
POLITECNICO DI TORINO
Master degree course in Embedded systems

Master Degree Thesis

Functional test of peripheral
devices

Testing the Pulpissimo SPI module

Supervisors
prof. Matteo Sonza Reorda
dott. Riccardo Cantoro

Candidates

Riccardo Coggiola
matricola: 255306

Academic year 2018-2019

This work is subject to the Creative Commons Licence

Contents

List of Figures 5

I First part 3

1 Introduction: SPI protocol and its usages 5
1.1 The SPI protocol . 5
1.2 Communication example . 7
1.3 SPI modes and configurations 7
1.4 Use cases . 8

1.4.1 LCDs . 8
1.4.2 IO Expanders . 8
1.4.3 Sequential read / write operations 9

2 Testing, fault model and software based self test 11
2.1 Testing: an increasing importance issue in electronics 11
2.2 The stuck-at fault model . 12
2.3 Fault simulation and software based self test 14

3 The Pulpissimo project: hardware architecture and software
support 17
3.1 Pulpissimo SoC . 17

3

3.2 µDMA subsystem . 19
3.3 RX channels . 20
3.4 TX channels . 21
3.5 Runtime software support . 22

3.5.1 Scheduler . 22
3.5.2 Driver interactions with scheduler 23
3.5.3 Use case . 23

II Second part 25

4 Testing of the Pulpissimo SPI module 27
4.1 Basic approach . 27

4.1.1 Analysis of built-in functions 29
4.2 SPI controller architecture . 31
4.3 Evolutionary approach . 35
4.4 Structure of the test program 36

4.4.1 Simple operations . 36
4.4.2 Repeated operations 37

4.5 Final test program . 38

5 Conclusions: simulation results and possible further devel-
opments 41
5.1 Simulation and coverage results 41
5.2 Final considerations . 42
5.3 Possible further developments 43

Bibliography 45

4

List of Figures

1.1 . 6
1.2 . 6
2.1 . 12
2.2 . 13
3.1 . 18
3.2 . 19
3.3 . 20
3.4 . 22
3.5 . 24
4.1 . 32
4.2 . 33

5

Abstract

The present work covers a software based test of the SPI peripheral included
in the Pulpissimo SOC and, in particular, of its internal controller. Func-
tional test of peripheral controllers can be a very difficult task, since they are
very deeply embedded in the peripheral and therefore very difficult to access
and their responses are hard to observe.
In the case of the Pulpissimo the task was not straightforward, as the built-in
functions present in the C library didn’t test the SPI controller, and therefore
an ad hoc driver had to be written, in order to send arbitrary commands and
get the finite state machine of the SPI controller to reach all possible states,
thus achieving an adequate coverage. At first an evolutionary approach was
tried: the initial test program was divided into several small tasks that were
recombined using MicroGP in order to achieve higher coverage values. Sadly
this approach didn’t bring substantial results, as the controller coverage did
not benefit from an increase in program size and number of tests.
Moving back to a manual approach, writing and optimizing a test program
that adequately stimulates the controller eventually led to a satisfying result,
since the global stuck-at fault coverage achieved for the entire SPI periph-
eral was 84%, with a 74% coverage on the controller module, and the test
duration was around 500ms, whereas a regular test program written with
the built-in functions would run for several seconds, reaching coverage re-
sults around 70% for the entire SPI peripheral, with no more than 23% fault
coverage on the controller module.

2

Part I

First part

3

Chapter 1

Introduction: SPI
protocol and its usages

1.1 The SPI protocol

SPI (short for Serial Peripheral Interface) is a synchronous serial communi-
cation protocol, very widely used at board level.
In its main usage it supports a single master (usually the microprocessor) and
several slaves. It has separate wires for clock, slave selection, outgoing data
(also called MOSI, Master Out Slave in) and incoming data (also known as
MISO). The signalling mechanism for this protocol is an easy to implement
Non Return to Zero (NRZ) and all actors are assumed to have an internal
shift register controlled by a master generated clock, as well as two registers
for transmitted (TX) and received (RX) data.
The data transmission from the master to the slave is carried by the MOSI
pin, which has to be connected to the input registers of the slave. To do this,
the internal shift register of the master is used to change the state of the pin
together with the one of the slave registers.
When the slave has to send the response to the master, the opposite of the

5

1 – Introduction: SPI protocol and its usages

MOSI transmission happens on the MISO pin: this time it is the slave turn
to change the pin state and trigger the master input shift register.
On top of that, some Chip Input Select pins are necessary to choose which
slave the message is directed to, and which one to get the answer from.
The following pictures show a block diagram of the connection of an SPI
master with two slaves, along with the correspondent communication wave-
forms.

Figure 1.1. SPI block diagram - 1 master and two slaves [1]

Figure 1.2. SPI communication waveform - 1 master and two slaves [1]

6

1.2 – Communication example

1.2 Communication example

Let us suppose that we have to send a n-bit data to the k-slave, where k is
constrained in a range from 1 to i. First of all, we need to freeze the state of
the other slaves so that we do not send the data to each of them: to do so, it
is just required to pull down all the SPISS pins, except for the k-pin, which
has to be in a logic high state.
Now that we have selected which slave the communication is directed to,
the master has to fill the shift register with the data that is going to be
sent out of the MOSI pin. For each bit that gets sent, one bit returns to
the master through the MISO pin, like a continuous stream of bits, where
the ones entering on the MOSI line push the others out the MISO one. In
case the answer from the slave is not needed, the solution is for the slave to
send back a dummy word which does not correspond to any action from the
master, creating a one-direction communication.
One common use case where the MISO pin is awful is LCDs driving, where
the slave has nothing to send back to the master.
An advantage over the I2C protocol is that once the SPISS is set, it is possible
to send multiple sequential blocks of data to the slave, like how it is done
in memory write cycles, while using I2C it is required to always send the
register address first.

1.3 SPI modes and configurations

Since the SPI protocol depends on polarity and phase, it is possible to make
it work in four different modes by just setting the two pins to high or low.
The polarity decides if the SCLK pin is needed to go high or low to start the
communication, whilst the phase samples the rising or falling edge of this
signal.

7

1 – Introduction: SPI protocol and its usages

The result determines if the communication has to be started or ended.
Regarding the possible configurations, there are three main topologies. The
simplest is the single-ended one, which is composed by just the master and
one slave. The parallel configuration is the most used one, which benefits
from the presence of multiple SPISS pins, because SCLK, MOSI and MISO
pins are shared among all the slaves. The less common one instead is the
daisy-chain configuration, that is used when the less amount of connections
possible is needed: in this case the MOSI signal travels through as many
slaves as it is needed to get to the target one, then the bits to be received
travel to the last MISO pin that finally gets back into the master. Trans-
mission delay is one side effect which requires to have longer clock period to
compensate for the extra travel time. [1]

1.4 Use cases

1.4.1 LCDs

LCDs driving is one of those applications where the I2C protocol can be too
slow if a high refresh rate is required, while the SPI protocol is a full duplex
protocol type, granting at least double the transmission speed of the I2C

equivalent. Some real advantages in speed are experienced when instead of
an LCD unit, a touch screen is connected: in this case being able to send
information to the display, while retrieving data about the touch unit beneath
can reduce delays and give a better user experience.

1.4.2 IO Expanders

As for the case of LCDs, multiple series connection of IO expanders can lead
to some latency problems if it is also required to wait for a response using just
one wire. Having two separated data lines allows for better expandability of

8

1.4 – Use cases

the system if we want to use just one master, without too many compromises.

1.4.3 Sequential read / write operations

Being able to read long data blocks quickly can be accomplished by choosing
SPI over other protocols because the register selection for multiple sequential
read or write cycle is required only for the first data block, then it can be
omitted, or used only when there are other blocks in between that we do not
want to write to or read from.

9

10

Chapter 2

Testing, fault model and
software based self test

2.1 Testing: an increasing importance issue
in electronics

Testing is a process aiming at identifying faulty products, without causing
damage to the working ones.
Despite the production cost per transistor has always been decreasing since
the earliest days, the testing cost per transistor has actually been increasing,
and, to this date, the testing expenses are still increasing, driven by the
increasing sophistication of modern electronic devices, made out of smaller
and smaller components.
The progress of testing and production costs per transistor over the years are
shown in the following graph.

11

2 – Testing, fault model and software based self test

Figure 2.1. Test and production cost per transistor over time [3]

In the last years, mainly due to the increase in IoT devices and in the
complexity of automotive electronics, testing peripheral has become a cru-
cial point, in some cases even more important than the processor core itself.

2.2 The stuck-at fault model

Since the cost and difficulty of testing keeps increasing, it is almost impossible
to simulate actual physical faults, and therefore logic faults are used, in order
to easily simulate physical faults by means of a fault model.
As of now, the most commonly used fault model is still the stuck-at fault,
basically consisting in an electric line being stuck to a logic value (0 or 1)
and unable to change it, regardless of its drivers. In order to be useful, the
stuck-at fault needs to be excited by creating a difference between the good
circuit and the faulty one and then observed, which means propagating the
consequences of the falut all the way to the primary outputs of the circuit,
in order to cause a misbehavior, avoiding the fault to be masked.
This test model presents several advantages:

12

2.2 – The stuck-at fault model

1. It is able to model several physical defects.

2. It is widely used and well documented in literature.

3. It is reasonably simple, thus having short simulation times (with respect
to other fault models).

4. It is well supported by CAD tools.

5. It is often possible to collapse the fault list further reducing the test
times, assuming that no timing information is considered.

The main problem with the stuck-at fault model is that it does not model
all possible physical defects; for example, the interruption of the connection
highlighted in the following figure cannot be modeled by means of a stuck-at
fault. [4]

Figure 2.2. A line interruption cannot be modeled with a stuck-at fault [4]

13

2 – Testing, fault model and software based self test

2.3 Fault simulation and software based self
test

The fault simulation is a process in which a software tool (called fault simu-
lator) estimates the percentage of faults in a circuit that can be excited and
observed by applying a certain input pattern to the primary input of the
circuit.
Aside from a fault model, this process clearly needs an HDL description of
the device under test (typically a gate level netlist, since this kind of code
describes in detail the hardware structure of the device, whereas an RTL level
description would not be as exhaustive) and a set of patterns to be applied
for the simulation.
The patterns can be obtained in two ways:

1. The automatic test pattern generator (ATPG in short) is a software tool
that, given the netlist of the DUT generates sets of pattern aiming to
maximize its fault coverage. It takes a very long time for sequential
circuits, since the insertion of memory elements implies that a fault may
require several clock cycles before reaching the primary outputs. The
pattern generated by an ATPG typically offer a very high coverage, but
sometimes many faults identified by the ATPG are impossible to excite
and/or observe during regular operation, and therefore functionally not
testable.

2. in functional tests like the one covered in this work, it is possible to gen-
erate patterns in a pseudo-manual way, by making a processor execute
a program and recording the inputs that are fed to the DUT along with
the expected outputs. In this case the coverage is usually lower with
respect to a set of patterns generated by an ATPG, but the tested faults
tend to be the most likely to occur during the actual operation of the

14

2.3 – Fault simulation and software based self test

device, and therefore they tend to be functionally testable.

This second approach is also called Software based self test, and even
if it does not offer a very high coverage it is widespread since it doesn’t
need any hardware overhead and these kinds of self test can be performed
autonomously by the device at startup or during idle times.

15

16

Chapter 3

The Pulpissimo project:
hardware architecture and
software support

3.1 Pulpissimo SoC

Pulpissimo is the most recent RISC-V distribution for PULP platform chips,
developed by ETH Zurich and the University of Bologna.
Despite being, like its predecessor Pulpino, a single core processor it is still
a rather innovative core, mainly for its set of peripherals, as it includes an
SPI master, I2C, CPI (camera interface), I2S, UART and JTAG. All of these
peripherals are connected to a DMA subsystem which, once programmed,
handles the transfer operations autonomously, thus not stressing the RISC-
V core itself.

The overall architecture of the SOC is reported in the following picture:

17

3 – The Pulpissimo project: hardware architecture and software support

Figure 3.1. Architecture of the Pulpissimo SOC [2]

For the sake of power optimization, the system is divided into 3 different
power domains: the always-on domain includes a power manager, a real-
time clock and the wake-up logic, whereas the other two are switchable, the
first contains a tiny CPU (called fabric controller), the peripheral subsystem,
clock generators and main memory while the latter contains the processing
subsystem. Both subsystems can be switched off and the clock generators
can achieve very fast wakeup times.[2]

18

3.2 – µDMA subsystem

3.2 µDMA subsystem

A peripheral can have one or more data channels depending on its bandwidth
requirements and bidirectional capabilities. Channels are mono-directional,
hence a minimum of 2 channels is needed for a peripheral supporting both
input and output. The architecture of a generic peripheral is shown in the
picture below.

Figure 3.2. Architecture of generic peripheral [2]

The µDMA has 2 ports connecting the SOC interconnect directly to the
interleaved memory, and it is therefore limited to access only the system
memory, not allowing direct transfers to the processing subsystem nor to
other peripherals connected on the APB bus. Ports towards memory are
32 bit wide, the supported bit widths are 8, 16, 32 which can be selected at
programming time (for example UART and I2C use fixed 8 bit wide channels)
or at runtime (SPI and I2S are configurable).
Starting a transaction requires only 3 accesses plus peripheral configuration,
as the software needs to program the source or target pointer, the transfer
length and send a start signal.[2]

19

3 – The Pulpissimo project: hardware architecture and software support

3.3 RX channels

All RX channels share the same connections to the memory, therefore the
µDMA subsystem needs to perform an arbitration between them: whenever
a data is available to be transferred from the peripheral to the memory,
peripherals rise the valid signal to notify the µDMA, which performs an
arbitration and acknowledges the data transfer to the winning peripheral.
The µDMA stores the ID of said channel, along with the data, and the data
size of the channel; at the next cycle, the channel ID is used to select the
channel resource (i.e. a set of information about the channel comprised of
memory pointer, bytes remaining, status of pending transfers and channel
enable) and the memory address for the transfer.
The µDMA logic is fully pipelined and capable of handling one transfer per
clock cycle, provided that there are no contentions on memory banks.
The structure of the RX channel is shown, along with its handshake, in the
following picture.

Figure 3.3. Achitecture of the RX channel and its handshake [2]

20

3.4 – TX channels

3.4 TX channels

Similarly to RX channels, all TX channels share the same memory access,
however their handshake is more complicated with respect to the RX coun-
terpart, as it has separate request and response paths. This split is necessary
in order to support outstanding requests from high bandwidth peripherals,
which do not need to wait for data in response while issuing subsequent re-
quests.
Once the request from the peripheral has been granted by the µDMA, the
ID of the winning channel is stored in a pipeline stage. In the next cycle
the address and data size are fetched, while a new address and data size
can be calculated and stored in the FIFO. At the FIFO output, the memory
transaction logic pops an address + data size from the cycle and performs
the memory access.
Figure 3.4 shows the TX channel architecture, along with its handshake
waveforms.

In order to give an idea of the improvement achieved through this archi-
tecture it is worth mentioning that a single TX channel with outstanding
request support can fully saturate the TX port, whereas a regular TX chan-
nel can only occupy a quarter of its bandwidth. This limit is introduced
by the performance degradation due to the round-trip latency from request
to response, which is completely avoided by allowing the peripheral to issue
subsequent requests.
[2]

21

3 – The Pulpissimo project: hardware architecture and software support

Figure 3.4. Architecture of the TX channel and its handshake [2]

3.5 Runtime software support

Communication is handled as in a classic microprocessor delegating tasks to
the processing subsystem, containing services such as scheduling, memory
allocations and driver.

3.5.1 Scheduler

The scheduler is a simple run-to-completion task scheduler with no preemp-
tion.
This allows using a single stack for all tasks, thus avoiding storing all saved

22

3.5 – Runtime software support

contexts in memory, which is crucial since the target of the application are
ultra low power systems with consequently small memories.
The scheduler pops the first task from the stack, executes it until it returns
and then turns to executing the following one; this operation is iterated until
the stack is empty, in which case the scheduler enters a sleep mode. It is
worth mentioning that a task can be enqueued while the previous task is
executed, thus deferring some work.
Hardware events (the most common being the end of transfer event) are han-
dled through interrupt service routines and can also enqueue task to handle
events outside the interrupt service routine.

3.5.2 Driver interactions with scheduler

It is possible to attach a task to every asynchronous event, and said task will
be enqueued or executed when the event occurs. This can be useful, for ex-
ample, for re-enqueueing a transfer operation immediately after the previous
one is completed.
The interrupt handler of the µDMA is called upon the end of a transfer, ac-
knowledges the presence of a task attached to the transfer channel, enqueues
it to the scheduler and leaves, later the scheduler will actually schedule the
task (and enqueue another task at the end of it, if needed).
If the delay introduced by the scheduler constitutes an issue it can be elim-
inated by replacing the regular task with a handler, allowing the request to
be enqueued directly by the interrupt handler.

3.5.3 Use case

The typical use case for this type of subsystem in a microcontroller unit is
that in which data are sampled from a peripheral and sent to the system
memory through some communication protocol (such as SPI) and sent to

23

3 – The Pulpissimo project: hardware architecture and software support

the outside after some elaboration and processing from the microcontroller
itself, once again using the µDMA.
Since the transfer happens asynchronously between peripheral and system
memory, 2 buffers are allocated for each data transfer, one for transferring
peripheral data to the level 2 memory, and the other for the processing
subsystem.
Each time a transfer is finished on a channel, the interrupt handler handler
enqueues a task to the cluster to allow the buffer processing to continue.
The following picture shows how the system resources are using during a
data transfer and the processing the received data. [2]

Figure 3.5. Resource allocation with double buffering mechanism [2]

24

Part II

Second part

25

Chapter 4

Testing of the Pulpissimo
SPI module

4.1 Basic approach

The first approach adopted for testing the SPI module of the Pulpissimo SOC
consisted in simply using the built-in functions from the library for sending
and receiving data, hopefully stimulating (and therefore testing) the entire
module.
The built-in functions performed the following operations:

• Sending data to a slave

• Receiving data from a slave

• Full duplex communication with a slave

• Switching from regular SPI to QSPI mode

• Configuring clock parameters such as phase, polarity and baudrate

27

4 – Testing of the Pulpissimo SPI module

This set of operations is sufficient to cover the regular operation of an SPI
peripheral, guaranteeing a complete and rather configurable communication
protocol, however, this method proved to be rather ineffective when it came
to testing the controller module of the SPI, as it was impossible to obtain a
fault coverage above 24% for said module.

28

4.1 – Basic approach

4.1.1 Analysis of built-in functions

Taking a look at the provided SPI driver, we can see that these functions
send a sequence of commands to the SPI controller, thus programming the
SPI peripheral to perform the desired operation. The information concern-
ing the kind of operation to be carried out is stored in the first 4 bits of the
command, encoded according to the following table:

Binary Command Explaination
0000 CFG Configure clock phase, polarity, baudrate and QSPI mode
0001 SOT Signals the beginning of the data to be transferred
0010 SEND_CMD Sends a command
0011 SEND_ADDR Sends and address
0100 DUMMY Sends a dummy (its value ranges from 0 to 31)
0101 WAIT Waits for an event
0110 TX_DATA Beginning of a TX operation
0111 RX_DATA Beginning of a RX operation
1000 RPT Beginning of the sequence to be repeated
1001 EOT End of transmission
1010 RPT_END End of the sequence of commands to be repeated
1011 RX_CHECK Confronts the received data with a given vector
1100 FULL_DUPL Beginning of a full duplex transfer operation
1101 WAIT_CYCLE Sets a counter, starts it and waits until it has finished

The clock configuration operation only exerts a CFG command, whereas
the other pre built functions issue commands the shown in the following
subsections.

29

4 – Testing of the Pulpissimo SPI module

Send operation

1. CFG command for setting up the clock divider and the QSPI option

2. SOT command indicating the beginning of the actual transmission

3. TX_DATA command indicating the amount of data to be sent

4. A variable number of data bytes, indicated in the TX_DATA command

5. EOT command

Receive operation

1. CFG command for setting up the clock divider and the QSPI option

2. SOT command indicating the beginning of the actual transmission

3. RX_DATA command indicating the amount of data to be received

4. EOT command

Clearly in this case no data bytes are needed, since they are received from
the slave.

Full duplex transfer operation

1. CFG command for setting up the clock divider and the QSPI option

2. SOT command indicating the beginning of the actual transmission

3. FULL_DUPL command indicating the amount of data to be transferred

4. A variable number of data bytes, indicated in the TX_DATA command

5. EOT command

30

4.2 – SPI controller architecture

It is clear that, even if these functions offer an almost complete set of
possible operations and configurations, most commands are never issued,
making it impossible to achieve an adequate coverage for the controller.

4.2 SPI controller architecture

The reason for this substantial inadequacy comes out even clearer by looking
at the RTL level code of the spi_ctrl module: it is implemented as a finite
state machine, whose main STG is shown in figure 1.

31

4 – Testing of the Pulpissimo SPI module

IDLE

WAIT
CYCLE

WAIT
EVENT

CLEAR
CS

WAIT
CHECK

DO
REPEAT

WAIT
DONE

WAIT
ADDR

s_event

FSM 2

state
next

don't care

is_cmd_wait

s_cnt_done

is_cmd_wcy

s_event AND r_is_repeating

rx_done_i
AND

!r_is_repeating

is_cmd_rpe

rx_done_i AND
r_is_repeating

udma_tx_data_valid_i

is_cmd_sna AND r_rpt_cfg

(is_cmd_sna OR is_cmd_dum OR is_cmd_txd
OR is_cmd_rxd OR is_cmd_ful) AND !r_rpt_cfgs_done

AND
!r_is_repeating

s_done AND
r_is_repeating

Figure 4.1. The STG of the main controller FSM

The part referred to as FSM2 in Figure is shown in the following picture:

32

4.2 – SPI controller architecture

RPT_CS

RPT_CMD

RPT_ADDR

RPT_DUMMY

RPT_TX

RPT_RX

RPT_CLEAR_CS

RPT_WAIT

RPT_RX_CHK

WAIT_DONE

IDLEWAIT_EVENT

WAIT_CHECK

default

r_rpt_do_cmd

r_rpt_do_addr

r_rpt_do_dummy

r_rpt_do_write

r_rpt_do_read

else

else

else

else

else

else

don't care

r_chk_resultr_rpt_do_wait

r_rpt_do_rx_chk

else

Figure 4.2. The STG of the second FSM in charge of dealing with
repeated instructions

33

4 – Testing of the Pulpissimo SPI module

The fault list of the controller highlights that most possible faults concern
the internal memory elements of the FSM, i.e. the registers storing the
parameters used by the controller for its operation, such as:

• Register for RX check operation (16 bits).

• Register for repeated RX check operations (6 bits).

• Register for size of send operation (16 bits).

• Register for size of repeated read operation (18 bits).

• Register for size of receive operation (16 bits).

• Register for size of repeated write operation (18 bits).

• Register for repeated send address instructions (32 bits).

• Register for repeated send command instructions (32 bits).

• Clock divider register (8 bits).

• Register for number of repetitions (16 bits).

• Register for storing the type of operation being repeated, with one-hot
encoding (8 bits).

• Counter registers (16 bits, 8 for counter state and 8 for counter target).

Moreover it was observed that while focusing on obtaining a higher coverage
on said memory elements the other logic elements connecting them were sat-
isfyingly tested.
Some registers were not exhaustively tested: for example the register con-
taining the number of repetitions to be executed was a 16b register, which
means that, in order to exhaustively test it, an operation had to be repeated
216 times, which would have required a unreasonably long time.

34

4.3 – Evolutionary approach

4.3 Evolutionary approach

At first, an attempt was made to optimize a test program through an evo-
lutionary approach using MicroGP. In order to do so, after a study of the
controller FSM the instructions were executed one by one and the patterns
produced on the primary inputs of the SPI controller (depending on several
parameters, such as clock polarity, phase, size of transmission etc.) were
manually recorded.
At this point a very crude assembly language was set up, in which the in-
structions could be programmed in order to be compiled into input patterns
by an equally crude C++ parser; said patterns were saved into a .txt file
and fed to the SPI controller by means of a system verilog testbench.

This kind of simulation served two purposes:

1. Allowed evolutionary optimization, by transforming the instructions into
a language that could be parsed and replicated by the evolutionary tool.

2. Significantly shortened the simulation, since it was not necessary to sim-
ulate the entire pulp platform, but the controller could be simulated
alone, still using only patterns that could be replicated with the con-
troller being embedded in its peripheral.

Sadly, despite the efforts, this approach did not turn out to be very useful:
in facts the very structure of the controller was very unfit for evolutionary
optimization, as it does not have many memory elements or any logic that is
benefited by large programs, naturally favored in the selection operated by
the evolutionary tool.
Some of the programs generated with this procedure provided a good cover-
age, but at the cost of a very high test duration (some test programs lasted
over 6 seconds) which obviously came with a very high evaluation time (the

35

4 – Testing of the Pulpissimo SPI module

fault simulation could last even several hours for each candidate). This led to
dropping this method in favor of a hand written program, which is described
in the following sections.

4.4 Structure of the test program

The structure of the new test program is rather simple, as its structure is
similar to that of a full duplex operation: first a receive operation is issued
to the base address of the RX channel, allowing it to be updated when data
is received from the slave, and while the RX buffer is enabled a series of
operations are performed, by sending all possible commands. Before each
operation the clock baudrate is set to a different value, in order to test the
clock divider.

4.4.1 Simple operations

In this first part of the program all functions were tested without repetitions.
The typical commands sent for each operation were the following:

1. CFG command in order to set clock parameters

2. SOT command indicating the beginning of the operation

3. Actual commands for the operation to be tested, followed, when needed,
by additional data for operations like send, full duplex transmission and
send address

4. EOT command to conclude the communication and set the FSM back
into its IDLE state

The performed operations were the following:

36

4.4 – Structure of the test program

Send and receive operations

A fair amount of simple send and receive operations is performed, in order
to test other parts of the SPI peripheral; the amount of data to be sent and
received varies from an operation to another, in order to test the registers
containing the data sizes, which are contained in the SPI controller.

Wait cycle operation

The WAIT_CYCLE command is sent, setting the wait counter to its maxi-
mum possible value and letting it count down, therefore testing it thoroughly.

Send command, send address and dummy instructions

These operations are issued in order to test the related registers and logic in
the controller.

4.4.2 Repeated operations

Testing repeated operations turned out to be a longer, yet still manageable
task. At first, the register containing the number of repetitions to be per-
formed had to be tested, and in order to do so an instruction had to be
repeated many times. The most suitable operation was a wait cycle with the
down counter set to 0, since it was the fastest, thus shortening the testing
time.

Order of repeated operations

Due to a flaw in the netlist (which was corrected in the updated version) when
signals r_rpt_do_cmd, r_rpt_do_addr, r_rpt_do_dummy, r_rpt_do_write,
r_rpt_do_rx_chk and r_rpt_do_read there is no way of setting them back
to zero, aside from resetting the entire SPI module (which means resetting

37

4 – Testing of the Pulpissimo SPI module

the entire SOC and it is obviously not a viable option). Given the structure
of the FSM in figure, this can clearly be a problem, since one of the signals
being set to 1 prevents the FSM from reaching further states, therefore mak-
ing the test impossible.

In this case, the only viable solution was to perform the operation in the
correct order, which is:

1. Repeated read

2. Check on read

3. Repeated write

4. Repeated dummy send

5. Repeated address send

6. Repeated command send

It is important to mention that, after this test routine this part of the
FSM cannot be used without a reset and therefore it is not actually usable
due to this major flaw.

4.5 Final test program

In the end, the sequence of performed operation in the test program was the
following:

• Receive operations: data is sent by the slave.

• Repeat for a high number of times a wait cycle with the counter set to 1
in order to test the register containing the number of time an instruction
has to be repeated.

38

4.5 – Final test program

• Repeated receive operation.

• Dummy send: sends dummy data and toggles the dummy registers.

• Repeater RX check operation.

• Send operations.

• Full duplex transmission.

• A second dummy send to better cover the dummy registers.

• Send address and send command operations.

• Remaining repeater operations in the aforementioned order: send dummy,
address, command, transfer, TX data.

This rather simple program allowed to reach all the states of the previ-
ously depicted finite state machines, except for those related to asynchronous
events. In facts, as previously explained such events are handled in software
at scheduler level, and therefore no event was seen at the controller level,
even when asynchronous events were used.

39

40

Chapter 5

Conclusions: simulation
results and possible
further developments

5.1 Simulation and coverage results

The coverage results for the test program described in the previous section
are shown in the following table:

Module Total faults Fault coverage
reg_if 2428 61.41%

clockgen 1018 87.91%
tx 8414 94.34%
fifo 1650 88.48%
rx 8398 96.93%

spictrl 7774 72.78%
txrx 7228 79.75%

TOP MODULE 37630 84.46%

41

5 – Conclusions: simulation results and possible further developments

And the total duration for this functional test routine was 127ms (includ-
ing a 19ms initial JTAG sequence).

Despite not being stunning, these results compare very well with those
obtained using only the standard libraries, being the following:

Module Total faults Fault coverage
reg_if 2428 53.29%

clockgen 1018 80.83%
tx 8414 95.50%
fifo 1650 86.79%
rx 8398 96.42%

spictrl 7774 23.54%
txrx 7228 73.70%

TOP MODULE 37630 72.30%

with a program duration of 996ms.

5.2 Final considerations

It must be noted that even programs that lasted way more than a second
didn’t provide any substantial improvement to this coverage value, but only
some slight, hardly sensible increase in the coverages of the TX and RX mod-
ules, when the main issue was the controller.
It is also worth noticing that whereas these programs performed long se-
quences of send and receive operations in order to achieve higher coverages,
they reach values that are not very different from those obtained mainly fo-
cusing on the controller. It is therefore reasonable to suppose that, when
testing an embedded peripheral it is a good idea to start from its controller.

42

5.3 – Possible further developments

It is the most embedded part and therefore the most difficult to test, but it
is quite likely that its test will cover many other parts of the peripheral.

5.3 Possible further developments

The test program presented in this work could be refined and extended in
order to achieve a higher coverage on the various modules of the Pulpissimo
SPI peripheral, but it would probably be better to extend the test to other
embedded peripherals of the pulp platform by replicating (and therefore fur-
ther validating) this method.
By starting from the peripheral controller and forcing it into all possible state
while performing operation on reasonably large sets of data it is simple to
achieve high values of coverage for the entire peripheral.
Sadly, this kind of task proved to be particularly unfit for evolutionary ap-
plications, which tend to perform better when large programs with many
repetitions of the same instructions are needed, and therefore it would not
make much sense to employ such tools while testing embedded peripherals
with this method.

43

44

Bibliography

[1] Claudio Passerone, Analog and digital electronics for embedded systems,
CLUT, Torino, 2015, http://hdl.handle.net/11583/2651591

[2] Antonio Pullini, Davide Rossi, Germain Haugou, Luca Benini µDMA:
An Autonomous I/O Subsystem For IoT End-Nodes , Integrated Systems
Laboratory, ETH Z¨urich, Gloriastr. 35, 8092 Zurich, Switzerland
https://ieeexplore.ieee.org/document/8106971

DEI, University of Bologna, Via Risorgimento 2, 40136 Bologna, Italy.
[3] Uemori, Satoshi Yamaguchi, Takahiro Ito, Satoshi Tan, Yohei

Kobayashi, Haruo Takai, Nobukazu Niitsu, Kiichi Ishikawa,
Nobuyoshi. (2011). ADC linearity test signal generation algorithm. 44 -
47. 10.1109/APCCAS.2010.5774755.
https://www.researchgate.net/publication/224238915_ADC_

linearity_test_signal_generation_algorithm

[4] Sonza Reorda, Matteo. (2019). Slides from the "Testing and fault toler-
ance" course, Politecnico di Torino. http://www.polito.it

45

http://hdl.handle.net/11583/2651591
https://ieeexplore.ieee.org/document/8106971
https://www.researchgate.net/publication/224238915_ADC_linearity_test_signal_generation_algorithm
https://www.researchgate.net/publication/224238915_ADC_linearity_test_signal_generation_algorithm
http://www.polito.it

	List of Figures
	I First part
	Introduction: SPI protocol and its usages
	The SPI protocol
	Communication example
	SPI modes and configurations
	Use cases
	LCDs
	IO Expanders
	Sequential read / write operations

	Testing, fault model and software based self test
	Testing: an increasing importance issue in electronics
	The stuck-at fault model
	Fault simulation and software based self test

	The Pulpissimo project: hardware architecture and software support
	Pulpissimo SoC
	DMA subsystem
	RX channels
	TX channels
	Runtime software support
	Scheduler
	Driver interactions with scheduler
	Use case

	II Second part
	Testing of the Pulpissimo SPI module
	Basic approach
	Analysis of built-in functions

	SPI controller architecture
	Evolutionary approach
	Structure of the test program
	Simple operations
	Repeated operations

	Final test program

	Conclusions: simulation results and possible further developments
	Simulation and coverage results
	Final considerations
	Possible further developments

	Bibliography

