on SDK, the
last step to be performed is to create an OS for the board, based on the previous
characterization. The version of PetaLinux used is the 2018.3, since it is suggested
to use one equal to the Vivado to reduce incompatibility error. PetaLinux offers
wide flexibility in the OS construction for Xilinx board like Ultra Scale, for this
reason there is not a complete flow to follow, but several guides are considered in
order to understand which is the best sequence of commands to create an OS that

63

Tools programs

fits the project requirements and that is not too heavy for the board [25, 26, 27,
28, 29]. An ultimate more detailed reference is published after the test performed
on the board [30]. This tool does not have a GUI, but it is all based on command
line instructions.

The first step is to change by hand the ProFPGA configuration file and to
modify the boot source from "JTAG" to "SD-CARD" in the system configuration,
so that the FPGA loads directly boot information from the SD card.

The second step is to decide if First Stage Boot Loader (FSBL) and Platform
Management Unit Firmware (PMUFW) should be created in Vivado SDK or let
petaLinux to create them. In first case the creation is under the control of the user
that can verify the correctness of the procedure, while in the second case petaLinux
creates automatically the files with some possible improvements.

The FSBL is responsible for loading the bitstream and configuring the FPGA
architecture Processing System (PS) at boot time, without which the boot can not
be done.

The PMU, as the name suggests, manages the whole platform, so it has a huge
impact on a lot of use cases.

The third step is to launch petaLinux tool and to start the generation of OS
using the following commands in the reported order.

// p r o j e c t c r e a t i on
peta l inux−c r e a t e −t p r o j e c t −−name name_project −−template zynqMP
//move in to c r e a t e p r o j e c t f o l d e r
cd name−p ro j e c t
// load hw de s c r i p t i o n
peta l inux−c on f i g −−get−hw−d e s c r i p t i o n=sdk_path_folder
// c r e a t e custom app to run own program on OS
peta l inux−c r e a t e −t apps −−name name_program −−enable
// s ub s t i t u t e in the app f o l d e r

pro ject_spec /meta−user / r e c i p e s−apps/name_program/ f i l e s c r ea ted example f i l e
with the program c f i l e

// s e t t i n g ke rne l c on f i g u r a t i on
peta l inux−c on f i g −c ke rne l
// s e t t i n g r o o t f s c on f i g u r a t i on
peta l inux−c on f i g −c r o o t f s
// s e t t i n g dev i ce t r e e c on f i gu r a t i on (op t i ona l)
peta l inux−c on f i g −c device−t r e e
// s e t t i n g u−boot c on f i gu r a t i on (op t i ona l)
peta l inux−c on f i g −c ke rne l
// bu i ld image
peta l inux−bu i ld
// c r e a t i on f i l e boot package
peta l inux−package −−boot −−format BIN −− f s b l images / l i nux /zynqmp_fsbl . e l f

−−u−boot images / l i nux /u−boot . e l f −−pmufw images / l i nux /pmufw . e l f −−fpga
images / l i nux /∗ . b i t −−f o r c e

After creating the project, it is important to move to the folder created or to
define it as folder path, otherwise petaLinux can not proceed with the operations.
After this, the path from which the tool can load all hardware information must
be defined, in particular it is preferable to use SDK folder path created by vivado
SDK.

64

3.4 – PetaLinux

Figure 3.8. Command line showing settings after petalinux–get-hw-description.

In the figure 3.8 the image of the graphical menu is shown, which comes from
the petalinux–get-hw-description call. In the project all settings are left to the
default ones.

The following step regards the custom instantiation of the user programs. There
are two main possibilities for running code on the board:

• Load the compiled program (.elf) in the SD card, run the board and it can
be found and launched from the SD card path of the OS /run/media/mm-
cblk0p1/...

• Using petaLinux command, create the app to define a system call equal
to the name app in the OS. This command creates only the template, so
the file program must be inserted in the project/spec/meta-user/recipes-
apps/name_program/files before launching the petalinux-build. By follow-
ing this procedure, the program can be called from every point like a system
function. Indeed, going in the /usr/bin section of the OS among all available
commands, also the user application can be found.

After this, several configuration calls must be performed. The first one is the
kernel configuration, followed by the function call, the window as in figure 3.9 will
appear in the terminal.

Since the system will use a PCIe connection, the only setting to modify is to
enable the PCI, in particular this must be performed:

• Bus support → PCI Support;

• Bus support → PCI Support Express Port Bus Support;

• Bus support → PCI Endpoint → PCI Endpoint Support.

65

Tools programs

Figure 3.9. Command line showing settings after petalinux–get-hw-description.

The next one is the rootfs config, in which it is possible to add all needed
libraries and to custom programs. In figure 3.10 the menu from command line is
provided.

Figure 3.10. Command line showing settings after petalinux–get-hw-description.

Since there are no tips about what to add to the image, after multiple tests the
best version for performing test is to add in Filesystem Packages:

• Admin → sudo;

• Admin → sudo-dev;

• Base → shell → bash;

• Console → network → ethtool;

66

3.4 – PetaLinux

• Console → network → wget;

• Console → utils → man;

• Console → utils → pkgconfig;

• Console → utils → screen;

• Console → utils → vim;

• Misc → gcc-runtime → libstdc++;

• Misc → packagegroup-self-hosted;

• Misc → packagegroup-core-buildessential.

These libraries are added in order to make the test and the debug easier, which
does not imply their effective utility in the satellite version implementation. In-
stead, the ethtool and libstdc++ libraries are fundamental and they must be always
included. The former is useful for making Ethernet port working, while the latter
for running the C++ code. In order to load user apps on the boot image in the
same menu inside apps submenu, the relative apps must be selected.

At this point, the configuration of device tree and the u-boot can be done only
in case of changes, otherwise they can be skipped, launching the petalinux-build
that proceeds with the analysis and creation of the compiled file based on all the
previous information provided. This is a long task that usually takes one hour to
be completed.

The final step implies putting together the generated files to load on the SD
card by using the petalinux-package command, which takes all the files and creates
the image.

Load BOOT.BIN and image.ub on the SD card to insert in the XUSB1 SD-Card
Holder ([21] on page 113) placed diagonally over the FPGA. There are two card
holders: one is located on the FPGA with a boot functionality, while the other is
located on the motherboard which contains its own instructions. The latter must
non be removed or overwritten, otherwise this will cause the stop working condition
of the motherboard.

Looking in the proFPGA project example material, a bash can be found with
the aim of automating the image creation with petalinux. This bash was modified
in order to fit the systems requirements. As can be seen in appendix B.2, it is
quite similar to the flow described above, with an additional part to substitute in
automatic C code for the apps implementation and with a device tree modification
in order to make the Ethernet and USB connector visible to the OS.

In order to switch on the board, the first step is to power on the motherboard
using the command

67

Tools programs

profpga_run name_config . c f g −u

This way the configuration file is automatically passed to the proFPGA, that
starts the procedure of powering on. If the board remains off, the power could be
forced to on as described in the proFPGA section, even if it is considered a quite
brute force approach. Once the boot is completed, the OS asks for login credentials
that by default are admin: root and password: root.

68

Chapter 4

Hardware structure

Before starting with the code implementation, the system must be set up. In order
to do so, some test projects are designed, making it possible to understand how the
board works and which components are involved to build the required architecture.
In this section all the tests performed will be described, starting from the most
basic until reaching the most complex one. The starting tests are performed in
order to first test the FPGA and processor(PS) separately and then together.

4.1 Base tests : FPGA (PL), processor (PS) and
together (PS + PL)

In these designs only the proFPGA and Vivado are used, since at the beginning
the aim is to understand how to configure the board without OS. In addition for
the FPGA, the debug is performed using LEDS.
Only FPGA (PL) part

In the first test (test_led) a counter was implemented in Vivado, which turns
on and off the LEDS placed on it by using the clock of the FPGA. Only VHDL
code is used to describe the hardware, without any other blocks. In order to use
the clock of the FPGA, some changes have been made to the constraints XDC file
and to the top level VHDL.

Since the board uses a differential clock, this can be converted into a single
ended, using the IBUFGDS components and a 100Ω termination resistor, that
must be specified in the constraint file. Moreover in order to use LEDS, they must
be classified as LVCMOS18 elements so that they can be powered with 1.8V. All
these changes are described in the [21] at page 30 and at page 122, while all other
unused pins are commented.

In top file, as for constraints one, not all used pins are commented. In addition
the buffer, the counter and connection with LEDS pins are instantiated in the
architecture.

69

Hardware structure

After this step the synthesis is launched and the implementation runs, finally
loading the bitestream on the board for tests. All the made codes can be visualized
in the appendix C.1.

Only processor (PS) part
In this design the Zynq Ultra scale IP block is implemented, in the Vivado block

digram, allowing to use the processor and to write the C code to run over it. No
other changes are applied to the constraints file, while the wrapper of the block
diagram is added in the top VHDL file with the zynq component.

After this, an example of C code, in which simply "Hello world" is printed on the
screen, is implemented in the standalone version of Vivado SDK. Since the Vivado
terminal does not work, the only way to see the print is to use an USB connection
and a screen command. This code is not provided in the appendix, since only
example codes are used.

Processor (PS) and FPGA (PL)
In this paragraph two designs are implemented, that use both PS and PL at the

same time. The purpose of both designs is to make a project in which an hardware
block is implemented on FPGA to control LEDS, which is programmed with C
code running on the processor. In the constraints file only the constraints for the
use of LEDS are added, since in these designs the clock of the processor is used
instead of the FPGA one. In the first project (test_hello) in the block diagram, a
Zynq and an AXI GPIO are instantiated and after the run block automation also
the axi interconnect is added to the block design, in order to connect the gpio to
the processor. By clicking on the right button and selecting "create port", a vector
of 8 bits is instantiated to create a port of 8 bits that goes out of the block created.
After that, the wrapper of the block is generated, the implemented component is
added to the top VHDL and the output port of the component is directly connected
to the pins of the corresponding LEDS of the board. In Vivado SDK a standalone
C code project is created and the Xilinx functions are used.

The first step is to define an address variable to communicate with the AXI
GPIO component. After that, the device is initialised and its physical address,
obtained by the system.hdf file, is linked to the address variable led_blinker. The
last step of the initialization is to set the communication direction of the tristate
buffer of channel, using the Xilinx function, in which the fist parameter is the
address of device, the second is the channel used, while the last one is to define the
tristate mask where 0 stands for the output and 1 for the input.

After that the device has been initialized, with the DiscreteWrite function it is
possible to write the value for the LEDS, specifying the address of the device, the
channel used and the value to be written in the device. All the codes and the block

70

4.1 – Base tests : FPGA (PL), processor (PS) and together (PS + PL)

diagram used can be seen in appendix C.2.
The second design (test_up_down) does the same things, but in this case a

custom AXI slave is used to control the LEDS instead of an AXI GPIO. In order
to crate an AXI slave block, click on "tools" and then create and package a new IP.
In the window that will be displayed, select "create AXI4 peripheral" and select a
datawidth of 32 bits and 4 registers, since they are minimum values that can be
chosen respect to the real need of just 8 bits for this design. After this, the slave
is created and it can be added to the digram block by simply clicking on the right
button and selecting in the IP catalog the created block, that in this case it is called
blinker.

The created block has to be modified, since a 8 bits output for driving LEDS
is needed. By clinking on the right button on the created IP and selecting "edit"
in IP packager, it is possible to modify the HW block. The IP is opened in a new
Vivado project and in the blinker_v1_0_S00_AXI, that defines the architecture
of the AXI device, an output vector OUTPUT_LED of 8 bits is added in the
port declaration and, at the end of the file where it is possible to add user logic,
this port is connected to the first 8 bits of the first register implemented. In this
way when something is written in the register device, this will be forwarded to the
OUTPUT_LED vector. At this point only the logical behaviour of the device is
modified.

To modify the IP block in the block diagram, also the blinker_v1_0 has to
be modified, in particular the OUTPUT_LED logic vector is connected to the
instantiated port output_led of the IP block. To finalised these changes, the IP
must be repacked, otherwise no modifications are brought to the block diagram
even if VHDL files are modified. In order to validate changes, click on "package IP"
and then go to one of the sections in which the tick is absent and click on "merge
changes from customization parameters wizard". After this, if no errors appear, all
the section will be validated by a tick, except for the "review and package" section.
So go to this section and click on "repackage IP". If these repackage steps are not
performed, the block has not been working as expected.

After this step, return to the block diagram, delete the old version of the block
and add the new version to the block diagram.

As in the other design, also here a port has been created for managing the
output bits and the component has been added to the top VHDL after the wrapper
generation.

Constraints and top VHDL files are the same of the previous design. In the
Vivado SDK a standalone C code is created, in which no Xilinx function are used.
In this case from system.hdf the address of the blinker block is taken and a pointer
variable to this memory location is created. Writing to the pointer, it is possible
to change the status of LEDS. Also for this project it is possible to view the block
diagram and the files generated in the appendix C.3.

71

Hardware structure

4.2 Test of the interrupt functions
The next test performed is to realize a design, in which the LEDS are changed by
an interrupt instead of a running program, that can stock the processor to perform
others works. In order to test also the debug extension board, also LEDS on this
board are used. In the constraints file all the constraints of the LEDS for the
debug board are added as it has already been done for the LEDS on the board. In
the block diagram the AXI timer was instantiated, which is useful for managing
the interrupt. In order to make the interrupt visible to the processor, it must be
enabled in the Zynq IP block by going to the "PS-PL configuration", to "general",
to "interrupts" and finally to "PL to PS". By clicking on the "run automation
connection", all the blocks are connected in a proper way. For the C code in Vivado
SDK, the code example on the Xilinx forum [31] is followed.

In the C code the same steps of previous test are performed for the AXI gpio.
For the interrupt management the first step is to define a pointer to the timer
device. In the timerInterruptHandler all the functions that must be performed by
the interrupt call are defined, which are the functions for the gpio to change LEDS
status.

The initialization of the interrupt is made by several parts, firstly the timer is
initialized linking the address to the physical address of the AXI timer in the block
diagram and then the pointer is also linked to the handler of the interrupt. This
way every time the timer reaches the limit, it calls the corresponding handler to
be performed. After this, the interrupt is enabled and both the auto reload option
and the limit of the counter are setted. Finally the timer starts counting. All the
files used can be found in appendix C.4.

4.3 GBit Ethernet Board (EB-PDS-GBITETHERNET-
R1)

At this point also the OS is introduced in the design and, after realizing how to
built the image and to boot the system from the SD card, the first test project has
the purpose of using the GbitEthernet (test_client). The ethernet port is essential
in the project for testing the communication between boards, moreover it can be
only used with a running OS.

Before starting with the design description, a brief summary of the GbitEthernet
extension board must be provided. This extension board provides two Ethernet
connectors supporting 10m/100M/1G and MII/GMII/RGMII. Each connector has
five status LEDs to advise about PHYsical layer (PHY) status.

For the project, Reduced Gigabit Media-Independent Interface (RGMII) inter-
face physical connection is used between the Ethernet PHY and the Ethernet Media

72

4.3 – GBit Ethernet Board (EB-PDS-GBITETHERNET-R1)

Figure 4.1. Gbit Ethernet board.

Access Control (MAC): in particular the PHY is the DP83865DVH Texas Instru-
ments and the Ethernet MAC is inside the FPGA. The purpose of this interface
is to transmit the path, from FPGA to PHY, and to receive the path, from PHY
to FPGA, both of them having an independent clock, 4 data signals and a con-
trol signal. By clocking data on both the rising and the falling edges of the clock,
like in a dual data rate (DDR) memory, and by eliminating non-essential signals
(carrier-sense and collision-indication), it is possible to move from 24 pins in GMII
interface to 12 in the RGMII, reducing the number of the pins involved by one-half.

The RGMII standard specifies that data and the clock must be given as output
simultaneously (ie. without any skew on the clock). Since this condition is not easy
to obtain, for a proper sampling of the data signals at the receiver side, the RGMII
standard specifies that the skew must be added to the clock signal, either by the
PCB traces, or by the receiver itself as can be seen in figure 4.2.

The skew of the TX and the RX clocks can be managed independently, without
being implemented at the same stage on each path, but somewhere on each path.
For this reason it is critical to understand each of the delay stages in the target
system in order to ensure that the clocks in the RGMII interface are properly
skewed.

The extension board is connected to the motherboard throw the external con-
nectors, but they are not directly connected to the processor. In the proFPGA
architecture there are two different pins, the MIO and EMIO. MIO pins are prede-
fined and it is possible to select, from predefined sets of possible pin connections,
the particular PS peripheral which will be directly connected to the PS part. On
the other hand there are the EMIO pins that are not directly connected to the pro-
cessor, but, passing through the FPGA, they can reach the PS part. In this case
pins have to be defined where the constraint (XDC) file is located and they must

73

Hardware structure

Figure 4.2. Diagram of interface communication between FPGA and Ethernet
port with the three possible positions to add skew: 1)FPGA, 2)PCB and 3)PHY.

be connected in top VHDL module with Xilinx tools generated system (PS mod-
ule) wrapper module. EMIO pins are very useful when the number of peripherals
provided by the board are not enough, i.e in our case there are no Gbit Ethernet
ports on the board, but only a Gbit interface. Adding the relative IP block and
coding it in the PL, it is possible to plug the Gbit Ethernet extension board and to
extend the number of ports. Eventually one substantial difference between using
MIO or EMIO pins is that, using the last ones for PS peripheral, PL must be con-
figured (FPGA design running) to have pins connected to the PS peripheral (they
are wires through PL logic). E.g. Linux device driver (e.g. for UART you have
configured to use EMIO) can use that PS UART device only if PL is configured
(wire connection through PL logic must exist). On the other hand, MIO pin PS
peripheral connections does not require PL to be configured, pins are connected
outside PL via PS configuration registers, set up by FSBL.

In order to connect the PS part with the Gbit port, the "Gmii to Rgmii" IP
block, in figure 4.3, has to be added to the block diagram.

With this block it is possible to solve an important issue.

• Firstly it is possible to connect Emio pins of the Zynq Ultrascale+ MPSoc
block with the pins of the Gbit Ethernet in the block diagram and consecu-
tively in the VHDL top level.

• Secondly it is possible to move from Gmii to Rgmii interface, using less pins
as described above.

• Eventually it is possible to add a skew on the TX clock, by accessing in the
Vivado GUI through the option “Skew added by PHY”. When this option is
ticked, the core will output the TX clock without the skew. When unticked,
the core will output the TX clock with 2ns of skew. For the RX clock no
options are available.

74

4.3 – GBit Ethernet Board (EB-PDS-GBITETHERNET-R1)

Figure 4.3. Gmii To Rgmii IP block design with relative possibility to add skew.

Since in the project a Linux operative system will be used on the board, no
skew will be added by the block (thick on option skew added by PHY). In Linux
applications, the simplest way to enable or disable the internal clock delays is
through the device tree. The device tree will contain a section for each Ethernet
interfaces.

This information is obtained from the demo design, provided by PROfpga and
from ETHERNETFMC [32] that, despite describing the different products, were
useful to understand the design flow.

In the script created for the automatic creation of the OS system, the following
code is added in the device tree, allowing an increase of the delay for the port on
both the paths

phy@c {
reg = <0xc>;
t i , rx−i n t e rna l −delay = <0x8>;
t i , tx−i n t e rna l −delay = <0xa>;
t i , f i f o −depth = <0x1>;
t i , r x c t r l −strap−worka ;

} ;

Regarding the constraints and the top VHDL files, only required pins for the
GbitEthernet port are left, according to datasheet [21].

In the block diagram several custom settings must be performed, in particular
in the Zynq IP block in the I/O configuration, in "high speed" section, GEM0 and
MDIO0 are connected to the EMIO port, for instantiating the Ethernet port in
the Zynq interface port board, which is directly connected to the PS and does not

75

Hardware structure

need any other block. For the GbitEthernet port of the extension board, GEM3
and MDIO3 are used on MIO pins, being available on the block diagram. These
pins are connected to the instantiated Gmii to Rgmii IP block in input, while
the MDIO_PHY and RGMII pins exit from the same block. They are connected
to relative output pins, created through the "create interface port" procedure by
clicking on the right button in the diagram window.

Since the Ethernet port can only be tested with OS system in Vivado SDK, two
main Linux application programs are created, respectively a server and a client,
in order to establish a TCP communication. These two programs use the: sys/-
socket.h, netinet/in.h and netdb.h libraries. The client opens a communication on
the specified address IP, provided as parameter, and it stands by until a client asks
for a communication on the same IP. If the string "exit" is passed the communication
is closed.

At the power on, the IP of the port must be setted, otherwise the communication
cannot be established. Some ports might not be listed in the available ones when
the ifconfig command is called.

In order to activate a port, this command can be used
ip l i n k s e t dev eth# up

Where # indicates the number of Ethernet ports to activate.
If the port is already available, the IP can be setted by typing

ip addr add X.X.X.X/16 broadcast + dev eth#

In particular after setting the IP of the board, the port is tested firstly with ping
command, connecting the board to a PC through the Ethernet. In the second case
the board, on which the server program is running, is connected to a raspberry on
which the client is running. Later on, programs are swapped. To run the server, the
port on which opening it is required, while the client firstly needs the IP address
on which the server is running and secondly the port.

A copy operation of a folder is also tested during the communication with rasp-
berry, using the following command on the board

scp −r pi@X .X.X.X: /home/ pi .

All the used files, programs and scheme are available in the appendix C.5.

4.4 DDR4 5 Gbytes ram Board (EB-PDS-DDR4-
R6)

Since the compression of the image needs lots of memory, a DDR4 memory is de-
scribed in this section such as a very important block. This is due to the fact that it

76

4.5 – Custom AXI slave VHDL implementation controlled by OS

allows to have the largest part of the image ready to be processed. The DDR exten-
sion board provides a 5 Gbytes DDR memory, belonging to the MT40A512M16HA-
O83E model. In the block diagram (test_ddr) the fundamental block that must be
instantiated is the MIG IP block that allows to connects the processor with a user
defined memory. In particular the block parameters are set as follows:

• Memory device interface speed: 833 ps;

• Reference input clock speed: 7998 ps;

• Configuration: component,

• Memory part: MT40A512M16HA-O83E;

• Data with: 64 bits.

All others parameters are left as default. This IP is connected to the proces-
sor through the AXI bus and its output is connected to the DDR generated port
interface. The MIG is a very useful block that allows to generate the memory con-
trollers and the interfaces for the FPGA and to support almost all types of memory,
included DDR4. In the constraints and in top VHDL files all pins related to DDR
are set as described in datasheet [21].

For this design, only the C code is tested and no OS functions are used. This
is due to the fact that the OHB team provides its API, butthe DDR functions call
can be implemented as described in the following test.

In Vivado SDK, a standalone code is implemented, in which the base Xilinx
writing and reading operations are tested. In particular 8 operations with 8 bits and
4 operations of 16 bits, both in writing mode, are performed, in order to understand
how to work with the address. The same approach is used with the read operations,
in which 16 operations of 8 bits and 4 operations of 32 bits are performed . All the
results are printed on the screen. As usual, all files, configuration and the debug
image can be consulted in the appendix C.6.

4.5 Custom AXI slave VHDL implementation con-
trolled by OS

This final design (test_calc) is used to simulate the last step of the thesis, in which
the C code must be converted into a VHDL device, that has to interact with the
OS as an hardware acceleration. In this design, a simple multiplier is implemented
in VHDL, packaged as AXI slave and communicating with the processor through
the AXI bus. Subsequently the communication is tested at the first phase as C
code with Xilinx functions and with Linux functions by the OS in the following

77

Hardware structure

ones. The constraints and VHDL top files are not different from previous project
in which the LEDS are used.

The main idea is similar to the blinker in test performances, where both PS and
PL are used. In this case, multiplier components are implemented in VHDL, taking
two numbers A and B as inputs on 16 bits and a selector SEL. If the value of the
latter at the input is equal to two, the multiplication is calculated and returned to
the output on 32 bits port CALC_OUT.

This block is used as a component in the generated code of the AXI slave mymul-
tiplicator_v1_0_S00_AXI at the end of the file. Ports A,B,SEL are respectively
connected to the instantiated registers slv_reg0,slv_reg1,slv_reg2, while the port
CALC_OUT is connected to the signal calculator_out. Moreover, this last sig-
nal is added to the sensitivity list and put at the output instead of the remaining
register slv_reg3. In this way only the inner AXI VHDL file is modified and no
changes have to be provided to the upper file mymultiplicator_v1_0 of the diagram
definition. In fact in the block diagram, once the multiplier is instantiated, it has
only the AX, the clock and the reset connection.

In Vivado SDK, two different files are created, the former is the C code for the
processor to run in bare metal, while the latter is the C code for Linux system,
both communicating and using the multiplier.

For the bare metal application, the code is very similar to the one used in the
test of the DDR. In this case, since the instantiated register of the AXI slave is on
32 bits, write operations are based on Xil_Out32 function that writes 32 bits at
same times. Since the inputs are on three different registers, each of 32 bits, the
address of each operation is shifted by 4 bytes with respect to the base address of
the multiplier found in the system.hdf file. The same method is applied to the read
operations. This is code is debugged with the print of the values on the screen and
with the LEDS blink.

For the Linux application, since the Xilinx functions can not be used, a suitable
solution is found in the mmap() Linux system call [33] [34]. This function can be
used, by including the sys/mman.h library, to create a mapping from the system
physical memory /dev/mem to a defined pointer.

page_addr_mult = (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR & ~(page_size −1)) ;

page_offset_mult = XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR − page_addr_mult ;

ptr_mult = mmap(NULL, page_size ,PROT_READ|PROT_WRITE,MAP_SHARED, fd ,
(XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR & ~(page_size −1))) ;

From these commands a memory physical location is created, starting from the
address of the multiplier block and occupying a page size of space, that by default
is 4096 bytes. This memory location is mapped in read and write modes as shared
memory, becoming visible and accessible by all the processes running on the system.
After that, read and write operations are performed to the pointer, created with
the same offset method used by the bare metal application. As usual, the debug is

78

4.5 – Custom AXI slave VHDL implementation controlled by OS

performed using the print to the screen.
This is the last design that has been tested, all the built projects are confirmed to

be correct by the hardware team OHB, with a delivered and used version. Previous
tests are developed in order to understand the functionality of the board and to have
a simplified version of the system, on which the compression and the encryption
code are tested. All the files produced can be consulted in the appendix C.7.

79

80

Chapter 5

Code implementation

Once the hardware system is defined, the compression software can be tested on
the board. The first step was to compile the C code of the compression, verifying
if there were some problems with the board architecture. The compression and
decompression code use the Keccak library that is provided as lib.a static library
and it extracts from it the contained files. With the command "ar x libkeccak.a"
only objects are obtained without any C code sources. Since the library is compiled
for an Ubuntu system x64, it is not compatible with the workstation on which a
Centos7 system is running. For this reason, from the github channel of Keccak team
[18] all the library is downloaded, including the makefile. Due to the compiler for
the board system, the makefile compatible system list is not included. A possible
solution is to generate a dynamic library .so for a generic x64 Linux system. After
all the files were generated, in order to use the generated files, the compressor and
decompressor makefiles of have been modified in this way :

// o r i g i n a l commands
CCFLAGS = −g −Wall −rdynamic
KeccakFlag = −I . . / l i bk e c cak /bin / gene r i c64 / l i bk e c cak . a . headers / −L

. . / l i bk e c cak /bin / gene r i c64 /

//modi f i ed commands to the generated l i b r a r y
CCFLAGS = −g −Wall −rdynamic −std=c99
KeccakFlag = −I /home/marco . c o r n e l i o / Sc r i van i a /CCSDS/main_folder_ccsds /

XKCP/bin / gene r i c64 / l i bk e c cak . a . headers −L
/home/marco . c o r n e l i o / Sc r i van i a /CCSDS/main_folder_ccsds /XKCP/bin / gene r i c64

Applying these changes, all the programs provided can be run on the lab work-
station. The next step is to run these programs on the boards. Since the only
available compiler for the board architecture is on Vivado SDK, all the source files
of each program are imported in a Linux application project on SDK. Moreover,
also the source files inside the keccak library .so are imported in the project.

This way the compiler has all the information for the executable generations
and, after loading the elf file on the SD card and adding the library for use C++
code on the boards (cubito is programmed in C++ language), they all work.

In order to launch the code for the alerts, a single_test bash can be launched.

81

Code implementation

It runs the test with a dummy pre written alert, otherwise the test bash can be
launched, generating 300 random alerts and processing all of them step by step.
For testing the compression and encryption algorithms, the test.sh bash can be
launched, also using the codec2_NL, in which all the parameters and image path
are passed to the compression and decompression programs. After that, the results
are passed to cubito, that evaluates all the performance values, comparing the
original and the reconstructed images.

Some problems may come up during the running programs, in particular with
the compression and decompression tests:

• Function calls used to evaluate the time of the whole compression and de-
compression chain do not works on the boards. For this reason, they are
commented in order to avoid the block of the test;

• Some parameters passed to the compressor by test.sh and codec2_NL.sh are
not traduced into the correct value by the optarg function. The incorrect
parameters are : weight_initial and weight_final (also on Centos7).

This code implementation is used as back up solution in case VHDL implemen-
tation is not possible.

The code that has to be implemented in VHDL is the compressor, while all
others programs are used to validate the compression operation. Concerning the
alerts, encryption will not be implemented on the board.

In order to implement the code in VHDL, Vivado hls is used, a tool that converts
the standard C code functions into VHDL code. After passing all codes and Keccak
library sources, the synthesizer is not able to traduce the code, due to the high level
functions and to the huge quantities of dynamics parameters with no defined size
present in Keccak.

Since it is not considered wise to modify a certificated and validated library,
this is settled by implementing by hand Keccak functions used in the code and
delegating the remaining part of code to Vivado synthesizer.

5.1 Keccak C code analysis
In the .so library there is not a reference code for understanding the operations
performed. For this reason a reverse engineering approach was used, which implies
the comparison between the available papers and the code. In Keccak Team web
site [35] there are some suggested implementations of Keccak hash function [12].

These codes are the perfect candidates to implement Keccak functions, in par-
ticular the Keccak Team has worked on the optimization to facilitate the hard-
ware implementation. For the round functions, only boolean expressions are used,
avoiding the involvement of adders or of other complex logic. For this reason, these

82

5.2 – VHDL Keccak implementation

designs are very useful when high frequencies are needed in the project, moreover
they support all variants (rates, capacities) and use cases, like PRG, for a given
lane size, with little changes of VHDL code.

Due to expanse length of the compression code, the alerts program is used for
the simulation in C code. It has less code lines and it is mainly focused on the
encryption. Despite Keccak functions in these two programs are very similar, the
only difference is that the in the alerts code the random numbers generated are
taken byte for byte, while in the compression bit per bit.

Starting from the encr.c code, an additional code is derived from it, in which
only keccak functions are used in order to create a dataset of input and output to
compare with the VHDL code. The code used for the debug can be visualized in
appendice.

Since the padding rule is not very clear, some tests are performed to cover all
cases and to have a complete dataset to use for VHDL implementation. In particular
the following cases are verified and both input and ouput values are printed to file
in hexadecimal representation:

• Single key of 4 bytes. Used for a short example of key word;

• Two keys with a small number of bytes. Since in the compression two different
keys are used, this is used to simulate the behaviour of the real code using
small keys;

• Two keys of 32 bytes. In this case long keys are used like in the original code;

• Two long keys with two fetches. This way it is possible to understand which
is the behaviour in case of multiple fetch calls.

An important consideration to make is related to the feed function. Indeed,
when it is called, the length parameter of the key must be exactly the length of
the key, otherwise if the length is longer, the feed function fills the exceeding part
with all zeros and then it adds the termination bit. This means that if the length
given as parameter is longer than the key length, the returning output is different
with respect to the real key input. All the tests performed can be consulted in the
appendice.

5.2 VHDL Keccak implementation
There are three different types of design suggested for the Keccak implementation
(version 3.1):

• High-speed core: in this version all the Keccak algorithm is implemented
in hardware and it operates in a stand-alone version. The core does not use

83

Code implementation

system resources and the CPU is free to perform others tasks. Moreover to
optimize the whole interaction between CPU and Keccak core, a DMA can
be used for data transfer. This is recommended if high throughput is required
and there is no limit to FPGA space;

• Low-area coprocessor: this design is a little different from the previous
one. Also here functions are implemented in VHDL, but the state vector is
stored in a system memory and only some temporary variables are stored
in FPGA registers. This is recommended in systems that do not have large
available resources on FPGA;

• Mid-range core: there is no information about this design, but from the
name it can be assumed that it is a trade-off between the previous two ver-
sions.

Since the board used has a huge free space for hardware implementation and the
goal is to reach the higher possible working frequency, the high speed core version
has been considered as the best solution. The code is composed by 5 different files:
keccak,keccak_buffer,keccak_globals,keccak_round and keccak_round_constants_gen.

After the read of a few papers, the structure of the hash function implemented
is detected and its behaviour can be summed up in some steps that can be also
recognized in the VHDL.

Some restrictions have been put, in order to simplify the implementation. In
particular only the Keccak-1600 has been implemented (that is the family used in
the project) with constant word length input to 64 bits and parameter c = 576.

Keccak is the top file of the design in which all other components are included. In
the architecture it is possible to notice that at the reset state all its bits are loaded
to zero, after which at the start state the state vector is reset. This repetitive
condition is mandatory in the hash function, because after it one cycle of round is
computed in order to continue elaborating the hash of the file. THe remaining part
of the file is put at the input of the block, but the state must be reset to zero every
time a new input block is loaded.

After that the input buffer is completely filled up, which can be considered
as the absorbing phase of Keccak algorithm, it starts the permutation evaluation.
Once it has finished, the squeezing phase starts, where the data that must be put
in output will be returned to the output buffer. In order to save space, the output
buffer is not implemented and the data that have to be returned are stored in the
input buffer and put in output.

Among all the mapping, it is possible to recognize the signals going out from
the state and being XORed with the input r inputs bits. Using C = 576 bits means
that the capacity part, that remains private and does not change, is on 576 bits,
while the rate part is on r = b− c = 1600− 576 = 1024 bits.

84

5.2 – VHDL Keccak implementation

In the code these values can be clearly found and they can be represented on
the 3D vector.

Figure 5.1. On the upside there is the keccak VHDL code, while in the
bottom side there are the graphical representations of the taken block in the
state vector in order: output,rate and capacity. Red blocks represent the first
for cycle, while green the second.

In figure 5.1 the mapping of different parts is displayed, in particular the first
block on the left is related to the lanes that are copied in the input part to be
returned as output, while the middle block corresponds to the rate part (r = 1024).
By observing it, it is possible to notice that in the software the mapping is divided
into two different for cycles, the first one represented in red, while the second in
green. On the right it is represented the state block that displays the lanes used
for the capacity part.

In keccak_buffer the definition of the buffer, used as input and output, is pro-
vided. The buffer is composed by 1024 locations and ,since the input words are on
64 bits, the buffer is completely filled up after 16 input blocks. The mode variable,

85

Code implementation

that can be 0 or 1, defines the use of the buffer, being 0 when used as input buffer,
while 1 when used as output.

In the input mode, due to the big endian convention used by keccak, a new input
block is always inserted in the same position at the higher index (1023 downto 960)
and all the old blocks are shifted to lower addresses by 64 bits.

In the output mode, the output vector of 256 bits is loaded in the buffer at the
index section (255 downto 0). Since also the output is on 64 bits, only the lower
block of the buffer (63 downto 0) is returned as output and the remaining blocks
are shifted to the lower index. Since the output vector is on 256 bits, all of them
will be returned to the output after 4 operations.

In keccak_globals just the definitions of the 3D state vector are reported, where
it is possible to recognize the square base of the cube composed by 5 cubes by 5
cubes.

In keccak_round all the permutations operations are included: theta,ro,pi,chi
and iota, implemented using only boolean operations without adders or multipliers
in order to reduce the critical path. All the constants used by the iota function are
generated in the keccak_round_constants_gen and ,since the required rounds to
maintain the security for a state of 1600 are 24, the generated constants are 24.

In figure 5.2 the block diagram of the whole Keccak block hardware is provided.
All the signals are reported with their own names, in particular out of the com-
ponents those referred to keccak file, while inside each block those with the same
name used in each component file. The input/output buffer is represented as a
block of 16 cubes, which represents the entire buffer length r = 1024, subdivided
respect to the input block word block = r/w = 1024/64 = 16.

In dark grey the input block and the output part of the buffer are highlighted.
In particular the former is used as input at the higher index of the buffer, while the
latter is used as a storage of the reg_data_vector to put at the output by shifting
by one block each time. In the middle of the block there is only the shifting of the
new block to the lower index, in order to insert new input blocks until all the buffer
is filled.

In the folder of keccak team there are only two test benches with their relatives
inputs and expected outputs, in order to verify the code. The most important test
bench is the tb_keccak in which the hash function implemented is tested.
The test bench is subdivided into 7 states: INIT, read_first_input, st0, st1,
END_HASH1, END_HASH2 and STOP. During the INIT state, the state vec-
tor is reset to zero value. In the read_first_input state, the first line of the test file
is read, where a number identifier for the corresponding test is provided. Moreover,
when the evaluation of the first 1024 bits is finished, the test returns in this state
and, if the new character is "-", the input message is terminated, otherwise the hash
function with new inputs restarts.

The st0 state can be considered as the absorbing phase of the Keccak function,
indeed in this state the input buffer is filled until 16 input blocks are put in the

86

5.2 – VHDL Keccak implementation

Figure 5.2. Block diagram of Keccak block with all the components and
signals used. In dark grey the input block (6a bits) and the output vector
(256 bits) sections are highlighted.

87

Code implementation

buffer, completing the filling.
In the st1 state the 24 permutations are calculated applying the 5 round func-

tions. After all the permutations have been completed, the state switch to the
END_HASH1, that is used to change the mode of the buffer from input to output,
letting the test entering in the final END_HASH2 state. Here the data picked up
from the state vector with the reg_data_vector are stored in the buffer and they
are shifted to the lower index part in order to be put at the output. This can be
considered the squeezing phase of the Keccak algorithm, where the processed data
are pushed out of the block.

As can be seen in the new_test_vector folder, test data are written from right
to left, satisfying the big endian convention used internally by Keccak algorithm.
Moreover, it is possible to note that all each input stream of 1024 bits ends with
number 8. This is the termination bit of the pad10*1 rule, claiming that the input
message must be terminated with a bit equal to 1 in little endian convention,
which corresponds, in big endian, to terminate each input message with number 8
in hexadecimal (1000 in binary).

In order to have a better view on the working function and on the test, an ASM
chart has been drawn and it can be visualized in figure 5.3.

On this code the function PRGsponge can be built, which is used in the com-
pression code.

By analysing different papers [36, 37, 38, 39], it was understood the possibility
of implementing a PRG on a sponge function. An hash function and a PRG are
quite different. In particular the former takes the input message and ,after receiving
the first r bits, it resets the state and continues to elaborate a new block of r bits.
The latter, instead, takes as inputs r bits and, if the key is shorter, the message
is terminated with 1 bit and the remaining bits to reach r are filled with 0 and it
finishes with one bit equal to 1. The Keccak block performs permutation over the
input bits and it returns r-8 bits in output. If more bits are requested at the input,
a pad message of 1024 bits is put, that is directly XORed with the computed state
instead of resetting it.

After this difference has been determined, the modification of the code can be
started leaving the Keccak core with rounds functions definition as designed by
Keccak team.

The first change is related to the input sequence. Since normally the little
endian convention is used, the input was modified in order to satisfy the big endian
convention, avoiding the reorganization of the input key. Indeed, the input was
adjusted in such a way that the key can be passed to the block in little endian and
directly loaded in the buffer in big endian convention.

Since char values are used on 8 bits for the keys, each lane of 64 bits is rearranged
in such a way that every single byte of the original line is taken and copied in the
same order in the buffer at the lower index. The idea is to work with bytes and
to reorder them in the buffer in order to satisfy Keccak convention. The code is

88

5.2 – VHDL Keccak implementation

Figure 5.3. ASM chart of the keccak test.

reported below with the aim of providing a more precise description:
−−buf fer_data (1023 downto 960) <= din_buffer_in ;
buf fer_data (1023 downto 960) <= din_buffer_in (56 to 63) & din_buffer_in (48 to

55) & din_buffer_in (40 to 47) & din_buffer_in (32 to 39) & din_buffer_in (24
to 31) & din_buffer_in (16 to 23) & din_buffer_in (8 to 15) & din_buffer_in (0
to 7) ;

After these changes have been actuated, inputs files have been modified in order
to be written in the same way as they are in a common memory register. Indeed,
instead of writing them from right to left, they have been written in the normal
order from left to right, being compliance with the standards. The termination bit
in hexadecimal is changed from 01 to 80, in order to obtain the same termination
with the changes.

89

Code implementation

Another change has been performed on the output modality. Since in hash
function only 256 bits are returned in output, they are copied in the buffer pushing
64 bits out per clock cycle. In the PRG the returned bits are 1016, which is
consequential to their direct pushed in output, without being copied in the buffer
first. For this reason the buffer has been modified, removing the output modality
and keeping the input mode intact.

At the input a multiplexer was added which takes the keys as input at the fist
permutation cycle and a pad message of 1024 bits in the following cycles when new
bits are required.

The input structure of the Keccak block is maintained, namely 64 bits word
of the key are copied in the buffer in 16 clock cycles. Consequently all the round
functions are performed, each of them maintained as defined by Keccak.

The test bench provided with the code is used as reference code to design a
FSM controller, capable to manage each signal going to the keccak block. In such a
way the control of the block is very simplified, since it simply uses reset, start and
new calculation for the output signals to control it. Also the number of the states
are reduced and they are given a more intuitive name. An ASM chart is designed
in order to explain the controller operations, provided in figure 5.4.

After run synthesis and implementation, several simulations are performed. All
the tests performed with C code are performed again in order to understand the
padding rule. Setting the same inputs to the implemented VHDL code, some
outputs are obtained, confirming the correctness of the modifications applied to
VHDL code. In particular the space on the board used to implement the VHDL
code on the FPGA is reported:

• 3205 LUT;

• 2712 FF;

• 0 BRAMs;

• 0 URAms.

Even if the bigger version were chosen among the Keccak suggested, the big
available space on the FPGA would make the PRG occupancy negligible. A final
test is performed with the keys of 32 bytes used in the code. Performing this test,
considering that input structures are left as defined by Keccak and using a clock
frequency of 150 MHz equal to the AXI communication bus, the evaluated random
bits are available after 627 ns. By reading read 64 bits per clock cycle, as the keccak
code provided, all the 1016 bits are read within 841 ns.

The test was also modified by performing the XOR operation between an input
message and the random number generated. Assuming that a normal alert is about
10 Kbytes and assuming to read 64 bits per clock cycle, all the file will be encrypted
by 66µs. The time measurement on waveform are reported in figure 5.5.

90

5.2 – VHDL Keccak implementation

Figure 5.4. ASM chart of the keccak controller.

5.2.1 Compression code implementation
After the Keccak PRG has been implemented by hand, all its functions are com-
mented and the compression code is passed to the synthesizer. The code is still not
synthesize. After applying huge modifications to the structure in order to reduce
code complexity, a synthesizable version of the block predictor inside the compres-
sor is achieved. It is implemented dividing the whole huge vector of the image input
into sub vectors and the whole predictor into multiple stages with one hot coding.

91

Code implementation

Figure 5.5. Times taken for having valid data at the output and for completing
the reading all 1016 output bits.

92

Chapter 6

Conclusions and future work

This thesis project represents one of the first attempts to implement all the C
code of the compression in VHDL code. At the beginning the system architecture
was build and tested, which was difficult to perform since the Ultrascale+ family
was just announced in 2015 as a early new technology for aerospace and defence
purposes. Indeed, Xilinx guide so far is not so completed. Moreover the high cost
related to the version has caused the absence of other examples or guides. After
the earliest difficulties, it has been possible to realize the custom architecture and
to run it. In particular the connection with the DDR4 extension board, The Gbit
Ethernet extension board and the interface board are defined. All of them are
connected and tested with the motherboard.

A design flow is defined in order to use the processor for controlling and com-
municating with all the extension boards plugged with the motherboard.

From the ProFPGA example design, a script was written using the petaLinux
tool to automatically generate an OS for the board, taking into account all the
hardware defined instructions. It was then possible to use all the hardware plugged
into the motherboard and to control it through the OS.

Since the C code must be implemented on the FPGA, a test was designed with a
custom block implemented in VHDL and loaded on the FPGA. It can be controlled
by the OS, considering it such as an hardware accelerator.

Due to the vague guides available on internet, I hope this thesis may be consid-
ered as a starting point for everyone who needs to work with the Zynq Ultrascale+
mpsoc board and with the ProFPGA motherboards.

The second part of the thesis instead is focus on the code implementation on
the board. Since the code is not understandable by the Vivado synthesizer due to
some high level instructions and to the complexity of Keccak library used for the
encryption part, it has been decided to reduce the complexity of the code.

The first step was to synthesize the Keccak library. Since it is not consider
wise to modify the Keccak library, it has been chosen to modify the VHDL code
provided by the Keccak author with a similar function. The compressor uses the

93

Conclusions and future work

PRG sponge function in order to generate random numbers to encrypt the image,
while the VHDL code of Keccak describes the hash function. After some parts of
the VHDL code on the hash function have been modified, a PRG function is built
using the already implemented rounds permutation functions.

This part was successfully implemented using a relative low space on the FPGA,
about 3205 LUT and 2712 FF. The results were also obtained in a short time,
making the output bits available after 627 ns.

The C Keccak code has been commented in the compression code, but it still
remained not synthesized by the vivado synthetizer. For this reason it was decided
to synthesize separately each block of the compressor.

The first block to synthesize was the predictor, then successfully converted into
VHDL code.

The thesis work finishes with the forehead mentioned modifications, leaving the
remaining ones to the successors.

The future works will consist of implementing all the remaining blocks of the
compressor, to integrate also with the PRG hand made code.

Possible improvements can be also applied to the PRG VHDL code, in which
the time taken to fill the buffer can be significantly reduced. Instead of using the
Keccak suggested method with 64 input bits, supposing to have already memorised
the keys, they can be directly stored in the buffer passing from 16 to 1 clock cycle.
The same approach can be applied for the message pad after the first permutation,
reducing the cycles from 16 to 1. Two further improvements could be the storage of
the output bits in a separated buffer and the parallelization of the new computation
during the reading of the output bits.

94

Appendix A

Configuration file generated by
ProFPGA

Listing A.1. configuration_file.cfg
name = " test_up_down " ;
created_by = "proFPGA−Bui lder ␣V1 . 2 . 3 2 . 1 2 4 1 ␣ (2018C) " ;
profpga_debug = 0 ;
debug = 0 ;
backend = " tcp " ;
backends :
{

tcp :
{

ipaddr = " 169 . 2 5 4 . 0 . 2 " ;
port = 0xD11D ;

} ;
pc i e :
{

dev i ce = " /dev/mmi64pcie0 " ;
} ;

} ;
p l u g i n_ l i s t = (" s i 5338 ␣ProDesign␣EB−PDS−QSFP+−R1" , " dp83865dvh␣ProDesign␣

EB−PDS−GBITETHERNET−R1" , " s i 5338 ␣ProDesign␣EB−FM−XCZUxxEG−R3" ,
" xczuxxeg_eb_config ␣ProDesign␣EB−FM−XCZUxxEG−R3" , " s i 5338 ␣ProDesign␣
EB−PDS−DDR4−R6") ;

system_conf igurat ion :
{

sysconfig_match = "FIT" ;
fpga_speedgrade_match = "FIT" ;
motherboard_1 :
{

type = "MB−1M−R2" ;
fpga_module_ta1 :
{

type = "FM−XCZU19EG−R2" ;
speed_grade = " 1 " ;
temp_grade = "E" ;
v_io_ba1 = "AUTO" ;
v_io_ba2 = "AUTO" ;
v_io_bb1 = "AUTO" ;
v_io_bb2 = "AUTO" ;
v_io_ta2 = "AUTO" ;
v_io_tb1 = "AUTO" ;

95

Configuration file generated by ProFPGA

v_io_tb2 = "AUTO" ;
boot_mode = "JTAG" ;
ps_npor = "SWITCH" ;
ps_nsrst = "SWITCH" ;
ps_mgt_lane_0 = " profpga_mgt_03 " ;
ps_mgt_lane_1 = " profpga_mgt_02 " ;
ps_mgt_lane_2 = " profpga_mgt_01 " ;
ps_mgt_lane_3 = " profpga_mgt_00 " ;

} ;
c l o ck_con f i gu ra t i on :
{

clk_0 :
{

source = "LOCAL" ;
} ;
clk_1 :
{

source = " 125MHz" ;
mul t ip ly = 6 ;
d i v id e = 15 ;

} ;
clk_2 :
{

source = " 125MHz" ;
mul t ip ly = 5 ;
d i v id e = 5 ;

} ;
clk_3 :
{

source = " 60MHz" ;
mul t ip ly = 10 ;
d i v id e = 10 ;

} ;
clk_4 :
{

source = " 18MHz" ;
mul t ip ly = 40 ;
d i v id e = 40 ;

} ;
clk_5 :
{

source = " 125MHz" ;
mul t ip ly = 6 ;
d i v id e = 75 ;

} ;
clk_6 :
{

source = " 60MHz" ;
mul t ip ly = 20 ;
d i v id e = 10 ;

} ;
clk_7 :
{

source = " 18MHz" ;
mul t ip ly = 36 ;
d i v id e = 18 ;

} ;
} ;
sync_conf igurat ion :
{

sync_0 :
{

source = "GENERATOR" ;

96

Configuration file generated by ProFPGA

} ;
sync_1 :
{

source = "GENERATOR" ;
} ;
sync_2 :
{

source = "GENERATOR" ;
} ;
sync_3 :
{

source = "GENERATOR" ;
} ;
sync_4 :
{

source = "GENERATOR" ;
} ;
sync_5 :
{

source = "GENERATOR" ;
} ;
sync_6 :
{

source = "GENERATOR" ;
} ;
sync_7 :
{

source = "GENERATOR" ;
} ;

} ;
} ;
x_board_list = (" ta2_eb1 " , " tb1_eb1 " , " tb2_eb1 " , " bb1_eb1 " , " bb2_eb1 ") ;
ta2_eb1 :
{

type = "BOARD" ;
vendor = " ProDesign " ;
name = "EB−PDS−QSFP+−R1" ;
s i z e = "A1A1" ;
p o s i t i o n s = ("motherboard_1 .TA2") ;
top_connectors = ("TA1") ;
v_io_ba1 = "AUTO" ;
s i 5338_reg i s t e rmap_f i l e = "RegisterMap_125MHz . txt " ;
si5338_validate_input_clocks_1_2_3 = " yes " ;
si5338_validate_input_clocks_4_5_6 = "no " ;

} ;
tb1_eb1 :
{

type = "BOARD" ;
vendor = " ProDesign " ;
name = "EB−PDS−DEBUG−R1" ;
s i z e = "A1A1" ;
p o s i t i o n s = ("motherboard_1 .TB1") ;
top_connectors = () ;
v_io_ba1 = "AUTO" ;

} ;
tb2_eb1 :
{

type = "BOARD" ;
vendor = " ProDesign " ;
name = "EB−PDS−GBITETHERNET−R1" ;
s i z e = "A1A1" ;
p o s i t i o n s = ("motherboard_1 .TB2") ;
top_connectors = ("TA1") ;

97

Configuration file generated by ProFPGA

v_io_ba1 = "AUTO" ;
eth_phy1 :
{

CLK_MAC_FREQ = 0 ;
MAN_MDIX = 0 ;
MAC_CLK_EN = 0 ;
MDIX_EN = 0 ;
MULTI_EN = 0 ;
RGMII_SEL0 = 0 ;
RGMII_SEL1 = 0 ;
PHY_ADDR1 = 0 ;
PHY_ADDR2 = 0 ;
PHY_ADDR3 = 0 ;
PHY_ADDR4 = 0 ;
ACT_SPEED0 = 0 ;
LNK10_SPEED1 = 0 ;
LNK1G_AUTO_NEG = 1 ;
LNK100_DUPLEX = 1 ;

} ;
eth_phy2 :
{

CLK_MAC_FREQ = 0 ;
MAN_MDIX = 0 ;
MAC_CLK_EN = 0 ;
MDIX_EN = 0 ;
MULTI_EN = 0 ;
RGMII_SEL0 = 0 ;
RGMII_SEL1 = 0 ;
PHY_ADDR1 = 0 ;
PHY_ADDR2 = 0 ;
PHY_ADDR3 = 0 ;
PHY_ADDR4 = 0 ;
ACT_SPEED0 = 0 ;
LNK10_SPEED1 = 0 ;
LNK1G_AUTO_NEG = 1 ;
LNK100_DUPLEX = 1 ;

} ;
} ;
bb1_eb1 :
{

type = "BOARD" ;
vendor = " ProDesign " ;
name = "EB−FM−XCZUxxEG−R3" ;
s i z e = "A1A1" ;
p o s i t i o n s = ("motherboard_1 .BB1") ;
top_connectors = () ;
v_io_ba1 = "AUTO" ;
s i 5338_reg i s t e rmap_f i l e = "RegisterMap_26_27_125_26_MHz . txt " ;
si5338_validate_input_clocks_1_2_3 = " yes " ;
si5338_validate_input_clocks_4_5_6 = "no " ;
gpio_expander1 :
{

usb_id_sel = 0 ;
usb_cvbus_sel = 1 ;
usb_hd_mode_sel0 = 1 ;
usb_hd_mode_sel1 = 1 ;
gem3_exp_reset_n = 1 ;

} ;
} ;
bb2_eb1 :
{

type = "BOARD" ;
vendor = " ProDesign " ;

98

Configuration file generated by ProFPGA

name = "EB−PDS−DDR4−R6" ;
s i z e = "A1A1" ;
p o s i t i o n s = ("motherboard_1 .BB2") ;
top_connectors = () ;
v_io_ba1 = "AUTO" ;
s i 5338_reg i s t e rmap_f i l e = "RegisterMap_125MHz . txt " ;
si5338_validate_input_clocks_1_2_3 = " yes " ;
si5338_validate_input_clocks_4_5_6 = "no " ;

} ;
} ;

99

100

Appendix B

Script for automatic generation

B.1 Tcl file that instantiate Zynq IP block in Vi-
vado block diagram

Listing B.1. vivado.tcl
===
IMPORTANT: Pro Design Con f i d en t i a l (I n t e r na l Use Only)
COPYRIGHT (C) 2018 , Pro Design E l e c t r on i c GmbH
#
THIS FILE MAY NOT BE MODIFIED, DISCLOSED, COPIED OR DISTRIBUTED WITHOUT THE
EXPRESSED WRITTEN CONSENT OF PRO DESIGN.
#
Pro Design E l e c t r on i c GmbH http : //www. prodes ign−europe . com
Albert−Mayer−St r a s s e 14−16 info@prodes ign−europe . com
83052 Bruckmuehl +49 (0) 8062 / 808 − 0
Germany
===
Pro j ec t : ProDesign proFPGA
Module : PROF119A t c l f i l e
#! @br ie f S c r i p t to generate the Vivado Pro j e c t f o r PROF119A/120A
#! @ f i l e bu i ld . sh
#! @author Marko Salzmann <Marko . Salzmann@prodesign−europe . com>
#! @date 2018−01−08
#! @version 0 .1
#! @version 0 .2 (update f o r vivado 2018 .1)
#! @copyright 2018 (C) Pro Design E l e c t r on i c GmbH
#!
===

save cur rent d i r e c t o r y
#se t cu rd i r [pwd]

se t p r o j e c t vars
#se t prjname "PROF−FM−XCZU1xEG−1"
#se t pr jnamefo l " /PROF−FM−XCZU1xEG−1/"

se t i n s t a l l path
#se t p r j f o l d e r " $curd i r$pr jname fo l "

c r ea t e vivado p r o j e c t

101

Script for automatic generation

#crea t e_pro j e c t $prjname $p r j f o l d e r −part xczu19eg−f fvb1517−1−e
#set_property coreConta iner . enable 1 [cur rent_pro j ec t]
#create_bd_design " design_1 "

add pro c e s s i ng system
sta r tg roup
create_bd_cel l −type ip −vlnv x i l i n x . com : ip : zynq_ultra_ps_e : 3 . 2 zynq_ultra_ps_e_0
endgroup

connect c l k
connect_bd_net [get_bd_pins zynq_ultra_ps_e_0/maxihpm0_lpd_aclk] [get_bd_pins

zynq_ultra_ps_e_0/pl_clk0]

add i n t e r f a c e s
s ta r tg roup
set_property −d i c t [l i s t CONFIG.PSU__CAN0__PERIPHERAL__ENABLE {1}

CONFIG.PSU__CAN0__PERIPHERAL__IO {MIO 46 . . 47}
CONFIG.PSU__DPAUX__PERIPHERAL__IO {MIO 27 . . 30}
CONFIG.PSU__ENET3__PERIPHERAL__ENABLE {1} CONFIG.PSU__ENET3__GRP_MDIO__ENABLE
{1} CONFIG.PSU__GPIO1_MIO__PERIPHERAL__ENABLE {1}
CONFIG.PSU__I2C1__PERIPHERAL__ENABLE {1} CONFIG.PSU__I2C1__PERIPHERAL__IO
{MIO 48 . . 49} CONFIG.PSU__SATA__REF_CLK_FREQ {125} CONFIG.PSU__DP__LANE_SEL
{Dual Lower} CONFIG.PSU__SD0__PERIPHERAL__ENABLE {1}
CONFIG.PSU__SD0__PERIPHERAL__IO {MIO 13 . . 16 21 22}
CONFIG.PSU__SD0__GRP_CD__ENABLE {1} CONFIG.PSU__SD0__SLOT_TYPE {SD 2.0}
CONFIG.PSU__UART1__PERIPHERAL__ENABLE {1} CONFIG.PSU__UART1__PERIPHERAL__IO
{MIO 8 . . 9} CONFIG.PSU__USB0__PERIPHERAL__ENABLE {1}
CONFIG.PSU__USB3_0__PERIPHERAL__ENABLE {1} CONFIG.PSU__USB3_0__PERIPHERAL__IO
{GT Lane2} CONFIG.PSU__DISPLAYPORT__PERIPHERAL__ENABLE {1}
CONFIG.PSU__SATA__PERIPHERAL__ENABLE {1} CONFIG.PSU__SATA__LANE1__IO {GT
Lane3} CONFIG.PSU__CRF_APB__DP_VIDEO_REF_CTRL__SRCSEL {VPLL}
CONFIG.PSU__CRF_APB__DP_AUDIO_REF_CTRL__SRCSEL {DPLL}
CONFIG.PSU__CRF_APB__DP_STC_REF_CTRL__SRCSEL {DPLL}
CONFIG.PSU__CRF_APB__TOPSW_MAIN_CTRL__SRCSEL {DPLL}
CONFIG.PSU__CRL_APB__SDIO0_REF_CTRL__FREQMHZ {50}] [get_bd_cel l s
zynq_ultra_ps_e_0]

endgroup

se t vo l t ag e s to 1 ,8V and 3 ,3V
sta r tg roup
set_property −d i c t [l i s t CONFIG.PSU_BANK_0_IO_STANDARD {LVCMOS33}

CONFIG.PSU_BANK_1_IO_STANDARD {LVCMOS18} CONFIG.PSU_BANK_2_IO_STANDARD
{LVCMOS18} CONFIG.PSU_BANK_3_IO_STANDARD {LVCMOS18}] [get_bd_cel l s
zynq_ultra_ps_e_0]

endgroup

setup ddr4 memmory
s ta r tg roup
set_property −d i c t [l i s t CONFIG.SUBPRESET1 {DDR4_KINGSTON_KVR21SE15S8}]

[get_bd_cel l s zynq_ultra_ps_e_0]
endgroup

se t sd i o c l k to s lew
s ta r tg roup
set_property −d i c t [l i s t CONFIG.PSU_MIO_22_SLEW { f a s t }] [get_bd_cel l s

zynq_ultra_ps_e_0]
endgroup

add qsp i f l a s h
s ta r tg roup
set_property −d i c t [l i s t CONFIG.PSU__QSPI__PERIPHERAL__ENABLE {1}

CONFIG.PSU__QSPI__PERIPHERAL__DATA_MODE {x4 }] [get_bd_cel l s zynq_ultra_ps_e_0]
endgroup

102

B.2 – Bash for petalinux to create OS system for the Zynq board

generate top l e v e l des ign wrapper
#make_wrapper − f i l e s [g e t_ f i l e s

${ cu rd i r }${ pr jnamefo l }${prjname } . s r c s / sources_1/bd/design_1/design_1 . bd] −top
#add_f i l e s −norecur se

${ cu rd i r }${ pr jnamefo l }${prjname } . s r c s / sources_1/bd/design_1/hdl /design_1_wrapper . v
#update_compile_order − f i l e s e t sources_1

generate block des ign
#generate_target a l l [g e t_ f i l e s

${ cu rd i r }${ pr jnamefo l }${prjname } . s r c s / sources_1/bd/design_1/design_1 . bd]

save des ign
#save_bd_design

export hardware d e s c r i p t i o n f i l e
#f i l e mkdir ${ cu rd i r }${ pr jnamefo l }${prjname } . sdk
#write_hwdef − f o r c e − f i l e

${ cu rd i r }${ pr jnamefo l }${prjname } . sdk/design_1_wrapper . hdf

B.2 Bash for petalinux to create OS system for
the Zynq board

Listing B.2. build_mod.sh
#!/bin /bash −x

Def ine usage func t i on
func t i on PrintUsage () {
echo "−−"
echo "−−−− Build s c r i p t f o r PROF−FM−XCZU1xEG−1 demo −−−−−"
echo "−−"
echo " USAGE: . / bu i ld . sh "
echo " USAGE: . / bu i ld . sh c l ean "
echo " "
echo " EXAMPLES: . / bu i ld . sh − Build Vivado and XSDK pro j e c t f o r

PROF−FM−XCZU1xEG−1"
echo " EXAMPLES: . / bu i ld . sh c l ean − cleanup pr ev i ou s l y bu i ld "
echo " "
e x i t 1

}

source / so f tware / s c r i p t s / in i t_vivado

abort on e r r o r
s e t −e

co l o r d e c l a r a t i on
RED= ’\033[0 ;31m’
GREEN= ’\033[0 ;32m’
NC= ’\033[0m’

check i f pe ta l inux i s sourced
i f [−z $PETALINUX_VER] ; then

echo −e " ${RED}ERROR: ${NC} Var iab le PETALINUX_VER i s undef ined ! Did you setup
Peta l inux c o r r e c t l y ?"

103

Script for automatic generation

e x i t
e l i f [[$PETALINUX_VER != ’2018 .3 ’]] ; then

echo −e " ${RED}ERROR: ${NC} This s c r i p t r e qu i r e s Peta l inux ve r s i on 2 0 1 8 . 1 . "
echo " Peta l inux l o c a t i o n : ‘ which peta l inux ‘ "
echo " Peta l inux ve r s i on : ‘ pe ta l inux −vers ion ‘ "
e x i t

f i

#seach path f i l e
f o r i in $ (f i nd . −maxdepth 1 −name ∗ . sdk −p r i n t f %P)
do

echo " yes "
SDK_PATH=$ i
echo "$SDK_PATH"

done

f o r j in $ (f i nd . /$SDK_PATH −maxdepth 1 −name ∗ . hdf −p r i n t f %P)
do

echo " ok "
WRAPPER_NAME=$j
echo "$WRAPPER_NAME"

done

c r e a t i n g pe ta l inux p r o j e c t
i f [−r . /$SDK_PATH/$WRAPPER_NAME] ; then

echo " Creat ing ZYNQMP Peta l inux Pro j e c t . "
peta l inux−c r e a t e −t p r o j e c t −−name TEST_PETA −−template zynqMP
i f [−d . /TEST_PETA] ; then

echo " Using pre con f i gu r ed c on f i g f i l e . "
cp . / source / c on f i g . /TEST_PETA/ pro j ec t−spec / c on f i g s
cp . / source / r oo t f s_con f i g . /TEST_PETA/ pro j ec t−spec / c on f i g s
echo " Gett ing hardware in fo rmat ion from hdf− f i l e . "
peta l inux−c on f i g −−get−hw−d e s c r i p t i o n . /$SDK_PATH −p . /TEST_PETA −−o l d c on f i g
#peta l inux−c on f i g −−get−hw−d e s c r i p t i o n . /$SDK_PATH −p . /TEST_PETA
#aggiunto per ke rne l
echo " c r e a t e app c l i e n t "
peta l inux−c r e a t e −t apps −−name c l i e n t −−enable −p . /TEST_PETA
echo " s ub s t i t u t e f i l e c "
rm −f . /TEST_PETA/ pro j e c t−spec /meta−user / r e c i p e s−apps/ c l i e n t / f i l e s / c l i e n t . c
cp . /$SDK_PATH/ c l i e n t / s r c / c l i e n t . c

. /TEST_PETA/ pro j ec t−spec /meta−user / r e c i p e s−apps/ c l i e n t / f i l e s
echo " c r e a t e app s e r v e r "
peta l inux−c r e a t e −t apps −−name s e r v e r −−enable −p . /TEST_PETA
echo " s ub s t i t u t e f i l e c "
rm −f . /TEST_PETA/ pro j e c t−spec /meta−user / r e c i p e s−apps/ s e r v e r / f i l e s / s e r v e r . c
cp . /$SDK_PATH/ s e r v e r / s r c / s e r v e r . c

. /TEST_PETA/ pro j ec t−spec /meta−user / r e c i p e s−apps/ s e r v e r / f i l e s
echo " Loading ke rne l c on f i g "
peta l inux−c on f i g −c ke rne l −p . /TEST_PETA
echo " Loading pre con f i gu r ed r o o t f s c on f i g "
peta l inux−c on f i g −c r o o t f s −−o l d c on f i g −p . /TEST_PETA
#aggiunto per mettere l i b r e r i e in piu ’
peta l inux−c on f i g −c r o o t f s −p . /TEST_PETA
#aggiunto per u−boot
echo " Loading device−t r e e c on f i g "
peta l inux−c on f i g −c device−t r e e −p . /TEST_PETA
echo " Bui ld ing Peta l inux f o r ZYNQMP. "
i f peta l inux−bu i ld −p . /TEST_PETA ; then echo −e " Bu i l t f i n i s h e d

s u c c e s s f u l l y ! " ; e l s e echo −e " ${RED}ERROR: ${NC} Bui l t f a i l e d . Check
Peta l inux log f i l e f o r f u r t h e r in fo rmat ion ! " ; e x i t 1 ; f i

f i

104

B.2 – Bash for petalinux to create OS system for the Zynq board

e l s e
echo " ${RED}ERROR: ${NC}

. /PROF−FM−XCZU1xEG−1/PROF−FM−XCZU1xEG−1. sdk/design_1_wrapper . hdf no such
f i l e or d i r e c t o r y ! "

echo " Can ’ t c r e a t e pe ta l inux p r o j e c t without hardware
d e s c r i p t i o n f i l e ! "

e x i t 1
f i
c r e a t i n g sdcard d i r e c t o r y and copy a l l needed f i l e s i n to
i f [−d . /TEST_PETA/ images / l i nux] ; then

#peta l inux−package −−boot −−format BIN −− f s b l
TEST_PETA/ images / l i nux /zynqmp_fsbl . e l f −−u−boot
TEST_PETA/ images / l i nux /u−boot . e l f −−pmufw TEST_PETA/ images / l i nux /pmufw . e l f
−−fpga TEST_PETA/ images / l i nux /∗ . b i t −−f o r c e −p . /TEST_PETA

echo " Creat ing sdcard d i r e c t o r y and copy a l l needed f i l e s . "
mkdir −p . / sdcard
copy peta l inux f i l e s to sdcard
#cp . /TEST_PETA/ images / l i nux /BOOT.BIN ./ sdcard
cp . /TEST_PETA/ images / l i nux / image . ub . / sdcard
cp . /TEST_PETA/ images / l i nux / system . dtb . / sdcard
cp . /TEST_PETA/ images / l i nux / r o o t f s . cp io . gz . u−boot . / sdcard /uramdisk . image . gz
cp . / source /uEnv_sdio_initramfs . txt . / sdcard /uEnv . txt

make Boot . bin
bootgen −arch zynqmp −image . / source /output . b i f −o . / sdcard /BOOT.BIN −w

f i

i f [−r . / sdcard / system . dtb] ; then
f i x i n g d ev i c e t r e e f o r USB Host mode
echo " Converting d ev i c e t r e e binary to d ev i c e t r e e source "
i f dtc −I dtb −O dts . / sdcard / system . dtb > ./ sdcard / system . dts ; then echo

" done " ; e l s e echo " f a i l e d to conver t ing d ev i c e t r e e . I s package dtc
i n s t a l l e d ? " ; e x i t 1 ; f i

echo "Adding usb host mode to d ev i c e t r e e "
sed − i ’ s /dwc3@fe200000/dwc3_0 : dwc3@fe200000/g ’ . / sdcard / system . dts
echo ’&dwc3_0 { ’ >> ./ sdcard / system . dts
echo ’ dr_mode = " host " ; ’ >> ./ sdcard / system . dts
echo ’ } ; ’ >> ./ sdcard / system . dts
echo "Adding e the rne t phy to d ev i c e t r e e source "
sed − i ’/ e thernet@f f0e0000 /{N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;
r . / source /add_phy
} ’ . / sdcard / system . dts
echo " Deact ivat ing wr i t e p r o t e c t i on pin "
sed − i ’/ sdhc i@f f160000 /{N;N;N;N;N;N;N;N;N;N;N;N;N;N;
r . / source /remove_wp
} ’ . / sdcard / system . dts
echo " Deact ivat ing UHS Mode"
sed − i ’/ sdhc i@f f160000 /{N;N;N;N;N;N;N;N;N;N;N;N;N;N;N;
r . / source /remove_uhs
} ’ . / sdcard / system . dts
echo " Rebuild f i x ed dtb and d e l e t i n g temp f i l e . "
dtc −I dts −O dtb . / sdcard / system . dts > . / sdcard / system . dtb
rm −f . / sdcard / system . dts
echo " Build f i n i s h e d s u c c e s s f u l l y . "
echo " "
echo "Copy en t i r y content o f . / sdcard to an empty FAT formatted SD−Card and

boot the system . "

105

Script for automatic generation

echo " − source
/opt/ prodes ign / profpga /proFPGA−<re l ea s e_ver s i on >/bin / s e t t i n g s 6 4 ∗ . sh "

echo " − change system . c f g s e t t i n g s to your needs . "
echo " − run : profpga_run system . c f g −u"
echo " "

e l s e
echo −e " ${RED}ERROR: ${NC} . / sdcard / system . dtb − no such f i l e or d i r e c t o r y !

Ex i t ing . "
e x i t 1

f i

106

Appendix C

Base tests

C.1 Only FPGA test files

Listing C.1. mb_1_TA1.xdc constraints file

FPGA module FM−XCZU19EG−R2
pins which are not connected to an x−board
set_property PACKAGE_PIN H28 [get_ports {CLK_N_0}]
###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVDS [get_ports {CLK_N_0}]
###

###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVDS [get_ports {CLK_P_0}]
set_property DIFF_TERM_ADV TERM_100 [get_ports {CLK_P_0}]
c reate_c lock −name CLK −per iod 10 [get_ports {CLK_P_0}]
###

###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVCMOS18 [get_ports {LED_GREEN}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_RED}]
###
set_property PACKAGE_PIN F27 [get_ports {LED_GREEN}]
set_property PACKAGE_PIN C26 [get_ports {LED_RED}]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector BB2
#set_property INTERNAL_VREF {0.90} [get_iobanks 72]
#set_property INTERNAL_VREF {0.90} [get_iobanks 73]
#set_property INTERNAL_VREF {0.90} [get_iobanks 74]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TA2
#set_property INTERNAL_VREF {0.90} [get_iobanks 66]
#set_property INTERNAL_VREF {0.90} [get_iobanks 64]
#set_property INTERNAL_VREF {0.90} [get_iobanks 65]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TB1
#set_property INTERNAL_VREF {0.90} [get_iobanks 67]

107

Base tests

#set_property INTERNAL_VREF {0.90} [get_iobanks 69]
#set_property INTERNAL_VREF {0.90} [get_iobanks 68]

Listing C.2. mb_1_TA1.vhd TOP file

−− FPGA module FM−XCZU19EG−R2

l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

L ibrary UNISIM ;
use UNISIM . vcomponents . a l l ;

e n t i t y mb_1_TA1 i s
port (
−− pins which are not connected to an x−board
CLK_N_0 : in s td_log i c ;
CLK_P_0 : in s td_log i c ;
LED_GREEN : out s td_log i c ;
LED_RED : out s td_log i c

) ;
end en t i t y mb_1_TA1;

a r c h i t e c t u r e beh o f mb_1_TA1 i s

s i g n a l CLK : s td_log i c ;
s i g n a l cnt : s td_log ic_vector (31 downto 0) ;
s i g n a l LED_GREEN_int : s td_log i c ;

begin

−−−
−− Input d i f f e r e n t i a l bu f f e r UD001−3.19−Hardware−UserManual . docx p . 30
−−−

−− Begin o f IBUFGDS_inst i n s t a n t i a t i o n

IBUFGDS_inst : IBUFGDS
gene r i c map(
DIFF_TERM => true , −− D i f f e r e n t i a l Termination
IBUF_LOW_PWR => true , −− Low power (TRUE) vs . performance (FALSE) s e t t i n g
−− f o r r e f e r en c ed I /O standards
IOSTANDARD => "LVDS")

port map (
O => CLK, −− Clock bu f f e r output
I => CLK_P_0, −− Diff_p c l o ck bu f f e r input (connect d i r e c t l y to top−l e v e l

port)
IB => CLK_N_0 −− Diff_n c l o ck bu f f e r input (connect d i r e c t l y to top−l e v e l

port)
) ;

−− End o f IBUFGDS_inst i n s t a n t i a t i o n

proce s s (CLK) i s
begin −− proce s s

i f CLK’ event and CLK = ’1 ’ then −− r i s i n g c l o ck edge
i f (cnt (27) = ’1 ’) then

cnt <= (othe r s => ’0 ’) ;
e l s e

108

C.2 – Processor and FPGA first design

cnt <= cnt + ’ 1 ’ ;
end i f ;

end i f ;
end proce s s ;

p roc e s s (CLK) i s
begin −− proce s s

i f CLK’ event and CLK = ’1 ’ then −− r i s i n g c l o ck edge
i f (cnt (27) = ’1 ’) then
LED_GREEN_int <= not (LED_GREEN_int) ;

end i f ;
end i f ;

end proce s s ;

LED_GREEN <= LED_GREEN_int ;
LED_RED <= not (LED_GREEN_int) ;

end beh ;

C.2 Processor and FPGA first design

Listing C.3. mb_1_TA1.xdc constraints file
(c) Copyright 2012−2017 PRO DESIGN E l e c t r on i c GmbH.
Al l r i g h t s r e s e rved .
#
This f i l e i s owned and c on t r o l l e d by ProDesign and must be used s o l e l y
f o r des ign , s imulat ion , implementation and c r e a t i on o f des ign f i l e s
l im i t ed to profpga systems or t e chno l o g i e s . Use with non−profpga
systems or t e chno l o g i e s i s e xp r e s s l y p roh ib i t ed and immediately
terminate s your l i c e n s e .
#
PRODESIGN IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS␣ IS " SOLELY
FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR PRODESIGN SYSTEMS. BY
PROVIDING THIS DESIGN, CODE, OR INFORMATION AS ONE POSSIBLE
IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD, PRODESIGN IS
MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE FROM ANY
CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING ANY
RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. PRODESIGN EXPRESSLY
DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.
#
ProDesign products are not intended f o r use in l i f e support app l iances ,
dev ices , or systems . Use in such app l i c a t i o n s are exp r e s s l y
proh ib i t ed .
#
This f i l e was generated by profpga_brdgen ve r s i on 9 .02
on Thu Jan 31 14 : 27 : 01 2019

FPGA module FM−XCZU19EG−R2
pins which are not connected to an x−board
set_property PACKAGE_PIN H28 [get_ports {CLK_N_0}]
###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVDS [get_ports {CLK_N_0}]
###

109

Base tests

set_property PACKAGE_PIN J27 [get_ports {CLK_P_0}]
###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVDS [get_ports {CLK_P_0}]
set_property DIFF_TERM_ADV TERM_100 [get_ports {CLK_P_0}]
c reate_c lock −name CLK −per iod 10 [get_ports {CLK_P_0}]
###

set_property PACKAGE_PIN A23 [get_ports {LED_BLUE}]
set_property PACKAGE_PIN J20 [get_ports {LED_BLUE2}]
###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVCMOS18 [get_ports {LED_BLUE}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_BLUE2}]
###
set_property PACKAGE_PIN F27 [get_ports {LED_GREEN}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_GREEN}]
set_property PACKAGE_PIN E20 [get_ports {LED_GREEN2}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_GREEN2}]
set_property PACKAGE_PIN C26 [get_ports {LED_RED}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_RED}]
set_property PACKAGE_PIN D20 [get_ports {LED_RED2}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_RED2}]
set_property PACKAGE_PIN A22 [get_ports {LED_YELLOW}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_YELLOW}]
set_property PACKAGE_PIN M28 [get_ports {LED_YELLOW2}]
set_property IOSTANDARD LVCMOS18 [get_ports {LED_YELLOW2}]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector BB2
#set_property INTERNAL_VREF {0.90} [get_iobanks 72]
#set_property INTERNAL_VREF {0.90} [get_iobanks 73]
#set_property INTERNAL_VREF {0.90} [get_iobanks 74]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TA2
#set_property INTERNAL_VREF {0.90} [get_iobanks 66]
#set_property INTERNAL_VREF {0.90} [get_iobanks 64]
#set_property INTERNAL_VREF {0.90} [get_iobanks 65]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TB1
#set_property INTERNAL_VREF {0.90} [get_iobanks 67]
#set_property INTERNAL_VREF {0.90} [get_iobanks 69]
#set_property INTERNAL_VREF {0.90} [get_iobanks 68]

Listing C.4. TOP.vhd TOP file
l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

L ibrary UNISIM ;
use UNISIM . vcomponents . a l l ;

e n t i t y TOP_level i s
port (

LED_BLUE : out s td_log i c ;
LED_BLUE2 : out s td_log i c ;
LED_GREEN : out s td_log i c ;
LED_GREEN2 : out s td_log i c ;

110

C.2 – Processor and FPGA first design

LED_RED : out s td_log i c ;
LED_RED2 : out s td_log i c ;
LED_YELLOW : out s td_log i c ;
LED_YELLOW2 : out s td_log i c

) ;
end TOP_level ;

a r c h i t e c t u r e Behaviora l o f TOP_level i s

component edt_xczu19eg_wrapper i s
port (

gpio_rtl_0_tri_o : out STD_LOGIC_VECTOR (7 downto 0)
) ;

end component ;

s i g n a l LED_strip : s td_log ic_vector (7 downto 0) ;

begin

p ro c e s s o r e : edt_xczu19eg_wrapper port map (gpio_rtl_0_tri_o => LED_strip) ;

LED_BLUE <= LED_strip (3) ;
LED_GREEN <= LED_strip (0) ;
LED_RED <= LED_strip (1) ;
LED_YELLOW <= LED_strip (2) ;
LED_BLUE2 <= LED_strip (7) ;
LED_GREEN2 <= LED_strip (4) ;
LED_RED2 <= LED_strip (5) ;
LED_YELLOW2 <= LED_strip (6) ;

end Behav iora l ;

Figure C.1. Block diagram of the test_hello design.

Listing C.5. helloworld.c C program

111

Base tests

#inc lude <s td i o . h>
#inc lude " p lat form . h "
#inc lude " x i l_p r i n t f . h "
#inc lude <xgpio . h>
#inc lude " x i l_ i o . h "
#inc lude " xparameters . h "
#inc lude " s l e e p . h "

i n t main ()
{

XGpio l ed_bl inke r ;

i n t cont=0, turn=0;

// i n i t i a l i z e output xgpio va r i ab l e
XGpio_In i t i a l i z e (&led_bl inker ,XPAR_AXI_GPIO_0_DEVICE_ID) ;

// s e t f i r s t channel bu f f e r t r i s t a t e to output
XGpio_SetDataDirection(&led_bl inker , 1 , 0 x0) ;

in i t_p la t fo rm () ;

whi l e (cont <100){

i f (turn==0){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b11110000) ;
p r i n t (" h e l l o ␣TOP␣ s i d e \n\ r ") ;
p r i n t f (" p r i n t f ␣normale␣TOP\n\ r ") ;
turn=1;

} e l s e {

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00001111) ;
x i l_p r i n t f (" h e l l o ␣DOWN␣ s i d e \n\ r ") ;
turn=0;

}

us l e ep (2000000) ;
cont++;

}
cleanup_platform () ;
r e turn 0 ;

}

C.3 Processor and FPGA second design

Listing C.6. blinker_v1_0.vhd IP description file
l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y blinker_v1_0 i s
g en e r i c (

−− Users to add parameters here

112

C.3 – Processor and FPGA second design

−− User parameters ends
−− Do not modify the parameters beyond t h i s l i n e

−− Parameters o f Axi S lave Bus I n t e r f a c e S00_AXI
C_S00_AXI_DATA_WIDTH : i n t e g e r := 32 ;
C_S00_AXI_ADDR_WIDTH : i n t e g e r := 4

) ;
port (

−− Users to add por t s here
−−added to put in output l ed_st r ing
output_led : out s td_log ic_vector (7 downto 0) ;

−− User por t s ends
−− Do not modify the por t s beyond t h i s l i n e

−− Ports o f Axi S lave Bus I n t e r f a c e S00_AXI
s00_axi_aclk : in s td_log i c ;
s00_axi_aresetn : in s td_log i c ;
s00_axi_awaddr : in s td_log ic_vector (C_S00_AXI_ADDR_WIDTH−1 downto 0) ;
s00_axi_awprot : in s td_log ic_vector (2 downto 0) ;
s00_axi_awvalid : in s td_log i c ;
s00_axi_awready : out s td_log i c ;
s00_axi_wdata : in s td_log ic_vector (C_S00_AXI_DATA_WIDTH−1 downto 0) ;
s00_axi_wstrb : in s td_log ic_vector ((C_S00_AXI_DATA_WIDTH/8)−1 downto 0) ;
s00_axi_wvalid : in s td_log i c ;
s00_axi_wready : out s td_log i c ;
s00_axi_bresp : out s td_log ic_vector (1 downto 0) ;
s00_axi_bvalid : out s td_log i c ;
s00_axi_bready : in s td_log i c ;
s00_axi_araddr : in s td_log ic_vector (C_S00_AXI_ADDR_WIDTH−1 downto 0) ;
s00_axi_arprot : in s td_log ic_vector (2 downto 0) ;
s00_axi_arval id : in s td_log i c ;
s00_axi_arready : out s td_log i c ;
s00_axi_rdata : out s td_log ic_vector (C_S00_AXI_DATA_WIDTH−1 downto 0) ;
s00_axi_rresp : out s td_log ic_vector (1 downto 0) ;
s00_axi_rval id : out s td_log i c ;
s00_axi_rready : in s td_log i c

) ;
end blinker_v1_0 ;

a r c h i t e c t u r e arch_imp o f blinker_v1_0 i s

−− component d e c l a r a t i on
component blinker_v1_0_S00_AXI i s

g en e r i c (
C_S_AXI_DATA_WIDTH : i n t e g e r := 32 ;
C_S_AXI_ADDR_WIDTH : i n t e g e r := 4
) ;
port (
−−added to port d e c l a r a t i on

OUTPUT_LED : out std_log ic_vector (7 downto 0) ;
S_AXI_ACLK : in s td_log i c ;
S_AXI_ARESETN : in s td_log i c ;
S_AXI_AWADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
S_AXI_AWPROT : in std_log ic_vector (2 downto 0) ;
S_AXI_AWVALID : in s td_log i c ;
S_AXI_AWREADY : out s td_log i c ;
S_AXI_WDATA : in std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
S_AXI_WSTRB : in std_log ic_vector ((C_S_AXI_DATA_WIDTH/8)−1 downto 0) ;
S_AXI_WVALID : in s td_log i c ;

113

Base tests

S_AXI_WREADY : out s td_log i c ;
S_AXI_BRESP : out std_log ic_vector (1 downto 0) ;
S_AXI_BVALID : out s td_log i c ;
S_AXI_BREADY : in s td_log i c ;
S_AXI_ARADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
S_AXI_ARPROT : in std_log ic_vector (2 downto 0) ;
S_AXI_ARVALID : in s td_log i c ;
S_AXI_ARREADY : out s td_log i c ;
S_AXI_RDATA : out std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
S_AXI_RRESP : out std_log ic_vector (1 downto 0) ;
S_AXI_RVALID : out s td_log i c ;
S_AXI_RREADY : in s td_log i c
) ;

end component blinker_v1_0_S00_AXI ;

begin

−− I n s t a n t i a t i o n o f Axi Bus I n t e r f a c e S00_AXI
blinker_v1_0_S00_AXI_inst : blinker_v1_0_S00_AXI

gene r i c map (
C_S_AXI_DATA_WIDTH => C_S00_AXI_DATA_WIDTH,
C_S_AXI_ADDR_WIDTH => C_S00_AXI_ADDR_WIDTH

)
port map (

S_AXI_ACLK => s00_axi_aclk ,
S_AXI_ARESETN => s00_axi_aresetn ,
S_AXI_AWADDR => s00_axi_awaddr ,
S_AXI_AWPROT => s00_axi_awprot ,
S_AXI_AWVALID => s00_axi_awvalid ,
S_AXI_AWREADY => s00_axi_awready ,
S_AXI_WDATA => s00_axi_wdata ,
S_AXI_WSTRB => s00_axi_wstrb ,
S_AXI_WVALID => s00_axi_wvalid ,
S_AXI_WREADY => s00_axi_wready ,
S_AXI_BRESP => s00_axi_bresp ,
S_AXI_BVALID => s00_axi_bvalid ,
S_AXI_BREADY => s00_axi_bready ,
S_AXI_ARADDR => s00_axi_araddr ,
S_AXI_ARPROT => s00_axi_arprot ,
S_AXI_ARVALID => s00_axi_arval id ,
S_AXI_ARREADY => s00_axi_arready ,
S_AXI_RDATA => s00_axi_rdata ,
S_AXI_RRESP => s00_axi_rresp ,
S_AXI_RVALID => s00_axi_rval id ,
S_AXI_RREADY => s00_axi_rready ,
−−added to the port map

OUTPUT_LED => output_led

) ;

−− Add user l o g i c here

−− User l o g i c ends

end arch_imp ;

Listing C.7. blinker_v1_0_S00_AXI slave implementation file
l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y blinker_v1_0_S00_AXI i s

114

C.3 – Processor and FPGA second design

g ene r i c (
−− Users to add parameters here

−− User parameters ends
−− Do not modify the parameters beyond t h i s l i n e

−− Width o f S_AXI data bus
C_S_AXI_DATA_WIDTH : i n t e g e r := 32 ;
−− Width o f S_AXI address bus
C_S_AXI_ADDR_WIDTH : i n t e g e r := 4

) ;
port (

−− Users to add por t s here
−−###
−−aggiunto qui

−−INPUT_LED_STRIP : in std_log ic_vector (7 downto 0) ;
OUTPUT_LED : out std_log ic_vector (7 downto 0) ;
−−##

−− User por t s ends
−− Do not modify the por t s beyond t h i s l i n e

−− Global Clock S igna l
S_AXI_ACLK : in s td_log i c ;
−− Global Reset S i gna l . This S i gna l i s Act ive LOW
S_AXI_ARESETN : in s td_log i c ;
−− Write address (i s su ed by master , acceped by Slave)
S_AXI_AWADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
−− Write channel Pro tec t i on type . This s i g n a l i n d i c a t e s the

−− p r i v i l e g e and s e c u r i t y l e v e l o f the t ransac t i on , and whether
−− the t r an sa c t i on i s a data ac c e s s or an i n s t r u c t i o n ac c e s s .

S_AXI_AWPROT : in std_log ic_vector (2 downto 0) ;
−− Write address va l i d . This s i g n a l i n d i c a t e s that the master s i g n a l i n g

−− va l i d wr i t e address and con t r o l in fo rmat ion .
S_AXI_AWVALID : in s td_log i c ;
−− Write address ready . This s i g n a l i n d i c a t e s that the s l av e i s ready

−− to accept an address and a s s o c i a t ed con t r o l s i g n a l s .
S_AXI_AWREADY : out s td_log i c ;
−− Write data (i s su ed by master , acceped by Slave)
S_AXI_WDATA : in std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
−− Write s t r obe s . This s i g n a l i n d i c a t e s which byte l ane s hold

−− va l i d data . There i s one wr i t e s t robe b i t f o r each e i gh t
−− b i t s o f the wr i t e data bus .

S_AXI_WSTRB : in std_log ic_vector ((C_S_AXI_DATA_WIDTH/8)−1 downto 0) ;
−− Write va l i d . This s i g n a l i n d i c a t e s that va l i d wr i t e

−− data and s t r obe s are a v a i l a b l e .
S_AXI_WVALID : in s td_log i c ;
−− Write ready . This s i g n a l i n d i c a t e s that the s l av e

−− can accept the wr i t e data .
S_AXI_WREADY : out s td_log i c ;
−− Write re sponse . This s i g n a l i n d i c a t e s the s t a tu s

−− o f the wr i t e t r an sa c t i on .
S_AXI_BRESP : out std_log ic_vector (1 downto 0) ;
−− Write re sponse va l i d . This s i g n a l i n d i c a t e s that the channel

−− i s s i g n a l i n g a va l i d wr i t e re sponse .
S_AXI_BVALID : out s td_log i c ;
−− Response ready . This s i g n a l i n d i c a t e s that the master

−− can accept a wr i t e re sponse .
S_AXI_BREADY : in s td_log i c ;
−− Read address (i s su ed by master , acceped by Slave)
S_AXI_ARADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
−− Protec t i on type . This s i g n a l i n d i c a t e s the p r i v i l e g e

−− and s e c u r i t y l e v e l o f the t ransac t i on , and whether the
−− t r an s a c t i on i s a data ac c e s s or an i n s t r u c t i o n ac c e s s .

115

Base tests

S_AXI_ARPROT : in std_log ic_vector (2 downto 0) ;
−− Read address va l i d . This s i g n a l i n d i c a t e s that the channel

−− i s s i g n a l i n g va l i d read address and con t r o l in fo rmat ion .
S_AXI_ARVALID : in s td_log i c ;
−− Read address ready . This s i g n a l i n d i c a t e s that the s l av e i s

−− ready to accept an address and a s s o c i a t ed con t r o l s i g n a l s .
S_AXI_ARREADY : out s td_log i c ;
−− Read data (i s su ed by s l av e)
S_AXI_RDATA : out std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
−− Read response . This s i g n a l i n d i c a t e s the s t a tu s o f the

−− read t r a n s f e r .
S_AXI_RRESP : out std_log ic_vector (1 downto 0) ;
−− Read va l i d . This s i g n a l i n d i c a t e s that the channel i s

−− s i g n a l i n g the r equ i r ed read data .
S_AXI_RVALID : out s td_log i c ;
−− Read ready . This s i g n a l i n d i c a t e s that the master can

−− accept the read data and response in fo rmat ion .
S_AXI_RREADY : in s td_log i c

) ;
end blinker_v1_0_S00_AXI ;

a r c h i t e c t u r e arch_imp o f blinker_v1_0_S00_AXI i s

−− AXI4LITE s i g n a l s
s i g n a l axi_awaddr : s td_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
s i g n a l axi_awready : s td_log i c ;
s i g n a l axi_wready : s td_log i c ;
s i g n a l axi_bresp : s td_log ic_vector (1 downto 0) ;
s i g n a l axi_bval id : s td_log i c ;
s i g n a l axi_araddr : s td_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
s i g n a l axi_arready : s td_log i c ;
s i g n a l axi_rdata : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l ax i_rresp : s td_log ic_vector (1 downto 0) ;
s i g n a l ax i_rva l id : s td_log i c ;

−− Example−s p e c i f i c des ign s i g n a l s
−− l o c a l parameter f o r addre s s ing 32 b i t / 64 b i t C_S_AXI_DATA_WIDTH
−− ADDR_LSB i s used f o r addre s s ing 32/64 b i t r e g i s t e r s /memories
−− ADDR_LSB = 2 f o r 32 b i t s (n downto 2)
−− ADDR_LSB = 3 f o r 64 b i t s (n downto 3)
constant ADDR_LSB : i n t e g e r := (C_S_AXI_DATA_WIDTH/32)+ 1 ;
constant OPT_MEM_ADDR_BITS : i n t e g e r := 1 ;
−−
−−−− S i gna l s f o r user l o g i c r e g i s t e r space example
−−
−−−− Number o f S lave Reg i s t e r s 4
s i g n a l s lv_reg0 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l s lv_reg1 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l s lv_reg2 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l s lv_reg3 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l slv_reg_rden : s td_log i c ;
s i g n a l slv_reg_wren : s td_log i c ;
s i g n a l reg_data_out : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l byte_index : i n t e g e r ;
s i g n a l aw_en : s td_log i c ;

begin
−− I /O Connections ass ignments

S_AXI_AWREADY <= axi_awready ;
S_AXI_WREADY <= axi_wready ;
S_AXI_BRESP <= axi_bresp ;
S_AXI_BVALID <= axi_bval id ;

116

C.3 – Processor and FPGA second design

S_AXI_ARREADY <= axi_arready ;
S_AXI_RDATA <= axi_rdata ;
S_AXI_RRESP <= axi_rresp ;
S_AXI_RVALID <= ax i_rva l id ;
−− Implement axi_awready gene ra t i on
−− axi_awready i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when both
−− S_AXI_AWVALID and S_AXI_WVALID are a s s e r t ed . axi_awready i s
−− de−a s s e r t ed when r e s e t i s low .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_awready <= ’ 0 ’ ;
aw_en <= ’ 1 ’ ;

e l s e
i f (axi_awready = ’0 ’ and S_AXI_AWVALID = ’1 ’ and S_AXI_WVALID = ’1 ’ and

aw_en = ’1 ’) then
−− s l a v e i s ready to accept wr i t e address when
−− the re i s a va l i d wr i t e address and wr i t e data
−− on the wr i t e address and data bus . This des ign
−− expect s no outstanding t r an s a c t i on s .

axi_awready <= ’ 1 ’ ;
aw_en <= ’ 0 ’ ;

e l s i f (S_AXI_BREADY = ’1 ’ and axi_bval id = ’1 ’) then
aw_en <= ’ 1 ’ ;
axi_awready <= ’ 0 ’ ;

e l s e
axi_awready <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement axi_awaddr l a t ch i ng
−− This p roce s s i s used to l a t ch the address when both
−− S_AXI_AWVALID and S_AXI_WVALID are va l i d .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_awaddr <= (othe r s => ’0 ’) ;
e l s e

i f (axi_awready = ’0 ’ and S_AXI_AWVALID = ’1 ’ and S_AXI_WVALID = ’1 ’ and
aw_en = ’1 ’) then

−− Write Address l a t ch i ng
axi_awaddr <= S_AXI_AWADDR;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement axi_wready gene ra t i on
−− axi_wready i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when both
−− S_AXI_AWVALID and S_AXI_WVALID are a s s e r t ed . axi_wready i s
−− de−a s s e r t ed when r e s e t i s low .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_wready <= ’ 0 ’ ;

117

Base tests

e l s e
i f (axi_wready = ’0 ’ and S_AXI_WVALID = ’1 ’ and S_AXI_AWVALID = ’1 ’ and

aw_en = ’1 ’) then
−− s l a v e i s ready to accept wr i t e data when
−− the re i s a va l i d wr i t e address and wr i t e data
−− on the wr i t e address and data bus . This des ign
−− expect s no outstanding t r an s a c t i on s .
axi_wready <= ’ 1 ’ ;

e l s e
axi_wready <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement memory mapped r e g i s t e r s e l e c t and wr i t e l o g i c gene ra t i on
−− The wr i t e data i s accepted and wr i t t en to memory mapped r e g i s t e r s when
−− axi_awready , S_AXI_WVALID, axi_wready and S_AXI_WVALID are a s s e r t ed . Write

s t r obe s are used to
−− s e l e c t byte enab l e s o f s l a v e r e g i s t e r s whi l e wr i t i ng .
−− These r e g i s t e r s are c l e a r ed when r e s e t (a c t i v e low) i s app l i ed .
−− Slave r e g i s t e r wr i t e enable i s a s s e r t ed when va l i d address and data are

a v a i l a b l e
−− and the s l av e i s ready to accept the wr i t e address and wr i t e data .
slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID ;

proce s s (S_AXI_ACLK)
va r i ab l e loc_addr : s td_log ic_vector (OPT_MEM_ADDR_BITS downto 0) ;
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

s lv_reg0 <= (othe r s => ’0 ’) ;
s lv_reg1 <= (othe r s => ’0 ’) ;
s lv_reg2 <= (othe r s => ’0 ’) ;
s lv_reg3 <= (othe r s => ’0 ’) ;

e l s e
loc_addr := axi_awaddr (ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB) ;
i f (slv_reg_wren = ’1 ’) then

case loc_addr i s
when b" 00 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop
i f (S_AXI_WSTRB(byte_index) = ’1 ’) then

−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 0
s lv_reg0 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when b" 01 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop
i f (S_AXI_WSTRB(byte_index) = ’1 ’) then

−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 1
s lv_reg1 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when b" 10 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop
i f (S_AXI_WSTRB(byte_index) = ’1 ’) then

−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 2

118

C.3 – Processor and FPGA second design

s lv_reg2 (byte_index∗8+7 downto byte_index ∗8) <=
S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;

end i f ;
end loop ;

when b" 11 " =>
f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop

i f (S_AXI_WSTRB(byte_index) = ’1 ’) then
−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 3
s lv_reg3 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when othe r s =>

slv_reg0 <= slv_reg0 ;
s lv_reg1 <= slv_reg1 ;
s lv_reg2 <= slv_reg2 ;
s lv_reg3 <= slv_reg3 ;

end case ;
end i f ;

end i f ;
end i f ;

end proce s s ;

−− Implement wr i t e re sponse l o g i c gene ra t i on
−− The wr i t e re sponse and response va l i d s i g n a l s are a s s e r t ed by the s l av e
−− when axi_wready , S_AXI_WVALID, axi_wready and S_AXI_WVALID are a s s e r t ed .
−− This marks the acceptance o f address and i n d i c a t e s the s t a tu s o f
−− wr i t e t r an sa c t i on .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_bval id <= ’ 0 ’ ;
axi_bresp <= " 00 " ; −−need to work more on the r e sponse s

e l s e
i f (axi_awready = ’1 ’ and S_AXI_AWVALID = ’1 ’ and axi_wready = ’1 ’ and

S_AXI_WVALID = ’1 ’ and axi_bval id = ’0 ’) then
axi_bval id <= ’ 1 ’ ;
axi_bresp <= " 00 " ;

e l s i f (S_AXI_BREADY = ’1 ’ and axi_bval id = ’1 ’) then −−check i f bready
i s a s s e r t ed whi l e bva l id i s high)

axi_bval id <= ’ 0 ’ ; −− (the re i s a
p o s s i b i l i t y that bready i s always a s s e r t ed high)

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement axi_arready gene ra t i on
−− axi_arready i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when
−− S_AXI_ARVALID i s a s s e r t ed . axi_awready i s
−− de−a s s e r t ed when r e s e t (a c t i v e low) i s a s s e r t ed .
−− The read address i s a l s o l a t ched when S_AXI_ARVALID i s
−− a s s e r t ed . axi_araddr i s r e s e t to zero on r e s e t a s s e r t i o n .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_arready <= ’ 0 ’ ;
axi_araddr <= (othe r s => ’1 ’) ;

119

Base tests

e l s e
i f (axi_arready = ’0 ’ and S_AXI_ARVALID = ’1 ’) then

−− i n d i c a t e s that the s l av e has acceped the va l i d read address
axi_arready <= ’ 1 ’ ;
−− Read Address l a t ch i ng
axi_araddr <= S_AXI_ARADDR;

e l s e
axi_arready <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement ax i_arva l id gene ra t i on
−− ax i_rva l id i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when both
−− S_AXI_ARVALID and axi_arready are a s s e r t ed . The s l av e r e g i s t e r s
−− data are a v a i l a b l e on the axi_rdata bus at t h i s i n s t ance . The
−− a s s e r t i o n o f ax i_rva l id marks the v a l i d i t y o f read data on the
−− bus and axi_rresp i n d i c a t e s the s t a tu s o f read t r an sa c t i on . ax i_rva l id
−− i s d ea s s e r t ed on r e s e t (a c t i v e low) . ax i_rresp and axi_rdata are
−− c l e a r ed to zero on r e s e t (a c t i v e low) .
p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

ax i_rva l id <= ’ 0 ’ ;
ax i_rresp <= " 00 " ;

e l s e
i f (axi_arready = ’1 ’ and S_AXI_ARVALID = ’1 ’ and ax i_rva l id = ’0 ’) then

−− Valid read data i s a v a i l a b l e at the read data bus
ax i_rva l id <= ’ 1 ’ ;
ax i_rresp <= " 00 " ; −− ’OKAY’ response

e l s i f (ax i_rva l id = ’1 ’ and S_AXI_RREADY = ’1 ’) then
−− Read data i s accepted by the master
ax i_rva l id <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement memory mapped r e g i s t e r s e l e c t and read l o g i c gene ra t i on
−− Slave r e g i s t e r read enable i s a s s e r t ed when va l i d address i s a v a i l a b l e
−− and the s l av e i s ready to accept the read address .
slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not ax i_rva l id) ;

p roc e s s (s lv_reg0 , s lv_reg1 , s lv_reg2 , s lv_reg3 , axi_araddr , S_AXI_ARESETN,
slv_reg_rden)

va r i ab l e loc_addr : s td_log ic_vector (OPT_MEM_ADDR_BITS downto 0) ;
begin

−− Address decoding f o r read ing r e g i s t e r s
loc_addr := axi_araddr (ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB) ;
case loc_addr i s

when b" 00 " =>
reg_data_out <= slv_reg0 ;

when b" 01 " =>
reg_data_out <= slv_reg1 ;

when b" 10 " =>
reg_data_out <= slv_reg2 ;

when b" 11 " =>
reg_data_out <= slv_reg3 ;

when othe r s =>
reg_data_out <= (othe r s => ’0 ’) ;

end case ;

120

C.3 – Processor and FPGA second design

end proce s s ;

−− Output r e g i s t e r or memory read data
proce s s (S_AXI_ACLK) i s
begin

i f (r i s ing_edge (S_AXI_ACLK)) then
i f (S_AXI_ARESETN = ’0 ’) then

axi_rdata <= (othe r s => ’0 ’) ;
e l s e

i f (slv_reg_rden = ’1 ’) then
−− When there i s a va l i d read address (S_AXI_ARVALID) with
−− acceptance o f read address by the s l av e (axi_arready) ,
−− output the read dada
−− Read address mux

axi_rdata <= reg_data_out ; −− r e g i s t e r read data
end i f ;

end i f ;
end i f ;

end proce s s ;

−− Add user l o g i c here
−−added to read value o f the f i r s t 8 b i t s o f the f i r s t r e g i s t e r

OUTPUT_LED <= slv_reg0 (7 downto 0) ;
−− User l o g i c ends

end arch_imp ;

Figure C.2. Block diagram of the test_up_down design.

121

Base tests

Listing C.8. helloworld.c C program

#inc lude <s td i o . h>
#inc lude " p lat form . h "
#inc lude " x i l_p r i n t f . h "
#inc lude " s t d l i b . h "

i n t main ()
{

in i t_p la t fo rm () ;

v o l a t i l e unsigned i n t ∗ b l i nk e r = (v o l a t i l e unsigned i n t ∗) 0xa0000000 ;

i n t s t r i p = 0b00000001 ;
i n t cont = 0 ;
i n t de l aye r = 0 ;
i n t up = 1 ;

whi l e (cont <80){

i f (up==1){
s t r i p = s t r i p << 1 ;

} e l s e {
s t r i p = s t r i p >>1;

}

i f (s t r i p == 0b10000000) {
up=0;

}

i f (s t r i p == 0b00000001) {
up=1;

}

b l i nk e r [0]= s t r i p ;
whi l e (de layer <10001000){

de l aye r++;
}
de l aye r = 0 ;
cont++;

}

p r in t (" He l lo ␣World\n\ r ") ;

c leanup_platform () ;
r e turn 0 ;

}

C.4 Test of processor interrupts

Listing C.9. mb_1_TA1.xdc constraints file

FPGA module FM−XCZU19EG−R2

122

C.4 – Test of processor interrupts

pins which are not connected to an x−board

set_property PACKAGE_PIN A23 [get_ports LED_BLUE]
set_property PACKAGE_PIN J20 [get_ports LED_BLUE2]
###
UD001−3.19−Hardware−UserManual . docx p . 31 , 120 , 122
set_property IOSTANDARD LVCMOS18 [get_ports LED_BLUE]
set_property IOSTANDARD LVCMOS18 [get_ports LED_BLUE2]
###
set_property PACKAGE_PIN F27 [get_ports LED_GREEN]
set_property IOSTANDARD LVCMOS18 [get_ports LED_GREEN]
set_property PACKAGE_PIN E20 [get_ports LED_GREEN2]
set_property IOSTANDARD LVCMOS18 [get_ports LED_GREEN2]
set_property PACKAGE_PIN C26 [get_ports LED_RED]
set_property IOSTANDARD LVCMOS18 [get_ports LED_RED]
set_property PACKAGE_PIN D20 [get_ports LED_RED2]
set_property IOSTANDARD LVCMOS18 [get_ports LED_RED2]
set_property PACKAGE_PIN A22 [get_ports LED_YELLOW]
set_property IOSTANDARD LVCMOS18 [get_ports LED_YELLOW]
set_property PACKAGE_PIN M28 [get_ports LED_YELLOW2]
set_property IOSTANDARD LVCMOS18 [get_ports LED_YELLOW2]

pins which are connected to motherboard connector TB1
and connector BA1 on x−board EB−PDS−DEBUG−R1
###

UD001−3.19−Hardware−UserManual . docx p . 214

###

set_property PACKAGE_PIN U39 [get_ports tb1_eb1_IO_000]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_000]
set_property PACKAGE_PIN V39 [get_ports tb1_eb1_IO_001]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_001]
set_property PACKAGE_PIN R38 [get_ports tb1_eb1_IO_002]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_002]
set_property PACKAGE_PIN T37 [get_ports tb1_eb1_IO_003]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_003]
set_property PACKAGE_PIN N39 [get_ports tb1_eb1_IO_004]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_004]
set_property PACKAGE_PIN N38 [get_ports tb1_eb1_IO_005]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_005]
set_property PACKAGE_PIN P37 [get_ports tb1_eb1_IO_006]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_006]
set_property PACKAGE_PIN R37 [get_ports tb1_eb1_IO_007]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_007]
set_property PACKAGE_PIN P39 [get_ports tb1_eb1_IO_008]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_008]
set_property PACKAGE_PIN R39 [get_ports tb1_eb1_IO_009]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_009]
set_property PACKAGE_PIN T38 [get_ports tb1_eb1_IO_010]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_010]
set_property PACKAGE_PIN U38 [get_ports tb1_eb1_IO_011]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_011]
set_property PACKAGE_PIN V27 [get_ports tb1_eb1_IO_012]
set_property PACKAGE_PIN V26 [get_ports tb1_eb1_IO_013]
set_property PACKAGE_PIN U29 [get_ports tb1_eb1_IO_014]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_014]
set_property PACKAGE_PIN U28 [get_ports tb1_eb1_IO_015]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_015]

123

Base tests

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector BB2
#set_property INTERNAL_VREF {0.90} [get_iobanks 72]
#set_property INTERNAL_VREF {0.90} [get_iobanks 73]
#set_property INTERNAL_VREF {0.90} [get_iobanks 74]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TA2
#set_property INTERNAL_VREF {0.90} [get_iobanks 66]
#set_property INTERNAL_VREF {0.90} [get_iobanks 64]
#set_property INTERNAL_VREF {0.90} [get_iobanks 65]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TB1
#set_property INTERNAL_VREF {0.90} [get_iobanks 67]
#set_property INTERNAL_VREF {0.90} [get_iobanks 69]
#set_property INTERNAL_VREF {0.90} [get_iobanks 68]

set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_012]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_IO_013]

Listing C.10. TOP.vhd TOP file

l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

L ibrary UNISIM ;
use UNISIM . vcomponents . a l l ;

−− Uncomment the f o l l ow i ng l i b r a r y d e c l a r a t i o n i f us ing
−− a r i thmet i c f unc t i on s with Signed or Unsigned va lue s
−−use IEEE .NUMERIC_STD.ALL;

−− Uncomment the f o l l ow i ng l i b r a r y d e c l a r a t i o n i f i n s t a n t i a t i n g
−− any Xi l i nx l e a f c e l l s in t h i s code .
−− l i b r a r y UNISIM ;
−−use UNISIM . VComponents . a l l ;

e n t i t y TOP i s
port (

LED_BLUE : out s td_log i c ;
LED_BLUE2 : out s td_log i c ;
LED_GREEN : out s td_log i c ;
LED_GREEN2 : out s td_log i c ;
LED_RED : out s td_log i c ;
LED_RED2 : out s td_log i c ;
LED_YELLOW : out s td_log i c ;
LED_YELLOW2 : out s td_log i c ;
−− −− pins which are connected to motherboard connector TB1
−− −− and connector BA1 on x−board EB−PDS−DEBUG−R1

−− ##### ud001 pag 212 f i g 150 #### que s t i sono i 37 gpio pin header (da 000 a
015 sono conne s s i anche i l ed)

tb1_eb1_IO_000 : inout s td_log i c ;
tb1_eb1_IO_001 : inout s td_log i c ;
tb1_eb1_IO_002 : inout s td_log i c ;
tb1_eb1_IO_003 : inout s td_log i c ;
tb1_eb1_IO_004 : inout s td_log i c ;
tb1_eb1_IO_005 : inout s td_log i c ;
tb1_eb1_IO_006 : inout s td_log i c ;
tb1_eb1_IO_007 : inout s td_log i c ;
tb1_eb1_IO_008 : inout s td_log i c ;
tb1_eb1_IO_009 : inout s td_log i c ;

124

C.4 – Test of processor interrupts

tb1_eb1_IO_010 : inout s td_log i c ;
tb1_eb1_IO_011 : inout s td_log i c ;
tb1_eb1_IO_012 : inout s td_log i c ;
tb1_eb1_IO_013 : inout s td_log i c ;
tb1_eb1_IO_014 : inout s td_log i c ;
tb1_eb1_IO_015 : inout s td_log i c

) ;
end TOP;

a r c h i t e c t u r e Behaviora l o f TOP i s

component edt_xczu19eg_wrapper i s
port (

gpio_rtl_0_tri_o : out STD_LOGIC_VECTOR (15 downto 0) ;
gpio_rtl_1_tri_o : out STD_LOGIC_VECTOR (7 downto 0)

) ;
end component ;

s i g n a l led_debug : s td_log ic_vector (15 downto 0) ;
s i g n a l led_board : s td_log ic_vector (7 downto 0) ;

begin

p ro c e s s o r e : edt_xczu19eg_wrapper port map (gpio_rtl_0_tri_o => led_debug ,
gpio_rtl_1_tri_o => led_board) ;

tb1_eb1_IO_000 <= led_debug (0) ;
tb1_eb1_IO_001 <= led_debug (1) ;
tb1_eb1_IO_002 <= led_debug (2) ;
tb1_eb1_IO_003 <= led_debug (3) ;
tb1_eb1_IO_004 <= led_debug (4) ;
tb1_eb1_IO_005 <= led_debug (5) ;
tb1_eb1_IO_006 <= led_debug (6) ;
tb1_eb1_IO_007 <= led_debug (7) ;
tb1_eb1_IO_008 <= led_debug (8) ;
tb1_eb1_IO_009 <= led_debug (9) ;
tb1_eb1_IO_010 <= led_debug (10) ;
tb1_eb1_IO_011 <= led_debug (11) ;
tb1_eb1_IO_012 <= led_debug (12) ;
tb1_eb1_IO_013 <= led_debug (13) ;
tb1_eb1_IO_014 <= led_debug (14) ;
tb1_eb1_IO_015 <= led_debug (15) ;

LED_GREEN <= led_board (0) ;
LED_RED <= led_board (1) ;
LED_YELLOW <= led_board (2) ;
LED_BLUE <= led_board (3) ;
LED_GREEN2 <= led_board (4) ;
LED_RED2 <= led_board (5) ;
LED_YELLOW2 <= led_board (6) ;
LED_BLUE2 <= led_board (7) ;

end Behav iora l ;

Listing C.11. helloworld.c C program

#inc lude <s td i o . h>

125

Base tests

Figure C.3. Block diagram of the test_interrupt design.

#inc lude " p lat form . h "
#inc lude " x i l_p r i n t f . h "

// gpio
#inc lude <xgpio . h>
#inc lude " xparameters . h "
#inc lude " s l e e p . h "

// i n t e r r up t
#inc lude " xtmrctr . h "
#inc lude " x s cug i c . h "

// v a r i a b l e s gpio
XGpio dbg , zynq ;

// v a r i a b l e s i n t e r r up t
XScuGic i n tC t r l ;
XTmrCtr t imer ;

i n t turn=0, t imes=0;

// handler d e l l ’ i n t e r r up t in cu i f a r e l e ope r a z i on i

void t imer Inte r ruptHand le r (void ∗userParam , u8 TmrCtrNumber) {
i f (t imes==4){

i f (turn==0){

XGpio_DiscreteWrite(&zynq , 1 , 0 b00001111) ;
XGpio_DiscreteWrite(&dbg , 1 , 0 b0000111111110000) ;
turn=1;

} e l s e {

XGpio_DiscreteWrite(&zynq , 1 , 0 b11110000) ;
XGpio_DiscreteWrite(&dbg , 1 , 0 b1111000000001111) ;
turn=0;

126

C.4 – Test of processor interrupts

}
t imes=0;

}
t imes++;

}

i n t main ()
{

i n t cont=0;

// i n i t i a l i z e gpio
XGpio_In i t i a l i z e (&dbg ,XPAR_AXI_GPIO_0_DEVICE_ID) ;
XGpio_In i t i a l i z e (&zynq ,XPAR_AXI_GPIO_1_DEVICE_ID) ;

// s e t t i n g d i r e c t i o n
XGpio_SetDataDirection(&dbg , 1 , 0 x0) ;
XGpio_SetDataDirection(&zynq , 1 , 0 x0) ;

// i n i t i a l i z e i n t e r r up t
i n t xStatus = XTmrCtr_Init ia l ize(&timer ,XPAR_AXI_TIMER_0_DEVICE_ID) ;
i f (xStatus != XST_SUCCESS) {

p r i n t f (" Could␣not␣ i n i t i a l i z e ␣ t imer \ r \n") ;
}

XTmrCtr_SetHandler(&timer , (XTmrCtr_Handler) t imerInterruptHandler ,& timer) ;

// i n i t i a l i z e the i n t e r r up t c o n t r o l l e r d r i v e r so that i t i s ready to use
XScuGic_Config ∗ In tcConf ig = XScuGic_LookupConfig (XPAR_SCUGIC_SINGLE_DEVICE_ID) ;

i n t Status =
XScuGic_CfgIn i t ia l i ze (& in tCt r l , IntcConf ig , IntcConf ig−>CpuBaseAddress) ;

XScuGic_SetPriorityTriggerType(& intCt r l ,XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR,
0xA0 , 0 x3) ;

Status = XScuGic_Connect(& in tCt r l ,XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR,
(Xi l_InterruptHandler) XTmrCtr_InterruptHandler ,& timer) ;

XScuGic_Enable(& in tCt r l ,XPAR_FABRIC_AXI_TIMER_0_INTERRUPT_INTR) ;

// i n i t i a l i z e the except ion tab l e
Xi l_Except ionIn i t () ;

// r e g i s t e r the i n t e r r up t c o n t r o l l e r handler with the except ion tab l e
Xi l_Except ionRegisterHandler (XIL_EXCEPTION_ID_INT,

(Xil_ExceptionHandler) XScuGic_InterruptHandler ,
(void ∗) &i n tC t r l) ;

// enable except i ons
Xil_ExceptionEnable () ;

XTmrCtr_SetOptions(&timer , 0 ,XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION) ;
XTmrCtr_SetResetValue(&timer , 0 , 0 xFFE17B80) ; //50 hz
XTmrCtr_Start(&timer , 0) ;

in i t_p la t fo rm () ;

whi l e (cont <100){

127

Base tests

cont++;
}

cleanup_platform () ;
r e turn 0 ;

}

C.5 Test of Gbit Ethernet

Listing C.12. mb_1_TA1.xdc constraints file

pins which are connected to motherboard connector TB2
and connector BA1 on x−board EB−PDS−GBITETHERNET−R1
set_property PACKAGE_PIN AF13 [get_ports {tb2_eb1_ETH1_CLK_TO_MAC}]
set_property PACKAGE_PIN N13 [get_ports {tb2_eb1_ETH1_COL_CLK_MAC_FREQ}]
set_property PACKAGE_PIN N12 [get_ports {tb2_eb1_ETH1_CRS_RGMII_SEL0}]
set_property PACKAGE_PIN M12 [get_ports {tb2_eb1_ETH1_GTX_CLK_TCK}]
set_property PACKAGE_PIN G14 [get_ports {tb2_eb1_ETH1_MDC}]
set_property PACKAGE_PIN H14 [get_ports {tb2_eb1_ETH1_MDIO}]
set_property PACKAGE_PIN U14 [get_ports {tb2_eb1_ETH1_NINTERRUPT}]
set_property PACKAGE_PIN W12 [get_ports {tb2_eb1_ETH1_NRESET}]
set_property PACKAGE_PIN V13 [get_ports {tb2_eb1_ETH1_RX_CLK}]
set_property PACKAGE_PIN V14 [get_ports {tb2_eb1_ETH1_RX_DV_RCK}]
set_property PACKAGE_PIN M13 [get_ports {tb2_eb1_ETH1_RX_ER_RXDV_ER}]
set_property PACKAGE_PIN N16 [get_ports {tb2_eb1_ETH1_RXD0_RX0}]
set_property PACKAGE_PIN P16 [get_ports {tb2_eb1_ETH1_RXD1_RX1}]
set_property PACKAGE_PIN L16 [get_ports {tb2_eb1_ETH1_RXD2_RX2}]
set_property PACKAGE_PIN M16 [get_ports {tb2_eb1_ETH1_RXD3_RX3}]
set_property PACKAGE_PIN AG13 [get_ports {tb2_eb1_ETH1_TX_CLK_RGMII_SEL1}]
set_property PACKAGE_PIN J15 [get_ports {tb2_eb1_ETH1_TX_EN_TXEN_ER}]
set_property PACKAGE_PIN K15 [get_ports {tb2_eb1_ETH1_TX_ER}]
set_property PACKAGE_PIN L12 [get_ports {tb2_eb1_ETH1_TXD0_TX0}]
set_property PACKAGE_PIN L13 [get_ports {tb2_eb1_ETH1_TXD1_TX1}]
set_property PACKAGE_PIN K12 [get_ports {tb2_eb1_ETH1_TXD2_TX2}]
set_property PACKAGE_PIN K13 [get_ports {tb2_eb1_ETH1_TXD3_TX3}]
set_property PACKAGE_PIN J14 [get_ports {tb2_eb1_ETH1_TXD4}]
set_property PACKAGE_PIN K14 [get_ports {tb2_eb1_ETH1_TXD5}]
set_property PACKAGE_PIN G13 [get_ports {tb2_eb1_ETH1_TXD6}]
set_property PACKAGE_PIN H13 [get_ports {tb2_eb1_ETH1_TXD7}]

set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_GTX_CLK_TCK]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RX_DV_RCK]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RX_ER_RXDV_ER]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RXD0_RX0]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RXD1_RX1]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RXD2_RX2]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RXD3_RX3]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TX_EN_TXEN_ER]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD0_TX0]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD1_TX1]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD2_TX2]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD3_TX3]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_MDC]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_MDIO]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_CLK_TO_MAC]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_COL_CLK_MAC_FREQ]

128

C.5 – Test of Gbit Ethernet

set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_CRS_RGMII_SEL0]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_NINTERRUPT]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_NRESET]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_RX_CLK]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TX_CLK_RGMII_SEL1]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TX_ER]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD4]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD5]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD6]
set_property IOSTANDARD LVCMOS18 [get_ports tb1_eb1_ETH1_TXD7]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector BB2
set_property INTERNAL_VREF {0.90} [get_iobanks 72]
set_property INTERNAL_VREF {0.90} [get_iobanks 73]
set_property INTERNAL_VREF {0.90} [get_iobanks 74]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TA2
set_property INTERNAL_VREF {0.90} [get_iobanks 66]
set_property INTERNAL_VREF {0.90} [get_iobanks 64]
set_property INTERNAL_VREF {0.90} [get_iobanks 65]

VREF/DCI c on s t r a i n t s f o r banks r e l a t e d to connector TB1
set_property INTERNAL_VREF {0.90} [get_iobanks 67]
set_property INTERNAL_VREF {0.90} [get_iobanks 69]
set_property INTERNAL_VREF {0.90} [get_iobanks 68]

Listing C.13. mb_1_TA1.vhd TOP file

−− FPGA module FM−XCZU19EG−R2

l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
L ibrary UNISIM ;
use UNISIM . vcomponents . a l l ;

e n t i t y mb_1_TA1 i s
port (

−− pins which are connected to motherboard connector TA2
−− and connector BA1 on x−board EB−PDS−GBITETHERNET−R1
tb1_eb1_ETH1_CLK_TO_MAC: in s td_log i c ;
tb1_eb1_ETH1_COL_CLK_MAC_FREQ: in s td_log i c ;
tb1_eb1_ETH1_CRS_RGMII_SEL0 : in s td_log i c ;
tb1_eb1_ETH1_GTX_CLK_TCK: out s td_log i c ;
tb1_eb1_ETH1_MDC: out s td_log i c ;
tb1_eb1_ETH1_MDIO: inout s td_log i c ;
tb1_eb1_ETH1_NINTERRUPT: in s td_log i c ;
tb1_eb1_ETH1_NRESET: out s td_log i c ;
tb1_eb1_ETH1_RX_CLK: in s td_log i c ;
tb1_eb1_ETH1_RX_DV_RCK: in s td_log i c ;
tb1_eb1_ETH1_RX_ER_RXDV_ER: in s td_log i c ;
tb1_eb1_ETH1_RXD0_RX0: in s td_log i c ;
tb1_eb1_ETH1_RXD1_RX1: in s td_log i c ;
tb1_eb1_ETH1_RXD2_RX2: in s td_log i c ;
tb1_eb1_ETH1_RXD3_RX3: in s td_log i c ;
tb1_eb1_ETH1_TX_CLK_RGMII_SEL1: in s td_log i c ;
tb1_eb1_ETH1_TX_EN_TXEN_ER: out s td_log i c ;
tb1_eb1_ETH1_TX_ER: out s td_log i c ;
tb1_eb1_ETH1_TXD0_TX0: out s td_log i c ;
tb1_eb1_ETH1_TXD1_TX1: out s td_log i c ;
tb1_eb1_ETH1_TXD2_TX2: out s td_log i c ;

129

Base tests

tb1_eb1_ETH1_TXD3_TX3: out s td_log i c ;
tb1_eb1_ETH1_TXD4 : out s td_log i c ;
tb1_eb1_ETH1_TXD5 : out s td_log i c ;
tb1_eb1_ETH1_TXD6 : out s td_log i c ;
tb1_eb1_ETH1_TXD7 : out s td_log i c

) ;
end en t i t y mb_1_TA1;

a r c h i t e c t u r e STRUCTURE of mb_1_TA1 i s

s i g n a l MDIO_PHY_0_mdio_i, MDIO_PHY_0_mdio_o, MDIO_PHY_0_mdio_t : STD_LOGIC;

component design_1 i s
port (

MDIO_PHY_0_mdc : out STD_LOGIC;
MDIO_PHY_0_mdio_i : in STD_LOGIC;
MDIO_PHY_0_mdio_o : out STD_LOGIC;
MDIO_PHY_0_mdio_t : out STD_LOGIC;
RGMII_0_rd : in STD_LOGIC_VECTOR (3 downto 0) ;
RGMII_0_rx_ctl : in STD_LOGIC;
RGMII_0_rxc : in STD_LOGIC;
RGMII_0_td : out STD_LOGIC_VECTOR (3 downto 0) ;
RGMII_0_tx_ctl : out STD_LOGIC;
RGMII_0_txc : out STD_LOGIC;
PHY_NRESET : out STD_LOGIC

) ;
end component design_1 ;

begin

design_1_i : component design_1
port map (

MDIO_PHY_0_mdc => tb1_eb1_ETH1_MDC,
MDIO_PHY_0_mdio_i => MDIO_PHY_0_mdio_i,
MDIO_PHY_0_mdio_o => MDIO_PHY_0_mdio_o,
MDIO_PHY_0_mdio_t => MDIO_PHY_0_mdio_t,
RGMII_0_rd(0) => tb1_eb1_ETH1_RXD0_RX0,
RGMII_0_rd(1) => tb1_eb1_ETH1_RXD1_RX1,
RGMII_0_rd(2) => tb1_eb1_ETH1_RXD2_RX2,
RGMII_0_rd(3) => tb1_eb1_ETH1_RXD3_RX3,
RGMII_0_rx_ctl => tb1_eb1_ETH1_RX_ER_RXDV_ER,
RGMII_0_rxc => tb1_eb1_ETH1_RX_DV_RCK,
RGMII_0_td(0) => tb1_eb1_ETH1_TXD0_TX0,
RGMII_0_td(1) => tb1_eb1_ETH1_TXD1_TX1,
RGMII_0_td(2) => tb1_eb1_ETH1_TXD2_TX2,
RGMII_0_td(3) => tb1_eb1_ETH1_TXD3_TX3,
RGMII_0_tx_ctl => tb1_eb1_ETH1_TX_EN_TXEN_ER,
RGMII_0_txc => tb1_eb1_ETH1_GTX_CLK_TCK,
PHY_NRESET => tb1_eb1_ETH1_NRESET,

) ;

−−GBE
−−tc2_eb1_ETH1_COL_CLK_MAC_FREQ <= ’1 ’ ; −−CLK TO MAC 125MHZ (unused)
tb1_eb1_ETH1_TX_ER <= ’1 ’ ; −−unused in RGMII
tb1_eb1_ETH1_TXD4<= ’ 0 ’ ;

130

C.5 – Test of Gbit Ethernet

tb1_eb1_ETH1_TXD5<= ’ 0 ’ ;
tb1_eb1_ETH1_TXD6<= ’ 0 ’ ;
tb1_eb1_ETH1_TXD7 <= ’ 0 ’ ;

end STRUCTURE;

Figure C.4. Block diagram of the test_client design.

Figure C.5. Zynq Ip settings for the Ethernet port pins.

Listing C.14. client.c C program

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

131

Base tests

Figure C.6. Test of the Ethernet with client running on the Zynq.

Figure C.7. Test of the Ethernet with server running on the Raspberry.

Figure C.8. Test of the Ethernet with server running on the Zynq.

#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>

132

C.5 – Test of Gbit Ethernet

Figure C.9. Test of the Ethernet with client running on the Raspberry.

Figure C.10. Ping test from Zynq to raspberry.

#inc lude <sys / socket . h>
#inc lude <ne t i n e t / in . h>
#inc lude <netdb . h>

void e r r o r (const char ∗msg)
{

pe r ro r (msg) ;
e x i t (0) ;

}

i n t main (i n t argc , char ∗argv [])
{

i n t sockfd , portno , n , out=0;
s t r u c t sockaddr_in serv_addr ;
s t r u c t hostent ∗ s e r v e r ;

char bu f f e r [2 5 6] ;
i f (argc < 3) {

f p r i n t f (s tde r r , " usage ␣%s␣hostname␣ port \n" , argv [0]) ;
e x i t (0) ;

}
portno = a t o i (argv [2]) ;
sock fd = socket (AF_INET, SOCK_STREAM, 0) ;

133

Base tests

i f (sock fd < 0)
e r r o r ("ERROR␣opening ␣ socke t ") ;

s e r v e r = gethostbyname (argv [1]) ;
i f (s e r v e r == NULL) {

f p r i n t f (s tde r r , "ERROR, ␣no␣ such␣ host \n") ;
e x i t (0) ;

}
bzero ((char ∗) &serv_addr , s i z e o f (serv_addr)) ;
serv_addr . s in_fami ly = AF_INET;
bcopy ((char ∗) s e rver−>h_addr ,

(char ∗)&serv_addr . sin_addr . s_addr ,
s e rver−>h_length) ;

serv_addr . s in_port = htons (portno) ;
i f (connect (sockfd , (s t r u c t sockaddr ∗) &serv_addr , s i z e o f (serv_addr)) < 0)

e r r o r ("ERROR␣ connect ing ") ;

whi l e (out !=1){

p r i n t f (" P lease ␣ ente r ␣ the ␣message : ␣ ") ;
bzero (bu f f e r , 2 56) ;
f g e t s (bu f f e r , 255 , s td in) ;
n = wr i t e (sockfd , bu f f e r , s t r l e n (bu f f e r)) ;
i f (n < 0)

e r r o r ("ERROR␣wr i t i ng ␣ to ␣ socket ") ;

i f (strncmp (bu f f e r , " e x i t " , 4)==0){
p r i n t f (" e x i t ␣ r ecogn i z ed \n") ;
out=1;

}

bzero (bu f f e r , 2 56) ;

n = read (sockfd , bu f f e r , 2 55) ;
i f (n < 0)

e r r o r ("ERROR␣ read ing ␣ from␣ socket ") ;
p r i n t f ("%s \n" , bu f f e r) ;

}

p r i n t f (" c l o s i n g ␣ c l i e n t \n") ;
c l o s e (sock fd) ;
r e turn 0 ;

}

Listing C.15. server.c C program

/∗ A simple s e r v e r in the i n t e r n e t domain us ing TCP
The port number i s passed as an argument ∗/

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <sys / types . h>
#inc lude <sys / socket . h>
#inc lude <ne t i n e t / in . h>

void e r r o r (const char ∗msg)
{

134

C.5 – Test of Gbit Ethernet

pe r ro r (msg) ;
e x i t (1) ;

}

i n t main (i n t argc , char ∗argv [])
{

i n t sockfd , newsockfd , portno , out=0;
socklen_t c l i l e n ;
char bu f f e r [2 5 6] ;
s t r u c t sockaddr_in serv_addr , c l i_addr ;
i n t n ;
i f (argc < 2) {

f p r i n t f (s tde r r , "ERROR, ␣no␣ port ␣ provided \n") ;
e x i t (1) ;

}
sock fd = socket (AF_INET, SOCK_STREAM, 0) ;
i f (sock fd < 0)

e r r o r ("ERROR␣opening ␣ socke t ") ;
p r i n t f (" s e r v e r ␣opened\n") ;
bzero ((char ∗) &serv_addr , s i z e o f (serv_addr)) ;
portno = a t o i (argv [1]) ;
serv_addr . s in_fami ly = AF_INET;
serv_addr . sin_addr . s_addr = INADDR_ANY;
serv_addr . s in_port = htons (portno) ;
i f (bind (sockfd , (s t r u c t sockaddr ∗) &serv_addr ,

s i z e o f (serv_addr)) < 0)
e r r o r ("ERROR␣on␣ binding ") ;

l i s t e n (sockfd , 5) ;
c l i l e n = s i z e o f (c l i_addr) ;
newsockfd = accept (sockfd ,

(s t r u c t sockaddr ∗) &cl i_addr ,
&c l i l e n) ;

i f (newsockfd < 0)
e r r o r ("ERROR␣on␣ accept ") ;

p r i n t f (" c l i e n t ␣ connected \n") ;

whi l e (out !=1){
bzero (bu f f e r , 2 56) ;
n = read (newsockfd , bu f f e r , 2 55) ;
i f (n < 0) e r r o r ("ERROR␣ read ing ␣ from␣ socket ") ;
p r i n t f (" Here␣ i s ␣ the ␣message : ␣%s \n" , bu f f e r) ;
i f (strncmp (bu f f e r , " e x i t " , 4)==0){

p r i n t f (" e x i t ␣ r ecogn i z ed \n") ;
out=1;

}
n = wr i t e (newsockfd , " I ␣ got ␣your␣message " ,18) ;
i f (n < 0) e r r o r ("ERROR␣wr i t i ng ␣ to ␣ socke t ") ;

}
p r i n t f (" c l o s i n g ␣ s e r v e r \n") ;
c l o s e (newsockfd) ;
c l o s e (sock fd) ;

r e turn 0 ;
}

135

Base tests

C.6 Test of DDR4

Listing C.16. TOP.vhd TOP file

−− FPGA module FM−XCZU19EG−R2

l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

L ibrary UNISIM ;
use UNISIM . vcomponents . a l l ;

e n t i t y mb_1_TA1 i s
port (

LED_BLUE : out s td_log i c ;
LED_BLUE2 : out s td_log i c ;
LED_GREEN : out s td_log i c ;
LED_GREEN2 : out s td_log i c ;
LED_RED : out s td_log i c ;
LED_RED2 : out s td_log i c ;
LED_YELLOW : out s td_log i c ;
LED_YELLOW2 : out s td_log i c ;

−− −− pins which are connected to motherboard connector BB2
−− −− and connector BA1 on x−board EB−PDS−DDR4−R6
bb2_eb1_CLK_IN_N: in s td_log i c ; −−
bb2_eb1_CLK_IN_P: in s td_log i c ; −−
bb2_eb1_DDR4_A0 : out s td_log i c ;−−
bb2_eb1_DDR4_A1 : out s td_log i c ;−−
bb2_eb1_DDR4_A2 : out s td_log i c ;−−
bb2_eb1_DDR4_A3 : out s td_log i c ;−−
bb2_eb1_DDR4_A4 : out s td_log i c ;−−
bb2_eb1_DDR4_A5 : out s td_log i c ;−−
bb2_eb1_DDR4_A6 : out s td_log i c ;−−
bb2_eb1_DDR4_A7 : out s td_log i c ;−−
bb2_eb1_DDR4_A8 : out s td_log i c ;−−
bb2_eb1_DDR4_A9 : out s td_log i c ;−−
bb2_eb1_DDR4_A10_AP : out s td_log i c ;−−
bb2_eb1_DDR4_A11 : out s td_log i c ;−−
bb2_eb1_DDR4_A12_BC_N : out s td_log i c ;−−
bb2_eb1_DDR4_A13 : out s td_log i c ;−−
bb2_eb1_DDR4_A14_WE_N : out s td_log i c ;−−
bb2_eb1_DDR4_A15_CAS_N : out s td_log i c ;−−
bb2_eb1_DDR4_A16_RAS_N : out s td_log i c ;−−
bb2_eb1_DDR4_ACT_N : out s td_log i c ;−−
bb2_eb1_DDR4_ALERT_N : in s td_log i c ; −−
bb2_eb1_DDR4_BA0 : out s td_log i c ;−−
bb2_eb1_DDR4_BA1 : out s td_log i c ;−−
bb2_eb1_DDR4_BG0 : out s td_log i c ;−−
bb2_eb1_DDR4_CK_C : out s td_log i c ;−−
bb2_eb1_DDR4_CK_T : out s td_log i c ;−−
bb2_eb1_DDR4_CKE : out s td_log i c ;−−
bb2_eb1_DDR4_CS_N : out s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D0_DX00 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D1_DX01 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D2_DX02 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D3_DX03 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D4_DX04 : inout s td_log i c ;−−

136

C.6 – Test of DDR4

bb2_eb1_DDR4_DQ00_D5_DX05 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D6_DX06 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_D7_DX07 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ00_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D0_DX08 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D1_DX09 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D2_DX10 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D3_DX11 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D4_DX12 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D5_DX13 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D6_DX14 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_D7_DX15 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ01_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D0_DX16 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D1_DX17 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D2_DX18 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D3_DX19 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D4_DX20 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D5_DX21 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D6_DX22 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_D7_DX23 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ02_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D0_DX24 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D1_DX25 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D2_DX26 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D3_DX27 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D4_DX28 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D5_DX29 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D6_DX30 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_D7_DX31 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ03_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D0_DX32 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D1_DX33 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D2_DX34 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D3_DX35 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D4_DX36 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D5_DX37 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D6_DX38 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_D7_DX39 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ04_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D0_DX40 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D1_DX41 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D2_DX42 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D3_DX43 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D4_DX44 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D5_DX45 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D6_DX46 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_D7_DX47 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ05_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D0_DX48 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D1_DX49 : inout s td_log i c ;−−

137

Base tests

bb2_eb1_DDR4_DQ06_D2_DX50 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D3_DX51 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D4_DX52 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D5_DX53 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D6_DX54 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_D7_DX55 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ06_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D0_DX56 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D1_DX57 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D2_DX58 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D3_DX59 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D4_DX60 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D5_DX61 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D6_DX62 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_D7_DX63 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ07_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D0_DX64 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D1_DX65 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D2_DX66 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D3_DX67 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D4_DX68 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D5_DX69 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D6_DX70 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_D7_DX71 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ08_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D0_DX72 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D1_DX73 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D2_DX74 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D3_DX75 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D4_DX76 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D5_DX77 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D6_DX78 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_D7_DX79 : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_DM_DBI_N : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_DQS_C : inout s td_log i c ;−−
bb2_eb1_DDR4_DQ09_DQS_T : inout s td_log i c ;−−
bb2_eb1_DDR4_ODT : out s td_log i c ;−−
bb2_eb1_DDR4_PAR : out s td_log i c ;−−
bb2_eb1_DDR4_RESET_N: out s td_log i c ;−−
bb2_eb1_DDR4_TEN: out s td_log i c ;−−
bb2_eb1_LED_BLUE1 : out s td_log i c ;−−
bb2_eb1_LED_BLUE2 : out s td_log i c ;−−
bb2_eb1_LED_GREEN1 : out s td_log i c ;−−
bb2_eb1_LED_GREEN2 : out s td_log i c ;−−
bb2_eb1_LED_RED1 : out s td_log i c ;−−
bb2_eb1_LED_RED2 : out s td_log i c ;−−
bb2_eb1_LED_YELLOW1 : out s td_log i c ;−−
bb2_eb1_LED_YELLOW2 : out s td_log i c−−
) ;

end en t i t y mb_1_TA1;

a r c h i t e c t u r e beh o f mb_1_TA1 i s

component edt_xczu19eg_wrapper i s
port (

ddr4_rtl_0_act_n : out STD_LOGIC;

138

C.6 – Test of DDR4

ddr4_rtl_0_adr : out STD_LOGIC_VECTOR (16 downto 0) ;
ddr4_rtl_0_ba : out STD_LOGIC_VECTOR (1 downto 0) ;
ddr4_rtl_0_bg : out STD_LOGIC_VECTOR (0 to 0) ;
ddr4_rtl_0_ck_c : out STD_LOGIC_VECTOR (0 to 0) ;
ddr4_rtl_0_ck_t : out STD_LOGIC_VECTOR (0 to 0) ;
ddr4_rtl_0_cke : out STD_LOGIC_VECTOR (0 to 0) ;
ddr4_rtl_0_cs_n : out STD_LOGIC_VECTOR (0 to 0) ;
ddr4_rtl_0_dm_n : inout STD_LOGIC_VECTOR (7 downto 0) ;
ddr4_rtl_0_dq : inout STD_LOGIC_VECTOR (63 downto 0) ;
ddr4_rtl_0_dqs_c : inout STD_LOGIC_VECTOR (7 downto 0) ;
ddr4_rtl_0_dqs_t : inout STD_LOGIC_VECTOR (7 downto 0) ;
ddr4_rtl_0_odt : out STD_LOGIC_VECTOR (0 to 0) ;
ddr4_rtl_0_reset_n : out STD_LOGIC;
di f f_clock_rtl_0_clk_n : inout STD_LOGIC;
di f f_clock_rtl_0_clk_p : inout STD_LOGIC;
rese t_rt l_0 : in STD_LOGIC

) ;
end component ;

s i g n a l clk_n , clk_p , reset_n , r e s e t_r t l , act_n : s td_log i c ;
s i g n a l adr : s td_log ic_vector (16 downto 0) ;
s i g n a l ba : s td_log ic_vector (1 downto 0) ;
s i g n a l bg , ck_c , ck_t , cke , cs_n , odt : s td_log ic_vector (0 downto 0) ;
s i g n a l dm_n, dqs_c , dqs_t : s td_log ic_vector (7 downto 0) ;
s i g n a l dq : s td_log ic_vector (63 downto 0) ;

begin

system : edt_xczu19eg_wrapper port map (

di f f_clock_rtl_0_clk_n => clk_n ,
di f f_clock_rtl_0_clk_p => clk_p ,
ddr4_rtl_0_act_n => act_n ,
ddr4_rtl_0_adr => adr ,
ddr4_rtl_0_ba => ba ,
ddr4_rtl_0_bg => bg ,
ddr4_rtl_0_ck_c => ck_c ,
ddr4_rtl_0_ck_t => ck_t ,
ddr4_rtl_0_cke => cke ,
ddr4_rtl_0_cs_n => cs_n ,
ddr4_rtl_0_dm_n => dm_n,
ddr4_rtl_0_dq => dq ,
ddr4_rtl_0_dqs_c => dqs_c ,
ddr4_rtl_0_dqs_t => dqs_t ,
ddr4_rtl_0_odt => odt ,
ddr4_rtl_0_reset_n => reset_n ,
re se t_rt l_0 => r e s e t_ r t l

) ;

bb2_eb1_DDR4_ACT_N <= act_n ;

bb2_eb1_DDR4_A0 <= adr (0) ;
bb2_eb1_DDR4_A1<= adr (1) ;
bb2_eb1_DDR4_A2<= adr (2) ;
bb2_eb1_DDR4_A3<= adr (3) ;
bb2_eb1_DDR4_A4<= adr (4) ;
bb2_eb1_DDR4_A5<= adr (5) ;
bb2_eb1_DDR4_A6<= adr (6) ;

139

Base tests

bb2_eb1_DDR4_A7<= adr (7) ;
bb2_eb1_DDR4_A8<= adr (8) ;
bb2_eb1_DDR4_A9<= adr (9) ;
bb2_eb1_DDR4_A10_AP<= adr (10) ;
bb2_eb1_DDR4_A11<= adr (11) ;
bb2_eb1_DDR4_A12_BC_N<= adr (12) ;
bb2_eb1_DDR4_A13<= adr (13) ;
bb2_eb1_DDR4_A14_WE_N<= adr (14) ;
bb2_eb1_DDR4_A15_CAS_N<= adr (15) ;
bb2_eb1_DDR4_A16_RAS_N<= adr (16) ;

bb2_eb1_DDR4_BA0 <= ba (0) ;
bb2_eb1_DDR4_BA1 <= ba (1) ;

bb2_eb1_DDR4_BG0 <= bg (0) ;

bb2_eb1_DDR4_CK_C <= ck_c (0) ;
bb2_eb1_DDR4_CK_T <= ck_t (0) ;
bb2_eb1_DDR4_CKE <= cke (0) ;

bb2_eb1_DDR4_CS_N <= cs_n (0) ;

bb2_eb1_DDR4_DQ00_DM_DBI_N <= dm_n(0) ;
bb2_eb1_DDR4_DQ01_DM_DBI_N <= dm_n(1) ;
bb2_eb1_DDR4_DQ02_DM_DBI_N <= dm_n(2) ;
bb2_eb1_DDR4_DQ03_DM_DBI_N <= dm_n(3) ;
bb2_eb1_DDR4_DQ04_DM_DBI_N <= dm_n(4) ;
bb2_eb1_DDR4_DQ05_DM_DBI_N <= dm_n(5) ;
bb2_eb1_DDR4_DQ06_DM_DBI_N <= dm_n(6) ;
bb2_eb1_DDR4_DQ07_DM_DBI_N <= dm_n(7) ;

bb2_eb1_DDR4_DQ00_D0_DX00 <= dq (0) ;
bb2_eb1_DDR4_DQ00_D1_DX01 <= dq (1) ;
bb2_eb1_DDR4_DQ00_D2_DX02 <= dq (2) ;
bb2_eb1_DDR4_DQ00_D3_DX03 <= dq (3) ;
bb2_eb1_DDR4_DQ00_D4_DX04 <= dq (4) ;
bb2_eb1_DDR4_DQ00_D5_DX05 <= dq (5) ;
bb2_eb1_DDR4_DQ00_D6_DX06 <= dq (6) ;
bb2_eb1_DDR4_DQ00_D7_DX07 <= dq (7) ;
bb2_eb1_DDR4_DQ01_D0_DX08 <= dq (8) ;
bb2_eb1_DDR4_DQ01_D1_DX09 <= dq (9) ;
bb2_eb1_DDR4_DQ01_D2_DX10 <= dq (10) ;
bb2_eb1_DDR4_DQ01_D3_DX11 <= dq (11) ;
bb2_eb1_DDR4_DQ01_D4_DX12 <= dq (12) ;
bb2_eb1_DDR4_DQ01_D5_DX13 <= dq (13) ;
bb2_eb1_DDR4_DQ01_D6_DX14 <= dq (14) ;
bb2_eb1_DDR4_DQ01_D7_DX15 <= dq (15) ;
bb2_eb1_DDR4_DQ02_D0_DX16 <= dq (16) ;
bb2_eb1_DDR4_DQ02_D1_DX17 <= dq (17) ;
bb2_eb1_DDR4_DQ02_D2_DX18 <= dq (18) ;
bb2_eb1_DDR4_DQ02_D3_DX19 <= dq (19) ;
bb2_eb1_DDR4_DQ02_D4_DX20 <= dq (20) ;
bb2_eb1_DDR4_DQ02_D5_DX21 <= dq (21) ;
bb2_eb1_DDR4_DQ02_D6_DX22 <= dq (22) ;
bb2_eb1_DDR4_DQ02_D7_DX23 <= dq (23) ;
bb2_eb1_DDR4_DQ03_D0_DX24 <= dq (24) ;
bb2_eb1_DDR4_DQ03_D1_DX25 <= dq (25) ;
bb2_eb1_DDR4_DQ03_D2_DX26 <= dq (26) ;
bb2_eb1_DDR4_DQ03_D3_DX27 <= dq (27) ;
bb2_eb1_DDR4_DQ03_D4_DX28 <= dq (28) ;

140

C.6 – Test of DDR4

bb2_eb1_DDR4_DQ03_D5_DX29 <= dq (29) ;
bb2_eb1_DDR4_DQ03_D6_DX30 <= dq (30) ;
bb2_eb1_DDR4_DQ03_D7_DX31 <= dq (31) ;
bb2_eb1_DDR4_DQ04_D0_DX32 <= dq (32) ;
bb2_eb1_DDR4_DQ04_D1_DX33 <= dq (33) ;
bb2_eb1_DDR4_DQ04_D2_DX34 <= dq (34) ;
bb2_eb1_DDR4_DQ04_D3_DX35 <= dq (35) ;
bb2_eb1_DDR4_DQ04_D4_DX36 <= dq (36) ;
bb2_eb1_DDR4_DQ04_D5_DX37 <= dq (37) ;
bb2_eb1_DDR4_DQ04_D6_DX38 <= dq (38) ;
bb2_eb1_DDR4_DQ04_D7_DX39 <= dq (39) ;
bb2_eb1_DDR4_DQ05_D0_DX40 <= dq (40) ;
bb2_eb1_DDR4_DQ05_D1_DX41 <= dq (41) ;
bb2_eb1_DDR4_DQ05_D2_DX42 <= dq (42) ;
bb2_eb1_DDR4_DQ05_D3_DX43 <= dq (43) ;
bb2_eb1_DDR4_DQ05_D4_DX44 <= dq (44) ;
bb2_eb1_DDR4_DQ05_D5_DX45 <= dq (45) ;
bb2_eb1_DDR4_DQ05_D6_DX46 <= dq (46) ;
bb2_eb1_DDR4_DQ05_D7_DX47 <= dq (47) ;
bb2_eb1_DDR4_DQ06_D0_DX48 <= dq (48) ;
bb2_eb1_DDR4_DQ06_D1_DX49 <= dq (49) ;
bb2_eb1_DDR4_DQ06_D2_DX50 <= dq (50) ;
bb2_eb1_DDR4_DQ06_D3_DX51 <= dq (51) ;
bb2_eb1_DDR4_DQ06_D4_DX52 <= dq (52) ;
bb2_eb1_DDR4_DQ06_D5_DX53 <= dq (53) ;
bb2_eb1_DDR4_DQ06_D6_DX54 <= dq (54) ;
bb2_eb1_DDR4_DQ06_D7_DX55 <= dq (55) ;
bb2_eb1_DDR4_DQ07_D0_DX56 <= dq (56) ;
bb2_eb1_DDR4_DQ07_D1_DX57 <= dq (57) ;
bb2_eb1_DDR4_DQ07_D2_DX58 <= dq (58) ;
bb2_eb1_DDR4_DQ07_D3_DX59 <= dq (59) ;
bb2_eb1_DDR4_DQ07_D4_DX60 <= dq (60) ;
bb2_eb1_DDR4_DQ07_D5_DX61 <= dq (61) ;
bb2_eb1_DDR4_DQ07_D6_DX62 <= dq (62) ;
bb2_eb1_DDR4_DQ07_D7_DX63 <= dq (63) ;

bb2_eb1_DDR4_DQ00_DQS_C <= dqs_c (0) ;
bb2_eb1_DDR4_DQ00_DQS_T <= dqs_t (0) ;
bb2_eb1_DDR4_DQ01_DQS_C <= dqs_c (1) ;
bb2_eb1_DDR4_DQ01_DQS_T <= dqs_t (1) ;
bb2_eb1_DDR4_DQ02_DQS_C <= dqs_c (2) ;
bb2_eb1_DDR4_DQ02_DQS_T <= dqs_t (2) ;
bb2_eb1_DDR4_DQ03_DQS_C <= dqs_c (3) ;
bb2_eb1_DDR4_DQ03_DQS_T <= dqs_t (3) ;
bb2_eb1_DDR4_DQ04_DQS_C <= dqs_c (4) ;
bb2_eb1_DDR4_DQ04_DQS_T <= dqs_t (4) ;
bb2_eb1_DDR4_DQ05_DQS_C <= dqs_c (5) ;
bb2_eb1_DDR4_DQ05_DQS_T <= dqs_t (5) ;
bb2_eb1_DDR4_DQ06_DQS_C <= dqs_c (6) ;
bb2_eb1_DDR4_DQ06_DQS_T <= dqs_t (6) ;
bb2_eb1_DDR4_DQ07_DQS_C <= dqs_c (7) ;
bb2_eb1_DDR4_DQ07_DQS_T <= dqs_t (7) ;

bb2_eb1_DDR4_ODT <= odt (0) ;

bb2_eb1_DDR4_RESET_N <= reset_n ;

clk_n <= bb2_eb1_CLK_IN_N;
clk_p <= bb2_eb1_CLK_IN_P;
r e s e t_ r t l <= ’0 ’ ;

141

Base tests

−−LEDS
LED_BLUE2 <= ’ 0 ’ ;
LED_GREEN2 <= ’ 0 ’ ;
LED_RED2 <= ’ 0 ’ ;
LED_YELLOW2<= ’ 0 ’ ;
LED_BLUE <= ’0 ’ ;
LED_GREEN <= ’0 ’ ;

bb2_eb1_LED_BLUE1 <= ’ 0 ’ ;
bb2_eb1_LED_BLUE2 <= ’ 0 ’ ;
bb2_eb1_LED_GREEN1 <= ’ 0 ’ ;
bb2_eb1_LED_GREEN2 <= ’ 0 ’ ;
bb2_eb1_LED_RED1 <= ’ 0 ’ ;
bb2_eb1_LED_RED2 <= ’ 0 ’ ;
bb2_eb1_LED_YELLOW1 <= ’ 0 ’ ;
bb2_eb1_LED_YELLOW2 <= ’ 0 ’ ;

end beh ;

Figure C.11. Block diagram of the test_DDR design.

Listing C.17. helloworld.c C program

#inc lude <s td i o . h>
#inc lude " p lat form . h "
#inc lude " x i l_p r i n t f . h "
#inc lude " xparameters . h "
#inc lude " x i l_ i o . h "

i n t main ()
{

in i t_p la t fo rm () ;

i n t word1 ; // i n t i s 32 b i t s

142

C.7 – Test of Custom slave device

i n t word2 ;
i n t word3 ;
i n t word4 ;
i n t word5 ;
i n t cont=0;

// wr i t i ng opera t i on i s performed s t a r t i n g from the base address
//and adding the r equ i r ed number o f b i t s .

// f o r example , i f the wr i t e i s on 8 b i t s , f o r next load 1
// byte have to be added to the address .

// f i r s t parameter i s f o r the address whi l e the second f o r va lue
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 0 , 0xAB) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 1 , 0xFF) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 2 , 0x34) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 3 , 0x8C) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 4 , 0xEF) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 5 , 0xBF) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 6 , 0xAD) ;
Xil_Out8 (XPAR_DDR4_0_BASEADDR + 7 , 0xDE) ;

// here the jump o f 2 bytes s i n c e i s performed a wr i t e o f 16 b i t s
Xil_Out16 (XPAR_DDR4_0_BASEADDR + 8 , 0x1209) ;
Xil_Out16 (XPAR_DDR4_0_BASEADDR + 10 , 0xFE31) ;
Xil_Out16 (XPAR_DDR4_0_BASEADDR + 12 , 0x6587) ;
Xil_Out16 (XPAR_DDR4_0_BASEADDR + 14 , 0xAAAA) ;

whi l e (cont <16){
word1 = Xil_In8 (XPAR_DDR4_0_BASEADDR + cont) ;
p r i n t f ("Word1␣=␣0x%08x\ r \n" , word1) ;
cont++;

}

word2 = Xil_In32 (XPAR_DDR4_0_BASEADDR) ; // f i r t 4 o f 8
p r i n t f ("Word2␣=␣0x%08x\ r \n" , word2) ;
word3 = Xil_In32 (XPAR_DDR4_0_BASEADDR+4) ; // second 4 o f 8
p r i n t f ("Word3␣=␣0x%08x\ r \n" , word3) ;
word4 = Xil_In32 (XPAR_DDR4_0_BASEADDR+8) ; // f i r s t 2 o f 16
p r i n t f ("Word4␣=␣0x%08x\ r \n" , word4) ;
word5 = Xil_In32 (XPAR_DDR4_0_BASEADDR+12) ; // second 2 o f 16
p r i n t f ("Word5␣=␣0x%08x\ r \n" , word5) ;

c leanup_platform () ;
r e turn 0 ;

}

C.7 Test of Custom slave device

Listing C.18. mult.vhd multiplier file

l i b r a r y IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .STD_LOGIC_ARITH.ALL;
use IEEE .STD_LOGIC_UNSIGNED.ALL;

−− Uncomment the f o l l ow i ng l i b r a r y d e c l a r a t i o n i f us ing
−− a r i thmet i c f unc t i on s with Signed or Unsigned va lue s
−−use IEEE .NUMERIC_STD.ALL;

143

Base tests

−− Uncomment the f o l l ow i ng l i b r a r y d e c l a r a t i o n i f i n s t a n t i a t i n g
−− any Xi l i nx l e a f c e l l s in t h i s code .
−− l i b r a r y UNISIM ;
−−use UNISIM . VComponents . a l l ;

e n t i t y mult i s
Port (c l k : in STD_LOGIC;

a : in STD_LOGIC_VECTOR (15 downto 0) ;
b : in STD_LOGIC_VECTOR (15 downto 0) ;

s e l : in STD_LOGIC_VECTOR(1 downto 0) ;
calc_out : out STD_LOGIC_VECTOR (31 downto 0)) ;

end mult ;

a r c h i t e c t u r e Behaviora l o f mult i s

s i g n a l f i r s t , second : s igned (15 downto 0) ;
s i g n a l r e s u l t : s i gned (31 downto 0) ;

begin

proce s s (c l k)
begin

i f c lk ’ event and c l k = ’1 ’ then

case s e l i s
when b" 10 " =>

r e s u l t <= (f i r s t ∗ second) ;

when othe r s =>
r e s u l t <= (othe r s => ’0 ’) ;

end case ;
end i f ;

end proce s s ;

f i r s t <= s igned (a) ;
second <= s igned (b) ;
calc_out <= std_log ic_vector (r e s u l t) ;

end Behav iora l ;

Listing C.19. TOP.vhd TOP file

l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . s td_log i c_ar i th . a l l ;
use i e e e . std_logic_unsigned . a l l ;

L ibrary UNISIM ;
use UNISIM . vcomponents . a l l ;

−− Uncomment the f o l l ow i ng l i b r a r y d e c l a r a t i o n i f us ing
−− a r i thmet i c f unc t i on s with Signed or Unsigned va lue s
−−use IEEE .NUMERIC_STD.ALL;

−− Uncomment the f o l l ow i ng l i b r a r y d e c l a r a t i o n i f i n s t a n t i a t i n g

144

C.7 – Test of Custom slave device

−− any Xi l i nx l e a f c e l l s in t h i s code .
−− l i b r a r y UNISIM ;
−−use UNISIM . VComponents . a l l ;

e n t i t y TOP i s
port (

LED_BLUE : out s td_log i c ;
LED_BLUE2 : out s td_log i c ;
LED_GREEN : out s td_log i c ;
LED_GREEN2 : out s td_log i c ;
LED_RED : out s td_log i c ;
LED_RED2 : out s td_log i c ;
LED_YELLOW : out s td_log i c ;
LED_YELLOW2 : out s td_log i c

) ;
end TOP;

a r c h i t e c t u r e Behaviora l o f TOP i s

component design_xczu19eg_wrapper i s
port (

gpio_rtl_0_tri_o : out STD_LOGIC_VECTOR (7 downto 0)
) ;

end component ;

s i g n a l LED_strip : s td_log ic_vector (7 downto 0) ;

begin

p ro c e s s o r e : design_xczu19eg_wrapper port map (gpio_rtl_0_tri_o => LED_strip) ;

LED_BLUE <= LED_strip (3) ;
LED_GREEN <= LED_strip (0) ;
LED_RED <= LED_strip (1) ;
LED_YELLOW <= LED_strip (2) ;
LED_BLUE2 <= LED_strip (7) ;
LED_GREEN2 <= LED_strip (4) ;
LED_RED2 <= LED_strip (5) ;
LED_YELLOW2 <= LED_strip (6) ;

end Behav iora l ;

Listing C.20. mymultiplicator_v1_0.vhd multiplier IP VHDL file
l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y mymultiplicator_v1_0 i s
g en e r i c (

−− Users to add parameters here

−− User parameters ends
−− Do not modify the parameters beyond t h i s l i n e

−− Parameters o f Axi S lave Bus I n t e r f a c e S00_AXI
C_S00_AXI_DATA_WIDTH : i n t e g e r := 32 ;
C_S00_AXI_ADDR_WIDTH : i n t e g e r := 4

) ;
port (

145

Base tests

Figure C.12. Block diagram of the test_calc design.

−− Users to add por t s here

−− User por t s ends
−− Do not modify the por t s beyond t h i s l i n e

−− Ports o f Axi S lave Bus I n t e r f a c e S00_AXI
s00_axi_aclk : in s td_log i c ;
s00_axi_aresetn : in s td_log i c ;
s00_axi_awaddr : in s td_log ic_vector (C_S00_AXI_ADDR_WIDTH−1 downto 0) ;
s00_axi_awprot : in s td_log ic_vector (2 downto 0) ;
s00_axi_awvalid : in s td_log i c ;
s00_axi_awready : out s td_log i c ;
s00_axi_wdata : in s td_log ic_vector (C_S00_AXI_DATA_WIDTH−1 downto 0) ;
s00_axi_wstrb : in s td_log ic_vector ((C_S00_AXI_DATA_WIDTH/8)−1 downto 0) ;
s00_axi_wvalid : in s td_log i c ;
s00_axi_wready : out s td_log i c ;
s00_axi_bresp : out s td_log ic_vector (1 downto 0) ;
s00_axi_bvalid : out s td_log i c ;
s00_axi_bready : in s td_log i c ;
s00_axi_araddr : in s td_log ic_vector (C_S00_AXI_ADDR_WIDTH−1 downto 0) ;
s00_axi_arprot : in s td_log ic_vector (2 downto 0) ;
s00_axi_arval id : in s td_log i c ;
s00_axi_arready : out s td_log i c ;
s00_axi_rdata : out s td_log ic_vector (C_S00_AXI_DATA_WIDTH−1 downto 0) ;
s00_axi_rresp : out s td_log ic_vector (1 downto 0) ;
s00_axi_rval id : out s td_log i c ;
s00_axi_rready : in s td_log i c

) ;
end mymultiplicator_v1_0 ;

a r c h i t e c t u r e arch_imp o f mymultiplicator_v1_0 i s

−− component d e c l a r a t i on
component mymultiplicator_v1_0_S00_AXI i s

g en e r i c (
C_S_AXI_DATA_WIDTH : i n t e g e r := 32 ;
C_S_AXI_ADDR_WIDTH : i n t e g e r := 4
) ;

146

C.7 – Test of Custom slave device

port (
S_AXI_ACLK : in s td_log i c ;
S_AXI_ARESETN : in s td_log i c ;
S_AXI_AWADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
S_AXI_AWPROT : in std_log ic_vector (2 downto 0) ;
S_AXI_AWVALID : in s td_log i c ;
S_AXI_AWREADY : out s td_log i c ;
S_AXI_WDATA : in std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
S_AXI_WSTRB : in std_log ic_vector ((C_S_AXI_DATA_WIDTH/8)−1 downto 0) ;
S_AXI_WVALID : in s td_log i c ;
S_AXI_WREADY : out s td_log i c ;
S_AXI_BRESP : out std_log ic_vector (1 downto 0) ;
S_AXI_BVALID : out s td_log i c ;
S_AXI_BREADY : in s td_log i c ;
S_AXI_ARADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
S_AXI_ARPROT : in std_log ic_vector (2 downto 0) ;
S_AXI_ARVALID : in s td_log i c ;
S_AXI_ARREADY : out s td_log i c ;
S_AXI_RDATA : out std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
S_AXI_RRESP : out std_log ic_vector (1 downto 0) ;
S_AXI_RVALID : out s td_log i c ;
S_AXI_RREADY : in s td_log i c
) ;

end component mymultiplicator_v1_0_S00_AXI ;

begin

−− I n s t a n t i a t i o n o f Axi Bus I n t e r f a c e S00_AXI
mymultiplicator_v1_0_S00_AXI_inst : mymultiplicator_v1_0_S00_AXI

gene r i c map (
C_S_AXI_DATA_WIDTH => C_S00_AXI_DATA_WIDTH,
C_S_AXI_ADDR_WIDTH => C_S00_AXI_ADDR_WIDTH

)
port map (

S_AXI_ACLK => s00_axi_aclk ,
S_AXI_ARESETN => s00_axi_aresetn ,
S_AXI_AWADDR => s00_axi_awaddr ,
S_AXI_AWPROT => s00_axi_awprot ,
S_AXI_AWVALID => s00_axi_awvalid ,
S_AXI_AWREADY => s00_axi_awready ,
S_AXI_WDATA => s00_axi_wdata ,
S_AXI_WSTRB => s00_axi_wstrb ,
S_AXI_WVALID => s00_axi_wvalid ,
S_AXI_WREADY => s00_axi_wready ,
S_AXI_BRESP => s00_axi_bresp ,
S_AXI_BVALID => s00_axi_bvalid ,
S_AXI_BREADY => s00_axi_bready ,
S_AXI_ARADDR => s00_axi_araddr ,
S_AXI_ARPROT => s00_axi_arprot ,
S_AXI_ARVALID => s00_axi_arval id ,
S_AXI_ARREADY => s00_axi_arready ,
S_AXI_RDATA => s00_axi_rdata ,
S_AXI_RRESP => s00_axi_rresp ,
S_AXI_RVALID => s00_axi_rval id ,
S_AXI_RREADY => s00_axi_rready

) ;

−− Add user l o g i c here

−− User l o g i c ends

end arch_imp ;

147

Base tests

Listing C.21. mymultiplicator_v1_0_S00_AXI.vhd multiplier AXI im-
plementation VHDL file

l i b r a r y i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

e n t i t y mymultiplicator_v1_0_S00_AXI i s
g en e r i c (

−− Users to add parameters here

−− User parameters ends
−− Do not modify the parameters beyond t h i s l i n e

−− Width o f S_AXI data bus
C_S_AXI_DATA_WIDTH : i n t e g e r := 32 ;
−− Width o f S_AXI address bus
C_S_AXI_ADDR_WIDTH : i n t e g e r := 4

) ;
port (

−− Users to add por t s here

−− User por t s ends
−− Do not modify the por t s beyond t h i s l i n e

−− Global Clock S igna l
S_AXI_ACLK : in s td_log i c ;
−− Global Reset S i gna l . This S i gna l i s Act ive LOW
S_AXI_ARESETN : in s td_log i c ;
−− Write address (i s su ed by master , acceped by Slave)
S_AXI_AWADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
−− Write channel Pro tec t i on type . This s i g n a l i n d i c a t e s the

−− p r i v i l e g e and s e c u r i t y l e v e l o f the t ransac t i on , and whether
−− the t r an sa c t i on i s a data ac c e s s or an i n s t r u c t i o n ac c e s s .

S_AXI_AWPROT : in std_log ic_vector (2 downto 0) ;
−− Write address va l i d . This s i g n a l i n d i c a t e s that the master s i g n a l i n g

−− va l i d wr i t e address and con t r o l in fo rmat ion .
S_AXI_AWVALID : in s td_log i c ;
−− Write address ready . This s i g n a l i n d i c a t e s that the s l av e i s ready

−− to accept an address and a s s o c i a t ed con t r o l s i g n a l s .
S_AXI_AWREADY : out s td_log i c ;
−− Write data (i s su ed by master , acceped by Slave)
S_AXI_WDATA : in std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
−− Write s t r obe s . This s i g n a l i n d i c a t e s which byte l ane s hold

−− va l i d data . There i s one wr i t e s t robe b i t f o r each e i gh t
−− b i t s o f the wr i t e data bus .

S_AXI_WSTRB : in std_log ic_vector ((C_S_AXI_DATA_WIDTH/8)−1 downto 0) ;
−− Write va l i d . This s i g n a l i n d i c a t e s that va l i d wr i t e

−− data and s t r obe s are a v a i l a b l e .
S_AXI_WVALID : in s td_log i c ;
−− Write ready . This s i g n a l i n d i c a t e s that the s l av e

−− can accept the wr i t e data .
S_AXI_WREADY : out s td_log i c ;
−− Write re sponse . This s i g n a l i n d i c a t e s the s t a tu s

−− o f the wr i t e t r an sa c t i on .
S_AXI_BRESP : out std_log ic_vector (1 downto 0) ;
−− Write re sponse va l i d . This s i g n a l i n d i c a t e s that the channel

−− i s s i g n a l i n g a va l i d wr i t e re sponse .
S_AXI_BVALID : out s td_log i c ;
−− Response ready . This s i g n a l i n d i c a t e s that the master

−− can accept a wr i t e re sponse .
S_AXI_BREADY : in s td_log i c ;
−− Read address (i s su ed by master , acceped by Slave)
S_AXI_ARADDR : in std_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;

148

C.7 – Test of Custom slave device

−− Protec t i on type . This s i g n a l i n d i c a t e s the p r i v i l e g e
−− and s e c u r i t y l e v e l o f the t ransac t i on , and whether the
−− t r an s a c t i on i s a data ac c e s s or an i n s t r u c t i o n ac c e s s .

S_AXI_ARPROT : in std_log ic_vector (2 downto 0) ;
−− Read address va l i d . This s i g n a l i n d i c a t e s that the channel

−− i s s i g n a l i n g va l i d read address and con t r o l in fo rmat ion .
S_AXI_ARVALID : in s td_log i c ;
−− Read address ready . This s i g n a l i n d i c a t e s that the s l av e i s

−− ready to accept an address and a s s o c i a t ed con t r o l s i g n a l s .
S_AXI_ARREADY : out s td_log i c ;
−− Read data (i s su ed by s l av e)
S_AXI_RDATA : out std_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
−− Read response . This s i g n a l i n d i c a t e s the s t a tu s o f the

−− read t r a n s f e r .
S_AXI_RRESP : out std_log ic_vector (1 downto 0) ;
−− Read va l i d . This s i g n a l i n d i c a t e s that the channel i s

−− s i g n a l i n g the r equ i r ed read data .
S_AXI_RVALID : out s td_log i c ;
−− Read ready . This s i g n a l i n d i c a t e s that the master can

−− accept the read data and response in fo rmat ion .
S_AXI_RREADY : in s td_log i c

) ;
end mymultiplicator_v1_0_S00_AXI ;

a r c h i t e c t u r e arch_imp o f mymultiplicator_v1_0_S00_AXI i s

−− AXI4LITE s i g n a l s
s i g n a l axi_awaddr : s td_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
s i g n a l axi_awready : s td_log i c ;
s i g n a l axi_wready : s td_log i c ;
s i g n a l axi_bresp : s td_log ic_vector (1 downto 0) ;
s i g n a l axi_bval id : s td_log i c ;
s i g n a l axi_araddr : s td_log ic_vector (C_S_AXI_ADDR_WIDTH−1 downto 0) ;
s i g n a l axi_arready : s td_log i c ;
s i g n a l axi_rdata : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l ax i_rresp : s td_log ic_vector (1 downto 0) ;
s i g n a l ax i_rva l id : s td_log i c ;

−− Example−s p e c i f i c des ign s i g n a l s
−− l o c a l parameter f o r addre s s ing 32 b i t / 64 b i t C_S_AXI_DATA_WIDTH
−− ADDR_LSB i s used f o r addre s s ing 32/64 b i t r e g i s t e r s /memories
−− ADDR_LSB = 2 f o r 32 b i t s (n downto 2)
−− ADDR_LSB = 3 f o r 64 b i t s (n downto 3)
constant ADDR_LSB : i n t e g e r := (C_S_AXI_DATA_WIDTH/32)+ 1 ;
constant OPT_MEM_ADDR_BITS : i n t e g e r := 1 ;
−−
−−−− S i gna l s f o r user l o g i c r e g i s t e r space example
−−
−−−− Number o f S lave Reg i s t e r s 4
s i g n a l s lv_reg0 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l s lv_reg1 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l s lv_reg2 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l s lv_reg3 : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l slv_reg_rden : s td_log i c ;
s i g n a l slv_reg_wren : s td_log i c ;
s i g n a l reg_data_out : s td_log ic_vector (C_S_AXI_DATA_WIDTH−1 downto 0) ;
s i g n a l byte_index : i n t e g e r ;
s i g n a l aw_en : s td_log i c ;

s i g n a l ca l cu la to r_out : s td_log ic_vector (31 downto 0) ;

component mult i s
Port (c l k : in STD_LOGIC;

149

Base tests

a : in STD_LOGIC_VECTOR (15 downto 0) ;
b : in STD_LOGIC_VECTOR (15 downto 0) ;

s e l : in STD_LOGIC_VECTOR(1 downto 0) ;
calc_out : out STD_LOGIC_VECTOR (31 downto 0)) ;

end component ;

begin
−− I /O Connections ass ignments

S_AXI_AWREADY <= axi_awready ;
S_AXI_WREADY <= axi_wready ;
S_AXI_BRESP <= axi_bresp ;
S_AXI_BVALID <= axi_bval id ;
S_AXI_ARREADY <= axi_arready ;
S_AXI_RDATA <= axi_rdata ;
S_AXI_RRESP <= axi_rresp ;
S_AXI_RVALID <= ax i_rva l id ;
−− Implement axi_awready gene ra t i on
−− axi_awready i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when both
−− S_AXI_AWVALID and S_AXI_WVALID are a s s e r t ed . axi_awready i s
−− de−a s s e r t ed when r e s e t i s low .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_awready <= ’ 0 ’ ;
aw_en <= ’ 1 ’ ;

e l s e
i f (axi_awready = ’0 ’ and S_AXI_AWVALID = ’1 ’ and S_AXI_WVALID = ’1 ’ and

aw_en = ’1 ’) then
−− s l a v e i s ready to accept wr i t e address when
−− the re i s a va l i d wr i t e address and wr i t e data
−− on the wr i t e address and data bus . This des ign
−− expect s no outstanding t r an s a c t i on s .

axi_awready <= ’ 1 ’ ;
aw_en <= ’ 0 ’ ;

e l s i f (S_AXI_BREADY = ’1 ’ and axi_bval id = ’1 ’) then
aw_en <= ’ 1 ’ ;
axi_awready <= ’ 0 ’ ;

e l s e
axi_awready <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement axi_awaddr l a t ch i ng
−− This p roce s s i s used to l a t ch the address when both
−− S_AXI_AWVALID and S_AXI_WVALID are va l i d .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_awaddr <= (othe r s => ’0 ’) ;
e l s e

i f (axi_awready = ’0 ’ and S_AXI_AWVALID = ’1 ’ and S_AXI_WVALID = ’1 ’ and
aw_en = ’1 ’) then

−− Write Address l a t ch i ng
axi_awaddr <= S_AXI_AWADDR;

end i f ;
end i f ;

150

C.7 – Test of Custom slave device

end i f ;
end proce s s ;

−− Implement axi_wready gene ra t i on
−− axi_wready i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when both
−− S_AXI_AWVALID and S_AXI_WVALID are a s s e r t ed . axi_wready i s
−− de−a s s e r t ed when r e s e t i s low .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_wready <= ’ 0 ’ ;
e l s e

i f (axi_wready = ’0 ’ and S_AXI_WVALID = ’1 ’ and S_AXI_AWVALID = ’1 ’ and
aw_en = ’1 ’) then
−− s l a v e i s ready to accept wr i t e data when
−− the re i s a va l i d wr i t e address and wr i t e data
−− on the wr i t e address and data bus . This des ign
−− expect s no outstanding t r an s a c t i on s .
axi_wready <= ’ 1 ’ ;

e l s e
axi_wready <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement memory mapped r e g i s t e r s e l e c t and wr i t e l o g i c gene ra t i on
−− The wr i t e data i s accepted and wr i t t en to memory mapped r e g i s t e r s when
−− axi_awready , S_AXI_WVALID, axi_wready and S_AXI_WVALID are a s s e r t ed . Write

s t r obe s are used to
−− s e l e c t byte enab l e s o f s l a v e r e g i s t e r s whi l e wr i t i ng .
−− These r e g i s t e r s are c l e a r ed when r e s e t (a c t i v e low) i s app l i ed .
−− Slave r e g i s t e r wr i t e enable i s a s s e r t ed when va l i d address and data are

a v a i l a b l e
−− and the s l av e i s ready to accept the wr i t e address and wr i t e data .
slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID ;

proce s s (S_AXI_ACLK)
va r i ab l e loc_addr : s td_log ic_vector (OPT_MEM_ADDR_BITS downto 0) ;
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

s lv_reg0 <= (othe r s => ’0 ’) ;
s lv_reg1 <= (othe r s => ’0 ’) ;
s lv_reg2 <= (othe r s => ’0 ’) ;
s lv_reg3 <= (othe r s => ’0 ’) ;

e l s e
loc_addr := axi_awaddr (ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB) ;
i f (slv_reg_wren = ’1 ’) then

case loc_addr i s
when b" 00 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop
i f (S_AXI_WSTRB(byte_index) = ’1 ’) then

−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 0
s lv_reg0 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when b" 01 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop

151

Base tests

i f (S_AXI_WSTRB(byte_index) = ’1 ’) then
−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 1
s lv_reg1 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when b" 10 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop
i f (S_AXI_WSTRB(byte_index) = ’1 ’) then

−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 2
s lv_reg2 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when b" 11 " =>

f o r byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop
i f (S_AXI_WSTRB(byte_index) = ’1 ’) then

−− Respect ive byte enab l e s are a s s e r t ed as per wr i t e s t r obe s
−− s l a v e r e g i s t o r 3
s lv_reg3 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA(byte_index∗8+7 downto byte_index ∗8) ;
end i f ;

end loop ;
when othe r s =>

slv_reg0 <= slv_reg0 ;
s lv_reg1 <= slv_reg1 ;
s lv_reg2 <= slv_reg2 ;
s lv_reg3 <= slv_reg3 ;

end case ;
end i f ;

end i f ;
end i f ;

end proce s s ;

−− Implement wr i t e re sponse l o g i c gene ra t i on
−− The wr i t e re sponse and response va l i d s i g n a l s are a s s e r t ed by the s l av e
−− when axi_wready , S_AXI_WVALID, axi_wready and S_AXI_WVALID are a s s e r t ed .
−− This marks the acceptance o f address and i n d i c a t e s the s t a tu s o f
−− wr i t e t r an sa c t i on .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_bval id <= ’ 0 ’ ;
axi_bresp <= " 00 " ; −−need to work more on the r e sponse s

e l s e
i f (axi_awready = ’1 ’ and S_AXI_AWVALID = ’1 ’ and axi_wready = ’1 ’ and

S_AXI_WVALID = ’1 ’ and axi_bval id = ’0 ’) then
axi_bval id <= ’ 1 ’ ;
axi_bresp <= " 00 " ;

e l s i f (S_AXI_BREADY = ’1 ’ and axi_bval id = ’1 ’) then −−check i f bready
i s a s s e r t ed whi l e bva l id i s high)

axi_bval id <= ’ 0 ’ ; −− (the re i s a
p o s s i b i l i t y that bready i s always a s s e r t ed high)

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement axi_arready gene ra t i on

152

C.7 – Test of Custom slave device

−− axi_arready i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when
−− S_AXI_ARVALID i s a s s e r t ed . axi_awready i s
−− de−a s s e r t ed when r e s e t (a c t i v e low) i s a s s e r t ed .
−− The read address i s a l s o l a t ched when S_AXI_ARVALID i s
−− a s s e r t ed . axi_araddr i s r e s e t to zero on r e s e t a s s e r t i o n .

p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

axi_arready <= ’ 0 ’ ;
axi_araddr <= (othe r s => ’1 ’) ;

e l s e
i f (axi_arready = ’0 ’ and S_AXI_ARVALID = ’1 ’) then

−− i n d i c a t e s that the s l av e has acceped the va l i d read address
axi_arready <= ’ 1 ’ ;
−− Read Address l a t ch i ng
axi_araddr <= S_AXI_ARADDR;

e l s e
axi_arready <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement ax i_arva l id gene ra t i on
−− ax i_rva l id i s a s s e r t ed f o r one S_AXI_ACLK c lock cy c l e when both
−− S_AXI_ARVALID and axi_arready are a s s e r t ed . The s l av e r e g i s t e r s
−− data are a v a i l a b l e on the axi_rdata bus at t h i s i n s t ance . The
−− a s s e r t i o n o f ax i_rva l id marks the v a l i d i t y o f read data on the
−− bus and axi_rresp i n d i c a t e s the s t a tu s o f read t r an sa c t i on . ax i_rva l id
−− i s d ea s s e r t ed on r e s e t (a c t i v e low) . ax i_rresp and axi_rdata are
−− c l e a r ed to zero on r e s e t (a c t i v e low) .
p roce s s (S_AXI_ACLK)
begin

i f r i s ing_edge (S_AXI_ACLK) then
i f S_AXI_ARESETN = ’0 ’ then

ax i_rva l id <= ’ 0 ’ ;
ax i_rresp <= " 00 " ;

e l s e
i f (axi_arready = ’1 ’ and S_AXI_ARVALID = ’1 ’ and ax i_rva l id = ’0 ’) then

−− Valid read data i s a v a i l a b l e at the read data bus
ax i_rva l id <= ’ 1 ’ ;
ax i_rresp <= " 00 " ; −− ’OKAY’ response

e l s i f (ax i_rva l id = ’1 ’ and S_AXI_RREADY = ’1 ’) then
−− Read data i s accepted by the master
ax i_rva l id <= ’ 0 ’ ;

end i f ;
end i f ;

end i f ;
end proce s s ;

−− Implement memory mapped r e g i s t e r s e l e c t and read l o g i c gene ra t i on
−− Slave r e g i s t e r read enable i s a s s e r t ed when va l i d address i s a v a i l a b l e
−− and the s l av e i s ready to accept the read address .
slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not ax i_rva l id) ;

p roc e s s (s lv_reg0 , s lv_reg1 , s lv_reg2 , ca lcu lator_out , axi_araddr ,
S_AXI_ARESETN, slv_reg_rden)

va r i ab l e loc_addr : s td_log ic_vector (OPT_MEM_ADDR_BITS downto 0) ;
begin

−− Address decoding f o r read ing r e g i s t e r s
loc_addr := axi_araddr (ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB) ;

153

Base tests

case loc_addr i s
when b" 00 " =>

reg_data_out <= slv_reg0 ;
when b" 01 " =>

reg_data_out <= slv_reg1 ;
when b" 10 " =>

reg_data_out <= slv_reg2 ;
when b" 11 " =>

reg_data_out <= ca l cu la to r_out ;
when othe r s =>

reg_data_out <= (othe r s => ’0 ’) ;
end case ;

end proce s s ;

−− Output r e g i s t e r or memory read data
proce s s (S_AXI_ACLK) i s
begin

i f (r i s ing_edge (S_AXI_ACLK)) then
i f (S_AXI_ARESETN = ’0 ’) then

axi_rdata <= (othe r s => ’0 ’) ;
e l s e

i f (slv_reg_rden = ’1 ’) then
−− When there i s a va l i d read address (S_AXI_ARVALID) with
−− acceptance o f read address by the s l av e (axi_arready) ,
−− output the read dada
−− Read address mux

axi_rdata <= reg_data_out ; −− r e g i s t e r read data
end i f ;

end i f ;
end i f ;

end proce s s ;

−− Add user l o g i c here

ca l cu la to r_0 : mult
port map (
c l k => S_AXI_ACLK,

a => slv_reg0 (15 downto 0) ,
b => slv_reg1 (15 downto 0) ,

s e l => slv_reg2 (1 downto 0) ,
calc_out => ca l cu la to r_out) ;

−− User l o g i c ends

end arch_imp ;

Listing C.22. multiplier.c C standalone program

#inc lude <s td i o . h>
#inc lude " p lat form . h "
#inc lude " x i l_p r i n t f . h "
#inc lude <xgpio . h>
#inc lude " x i l_ i o . h "
#inc lude " xparameters . h "
#inc lude " s l e e p . h "

i n t main ()
{

i n t a , b , s e l , r e s u l t =0;
i n t test_a=0, test_b=0, t e s t_ s e l =0;

154

C.7 – Test of Custom slave device

a=35;
b=234;
s e l =2;

XGpio l ed_bl inke r ;

XGpio_In i t i a l i z e (&led_bl inker ,XPAR_AXI_GPIO_0_DEVICE_ID) ; // i n i t i a l i z e output
xgpio va r i ab l e

XGpio_SetDataDirection(&led_bl inker , 1 , 0 x0) ; // s e t f i r s t channel bu f f e r t r i s t a t e
to output

in i t_p la t fo rm () ;

// turn o f f a l l l e d s
XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00000000) ;

// eva luate mu l t i p l i c a t i o n

// s e l e c t to do d i v i s i o n
Xil_Out32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR + 8 , s e l) ;

// wr i t e f i r s t operand
Xil_Out32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR + 0 , a) ;
// wr i t e second operand
Xil_Out32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR + 4 , b) ;

// read operand to be sure o f communication
test_a = Xil_In32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR) ;
p r i n t f (" a␣=␣%d\ r \n" , a) ;
p r i n t f (" test_a␣=␣%d\ r \n" , test_a) ;
p r i n t f (" a␣=␣0x%08x\ r \n" , a) ;
p r i n t f (" test_a␣=␣0x%08x\ r \n" , test_a) ;

p r i n t f (" \ r \n") ;
p r i n t f (" \ r \n") ;

test_b = Xil_In32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR+4) ;
p r i n t f ("b␣=␣%d\ r \n" ,b) ;
p r i n t f (" test_b␣=␣%d\ r \n" , test_b) ;
p r i n t f ("b␣=␣0x%08x\ r \n" ,b) ;
p r i n t f (" test_b␣=␣0x%08x\ r \n" , test_b) ;

p r i n t f (" \ r \n") ;
p r i n t f (" \ r \n") ;

t e s t_ s e l = Xil_In32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR+8) ;
p r i n t f (" s e l ␣=␣%d\ r \n" , s e l) ;
p r i n t f (" t e s t_ s e l ␣=␣%d\ r \n" , t e s t_ s e l) ;
p r i n t f (" s e l ␣=␣0x%08x\ r \n" , s e l) ;
p r i n t f (" t e s t_ s e l ␣=␣0x%08x\ r \n" , t e s t_ s e l) ;

// read r e s u l t o f mu l t i p l i c a t i o n
r e s u l t = Xil_In32 (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR+12) ;
p r i n t f (" r e s u l t ␣=␣%d\ r \n" , r e s u l t) ;

155

Base tests

// con t r o l r e s u l t on l e d s

i f (r e s u l t <10){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00000000) ;
}

i f (r e s u l t >=10 && re su l t <100){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00000001) ;
}

i f (r e s u l t >=100 && re su l t <1000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00000010) ;
}

i f (r e s u l t >=1000 && re su l t <10000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00000100) ;
}

i f (r e s u l t >=10000 && re su l t <100000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00001000) ;
}

i f (r e s u l t >=100000 && re su l t <1000000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00010000) ;
}

i f (r e s u l t >=1000000 && re su l t <10000000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b00100000) ;
}

i f (r e s u l t >=10000000 && re su l t <100000000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b01000000) ;
}

i f (r e s u l t >=100000000 && re su l t <1000000000){

XGpio_DiscreteWrite(&led_bl inker , 1 , 0 b10000000) ;
}

us l e ep (2000000) ;
c leanup_platform () ;
r e turn 0 ;

}

Listing C.23. codemult.c C OS program

/∗ ∗∗∗ ∗/
/∗ I N C L U D E F I L E S ∗/
/∗ ∗∗∗ ∗/

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <sys /mman. h>
#inc lude <f c n t l . h>

/∗ ∗∗∗ ∗/
/∗ D E F I N E S ∗/
/∗ ∗∗∗ ∗/

156

C.7 – Test of Custom slave device

#de f i n e GPIO_BASE_ADDR 0x41200000
#de f i n e XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR 0x80000000
#de f i n e XPAR_GPIO_0_BASEADDR 0x80001000

/∗ ∗∗∗ ∗/
/∗ M A I N ∗/
/∗ ∗∗∗ ∗/

i n t main (void)
{

i n t a=0,b=0, s e l =2, r e s u l t =0, cont=0;
i n t test_a=0, test_b=0, t e s t_ s e l =0;
i n t fd ;
void ∗ptr_gpio ,∗ ptr_mult ;
unsigned page_addr_gpio , page_addr_mult ;
unsigned page_offset_gpio , page_offset_mult ;
unsigned page_size = syscon f (_SC_PAGESIZE) ;

fd = open (" /dev/mem" ,O_RDWR) ;

page_addr_gpio = (XPAR_GPIO_0_BASEADDR & ~(page_size −1)) ;
page_of fset_gpio = XPAR_GPIO_0_BASEADDR − page_addr_gpio ;

page_addr_mult = (XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR & ~(page_size −1)) ;
page_offset_mult = XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR − page_addr_mult ;

ptr_gpio =
mmap(NULL, page_size ,PROT_READ|PROT_WRITE,MAP_SHARED, fd , (XPAR_GPIO_0_BASEADDR
& ~(page_size −1))) ;

ptr_mult = mmap(NULL, page_size ,PROT_READ|PROT_WRITE,MAP_SHARED, fd ,
(XPAR_MYMULTIPLICATOR_0_S00_AXI_BASEADDR & ~(page_size −1))) ;

// c l e a r a l l LED
// wr i t e to memory address o f gpio to turn a l l l ed o f f
∗ ((unsigned ∗) (ptr_gpio))= 0 ;

whi l e (cont <5){

p r i n t f (" S e l e c t ␣ f i r s t ␣operand : ␣ ") ;
s can f ("%d" , &a) ;
p r i n t f (" \ r \ nSe l e c t ␣ second␣operand : ␣ ") ;
s can f ("%d" , &b) ;

// s e l e c t to do d i v i s i o n
∗ ((unsigned ∗) (ptr_mult+8))= s e l ;

// wr i t e f i r s t operand
∗ ((unsigned ∗) (ptr_mult))= a ;

// wr i t e second operand
∗ ((unsigned ∗) (ptr_mult+4))= b ;

// read operand to be sure o f communication
t e s t_ s e l = ∗ ((unsigned ∗) (ptr_mult+8)) ;

157

Base tests

test_a = ∗ ((unsigned ∗) (ptr_mult)) ;
test_b = ∗ ((unsigned ∗) (ptr_mult+4)) ;

p r i n t f (" a␣=␣%d\ r \n" , a) ;
p r i n t f (" test_a␣=␣%d\ r \n" , test_a) ;
p r i n t f (" a␣=␣0x%08x\ r \n" , a) ;
p r i n t f (" test_a␣=␣0x%08x\ r \n" , test_a) ;

p r i n t f (" \ r \n") ;
p r i n t f (" \ r \n") ;

p r i n t f ("b␣=␣%d\ r \n" ,b) ;
p r i n t f (" test_b␣=␣%d\ r \n" , test_b) ;
p r i n t f ("b␣=␣0x%08x\ r \n" ,b) ;
p r i n t f (" test_b␣=␣0x%08x\ r \n" , test_b) ;

p r i n t f (" \ r \n") ;
p r i n t f (" \ r \n") ;

p r i n t f (" s e l ␣=␣%d\ r \n" , s e l) ;
p r i n t f (" t e s t_ s e l ␣=␣%d\ r \n" , t e s t_ s e l) ;
p r i n t f (" s e l ␣=␣0x%08x\ r \n" , s e l) ;
p r i n t f (" t e s t_ s e l ␣=␣0x%08x\ r \n" , t e s t_ s e l) ;

p r i n t f (" \ r \n") ;
p r i n t f (" \ r \n") ;

// read r e s u l t o f mu l t i p l i c a t i o n
r e s u l t = ∗ ((unsigned ∗) (ptr_mult+12)) ;

p r i n t f (" r e s u l t ␣=␣%d\ r \n" , r e s u l t) ;

p r i n t f (" \ r \n") ;
p r i n t f (" \ r \n") ;

cont++;

}

//remove memory a l l o c a t i o n
munmap(ptr_gpio , page_size) ;
munmap(ptr_mult , page_size) ;
// c l o s e f i l e
c l o s e (fd) ;

r e turn 0 ;

}

158

C.7 – Test of Custom slave device

Figure C.13. Test on OS of the multiplier with positive numbers.

Figure C.14. Test on OS of the multiplier with negative numbers.

159

160

Appendix D

Configuration file generated by
ProFPGA

Listing D.1. main.c C code file with which the dataset is generated
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <time . h>
#inc lude <uni s td . h>
#inc lude "KeccakPRGWidth1600 . h "

#de f i n e KECCAK_CAPACITY 576
#de f i n e BIT_BUFFER_LENGTH 32
#de f i n e KEY_LENGTH 32

unsigned char public_key [KEY_LENGTH] = " pub l i ckeypub l i ckeypub l i ckeypub l i " ;
unsigned char iv_vector [KEY_LENGTH] = " i n i t i a l i z a t i o n v e c t o r i n i t i a l i z a t i " ;
unsigned char deact ivate_encrypt ion = ’ 0 ’ ;
unsigned char al l_key [2∗KEY_LENGTH] =

" p u b l i c k e y p u b l i c k e y p u b l i c k e y p u b l i i n i t i a l i z a t i o n v e c t o r i n i t i a l i z a t i " ;

//−−−
/∗ run t h i s program us ing the conso l e pauser or add your own getch ,

system (" pause ") or input loop ∗/

i n t conv_asc i i (char va l o r e) {

i n t ve rova l =0;

i f (i s d i g i t (va l o r e)) {

ve rova l = (i n t) va l o r e − 48 ;
} e l s e {

i f (i supper (va l o r e)) {

ve rova l = (i n t) va l o r e − 55 ;
} e l s e {

161

Configuration file generated by ProFPGA

verova l = (i n t) va l o r e − 87 ;
}

}

re turn verova l ;
}

typede f s t r u c t byteBuf f e r {
i n t counter ;
i n t bu f f e r_length ;
unsigned char ∗bytes ;
KeccakWidth1600_SpongePRG_Instance in s t ance ;

} byteBuf f e r ;

i n t main (i n t argc , char ∗argv []) {

KeccakWidth1600_SpongePRG_Instance in s t ance ;

char f i l eBy t e , encrByte ;
i n t temp=0,punt=0, i , j , varinput , po s i t i on , t o t a l =0;
// generate f i l e names
char inputName [1 2 8] ;
s t r cpy (inputName , " new_test_vector /keccak_in ") ;
char inputExt [1 2 8] ;
s t r cpy (inputExt , " . txt ") ;
char inputFi lename [1 2 8] ;
char encryptedFi lename [1 2 8] ;
char or igFi l ename [1 2 8] ;
char keyFilename [1 2 8] ;
char keyvhdl [1 2 8] ;
char vhdlout [1 2 8] ;
char vhdl insnake [1 2 8] ;
char t e s tkey [1 2 8] ;
s t r cpy (inputFilename , inputName) ;
s t r c a t (inputFilename , inputExt) ;
s t r cpy (encryptedFilename , inputName) ;
s t r c a t (encryptedFilename , " . encr ") ;
s t r c a t (encryptedFilename , inputExt) ;
s t r cpy (or igFi lename , inputName) ;
s t r c a t (or igFi lename , " .ORIG") ;
s t r c a t (or igFi lename , inputExt) ;
s t r cpy (keyFilename , inputName) ;
s t r c a t (keyFilename , " .KEY") ;
s t r c a t (keyFilename , inputExt) ;
s t r cpy (keyvhdl , inputName) ;
s t r c a t (keyvhdl , " .VHDL") ;
s t r c a t (keyvhdl , inputExt) ;
s t r cpy (vhdlout , inputName) ;
s t r c a t (vhdlout , " .VHDLOUT") ;
s t r c a t (vhdlout , inputExt) ;
s t r cpy (vhdl insnake , inputName) ;
s t r c a t (vhdl insnake , " . VHDLinverse ") ;
s t r c a t (vhdl insnake , inputExt) ;
s t r cpy (tes tkey , inputName) ;
s t r c a t (tes tkey , " .TESTKEY") ;

162

Configuration file generated by ProFPGA

s t r c a t (tes tkey , inputExt) ;

//open f i l e s
FILE ∗ fp = fopen (inputFilename , " rb ") ;
FILE ∗ enc ryp t ed_f i l e = fopen (encryptedFilename , "wab+") ;
FILE ∗ o r i g_ f i l e = fopen (or igFi lename , "wab+") ;
FILE ∗ key_f i l e = fopen (keyFilename , "wab+") ;
FILE ∗key_vhdl = fopen (keyvhdl , "wab+") ;
FILE ∗key_vhdlout = fopen (vhdlout , "wab+") ;
FILE ∗key = fopen (vhdl insnake , "wab+") ;

s t r u c t byteBuf f e r bu f f e r ;

// per vedere cosa entra

f o r (i=0 ; i <32 ; i++){

f p r i n t f (key_f i l e , "%d␣␣%c␣␣%x␣−−␣ " , public_key [i] , public_key [i] , public_key [i]) ;

}

f p r i n t f (key_f i l e , " \n ") ;
f p r i n t f (key_f i l e , "−−\n") ;

f o r (j=0 ; j <32 ; j++){

f p r i n t f (key_f i l e , "%d␣␣%c␣␣%x␣−−␣ " , iv_vector [j] , iv_vector [j] , iv_vector [j]) ;

}

// per i l vhdl

// shared_key

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

// iv_vector

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , iv_vector [var input]) ;

163

Configuration file generated by ProFPGA

}
f p r i n t f (key_vhdl , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , iv_vector [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , iv_vector [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdl , "%x␣−−␣ " , iv_vector [var input]) ;

}
f p r i n t f (key_vhdl , " \n ") ;

// per i l vhdl

// shared_key_snake

f o r (var input=7; varinput >=0; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key , " \n ") ;

f o r (var input=15; varinput >=8; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key , " \n ") ;

f o r (var input=23; varinput >=16; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key , " \n ") ;

f o r (var input=31; varinput >=24; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , public_key [var input]) ;

}
f p r i n t f (key , " \n ") ;

// iv_vector

f o r (var input=7; varinput >=0; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , iv_vector [var input]) ;

}
f p r i n t f (key , " \n ") ;

f o r (var input=15; varinput >=8; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , iv_vector [var input]) ;

}
f p r i n t f (key , " \n ") ;

f o r (var input=23; varinput >=16; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , iv_vector [var input]) ;

}
f p r i n t f (key , " \n ") ;

f o r (var input=31; varinput >=24; varinput−−){
f p r i n t f (key , "%x␣−−␣ " , iv_vector [var input]) ;

}

164

Configuration file generated by ProFPGA

f p r i n t f (key , " \n ") ;

putc (deact ivate_encrypt ion , enc rypt ed_f i l e) ;
putc (deact ivate_encrypt ion , o r i g_ f i l e) ;

bu f f e r . counter = 0 ;
bu f f e r . bu f f e r_length = BIT_BUFFER_LENGTH;
bu f f e r . bytes = mal loc (BIT_BUFFER_LENGTH∗ s i z e o f (unsigned char)) ;

// d i c h i a r a z i o n e keccak e c r e a z i one bu f f e r
// i n i z i a l i z z a z i o n e bu f f e r
KeccakWidth1600_SpongePRG_Initialize(&bu f f e r . in s tance , KECCAK_CAPACITY) ;
// f e ed con ch iave nota
KeccakWidth1600_SpongePRG_Feed(&bu f f e r . in s tance , public_key , KEY_LENGTH) ;
// wr i t e the s e s s i o n key in the encrypted f i l e
fw r i t e (iv_vector , 1 , KEY_LENGTH, enc ryp t ed_f i l e) ;
putc (’ \n ’ , enc rypt ed_f i l e) ;
fw r i t e (iv_vector , 1 , KEY_LENGTH, o r i g_ f i l e) ;
putc (’ \n ’ , o r i g_ f i l e) ;
// f e ed con ch iave a r b i t r a r i a
KeccakWidth1600_SpongePRG_Feed(&bu f f e r . in s tance , iv_vector , KEY_LENGTH) ;
//KeccakWidth1600_SpongePRG_Feed(&bu f f e r . ins tance , al l_key , 2∗KEY_LENGTH) ;
// f e t ch d i r i c h i e s t a numeri
KeccakWidth1600_SpongePRG_Fetch(&bu f f e r . in s tance , bu f f e r . bytes ,

bu f f e r . bu f f e r_length) ;

// vedere cosa c ’ e ’ ne l bu f f e r d i output

f p r i n t f (key_vhdlout , " prima␣chiamata␣ d i ␣ fe tch , ␣ r e s t i t u i s c e ␣32␣ char \n") ;

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;
}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

165

Configuration file generated by ProFPGA

// seconda r i c h i e s t a numeri
// f e t ch d i r i c h i e s t a numeri
KeccakWidth1600_SpongePRG_Fetch(&bu f f e r . in s tance , bu f f e r . bytes ,

bu f f e r . bu f f e r_length) ;

f p r i n t f (key_vhdlout , " seconda␣chiamata␣ d i ␣ fe tch , ␣ r e s t i t u i s c e ␣ a l t r i ␣32␣
(64) char \n") ;

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;
}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

// t e r z a r i c h i e s t a numeri
// f e t ch d i r i c h i e s t a numeri
KeccakWidth1600_SpongePRG_Fetch(&bu f f e r . in s tance , bu f f e r . bytes ,

bu f f e r . bu f f e r_length) ;

f p r i n t f (key_vhdlout , " seconda␣chiamata␣ d i ␣ fe tch , ␣ r e s t i t u i s c e ␣ a l t r i ␣32␣
(96) char \n") ;

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;
}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

// quarta r i c h i e s t a numeri
// f e t ch d i r i c h i e s t a numeri
KeccakWidth1600_SpongePRG_Fetch(&bu f f e r . in s tance , bu f f e r . bytes ,

bu f f e r . bu f f e r_length) ;

166

Configuration file generated by ProFPGA

f p r i n t f (key_vhdlout , " seconda␣chiamata␣ d i ␣ fe tch , ␣ r e s t i t u i s c e ␣ a l t r i ␣32␣
(128) char \n") ;

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;
}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

// c inque r i c h i e s t a numeri
// f e t ch d i r i c h i e s t a numeri
KeccakWidth1600_SpongePRG_Fetch(&bu f f e r . in s tance , bu f f e r . bytes ,

bu f f e r . bu f f e r_length) ;

f p r i n t f (key_vhdlout , " seconda␣chiamata␣ d i ␣ fe tch , ␣ r e s t i t u i s c e ␣ a l t r i ␣32␣
(160) char \n") ;

f p r i n t f (key_vhdlout , " l ’ u lt imo ␣ d i ␣prima␣e␣ t u t t i ␣ que s t i ␣dopo␣ sono␣ de l ␣nuovo␣
ve t t o r e \n") ;

f o r (var input=0; varinput <8; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;
}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=8; varinput <16; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=16; varinput <24; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

f o r (var input=24; varinput <32; var input++){
f p r i n t f (key_vhdlout , "%x␣−−␣ " , bu f f e r . bytes [var input]) ;

}
f p r i n t f (key_vhdlout , " \n ") ;

// c an c e l l o bu f f e r
KeccakWidth1600_SpongePRG_Forget(&(bu f f e r . i n s t ance)) ;
f r e e (bu f f e r . bytes) ;

f c l o s e (fp) ;
f c l o s e (o r i g_ f i l e) ;
f c l o s e (enc ryp t ed_f i l e) ;

167

Configuration file generated by ProFPGA

f c l o s e (k ey_f i l e) ;
f c l o s e (key_vhdl) ;
f c l o s e (key_vhdlout) ;
f c l o s e (key) ;

// f c l o s e (o r i g_ f i l e) ;
r e turn 0 ;

}

168

Bibliography

[1] ANSA, "L’era spaziale ha 60 anni, il 4 ottobre 1957 volava lo Sputnik",
ANSA - Sputnik article, October 2019.

[2] FOCUS, Vito Tartamella, Tutto quello che ci dicono i satelliti, n.324
October 2019.

[3] EO-ALERT project, http://www.eo-alert-h2020.eu/
[4] M. Kerr, S. Cornara, A. Latorre, S. Tonetti, A. Fiengo, T.

Guardabrazo, J. I. Bravo, D. Velotto, M. Eineder, S. Jacobsen, H.
Breit, O. Koudelka, F. Teschl, E. Magli, T. Bianchi, R. Freddi,
M. Benetti, R. Fabrizi, S. Fraile, C. Marcos, EO-ALERT: NEXT
GENERATION SATELLITE PROCESSING CHAIN FOR RAPID
CIVIL ALERTS, 2018.

[5] OHB-I Team. EO-ALERT-D3.8-Avionics HW-SW ICD, 2019.
[6] A. Kiely et al., “The new CCSDS standard for low-complexity loss-

less and near-lossless multispectral and hyperspectral image com-
pression”, Proc. of Onboard Payload Data Compression workshop
(OBPDC), 2018.

[7] Ian Blanes,Enrico Magli,Joan Serra-Sagristà,"A Tutorial on Image
Compression for Optical Space Imaging Systems", September 2014.

[8] CCSDS, "Low-complexity lossless and near-lossless multispectral
and hyperspectral image compression",CCSDS 123.0-B-2 blue book,
February 2019.

[9] Tiziano Bianchi, Tomas Bjorklund, Enrico Magli, Maurizio Martina,
Nicola Prette, Diego Valsesia, "Preliminary on-board compression
and data handling design and analysis report", January 2019.

[10] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "The sponge
and duplex constructions". September 2019. https://keccak.team/
sponge_duplex.html.

[11] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Cryptographic
sponge functions",2011.

[12] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Keccak im-
plementation overview",version 3.1,2011.

[13] Wikipedia, "SHA-3", visited : September 2019 https://en.

169

http://www.ansa.it/canale_scienza_tecnica/notizie/spazio_astronomia/2017/10/01/lera-spaziale-ha-60-anni-il-4-ottobre-1957-volava-lo-sputnik-_2bbbcc9f-60d4-453b-a8c6-5d70d318328b.html
http://www.eo-alert-h2020.eu/
https://keccak.team/sponge_duplex.html
https://keccak.team/sponge_duplex.html
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/SHA-3

Bibliography

wikipedia.org/wiki/SHA-3
[14] Wikipedia, "National Institute of Standards and Technology", visited

: September 2019 https://it.wikipedia.org/wiki/National_
Institute_of_Standards_and_Technology

[15] NIST, "SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions",NIST-FIPS.202, August 2015, http://dx.doi.
org/10.6028/NIST.FIPS.202

[16] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Note
on Keccak parameters and usage", 2015, keccak.noekeon.org/
NoteOnKeccakParametersAndUsage.pdf

[17] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Duplexing the
sponge: single-pass authenticated encryption and other applications",
2015.

[18] G. V. Assche, "eXtended Keccak Code Package (XKCP)", https:
//github.com/XKCP/XKCP, visited September 2019.

[19] G. V. Assche, "XKCP documentation", https://github.com/XKCP/
XKCP/tree/master/doc, visited September 2019.

[20] OHB-I Team, EO-ALERT-D3.3-Data chain Functional and Physical
Architecture 2, 2019.

[21] proFPGA, UD001-3.19-Hardware-UserManual, 2018.
[22] Xilinx, zynq-ultrascale-plus-product-selection-guide, 2018.
[23] proFPGA, UD003-1.39-ExtensionBoard-DesignGuide, 2018.
[24] "Problem with mask polling", zedboard-forum, Visited : May 2019.
[25] ProFPGA, "AN021-1.2-ZynqPetaLinux", 2015.
[26] Xilinx,"ug1157-PetaLinux Command Line Reference",2014.
[27] Xilinx,"ug1144-PetaLinux Tools Documentation Reference

Guide",2018.
[28] Xilinx,"ug981-PetaLinux Application Development Guide",2014.
[29] Xilinx forum, "XSDK Linux Application and petalinux tools",

petalinux-app, Visited: June 2019.
[30] Xilinx, "ug1137-Zynq UltraScale+ MPSoC Software Developer

Guide", June 2019.
[31] Xilinx, "Zynq-7000 Example Design - Interrupt handling of PL

generated interrupt", https://www.xilinx.com/support/answers/
50572.html, Visited: May 2019.

[32] ETHERNETFMC, "RGMII Interface Tim-
ing Considerations", https://ethernetfmc.com/
rgmii-interface-timing-considerations/ , Visited: June
2019.

[33] Zedboard forum, "Linux /dev/mem accessing
switch values", http://zedboard.org/content/
linux-devmem-accessing-switch-values, Visited: July 2019.

170

https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/SHA-3
https://it.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://it.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP/tree/master/doc
https://github.com/XKCP/XKCP/tree/master/doc
http://zedboard.org/content/aes-zu3eges-1-sk-g-sktutorial20164-mask-poll-failed-address-0xfd4023e4-mask-0x00000010
https://forums.xilinx.com/t5/Embedded-Linux/XSDK-Linux-Application-and-petalinux-tools/td-p/704397
https://www.xilinx.com/support/answers/50572.html
https://www.xilinx.com/support/answers/50572.html
https://ethernetfmc.com/rgmii-interface-timing-considerations/
https://ethernetfmc.com/rgmii-interface-timing-considerations/
http://zedboard.org/content/linux-devmem-accessing-switch-values
http://zedboard.org/content/linux-devmem-accessing-switch-values

Bibliography

[34] Sven Andersson, "Zynq design from scratch. Part 41", http://
svenand.blogdrives.com/archive/202.html#.Xd64jNXSJPZ, Vis-
ited: July 2019.

[35] G. Bertoni, J. Daemen, M. Peeters and G. V. Assche, "Keccak
Team hardware", https://keccak.team/hardware.html, Visited:
September 2019.

[36] Mohammad A. AlAhmad, Imad Fakhri Alshaikhli, "Broad View of
Cryptographic Hash Functions", 2013.

[37] Khaled E. Ahmed, Mohammed M. Farag, "Hardware/Software
Co-Design of A Dynamically Configurable SHA-3 System-on-Chip
(SoC)", 2015.

[38] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Ass-
che, "Sponge-based pseudo-random number generators", 2015.

[39] A. Gholipour and S. Mirzakuchaki, "A Pseudorandom Number Gen-
erator with KECCAK Hash Function", 2011.

171

http://svenand.blogdrives.com/archive/202.html#.Xd64jNXSJPZ
http://svenand.blogdrives.com/archive/202.html#.Xd64jNXSJPZ
https://keccak.team/hardware.html

	List of Tables
	List of Figures
	List of acronyms and abbreviations
	Introduction, Reasons and Goal
	Introduction on EO-ALERT project
	Purpose of this thesis
	Thesis outlines

	Overview on EO-ALERT architecture, compression/encryption code and FPGA board
	Avionic architecture
	Compression
	Compression structure
	Compression code

	Encryption and Keccak algorithm
	The sponge construction
	Keccak family sponge functions
	Padding rule
	Duplex sponge and PRGsponge

	Hardware equipments
	Zynq Ultrascale+ MPSoC
	proFPGA motherboard
	Extension boards

	Tools programs
	ProFPGA builder
	Vivado
	Problems

	Vivado SDK
	Problems

	PetaLinux

	Hardware structure
	Base tests : FPGA (PL), processor (PS) and together (PS + PL)
	Test of the interrupt functions
	GBit Ethernet Board (EB-PDS-GBITETHERNET-R1)
	DDR4 5 Gbytes ram Board (EB-PDS-DDR4-R6)
	Custom AXI slave VHDL implementation controlled by OS

	Code implementation
	Keccak C code analysis
	VHDL Keccak implementation
	Compression code implementation

	Conclusions and future work
	Appendix Configuration file generated by ProFPGA
	Appendix Script for automatic generation
	Tcl file that instantiate Zynq IP block in Vivado block diagram
	Bash for petalinux to create OS system for the Zynq board

	Appendix Base tests
	Only FPGA test files
	Processor and FPGA first design
	Processor and FPGA second design
	Test of processor interrupts
	Test of Gbit Ethernet
	Test of DDR4
	Test of Custom slave device

	Appendix Configuration file generated by ProFPGA (1)
	Bibliography

