
Master’s Degree Course in Electronic Engineering

Master’s Thesis

Design of the execution pipeline
for LEN5, a RISC-V Out-of-Order

processor

Supervisor:
Prof. Maurizio Martina

Candidate:
Michele Caon

Academic year 2018-2019

Abstract

Out-of-order execution has become mandatory to achieve good performance in mod-
ern processors. At the same time, modularity and customization of the execution
pipeline are welcome features when it comes to supporting modern application-
specific operations. From this perspective, RISC-V is probably the most promising
open Instruction Set Architecture (ISA) at the moment. For this reason, the RISC-
V Foundation can count on the support of many industry-leading companies, and
the specification is evolving to support all the features that modern applications
require.

The design of the back-end of the LEN5 RISC-V processor detailed in this
document aims at searching the design space for new solutions that accommodate
both modularity and possibly performance. To achieve this, the execution pipeline
architecture is based on Tomasulo’s approach to dynamic scheduling1, expanding
it to support speculation and precise exceptions. The handshake-based instruction
flow offers the possibility to easily add new custom execution units and the support
for additional ISA extensions.

Chapter 1 briefly introduces RISC-V ISA while explaining the main motivations
that lead to the LEN5 core implementation. Chapter 2 reports the basic concepts
of instruction scheduling on which the execution pipeline is based, as well as the
reasons why the Tomasulo’s algorithm was chosen over scoreboarding. Chapter 3 is
the core of this document: it contains a detailed description of each basic block in
the execution pipeline of LEN5 together with schematics and diagrams. Chapter 4
briefly discuss the testing methodology and some of the obtained results, while
chapter 5 draws the conclusions about this project. Finally, Section 5.3 lists and
motivates some possible improvements that could be applied to the LEN5 core in
a possible future design stage. Appendix A contains additional information about
the System Verilog description of the core.

1As presented in: John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. 6th. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2017. isbn: 9780128119051.

Acknowledgements

I would like to thank Andrea Giannini for this great opportunity.

I also wish to express my gratitude to my friends and colleagues Matteo and
Marco for their support besides their collaboration in this project.

ii

Contents

List of Tables vi

List of Figures vii

List of Algorithms viii

1 Introduction to LEN5 1
1.1 Motivation . 1
1.2 Frontend . 2
1.3 Execution pipeline . 2
1.4 Memory system . 3

2 Execution pipeline architecture 5
2.1 Basics . 5
2.2 Instruction level parallelism . 7
2.3 Dynamic Scheduling . 9

2.3.1 Scoreboarding . 10
2.3.2 Tomasulo’s Algorithm for Dynamic Scheduling 11

2.4 LEN5 implementation of Tomasulo’s Algorithm 14
2.4.1 Reorder Buffer . 18

3 LEN5 Execution Pipeline Design 23
3.1 Top level . 24

3.1.1 Handshake . 25
3.1.2 Control . 28
3.1.3 Arbiters . 32
3.1.4 Entry selectors . 34

3.2 Issue queue . 37
3.2.1 Issue queue data structure 38
3.2.2 Issue queue control logic . 39
3.2.3 Exception handling . 42

3.3 Issue logic . 43

iii

3.3.1 Issue decoder . 44
3.3.2 Exception handling . 48

3.4 Register status . 50
3.4.1 Register status data structure 50
3.4.2 Register status control logic 51

3.5 Register files . 53
3.6 Reservation Stations . 54

3.6.1 Arithmetic RS data structure 56
3.6.2 Branch unit RS data structure 58
3.6.3 RS control logic . 61
3.6.4 Exception handling in RSs 64

3.7 Load-store unit . 65
3.7.1 Virtual address adder . 67
3.7.2 Load buffer . 70
3.7.3 Store buffer . 80
3.7.4 Store-to-load forwarding . 83
3.7.5 Cache level zero . 86

3.8 Common Data Bus . 88
3.8.1 CDB arbiter . 88

3.9 Reorder Buffer . 90
3.9.1 ROB data structure . 90
3.9.2 ROB control logic . 90

3.10 Commit logic . 92
3.10.1 Exception handling . 94

3.11 Control Status Registers . 95

4 Testing and synthesis 97
4.1 Functional verification . 97

4.1.1 Testing methodology . 98
4.2 Synthesis results . 99

4.2.1 Arbiters . 101
4.2.2 Entry selectors . 102
4.2.3 Issue queue . 103
4.2.4 Issue logic . 103
4.2.5 Register status . 104
4.2.6 Register files . 104
4.2.7 Reservation stations . 105
4.2.8 Load-store unit . 106
4.2.9 Common Data Bus . 109
4.2.10 Reorder Buffer . 110
4.2.11 Execution pipeline area and performance 111

iv

5 Conclusions and further improvements 115
5.1 Conclusion . 115
5.2 What is missing . 116
5.3 Further improvements . 118

5.3.1 Overall optimization . 118
5.3.2 Multiple Issue . 119
5.3.3 Unaligned memory address 119
5.3.4 Full support for m-mode and s-mode 120
5.3.5 Other ISA Extensions . 120

A Code 121
A.1 General code organization . 121

A.1.1 Switches . 122
A.2 Data structure control . 122
A.3 Assertions . 125

Bibliography 127

Acronyms 129

v

List of Tables

2.1 Scoreboarding example . 12
2.2 Reservation station data structure 13
2.3 Register status data structure . 14
3.1 Issue queue content . 40
3.2 Instruction formats . 45
3.3 Register status content . 51
3.4 Reservation station content . 58
3.5 Forwarding example . 85
3.6 ROB content . 91
4.1 2-way arbiters synthesis . 101
4.2 Priority encoder selector synthesis 102
4.3 Age-based selector synthesis . 102
4.4 Issue queue synthesis . 103
4.5 Issue logic synthesis . 103
4.6 Register status synthesis . 104
4.7 Register files synthesis . 104
4.8 Arithmetic reservation station synthesis 105
4.9 Branch unit reservation station synthesis 106
4.10 Load buffer synthesis . 106
4.11 Store buffer synthesis . 107
4.12 Load-store unit synthesis . 108
4.13 CDB synthesis . 110
4.14 ROB synthesis . 110

vi

List of Figures

1.1 LEN5 top-level organization . 3
3.1 Execution pipeline top-level . 26
3.2 Handshake examples . 28
3.3 Handshake burst example . 28
3.4 FIFO handshake example . 31
3.5 Two-way arbiter . 32
3.6 Issue queue block diagram . 38
3.7 Issue logic block diagram . 44
3.8 Reservation station block diagram 56
3.9 Load-store unit block diagram . 68
3.10 Byte selector block diagram . 72
3.11 CDB arbiter schematic . 89
4.1 Load-store unit synthesis chart . 109
4.2 Synthesis area composition . 113
4.3 Synthesis time comparison . 114

vii

List of Algorithms

2.1 Tomasulo’s algorithm: issue . 15
2.2 Tomasulo’s algorithm: operands fetch 15
2.3 Tomasulo’s algorithm: execution . 15
2.4 Tomasulo’s algorithm: commit . 16
2.5 Tomasulo’s algorithm: main loop 16
2.6 Extended Tomasulo’s algorithm: issue 19
2.7 Extended Tomasulo’s algorithm: operands fetch 20
2.8 Extended Tomasulo’s algorithm: execution 20
2.9 Extended Tomasulo’s algorithm: write result 21
2.10 Extended Tomasulo’s algorithm: commit 22
2.11 Extended Tomasulo’s algorithm: main loop 22

viii

Chapter 1

Introduction to LEN5

LEN5 is a RISC-V processor implementing in-order issue and Out of Order (OoO)
execution developed at Politecnico di Torino during the master thesis projects by
Marco Andorno [3], Matteo Perotti [10] and Michele Caon, the author of this docu-
ment (i.e. myself). Its code is available under the open source Solderpad Hardware
Licence Version 2.0 1 [12] on GitHub.

1.1 Motivation
Over the past 50 years, the definition and development of computer ISAs have
been a prerogative of a few names among the industry-leading companies. Intel’s
x86 has been by far the most successful architecture from its introduction with the
Intel 8086 processor in 1978. Its instruction set grew by more than one order of
magnitude and continue to do so, in what is defined as an incremental approach
to ISA extension. With any new extension, all the previous instructions must be
implemented, even if outdated for modern applications or error-prone. The growing
ratio increased the most over the last decade, as a consequence of the slowing
down of Moore’s Law: x86 has relied on Single Instruction Multiple Data (SIMD)
instructions to increase Instruction Level Parallelism (ILP) and achieve the target
performance improvement. With the current limits in technological innovation,
the importance of architectural optimization has become an important aspect in
microprocessor design, and even x86 processors are moving towards a simplification
of the instruction set, where complex instructions are translated in hardware into
simpler ones.

Still, the hardware to handle such a complex ISA has practically been inaccessi-
ble to anyone outside the leading companies in the microprocessor market, meaning
that university students were forced to study this topic on very old and outdated

1based on the Apache Licence Version 2 [5]

1

1 – Introduction to LEN5

processor architecture. Most important, x86 is a proprietary ISA, that leaves no
space for improvement in the academic world.

RISC-V was born in university (at UC Berkley in 2011) to overcome all these
downsides while following a completely different approach, shaped on the require-
ments of modern computer applications. This modern ISA aims at becoming a
candidate as a universal ISA in the next years, and the RISC-V Foundation [4]
has found the support of many companies, including some of those traditionally
associated to x86 architectures. Despite this, RISC-V is and is going to remain
a open ISA. Its modular approach differs offers the possibility to employ it in a
very wide range of applications: from very simple microcontrollers to very complex,
OoO multi-core systems used in High Performance Computing (HPC) applications.

LEN5 has offered the opportunity to explore the design space of microprocessor
architecture while working with a ‘real world’ ISA instruction set. The aim of this
project is to create a starting point for the introduction of RISC-V in our academic
context while trying to deal with design challenges that were only scratched during
the Bachelor’s and Master’s degree programs. LEN5 represents also the incarnation
of the personal interests grown more and more during the past years, as well as of
the intents for possible future development projects.

LEN5 follows the same modularity that is intrinsic in RISC-V, and offers many
research opportunities to the students that might be interested in every single topic
related to digital design in general.

In the second place, this project was also a chance to improve all the skills a
digital hardware designer should have. For this reason, the System Verilog hardware
description language was employed, being it the standard in most of the design and
testing tools used to model and synthesize complex digital systems.

The LEN5 design was divided into three main parts: the frontend, the execution
pipeline, and the memory system, as shown in fig. 1.1. This document is about the
execution pipeline. The following sections briefly introduce each of those parts.

1.2 Frontend
The frontend of LEN5 was developed by Marco Andorno [3]. Besides implementing
the fetch operations and the interface with the instruction cache, it provides the
support for speculation by means of a gshare branch predictor that produces both
the predicted branch outcome and the predicted target address.

1.3 Execution pipeline
The execution pipeline represents the backend of the processor, that is the part
responsible for the actual execution of the instructions. An extended version of

2

1.4 – Memory system

Figure 1.1: The three main parts of LEN5 . The content of each unit is not accu-
rate. For the detailed schematics refer to [3] (frontend), [10] (memory system) and
chapter 3 of this document (execution pipeline).

Tomasulo’s algorithm for dynamic scheduling was defined and implemented to sup-
port Out of Order Execution (OoOE), speculation and precise exceptions while
adopting modularity and customization as main design principles. The next chap-
ter will focus on the theory (chapter 2) and the implementation (chapter 3) of this
part of LEN5 .

1.4 Memory system
The memory system of LEN5 was developed by Matteo Perotti [10]. It is responsi-
ble for the execution of load and store instructions, as well as the support for Virtual
Memory (VM) with hardware address translation. The organization of the cache
system follows a modified Harvard memory scheme, with two distinct instruction
L1 and data L1 caches and a unified L2 cache, all sharing the same address space.

3

4

Chapter 2

Execution pipeline
architecture

Before entering the core chapter of this document, where the LEN5 design is an-
alyzed in-depth, some key concepts must be discussed. This chapter collects some
basic notions of instruction execution in an OoO processor. The major design
choices are discussed and compared to other possible solutions. In particular, the
following sections focus on instruction renaming and reordering according to Toma-
sulo’s approach to dynamic scheduling.

2.1 Basics
The performance of a microprocessor is defined by many different aspects, and each
of these may have a different weight depending on the cost function that is used.
Among the others, power is less than ever playing a secondary role. However, in
this first version of LEN5 , the focus has been mainly on architectural choices, while
power-saving hasn’t been ignored, as often pointed out in chapter 3. For what con-
cerns processing performance, a definition that is independent on implementation
choices and technological parameters should be used in principle. From the user
perspective what matters is the CPU time required by the processor to complete a
given task. The definition of performance given by Patterson and Hennessy in [7,
sec. 1.6] was chosen for this purpose:

Performance = 1
CPU execution time

(2.1)

Where the “CPU execution time [. . .] is the time the CPU spends computing for
this task and does not include the time waiting for I/O or running other programs”.

From an architect’s point of view, this translates to increasing the number of
instructions that the Central Processing Unit (CPU) can execute in a time unit. To

5

2 – Execution pipeline architecture

make this definition independent on technological parameters the concept of time,
measured in seconds, can be replaced by the concepts of latency. In a synchronous
digital system, the latency is the number of clock cycles (time-discrete units) elapsed
from the beginning of the processing of some information. An additional step
is to define a task as a sequence of instructions, which is likely the case for a
microprocessor. So, the latency can be defined as the number of cycles required
to complete the execution of an instruction. If instructions were executed strictly
in sequential order, increasing the performance would simply mean decreasing the
average instruction latency. However, modern microprocessors always execute more
than one instruction at a time. This is called ILP. As an example, even a simple
in-order1 microprocessor has many pipeline stages, resulting in many instructions
being processed at the same time by the different pipeline stages, while the latency
remains constant in a first approximation. Taking a step back into the physical
world, this goes in the direction of increasing the throughput, or the amount of
information being processed in a time unit. The trend followed in processor design
in the last decades have seen throughput being prioritized over latency most of
the times [9]. In other words, in modern computer applications, the number of
instructions that are completed in a time unit is usually more important than
the time required to complete a single instruction or even a single task. For this
reason the Instructions Per Cycle (IPC) is one of the most important metrics to
evaluate processor performance nowadays. In practice, the average IPC is used to
evaluate performance: different instructions have different latency, so the number of
instructions being executed simultaneously by the processor can be different based
on the code being executed in every moment.

Before briefly introducing the techniques used to exposing ILP, it is necessary
to define what are the main steps an instruction goes through during its execu-
tion. The fetch-decode-execute loop is expanded to take into account also OoO and
multiple issue processor architectures. The following terms will be used in all this
document with the meaning reported below.

• Instruction fetch: the instruction contained in the memory location pointed
by the Program Counter (PC) is read from the instruction memory by the
fetch unit and sent to the issue queue.

• Instruction issue: the first instruction of the issue queue is decoded and
sent to the assigned functional unit of the execution pipeline, awaiting to be
executed2. This phase is sometimes referred to as dispatch in literature.

1In an in-order processors the order in which instructions are executed is the same in which
they appear in the program code (i.e. they are executed in [program] order.)

2In LEN5 the instruction is actually sent to the ROB and to the RS associated to the assigned
functional unit at the same time. A detailed description of this phase can be found in section 3.6.

6

2.2 – Instruction level parallelism

• Operands fetch: the instruction operands are read from the source registers.
Only when all the required operands have been fetched, the instruction can
proceed to the execution stage.

• Beginning of execution: the instruction is selected for execution by the
functional unit. In literature, this phase is also called execute or issue.

• Execution completion: the instruction result is produced by the functional
unit and written to a buffer. In in-order processors, the result is directly
written to the Register File (RF) or to the memory, and this phase reduces to
the instruction commit.

• Write result: In some OoOE pipelines where a Reorder Buffer is used, an
additional step may be required to distinguish the writing of the result into the
Reorder Buffer (ROB) from the execution completion and the commit stages.
LEN5 falls in this category, as it will be explained in section 2.4.

• Instruction commit: the instruction result is written to the RF or to the
memory.

Notice that OoOE, which means that instructions begin their execution out-of-
order, implies OoO completion. If the functional units further reorder instructions
internally, the completion order may differ from the beginning of execution order.

2.2 Instruction level parallelism
ILP can be exploited in different ways, all of which aim at executing the largest
possible number of instructions at the same time. To do this many instructions may
be issued in the same cycle as inmultiple issue processors, or a new instruction could
be issued before the previous instruction has committed, as it is the case in pipelined
processors. Other integrated circuits like Graphics Processing Units (GPUs) can
implement SIMD instructions that are performed on a certain set of data instead
of a single one. In general, all these techniques allow exploiting ILP to a level of
parallelism that is given by:

P = number of completed instructions

number of cycles required

However, while exploiting ILP can potentially lead performance improvements
in the order of P , it is not always possible to do so and when it is, it doesn’t come
at no cost. It is well known [15] that even using optimum techniques to expose ILP,

Here, the important concept is that this phase doesn’t necessarily correspond to the beginning of
the execution of the instruction.

7

2 – Execution pipeline architecture

the value of P is on average between 5 and 7. The biggest limit are dependences
between subsequent instructions. It is very common in code that an instruction
depends on the result of a previous instruction: the result of the first instruction
could be used as an operand for a subsequent arithmetic operation or as the base
address for a memory access. So the amount of parallelism between the instructions
in a program in not arbitrary high and it is not always possible to know it a priori.
This means that techniques based only on code transformations at compile-time
like loop unrolling do certainly help but might not be sufficient. Exploiting ILP
in hardware can detect if instructions can be executed in parallel dynamically.
Doing so requires dependences to be detected at runtime to avoid hazards. There
are four main types of dependences: structural dependences, control dependences,
name dependences and data dependences.

Structural dependences Even if many instructions could be executed in par-
allel, doing so requires a sufficient number of functional units to be available. If
the functional unit assigned to an instruction is still busy processing an older in-
struction a structural hazard occurs. In this case, the only solution is to stall the
execution pipeline until the functional unit becomes free and the new instruction
can be accepted.

Control dependences Control hazards are caused by branch instructions. The
code between two branches is called a basic block. A basic block should only be
executed if the current trace of the program includes the leading branch. A trace
is the set of basic blocks that are executed if a certain progression of branch con-
ditions takes place during the execution of a program. That is, all the code that
follows a branch depends. . . at least on one branch. This is true for almost every
code executed by a processor. Though software techniques to predict the correct
traces and recover from wrong predictions exist, hardware speculation has been
preferred over the last decades. In deeply pipelined microprocessors, where the
amount of concurrently executed instructions is very high, recovering from wrong
speculation about the branch outcome (misprediction) has a very high cost. For
this reason, very sophisticated branch predictors have been developed to minimize
the misprediction ratio [11].

Name dependences An instruction might write a register or a memory loca-
tion accessed also by a previous instruction before the read operation was actually
performed (antidependence or WAR3 hazard). Or else two consecutive instructions
might write the same destination register or memory location, so that the order
in which they complete their execution changes the output (output dependence or

3Write After Read

8

2.3 – Dynamic Scheduling

WAW4 hazard). Notice that OoOE intrinsically leads to WAR and WAW hazards.
Name dependences don’t imply an actual data transfer between the instructions.
Therefore, both the types of name dependences can be resolved with register re-
naming, which consists in having more physical registers than logical ones. When
a new instruction is issued, its logical source and destination registers are used to
access a renaming table that tracks which registers are being used by other in-flight
instructions. If a name dependence with a previous instruction is detected on the
destination register, a free physical register is assigned to the issuing instruction
and the renaming table is updated. All following reference to that logical register
will be redirected to the assigned physical one so the value produced by the most
recent instruction writing a logical register is correctly fetched as a source operand
for the following instructions. As will be explained in section 2.3, LEN5 uses a dif-
ferent solution for renaming, where each issued instruction is mapped to an entry
of the ROB.

Data dependences These are also called true data dependences as opposite to
name dependences. There is a data dependence every time an instruction uses as
an operand a result from a previous instruction (RAW5 hazard). In this case, the
only solution is to wait for the previous instruction to have its result computed by
the assigned functional unit. Forwarding can be used to partially or totally hide
the latency introduced in this case: the result of the previous instruction can be
sent to the following one bypassing one or more pipeline stages. As explained in
section 2.3 LEN5 uses a different approach that automatically forwards results as
soon as they are produced by the functional units.

Besides pipeline, multiple issue and SIMD instructions, also dynamic scheduling
can be used to expose and exploit ILP.

2.3 Dynamic Scheduling
Dynamic scheduling consists in reordering instructions so most of the dependences
between them can be hidden by the execution of other instructions. The same can
be done to overcome long latencies caused by data cache misses: instead of wait-
ing for the current load instruction to complete, another instruction can begin its
execution if it doesn’t depend on the loaded value. A processor implementing this
kind of scheduling has an OoOE execution pipeline, which imply OoO beginning of
execution and OoO execution completion, as mentioned in section 2.2. The execu-
tion pipeline of LEN5 implements dynamic scheduling using Tomasulo’s approach
to register renaming, and extends it to support speculation and precise exceptions.

4Write After Write
5Read After Write

9

2 – Execution pipeline architecture

However, this is not the only approach to dynamic scheduling: scoreboarding has
been the most widely used for many decades. In order to understand the advantage
of Tomasulo’s algorithm with respect to scoreboarding, both approaches are briefly
discussed in the following sections.

2.3.1 Scoreboarding
Scoreboarding is a book-keeping technique that allows instructions that are issued
in-order to execute OoO as soon as their operands are ready (RAW hazards) and
there are no true data dependences among them. Also, the required functional unit
must be available to execute the new instruction. The most representative feature
from its first employment in CDC 6600 mainframe computer is the scoreboard. It
tracks the WAR and WAW dependences among in-flight instructions, allowing each
instruction to proceed to the next execution stage only if all existing dependences
have resolved.

• WAR hazards are solved preventing an instruction from writing its result to
the destination register or memory location (i.e. committing) until all previous
instructions have read the value from that register.

• WAW hazards are solved preventing an instruction that shows an output de-
pendence with some older instruction to commit until that instruction has
committed. This means that if an output dependence is detected, the commit
phase is performed in-order, at least for those instructions.

RAW hazards are solved by stalling the issued instruction until its operands
become available, according to the information in the scoreboard. Operands can be
fetched from source registers only during the issue phase. This step is often referred
to as read operands stage.

To achieve the correct flow of instructions, the scoreboard must keep three dif-
ferent kinds of information:

• The instruction status: the stage of execution a certain instruction is in at
the moment.

• The functional unit status: the instruction to be performed in each func-
tional unit, the destination register where the result must be stored and
whether the operands are ready or not.

• The register status: the functional unit that will write each destination
register.

The data is organized in three different tables that are checked and updated
according to the progression of each instruction in the execution pipeline. An

10

2.3 – Dynamic Scheduling

example6 of the content of the three tables is provided in tables 2.1a to 2.1c.
The fact that all the tables must be read and updated in every step of the execu-

tion and for every instruction makes scoreboarding an expensive solution. Besides
this, if a WAR hazard occurs, the instruction is prevented to write the register file
or the memory until all previous instructions have accessed the contained informa-
tion. A solution to this problem consists in using a Reorder Buffer where to save
instruction results before they are copied to the destination register or memory lo-
cation. However, this makes a scoreboarding implementation even more complex.
The situation gets worse if renaming is used to solve WAW hazards too since ad-
ditional tables must be accessed during the issue stage. Another disadvantage is
that every new functional unit that is added to the execution pipeline requires a
new entry in the functional unit status table, as shown in table 2.1b.

In summary, scoreboarding has the advantage of permitting dynamic schedul-
ing by stalling the pipeline if some dependence is detected among instructions.
However, it has some disadvantages that are not negligible in most applications:

• All the necessary information is kept in a single structure (the scoreboard)
containing different tables that must be accessed and updated in every cycle
by every in-flight instruction, thus requiring a very complex and potentially
slow control logic.

• In order to avoid stalling the pipeline when WAR and WAW hazards are
detected, the scoreboard must be complicated to include register renaming
and ROB management.

• The number of entries in a functional unit status table is directly proportional
to the number of functional units in the execution pipeline, regardless of their
type.

• Speculation is hard to introduce since a mispredicted instruction would affect
the scoreboard, making it hard to recover from such a situation while still
maintaining the results from instructions that are older than the mispredicted
one.

Because of all the downsides that come with scoreboarding, another approach
was chosen to design the execution pipeline of LEN5 : Tomasulo’s algorithm, which
is introduced in section 2.3.2.

2.3.2 Tomasulo’s Algorithm for Dynamic Scheduling
Tomasulo’s approach to dynamic scheduling was originally introduced in 1967 to
expose ILP in the floating-point execution pipeline of the IBM System/360, Model

6In this and following examples, RISC-V assembly code will be used as it appears in the
reference card in [8].

11

2 – Execution pipeline architecture

Instruction Execution stage
ld x1, 0(x3) Commit
ld x2, 8(x3) Begin of execution
add x3, x1, x2 Operands fetch
addi x2, x3, -1 Operands fetch

(a) Instruction status table content.

f.u. Op. rd rs1 rs2 src f.u. 1 src f.u. 2 rs1 ready rs2 ready
load-store load x2 x3 imm. - - yes yes
ALU 1 add x3 x1 x2 - load-store yes no
ALU 2 add x2 x3 imm. ALU 1 - no yes
MULT - - - - - - - -
branch - - - - - - - -

(b) Functional unit status table content.

Register Source f.u.
x1 -
x2 load-store
x3 ALU 1
.
x31 -

(c) Scoreboarding example: register status table content.

Table 2.1: Scoreboarding example.

91 [13], where multiple functional units were available. Another main motivation
was overcoming the need for implementation-specific compile-time optimization to
achieve high performance on different chips. As discussed in section 2.1, modern
high-performance microprocessors try to maximize the number of instructions that
can be executed in parallel. To do this the first requirement is having a sufficient
number of execution units, meaning many Arithmetic and Logic Units (ALUs),
Floating-Point Units (FPUs), and even multiple load-store units. Tomasulo’s algo-
rithm meets all the requirements of this kind of systems while enabling the possibil-
ity to use pipelined and even variable latency functional units without any changes
to the original structure. Notice that the original algorithm was introduced before
the presence of caches in microprocessors. The fact that long and variable latencies
were natively supported was one of the main reasons for it to be largely adopted
also in modern processors.

Despite all those features, the control logic remains quite simple, because hazard
detection and register renaming are handled automatically. This section shows the
main differences and advantages of this approach compared to scoreboarding, while
the next one will briefly introduce how this algorithm is implemented in LEN5 .

12

2.3 – Dynamic Scheduling

First, let us describe the fundamental components of a dynamically scheduled
execution pipeline implementing Tomasulo’s algorithm.

Reservation stations The main difference between Tomasulo’s approach and
scoreboarding is that the former employs several buffers associated with every
functional unit. These buffers are called Reservation Stations and hold issued
instructions during the operand fetch and the execution phases. As soon as a
functional unit becomes available, an instruction in the Reservation Station (RS)
whose operands are available is selected to begin its execution. When the functional
unit produces the result (execution completion) it is saved in the same RS entry
of the instruction. From here, the result is sent to the Common Data Bus. An
exception in this behavior is the load-store queue: here instructions are executed in
program order. This means that the load-store queue is a unified buffer that holds
both load and store instructions and it’s compiled as a First In First Out (FIFO)
buffer: instructions are pushed in program order during issue and executed in the
same order. Only the head entry of the load-store queue, or the oldest one, can per-
form the memory access if the operands to compute the memory access are ready.
The execution of a store corresponds to its commit, since no result to save in a
destination register is produced. A load that has performed the memory access can
proceed writing the leaded value on the Common Data Bus (CDB) as any other
instruction. The information contained in a RS is shown in table 2.2.

RS valid rs1_value rs2_value rs1_srcRS rs2_srcRS res_ready
0 yes 15 - 0 RS[2] no
1 no - - - - no
2 yes 7 3 0 0 yes
. .
m-1 yes - - RS[2] RS[0] no

Table 2.2: Reservation station data structure. In this example, the third entry of
the reservation station has already completed its execution since it had both the
operands available.

Common data bus The Common Data Bus is a bus shared by all the RSs. When
the result of an instruction has been produced by a functional unit and saved in
the associated RS, it is copied on the CDB as soon as this becomes available. The
result is broadcast to every RS and to the RF. If an in-flight instruction needs the
result of the instruction that’s writing on the CDB, it copies it from the CDB to its
RS entry. To do so each in-flight instruction must know which entry in which RS
will produce the result that it needs. Also, the result is written to the RF (commit)
only if the RS entry that wrote it on the CDB is the last that should write the
corresponding destination register to avoid WAW hazards. Both this information

13

2 – Execution pipeline architecture

are available in the register status data structure. Notice that this implements
register renaming automatically and for every instruction. Each source register is
renamed after the RS that will produce that value whenever it is not available in
the RF yet. This is one of the main features of Tomasulo’s algorithm.

Register status When an instruction is issued, it accesses the register status
data structure to know if its source operands are available in the RF or which RS
entry will write them. Therefore, the register status structure has one entry for
each register in the RF. Also, the reservation station entry assigned to the issuing
instruction is recorded next to the destination register of the instruction to know
once again which in-flight instruction will write that register. The register status
is accessed again when an instruction writes its result on the CDB to know if the
result should be stored to the RF, as described in the previous paragraph. The
register status data structure is shown in table 2.3.

RF RF.srcRS
x1 RS[3]
x2 0
x3 RS[5]
.
x31 RS[i]

Table 2.3: Register status data structure. In this example, register x1 will be
written by the RS entry 3, while register x2 is already available in the RF.

These are the only components of the simplest execution pipeline implementing
Tomasulo’s algorithm. In this version, speculation and precise exceptions are not
supported, and control dependences are avoided stalling the issue stage. In fact,
after this phase, it’s practically impossible to reconstruct the program order to
know which instructions are valid and which are not. The next section explains
how this limit is overcome in LEN5 . Before that, the pseudo-code of the algorithm
for arithmetic instructions is reported in algorithms 2.1 to 2.5, split into the main
execution steps and the main loop. Notice that for simplicity in this example there
is no difference between the begin of execution and the execution completion phases,
as if the functional unit was combinational, thus producing the result in the same
cycle in which the operands become available.

2.4 LEN5 implementation of Tomasulo’s Algo-
rithm

As mentioned in section 2.2, speculation is almost mandatory in modern processors
to achieve good performance. The frontend of LEN5 uses a gshare branch predictor

14

2.4 – LEN5 implementation of Tomasulo’s Algorithm

Algorithm 2.1 Tomasulo’s algorithm: issue stage
procedure issue(instr)

q ← assigned RS entry
while (!(q is empty)) do

wait . wait for q to become free
end while
RS[q].valid ← yes . the fetched instr. is inserted in q
regstat[rd].srcRS ← q . the dest. register rd will be written by q
return q

end procedure

Algorithm 2.2 Tomasulo’s algorithm: fetch operands stage
procedure operandFetch(q)

if (regstat[rs1].srcRS /= 0) then
RS[q].rs1_srcRS ← regstat[rs1].srcRS . save the index of that RS entry

else . rs1 already available in the RF
RS[q].rs1_value ← RF[rs1] . fetch the value of rs1
RS[q].rs1_srcRS ← 0

end if
if (regstat[rs2].srcRS /= 0) then

RS[q].rs2_srcRS ← regstat[rs2].srcRS . save the index of that RS entry
else . rs2 already available in the RF

RS[q].rs2_value ← RF[rs2] . fetch the value of rs2
RS[q].rs2_srcRS ← 0

end if
end procedure

Algorithm 2.3 Tomasulo’s algorithm: execute stage
procedure execute(q)

if (RS[q].rs1_srcRS = 0 and RS[q].rs2_srcRS = 0) then . both operands
available

result← RS[q].rs1_value <op.> RS[q].rs2_value . compute result
RS[q].res_ready ← yes
RS[q].res ← result

end if
end procedure

15

2 – Execution pipeline architecture

Algorithm 2.4 Tomasulo’s algorithm: commit stage
procedure commit(q)

for (∀x) do . for each register x
if (regstat[x].srcRS = q) then

RF[x] ← RS[q].res . copy the result to the RF
regstat[x].srcRS ← 0 . mark the register as available

end if
end for
for (∀y) do . for each RS y

if (RS[y].rs1_srcRS = q) then
RS[y].rs1_value ← RS[q].res . copy the result to y
RS[y].rs1_srcRS ← 0 . mark operand as ready

end if
if (RS[y].rs2_srcRS = q) then

RS[y].rs2_value ← RS[q].res . copy the result to y
RS[y].rs2_srcRS ← 0 . mark operand as ready

end if
end for
RS[q].valid ← no . free q since the instr. has committed

end procedure

Algorithm 2.5 Tomasulo’s algorithm: main loop
while (1) do . in every cycle

if (∃ new_instr) then . fetched instr. available
r ← issue(new_instr)
operandFetch(r)

end if
for (∀i) do . for all in-flight instructions

if (RS[i].valid and !RS[i].res_ready) then
execute(i) . compute result

else if (RS[i].res_ready and CDB available) then
commit(i) . write result to RF and RSs

end if
end for

end while

16

2.4 – LEN5 implementation of Tomasulo’s Algorithm

that speculates both on the branch outcome and on the branch target address7.
Using speculation implies providing a way to recover from misprediction: in this
case, speculative instructions must be flushed before they modify the processor
state. In other words, speculative instructions cannot write their results to the RF
or the memory until they are confirmed to be non-speculative. The same is true
when an exception is raised: only exceptions coming from instruction that would
execute if speculation was not allowed must be processed.

Besides speculation, there are instructions that modify the processor Control
Status Registers (CSRs) instead of writing data to the RF or memory. If these
instructions were allowed to be executed OoO, some instructions would execute
before the CSRs are actually updated, while others could execute with the updated
value even if they preceded the CSR instruction if program order was maintained.

Both these issues can be overcome forcing the commit phase to be carried out
in program order. However, since no track of the original order of instructions
is maintained in the execution pipeline with the original version of Tomasulo’s
algorithm, some modifications and some additional components are required.

Notice that following an in-order commit scheme has another great advantage:
interrupts and exceptions can be processed in-order during commit, and so in pro-
gram order. After the exception or interrupt has been processed, the next instruc-
tion can be replayed without losing data or coherence with the sequential execution
of the program. This kind of exception handling mechanism follows a precise ex-
ception model. In opposite, the original algorithm follows an imprecise exception
model. When instructions are allowed to complete and commit out of order, inter-
rupts and exceptions can be processed only during the execution completion phase.
Therefore, since no information about the original instruction order is maintained,
there is no way to know if all instructions preceding the exception or interrupt have
completed or if the raised exception is, in fact, the first that would have occurred
if the code was executed in-order.

Usually, when an exception or interrupt is raised, the execution pipeline is flushed
and the associated service routine is loaded. When an imprecise exception model is
implemented, all the instructions are flushed unconditionally, regardless of whether
they preceded or followed the offending instruction in program order. As a con-
sequence, exception handling, which is usually performed by the Operating Sys-
tem (OS) becomes more difficult. While RISC-V specification doesn’t require a
precise exception model, this was implemented in LEN5 , since it comes at almost
no cost with the extended version of Tomasulo’s algorithm.

Now that all the motivations for a new, more powerful execution algorithm have
been explained, the changes that must be applied to the original algorithm and the
original architecture will be discussed.

7More on this in the separate document [3].

17

2 – Execution pipeline architecture

First of all, let us introduce the new key component whose name has already
been mentioned a few times in the previous sections: the ROB.

2.4.1 Reorder Buffer

The ROB is what allows instruction to commit in order, meeting the most important
requirement of speculation, CSR instructions and precise exceptions. This data
structure is somewhat similar to the load-store queue mentioned in section 2.3.2,
since it is compiled in order (as in a FIFO) and contains information about all
the in-flight instructions. In some implementations, the store buffer can effectively
be subsumed by the ROB, as suggested in [6]. In LEN5 , both the load and the
store queue are implemented as separate queues for reasons that are explained in
section 3.7.

The changes that the presence of the ROB introduces in the execution algorithm
are discussed in the next paragraphs. As a consequence of them, also the content
of each of the data structures introduced in section 2.3.2 must be slightly modified
and extended with additional fields. This and all the other aspects of the actual
execution pipeline implementation of LEN5 are discussed in detail in the next
chapter so they are omitted here. The pieces of the extended algorithm shown here
should be quite easy to understand anyway.

Issue Whenever an instruction is issued, it is allocated both in the assigned RS
and in the ROB. Since the issue phase follows the program order, so do the in-
structions in the ROB. Moreover, the index of the ROB entry assigned to the
instruction is saved in a dedicated field in the RS entry instead of the destination
register. This actually implements register renaming using ROB entries instead of
reservation stations as it was done in the original algorithm. Each ROB entry acts
as a physical register that can be used alongside the RF to fetch operands during
the issue stage.

To compare this new portion of the algorithm to the one reported in algo-
rithm 2.1, the pseudo-code for arithmetic instructions is reported in algorithm 2.6.

18

2.4 – LEN5 implementation of Tomasulo’s Algorithm

Algorithm 2.6 Extended Tomasulo’s algorithm: issue stage
procedure issue(instr)

q ← assigned RS entry
t← ROB tail entry
while (!(q is empty) or !(t is empty)) do

wait . wait for empty RS and ROB entries
end while
RS[q].valid ← yes . the fetched instr. is inserted in q
RS[q].res_ready ← no
RS[q].dstROB ← t
ROB[t].valid ← yes . the fetched instr. is pushed in t
ROB[t].instr ← instr
ROB[t].res_ready ← no
regstat[rd].busy ← yes
regstat[rd].srcROB ← t . the result will be buffered in t
return q

end procedure

Operands fetch During issue, the operands can also be fetched from the ROB
besides the RF. The information about where they can be found is stored in the
register status data structure. If an operand is not available neither in the RF
nor in the ROB, it can be fetched from the CDB as soon as it is produced by a
functional unit. This remains almost unchanged except that this time the ROB
index is used to check if the CDB is carrying the required value instead of the RS
index. Notice that doing so avoids data hazards, since an instruction will fetch an
operand from the last older instruction that produces it, regardless of the execution
order.

The changes with respect to the original version reported in algorithm 2.2 are
highlighted in algorithm 2.7.

19

2 – Execution pipeline architecture

Algorithm 2.7 Extended Tomasulo’s algorithm: fetch operands stage
procedure operandFetch(q)

if (regstat[rs1].busy) then
a← regstat[rs1].srcROB . ROB entry producing rs1
if (!ROB[a].res_ready) then . result not yet available in h

RS[q].rs1_srcROB ← h . save the index of that ROB entry
RS[q].rs1_ready ← no

else . rs1 already available in h
RS[q].rs1_value ← ROB[a].res . fetch the value of rs1 from the ROB
RS[q].rs1_ready ← yes

end if
else . rs1 already available in the RF

RS[q].rs1_value ← RF[rs1] . fetch rs1 from the RF
RS[q].rs1_ready ← yes

end if
if (regstat[rs2].busy) then

b← regstat[rs2].srcROB . ROB entry producing rs2
if (!ROB[b].res_ready) then . result not yet available in h

RS[q].rs2_srcROB ← h . save the index of that ROB entry
RS[q].rs2_ready ← no

else . rs2 already available in h
RS[q].rs2_value ← ROB[b].res . fetch the value of rs2 from the ROB
RS[q].rs2_ready ← yes

end if
else . rs2 already available in the RF

RS[q].rs2_value ← RF[rs2] . fetch rs2 from the RF
RS[q].rs2_ready ← yes

end if
end procedure

Execution This phase remains essentially unaffected by the introduction of the
ROB, and so does the interface between the RSs and the functional units. The
result from a functional unit is still buffered in the RS while it waits for the CDB
to become available. Therefore, the pseudo-code of this step is quite similar to the
one in algorithm 2.3, as shown in algorithm 2.8.

Algorithm 2.8 Extended Tomasulo’s algorithm: execute stage
procedure execute(q)

if (RS[q].rs1_ready and RS[q].rs2_ready) then . both operands available
result← RS[q].rs1_value <op.> RS[q].rs2_value . compute result
RS[q].res_ready ← yes
RS[q].res ← result

end if
end procedure

20

2.4 – LEN5 implementation of Tomasulo’s Algorithm

Write result When the CDB is available, the result is broadcast to all the RS but
not to the RF or the memory. Instead, the result is copied to the ROB entry where
the producing instruction was allocated during issue. Also, exception that might
arise during the instruction execution are buffered in the ROB instead of being
processed immediately. This has a very important consequence: the execution
completion does not correspond to the instruction commit. The produces result
can still be used by subsequent instructions, even speculative ones, that may read
it from the CDB, but the state of the processor is not modified yet. For this reason,
a new step shall be introduced into the execution algorithm to take into account
the difference between writing the result into the ROB and writing it into the RF
or memory.

The pseudo-code of this new phase in the execution is shown in algorithm 2.9.

Algorithm 2.9 Extended Tomasulo’s algorithm: write result stage
procedure writeResult(q)

a← RS[q].dstROB
result← RS[q].res
RS[q].valid ← no . remove the instruction from the RS
ROB[a].res_ready ← yes . copy the result to the ROB
ROB[a].res ← result
for (∀y) do . for each RS y

if (RS[y].rs1_srcROB = h) then
RS[y].rs1_ready ← yes
RS[y].rs1_value ← result . copy the result to y

end if
if (RS[y].rs2_srcRS = H) then

RS[y].rs2_ready ← yes
RS[y].rs2_value ← result . copy the result to y

end if
end for

end procedure

Commit In each cycle, only the instruction that reaches the head of the ROB
can commit, meaning that its result can be copied into the RF or into the mem-
ory. This actually implements the in-order commit requirement. Also, exceptions
are only processed at this time, implementing the precise exception model. If an
exception was raised or the instruction has been detected to be mispredicted, the
entire execution pipeline including the ROB can be flushed. By construction, only
instructions that followed the offending one are affected, because all the previous
ones have already completed and committed. In other words, the state of the pro-
cessor is modified in program order, and only by instructions that are confirmed
not to be speculative. Notice that because of this modifying the CSRs leads to a
hazard. In fact, instructions that followed the CSR instruction can still be executed

21

2 – Execution pipeline architecture

on out-of-date CSRs content if they are executed before the CSR instructions com-
mits. On the other hand, the CSRs cannot be updated during execution, because
some older instructions might not have executed yet. LEN5 avoids this by stalling
the execution pipeline when an instruction that modifies the content of the CSRs is
detected during issue, so that all subsequent instructions are prevented to execute
until the state of the processor has successfully been updated8.

Once again, the extended algorithm version of the commit phase reported in
algorithm 2.4 is shown in algorithm 2.10.

Algorithm 2.10 Extended Tomasulo’s algorithm: commit stage
procedure commit(h)

dest← ROB[h].instr.rd . read rd from the committing instr.
RF[dest] ← ROB[h].res . copy the result to the RF
ROB[h].valid ← no . pop the committing instr.
if regstat[dest].srcROB = h then

regstat[dest].busy ← no . mark rd register as available
end if

end procedure

Finally, the main loop of the extended version of the algorithm is reported in
algorithm 2.11.

Algorithm 2.11 Extended Tomasulo’s algorithm: main loop
while (1) do . in every cycle

if (∃ new_instr) then . fetched instr. available
r ← issue(new_instr)
operandFetch(r)

end if
for (∀i) do . for all in-flight instructions in RS

if (RS[i].valid and !RS[i].res_ready) then
execute(i) . compute result

else if (RS[i].res_ready and CDB available) then
writeResult(i) . write result to the ROB

end if
end for
h← ROB head entry
if ROB[h].res_ready then

commit(h)
end if

end while

8more on this in section 3.3

22

Chapter 3

LEN5 Execution Pipeline
Design

In this chapter, the design of the execution pipeline of the LEN5 processor is
discussed. At first, the top-level architecture is introduced and some design choices
that are common to all the building blocks are briefly explained. Then, an in-depth
analysis of each basic block in the execution pipeline is provided. When referring
to one of these blocks, its name will be printed in italic to distinguish it from the
general component not taken in the context of the design of LEN5 . So, the LEN5
implementation of the ROB will be called ROB.

As mentioned in the previous chapters, LEN5 is a single-issue processor, mean-
ing that one instruction per cycle can be issued at most. Notice that the extended
version of Tomasulo’s algorithm supports multiple issue without requiring heavy
changes to the execution pipeline. The dependences between all the concurrently
issuing instructions must be detected and addressed in parallel. Moreover, more
than one instruction of the same type might be issued in the same cycle. This
means that more than one RS must be allocated in each cycle. The same is true for
the ROB, whose entries must be allocated at the same time while respecting the
program order. Moreover, to achieve the maximum theoretical IPC, which corre-
sponds to the number of instructions issued in each cycle, multiple results must be
written to the ROB at the same time. This probably requires more than one CDB.
The possibility of implementing multiple issue was considered at the beginning of
this project. However, it was then wisely decided not to overly complicate what
is already a quite sophisticated architecture. So this possibility is left for possible
future developments of LEN5 , as suggested in section 5.3.

23

3 – LEN5 Execution Pipeline Design

3.1 Top level
As pointed out in sections 2.3 and 2.4, one of the main features of Tomasulo’s
approach to dynamic instruction scheduling is the implementation of register re-
naming and operands fetch by means of Reservation Stations. These, together with
the Reorder Buffer, the Common Data Bus and the Register Status data structure
form the backbone of the execution pipeline of LEN5 . While these components
should be already known from chapter 2, some others are actually required for the
execution pipeline to work properly. A brief description of each one of these is
given in the following paragraphs. Notice that every sequential component in the
execution pipeline has an asynchronous reset built-in, even if this is not pointed
out every single time. Besides, the size of each data structure is parametric, and
some possible values are discussed in chapter 4.

Issue queue A FIFO queue that holds fetched instructions before they are issued.

Issue logic A combinational control block that implements all the steps of the
issue and operands fetch stages described in algorithms 2.6 and 2.7 for all the
instructions (not only the arithmetic ones). One of its key components is the main
instruction decoder (issue decoder), that directs instructions to the correct RS and
generates some of the control signals for the main control logic of the execution
pipeline.

Integer and floating-point register files Both contain 32, 64-bit wide registers
that implement the architectural registers if the RISC-V RV64I base integer ISA
and the F/D single-precision and double-precision floating-point extensions.

Load-store unit The functional unit dedicated to load and store instructions.
It contains two separate queues: the load buffer and the store buffer . The inter-
face with the data cache and the Data Translation Lookaside Buffer (DTLB) are
implemented by this unit, as well as the store-to-load forwarding mechanism.

Branch unit The functional unit dedicated to branch instructions. It is fed by
a special RS compiled in FIFO order, and communicates directly to the front-end
to update the branch predictor data structures.

Control Status Register The CSRs holding the performance counters and all
the data that define the processor status and privilege mode of execution.

24

3.1 – Top level

Commit logic A second control block that manages the instruction commit de-
scribed by algorithm 2.10 for all the instructions. It also generates the control
signals that are required to handle exceptions and flush the execution pipeline.

Main control logic The top-level control logic, that handles and directs those
operations that affect all the execution pipeline, like stall and flush.

The communication between all these components is performed using an AXI-
like valid-ready handshake protocol that is defined in section 3.1.1. The top-level
architecture of the LEN5 execution pipeline is reported in Figure 3.1.

Some features are common to most of the blocks in this chapter. Two of these
are discussed here once and for all: the handshake protocol and the control model
of the data structures like the RSs or the ROB. After, the blocks that are common
to many units in the pipeline are detailed.

3.1.1 Handshake
To achieve both modularity and support for variable latency functional units, a
handshake protocol is required. In LEN5 , the same handshake protocol is used for
the communication among the internal components of the execution pipeline and
for the interfaces with the functional units, the front-end, and the memory system.
Different units are granted access to shared ones by arbiters that act only on the
handshake signals. Moreover, the employed handshake protocol must support the
maximum throughput of one transaction per cycle.

To meet all those requirements, the valid-ready handshake protocol from the
Advanced eXtensible Interface (AXI) communication interface was chosen. AXI
compliant busses are one of the most successful when it comes to on-chip communi-
cation. However, LEN5 internal links are not AXI-compliant. Only the handshake
process from the AXI specifications [2] is actually implemented in each communi-
cation channel. The format of the transmitted payload is completely custom and
specific to each bus. Also, some additional control and status signals may be trans-
ferred in the payload together with the data, without using a second dedicated
channel with its own handshake signals. Still, the transaction actually takes place
only if the handshake process has been successful.

The AXI-like handshake protocol is based on two main signals for each channel:

• valid: signals the receiver that the payload available on the bus is valid from
the same cycle in which the valid is raised.

• ready: signals the sender that the payload can be accepted.

The payload is considered transferred only when both the valid and the ready
signals are asserted. These two signals are subject to the following constraints:

25

3 – LEN5 Execution Pipeline Design

Figure 3.1: Top-level architecture schematic of the execution pipeline of LEN5 .
Handshake and control signals are colored in blue.

26

3.1 – Top level

1. The valid signal must remain asserted until the handshake completes and the
request is caught by the receiver, that is when the receiver asserts its ready
signal.

2. In a synchronous system, the sender must maintain the payload stable until
the first active clock edge since the moment the receiver raised it ready signal.
The receiver will sample the data at the end of the clock cycle in which it
raised the ready signal. From the beginning of the next clock cycle, the sender
can change the payload on the bus.

3. The sender cannot wait for the receiver to raise its ready before asserting the
valid. This means that a request can be done in every cycle, regardless of
whether the receiver can accept it or not.

4. The receiver may or may not wait for the sender valid to be raised before
asserting its ready. This means that a receiver that is currently able to accept
a request could also maintain its ready low until the sender actually performs
a request.

5. If a unit has its ready asserted, it can deassert it before a valid is received
by the sender. This is particularly useful when dealing with shared units or
buses: if no requests are received in a certain cycle (i.e. all the valid from the
source units are low), the arbiter can assert the ready for all the source units.
If one or more valid is asserted in the next cycle, by the end of that cycle the
arbiter can deassert every ready except for the one for the unit whose request
will be processed (e.g. the one with the maximum priority).

From the above description, it is clear that each couple of valid-ready signals
is unidirectional from unit A, which controls the valid, to unit B, which controls
the ready. If a bidirectional channel between two units is needed, a second couple
of valid-ready signals is required, this time going in the optional direction: a valid
controlled by B and a ready controlled by A. In this case, also a second data bus
is required: no tri-state bus or logic is used in LEN5 in general.

To better understand the use of valid and ready signals, two examples are shown
in the timing diagrams in fig. 3.2.

Notice that the valid signal can remain asserted after the first transaction com-
pleted. This permits burst transfers of multiple payloads in consecutive cycles
besides single transactions. An example of this use is shown in fig. 3.3. As a conse-
quence, the channel maximum data-rate can always be reached. This only requires
the receiver to be ready in each clock cycle. Almost every component in the LEN5
execution pipeline can achieve this provided that it has enough storage to save the
incoming data. In a single issue pipeline, where the maximum theoretical through-
put is one completed instruction per cycle, having such a possibility is mandatory
to entirely exploit ILP.

27

3 – LEN5 Execution Pipeline Design

(a) Valid asserted before ready. (b) Ready asserted before valid.

Figure 3.2: Simple handshake examples: in fig. 3.2a the ready is asserted after the
valid, while in fig. 3.2b the ready is already asserted when the sender raised its
valid.

Figure 3.3: AXI-like handshake protocol in burst transactions: single transaction
in cycle 3, burst transaction from cycle 5.

Notice that after the first single transaction is completed (cycle 3), the valid
from A is not deasserted, and the payload is simply changed and maintained stable
until B is ready again. In cycle 4 B becomes ready again and keeps being ready
in the next cycles too while A keeps sending new valid data in each cycle. Since B
is ready, all the data are accepted and the maximum data-rate of one transaction
per clock cycle is maintained during the two-data burst (d[2] and d[3]).

One last remark on the nomenclature: handshake valid and ready signals will
always appear in italic to distinguish them from the valid status signals that are
generated by many data structures and components.

3.1.2 Control
When dealing with control-dominated applications, the use of Moore Finite State
Machines (FSMs) is definitely highly recommended. They ensure that the output
control signals depend only on the current state of the machine and not on the
input signals. Since the state is updated synchronously, this avoids any sort of
combinational loops in the control domain. The only downside is that the state
update latency must be paid whenever a state change is required. This basically

28

3.1 – Top level

means introducing a one-cycle delay in the request processing, which is hardly ever
significant in most designs.

However, when dealing with many different data flows and structures, Moore
FSMs may not represent the best solution. Let us take the load buffer of the LEN5
execution pipeline as an example. This very complex component must process many
different operations in each cycle, each of which may apply to only one of its entries
or to all those meeting a specific requirement, in what could be defined as a CAM-
like access. All these operations are detailed in section 3.7.2. In each cycle, the
amount and combination of the operations are totally arbitrary and unpredictable,
since they depend on other components whose availability and latency are unknown.
Despite this, the load buffer must always be ready to process each answer from those
components in any circumstance1. If this mechanism was combined with a Moore
FSM to process one operation at a time, the load buffer would by far represent
the most significant bottleneck of the core, possibly stalling the entire pipeline.
Moreover, this would mean handling requests and answers sequentially, while the
intent of the chosen execution algorithm is to do that concurrently and possibly
out of order.

In such data structures, the operation to be performed is decided based on some
status fields that are present in all the entries. Since these are always updated
synchronously, also the operations are. Usually, there is only a very simple com-
binational network that produces the control signals based on those status signal.
This is exactly what happens in a traditional FSM where control signals are gen-
erated by a combinational network according to the state of the machine, that is
encoded in some synchronous logic elements. Under a certain perspective, the load
buffer and all the similar structures in the execution pipeline can be seen as FSMs
where the status is encoded in the entries of the data structure. The real difference
is that the state is not explicitly defined. Still, there is some synchronous object
(i.e. the data structure itself) that separates the input signals from the output
signals and the operation control, as it happens in a Moore FSM. The number of
possible states if a function of all the combinations of values of the status bits in
those structures. So in a N entry load buffer with M status bits per entry, the
number of possible states is 2N ·M . In a realistic scenario with N = 8 and M = 5,
the number of possible states is in the order of 1× 1012. Of course, not all these
combinations are allowed and even possible. Each entry is updated according to
the requests from other units, which may be considered as the input control sig-
nals of a traditional FSM. When this happens, only specific status bits of specific
entries are updated at the next active cycle. This is the key difference that allows
saving one cycle when updating the data in this components: the input signals are
not used to update the state of a machine (by means of a next state generation

1Because the memory system does not wait for the ready signal from the load buffer when
answering a request, even if this is provided (always high as a consequence of this).

29

3 – LEN5 Execution Pipeline Design

combinational network) that is going to modify the content of the structure only in
the next cycle, effectively requiring two cycles for the update to take place. Instead,
the input signals are processed by a combinational update logic that acts directly
on the content (i.e. the status) of the structure. The updated status and values
will be available from the next cycle.

Of course, describing such control systems requires particular attention. Many
redundant checks and default statements have been used while writing the code.
See appendix A.2 for more details about the System Verilog description of this kind
of component.

A few more words must be spent on the implementation of the AXI-like hand-
shake protocol described in section 3.1.1. Each entry of the load buffer and similar
structures contains a valid bit that indicates whether the entry contains valid data
or not, similarly to what was shown in table 2.2 for the RSs. When an entry is
selected to be sent to a functional unit or another block, its valid status bit is
checked. The output valid signal of the block is raised only if the valid status bit
of the selected entry is raised. Therefore, the output valid signal of a unit is always
updated synchronously, as the control signals required to update the data struc-
ture that were discussed before. The valid is generated regardless of the value of
the ready signal from the destination unit, according to the constraints reported in
section 3.1.1. In a similar way, the output ready signal of a unit is generated based
on the status signals from the data structure. Most of the time the ready signal is
asserted whenever the structure is not full (i.e. incoming data can be accepted),
or if the entry where to store the incoming data has already been allocated in the
structure2.

An example timing diagram of how the valid-ready handshake protocol is im-
plemented in a FIFO buffer like the issue queue is reported in fig. 3.4. The output
ready_o signal is asserted whenever the data FIFO contains at least one empty
(i.e. not valid) entry. For what concerns accepting new data, the example follows
the process shown in fig. 3.2b, with the only difference being that new data do not
overwrite old valid data. Instead they are allocated in the entry pointed by the
tail index of the FIFO (see cycle number 3). The tail index is incremented each
time a new instruction in pushed in the FIFO. On the other hand, the output
valid_o signal is asserted only if the entry pointed by the head index contains
valid data (see cycle number 2). If the destination unit can accept the data (i.e.
ready_i is asserted), the head index is incremented and the current head entry is
marked as empty (i.e. not valid) as shown in cycle number 8.

An interesting case is the one showed in cycle number 8 for the d[0] FIFO entry.
By the end of cycle 7, the destination unit was able to accept the valid data from

2As an example, when the data cache produces the value requested by a store, this is simply
saved in the entry of the load buffer that performed the memory access request and that was
allocated in the load buffer during issue.

30

3.1 – Top level

Figure 3.4: An example of valid-ready handshake in a FIFO data structure.

this entry, so at the beginning of cycle 8 the entry is marked as not valid. In the
meantime, the source unit is sending a valid data (E) on the bus. This new data
could be stored in entry d[0] already in cycle 8. However, this doesn’t happen
because by the end of cycle 7 the FIFO ready_o signal wasn’t asserted because all
the entries were full. In this case, a one-cycle latency must be paid before e new
data can be pushed in the FIFO. The only solution is to modify the logic that
generates the ready_o signal to take into account this special case: if the buffer
is full (i.e. the head and tail pointers have the same value and all the entries are
valid) and the destination unit can accept the data from the current head entry,
then a new data can be accepted by the source unit at the end of the current
cycle, and so ready_o can be asserted. However, this solution breaks the design
rule stating that a synchronous element should be present between the inputs and
the outputs of certain block: the ready_o signal becomes also a function of the
input ready_i, and not only of the status bits from the data structure. For this
reason, this solution has only been adopted in the most simple and easy to verify
structure of the entire execution pipeline: the issue queue. In all the other units,
a one-cycle delay is paid whenever some data must be written in an entry from

31

3 – LEN5 Execution Pipeline Design

a full data structure. Given the large amount of functional units that introduce
significant delays in the execution pipeline, and that the number of entry in each
data structure can be tuned to have enough space most of the time, this one-cycle
latency doesn’t represent a real limitation for the entire system.

3.1.3 Arbiters
Some of the components in the LEN5 execution pipeline are shared among many
units. This is the case of the CDB, the virtual address adder , and also the memory
system. Of course, only one source unit can be served in each cycle. Thanks to
the valid-ready handshake protocol, dealing with these conflicts is very easy: it is
enough to insert an arbiter between the source units and the destination unit. The
arbiter selects the source unit that is going to be served and propagates it’s valid
signal to the shared unit. At the same time, it will propagate the ready signal from
the shared unit only to the served source unit. Besides, the arbiter generates a
control signal to drive a multiplexer (MUX) that selects the correct source of data
for the channel. As an example, the schematic of a 2-way arbiter is shown if fig. 3.5.

Figure 3.5: Two-way handshake arbiter. It generates the handshake signals for the
source and destination (shared) units and the control signals to selct the data from
the chosen source unit.

Two different 2-way arbiters are available in LEN5 . The first is a fixed priority
arbiter that serves always the same unit in case of conflict. It is basically a 2-way
priority encoder. The second contains a flip-flop that stores which was the last
served unit in case of conflict, that is when both the source units assert their valid

32

3.1 – Top level

signals for the shared unit in the same cycle. When this situation occurs again, the
arbiter will serve the unit that wasn’t served the first time. In the extreme case
where both the valid signals are asserted in each cycle, the source units are served
in an alternating fashion. In the same situation, the fixed priority arbiter processes
only the request from the first unit, stalling the other one.

Notice that using the fixed priority encoder in the execution pipeline can increase
the latency of some instructions. Still, this doesn’t cause these instructions to
starve. Let us take the load-store unit as an example. A priority arbiter is used
to access the shared virtual address adder , with priority given to store instructions
over load instructions. Suppose that only store instructions are issued after a load
and that the load and the first store get their operands ready in the same cycle.
This means that the load took an additional cycle to fetch its operands than the first
store. Suppose also that there are no dependences between all these instructions,
and so that all subsequent stores have their operands ready from the moment
they are issued. Remember that all these instructions are allocated in program
order in the ROB during issue, besides being inserted in the load buffer or store
buffer . Because stores have higher priority than loads, the first store (the second
instruction of the sequence) is executed first, having its virtual address computed
by the virtual address adder . Then, the second issued store executed and so on. If
all the stores hit during the memory accesses, the store buffer is never full, and so
new store instructions can be pushed in, preventing the load from executing. Notice
that since the load is never executed, it cannot commit even when it has reached
the head of the ROB. After a number of cycles equal to the number of entries
in the ROB, no more instructions can be issued, because the ROB is full. Still,
already issued store instructions can be executed. After the last store computes
its virtual address, the conflict accessing the virtual address adder terminates. At
this point, the load request is eventually accepted by the virtual address adder , and
the instructions can perform the memory access and finally commit from the head
entry of the ROB.

In the default configuration, this is actually how the LEN5 load-store unit works:
store instructions are always given precedence over load instruction when access-
ing the virtual address adder , the DTLB and the data cache3. The type of ar-
biter instantiated can be configured using the dedicated switch as explained in
appendix A.1.1.

Besides the case where two units need to access the same shared resource, there’s
also the opposite situation: a shared unit that can communicate to more than one
destination unit. In this case, it must provide a signal to discern which unit the
payload is for. A simple decoder will assert only the valid signal for the actual
destination unit and will propagate its ready signal to the shared source unit. The

3See section 3.7 for more details about the execution process of loads and stores.

33

3 – LEN5 Execution Pipeline Design

data are broadcast to all the destination units, but only the one whose input valid
is asserted will sample them.

3.1.4 Entry selectors
These selectors are the components responsible for choosing the next instruction to
be executed from the ones allocated in a certain RS. The choice is made according to
the status signals of each entry. Each selector provides two output signals: the index
of the selected entry and a valid signal that is used to encode the situation where
no entry is selected, in which case the index just points to the default entry (i.e.
entry zero). Since only the entries meeting certain requirements are allowed to be
executed, the input of the selectors is usually a combination of status vectors from
the data structure. As an example, an instruction in the load buffer can perform
the cache access only if it’s valid, its virtual address has already been computed
from its operands and it has already been translated into the corresponding physical
address according to the OS provided page table.

The produced index and valid signals are used by the control logic of each compo-
nent to generate the necessary handshake and operation-control signals required to
execute an instruction or to update the data structure, as described in section 3.1.2.

In LEN5 , two different implementations of the selectors are provided, while a
switch in the execution pipeline configuration file is used to instantiate one or the
other, as explained once again in appendix A.1.1.

The first selector is a simple priority encoder : if many entries of the RS meet
all the requirement for execution, the selector chooses the one with the higher fixed
priority, that is the one pointed by the lowest index in the RS. Notice that since
the execution and replacing of instructions is performed OoO, there is absolutely
no relation between the program order of instructions and the index of the assigned
entry of the RS. So a suitable instruction could be selected for execution even if it
appears after another suitable one in program order. Due to the OoOE scheme, this
can be iterated for many cycles. However, while the latency and overall performance
of the execution pipeline may slightly get worse because of this, starvation is avoided
by construction: sooner or later each instruction in a RS is guaranteed to execute,
because eventually no more instruction will be issued if no instruction commits
from the ROB for a number of cycles equal to the depth of the ROB. A similar
situation can be easily reduced to the starvation example of section 3.1.3.

To possibly remove the latency drawbacks of a fixed priority encoder, the second
type of selector takes into account the age of each entry in the RS. First, a definition
of age must rely on some metric that depends on the program order of instructions.
For this reason, the most exact definition of the age of an instruction would be
the number of cycles that have elapsed from issue. However, the number of cycles
an instruction is kept in a RS before it is executed is not known and nor it’s its
maximum value, that depends on the hazards and on the latency of the functional

34

3.1 – Top level

unit producing the source operands for the considered instruction. The definition of
age can be relaxed and made independent on the absolute number of elapsed clock
cycles. Instead, it could take into account only the number of instructions that
have been issued after the instruction whose age must be computed. Remember
that even if the maximum IPC of the pipeline is one instruction per cycle, due to
cache misses and structural or data dependences, the effective IPC is very likely to
be lower, so the number of instruction issued in a certain amount of time is always
lower or equal to the number of elapsed clock cycles. The great advantage of this
second definition is that the maximum number of instruction that can be issued
before a certain instruction commits is known, and it’s equal to the depth of the
ROB: once the ROB is full, no instruction can be issued until the oldest instruction
in the execution pipeline (i.e. the one that occupies the head entry of the ROB)
commits, regardless of when this happens. A further optimization is taking into
account only the instructions issued to the same RS of the considered instructions.
In this case, the age of instruction is defined only in relation to other instructions
of the same type and can be computed inside each RS regardless of what is being
done in the rest of the execution pipeline. Notice that even if the number of entries
in a RS is lower the number of entries in the ROB, the maximum age remains equal
to the depth of the ROB, not of the RS, as a consequence of OoO execution and
completion. If an instruction whose result has been computed is popped from its
RS, another instruction can take its place as long as it can also be allocated in the
ROB, even if older instructions haven’t been executed or completed yet.

The second type of selector is referenced as age-based selector. In addition to the
status bits of the data structure entries, it also takes the entry ages in input and
produces the index of the oldest one meeting all the execution requirements. The
age of each instruction is tracked by a dedicated field in each entry of a RS. This
field acts like a counter that is cleared when an instruction is inserted in the corre-
sponding entry (and of course during flush and reset) and incremented each time
a new instruction is inserted in the RS. The age-based selector was coded in a be-
havioral way to let the synthesis tool perform all the necessary optimizations. Still,
a structural tree implementation was manually designed to estimate the impact
of this complex combinational component in the cycle time of the entire system
when compared to a priority encoder like the first type of selector. Since many
comparators and MUXs are required to propagate the highest age value through
the layers of the tree, the age-based selector is expected to be much slower than a
priority encoder with the same number of inputs. The synthesis results reported
in section 4.2.2 show that the age-based selector is, in fact, more than one order
of magnitude (20 times actually) slower than a simple priority encoder of the same
size, while its area is about 7 times higher. So the use of this component is ad-
vised only if significant improvements are brought system-wide, and possibly if this
component doesn’t enter the critical path. For this reason, by default, it is not
instantiated in the execution pipeline of LEN5 , as explained in appendix A.1.1.

35

3 – LEN5 Execution Pipeline Design

The component that would probably take the most advantage from an age-based
selector is the load-store unit, where it might increase the hit ratio during the store-
to-load forwarding process, possibly saving some data cache and DTLB access for
load instructions.

36

3.2 – Issue queue

3.2 Issue queue
The first component that a fetched instruction encounters during its execution is
the issue queue, as shown in fig. 3.1. It works as a buffer between the frontend
and the execution pipeline itself. In particular, it takes fetched instruction from
the fetch unit and sends them to the issue logic for decoding and allocation in
the associated RS. The issue queue corresponds to the pipeline register between
the instruction fetch and the instruction decode stages in a traditional pipelined
processor. Both the communication with the fetch unit and with the issue logic
are implemented using the AXI-like valid-ready handshake protocol described in
section 3.1.1.

Since this first version of LEN5 is a single-issue processor, the issue queue is
a simple circular FIFO buffer where one entry contains a single instruction. As a
consequence, the maximum IPC is one instruction per cycle, with the actual one
being lower due to cache latency and structural or data hazards4.

The main purpose of the issue queue is to partially mask slowdowns that arise
from hazards. In particular, the issue queue reduces the need for a pipeline stall in
the following two situations:

• Structural hazards or hazards among in-flight instructions might fill one or
more RSs or the ROB. In either case, instructions can no longer be issued
until an entry is available. Thanks to the issue queue, the frontend is not
prevented from fetching new instructions from the instruction cache as long
as this has available entries. In the meantime, hazards inside the execution
pipeline might resolve, and new fetched instructions can be issued again.

• Without the issue queue, a miss in the instruction cache would imply stalling
the issue phase until a new instruction is fetched from the L2 cache or the
memory. The issue queue allows the execution pipeline to be fed with new
instructions as long as previously fetched instructions are available (i.e. until
it is not empty).

The issue queue depth can be sized according to the application and/or appli-
cation needs. In a well-dimensioned system, the issue queue should on average be
neither full or empty. Notice that the issue queue state can be used to evaluate
bottlenecks in the system. If the issue queue is full most of the times it means
that the execution pipeline is not fast enough to exploit the entire memory system
instruction throughput. As opposite, if the issue queue is empty most of the time,
it means that the memory system cannot provide enough instructions to fed the

4If a more sophisticated implementation requiresmultiple-issue, the issue queue could be simply
expanded to accept twice as much data from the fetch unit, as proposed in section 5.3.2

37

3 – LEN5 Execution Pipeline Design

execution pipeline to its maximum IPC. The information about the status of the
issue queue is given by the LEN5 code as described in appendix A.3.

The high-level block diagram of the issue queue is reported in fig. 3.6.

Figure 3.6: issue queue block diagram.

Besides the actual FIFO where instructions are buffered, the issue queue contains
two modulus counters whose output is used to address the head and tail entry of
the buffer. The pointer counters maximum value is the issue queue depth, after
which they start over. Since modulus counters are used, the issue queue depth may
or may not be a power of 2. The following section explains how these counter and
the data structure are updated by the issue queue control logic.

3.2.1 Issue queue data structure
The issue queue takes from the fetch unit much information about the fetched
instruction as shown in fig. 3.6, most of which is used to address and update the
branch predictor tables after a branch instruction has been processed by the branch
unit as explained in section 3.6.2. This data is stored in dedicated fields in the tail
entry of the issue queue. Here follow a list of these fields with a short description
of each one fo them.

38

3.2 – Issue queue

• valid: a bit indicating whether the current entry contains a valid instruction.
It is set when an instruction from the fetch unit is pushed into the issue queue
and cleared when the same instruction is popped from the issue queue and
sent to the issue logic or when the issue queue is flushed, as described in
section 3.2.2. The valid bit of the head entry of the issue queue is used to
generate the valid signal to the issue logic. It is important to notice that
the empty and full conditions can’t be distinguished by checking whether the
head and tail pointers have the same value. Instead, they are evinced from
the valid status bit of all the issue queue entries.

• current PC: contains the 64-bit PC of the current instruction. This value is
required for exception handling as described in section 3.2.3 and, if the instruc-
tion is a branch, by the branch predictor to update its table if a misprediction
is detected by the branch unit during the branch execution.

• instruction: this field contains the 32-bit instruction itself. During issue, this
data is processed by the issue logic to fetch the operands and to send them to
the correct RS.

• predicted target: the 64-bit predicted address of the next instruction of a
branch from the Branch Target Address (BTB) of the frontend branch predic-
tor5. This information is used by the branch unit to detect a misprediction by
comparing this value to the one computed during the branch execution.

• predicted taken: a bit that is asserted when the current branch instruction
was predicted to be a taken branch by the frontend branch predictor. This
information is used together with the previous one to detect a misprediction.

• exception raised: a bit indicating if an exception was raised during the
current instruction fetch. The exception handling in the issue queue is briefly
described in section 3.2.3.

• exception code: contains a 4-bit code associated to the exception that was
possibly raised during the instruction fetch.

An example of the content of the issue queue in a given cycle is reported in
table 3.1.

3.2.2 Issue queue control logic
The control logic of the issue queue follows the general principles described in
section 3.1.2. The issue queue is one of the most simple data structures of the LEN5

5See [3] for details.

39

3 – LEN5 Execution Pipeline Design

valid curr. PC instr. pred. trgt. pred. tkn. ex. rsd. ex. code
no - - - - - -

h→ yes 0x0...deaf0 bne 0x0...beef0 yes no -
yes 0x0...beef0 add - - yes 0x1

t→ no - - - - - -
. .
no - - - - - -

Table 3.1: Issue queue content example. h and t are the head and tail pointers. A ‘-’
means that the field content is a don’t care. In the example the head entry contains
a branch instruction with its auxiliary data. Since the branch was predicted taken,
the frontend fetched the next instruction from the predicted target address of the
first. However, this instruction caused a instruction access fault exception (code
0x1) during the fetch phase.

execution pipeline. There are only three main operations that can be performed,
as reported in the following paragraphs.

Push a new instruction The fetch unit signals the issue queue that a new
instruction has been fetched asserting its valid. If the issue queue has at least
one empty entry its output ready signal is asserted. If the handshake completes
successfully (i.e. both valid and ready active as described in section 3.1.1), the
fetch unit can proceed and fetch a new instruction in the next cycle, while the issue
queue stores the current input instructions and associated data in its tail entry and
increments its tail counter. The newly allocated entry is marked as valid. This
process is similar to the one shown in fig. 3.4. If the issue queue is full, its output
ready signal is not asserted and the handshake fails. In this case, the tail pointer is
not incremented, and the fetch unit is stalled, meaning that it will keep the same
fetched instruction at his output also in the next cycle. Notice that if the issue
queue is full in a certain cycle, but its head entry is being popped, a new instruction
from the fetch unit is accepted. In this case, the output ready of the issue queue is
asserted to implement the optimization explained in section 3.1.2. This introduces
a combinational path between the input ready signal from the issue logic and the
output ready signal of the issue queue, and the issue queue represents the only
situation in which this is permitted.

Pop the first instruction When the entry pointed by the head counter is valid,
the output valid signal to the issue logic is asserted. If the input ready signal from
the issue logic is asserted too (meaning that the transaction can be completed) the
pop operation is triggered. At the next active clock edge, the valid bit of the cur-
rent head entry of the issue queue is cleared, meaning that the entry does no longer
contain a valid instruction. At the same time, the head counter is incremented, so
the next instruction in the queue is sent to the issue logic in the next cycle. Notice

40

3.2 – Issue queue

that since instructions are fetched in program order (apart from mispredictions),
the head entry of the issue queue always contains the oldest instruction. As a con-
sequence, instructions are issue in program order from the issue queue, according
to Tomasulo’s algorithm (section 2.3.2). If the ready signal from the issue logic is
not asserted6, the handshake fails: the head counter is not incremented and the
same instruction is sent to the issue logic in the next cycle.

Stall Thanks to the handshake protocol, stalling the issue queue is as simple as
deassert or mask the ready signal from the issue logic. In this case, no instruction
is popped and the head pointer is not updated, as it happens when the execution
pipeline cannot accept any new instruction. A structural hazard is, in fact, one of
the reasons to stall the issue phase. Notice that in some cases the issue queue stall
is not mandatory but it’s highly encouraged. This is true for all those instructions
that modify the processor status or require subsequent instructions to be replayed.
When those instructions are issued and processed by the issue decoder, a stall signal
is generated and used to mask the ready signal of the issue logic from the next cycle.
As mentioned at the beginning of this section, even when the issue is stalled, the
instruction fetch can continue as long as the tail entry of the issue queue is empty.

Flush In some situations, in-flight instructions must be discarded. Besides the
trivial case of misprediction, this happens when an instruction modifies the proces-
sor CSRs or the page table. Since the change takes effect when those instructions
commit, all subsequent ones must be replayed, as they could have been executed
before the status update. In all the previous cases, already fetched instructions that
are buffered inside the issue queue7 must be flushed before the correct instruction
is fetched. The flush operation is controlled by a dedicated input signal generated
by the main control logic of the execution pipeline according to the inputs from
the commit logic. The flush control signal has the same effect that a synchronous
control signal would have: at the next active clock edge the issue queue buffer is
cleared and the head and tails counters are reset to their default value 0. Notice
that it’s enough to clear the valid field of each entry of the issue queue and the
counters to achieve the desired result: if no entry is valid the output valid signal
to the issue logic won’t be asserted until a valid instruction from the fetch unit is
pushed into the buffer.

6As a consequence of a structural or data hazard, or a stall required by the issue or the main
control logic.

7and in any other structure in the execution pipeline.

41

3 – LEN5 Execution Pipeline Design

3.2.3 Exception handling
It is possible that during the instruction fetch an exception is raised. During is-
sue, the PC is used to access the instruction TLB to get the physical address of
the next instruction. If the pointed memory location is not accessible with the
current execution privileges, an instruction access fault exception is raised. If the
requested instruction is not mapped into any page of the executing process virtual
address space8, an instruction page fault exception is raised instead. Also, if the
memory address is not aligned to four bytes, an instruction address misaligned ex-
ception is raised9. When an instruction is raised during an instruction issue, the
except_raised_i signal is asserted and the code associated to the raised excep-
tion10 is produced in except_code_i signal by the fetch unit. This information
is stored in the dedicated fields of the issue queue mentioned in section 3.2.1. In
addition, the RISC-V specification requires that the offending virtual address (i.e.
the PC value that raised the exception) is copied into the machine mode or super-
visor mode mepc/sepc and mtval/stval CSRs. This value is already available in
the curr_pc_i input from the fetch unit, so no additional fields are required in the
issue queue. If the head entry of the issue queue has a registered exception, it is
directly sent to the ROB without any further operation, and the offending PC is
copied in the result field of the ROB so it can be copied in the previously specified
CSRs and used by the OS exception service routine.

As mentioned before, if an exception is raised during the fetch phase, as soon
as the offending instruction is issued, the issue queue can be stalled by the main
execution pipeline control logic since all in-flight instructions would be flushed when
that instruction commits. Stalling the issue queue saves energy since no instruction
is executed in vain.

8The address space is defined in the page table of the current process, see [10] for details.
9See [16], [8] and [10] for more details about how the memory system is implemented in LEN5

and how instructions are handled during the instruction fetch.
10Actually only the four MSBs of the codes defined by [16] are saved in the issue queue to save

some register.

42

3.3 – Issue logic

3.3 Issue logic
The issue logic is the first important control block of the LEN5 execution pipeline.
It implements the issue and the operandFetch procedures of the extended ver-
sion of Tomasulo’s algorithm from algorithm 2.11. It performs the following oper-
ations accordingly:

1. If the instruction from the head entry of the issue queue is valid, select the
proper RS and functional unit according to the instruction type, that is evinced
by the issue decoder, and assert the corresponding valid signal. If the issue
decoder raises an illegal instruction exception, the instruction is only issued to
the ROB. Exception handling in the issue logic is discussed in section 3.3.2.

2. Check the ready signal from the assigned RS and from the ROB to see if
both have an available entry where the issuing instruction can be allocated. If
so, assert the output ready signal to inform the issue queue that the current
instruction can be popped and a new one can be issued in the next cycle,
as described in section 3.2. The issue process follows the handshake scheme
from fig. 3.2a: the ready signal is asserted after the valid signal from the issue
queue.

3. If needed, update the register status data structure with the entry of the
ROB the instruction has been assigned to, marking the instruction destination
register as busy.

4. Check the register status data structure to know if each instruction source
operand is available in the RF or in the ROB. If so, read its values and mark
the operand as ready. Otherwise read from the register status the entry of
the ROB that will contain that operand as soon as it is computed by the
corresponding instruction. In this case, the operand will be fetched from the
CDB as soon as it will be produced by the source functional unit.

5. Send the issuing instruction to the selected entry of the ROB, asserting the
dedicated output valid.

6. If no exception has been raised, send the issuing instruction and its available
operands to the RS selected by the issue decoder.

The issue logic also performs the sign extension or zero-padding of the immediate
values when required. Notice that an immediate value can be sent to the RSs as
a second operand, without requiring any dedicated registers. From the execution
pipeline perspective, an immediate value is just an operand exactly like the register
values.

The issue logic output data signals are broadcast to all the RSs. Only the RS
that receives an asserted valid signal will actually insert the incoming data in its

43

3 – LEN5 Execution Pipeline Design

data structure. Moreover, the issue logic is a completely combinational block. This
means it cannot be flushed or reset. Instead, it generates the control signals that
are used to stall the issue queue if needed by the instruction being issued. In all
the other cases, the valid-ready handshake protocol ensures that the transactions
between the issue queue, the ROB and the RS selected by the issue logic are
completed correctly.

A high-level block diagram of the issue logic is reported in fig. 3.7.

Figure 3.7: Issue logic block diagram. The ports shown in this diagram are not
totally accurate. Please refer to the code for the complete interfaces. Since it
contains only combinational logic, no clock, reset or flush signals are required.

The most important component of the issue logic is the issue decoder. The next
session briefly describes its purpose and features.

3.3.1 Issue decoder

Before describing how this component works, some basic information about the
RISC-V ISA and instruction format are summarized.

44

3.3 – Issue logic

RISC-V uses fixed-length, 32-bit instructions11. Based on the type of instruction,
the format can be different and so is the contained information. As an example,
store instructions don’t have any destination register rd unlike register instruc-
tions like ALU ones. In this case, the bits that usually contain the index of the
destination register are used to store the five Least Significant Bits (LSBs) of the
immediate offset that is used to generate the virtual address of the destination
memory location. Similarly, not all instructions use all the possible fields for the
operation code. The RISC-V ISA reserves at most three fields for this code:

• A 7-bit opcode field that occupies the seven LSBs, where the main operation
code is contained. For example, most of the instructions that are executed
by an integer ALU have the opcode field equal to 0110011 while in CSR
instructions it is 1110011.

• To further identify the instruction, an additional field may be present in the
instruction format: funct3. It is a 3-bit wide field in the instruction bits 12
to 14.

• R-type instructions have another 7-bit wide funct7 field in the seven Most
Significant Bits (MSBs) to specify the operation to be performed.

Based on the instruction format and the fields employed, the remaining bits of the
instruction are used to encode the source and destination register or an immediate
value, which is a user-defined number which is used during the instruction execution
without having to load it from a register. The six different instruction formats
defined by the RISC-V ISA and all the details about them are reported in table 3.2.
For all the details about the instruction codes and formats refer to the official
specification [17].

[31-25] [24-20] [19-15] [14-12] [11-7] [6-0]
R funct7 rs2 rs1 funct3 rd opcode
I imm[11:0] rs1 funct3 rd opcode
S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode
B (or SB) imm[12,10:5] rs2 rs1 funct3 imm[4:1,11] opcode
U imm[31:12] rd opcode
J (or UJ) imm[20,10:1,11,19:12] rd opcode

Table 3.2: RISC-V instruction formats and content.

The preliminary version of the issue decoder of LEN5 supports all instructions
from the RV64I except for those that require the integration with the frontend,

11Unless the compressed instruction set extension RVC is implemented, in which case instruc-
tions are 16-bit wide.

45

3 – LEN5 Execution Pipeline Design

like the ones modifying the program counter (jal, auipc), and those requiring full
support for the machine and supervisor modes.

Starting from the opcode field, the issue decoder analyses the instruction accord-
ing to the expected fields and values for that operation code. Some instructions
are required to have specific values in the source or destination register fields, and
others are distinguished only on this basis. As an example, the wait for interrupt
(wfi) instruction differs from the supervisor mode return (sret) instruction only
because of the rs2 field, that contains 00101 in the former and 00010 in the latter.
The decoder must, therefore, conditionally analyze the instruction fields to decide
what RS it should be sent to and what information and data are required for its
execution. If the issued instruction is not among the known instructions, an illegal
instruction exception is raised. As a consequence, the issue logic will behave in the
same way it does when an exception is raised during the fetch stage. In LEN5 code,
all the supported instructions are defined in a configuration package as described
in appendix A.1. The definitions are used in the issue decoder and the commit
decoder.

If the instruction is known, the issue decoder sets some control signals for the
issue logic. The issue logic will perform the operations mentioned before according
to them. Each control signal triggers a specific operation as listed below.

• An exception raised signal is asserted if the received instruction is not among
the known ones. The issue logic will consider this exception only if no excep-
tions were raised during the fetch stage. Of course, only one exception per in-
struction can be processed at commit time, and earlier exceptions have higher
priority, since an exceptional instruction is supposed to behave exceptionally,
so other exceptions might be raised during decode. Remember that instruc-
tions that raised an exception during the fetch stage or the decode stage are
not executed or sent to any RS. Instead, they are only pushed into the ROB
together with the exception code and auxiliary data (like the offending virtual
address).

• The exception code that corresponds to the raised exception is sent to issue
logic. In the current implementation, only an illegal instruction exception can
be raised during decode, unless the instruction being decoded is an ebreak.
In this case, the corresponding breakpoint exception is registered.

• Some instructions don’t need any additional computation until they commit.
This is the case of the fence or some CSR instructions. When instructions of
this type are decoded, result ready control signal is sent to the issue logic.
As a consequence, the instruction won’t be sent to any RS but only to the
ROB, where it will be marked as completed so it will be committed without
any additional check as soon as it reaches the head of the ROB. This behavior
is similar to the one adopted for instructions that raised an exception.

46

3.3 – Issue logic

• As mentioned before, some instructions require the execution pipeline to be
flushed when they commit, the ones modifying normal instruction flow of
the executing program such as jal and jalr. When these instructions are
decoded, a stall possible control signal is asserted. The issue logic will or this
signal with other possible reasons to stall the pipeline, and the resulting signal
is passed to the top-level control logic of the execution pipeline, so the issue
queue can be stalled already from the next cycle. This saves energy avoiding
to execute instructions in vain as mentioned in section 3.2.3. Notice that
speculative instructions never cause the pipeline to stall. This is supported by
the assumption that the prediction logic is accurate enough to minimize the
misprediction probability.

• According to the decoded instruction, the destination functional unit is se-
lected by the decoder and communicated to the issue logic. This information
is used to assert only the correct valid signal for the RS associated to the
selected functional unit.

• Also the control signals for the destination functional unit are generated by
the issue decoder. Notice that different execution units accept different control
signals. If the decoded instruction is a branch, the type of branch is encoded
in this signal. If the instruction is an ALU operation, the ALU control signals
are encoded instead and so on. For this reason, the width of the functional
unit control signal is the maximum of the ones accepted by each unit. Only
the necessary portion of this data will be read and used by each functional
unit.

• A floating-point source operand control signal is asserted if the current
instruction must fetch its operands from the floating point RF instead of the
integer RF.

• The rs1 required and rs2 required signals are set if the instruction actually
needs the operands from the registers pointed by its rs1 and rs2 fields (see
table 3.2). This information is used by the issue logic to issue the know if an
operand must be fetched or not from the RF or the ROB.

• A similar immediate required signal is asserted if the instruction contains
an immediate field that must be used during the execution.

• When an immediate value is needed, the format of the instruction must be
known to correctly reconstruct its value according to the organization of this
field reported in table 3.2. This information is carried by an immediate
format control signal.

• The last information that is needed by the issue logic is whether or not the
register status data structure must be updated for the current instruction,

47

3 – LEN5 Execution Pipeline Design

that is if the current instruction will actually write a destination register in
the integer or floating-point RF. A register status update signal is asserted
if this is the case.

Notice that some instructions like the CSR instructions and the sfence.vma
must be executed only during commit since they modify the processor status. The
operands of these instructions are not fetched during issue. Instead, they are fetched
during commit from the RF. Notice that the RF at commit time contains the
most updated values since all previous instructions have committed. Moreover,
no additional read ports in the RF are required. The commit logic can simply
take control of the existing read ports without causing any error in the execution
pipeline. At that moment, no other instruction is accessing the RF since the issue
was stalled when the committing “special” instruction was issued. Even if this
wasn’t true, instructions issued after that would be unconditionally flushed, so
the fact that they failed to load the right value from the RF has absolutely no
importance. Therefore, a simple MUX controlled by the commit logic is inserted
at the index input of each read port of the register file.

3.3.2 Exception handling
At this point of the execution pipeline there are only two possible situations where
an instruction may have been raised: the instruction fetch process and the instruc-
tion decode. The former was discussed in section 3.2.3: the instruction address
misaligned, instruction access fault and instruction page fault can be raised during
the fetch process. The latter was mentioned above in this section. As pointed out,
only two different exceptions can be raised during the instruction decoding:

• illegal instruction (code 0x2)

• breakpoint (code 0x3)

The breakpoint instruction is intentionally raised by the ebreak instruction. This
kind of exception is also called trap. Traps are inserted by debuggers in the pro-
gram code to interrupt the execution at some user-defined locations (breakpoints).
Usually, when this happens the service routine, that is loaded from the memory
location indicated by the mtvec/stvec CSR, transfers the execution control to the
debugging environment that checks the current execution context (e.g. the value of
variables in the registers or in the memory). When the user requires the program
execution to be resumed, the debugger restores the processor status and the next
instructions in program order are fetched and executed until another breakpoint
is reached. From the processor perspective, a breakpoint exception is no different
from any other: it must be processed in program order during commit, and the
entire execution pipeline must be flushed before the correspondent service routine
is fetched. So, when an ebreak instruction is decoded, the corresponding exception

48

3.3 – Issue logic

is raised, and the instruction is simply allocated in the ROB with the exception
raised bit asserted and its PC is copied into the dedicated field of the ROB. The
exception handling logic will process the exception when the instruction reaches the
head of the ROB12. No additional computation is required, so the instruction is not
sent to any RS. Besides, the issue queue can be stalled as soon as the instruction
is decoded, as it will be flushed unconditionally when the break commits.

The illegal instruction exception is raised whenever at least one field of the
issuing instruction does not match the required format and values for a specific
operation code as defined by the RISC-V specification [17]. Also, in this case, the
instruction is not sent to any RS. It is only allocated in the tail entry of the ROB
with the exception raised bit asserted. Its PC is copied in the dedicated field of the
ROB.

Notice that the issue logic has an exception auxiliary data output. This is meant
to contain additional information about the occurred exception whenever it is re-
quired. The content of this output is copied in the result field of the tail ROB
entry when the instruction is issued. In the current implementation of LEN5 , no
auxiliary data is required by any of the exceptions that may be raised before the
execution phase, as discussed above. For this reason, the auxiliary field is used once
again to contain the current instruction PC. Notice that this mechanism can also
be used to generate additional data for special instruction during the issue phase.
For example, the sfence.vma instruction has different effects depending on the
value of its rs1 and rs2 fields: they are used to identify the virtual address spaces
and the virtual address values that must be prevented from executing out of order.
This is particularly useful in multi-core and multi-thread implementations. What
is relevant here is that the information about the value if rs1 and rs2 is required at
commit time and must, therefore, be stored in the ROB. At the moment, the whole
instruction is allocated in the ROB during issue and its source operands indexes are
simply accessed during commit to decide what to do. However, a more optimized
solution could make this decision during issue and encode it in the auxiliary data
that are saved in the result field of the ROB. This saves a decoding step during
commit and doesn’t require the whole instruction to be saved in the ROB.

12Notice that the LEN5 code does not include the exception handling logic, since the integration
of the frontend and the memory system must be finalized before all the possible instructions can
be properly processed.

49

3 – LEN5 Execution Pipeline Design

3.4 Register status
The register status data structure is implemented exactly as described in sec-
tion 2.4.1. Two different components are instantiated to keep the information about
the integer RF and the floating-point RF. Each register status has as many entries
as the number of ISA registers, that is 32 for both the RFs. Update request to the
register status are issued using once again the AXI-like handshake protocol.

This component is accessed by the issue logic whenever an instruction is issued
to know if its operands are available and where they can be found. It is updated
during issue to register which instruction will write a specific register, and during
commit to state that the value of that register is going to be available in the RF
starting from the next cycle. As a consequence, the register status has two read
ports to access the information about both an instruction operands during issue
and two write ports to update the information about an instruction destination
register during issue and commit.

Since this is a very simple component, no block diagram is provided. Its interface
should be clear from fig. 3.1.

In the following sections, the content and control logic of the register status are
discussed.

3.4.1 Register status data structure
Each entry of the register status contains only two fields that are briefly described
below.

• busy: a bit indicating if the value of the associated register has been or is
going to be produced by an in-flight instruction.

• ROB index: the entry of the ROB containing the instruction that will write
the associated register during commit.

An example of the content of this data structure is reported in table 3.3.
The busy bits of the source registers of an issuing instruction are read by the

issue logic during issue. If it is set, the corresponding ROB index is used by the
issue logic to check if the requested operand has already been produced by the
last instruction writing that register. If so the result can be fetched from the ROB
entry assigned to the producing instruction. If not, the ROB entry is sent to the
destination RS and the CDB is monitored. As soon as a functional unit writes on
the CDB the index of the target ROB entry and the produced result, this is saved
in the RS entry assigned to the issuing instruction.

At the same time, the busy bit of the issuing instruction destination register is
set by the issue logic and the tail entry of the ROB is stored in correspondent ROB
index field. This way, subsequent instructions whose operands must be fetched

50

3.4 – Register status

Register index busy ROB index
0 no -
1 yes 3
2 no -
.
31 yes 4

Table 3.3: Register status content. In this example, the value of register 0 is already
available in the RF, and no in-flight instruction is going to write it (the busy bit is
not set). The corresponding ROB index is a don’t care in this case. Instead, register
1 will contain the result of the instruction allocated in the third ROB entry. Any
instruction using this register value as operand must check that entry of the ROB.
If the result is not available yet, they must wait for it to be produced and sent on
the CDB. The same is true for register 31.

from that register will access the registered entry of the ROB instead as described
in the previous paragraph.

The busy bit of the destination register can be cleared when the producing
instruction commits, but only if no subsequent in-flight instruction is going to
write the same register. This is crucial in Tomasulo’s algorithm to handle Write
After Write (WAW) and Read After Write (RAW) hazards.

3.4.2 Register status control logic
The two write operations to update the register status data are triggered only if
the valid signal from the requesting unit, the issue logic or the commit logic, is
asserted.

During issue, no additional check is required to update the busy and the ROB
index fields of the destination register of the issuing instruction. In other words,
the valid signal simply acts like a write enable control signal in this case. Notice
that if a previous instruction writing the same register has not committed yet, the
busy bit might be already set. Still, the write operation takes place normally, and
only the ROB index field is actually modified.

During commit, the busy bit can be cleared only if the committing instruction is
the last one among all the in-flight instructions that writes its destination register.
The control logic simply verify this condition comparing the head index of the
ROB, that is the entry from which the current instruction is committing, to the
ROB index associated to the destination register of that instruction. If they match,
no instruction has modified that value since the committing instruction was issued.
If they don’t match, an instruction issued after the committing one is going to
write the same destination register (WAW hazard). In this case, the corresponding
busy bit must not be cleared, even if the committing instruction is writing its result

51

3 – LEN5 Execution Pipeline Design

in the RF. If it was, subsequent instructions whose source operands refer to that
register would fetch the outdated value from the RF instead of the last value from
the entry of the ROB indicated by the register status data structure or from the
CDB. This would cause a RAW hazard.

Both the issue logic and the commit logic have their own dedicated write port
that can be used in any cycle, exactly like a write port in a traditional register
file. For these reasons, write operations to the register status never fail. As a
consequence the ready signal is always asserted. This is the extreme case of the
situation shown in fig. 3.2b.

For what concerns read operations, there is no reason for the control logic to
interfere since each read request is performed by a dedicated asynchronous read
port with its own address (register index). Besides this, the output values from the
register status are always valid, so handshake is used for read requests.

52

3.5 – Register files

3.5 Register files
Two register files are instantiated in the execution pipeline of LEN5 : the RISC-V
ISA expects a dedicated register file for floating-point instructions if the floating-
point ISA extension is supported. This should speed up the execution since fewer
memory accesses are required. Even if Tomasulo’s algorithm uses register renaming,
the same amount of architectural registers must be provided: the implementation
should be transparent to the compiler, and the code must be able to use all of
the registers. The only advantage of register renaming is that instructions can be
executed OoO even if they show some data dependence, without having to wait for
previous instructions to be committed. An interesting fact is that Tomasulo’s algo-
rithm was also introduced to compensate for the floating-point registers shortage
of the IBM System/360 family, which limited the possible compiler optimizations.
Due to the limited amount of registers, many slow memory accesses were required.
Tomasulo’s original algorithm could hide the latency of memory instructions by ex-
ecuting other instructions while buffering their results in the Reservation Stations
until the memory operations committed.

Both the RFs provide 32 registers. Integer registers are called x0 . . . x31, while
floating-point registers are called f0 . . . f31. While x0 is hard-wired to 0, f0 is like
every other register.

The RISC-V specification [17] define a calling convention for integer registers
that associates each register to a specific programming function. For example, reg-
ister x2 is also called sp since it is conventionally used to store the stack pointer,
while register x1 is also called ra because the convention uses it to store the re-
turn address after a procedure call implemented with the jump-and-link instruction
(jal).

In RV64I the integer registers are 64-bit wide. Since LEN5 supports both the
single-precision (F) and double-precision (D) floating-point extensions, also the
floating-point registers are 64-bit wide. So, from the hardware point of view, the two
register files are completely identical except for the hard-wired x0 integer register.

Each RF has one synchronous write port to write the produced result into the
destination register during commit and two asynchronous read ports to read the
operands during issue. The input valid signal from the commit logic has the same
purpose of a write enable control signal for the RF, as it happens in the register
status update during issue. The register values can be read in any cycles, and it’s
always valid, so the output ready signal is always asserted and no output valid
signal is required for read accesses.

As for the register status structure, the very simple block diagram of the RFs
is omitted to save space and money when printing this document. Please refer to
fig. 3.1.

53

3 – LEN5 Execution Pipeline Design

3.6 Reservation Stations

The Reservation Stations are, as explained in section 2.3.2, basically buffers where
the operands are hold before the instruction begins its execution in the functional
unit associated with its RS. Each RS has a certain number of entries that can be
configured by the user in the configurations files as described in appendix A.1. In
LEN5 there is a RS for each functional unit and one functional unit for each type
of instruction. However, multiple functional unit and RSs of the same type are
fully supported. Moreover, an arbitrary number of RSs and functional units can be
instantiated. The case limit is to have many RSs per type with a single entry and
a dedicated functional unit. Of course the scaling of performance is not linear with
the number of functional units unless other parts of the processor are modified too:
multiple units can increase the IPC over one instruction per cycle, meaning that the
frontend and the memory system must support a higher instruction throughput,
and the issue queue, the issue logic and the commit logic must be modified to
support the issue and commit of multiple instructions per cycle. Another limit is
represented by the single CDB. To maintain a maximum theoretical IPC greater
than one, more than one result must be written to the ROB in each cycle. This
requires more than one CDB. A more detailed analysis of possible improvements
is available in section 5.3.2 and section 5.3.2.

For what concerns the functional units, there is no constraint about the latency
or the depth of the pipeline. The only requirement is that the functional unit
supports the valid-ready AXI-like handshake protocol both for the beginning of
execution when the operands are sent by the RS to the functional unit, and the
execution completion, when the result is sent by the functional unit to the RS.
Besides, the functional unit must accept also the index of the source entry of the
RS when it receives the operands. The same index must be produced together with
the result when the execution completes. This is required to support units that can
execute more than one instruction at the same time, even OoO. If not, a simple
register can be employed to store the index every time a new instruction is executed.
As an example, the memory system of LEN5 can handle an additional data cache
access request of the first one resulted in a cache miss, and even a third one of the
second missed too (miss-under-miss). Therefore, the memory system answers the
load buffer requests with an order that is different from the one in which they are
issued, and the index of the source entry of the load buffer is returned together with
the loaded value. In fact, the load buffer is just another RS. However, both the
load buffer and the store buffer have additional constraints and interactions that
make them much more complex than the other RSs. So, they are instantiated in a
standalone unit, the load-store unit and discussed separately in section 3.7.

RSs, together with the AXI-like handshake protocol, allow a significant level of
customization and modularity in the execution pipeline while keeping the general
complexity quite low. These aspects meet the main motivations that push towards

54

3.6 – Reservation Stations

Reduced Instruction Set Computer (RISC) systems in general. RSs are one of
the main reasons why Tomasulo’s approach was chosen to implement a RISC-V
processor.

As repeated many times in this document, RSs are one of the key components
to handle data hazards between instructions: all the RSs are connected to the CDB
both to read and write data. When a result is written on the CDB, every other
in-flight instruction can save it if they need it as a source operand. This ensures
that an instruction whose operands were not ready during issue has always access
to the most updated values of its operands while respecting RAW dependences.
When all the required operands are available in one entry, they are sent to the
functional unit unit as soon as it is free (no structural hazards) and the instruction
is executed.

Apart from the load buffer and the store buffer , the RSs included in this first
version of the execution pipeline of LEN5 are listed below. Each RS takes its name
from the associated functional unit. The block composed by a functional unit and
its RS is referred to as execution unit.

• ALU RS: the RS that feeds the integer ALU. This is the standard RS for
arithmetic units, which is detailed in section 3.6.1.

• Multiplier RS: the RS where multiply instructions belonging to the integer
Multiply ISA extension (RV64M) are hold before they are executed in the asso-
ciated integer multiplier. This RS and the next two (divider and floating-point)
are just two instances of the previous one. Only the associated functional unit
and control fields are different.

• Divider RS: the RS where divide instructions belonging to the integer Multi-
ply ISA extension (RV64M) are hold before they are executed by the associated
integer divider.

• Floating-point RS: the RS where the instructions from the single and
double-precision floating-point RV64F/D ISA extensions are hold before they
are executed by the FPU13.

• Branch unit RS: the RS where branch instructions are buffered. It differs
from the previous RSs in that it is compiled in-order. The reason for this is
discussed in the dedicated section 3.6.2.

The RS types provided in LEN5 and summarized in the list above should be able
to support all the frozen RISC-V ISA extensions from [17]. Custom instructions

13In this first implementation of LEN5 , no FPU is included, since its design might represent
another master thesis alone. The focus of this project is on the execution core itself and not on
the surrounding logic like the arithmetic units.

55

3 – LEN5 Execution Pipeline Design

and execution units may need ad-hoc RSs, but in general, the principles on which
the provided RSs are based should hold also in possible future extensions.

Figure 3.8 reports the block diagram of a generic RS.

Figure 3.8: Reservation station block diagram.

Before proceeding to the details of each operation that can be performed in a
RS, the content of a generic arithmetic RS and of the branch unit RS are reported
in the following sections.

3.6.1 Arithmetic RS data structure
Arithmetic operations require two source operands that can be both register values
or one register value and one immediate operand. In the latter case, the immediate
value can be stored in the same RS field dedicated to the second operand. The
sign extension or zero-padding is performed by the issue logic. Each entry of an

56

3.6 – Reservation Stations

arithmetic RS contains the data and status fields listed below.

• valid: a status bit indicating if the entry contains an instruction that hasn’t
completed or written its result to the ROB yes.

• busy: a status bit indicating if the contained instruction is being executed by
the functional unit.

• [entry age]: an optional field that is provided only if the age based selectors
are enabled in the execution pipeline. It is reset to zero when a new instruction
is inserted in the entry and incremented each time an instruction is inserted
in a different entry, as explained in section 3.1.4

• fu_ctl: contains the control signals for the functional unit, such as the oper-
ation code for the integer ALU.

• rs1_ready: a status bit indicating whether the first operand is available in the
rs1_value field or not. If the operand was fetched during issue by the issue
logic, this bit is set when the instruction is inserted in the RS. Otherwise, it is
set when the operand value is read from the CDB as described in section 3.6.3.

• rs1_idx: the index of the ROB entry containing the instruction that will
produce the first source operand for the current one. Its value is used to
monitor the CDB: if it matched the ROB index transmitted in the CDB, the
operand value is saved in the rs1_value field.

• rs1_value: the actual value of the first operand of the instruction.

• rs2_ready: same as rs1_ready but regarding the second operand. If this is
an immediate, this bit is set when the instruction is inserted.

• rs2_idx: same as rs1_idx but regarding the second operand.

• rs2_value: the actual value of the second operand of the instruction. If it
is an immediate, its sign-extended or zero-padded immediate value from the
issue logic is stored here.

• res_ready: a status bit indicating whether the result has already been com-
puted by the functional unit (i.e. if the instruction has completed its execu-
tion).

• res_idx: the index of the ROB entry where the result of the contained in-
struction must be stored during the write result phase. This value is sent on
the CDB together with the result itself. Instructions whose source operand
indexes match this value can read and save the result in the operand value
fields of their RS entry.

57

3 – LEN5 Execution Pipeline Design

• res_value: the actual result produced by the functional unit.

• except_raised: a status bit indicating if an exception was raised during
execution. It can be set when the functional unit completes the execution
of an instruction.

• except: the exception code associated with the raised exception. Its value is
sent to the ROB during the write result phase so it can be used to handle the
exception when the instruction commits (i.e. it reaches the head of the ROB).

An example of the content of a reservation station is provided in table 3.4. In
the reported example, entry number 2 has already been executed but it has not
written its result in the CDB entry 4 yet. So the first operand of the last entry,
that must be fetched from that entry of the ROB, is not yes available preventing
this instruction to be executed. When entry 2 writes its result on the CDB, the
last entry will be able to fetch it. Finally, entry 0 has its operands ready and it’s
waiting to be selected for execution.

v bsy fu_ctl rs1_r rs1_i rs1_v . . . res_r res_i res_v ex_r ex
0 yes yes sub yes 3 10 . . . no 2 - no -
1 no - - - - - . . . - - - - -
2 yes no add yes 1 - . . . yes 4 13 no -
. .
n-1 yes no or no 4 10 . . . no 5 - no -

Table 3.4: Reservation station data structure content example. The fields con-
taining the information about the second operands have been omitted here to save
space.

3.6.2 Branch unit RS data structure
As mentioned before, the RS holding branch instructions to be executed in the
branch unit differs from all the others since it must be compiled in-order like a FIFO
buffer. The reason is to be found in the frontend. The gshare branch predictor com-
bines information about the specific branch instruction found in an associative table
with the global branch history. If branch instruction were allowed to executed OoO
in the execution pipeline, the history table would lose coherence with the program
order of branches (the trace). Besides this, since also branch instruction could be
speculative, executing them OoO could produce different results in misprediction
detection. Imagine that a branch is predicted as taken and issued to the execution
pipeline. Suppose its operands are not ready at issue time, so the branch is allo-
cated in the branch unit RS waiting for its operands to be produced on the CDB
by some other RS. At this point, imagine that another branch instruction is issued,
this time having its operands ready since the issue phase. Also, this second branch
is inserted in the branch unit RS, and unlike the first one is marked as ready to

58

3.6 – Reservation Stations

execute. Notice that since this second branch depends on a previous branch, it is
speculative. When it is executed, the branch unit might detect a misprediction.
As a consequence, the issue queue is stalled and the branch predictor is informed
that a misprediction occurred for that instruction PC, so the tables are modified
accordingly. In the next cycle, also the first branch receives its operands becoming
ready for execution. It might happen that also the first branch was mispredicted,
so the second branch should not have been executed. This means that the predic-
tor tables contain wrong data about the second branch instruction and about the
global history. Those changes cannot be reverted. Notice that this doesn’t have
any consequence on the correct program flow since the branch instructions are still
processed in-order during commit14. So as soon as the first branch commits, the
entire pipeline and the issue queue are flushed and the correct program counter is
loaded, regardless of the outcome of the second branch instruction. So the only
consequence of executing branches OoO is a not negligible loss in the predictor
accuracy. A second solution to solve this issue is updating the predictor tables
only during commit, when the pipeline is flushed in case of misprediction. Also,
in this case, the issue queue can be stalled as soon as a misprediction is detected
by the branch unit. Because of how the branch unit and the frontend of LEN5 are
implemented and connected, this second solution was not adopted. Instead, the
branch unit RS is managed as a FIFO. For more information about the branch unit
and the frontend of LEN5 please refer to [3].

Besides the head and tail pointers, two additional counters are employed to
select the next instruction to be executed and the next one to accept the branch
result from the branch unit. Each counter is incremented as soon as an instruction
performs the corresponding operation (insert, execute, write result, pop).

The information about the actual branch outcome produced by the branch unit
is stored in a dedicated field of the RS. Before being written on the CDB, this bit
is padded with zeroes so it can be sent in the value field of the CDB and stored in
the result field of the ROB. When the instruction commits, this field is checked by
the commit logic to flush the pipeline a misprediction is registered.

The fields of the branch unit RS entries are listed and briefly described below.

• valid: a status bit indicating if the entry contains a branch instruction that
hasn’t been processed by the branch unit yet.

• busy: a status bit indicating if the contained instruction is being executed by
the branch unit.

14Remember that the execution pipelined flush must be performed only on instructions issued
after the branch instruction at the beginning of the basic block. So the flush cannot be issued
during the execution of the branch, because even if branch are executed in-order they do not
maintain the original order with respect to the other in-flight instructions.

59

3 – LEN5 Execution Pipeline Design

• branch_type: contains the encoded type of branch15.

• rs1_ready: same function as in the arithmetic RS in section 3.6.1.

• rs1_idx: same function as in the arithmetic RS in section 3.6.1.

• rs1_value: the actual value of the first operand of the branch instruction
instruction.

• rs2_ready: same as rs1_ready but regarding the second operand.

• rs2_idx: same as rs1_idx but regarding the second operand.

• rs2_value: the actual value of the second operand of the branch instruction
instruction.

• imm_value: besides the two register operands also accept an immediate value
that is used as offset for the PC. Its value is extracted from the instruction
itself, so it’s available since the issue phase.

• pred_pc: the PC of the branch instruction allocated in the current entry. It
is used to update the predictor tables.

• pred_target: the predicted branch target address from the frontend branch
predictor. It is compared to the computed branch target address to detect a
target misprediction.

• pred_taken: the predicted branch outcome: 0 means predicted taken, 1 means
predicted not taken.

• res_idx: the index of the ROB entry where the branch instruction was
allocating at issue time, and where the branch unit outcome saved in the
mispredicted field must be stored using the CDB.

• res_ready: a status bit indicating if the misprediction information was already
produced by the branch unit and store in the mispredicted field.

• mispredicted: the actual outcome of the branch unit. It corresponds to the
res_value field in the arithmetic RSs.

As it can be evinced from the list above, the content of this data structure has
only little variations with respect to the one of an arithmetic RS shown in the
table 3.4 example.

15The possible types are beq, bne, blt, bge, bltu, bgeu. For additional information about
branch instructions refer to [17] and [8].

60

3.6 – Reservation Stations

The source operands in the branch unit RS are fetched in the same way they are
in the arithmetic RSs, through a Content Access Memory (CAM)-like parallel access
port. Also, the other operations are similar to the ones described in section 3.6.3,
with the only difference being that counters are used instead of selectors. So the
control logic is totally similar too.

3.6.3 RS control logic

All the RSs in the LEN5 execution pipeline follow the control paradigm discussed
in section 3.1.2. A combinational network is used to issue a certain operation on
a given entry of the RS data structure based on the input, handshake and status
signals. The operation takes effect synchronously on the next active clock edge.
Another small combinational network produces the output control and handshake
signals for the functional unit and the CDB. In general, instructions complete their
execution and write their results to the ROB OoO. So instructions are popped from
the RS OoO too. This means that these structures cannot be addressed with simple
sequential pointers like the issue queue. Instead, some selectors are used. Usually,
there is a dedicated selector for each operation that the RS can issue on one of its
entries. The selector evaluates which are the suitable entries for that operation and
picks one of them according to its internal priority scheme (see section 3.1.4). Each
RS must deal with two main types of events: generating a request regarding the
selected entry or process a request or an answer from an external unit. The possible
operations in a generic arithmetic RS are introduced in the following paragraphs.
The branch unit RS only implements a subset of the listed operations. Notice that
even if multiple read and write ports are needed, they often act on different fields
of the RS station data structure. For this reason, the data structure can be seen
as made of multiple independent register files with a single read and/or write port
instead of a single register file with many read and write ports. Another important
aspect of the access to the RS data is that the operand fetch operation during
the writeResult procedure in algorithm 2.9 is performed in parallel on all the
entries of a RS based on the ROB index of the operands and of the result being
transmitted. This means that a CAM-like parallel write port must be implemented
in each RS. A structure like this might have a significant weight on the overall
power consumption. Also, the fact that the CDB broadcasts data to all the RSs
contributes to increasing power. However, this type of access is a key element in
Tomasulo’s algorithm that cannot be removed. All the advantages brought by a
simple control and distributed book-keeping operations should at least partially
compensate this kind of parallel access ports.

Overall two read ports, two write ports and one parallel access port are imple-
mented in each RS.

61

3 – LEN5 Execution Pipeline Design

Insert a new instruction When a valid instruction is available in the head
entry of the issue queue and both the ROB and the assigned RS are not full, the
instruction is inserted in the selected entry of the RS. This entry must be selected
among those no longer containing a valid instruction, meaning that the contained
instruction has already completed its execution and written the result in the ROB
using the CDB. When this happens the valid bit of the entry is cleared. All
empty (i.e. not valid) entries of the RS are suitable for the incoming instruction, so
the selector is a simple priority encoder. It provides the address of the first empty
entry to the first write port of the RS. At the next active clock edge, the data
from the issue logic is stored in the selected location. If the issue logic has already
fetched an operand, the associated ready bit is asserted and its value is stored in
a dedicated field. All the other status bits are cleared so the instruction can be
selected for execution when it has all of its operands available and the functional
unit can accept an execution request.

Retrieve the operands from the CDB This operation doesn’t require any
handshake process. Each entry containing a valid instruction that hasn’t been
executed yet monitors the CDB data to fetch its missing operands. When some
other RS sends on the CDB a result to be written in ROB entry that the instruction
must fetch its operand from, the result is copied in the dedicated field and it
is marked as ready. This operation can be performed on all the entries whose
destination ROB entry match the one on the CDB. As a consequence, this requires
a CAM-like parallel access port to all the entries of the RS. If the instruction
writing the result raised an exception during its execution, the result is not copied.
When this happens, the entire execution pipeline will be flushed at commit, so
there’s no point in executing subsequent instructions or fetching their operands.

Send an instruction to the functional unit Once an instruction has fetched
both of its operands, it becomes available to begin its execution in the functional
unit. In each cycle, more than one instruction may be ready for execution, so a
selector from section 3.1.4 is employed. The output index of the selector is used
to drive the first read port of the RS that is used to provide the operands to the
associated functional unit. If a simple priority encoder is used, it is not guaranteed
that the oldest instruction that has its operands ready is executed first. This might
introduce some latency in the execution of subsequent instructions that depend on
that result. This is the main reason for the age based selector to be introduced.
However, as mentioned in section 3.1.4, this has a great timing and complexity
penalty, that might lead to overall worse results in the system. Regardless of the
selector type, it chooses only among instructions that:

• Are valid: valid status bit set.

• Have both their operands ready: both rs1_ready and rs2_ready set.

62

3.6 – Reservation Stations

• Have not been sent to the functional unit yet: busy bit clear.

• Have not been executed yet: res_ready bit clear.

If a suitable instruction is found request to the functional unit is performed: the
output valid signal to the functional unit is asserted, and the operands are trans-
mitted together with the index of the source entry of the RS (the output of the
selector), as explained at the beginning of this section. If the functional unit can
accept the execution request, the busy bit of the source instruction is set, so it
won’t be selected again in the next cycles.

Save the result from the functional unit When the functional unit completes
the execution, it sends an answer to the source RS asserting its valid signal. The
index of the source entry if the RS is returned too. The functional unit never waits
for the RS to be ready to process the answer, since the instruction has already been
allocated, and only one instruction from the RS can be executed by the functional
unit in a given cycle. Therefore, the output ready signal to the functional unit
is always asserted. When the answer is received, the result is stored in the RS
entry pointed by the return index (second write port), and it is marked as ready
so the instruction can proceed to the write result step as soon as the CDB is
available. If an exception was raised during the execution in the functional unit,
the except_raised status bit of the instruction entry is set and the exception code
from the functional unit is copied in the dedicated field. If additional information
about the exception is produced by the functional unit, they are stored in the
result of the instruction entry. Doing so the additional information will be sent
on the CDB and written in the result field of the ROB, so it can be used during
commit by the exception handling logic.

Send an instruction result on the CDB After an instruction has completed
its execution and the result has been received from the functional unit, the result
can be sent to the ROB and to all the other in-flight instruction waiting for that
result. So, the result is written on the CDB together with the ROB entry where
the producing instruction was allocated during issue. If an exception was raised
during execution, its code is sent to the CDB too so it can be stored in the ROB
and processed at commit time by the exception handling logic. Since the CDB is
shared among all the RS in the execution pipeline it might not be available in any
cycle for a given RS. This means that many instructions in the RS might have their
results ready to be sent on the CDB in a certain cycle. For this reason, another
selector is used to choose one instruction among those that have their result ready
(i.e. those that have completed their execution). The output index of the selector
is used to drive the second read port of the RS, connected to the CDB. If a
simple priority encoder is used as a selector, it is not guaranteed that the oldest
instruction that has completed its execution writes its result first.

63

3 – LEN5 Execution Pipeline Design

Notice that another possible solution is to save the index returned by the func-
tional unit and use it to select the next entry that writes on the CDB. While this
saves a selector and the result field in the RS entries, it is not always the best
solution. In fact, the functional unit must be stalled until the previously executed
instruction writes its result on the CDB. If the functional unit has a single-cycle la-
tency, there is no disadvantage in this solution, since the execution unit is still able
to execute one instruction per cycle. However, if the functional unit is pipelined or
has a latency greater than one, the cycles during which the CDB is not available
cannot be exploited to execute new instructions unlike the first solution, because
with this solution the functional unit is stalled during those cycles. Instead, using
the first solution, as soon as the CDB is available all the produced results can be
written in a burst until the CDB is assigned to a different unit or until there are
no more completed instructions in the RS. It can be easily proven that in the
best scenario the overall improvement in the execution throughput of the entire
execution pipeline with the first solution is directly proportional to the average
latency of the functional units that share the CDB. Since it’s common to have
pipelined functional units, the first solution has been adopted in LEN5 , having
the only downside of employing an additional selector and an additional field in
each RS. Remind that priority encoders are used by default, so the impact of this
components is negligible in the entire system.

In both cases, when the CDB is available and assigned by the CDB arbiter to
the current RS (i.e. the input ready signal from the CDB arbiter is asserted), the
transaction can be completed and the instruction can be popped from its entry in
the RS. This is simply done by clearing its valid status bit. Doing so the entry is
no longer selected for execution or to send its result on the CDB, while it becomes
available to possibly insert a new instruction in the next cycle.

3.6.4 Exception handling in RSs
For what concerns exceptions, it is important to remind that an instruction that
raised an exception during fetch or issue is not executed. So it is not sent to a
RS by the issue logic. Instead, it is only allocated in the ROB. For this reason,
the RS don’t receive any information about occurred exceptions by the issue logic.
If an exception is raised during the instruction execution in the functional unit,
the exception is registered in the RS entry where the instruction is allocated, and
transmitted to the ROB over the CDB as it is done when a valid result is produced.
Possible exceptions are, for example, the divide by zero and floating point overflow
exceptions that might be raised by the FPU.

64

3.7 – Load-store unit

3.7 Load-store unit
The load-store unit is probably the most complex component of the LEN5 execution
pipeline, working as an interface between this and the data part of the memory
system, namely the DTLB and the data cache. It contains three main components:
the load buffer , the store buffer , and the virtual address adder . The load buffer and
the store buffer can be seen as the RSs dedicated to load and store instructions
respectively. They have been separated from the ordinary RSs since they differ
quite a lot from the others in how they execute instructions and how they interact
between them and with the ROB.

Before each of these three main components is detailed, some concepts about
the memory system and the memory instructions must be recalled.

Virtual Memory VM is the mechanism used by OSs to abstract the concepts
of memory for the different processes that are concurrently executing on top of it.
In particular, each process sees the memory as if it was the only executing process
on the CPU, and it had all the memory available for its operations, regardless of
the size of memory or its organization, like the presence of external storage devices.
The OS holds a table for each running process that maps each virtual memory
address into a physical memory address that is physically available in the system
main memory. Each process is assigned a virtual address space and possibly an
Address Space Identifier (ASID) to distinguish it from the other address spaces. The
address space contains a set of pages, each of which contains contiguous addresses
that the process can use. Notice that when VM is enabled also the PC is a virtual
address that must be translated into a physical one by the Memory Management
Unit (MMU).

Page table The page table is a tree structure that performs the address trans-
lation in subsequent steps. The virtual address is divided into slices that are used
to access different levels of the page table tree. Usually, the LSBs of the virtual
address are not translated and are used as offset in the physical page selected by the
highest order slices. A portion of the page table can be transferred to a hardware
structure to accelerate the translation process. The data structure that contains
this portion of the page table is called Translation Lookaside Buffer (TLB), and
acts as a cache for the page table. To fetch the correct entries of the page table,
the root page table address (the base address of the page table) must be known to
the processor. It is usually stored in a CSR that is updated on a context switch.
Notice that if no ASID is used, the old portion of the page table loaded in the TLB
must be flushed on a context switch. Otherwise, the virtual addresses from the
new process are translated following the mapping of the old process (homonyms).
If ASIDs are supported by the processor, they are used to tag each entry of the
TLB, so if a virtual address from the new processor access an entry of the page

65

3 – LEN5 Execution Pipeline Design

table of the old processor in the TLB, a TLB miss occurs, and the requested entry
from the new process page table is fetched from the memory, so the address can be
correctly be translated.

Page fault The page table also contains information about what pages are cur-
rently in the main memory. If an instruction requests a virtual memory that is
not mapped on a physical address of the main memory, a page fault exception is
raised, and the corresponding exception handling routine of the OS is called so that
the requested page is fetched from the secondary storage and the page table of the
process is updated accordingly.

Synonyms and homonyms In principle, the mapping is not unambiguous. Two
virtual addresses that are mapped to the same physical address are called synonyms
or aliases, while different physical addresses that are mapped by the same virtual
address are called homonyms. Homonyms are a direct consequence of virtual mem-
ory: different processes (i.e. different ASID) can use the same virtual address to
access a different physical memory location. However, they must be supported by
the processor memory system (the cache in particular) and by the OS, so that in-
structions from different processes don’t access the wrong data. Homonyms within
the same address space are possible only when VM is managed in (fancy) software.
Otherwise, since the virtual address is used to directly access the page table, each
virtual address can be mapped to a single physical address.

RISC-V, as described in [16] and [8] supports multiple paging schemes. The
LEN5 execution pipeline supports both the Sv39 and Sv48 paging schemes. Of
course, also bare memory access is supported. In this case, the address translation
in the DTLB is skipped, and the virtual address is directly used to access the
data cache without any further check. The used scheme, as well as the root page
table address and the ASID of the current process are stored in the satp CSR. The
memory system of LEN5 implements the Sv39 paging scheme. This supports 56-bit
physical addresses (226 GiB) and a three-level address translation process. The 12
LSBs of the virtual address are not translated and from the page offset. The cache
is organized on two levels. The L2 cache is shared between instructions and data,
while the L1 cache is divided in the instruction L1 cache accessed by the frontend
using the PC as virtual address and the data L1 cache (or simply data cache) that
is accessed by the load-store unit. A full-associative DTLB performs the address
translation implementing the three-level translation scheme and supports ASID
tags. This means that the OS is not required to insert an sfence.vma instruction
after a context switch, because homonyms are handles without requiring a flush of
the DTLB. The DTLB is accessed before the data cache, and so the data cache
is physically indexed and physically tagged since only the physical address is used
during cache requests. This solves the problem of aliases (synonyms) within the
same address space that arises when virtually indexed and physically tagged data

66

3.7 – Load-store unit

cache systems are used.
The block diagram of the load-store unit is shown in fig. 3.9.
The following section analyses the main features of the virtual address adder ,

the load buffer , and the store buffer . The overall organization and control logic
of the two buffers are similar to the ones of the other RSs from section 3.6, but
here additional checks are required to guarantee that data hazards in memory are
handled correctly, and many optimizations are performed to reduce the number of
DTLB or data cache accesses required. The focus is on these differences and the
interface with the memory system.

3.7.1 Virtual address adder
The virtual address adder is the component of the load-store unit responsible for
the virtual address computation starting from the rs1 and imm fields of the I-type
load instructions and the S-type store instructions (see table 3.2 for the complete
instruction formats). It is, in fact, a simple 64-bit adder that also checks if the pro-
duced virtual address is compliant with the current memory system configuration
that is read from the satp CSR. Notice that here the value of the CSR is accessed
during execution, that is performed OoO. That is the reason why the execution
pipeline is stalled after a CSR instruction is issued: all subsequent instructions
using that CSR must wait for the CSRs to be updated.

In the load-store unit of LEN5 there is only one virtual address adder shared
among the load buffer and the store buffer . The reason is that the maximum IPC
of the single-issue execution pipeline is one instruction per cycle. So even if only
load and store instructions are issued, on average only one load or one store can be
executed per cycle. So even under the assumption that no delay is introduced during
memory accesses, there would be no need for two dedicated adders. However, since
the original reciprocal order of load and store instruction is not preserved in general,
there might be two concurrent requests from the buffers in the same cycle. For this
reason, the virtual address adder is connected to a two-way arbiter. By default,
the priority arbiter described in section 3.1.3 is instantiated, with the precedence
given to the store buffer . This means that every time a request by the store buffer
is received, that request is processed regardless of the request from the load buffer .
So in case of conflict, the arbiter asserts only the ready signal for the store buffer .
The same solution is adopted also for the DTLB and the data cache requests. The
reason for can be found in the implemented store-to-load forwarding mechanism
described in section 3.7.2.

Exception handling As explained in the introduction of section 3.7, the LEN5
execution pipeline supports the Sv39 and the Sv48 VM paging schemes. When these
schemes are used, the effective width of the virtual address is limited to either 39
or 48 bits, which must occupy the lower portion of the 64-bit address. The MSBs

67

3 – LEN5 Execution Pipeline Design

Figure 3.9: Load-store unit block diagram.

68

3.7 – Load-store unit

must be copies of the last valid bit of the virtual address. In other words, the 64-bit
virtual addresses produced by the virtual address adder have limited ranges:

• Sv39:

– 0x0000_0000_0000_0000 to 0x0000_003f_ffff_ffff
– 0xffff_ffc0_0000_0000 to 0xffff_ffff_ffff_ffff

• Sv48:

– 0x0000_0000_0000_0000 to 0x0000_7fff_ffff_ffff
– 0xffff_8000_0000_0000 to 0xffff_ffff_ffff_ffff

The virtual address adder checks if the MSBs are equal to bit 38 or bit 47 based
on the VM mode registered in the satp CSR. If the produced virtual address does
not fall into one of the previous ranges, a page fault exception is communicated to
the buffer that performed the address computation request. In the load buffer this
exception is translated in a load page fault or a store page fault exception when
it is received by the load buffer or the store buffer respectively. If VM is disable
(i.e. the bare paging scheme is set in satp), no check is performed on the produced
virtual address and so no page fault exception is produced. Besides this, another
check must be done to verify that the produced virtual address is naturally aligned
according to the type of load and store instructions. In RV64, eleven memory
instructions exist, that can be classified based on the number of bytes they read or
write. The virtual address of the target set of bytes must be aligned accordingly
before being sent to the DTLB for address translation. Each type of memory access
must satisfy the following requirements:

1. lb (load byte), lbu (load byte unsigned), sb (store byte): operate on a sin-
gle byte, that can be any in the address space. Since the memory is byte-
addressed, this means that there are no constraints on the value of the LSB of
the virtual address (i.e. it can be either 0 or 1).

2. lh (load halfword), lhu (load halfword unsigned), sh (store halfword): operate
on two consecutive bytes. In this case only byte couples [0, 1], [2, 3], [4, 5] or
[6, 7] of a memory doubleword can be accessed. This means that the MSB of
the virtual address should be 0.

3. lw (load word), lwu (load word unsigned), sh (store word): operate either on
the first or the second word of the memory halfword, that its the byte sets [0
to 3] or [4 to 7]. This means that the two LSBs of the produced virtual address
must be 0.

4. ld (load doubleword), sd (store doubleword): operate on all the memory dou-
bleword. This means that the three LSB of the virtual address should be
0.

69

3 – LEN5 Execution Pipeline Design

If some of the previous constraints is not met by the produced virtual address, the
virtual address adder communicates to the source buffer that an address misaligned
exception occurred. The source buffer will translate this into a load address mis-
aligned or store address misaligned. Notice that this kind of exception has a higher
priority than the previous. So if both the exceptions are detected, only the ad-
dress misaligned is communicated to the load buffer or the store buffer . Regarding
unaligned memory access (e.g. read bytes [2 to 5] with a lw) is not supported in
hardware in this first implementation of LEN5 . This is usually a feature that is
required to support legacy or application-specific code, and it’s hardly ever used in
modern computer applications. Still, a possible solution is proposed in section 5.3.3.

3.7.2 Load buffer
The load buffer is the component of the load-store unit that prepares load instruc-
tion for the data cache access. It acts similarly to a RS, despite the much more
complex sequence of operations that is required to execute load instructions. The
data structure is similar to the one of arithmetic RSs, with additional data fields
for the virtual and physical address and additional control bits to keep track of
the dependences on store instructions. No detailed description of these fields is
provided, since their purpose should be clear by reading the next section dedicated
to the load buffer control and there is no way the entire data structure can fit in
a page of this document, so refer to table 3.4. For this reason, it is suggested to
refer to the LEN5 code when reading this section. Still, a list of a load buffer entry
fields is provided with a brief description for future reference:

• valid: the entry contains a valid instruction.

• busy: the entry is waiting for an operation to complete.

• store_dep: the load must wait for all previous store instructions to commit
before it can be executed.

• pfwd_attempted: the entry is ready for the cache access.

• [entry_age]: the optional age of the entry, used when an age based selector
in employed.

• older_stores: the number of older uncommitted store instructions. If 0, the
entry is dependency-free.

• load_type: one among lb, lbu, sb, lh, lhu, sh, lw, lwu, sh, ld, sd.

• rs1_ready: the value of rs1 contained in rs1_value field is valid.

• rs1_idx: the index of the ROB that will contain the base address.

70

3.7 – Load-store unit

• rs1_value: the value of the base address.

• imm_value: the value of the immediate field (offset).

• vaddr_ready: the virtual address has already been computed.

• vaddr: the virtual address.

• paddr_ready: the address translation (TLB access) has already completed.

• ppn: the physical page number. The entire physical address is obtained ap-
pending the twelve LSBs of the virtual address, that are never translated.

• dest_idx: the entry of the ROB where the loaded value will be stored.

• except_raised: an exception occurred.

• except_code: the exception code.

• ld_value: the value loaded from memory.

• completed: the value has been fetched from the data cache.

The control logic of the load buffer is similarly organized as in an arithmetic
RS. In general, load instructions can be executed OoO, but only if the accessed
memory location is updated.

The block diagram of the load buffer would be too large and complex to be
appreciated on a page of this document. In general, the internal organization is
quite similar to the one of an arithmetic RS, which is shown is fig. 3.8. Two
additional selectors are required to perform all the three main operations required
to execute a load instruction: virtual address computation, address translation
(in the DTLB) and finally the data cache access. The control logic must perform
additional checks for memory hazards, as described later in this section, and it
must handle the forwarding outcome from the store buffer .

A few words must be spent to introduce the store-to-load forwarding mechanism.
If a data dependency between a load and a previous store is detected while the store
has not been executed yet, the value to be stored can be forwarded to the load.
Notice that from the RISC-V specification [16], if a certain memory location has
the write access permissions it also has read access ones. The writeable not readable
condition is reserved. So a value can always be forwarded from stores to loads, while
the opposite is not true, since a store can sill raise some exceptions that a previous
load didn’t16. Even if forwarding of exceptions would be possible thanks to the
ROB, there is absolutely no point in implementing it since the store exception is

16More details in [10].

71

3 – LEN5 Execution Pipeline Design

processed first at commit. So forwarding is only performed from stores that have no
registered exceptions. All subsequent instructions will be flushed unconditionally.
Both the virtual and the physical addresses can be used to verify the dependency,
with the latter being able to forward also on synonyms. In LEN5 , two store-to-
load forwarding attempts are performed. The execution of a load instruction can
be split into three main steps: virtual address computation, DTLB access (only
if VM is enabled) and data cache access. The virtual forwarding is attempted
after the virtual address adder has produced the virtual address, while the physical
forwarding is attempted after the DTLB access has completed.

Another important aspect of the store-to-load forwarding is that it can be com-
pleted correctly only if the load accesses bytes that the store is actually writing.
The value to be stored of a partial store instruction (sb, sh and sw) is fetched from
a register and so it doesn’t contain the rest of the memory doubleword. This means
that the forwarding can take place only if the load acts on a portion of that double-
word that the store is actually writing. This check is performed by the forwarding
logic in the store buffer as described in section 3.7.4.

While loading data from the cache, the entire destination doubleword is received
by the load buffer regardless of the type of load, as if the three LSBs of the load
address (byte offset) were zero. For this reason the load buffer contains a simple
byte selector whose schematic is reported in fig. 3.10. Its purpose is to extract the
correct set of bytes from the entire doubleword and sign-extend it or zero-pad it
based on the type and the byte offset of the load.

Figure 3.10: Block diagram of a byte selector.

In the following paragraphs, each step of the execution of a load is detailed,

72

3.7 – Load-store unit

while the forwarding mechanism and hazard check are discussed.

Insert a new instruction This operation is similar to the one described for
an arithmetic RS. A priority encoder is used to select an empty entry (if any)
in the load buffer and the valid signal from the issue logic is used to trigger the
insertion. The first write port of the load buffer is used. The only addition is
that the number of in-flight stores in the store buffer is saved in the dedicated
older_stores field of the entry assigned to the new load. This information is used
during forwarding and before the data cache access to know if there are unresolved
dependences with some previous store instruction in the store buffer . This quantity
is decremented whenever a store is committed (i.e. popped from the ROB and
marked as not valid in the store buffer17) until it reaches zero. When there are
no previous uncommitted store instructions, the load can be executed without any
further check, because all its dependences on previous stores have been solved: the
value has already been written in the data cache and can be accessed by the load.
Still, forwarding from the store buffer is still possible in this case.

Operand fetch Before the virtual address can be computed, the rs1 operand
(the base address of the load instruction) must be available in the RF entry where
the load instruction is allocated. If it wasn’t ready in the RF or in the ROB during
issue, it will be fetched from the CDB as soon as some other RS produces it using
the CAM-like first parallel access port described in section 3.6, like in any other
RS. Once it is available, the rs1_ready status bit is asserted so the instruction can
proceed to the virtual address computation.

Virtual address computation request An entry of the load buffer can be
selected for the virtual address computation if:

• It contains a valid instruction.

• The contained instruction has been selected yes (i.e. it is not busy).

• The value of the operand is ready (rs1_ready).

• The virtual address of the instruction has not been computed yet.

• The instruction is not completed18.

17The store is not removed from the store buffer to implement the cache level zero mechanism
suggested in [1] and described in section 3.7.3.

18This check is redundant with the previous, but since the control logic doesn’t use explicit
states, it doesn’t hurt making things a bit more fault-proof.

73

3 – LEN5 Execution Pipeline Design

A first selector chooses one entry among the ones meeting all the previous require-
ments, and a request is sent to the virtual address adder arbiter by asserting the
dedicated output valid. The selector index is used to drive the first read port
of the load buffer , and the operands are sent to the virtual address adder (rs1
and imm). The selected instruction is marked as busy so it won’t be selected in
the next cycle. Remember that the virtual address adder is not a combinational
component. The valid-ready handshake protocol, together with the valid field in
the load buffer entries makes it possible to use the virtual address adder as any
other functional unit connected to a RS. In fact, also the index of the source en-
try of the load buffer is sent to the virtual address adder together with the base
address (rs1_value) and the offset (imm_value). This means the latency and/or
the number of pipeline stages of this component can be changed arbitrarily and the
load buffer will continue to work as expected.

Virtual address adder answer When the virtual address adder has completed
the virtual address computation and its compliance with the current VM mode, it
asserts its output valid signal and produces both the virtual address and the index
of the source entry of the load buffer at its output. Notice that the ready signal from
the load buffer is always asserted, as it happens in the other RSs. The reason is that
the entry where the virtual address must be saved has already been allocated during
issue, so the load buffer is always ready to accept answers. This is true for DTLB
and data cache answers too. When the answer is received, the load buffer checks if
an exception was raised during the virtual address computation. If so, the address
misaligned or page fault exception is translated in an load address misaligned or
store address misaligned and the corresponding exception code is stored in the
entry. Besides this, the virtual address is copied in the ld_value field of the load
buffer so it will be written in the result field of the ROB and used during exception
handling. The instruction is marked as completed, so in the following cycles, it can
only be selected to write its result (i.e. the offending virtual address) on the CDB
together with the exception code. Doing so the faulting instruction is prevented
from attempting store-to-load forwarding and from accessing both the DTLB and
the data cache, so no data is introduced in the execution pipeline. If no exception
is detected, the virtual address is simply copied in the dedicated vaddr field and
the vaddr_ready status bit is set, meaning that the instruction can proceed to the
virtual forwarding attempt. The second write port is used to do this. In this
case, the busy bit is not cleared and the incoming index from the virtual address
adder is stored in a register. This same value is immediately used to perform the
virtual forwarding without the need for an additional selector. The only exception
is when VM is not enabled. If so, the 56 MSBs of the virtual address are also copied
in the ppn field of the load buffer entries, the associated paddr_ready status bit is
set and the busy bit is cleared. Doing so the instruction will skip the DTLB access
and proceed directly to the data cache access.

74

3.7 – Load-store unit

Virtual address forwarding As mentioned in the previous paragraph, the store-
to-load forwarding using the virtual address is performed in the next cycle after the
virtual address is received (if VM is enabled). The index stored in the dedicated
register is used to drive the second read port so the virtual address of the selected
instruction is sent to the store buffer together with the number of the currently
uncommitted store instructions that are available in the older_stores field of the
same entry. The virtual forwarding can resolve in one of the following situations:

• The twelve LSBs of the virtual address of the load are different from the
corresponding bits of all the previous uncommitted store instructions in the
store buffer19, the load is certainly independent on any of those instructions
because those bits are never translated. When this happens the load is marked
as dependency-free (i.e. there are no RAW hazards) setting the number of
previous uncommitted stores (older_stores) to zero. The instruction will
skip the physical address forwarding attempt and be inserted directly to the
ones suitable for the data cache access.

• At least one of the previous stores doesn’t have its virtual address or the
value to be stored ready when the virtual forwarding is attempted or all the
data is available but there’s no match with any of the virtual addresses of
the previous stores. It is important to point out that having different virtual
addresses (apart from the twelve LSBs) doesn’t imply that the store and
the load are independent: they can still be synonyms. This case is included
in the following one. In this case, the forwarding attempt simply fails. The
load is marked as store-dependent setting the dedicated store_dep status bit,
so it will be chosen for physical forwarding after the DTLB access. A second
solution could be to speculate that the load doesn’t depend on the store, and
proceed to the data cache access as in the previous case. However, this would
require a mechanism to detect the dependency and replay the load if necessary.

• If all the previous stores have their data and virtual address ready, the virtual
forwarding can hit, meaning that at least one store in the store buffer has the
same virtual address as the load. On a hit, the value of the most recent
matching store (but still older than the load) is copied in the ld_value of the
load, and the instruction is marked as completed. Since the data to be stored
comes from a register and it’s therefore aligned to the LSB, there is no need to
select the correct byte set according to the load byte offset. No DTLB or data
cache accesses are performed, and the load can write its result to the CDB
and to the ROB as soon as it is selected. A third write port is used for this
purpose. Remember that not all the ports operate on the same field, so the
high number of ports doesn’t necessary imply a slower structure.

19The details on this check are provided in the dedicated paragraph in section 3.7.3.

75

3 – LEN5 Execution Pipeline Design

In all the previous cases the busy bit of the instruction is cleared so it can proceed
to the next phases.

Notice that the forwarding is also possible from the stores that have already
committed. In fact, they are not popped from the store buffer , but only marked
as completed. This implements the cache level zero suggested in [1]. Of course,
only the most recent value that’s going to be written in a certain memory location
must be forwarded to a load, so in these terms, cached stores have lower priority
than in-flight instructions. Again, more information on this selection process can
be found in the dedicated paragraph in section 3.7.3.

Virtual forwarding is the one with potentially the higher advantage in terms of
latency because both the DTLB and the data cache accesses are skipped. However,
it is also the one that shows the lower hit ratio: since it is executed earlier the
probability that the matching store has already both its virtual address and value
ready is lower. This is one of the main reasons why stores are by default granted
the highest priority in accessing the shared unit (the virtual address adder , the
DTLB, and the data cache) using the priority arbiters instead of the fair arbiters
from section 3.1.3.

Address translation request If no exception is raised in the previous steps and
the virtual forwarding attempt has been completed (i.e. the busy bit is clear), the
entry can be selected for the address translation in the DTLB. Another selector
performs this choice. Its index is used to drive a third read port to send the
Virtual Page Number (VPN) of the selected instruction to the TLB. This is the
portion of the virtual address that identifies the virtual page in the page table of
the current process. In other words, the VPN is given by:

V PN = vaddr[vaddr.len− 1 : poffset.len];
Where vaddr is the virtual address as produced by the virtual address adder ,
vaddr.len is its width according to the Sv39 or Sv48 paging scheme and poffset.len
is the width of the page offset, that in the case of 4 Kibit pages is twelve bits. An
instruction can be selected for the DTLB access if:

• It contains a valid instruction.

• The instruction has not been selected yet (i.e. it is not busy).

• It has it’s virtual address ready (vaddr_ready set).

• It doesn’t have its physical address ready (paddr_ready not set).

• It doesn’t have registered exceptions (except_raised not set).

• It is not completed.
If the DTLB can accept the request (i.e. it assets is ready), then the instruction is
marked as busy.

76

3.7 – Load-store unit

DTLB answer The DTLB acts as any other functional unit taking the index of
the source entry of the load buffer and returning it when it answers a request. It is
possible that the DTLB answers the request from the load buffer OoO, if it handles
hit under miss. Based on the fact that the requested virtual address is in the DTLB
(hit) or not (miss), the load buffer can receive two different types of answer, both
with a dedicated valid signal.

1. A proper answer regarding the received request.

2. A wake-up.

The first type of answer is used as a consequence of a hit in the DTLB. In this
case, the index returned by the DTLB is used to drive the fourth write port of
the load buffer , which is used to write the translated physical address and possibly
any raised exception in the source entry. The handling of the exception is the same
used for the virtual address adder , except that here the possible exceptions are the
load page fault exception and the load access fault exception. The second one is
used only if advanced virtual memory protection techniques are used. The memory
system of LEN5 does not implement these advanced functionalities, so the DTLB
can only raise a page fault exception. However, the execution pipeline supports
both. If an exception is received, the exception code is saved, the offending virtual
address is saved in the ld_value field and the instruction is marked as complete
as usual, so the data cache access is skipped. If no exception is raised, the busy
bit is cleared, the Physical Page Number (PPN) from the DTLB is saved in the
dedicated ppn field of the source entry and the ppn_ready bit is set, so the load
can proceed to the data cache access.

The wake-up answer is used when the DTLB request resulted in a miss. Notice
that the miss is not explicitly notified by the DTLB: the load simply remain busy
until the miss has resolved. When a miss occurs, the DTLB access the level 2 TLB
and the above levels to fetch the requested leaf of the page table. When it suc-
cessfully obtains the requested PPN, it forwards it to all the load buffer together
with the corresponding VPN. Each valid entry of the load buffer that hasn’t per-
formed the DTLB access and whose VPN matches the one returned by the DTLB
saves it into its entry. Although this requires a second parallel access port,
it speeds up the execution forwarding the translation to all the matching loads,
whose ppn_ready status bit is set. These will skip the DTLB access and proceeds
directly to the data cache access. Also, exceptions can be forwarded in the same
way. Again, remember that only the exception raised by the first instruction in
program order will be processed during commit, thanks to the ROB.

Physical address forwarding Because of the possibility to resolve multiple ad-
dress translations at the same time thanks to the wake-up mechanism, the physical
forwarding cannot be handled the same way the virtual address forwarding was.

77

3 – LEN5 Execution Pipeline Design

Here, another selector driving a dedicated fourth read port is used instead. The
physical address of the selected entry is sent to the store buffer that performs all
the required checks, as it does for the virtual forwarding. In a similar way, the
physical forwarding can result in the following situations:

1. All the previous store instructions in the store buffer have their physical
address and their value ready, but no match among those physical address
and the one of the load is found. In this case the load can be definitely
marked as dependency-free setting its previous uncommitted stores counter
(older_stores) to zero. The instruction can automatically be inserted among
the ones suitable for the data cache access.

2. At least one of the previous store instructions in the load buffer doesn’t have
its physical address or the value to be stored ready. In this case, the forwarding
fails and the instruction is marked as store-dependent setting its store-dep
status bit. A store-dependent load can perform the data cache access only
when its older_stores counter reaches zero. When this happens, the load is
automatically inserted among the ones that can be selected for the data cache
access. This is the worst scenario for what concerns the latency of a store:
both the DTLB and the data cache accesses must be performed to complete
its execution. However, if the cache replacing policy is accurate enough, only
the data cache latency must be paid most of the time.

3. All the older stores in the store buffer have their physical address and value
ready, and at least one of them matches the physical address of the selected
load. In this case, the physical forwarding hits, and the value or the exception
from the most recent matching store (but still older than the load) can be
copied into the load entry in the load buffer . A fifth write port is used for
this purpose. The load is marked as completed, meaning that it is inserted
among the ones ready to write their result (or exception) to the ROB using
the CDB.

Regardless of the outcome of the forwarding, the pfwd_attempted status bit of the
selected instruction is set, so it is not selected again in the next cycles, and can
be inserted among the ones suitable for the data cache access when its older stores
counter reaches zero. Notice that a virtual or physical forwarding attempt is not
replayed when it fails: each instruction can perform at most one virtual forwarding
attempt and one physical forwarding attempt. In theory, when an attempt fails
in the second situation above the forwarding could be replayed as soon as a store
gets its value or its virtual or physical address. However, this would require many
additional parallel access ports, so it wasn’t implemented in the load-store unit.
Consider that two forwarding attempts, with the help of level zero caching, should
be more than enough to reduce the DTLB and data cache accesses.

78

3.7 – Load-store unit

The physical address forwarding has a smaller advantage in term of latency than
the virtual address forwarding but also shows the higher hit ratio.

Data cache access request If a load has no registered exceptions, has gone
through both the forwarding attempts without success, and if it was proven to be
dependency-free from all the previous stores instructions in the load buffer (i.e. its
older_stores counter is zero), it can proceed to the data cache access. A selector
chooses a suitable instruction and drives the fifth read port to feed the data cache
with the instruction physical address. An entry can be selected for the data cache
access if:

• It is valid.

• It is not busy.

• It is not completed.

• It has its physical address ready (ppn_ready set).

• It has not registered exceptions (except_raised clear).

• It has attempted the physical address forwarding (pfwd_attempted set).

• It is not store-dependent or there are no older uncommitted store in the store
buffer .

If the data cache can accept the request (i.e. its ready is asserted), the busy status
bit of the selected instruction is set, so the entry is not selected for the data cache
access in the next cycles. Remember that the memory system of LEN5 can handle
hit-under-miss and even miss-under-miss, so the data cache can answer request in a
different order from the one they are issued with (that is already OoO with respect
to the program order). So the data cache, as the DTLB and every other functional
unit, receives also the index of the source entry of the load buffer when a request
is issued.

Data cache answer The data cache uses the same types of answer that are used
by the DTLB, therefore the process is exactly the same, except that no exception
can be raised during the data cache access (all checks are made during the address
translation in the DTLB) and when a wake-up answer is received, the loaded value
is copied instead of the PPN. Once an answer from the data cache is received, the
busy status bit of the source instruction is cleared and it is marked as completed,
meaning that it can be selected to write the loaded value in the ROB using the
CDB. The data cache answers use the fifth write port and the third parallel
access port. Again, the fact that the load buffer uses many ports is not significant
of its performance, because most of these ports operate on different fields of the
load buffer data structure as if they operated in totally different register files.

79

3 – LEN5 Execution Pipeline Design

CDB request Instructions that are marked as completed can be selected to
write on the CDB. Remind that the execution of a load is completed when it has
performed all the previous steps or as soon as an exception has occurred. One
last selector is used to drive the sixth read port to send the loaded value or the
exception code of the selected instruction on the CDB. If the CDB is currently
assigned to the load buffer (i.e. the associated ready from the CDB arbiter is
asserted), the selected load instruction is finally popped from the load buffer : its
valid status bit is cleared and the entry becomes available to host a new issued
instruction from the next cycle.

3.7.3 Store buffer
The store buffer is the hosting store instructions while they perform all the steps
of their execution. It differs from the load buffer in that the data cache access is
performed in program order. This is mandatory to handle WAW hazards among
store instructions. As a consequence, instructions inside the store buffer are kept
in-order. A head and a tail counters are instantiated in the store buffer as they
were in the branch unit RS or in the issue queue. Apart from the data cache access,
all the other steps in the execution of a store are performed OoO. The execution
of a store is very similar to the execution of a load, since both have to go through
the same main steps: the virtual address computation in the virtual address adder ,
the DTLB access for the address translation20 and the data cache access.

However, there are some important differences that must be highlighted.
Once again, the data structure of the store buffer is too complex to fit in a page

of this document, so an example table is omitted. For what concerns the field of
each entry of the store buffer , they are almost the same of the load buffer , despite
the fact that store instructions need also the second operand rs2 that contains the
value to be stored in memory, and don’t have a destination register since they don’t
produce any result.

The detailed schematic of the store buffer would definitely be too large for this
document, and it’s therefore omitted. Overall, it is quite similar to one of an
arithmetic RS shown in fig. 3.8. The main differences are the presence of the
head and tail counters and of the forwarding logic described in section 3.7.4. Two
additional selectors are required for the execution of a store, since three different
operations must be accomplished: virtual address computation, address translation
(in the DTLB) and finally the data cache access. A high level representation of the
load buffer is given in fig. 3.9.

The following paragraphs briefly explain what is done in each step of a store
execution, focusing mostly on the differences from the load buffer .

20If VM is enabled in the satp CSR

80

3.7 – Load-store unit

Push a new instruction As mentioned above, a tail counter is used instead of
a selector to point to the entry where a new store instruction from the issue logic
can be allocated. If the pointed entry is still valid, the output ready signal to the
issue logic is not asserted, so the issue of a new load is prevented even if the tail
entry of the ROB is free. As it will be clear in a moment, a store is completed when
it has successfully completed its data cache access. When this happens, the valid
is not cleared to implement the cache level zero technique.

Operands fetch This phase differs from the same one in the load buffer only
because here also the value of rs2 is copied from the CDB if it wasn’t available
during issue.

Virtual address computation request A request to the virtual address adder
is performed OoO as soon as the base address (rs1) of a store is ready. It is exactly
the same as in the load buffer , so refer to section 3.7.2 for the details.

Virtual address adder answer An answer from the virtual address adder is
processed as it is in the load buffer , without any difference. Of course, page fault
and address misaligned exceptions are translated in store page fault and store
address misaligned exceptions. Since there is no result field in the store buffer , the
faulting virtual address is copied in the rs2_value filed. Notice that if an exception
occurs, the value to be stored is not sent to the memory, so overwriting it is totally
fine. The virtual address will be sent on the CDB and saved into the result field of
the ROB as usual. Notice that in the store buffer only faulting store instructions
actually use the CDB.

Address translation request Also, DTLB requests are issued in the same way
they are in the load buffer . Remember that the virtual address forwarding is only
allowed from stores to loads. A description of the logic handling both the virtual
and the physical forwarding is in the last paragraph of this section.

DTLB answer A proper answer from the DTLB is processed by the store buffer
exactly as the load buffer did. In fact, the DTLB distinguishes between answers for
the load buffer and for the store buffer . A decoder in the top-level module of the
load-store unit asserts only the correct valid21. However, a wake-up is sent to the
load-store unit without distinguishing between the load buffer and the store buffer .
As soon as the DTLB receives the PPN from the higher levels of the hierarchy, it
forwards it to the whole load-store unit. This means that a DTLB wake-up can be

21In fig. 3.9 the DTLB and data cache decoders are not shown due to the limited space. They
can be considered part of the DTLB and data cache arbiters.

81

3 – LEN5 Execution Pipeline Design

a consequence of wither a load miss or a store miss. Since additional exceptions
can be raised during the DTLB access of a store, the forwarded PPN cannot be
saved in the store buffer source entry. So when the store buffer receives a wake-up
from the DTLB, all its entries that match the returned VPN are simply moved
from their busy (i.e. the busy status bit is cleared) state to those suitable for the
DTLB access. In other words, they are woken up and replayed. The next time
the request is issued it will almost certainly hit because the target line of the page
table has been obtained as a consequence of the DTLB miss, so a proper answer
will be received by the store buffer . For more information about this process please
refer to [10]. Of course, in case an exception has been raised during the address
translation, the received page fault and access fault exceptions are translated
into store page fault and store access fault exceptions.

Data cache access request The main difference between loads and stores is
that the latter must perform the data cache access in order. So instead of using a
selector, a head pointer is used for the execution of branch instruction in the branch
unit RS. Only the physical address of the head entry of the store buffer can be
sent to the data cache. Besides, the data cache request can be issued only if the
store has also reached the head fo the ROB, meaning that all previous instructions
have been executed. This check is performed by the load buffer by comparing the
target ROB index of its head instruction to the current head index of the ROB. If
they match, the data cache request can be issued. Notice that unlike in the load
buffer, it is not possible to issue more than one store data cache requests, since this
would violate the in-order execution of store instruction: until confirmation of the
completion of the execution of a store by the data cache is received, no other stores
can perform the cache access. This is avoided by the head pointer, which is not
incremented until the current store is completed.

Data cache answer The data cache write request of a store can result in a hit
or a miss. If the store misses, the DTLB answers (after an arbitrary number of
cycles) with a wake-up. Notice that unlike the load case, here no useful information
is carried by this answer. It is only used to clear the busy bit of the head entry
of the store buffer (and no others), so the data cache request can be replayed. As
for the DTLB case, this time the request will probably hit because the requested
line has been fetched from the higher levels of the memory hierarchy. If the store
hits, the data cache sends an answer containing the index of the source entry of
the store buffer , as it does for load instructions. Here the answer doesn’t contain
any useful data, and it’s only used to communicate the execution completion of the
store to the store buffer . When this happens, a signal is sent to the ROB so the
store can be popped from its head entry. Notice that the CDB is not used, because
all the information required for the commit of the store are taken directly from the
store buffer . This simplifies the entire execution pipeline since the only component

82

3.7 – Load-store unit

that communicated with the memory system is the load-store unit. When the store
is committed and popped from the ROB, it is not completely removed from the
store buffer , even if the head counter is incremented. Instead, while its valid bit is
cleared, it is also marked as completed. In fact, the entry data is still used during
the store-to-load forwarding process, implementing what in [1] is referred to as
cache level zero. A description of this quite simple trick is reported in section 3.7.5.

CDB request As mentioned before, stores do not modify any register. Therefore
they don’t need to write anything to the ROB. The only exception is when an
exception has been raised during the virtual address computation or the address
translation in the DTLB. Remember that no exception can arise from a data
cache access. As soon as an exception is detected, its except_raised status bit is
set and the instruction is marked as completed so it is not chosen for any other
operation apart from writing the exception code and the faulting address in the
ROB using the CDB. Notice that instruction marked as completed might also be
used for forwarding. Even if this might happens, it has no consequences on the
execution flow, since the load that might have received a totally meaningless value
from a faulting store will be flushed unconditionally when the store commits and
its exception is processed. As usual, the offending virtual address is saved in the
result field of the ROB22 so it can be used during commit.

3.7.4 Store-to-load forwarding
The logic that performs all the checks for the forwarding on the virtual or phys-
ical address is instantiated in the store buffer . In fact, the incoming information
from the load buffer must be compared to all the store buffer entries in paral-
lel. The possible outcomes of a forwarding attempt have been already discussed in
section 3.7.2. Now, the implementation of the required checks is analyzed.

The value that a store instruction is going to write to the memory can possibly
be forwarded to a load only if the store is older than the load to void RAW hazards.
But this condition is not enough. The store value is taken from must be the last
in-flight instruction among the stores older than the load that modifies the memory
location accessed by the load.

Since the program order is lost right after the issue stage, a method to reconstruct
the relative order between loads and stores from known information is required. In
the LEN5 load-store unit, this is done by tracking the number of the uncommitted
stores for each load, using the dedicated counters described in section 3.7.2. When
a load is inserted in the load buffer , its older_stores counter is initialized to the
number of in-flight stores, that is the number of valid stores in the store buffer .

22That is otherwise unused in ROB entries assigned to store instructions.

83

3 – LEN5 Execution Pipeline Design

This quantity can be simply obtained as the difference between the head and tail
pointers of the store buffer . An additional bit (the MSB) is used to distinguish the
empty and full conditions of the store buffer :

• When the store buffer is empty the difference between the head and the tail
counters is zero, and the MSB is set to zero too.

• When the store buffer is full the difference between the head and tail counters
is again zero, bu the MSB is set to one.

The MSB of the in-flight store count is simply the reduction and of the valid status
bits of all the store buffer entries. The resulting number is exactly the quantity of
in-flight stores in the store buffer .

Each time a new store is committed, each counter in the load buffer is decre-
mented to track the remaining previous uncommitted stores for each load instruc-
tion. When the virtual or the physical forwarding is attempted, this value is sent
to the store buffer together with the load virtual or physical address.

The number of uncommitted stores on which the load might depend must now
be translated into a set of indexes of the store buffer . This set must comprise
already committed stores, that are surely older the load (implementing cache level
zero, see section 3.7.5), plus a number of uncommitted stores equal to the value
of the uncommitted store counter associated to the load. The oldest store in the
store buffer is found in the entry pointed by its tail pointer, which contains the
next store that will be replaced by a new one. On the other hand, the head pointer
of the store buffer points to the next store that will commit, and so the oldest of
the uncommitted stores indicated by the counter of the load. In other words, the
range of possible stores to forward the value from starts from the current value
of the tail pointer of the store buffer and goes up to the current head pointer,
plus the number of uncommitted stores, that is the entry if the store buffer that
the load would have occupied if it was inserted in-order with respect to the other
store instructions. Another way of seeing this is defining the stores as the unit of
measure of the age of a load (i.e. the years), and thinking about the number of
uncommitted stores from its counter as the negative age of the load with respect to
the store allocated in the current head entry of the store buffer : the load is younger
than that store by a number of store instructions (years) equal to the value of
its associated uncommitted-stores counter. In the coordinate system of the store
buffer , the load age is given by the sum of the current store buffer head pointer
and the age of the load.

ld.idx = ld.cnt + SB.head (3.1)

Where ld.idx is the index that the load would have occupied if it was issued in
the store buffer in-order with respect to stores. That is its age in the coordinate
system of the store buffer . ld.cnt is the number of older uncommitted stores from

84

3.7 – Load-store unit

the (older_stores counter) of the load buffer entry where the load is allocated,
that is its negative age with respect to the current head instruction of the store
buffer SB.head.

To avoid overflow issues, all these indexed must be shifted so the oldest store
instruction has index equal to zero. This means performing a coordinate shifting
into a system where all ages are positive, since every index is referred to the oldest
one. Since the oldest instruction is found in the entry pointed by the value of the
tail index of the store buffer , all quantities must be translated by that amount:

SB.tailT = SB.tail − SB.tail = 0
SB.headT = SB.head− SB.tail

ld.idxT = ld.idx− SB.tail

(3.2)

To better understanding what is happening, take a look at the example in table 3.5.

index entry # valid contained store suitable
0 no committed yes

SB.head→ 1 yes uncommitted yes
2 yes uncommitted yes

ld.idx→ 3 yes uncommitted no
4 yes youngest no
5 no - no

SB.tail→ 6 no oldest yes
7 no committed yes

(a) The original organization of the store buffer .

index original # entry # valid contained store suitable
SB.tailT → 6 0 no oldest yes

7 1 no committed yes
0 2 yes committed yes

SB.headT → 1 3 yes uncommitted yes
2 4 yes uncommitted yes

ld.idxT → 3 5 yes uncommitted no
4 6 yes youngest no
5 7 no - no

(b) The organization of the store buffer shifted by the value of the tail pointer of the load
buffer .

Table 3.5: Forwarding example. Table 3.5a shows the original position of the entries
of the store buffer , while table 3.5b shows the same structure after the translation.
In this case all the indexes are shifted by 6. Entries containing store not suitable
for the forwarding are greyed-out.

From the example it is clear how the store instruction suitable for forwarding

85

3 – LEN5 Execution Pipeline Design

are the ones whose index falls in the range:

0 ≤ idxT < ld.idxT = SB.tailT + SB.headT + ld.cnt (3.3)

By applying the inverse transformation by applying the definitions in eq. (3.2),
the following expression is obtained in the original coordinates:

0 ≤ idx− SB.tail < SB.head + ld.cnt− SB.tail (3.4)

Among these entries, only the one with the highest shifted index (i.e. the youngest)
that matches the address of the load can be selected to forward its value.

However, additional checks are needed:

• All the stores in the selected range must have both their address (virtual or
physical) and their value to be stored available. Otherwise, the dependency
cannot be verified: the load could depend on another store whose address and
value are not available yet. In this case, if the forwarding is performed, an
error is introduced.

• The selected store must operate at least on the bytes that the load wants to
read. This means that a lw cannot be forwarded with the data from a sh, as
a lb cannot be forwarded with the data from a sh that operates on another
halfword of the memory doubleword. The data to store does not include the
rest of the memory doubleword when it is found in the store buffer . It is just
a value from a register aligned to the LSB of the doubleword. It is the data
cache that overwrites the correct portion of the entire destination doubleword
during the write operation, without modifying the rest of it23.

As pointed out at the beginning of section 3.7.2, store-to-load forwarding doesn’t
require any correction based on the byte offset of the load: the data that is going
to be stored comes from a register (rs2) and it is aligned at the doubleword LSB.
It is the data cache that overwrites only the destination doubleword with the value
from the register according to the store byte offset. So the value received by the
load after forwarding is already correctly aligned and ready to be stored in the load
destination register rd.

3.7.5 Cache level zero
This very simple trick suggested in [1] is based on the observation that a completed
store instruction can be kept in the store buffer and accessed during forwarding,
exactly as if it was located in a cache line. Since LEN5 implements a single-core

23The entire doubleword is first read from the data cache, and then written again with the
correct set of bytes overwritten with the new value.

86

3.7 – Load-store unit

processor, with only one thread executing at a time, it doesn’t show the coherency
issues of this idea, since the value in the cache cannot be modified by any other
load-store unit. Therefore if another store modifies the same memory location, it
will be chosen during forwarding because it will be younger than the first one, as
explained in section 3.7.4. Accessing already committed store in the store buffer
instead of the data cache saves potentially slow cache accesses. Of course, as soon
as a new store is issued, it overwrites the oldest already committed store in the
store buffer , so the space that is available for caching in the store buffer is limited,
although depending on the depth of the store buffer . When memory-intensive code
is executed, the store buffer is very likely to be full most of the time, leaving no
space for caching. However, in most cases, the advantage can be significant, as
shown by the result in the original article.

87

3 – LEN5 Execution Pipeline Design

3.8 Common Data Bus
As explained in section 2.3.2, the CDB is the shared communication link between
all the RSs, including the load-store unit, and the ROB. In this implementation of
LEN5 , it carries four data fields:

• rob_idx: the index of the destination ROB entry where the carried value
must be stored. This corresponds to the ROB entry that was assigned to the
instruction producing that result during issue, which is the tail entry of the
ROB. This data is used to drive one of the ROB write ports, as described in
section 3.9 and to allow instructions in the RSs to fetch their missing operands
as soon as they are sent on the CDB.

• value: the actual result of the instruction or the auxiliary data if an exception
occurred during the execution. As an example, if a load page fault exception
is raised during the DTLB access of a load instruction, the faulting virtual
address is sent in this field. The carried data is always stored in the result
filed of the ROB, being it the data to be stored in a destination register or the
exception auxiliary data to be used during commit for exception handling.

• except_raised: this status bit is asserted to inform the ROB that an ex-
ception occurred, so the instruction in its destination entry can be tagged as
faulty too. At commit, the exception handling logic (see section 3.10.1) will
perform the necessary operations.

• except_code: this field contains the encoded exception. The carried code is
copied in a dedicated field in the ROB and used at commit by the excep-
tion handling logic to choose what to do. Usually, this code is copied in the
mcause/scause CSR.

Besides, also the CDB uses the AXI-like handshake protocol. This is managed
by a dedicated arbiter, that is presented in the next section and that drives the
multiplexer that selects the data from the selected RS.

3.8.1 CDB arbiter
The CDB arbiter has one priority channel that is always served. This is meant to
be connected to the load buffer , so the loaded values are available after a reduced
latency to other units. The other channels are managed by a priority encoder with
fixed priority. However, to make the scheduling algorithm a bit fairer, the input
vector in a certain cycle is saved inside a register in the CDB arbiter. No other
input vector is accepted until all previous active requests have been processed. In
each cycle, the served request is masked and won’t be considered in the next cycle,
until the saved request vector is empty. When this happens, a new input vector is

88

3.8 – Common Data Bus

processed. The priority encoder acts on the masked request vector stored in the
previous cycle. When a request is selected, the associated output ready signal is
asserted to notify the source RS that the request is served, and the instruction can
be popped at the next active edge of the clock.

Of course, the priority channel doesn’t follow this mechanism, and it is always
served regardless of the remaining stored requests.

A schematic of the CDB arbiter is reported in fig. 3.11.

Figure 3.11: Schematic of the CDB arbiter. The masking logic contains a simple
decoder that asserts only the ready of the served RS, and only if no request is being
made by the top priority unit (max_prio_valid_i is low). Besides, it produces
the remaining valid requests that must be processed in the next cycle. These are
simply the ones of the current cycle except the one being served).

89

3 – LEN5 Execution Pipeline Design

3.9 Reorder Buffer
The ROB is one of the most important components of the LEN5 execution pipeline.
It is mostly managed in-order, with a head and a tail pointer. The ROB is no
different from the other data structure encountered in the execution pipeline. The
interface and internal organization of the ROB are quite similar to the ones of
the issue queue. Therefore, refer to fig. 3.6 and to the code for the details of its
implementation.

3.9.1 ROB data structure
Each ROB entry contains the following fields:

• valid: a status bit indicating whether the contained instruction is valid.

• instruction: the entire instruction.

• instr_pc: the program counter of the contained instruction.

• res_ready: the result of the instruction produced by the associated functional
unit and sent to the ROB by the RS using the CDB.

• res_value: the actual result of the instruction (if any). Notice that if an
exception has been raised during the execution process, this field is used to
store the auxiliary exception data, as the offending virtual address of the load
instruction that resulted in a load page fault exception during the DTLB access.

• rd_idx: the address of the destination register (rd, if any).

• except_raised: a status bit indicating if the contained instruction encoun-
tered an exception during its execution.

• except_code: the code associated to the raised exception.

An example of the content of the ROB is reported in table 3.6.

3.9.2 ROB control logic
The control logic of the ROB is quite similar to the one of the issue queue, except
for an additional write port to save the result of an instruction from the CDB to
the indicated entry. The possible operations are briefly described in the following
paragraphs.

90

3.9 – Reorder Buffer

v instr instr_pc res_r res_v rd_idx e_r e_code
t→ 0 no - - - - - - -

1 no - - - - - - -
h→ 2 yes addi 0x...0dead0 yes 42 5 no -

3 yes lb 0x...0dead4 no - 31 no -
. .
m-1 yes sh 0x...0beef0 yes 0x... - yes 0x7

Table 3.6: Example of the content of the ROB. Here, the addi instruction in entry
2 has completed its execution (i.e. it has its result ready) and reached the head of
the ROB. Therefore, it is ready to be committed. The lb instruction in entry 3
doesn’t have its loaded value yes, while the sh instruction in entry m− 1 raised a
store page fault exception during the DTLB access, so it is ready to commit without
further checks. The exception handling logic will perform the necessary operations.

Insert a new instruction As described before when a new instruction is issued,
it is sent to both the RS assigned by the issue logic (if any) and to the tail entry of
the ROB. Of course, both the RS and the ROB must have an empty entry where
the instruction can be allocated, otherwise, the issue queue is stalled. If the tail
entry of the ROB is not empty (i.e. the ROB is full), the output ready signal to
the issue logic is not asserted, and the ready from the issue logic to the issue queue
won’t be asserted too, stalling the issue of new instructions until the one in the
head entry of the ROB commits.

Save result from the CDB An additional write port is connected to the CDB
and uses its rob_idx field to address the destination ROB entry where the carried
result or exception must be stored. The valid signal from the CDB triggers this
action.

Pop a committed instruction Once a valid instruction reaches the head of
the ROB, if it has its result ready24, it is sent to the commit logic. As soon as
the commit logic has performed all the necessary operations for the commit of the
current instruction, it asserts its ready signal for the ROB, and the head instruction
is popped. This action completes the execution process of an instruction in the
execution pipeline. Starting from the next cycle, its result will be available in the
associated RF or in the memory, unless an exception was raised or the instruction
changes the execution flow or the status of the processor.

24When no result is produced by an instruction like stores or CSR ones, the result is considered
ready so the commit can proceed.

91

3 – LEN5 Execution Pipeline Design

3.10 Commit logic
The commit logic is the combinational control network that performs all the re-
quired actions on the committing instruction according to its type and possibly
its result and operands. After an instruction has been processed by the commit
logic, it can be popped from the ROB. If an exception was raised during the pre-
vious phases of execution, the exception code and its auxiliary information from
the head entry of the ROB are processed by the internal exception handling logic
briefly introduced in section 3.10.1.

Notice that the commit logic requires all the processor parts to be integrated
properly before it can be completely defined and designed. For this reason, the code
of LEN5 doesn’t include this component. A simple template is provided instead,
to be completed as soon as the integration is made.

The commit logic contains a second instruction decoder that takes different ac-
tions based on the type of the currently committing instruction, which is the one
from the head entry of the ROB. The commit decoder follows the same organi-
zation of the issue decoder. It generates an output ready signal for the ROB to
communicate that the committing instruction has been processed and asserts the
output valid signals for the integer and the floating-point RF and for the CSRs.
When an instruction can be successfully committed, the output ready signal fro the
ROB is raised. Besides, it generates the control signals that are used by the main
control logic that together with the ones from the issue logic operate the required
actions of the different parts of the processor. Also, it contains the logic required to
handle exceptions that may have arisen during the fetch, the issue or the execution
phases as described in the previous sections of this chapter.

The commit logic must communicate with the main control logic of the entire
processor and possibly interact with the frontend and the memory system when
instructions that modify the sequential flow of the program (i.e. update the PC)
are committed. For this reason, the code of the commit logic has not been written
in this first implementation of LEN5 . However, its design is overall very similar to
the one of the issue logic.

The following paragraphs describe how the main types of instructions are han-
dled by the commit logic.

Arithmetic instructions Arithmetic instructions can adopt either the R-type
or the I-type instruction format, depending on whether an immediate value is used
in place of one of the source registers. Regardless of the type, they share the
property of updating their destination register in the integer or the floating-point
RF. Therefore, when an arithmetic instruction is decoded by the issue decoder,
the valid signal for the corresponding RF is asserted, and the destination register
index and the data are presented at the input of its write port. Also, the ready
signal for the ROB is asserted so the head instruction can be popped as described

92

3.10 – Commit logic

in section 3.9. As explained there, a store instruction is allowed to perform the
data cache access only if no exception is registered in the store buffer .

Memory instructions Load instructions are no different from arithmetic in-
structions when they commit: they carry a result that has to be saved in their
destination register. For this reason, they are handled by the commit logic exactly
like arithmetic instructions. The only difference is the type of exceptions that might
have been raised during execution. Store instructions, on the other hand, follow a
slightly different procedure. As mentioned in section 3.7 they are not directly com-
mitted from the ROB. In fact, both the target physical memory address and the
value to be stored are kept in the store buffer , which is compiled in order exactly
like the ROB. A store can perform the data cache write request if and only if it is
found both in the head entry of the ROB (like any other instruction) and in the
head entry of the store buffer . Once the data cache communicates that the write
operation has been successfully completed, the instruction can be popped from the
ROB. The commit logic takes this acknowledgment signal from the store buffer
and asserts its output ready for the ROB accordingly.

CSR instructions handling As mentioned before, CSR instructions are exe-
cuted in program order at commit time to preserve the dependences of other in-
structions on the processor status. It is not possible to execute them during issue
because it is not guaranteed that their operands are ready. When a CSR instruc-
tion commits, the commit logic performs the RF access to fetch its operand, and
use the address of the target register to access the CSR data structure described
in section 3.11. Since the issue queue is stalled when a CSR instruction is de-
coded, there is no need to flush it when the same instruction commits. Instead,
when this happens the commit logic simply enables the issue queue again, so the
already fetched instruction can be executed with the updated values in the CSRs.
Another solution could be not to stall the issue, speculating that no instruction
is going to read any CSR, and instead track if any of the in-flight instruction is
actually using the CSR that is going to be updated. If so, the pipeline is flushed
when the CSR instruction commits. However, this solution is quite expensive and
would significantly complicate the control system of the execution pipeline. Also,
CSR instructions are usually only a very small fraction of the entire program if
compared to user space instructions. So, according to Amdahl’s law, the improve-
ment in performance given by this kind of speculation would be too small to justify
the increased complexity. That would also be in contrast with the initial design
principle of making the common case fast.

Special instructions Other instructions need additional actions to be performed
at commit time. As an example, the jal and jalr instructions modify the PC.
In this case, both the in-flight instructions, issue queue and the fetch unit must

93

3 – LEN5 Execution Pipeline Design

be flushed before the new PC value can be loaded. This is also the case when
instructions changing the privilege mode or the address space are committed. The
commit logic and the commit decoder take all the required actions to communicate
to the main control logic of the processor what is to be done in each of its parts.
Notice that the memory system supports abort requests from the main control only
for load instruction. Once a store request to the data cache has been accepted it
cannot be aborted. This is totally fine because a data cache request from a store
instruction is performed only if the store instruction reached the head of the ROB
and of the load buffer with no registered exceptions. So only if it actually meets
all the requirements to modify the memory and only if all previous instructions,
including the once modifying the processor status and privilege mode, have already
committed successfully.

3.10.1 Exception handling
The exception handling logic is responsible to take all the operations required to
load the exception handling routine. This entire process is defined by the RISC-V
specification, specifically the privileged ones [16]. Usually, the following steps must
be performed:

1. The cause of the exception, encoded in the except_code filed of the ROB, is
stored in the dedicated mcause/scause CSRs.

2. Additional information, like the faulting virtual address of a memory in-
struction available in the res_value field of the ROB, can be saved in the
mtval/stval CSRs.

3. The PC of the instruction is stored in the mepc/sepc CSRs.

4. Finally, the PC of the exception handling routine associated to the raised
exception is loaded from the mtvec/stvec CSRs and sent to the frontend.
Notice that the support for this operation is not yet available in LEN5 .

5. he mscratch/sscratch CSRs can be used by the exception handler to store
temporary data.

Usually, when an exception occurs, the control is passed to the OS that operates
in a privileged mode. For all the details it is suggested to read [8, chap 5].

94

3.11 – Control Status Registers

3.11 Control Status Registers
In LEN5 , the CSRs are organized as a register file. Each CSR has an associated
address that is also used to check if the CSR instructions has the privileges to
modify the target CSR. Usually, the operation on a given CSR must be atomic, and
most of the time only legal values can be read or written. The RISC-V privileged
specification [16] details every single aspect of the CSRs access. The implementation
is straightforward, so it is not analyzed here.

Some CSRs are used to evaluate the performance of the processor in real-time
during execution. These register are essentially counters incremented when spe-
cific events take place. In particular, there are a free running clock cycle counter
(ucycle), a real time counter (utime) and a retired instruction counter (uinstret).
Those are specific to the user space, but the same registers might be instantiated
also for supervisor and machine modes. The content of the performance coun-
ters in each cycle is strictly implementation-dependent, and their function cannot
be completely defined, especially for OoO and multi-core or Simultaneus Multi-
Threading (SMT) cores. In this first implementation of LEN5 , the user space
performance counter are provided, but their control signals are not yet connected.

95

96

Chapter 4

Testing and synthesis

In this section, the testing methodology will be discussed, and some of the synthesis
results will be reported.

4.1 Functional verification
Proper testing of a microprocessor requires a quite complex environment. A testing
space must be defined, aiming at covering all the possible situations the processor
can encounter during its execution. During functional simulation with the compiled
net-list, the testbench should be able to track the coverage. Notice that simulating
all the possible combinations of instructions is usually practically impossible. So,
the trend in this field is to make use of formal verification too. Besides, many
sequences of instruction should be defined to stress the critical section of instruction
execution and flow control. To do this, the entire processor must be integrated,
including the functional units, that can be also emulated in the testbench. The
outcome of a certain code should be then compared to the output of a software
model of the processor. After functional verification, some sort of benchmarking
should be performed to evaluate the performance of the processor and compared
them to the existing solution. Eventually, the critical sections can be optimized.
In general, testing is the step of the entire design process that takes longer to be
completed, especially when dealing with very complex systems.

Unfortunately, the three main parts of LEN5 have not been integrated yet.
Moreover, some components that operate on the whole processor and not only on
the execution pipeline (like the commit logic and the exception handling) have not
yet been fully defined and described in System Verilog1. For this reason, it wasn’t
possible to simulate the execution pipeline comprehensively. In some cases, some
of the missing hardware was described in a test-focused manner, meaning that

1A discussion of what remains to be done can be found in section 5.2.

97

4 – Testing and synthesis

only the logic required to carry on the defined test scenario was actually described.
These dummy components were not inserted in the LEN5 code since most of them
have to be most certainly completely redesigned in a proper and comprehensive
way. The next section describes how the components of LEN5 were tested to work
as expected.

4.1.1 Testing methodology
Because of the missing integration of the other parts and of the actual functional
units, the execution pipeline could be tested properly. Instead, each of its internal
components was tested on its own, forcing its inputs to assume all the critical
values and also random one to see if the control logic was able to detect a forbidden
state and raise an exception. To this purpose, many System Verilog assertions
were introduced in the code. Then, a testbench dedicated to each of the units
from chapter 3 was defined and used to generate the input vectors. In most of the
case, the main output signals were printed on an output simulation log checked
automatically by some simple Python script or verified manually when necessary.
In the most critical cases, the waves of the simulator were analyzed to check if the
content of a data structure or the control signals to update it matched the expected
ones in each cycle. In many cases, some timing diagrams2 were realized during the
initial design, and used to check the waves produced by the simulation3.

Very simple data structures like the issue queue were simply tested simulating
the state of the connected units and producing ad hoc instructions or data to be
inserted in the structure.

Due to the lack of the functional units, only the RS associated with the integer
ALU was tested, emulating the ALU with a behavioral component in the testbench.
Remember that the same arithmetic RS is instantiated for each of the arithmetic
functional units in the execution pipeline (integer multiplier, integer divider, and
floating-point unit). So testing one of them should be quite significant also for the
other ones in most of the cases. The correctness or type of the result is, in fact,
independent on the RS, while what’s important is the flow control of the execution
and the handshake mechanism with the functional unit, the issue logic, and the
CDB, that are the same in every RS.

Complex control logic like the issue logic was manually verified to work as ex-
pected only in a limited number of cases since many instructions still have to
be supported by the commit logic, especially those regarding privileged execution
modes. A comprehensive verification of the issue logic and decoder can be easily

2Not included in this document.
3No wave is reported here, since it would be of little interest for the reader, given its general

complexity and the knowledge of the code that is required to really understand it.

98

4.2 – Synthesis results

performed once the core is entirely assembled. At that point, any sequence of sup-
ported instructions can be simply fed into the frontend, while the output can be
checked tracking the content of the register and of the memory.

For all these reasons, the functional verification was performed in a heuristic
way, and the fact that each component works properly o its own doesn’t mean that
the entire pipeline or processor will, because not all the possibilities were covered
and some bug might still be present.

While this means leaving some work to be done by those that will further develop
LEN5 , it is also important to remember that the initial aim wasn’t to deliver a fully
functional and usable speculative, OS compliant OoOE processor, since this would
require much more time and resources than what three students can provide during
a Master’s thesis project.

4.2 Synthesis results
The synthesis was performed using the UMC 65 nm low-leakage library [14]. In
particular, typical gate parameters were employed. The target clock period was set
to 0 ns to let the compiler do all the possible optimizations to increase performance.

Assembling and synthesizing the entire execution pipeline when some of its parts
are missing would result in mostly insignificant figures of merit. Therefore, once
again each component was synthesized on its own, or at most with some of the
surrounding ones (like the load-store unit), to extract some relative information
and identify the critical sections of the design. For each synthesized unit, the
total area, including both combinational and non-combinational elements, the non-
combinational (NC) area and the cycle time (or propagation delay for combinational
blocks) were extracted.

Some system-wide parameters can still be obtained by the individual ones if
some assumption is made.

• The area of the currently available hardware in the execution hardware can
be obtained as the sum of the areas of each component.

• The global minimum cycle time can be obtained as the maximum slack time
(absolute value) among all the units.

Where slack time is the difference between the beginning of the clock arrival
time, that is the clock cycle period plus the clock skew, and the data arrival time.
A negative slack time means that the target clock cycle is not met. Since the target
clock cycle time was set to 0 ns, here the value of the slack time is actually the cycle
time obtained by the synthesis compiler for a given sequential component changed
in sign.

Notice that both these results, reported in section 4.2.11, won’t accurate. For
what concerns the area, a more accurate logic optimization can be achieved by the

99

4 – Testing and synthesis

compiler when the entire design is flattened and processed at once. So the result
might represent a worst-case scenario, which is therefore not totally meaningless.
However, on the other hand, the fan-out of each output port of a unit is set to a
standard value during synthesis. When the unit is integrated into the entire system,
the fan-out can be different. A significant example is the CDB: its data is broadcast
to all the RSs, so its fan-out is possibly much higher than the one assumed during
synthesis. As a consequence, there isn’t a defined relation between these results
and the ones obtained properly synthesizing the entire processor.

Similar considerations might be done regarding timing. The global critical path
might represent a best-case scenario since not all the units have input or output
register, so when they are connected the number of logic levels a given signal must
traverse might be bigger than it is in the stand-alone synthesis.

So, all the numbers reported in the following section are to be considered pre-
liminary results, that might not significantly represent the actual figures of merit of
the execution pipeline or LEN5 in general. They are meant to highlight the critical
section of the processor, and not to provide an absolute rating of its performance.

Before proceeding to the actual results, some of the general assumptions regard-
ing the synthesis must be pointed out and explained.

Input and output delays Synopsys lets the user choose an input and an output
external delays to be associated to each register in the design4. The input delay is
added to the propagation delay of the logic between two registers, practically hiding
the set-up time of the register. The output delay is added to the clock-to-output
delay. So both these parameters enter in the definition of the well-known definition
of critical path (and consequently of the cycle period):

Tcycle = Tc→q + Tskew + Tpd + Tsu

For this reason, it was decided to set those synthesis parameters to 0 ns. When
needed, they can simply be added to the reported timing results, since their con-
tribute is linearly combined to the other ones. Of course, the same is true for the
system-wide parameters defined above and reported at the end of this section.

Clock uncertainty This is another parameter that is usually set in Synopsys5

to take into account that the generated clock doesn’t have an ideal, constant pe-
riod. Instead, it is subject to a certain variation. Since this parameter is strictly
dependent on the implementation of the clock generation network, that, of course,
goes beyond the purposes of this work, it was again considered null (0 ns). As for

4This is accomplished by the set_input_delay and set_output_delay commands.
5Using the set_clock_uncertainty command.

100

4.2 – Synthesis results

the input and output delays, the actual parameter can be simply added to a given
critical path in a second time.

Output load As mentioned before, synthesizing each component on its own
might lead to inaccurate results because the fan-out of the output ports assumed
during synthesis might not be representative of the actual one when the entire sys-
tem is integrated and synthesized. Unlike the previous ones, this parameter has
consequences both on the area and the timing results, since a bigger load imply
bigger or multiple drivers to handle the required logical effort. However, since this
preliminary synthesis results do not aim at providing realistic figures of merit, but
only at highlighting what are the critical sections of the design, the output capacity
was simply set to the input capacitance of a buffer with drive strength equal to 4
according to the definition in the library documentation6 [14].

Other synthesis settings To get the preliminary reference results, no retiming
or Synopsys advanced compile mode (like compile ultra) was used. The system-level
parameters from the configuration packages are reported in the section dedicated
to each component. Since the number of entries in the ROB has some consequences
also on the other units, its value is considered set to 16 if not differently stated.

4.2.1 Arbiters
Both the two types of arbiters described in section 3.1.3 should be quite simple,
consisting only in a few logic gate levels. The fair arbiter also contains a Flip-Flop
(FF), so it is expected to be bigger and maybe a bit slower due to the technological
parameters of the sequential element. Still, the impact of choosing one over the
other is totally negligible in the entire system, and this choice should be made
based only on global considerations on instruction dependences or global execution
latency.

The synthesis results for both the types of 2-way arbiters are shown in table 4.1,
and confirm the expectations.

Arbiter type Area (NC area) [µm2] Latency [ns]
Priority 7.56 (0) 0.07
Fair 35.64 (12.24) 0.18

Table 4.1: 2-way arbiters synthesis results.

6The corresponding gate in the UMC 65 nm technology library is the BUFM4R. The input
capacity of its only input A was used as output load capacitance for the output ports.

101

4 – Testing and synthesis

4.2.2 Entry selectors
Both the entry selector were synthesized with 8 and 16 inputs since those are the
values used for the number of entries in the RSs, as described in section 4.2.7.
Notice that being combinational components, the non-combinational area of the
selectors is always zero.

Priority encoder

The priority encoder, whose results are shown in table 4.2, is a very simple and fast
structure, and shouldn’t introduce much latency in the communication between the
RSs and the associated functional unit. However its propagation delay increases
almost linearly with the number of inputs, so if used in very large data structures
it could enter the critical path of the entire system.

Input n. Area [µm2] Delay [ns]
8 31 0.18
16 66 0.33

Table 4.2: Priority encoder selector synthesis results with 8 and 16 inputs.

Age based selector

The age based selectors were synthesized with 4-bit age inputs (up to 15), so com-
patible with a 16 entries ROB. The results are shown in table 4.3.

Input n. Area [µm2] Delay [ns]
8 233 3.45
16 519 8.05

Table 4.3: Age-based selector synthesis results with 8 and 16 inputs. The age is
encoded on 4 bits.

As shown, the age-based selector is a very, very slow component, and its delay
grows more than linearly with the number of input ages. Originally it was intro-
duced to give higher priority to older instructions during execution. Notice that
as mentioned in section 3.1.4, the age-based selector was described in a behavioral
way in System Verilog. Still, a structural version was designed too. Despite the
possibility to manually optimize this component, it is very unlikely for it to be com-
petitive with a priority encoder: it would almost certainly enter the critical path,
given the presence of multiple adders and comparators. Even if in theory it could
slightly reduce the execution latency of instructions, its huge delay would nullify
any sort of advantage. For this reason, by default is not instantiated by default.

102

4.2 – Synthesis results

4.2.3 Issue queue
The issue queue is a quite simple FIFO buffer, so it is not expected to be a critical
component in the execution pipeline. It was synthesized both with 8 and 16 entries.
The resulting area and timing values are reported in table 4.4.

Entry n. Area (NC area) [µm2] Cycle time [ns]
8 17 554 (14 509) 0.51
16 38 332 (23 472) 0.60

Table 4.4: Issue queue synthesis results with 8 and 16 entries.

As shown, most of the area is occupied by sequential logic: the issue queue data
structure itself and the head and tail counters. The quite simple control logic does
not represent a bottleneck, and the cycle time is only slightly increased doubling
the number of entries probably due to the more complex addressing logic. This
is supported by quite a substantial increase in the combinational area when the
number of entries is set to 16.

In general, the size of the issue queue can be set to meet the system requirements
without impacting the overall performance of the core.

4.2.4 Issue logic
The issue logic is one of the slowest combinational components in the entire ex-
ecution pipeline and probably in the entire processor, given the presence of the
issue decoder. It was synthesized assuming 7 RSs instantiated in the execution
pipeline, as described in section 3.6. The synthesis results in table 4.5 show a quite
high delay. In particular, its critical path includes the instruction decoder and the
operands fetch logic.

Area [µm2] Delay [ns]
1353 1.96

Table 4.5: Issue logic synthesis results.

As suggested in section 5.3.1 the decoder organization might need a revision in
future versions. Also, remember that the operand fetch also requires the register
status and the RF or the ROB to be accessed. The RF access is carried out in
parallel to the rest of the instruction decoding, since the rs1 and rs2 register
indexes are read from the instruction regardless of its format or decoding process.
The ROB access can be performed once the ROB entries providing the operands
are fetched from the register status data structure. Assuming that the read ports
of the register status and of the ROB have a latency equal to their cycle time (from

103

4 – Testing and synthesis

table 4.6 and table 4.14), the resulting total latency of the operand fetch operation
is:

Top.fetch = Treg.stat. + TROB (4.1)

The operand fetch from a 16-entry ROB would take 1.22 ns, from a 32-entry ROB
it takes 1.25 ns and from a 64-entry ROB it takes 1.38 ns.

This operation goes in parallel with the instruction decoding, and when this is
completed, the issue logic selects the right operand value from the correct source.
So, the operand fetch from the RF and from the ROB through the register status
is performed in parallel to the instruction decoding. The reported critical path
regards exactly the operand selection in the issue logic. Since this critical path is
higher than the fetch operation, the latter is completely hidden by the latency of
the decoding logic, so the ROB and the register status are not critical components
of the execution pipeline.

4.2.5 Register status
The register status is a quite simple structure. Despite having 32 entries, their
content is quite small: a status bit and a ROB index. Therefore, it’s complexity is
expected to be limited, while its delay should be in the same order of magnitude
of the other simple data structures, like the register files or the issue queue. The
synthesis results in table 4.6 confirm these expectations. Notice how the area is
mostly occupied by sequential logic (i.e. the data structure itself).

Area (NC) [µm2] Cycle time [ns]
4605 (2191) 0.60

Table 4.6: Register status synthesis results.

4.2.6 Register files
The only difference between these two components is that the first register (0) of
the integer register file is hard-wired to 0. In both of them, two-thirds of the area
is occupied by sequential logic, while the remaining by the access ports, naming
MUXs and decoders.

Both the area and timing reports are shown in table 4.7.

Register file Area (NC area) [µm2] Cycle time [ns]
Integer 32 585 (21 572) 0.35
Floating-point 32 752 (22 448) 0.29

Table 4.7: Register files synthesis results.

104

4.2 – Synthesis results

The integer RF shows a lower non-combinational area due to the lack of one
of the registers. However, the combinational area and the slack time are slightly
higher due to the additional check on the input register indexes.

4.2.7 Reservation stations
The RSs were synthesized without instantiating the age based selectors, for the
reasons explained in section 3.1.4 and section 4.2.2. The results were obtained for
both an 8-entry and a 16-entry version of both types of RS.

Arithmetic reservation station

The synthesis results of the arithmetic RS are reported in table 4.8. They were ob-
tained assuming a generic functional unit whose possible operations are encoded on
4 bits and whose generated exceptions are encoded on 2 bits. Since these parame-
ters change only the size of each entry, they shouldn’t affect the timing performance
of the unit.

Entry n. Area (NC area) [µm2] Cycle time [ns]
8 26 762 (16 629) 0.59
16 52 804 (33 389) 0.75

Table 4.8: Arithmetic RS synthesis results with 8 and 16 entries.

As shown, despite the sequential elements dominate the area of a RS, the more
complex control logic and the selectors have a greater impact than in simpler in-
order structures like the issue queue (section 4.2.3): 39 % compared to 17 % in an
8-entry issue queue. On the other hand, the delay is not increased as much, because
the control logic is mostly parallel as a consequence of the organization discussed
in section 3.1.2. When doubling the number of entries to 16, the area doubles too,
indicating a linear dependency. The increase in the delay is higher probably due to
the delay of the bigger priority encoders used as selectors (see section 4.2.2).

Branch unit reservation station

Similar results are expected from the synthesis of the branch unit RS. This time, the
selection of the branch instruction to be executed is performed in-order by some
counters instead of the priority encoders used in arithmetic RS. The additional
sequential components might lead to a larger component, while the lack of priority
encoders should reduce the critical path, especially with a higher number of entries.
The obtained results are reported in table 4.9, and confirm the expectations.

The previous results classify the RSs as non-critical components in the execution
pipeline of LEN5 . This concurs to defining some of the advantages of Tomasulo’s

105

4 – Testing and synthesis

Entry n. Area (NC area) [µm2] Cycle time [ns]
8 36 380 (20 176) 0.55
16 68 931 (45 682) 0.63

Table 4.9: Branch unit RS synthesis results with 8 and 16 entries.

approach discussed in chapter 2. RSs allow OoOE while distributing most of the
instruction execution logic, avoiding centralized complex data structures that are
typical in different approaches like scoreboarding.

Doubling the number of entries doubles the area while increasing the cycle time
by 15 %. Notice that increasing the depth of a RS over 8-16 is very unlikely to
bring any advantage, especially if only one functional unit is associated to that RS:
it is quite rare to issue as many instructions of the same time as required to fill a
RS before the maximum ROB capacity is reached.

4.2.8 Load-store unit
The load buffer and the store buffer are two of the most complex components of
the execution pipeline of LEN5 . Their data structures are not much different from
the one of an arithmetic RS, with the only difference being the size and fields of
each entry. The control logic is slightly more complex to support the additional
operations required to execute loads and stores. Still, each operation is processed
in parallel, so even if a larger combinational area is expected, it shouldn’t impact
on the delay. The real critical section for what concerns timing performance is the
forwarding logic in the store buffer .

Both the buffers were synthesized separately to distinguish the critical sections
of each of them. At the end of this section, a synthesis of all the load-store unit,
including the virtual address adder and all the arbiters and MUXs instantiated
to handle shared unit units (the virtual address adder , the DTLB, and the data
cache).

Load buffer

The load buffer is shouldn’t perform much different from an arithmetic RS. Still,
as mentioned above it is expected to have a larger area. The obtained results are
shown in table 4.10.

Entry n. Area (NC area) [µm2] Cycle time [ns]
8 49 588 (21 456) 0.79
16 92 514 (41 404) 0.97

Table 4.10: Load buffer synthesis results with 8 and 16 entries.

106

4.2 – Synthesis results

The area of an 8-entry load buffer is similar to the one of a 16-entry arithmetic
reservation station, with this being due primarily to the combinational logic, that
occupies the 57 % of the total area. The several selectors are the main reason for
this. The cycle time is higher than the one of a RS, probably because of the more
complex control logic, that requires additional sequential checks.

When doubling the number of entries, the area increases linearly, while the cycle
time is increased by 22 %. Notice that having more than 16 entries in the load
buffer , like in every other RS, is not probably worth it. The ROB, that contains
more than one type of instructions and has limited capacity too, would fill before
as many instructions of the same type as the depth of a RS are issued. Only a
comprehensive simulation od the entire processor or an accurate code analysis can
suggest the best depth of these units.

Store buffer

As mentioned at the beginning of this section, the forwarding logic in the store
buffer is probably one of the bottlenecks of the entire execution pipeline, since
many sums and comparisons must be performed to reconstruct the relative order of
load and store instructions. Under any other aspect, the store buffer is not different
from the load buffer , apart from using two counters instead of two selectors to insert
and execute the data cache. All the other operations are carried out OoO. Once
again, the results of the synthesis are shown in table 4.11.

Entry n. Area (NC area) [µm2] Cycle time [ns]
8 49 173 (20 311) 0.92
16 102 521 (42 093) 1.11

Table 4.11: Store buffer synthesis results with 8 and 16 entries.

As expected, the combinational critical path of the store buffer goes through
through the forwarding logic, producing a cycle time similar to the one of a load
buffer with double the entries. This suggests an implementation with a load buffer
bigger than the store buffer . However, this configuration may or may not bring
advantages to the system: thanks to forwarding, the time a load spends in the load
buffer waiting for its value is probably shorter than the time a store spends in the
store buffer, since stores must be executed in order and must be kept in the buffer
until the data cache access is complete. This means that the average occupancy
of the load buffer is probably lower. On the other hand, the ratio between issued
loads and stores is usually higher than one. So the choice depends on the programs
executed. Still, if some advantage is found, this solution comes at no cost in terms
of performance7.

7the area and the power consumption will, of course, be higher.

107

4 – Testing and synthesis

Doubling the size of the store buffer leads to a cycle time 21 % higher, which
might be unacceptable in some cases. On the other hand, a bigger store buffer
means more space for the cache level zero mechanism, allowing a higher hit ratio
and possibly less DTLB and data cache accesses.

Entire load-store unit

The forwarding logic in the store buffer is purely combinational. For this reason,
also the (small) logic issuing and processing the forwarding operation from the load
buffer should be included in the critical path of the entire load-store unit. Besides,
the virtual address adder and all the arbiters must be considered. So, the entire
load-store unit was synthesized to evaluate its actual performance in four different
size configurations of the two buffers to evaluate the scaling of this unit. The results
are shown in table 4.12.

LB entry n. SB entry n. Area (NC area) [µm2] Cycle time [ns]
8 8 95 646 (43 546) 1.44
16 8 134 628 (62 128) 1.56
8 16 140 951 (63 166) 1.63
16 16 179 685 (83 893) 1.89

Table 4.12: Load-store unit synthesis results with 8 and 16 entries in all the possible
configurations.

In general, the area of the entire load-store unit is reported to be comparable with
the sum of the same-sized load buffer and store buffer area despite the few additional
components. This can be explained by the additional level of optimization that the
Synopsys compiler can operate on the entire flatten load-store unit compared to
the single buffers. For what concerns the critical path (and so the cycle time), it
is incremented by 56 % while still including the forwarding logic, meaning that the
load buffer contributes for about one-third in term of delay to the store-to-load
forwarding process. Besides, the arbiters and the MUXs for the shader units, and
the virtual address adder do not represent a bottleneck in the load-store unit. A
simpler version of LEN5 , that would probably have simpler decoders too, could,
therefore, implement no forwarding logic and achieve better performance overall.
However, this would strongly impact the efficiency of memory operations, so it
really depends on the use case.

As it is clear from fig. 4.1 a bigger store buffer impacts more on performance
than a bigger load buffer does. Instead, the area scales quite linearly with the total
size of the buffers, both for sequential and combinational elements.

One last observation is that Synopsys used a parallel prefix architecture to im-
plement the virtual address adder . This usually offers very good performance while
keeping the area under control. This choice contributes to keeping this component

108

4.2 – Synthesis results

Figure 4.1: Load-store unit area and timing chart. The data is from table 4.12.

out of the critical path of the load-store unit.

4.2.9 Common Data Bus
Despite being a very simple component, the CDB is the component that mostly
falls into the observations made at the beginning of section 4.2 about the accuracy
of these synthesis results. In fact, as described in section 3.8, it is connected to all
the entries of all the RSs. This is necessary to fetch those source operands that
are not available at issue time. For this reason, its output capacity is quite high.
Assuming that all the seven RSs have 8 entries (including the branch unit RS, the
load buffer and the store buffer) and considering the destination ROB entry too,
the data carried by the CDB must be broadcast to 57 registers, so its buffers might
limit its timing performance. On the other hand, the CDB arbiter shouldn’t be
too slow since it only uses a decoder, an encoder, some MUXs and a very simple
masking logic. The results of the synthesis of the CDB assuming seven RSs (i.e.
seven couples of valid-ready signals) are reported in table 4.13. Also, a second
synthesis was performed assuming 32 RSs (and therefore 32 functional units) to see
if the encoding/decoding logic might represent an issue in more complex execution
pipelines.

As it is clear from those results, the CDB is far from being a bottleneck in the
system, but the increased fan-out in the fully integrated execution pipeline might

109

4 – Testing and synthesis

RS n. Area (NC) [µm2] Cycle time [ns]
7 1542 (60) 0.51
32 7284 (314) 0.92

Table 4.13: CDB synthesis results with seven RSs.

lower its performance and/or increase its area. Also with a very high number of
RSs, the performance of the CDB is still acceptable, especially considering that
such a complex pipeline would also require more complex issue logic and ROB,
which are more likely to enter the pipeline critical path than the CDB is. From
the two cases, the increment in the area is directly proportional to the number of
RSs. This is in accordance with the higher number of registers required and the
increased complexity of the encoding logic (see section 4.2.2).

4.2.10 Reorder Buffer
As mentioned before, the ROB is a quite simple component. It is compiled in-order
using a head and a tail pointer, with two additional read ports to fetch operands
and another write one to store the result carried on the CDB. On the other hand, it
must provide enough space for all the in-flight instructions. Actually, it shouldn’t
be necessary to set the depth of the ROB to the absolute maximum number of
instructions that can exist in the entire execution pipeline in a given cycle since
this situation is hardly ever reached. In other words, the number of ROB entries
doesn’t have to be equal to the sum of the size of all the RSs. For the synthesis,
the ROB was instantiated in three different sizes: 16, 32 and 64. Remember that
a bigger ROB doesn’t impact on the area other units inside the execution pipeline
except for the few additional FFs that are required to store its indexes. Still, those
are never processed by any combinational network except for the comparator that
checks the commit conditions in the store buffer (see section 3.7.2). Most of the
time they are only exchanged between units, without entering their critical path.
So the ROB depth shouldn’t matter at all also for the timing results in the previous
sections, and the variation in the area results should be negligible as well.

The synthesis results for the ROB are reported in table 4.14.

Entry n. Area (NC) [µm2] Cycle time [ns]
16 46 228 (24 580) 0.65
32 89 438 (54 152) 0.68
64 177 626 (99 107) 0.78

Table 4.14: ROB synthesis results with 16, 32 and 64 entries.

As shown, the ROB is smaller and faster than an equal-size RS, so it does
not represent a critical unit in the execution pipeline, regarding neither area nor

110

4.2 – Synthesis results

timing performance. Its size can, therefore, be chosen according to the number of
instructions that a specific configuration of the rest of the LEN5 execution pipeline
can handle at the same time (size of the other buffer, latency of the functional
units, etc.).

4.2.11 Execution pipeline area and performance
As explained at the beginning of section 4.2, the system-wide parameters of the ex-
ecution pipeline can be extracted from the ones reported in sections 4.2.1 to 4.2.10.
However, due to the lack of the commit logic, the complete CSRs and the main
control logic, these numbers are to be considered preliminary ones.

Also, some assumption is required:

1. As explained in section 4.2.4, the latency of a register status access is added
to the one of the ROB access since these two operations must be performed
one after the other. This operation is performed in parallel to the instruction
decoding. For this reason, the register status and ROB access operations
during issue are considered as a single operation whose latency is obtained
from eq. (4.1) depending on the size of the ROB.

2. The commit logic is considered to have a lower impact of the issue logic for
what concerns performance. The commit decoder is almost certainly smaller
than the issue one, and the rest of the commit logic, is also quite simple, as
described in section 3.10. For what concerns the area of the commit logic, it
is considered to be about the same as the issue logic: 1353 µm2.

3. Four of the five RSs (ALU, MULT, DIV, FPU) are considered to be equal to
the arithmetic one from section 4.2.7, while the last one is the one associated
with the branch unit, from section 4.2.7.

4. Since the number of CSRs depends on the implemented features, the area of
the CSR data structure is assumed to be four times the one of a RF (130 µm2),
because of the larger number of registers and the additional control logic (only
legal values are accepted most of the time, as explained in section 3.11). Be-
cause the CSR register file doesn’t contain complex combinational logic, its
critical path is assumed to be similar to the one of the other RF, and therefore
not significant for the system-wide performance estimation.

For what concerns the other system parameters, each RS is supposed to have
8 entries, including the load buffer and the store buffer . The ROB is assumed to
have 32 entries and the issue queue 16.

It is important to remind that no functional unit is included in the following
estimations. The intent of this synthesis process and the entire project was to
focus on the architecture implementing the extended Tomasulo’s algorithm. The

111

4 – Testing and synthesis

functional units can be chosen and inserted easily in the pipeline depending on
the application requirements. Also, any arithmetic operator can be pipelined until
it doesn’t represent a bottleneck in the execution pipeline. In fact, the proposed
architecture is completely independent of the type, latency and pipeline depth
of the functional units employed. There are many examples of high-performance
arithmetic operators that could be used in LEN5 , and many of them are available
under open-source licenses too. So once the entire processor is integrated, those
units can be simply instantiated together with a dedicated RS, ensuring that they
are fast enough to exploit the full capabilities of this execution pipeline.

As a consequence of the previous observation, the presence of the different func-
tional units is, in theory, affecting only the area of the processor.

Area The estimation of the area of the entire execution pipeline is obtained simply
as the sum of all its units, with the assumptions reported above.

Aex. = Aiss.q. + Aiss.l. + 2 · Areg.stat. + Aint.RF + Af.p.RF + 4 · Aar.RS + Ab.u.RS+

+Al.s.u. + ACDB + AROB + Acom.l. + ACSR ' 0.45 mm2 (4.2)
The 57 % of this area (0.26 mm2) is due to sequential elements. The weight on

the total area of each unit is shown in fig. 4.2. The reservation
As it is possible to see from the results in sections 4.2.1 to 4.2.10, in most cases

the area of a unit grows linearly with the size of the buffers. Since most of the
largest structures in the execution pipeline contain at least one buffer, also the
increase in the total area should be linear with the total number of registers in the
buffers.

Timing The estimation of the timing performance is obtained as the maximum
critical path or cycle time among all the units. This is without any doubt the
delay of the instruction decoding during issue: 1.96 ns. This means that the es-
timated maximum operating frequency of the execution pipeline using the UMC
65nm technology is:

fclk <
1

Tmax

= 1
tiss.l.

' 510 MHz (4.3)

Notice that all the key components of the execution pipeline of LEN5 are faster
than the issue logic. So if the optimizations suggested in section 5.3.1 are applied
(pipeline, better organization of the issue decoder) and the delay of the issue stage
is removed from the critical path, the bottleneck will be represented by the load-
store unit (see table 4.12) whose minimum cycle time is 1.44 ns. In the case the
maximum clock frequency with the buffer sizes listed before would be:

fclk <
1

Tl.s.u.

' 694 MHz

112

4.2 – Synthesis results

Figure 4.2: Area composition of the execution pipeline with 16-entry issue queue,
8-entry RSs (including load buffer and store buffer) and 32-entry ROB. The starred
units use predicted or probably inaccurate values for the reason explained earlier
in this section.

That is an improvement of 36 % over the result from eq. (4.3). Of course, chang-
ing the sizes of the load buffer and the store buffer slows the system down, but it
may lead to better overall results decreasing the average number of stalls in the
pipeline due to some buffer being full. On the other hand, the latency introduced
by the register status and ROB accesses during the issue phase doesn’t represent
a bottleneck, being the sum of those operations in the worse conditions (64-entry
ROB) lower than the cycle time of the load-store unit in the best conditions (8-entry
load buffer and store buffer).

Figure 4.3 reports the cycle time (or the latency for combinational components)
of each unit in the execution pipeline. Also, it shows the absolute increment in
timing performance of some units when their size is doubled: from 8 to 16 in the
RSs, in the load buffer , and in the store buffer , while from 32 to 64 in the ROB.
Once again, the worst-case scenario for the operands fetch has been represented by
the sum of the critical paths of the register status and the ROB.

As shown, the load-store unit is strongly affected by the number of entries in
the load buffer and the store buffer because of the forwarding logic, as mentioned
in section 4.2.8.

Once again, these are preliminary results. They might differ from the ones

113

4 – Testing and synthesis

Figure 4.3: Comparison among the cycle times or latencies of each component in
the execution pipeline, and absolute increment when the buffer size is doubled.

obtained by the synthesis of the entire system, especially if also the frontend and
the memory system are integrated.

114

Chapter 5

Conclusions and further
improvements

5.1 Conclusion
The design of the backend of LEN5 exposed most of the critical issues in micropro-
cessor design. The proposed architecture succeeds in addressing most of them by
providing a modestly versatile, customizable and modular structure dedicated to
a wide range of applications. These features meet the design principles the RISC-
V ISA is based on, making it possible to extend the instruction set on demand.
The extended Tomasulo’s algorithm manages to hide most of the major sources
of latency in the instruction execution process by inherently implementing register
renaming and OoOE. At the same time it fully supports speculation and precise
exceptions, two key features that are hardly ever missing in modern consumer and
high-performance microprocessors. The resulting architecture, together with the
system-wide AXI-like handshake protocol, simplifies the insertion of multiple and
application-specific functional units, making it possible to adopt LEN5 in high-
performance applications, with dedicated SIMD or vector and matrix accelerators.
The implemented load-store unit supports VM and employs many tricks to speed-up
the execution of memory instructions while reducing the number of cache accesses
by caching and forwarding values between store and load instructions whenever
possible and caching already committed store instructions.

The synthesis results discussed in section 4.2.11 indicate that the key components
of the execution pipeline architecture shouldn’t represent a critical bottleneck in
the entire processor. The RSs, the CDB, and the ROB successfully support all
the advantages of OoOE while maintaining the delay quite small thanks to the
simple and distributed execution control logic. The load-store unit is the slowest
component apart from the issue logic, but this is not a limitation if all the processor
parts are put together. The real bottlenecks in the pipeline are represented by

115

5 – Conclusions and further improvements

those components whose presence and implementation are mostly independent on
the execution algorithm, with the issue logic being the most evident one.

Being this a first version of a very complex system developed in a few months,
it is not a fully functional and usable core. Unfortunately, some additional work
is required system-wide to integrate the frontend, the memory system and the
execution pipeline of LEN5 . The next sections describe what remains to do and
hint some possible improvements of the backend that should further increase the
performance of the core.

5.2 What is missing
As mentioned during chapter 3, the execution pipeline lacks some of the logic that is
necessary to fully complete the instruction execution. Without overstating, almost
each of the components of the backend of a processor might represent a Master’s
thesis project on its own to be completely optimized. The amount of knowledge
to be added to what is known from academic courses is huge, and the series of
implications hidden in a single statement in a computer architecture book is longer
than expected most of the time.

In LEN5 , most of the missing hardware was at least partially designed. However,
some of it requires all the three parts to be integrated before it can be completely
defined and described in the LEN5 code. Namely, the units that must be added to
the execution pipeline and to LEN5 in general, are reported in the list below.

• If the M, F and D ISA extensions are to be supported, the issue decoder must
be integrated with the definitions and controls for those instructions1. These
extensions are already supported by the rest of the pipeline except for the
commit logic.

• The commit logic with its commit decoder and exception/interrupt handling
logic.

• The core top-level control system, that interacts with the frontend and the
memory system besides the execution pipeline.

• Most of the CSR that are necessary to implement privileged execution.

• The functional units: ALU, MULT, DIV, FPU.

• Possibly, the interfaces with I/O devices and the main memory.

1All instructions from the base instruction set are already supported.

116

5.2 – What is missing

When all these units are ready and the three parts are integrated, the figure of
merit of LEN5 can be extracted, and further improvements can be applied to its
critical section. Besides, benchmarking can be done to evaluate LEN5 performance
in comparison to existing solutions.

The next paragraphs briefly introduce some additional details about some of the
components listed above.

Commit logic As described in section 3.10, this unit is responsible for the com-
mit of instructions and the execution of those that cannot be executed earlier2.
Most important, it handles exceptions or interrupts and generates most of the
control signal for the top-level control logic of the entire processor. Some instruc-
tions change the flow of execution by changing the value of the PC, by entering a
privileged execution mode, by accessing the CSRs and by setting some condition
for memory or thread synchronization3. When those instructions are executed at
commit, the other parts of the processor might have to be flushed or stalled. The
commit logic generates the necessary control signals for the top-level control logic
to take the required actions.

Top-level control This is the main control logic of the entire processor. It
coordinates the operation of the frontend, the execution pipeline, and the memory
system. Until a single-core and single-thread implementation are desired, the top-
level control logic should be quite simple: each unit of the processor can be flushed
using the dedicated control signal, while stalling can be achieved very simply by
masking the input ready signals of a unit. If more than one core is instantiated,
the top-level control logic must take care of all the synchronization and coherency
issues too.

CSRs Not all the CSRs defined by the RISC-V specification are actually required.
Their inclusion depends on the choices made during the implementation. Some
CSRs are reserved to be used by the specific implementation in totally custom
ways. Some of the CSRs have already been inserted in the LEN5 code, but they
have not been tested since the hardware to support CSR instruction is not ready
yes as described in the previous paragraphs.

Functional Units The design of each functional unit for the execution pipeline
was left as one of the last steps during the definition of the roles in this project.

2fence, fence.i, fence.vma, wfi, mret, sret, ebreak, ecall, jal, jalr and all the CSR
instructions.

3This last class of instructions doesn’t have any effect in LEN5 , where a single core is present
and only one thread is executed at a time.

117

5 – Conclusions and further improvements

Unfortunately, none of us was actually able to complete its part in time to proceed
to the functional unit implementation. In addition to this, this is a well known
and mature field, and many good arithmetic units can be actually found as open-
source projects on the internet, even complex FPUs. For this reason, they had a
secondary role in the design of LEN5 . The main focus was on building the main
core infrastructure.

5.3 Further improvements

This section is dedicated to hint some possible improvement of this preliminary
implementation of the execution pipeline of LEN5 . In general, each of its units
offers many opportunities for improvement, since there was absolutely no time to
optimize all of them during the past months. As stated in section 5.2, the design of a
microprocessor is one of the most challenging projects that an electronic engineering
student (and a graduated engineer too) may face. Despite being attractive, it also
requires a huge amount of time, skill and knowledge to obtain results that can really
contribute to defining the state fo the art in this field.

Here follow some of the possible improvements that might be applied to the
execution pipeline of LEN5 to improve its current performance and capabilities.

5.3.1 Overall optimization

As mentioned above, the focus during this first implementation was not on the
optimization of the internal structure of each component. Therefore, there’s still a
lot of room for improvements in the system performance.

In particular, the issue phase represents the most evident bottleneck of the entire
pipeline, as observed in section 4.2.4. Optimizing the issue decoder organization
should increase performance as much as it is allowed by the next slowest component
in the pipeline: the load-store unit. The operands fetch, on the other hand, is
performed in parallel with the instruction decoding, so it doesn’t affect the overall
cycle time. If simplifying the issue decoder is not enough, an idea is to add a
pipeline register to the issue logic while paying attention to detect and resolve
dependencies: a given instruction entering the pipelined issue logic must take into
account all the possible dependency from the previous one.

For what concerns the load-store unit, its optimization is probably a bit trickier.
As a starting point, the forwarding logic could be simplified by adopting some more
general constraints for a value to be forwarded. This might reduce the depth of
the logic performing those checks before forwarding a value from the store buffer
to the load buffer .

118

5.3 – Further improvements

5.3.2 Multiple Issue

Multiple issue is certainly one of the most effective techniques to improve ILP.
By construction, an execution pipeline architecture implementing Tomasulo’s algo-
rithm is well prone to host multiple execution units for each type of instruction.
To exploit the increased ILP that they offer, more than one instruction should be
issued in each cycle, as described in chapter 2. This requires the frontend, the issue
queue, and the issue logic to produce multiple instructions in a single cycle. Any
modern commercial processor implements multiple issue to a certain degree. In
LEN5 , it is enough to read more the one instruction from a line of the instruction
cache and ‘teach’ the issue logic to detect and resolve hazards between instructions
being issued concurrently. Otherwise, instead of a processor with multiple issue,
the result will be a processor with multiple issues. Resolving dependences between
concurrently issued instructions means assigning the destination ROB entry index-
based also on the other issuing instructions besides on the information from the
register status.

In addition to this, the higher IPC must be supported also while writing the
result. This may be done by instantiating more than one CDB. However, this
would increase the complexity of the parallel access ports in the RSs. A solution
is dividing the RSs in different virtual paths. Each RS can access only one CDB.
This requires instructions showing some dependence on a previous one to be issued
on the same path, so it can correctly fetch the operands. It also requires additional
write ports in the ROB, but this is less likely to represent a problem since the ROB
is not a complex structure.

5.3.3 Unaligned memory address

The support for unaligned memory accesses is becoming less and less used in
general-purpose processors. However, in some application-specific domain, hav-
ing the possibility to access any byte or set of bytes in memory without having
to introduce dedicated software routines might lead to significant performance im-
provements. Also, sometimes some legacy code must be executed. In both cases, a
solution to introduce hardware support for unaligned memory operation in LEN5
is to issue two different loads or stores when an unaligned instruction of the same
time is detected at issue time. In the case of a load, the two instructions operate
on two different portions of a single destination register, meaning that the RF must
support per-byte write enables.

119

5 – Conclusions and further improvements

5.3.4 Full support for m-mode and s-mode
Even if LEN5 fully supports VM, not all the requirements for the support of a
proper OS are provided in this first version. Privilege modes require special in-
structions to be supported by the commit logic, and additional memory protec-
tion mechanisms and I/O handling features must be added to both the execution
pipeline and the memory system.

5.3.5 Other ISA Extensions
As mentioned before, one of the main advantages of the LEN5 execution pipeline
is the possibility to easily instantiate additional execution units, with the only
requirement being to support the index-based, AXI-like handshake protocol de-
scribed in detail in section 3.6.3. This offers full support for most of the frozen
or draft RISC-V extensions. RISC-V also permits fully custom instructions to be
executed, meaning that dedicated accelerators can be inserted in the execution
pipeline, like matrix and vector operators with a dedicated Direct Memory Access
Controller (DMAC) and array functional units. Also, complex arithmetic functions
could be supported in hardware in high-performance scientific applications. All in
all, this places virtually no boundaries on the evolution of this simple processor,
with this being an absolute killer requirement in university and research.

120

Appendix A

Code

A.1 General code organization
The code of the execution pipeline of LEN5 is organised following about the same
organization of chapter 3. The components can be found in the directories listed
below (relative to the repository root directory).

• src/expipe/: contains the main components divided in subdirectories dedi-
cated to each unit.

• src/util/: contains some common components like the 2-way arbiters and
the entry selectors.

The include/mmm_pkg.sv file, that is the top level configuration package, con-
tains some system level parameters, some of which set some constants for execution
pipeline, as the depth or each data structure (the ROB, the issue queue and the
RSs). In addition, the following ones are used in the execution pipeline:

• include/expipe_pkg.sv contains the configuration switches and most of the
type definitions and local parameters that are used in the execution pipeline
modules.

• include/control_pkg.sv contains the instruction definitions for the issue
and commit decode logic, in accordance with the RISC-V specification [17]
and [16]. If an extension is to be added to LEN5 , its instruction definitions
must be inserted here. Then, the issue_decoder, commit_decoder and the
misa CSR in csr.sv must be modified accordingly.

All the code has been carefully commented, explaining what is being described
and recalling some of the concepts from chapter 2 and the details from chapter 3.

121

A – Code

A.1.1 Switches
Two switches are defined in the expipe_pkg.sv file.

ENABLE_AGE_BASED_SELECTOR As mentioned in section 3.1.4, if this macro is not
defined (i.e. commented), a simple priority encoder is instantiated in each RS to
select the next instruction to be executed among the valid ones. Otherwise, the
RSs will instantiate an execution selector that chooses the next instruction to be
executed based on its age, that is the number of instructions of the same type that
have been inserted in the RS after it. The oldest instruction has the higher priority.
A dedicated counter is inserted in each entry of the RS. The selector is described in
a behavioural way, and may enter the critical path slowing down the processor. On
the other hand, it could reduce the latency after which an instruction is completed
and committed. This might result in slightly higher IPC since the ROB is less likely
to fill completely. Due to the higher power consumption of this second solution,
the switch is disabled by default.

ENABLE_STORE_PRIO_2WAY_ARBITER If this macro is defined, priority encoders
are used to select the store buffer over the load buffer when both make a request to
a shared unit (the virtual address adder , the data cache or the DTLB). Otherwise,
the "fair" arbiter described in section 3.1.3 is instantiated in the load-store unit.
Since store-to-load forwarding is implemented (see section 3.7), giving priority to
store instructions can reduce the number of misses during the forwarding attempts,
reducing the number of data cache and DTLB accesses as a consequence. The
only downside is a slightly higher latency in the execution of load instructions, but
this may be compensated by the forwarding mechanism. By default, the switch is
enabled so that priority encoders prioritizing store instructions are used.

A.2 Data structure control
In section 3.1.2 the use of Moore FSM was discussed in relation to the complex
data structures that are found in the execution pipeline of the core. As stated
there, the Moore FSM control design paradigm was discarded in favour of a data-
driven control mechanism, where the state is represented by the status of the data
structure entries. This status is strictly updated synchronously, and the outputs
are generated as a function of this status information. Here, the coding paradigm
employed to describe the control logic of these component is explained. Once again,
let us consider the load buffer as an example. It communicates using the valid-ready
handshake mechanism with the issue logic, the virtual address adder , the TLB, the
data cache and the CDB. The load buffer can send a request to a unit or process
its answer. In both cases, the handshake is related to the operation control of the

122

A.2 – Data structure control

component. For this reason, handshake and operation control are most of the time
included in the same control logic block.

The following paragraphs describe how requests and answers control logic is
described.

Requests A request to a unit is implemented asserting the valid signal to that
unit when the selected entry is valid and ready for that specific operation. All these
informations are read from the status bit data structure, so they don’t depend on
the component inputs. In other words, the output valid signals of the component
are updated based on synchronous information. As an example, this happens when
one entry of the load buffer has fetched the operand rs1 that is required to compute
the virtual address of the source memory location in the virtual address adder . At
this point, the status bits of the entry are checked by a dedicated selector. If they
meet the requirements, the valid signal to the virtual address adder is asserted
while the operands of the selected entry are presented at its input. If the ready
signal of the virtual address adder is asserted a request to modify its status bits
is generated and will take effect at the next clock edge, when the entry will be
moved to a ’busy’ state until the virtual address adder will produce the result (i.e.
will answer the load buffer request). Under this perspective, the load buffer can
be seen as a FSM where the state is encoded in the status bit of its data
structure. As a matter of fact the synchronous data structure is what brakes
the combinational path between the input and outputs of the load buffer . This
is true for both data and handshake control signals. This FSM evolution is done
directly programming the status information of each entry of the queue. No mealy
connection is created, and the only difference with a traditional Moore FSM resides
in the fact that each state is not explicitly encoded. Notice that doing this would
require an encoding expressive enough to include every possible combinations of
status bits in the structure. As a result, most of the status bits would be doubled
if the traditional data path and control unit was adopted. However, the downside
of this alternative descriptions of the units is that designing and debugging is much
harder than with explicit Moore FSMs. For this reason some of the checks that
control the status update, which corresponds to the state progression of an FSM,
are redundant. The most evident example of redundancy is that the valid bit of
the entry is checked both by the selector and by the control logic before the request
is sent to the destination unit. This is shown in the example code in listing A.1.

// REQUEST TO THE VIRTUAL ADDRESS ADDER
// The selected entry must be valid (other checks are

performed by the selector)
if (lb_data [vadder_req_idx]. valid && vadder_idx_valid) begin

vadder_valid_o = 1'b1;

123

A – Code

if (vadder_ready_i) lb_vadder_req = 1'b1; // The adder
accepted the request , and the entry is marked as busy

end

Listing A.1: Control logic description example for a request to the virtual address
adder .

Answers In the chosen example, this is the case where a unit asserts its valid
signal for the load buffer , meaning it has valid output data to be stored in the
load buffer . If the load buffer can accept the incoming request, its ready signal
to that unit must be asserted. A fist observation is that the availability of the
load buffer to answer a request from a unit is independent on the information
contained in that specific request. Instead, it depends only on the status of the
load buffer . As an example, a new load that is issued from the issue queue can
be accepted by the load buffer if at least one empty entry exists in the load buffer
data structure. Therefore, the ready signal for the issue logic is simply given by the
opposite of the valid bit of the entry where the new instruction will be allocated.
In this way the selected new entry is overwritten only if the previous contained
instruction has already completed its execution, that means the entry no longer
contains useful information. In other cases, the load buffer must always be ready
to accept incoming requests, as when accepting the virtual address computed by
the virtual address adder . In both cases the ready signal does not depend directly
on the input signals of the load buffer , meaning that the ready generation is not a
Mealy process. This is true for every single data structure in the execution pipeline:
issue queue, RSs, load buffer , store buffer and ROB. The input valid signal from
the source unit determines whether the associated operation must be performed
or not, such as inserting a new instruction in the assigned entry of the load buffer
in the previous example. A piece of code describing such behaviour is shown in
listing A.2.

// INSERT NEW INSTRUCTION
// Insert a new instruction in the queue if the selected

entry is empty (i.e. not valid) and the decoder is
sending a valid instruction to the load buffer

if (! lb_data [new_idx]. valid && new_idx_valid) begin
issue_logic_ready_o = 1'b1;
if (issue_logic_valid_i) lb_insert = 1'b1;

end

Listing A.2: Control logic description example of the insertion of a new instrruction.

In both cases, a second synchronous process takes care of updating the data
structure according to the output produced by the control logic. Using the load

124

A.3 – Assertions

buffer example once again, the operation control signal produced by the control
logic in listing A.1 and listing A.2 is used by the synchronous update logic in
listing A.3 to move the entry to a busy state when the virtual address computation
request has been sent to the virtual address adder .

// REQUEST TO THE VIRTUAL ADDRESS ADDER UPDATE
if (lb_vadder_req) begin

lb_data [vadder_req_idx]. busy <= 1'b1;
end
...
// ANSWER FROM THE VIRTUAL ADDRESS ADDER UPDATE
if (lb_vadder_ans) begin

// Exception handling
case(vadder_except_i)

VADDER_ALIGN_EXCEPT : begin
lb_data [vadder_idx_i]. busy <= 1'b0;
lb_data [vadder_idx_i]. except_raised <= 1'b1;
lb_data [vadder_idx_i]. except_code <=

E_LD_ADDR_MISALIGNED ;
lb_data [vadder_idx_i]. ld_value <=

vadder_vaddr_i ;
lb_data [vadder_idx_i]. completed <= 1'b1;

end
...

Listing A.3: Status update after the virtual address computation request and
answer.

A.3 Assertions
One of the main advantages of System Verilog over older hardware description
languages is the possibility to verify at runtime some user-defined properties that
a certain module should have. These properties are called assertions and can be
set to end the simulation with an error when violated or to throw some warning
message to the user. In the execution pipeline of LEN5 assertions are widely used
to verify key properties of the control logic of the different data structures. As an
example, an assertion in the RSs checks whether an instruction is executed (i.e.
sent to the functional unit) before having its operands ready. If this happens, a
warning is thrown to the simulation console or log.

Assertion are also exploited to communicate the user when if a certain data
structure reached its maximum capacity, possibly slowing down the pipeline. As
an example, a warning is thrown each time the issue queue is full. In this way the
user can decide to increase its depth or modify the execution pipeline accordingly.

125

A – Code

listing A.4 reports the code of an assertion from the issue queue. The ‘ifndef
compiler directive uses the environmental variable SYNTHESIS usually set by the
synthesis tool to prevent it from trying to synthesize the assertion construct, that
would obviously result in an error.

// ---------------------\\
// ----- ASSERTION -----\\
// ---------------------\\
`ifndef SYNTHESIS
always @(negedge clk_i) begin

// Notice when the issue queue is full
assert (fifo_full !== 'b1) else $warning ("The issue

queue is full. You might want to increase its size.");
end
`endif

Listing A.4: Assertion example in the issue queue.

126

Bibliography

[1] Ricardo Alves, Alberto Ros, David Black-Schaffer, and Stefanos Kaxiras. “Fil-
ter Caching for Free: The Untapped Potential of the Store-buffer”. In: Proceed-
ings of the 46th International Symposium on Computer Architecture. ISCA
’19. New York, NY, USA: ACM, 2019, pp. 436–448. isbn: 978-1-4503-6669-4.
doi: 10.1145/3307650.3322269 (cit. on pp. 73, 76, 83, 86).

[2] AMBA AXI and ACE Protocol Specification. ARM IHI 0022D. ARM. Oct.
2011 (cit. on p. 25).

[3] Marco Andorno. Design of the frontend for LEN5, a RISC-V Out-of-Order
processor. Dec. 2019 (cit. on pp. 1–3, 17, 39, 59).

[4] RISC-V Foundation. RISC-V: The Free and Open RISC Instruction Set Ar-
chitecture. 2019. url: https://riscv.org/ (visited on Nov. 14, 2019) (cit.
on p. 2).

[5] The Apache Software Foundation. Apache License. Version 2.0. Jan. 2004.
url: http://www.apache.org/licenses/LICENSE-2.0 (visited on Nov. 27,
2019) (cit. on p. 1).

[6] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edi-
tion: A Quantitative Approach. 6th. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2017. isbn: 9780128119051 (cit. on pp. i, 18).

[7] D.A. Patterson and J.L. Hennessy. Computer Organization and Design RISC-
V Edition: The Hardware Software Interface. ISSN. Elsevier Science, 2017.
isbn: 9780128122761 (cit. on p. 5).

[8] David Patterson and Andrew Waterman. The RISC-V Reader: An Open
Architecture Atlas. Strawberry Canyon, 2017. isbn: 9780999249109 (cit. on
pp. 11, 42, 60, 66, 94).

[9] David A. Patterson. “Latency Lags Bandwith”. In: Commun. ACM 47.10
(Oct. 2004), pp. 71–75. issn: 0001-0782. doi: 10.1145/1022594.1022596
(cit. on p. 6).

[10] Matteo Perotti. Design of an OS compliant memory system for LEN5, a
RISC-V Out-of-Order processor. Dec. 2019 (cit. on pp. 1, 3, 42, 71, 82).

127

https://doi.org/10.1145/3307650.3322269
https://riscv.org/
http://www.apache.org/licenses/LICENSE-2.0
https://doi.org/10.1145/1022594.1022596

BIBLIOGRAPHY

[11] André Seznec and Pierre Michaud. “A case for (partially) TAgged GEomet-
ric history length branch prediction”. In: J. Instruction-Level Parallelism 8
(2006) (cit. on p. 8).

[12] SolderPad. Solderpad Hardware Licence. Version 2.0. 2018. url: https://
solderpad.org/licenses/SHL- 2.0/ (visited on Nov. 27, 2019) (cit. on
p. 1).

[13] R. M. Tomasulo. “An Efficient Algorithm for Exploiting Multiple Arithmetic
Units”. In: IBM Journal of Research and Development 11.1 (Jan. 1967),
pp. 25–33. doi: 10.1147/rd.111.0025 (cit. on p. 12).

[14] UMC, ed. UMK65LSCLLMVBBR_B. UMC 65nm Low-K Multi-Voltage Low
Leakage RVT Tapless Standard Cell Library Databook. Version B03. UMC.
Jan. 2014 (cit. on pp. 99, 101).

[15] David W. Wall. “Limits of Instruction-level Parallelism”. In: SIGARCH Com-
put. Archit. News 19.2 (Apr. 1991), pp. 176–188. issn: 0163-5964. doi: 10.
1145/106975.106991 (cit. on p. 7).

[16] Andrew Waterman and Krste Asanovic, eds. The RISC-V Instruction Set
Manual. Volume II: Privileged Architecture. Version 20190608-Priv-MSU- Rat-
ified. RISC-V Foundation. June 2019 (cit. on pp. 42, 66, 71, 94, 95, 121).

[17] Andrew Waterman and Krste Asanovic, eds. The RISC-V Instruction Set
Manual. Volume I: User-Level ISA. Version 20190608-Base-Ratified. RISC-V
Foundation. Mar. 2019 (cit. on pp. 45, 49, 53, 55, 60, 121).

128

https://solderpad.org/licenses/SHL-2.0/
https://solderpad.org/licenses/SHL-2.0/
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1145/106975.106991
https://doi.org/10.1145/106975.106991

Acronyms

Generic
AXI Advanced eXtensible Interface

CAM Content Access Memory

FF Flip-Flop

FIFO First In First Out

FSM Finite State Machine

HPC High Performance Computing

LSB Least Significant Bit

MSB Most Significant Bit

MUX multiplexer

RAW Read After Write

WAR Write After Read

WAW Write After Write

Computer architecture
ASID Address Space Identifier

BTB Branch Target Address

CPU Central Processing Unit

CSR Control Status Register

DMAC Direct Memory Access Controller

129

A – Acronyms

FPU Floating-Point Unit

GPU Graphics Processing Unit

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

ISA Instruction Set Architecture

MMU Memory Management Unit

OoO Out of Order

OoOE Out of Order Execution

OS Operating System

PC Program Counter

PPN Physical Page Number

RISC Reduced Instruction Set Computer

SIMD Single Instruction Multiple Data

SMT Simultaneus Multi-Threading

VM Virtual Memory

VPN Virtual Page Number

LEN5 components
ALU Arithmetic and Logic Unit

CDB Common Data Bus

DTLB Data Translation Lookaside Buffer

FPU Floating-Point Unit

MMU Memory Management Unit

ROB Reorder Buffer

RF Register File

RS Reservation Station

TLB Translation Lookaside Buffer

130

	List of Tables
	List of Figures
	List of Algorithms
	Introduction to LEN5
	Motivation
	Frontend
	Execution pipeline
	Memory system

	Execution pipeline architecture
	Basics
	Instruction level parallelism
	Dynamic Scheduling
	Scoreboarding
	Tomasulo's Algorithm for Dynamic Scheduling

	LEN5 implementation of Tomasulo's Algorithm
	Reorder Buffer

	LEN5 Execution Pipeline Design
	Top level
	Handshake
	Control
	Arbiters
	Entry selectors

	Issue queue
	Issue queue data structure
	Issue queue control logic
	Exception handling

	Issue logic
	Issue decoder
	Exception handling

	Register status
	Register status data structure
	Register status control logic

	Register files
	Reservation Stations
	Arithmetic RS data structure
	Branch unit RS data structure
	RS control logic
	Exception handling in RSs

	Load-store unit
	Virtual address adder
	Load buffer
	Store buffer
	Store-to-load forwarding
	Cache level zero

	Common Data Bus
	CDB arbiter

	Reorder Buffer
	ROB data structure
	ROB control logic

	Commit logic
	Exception handling

	Control Status Registers

	Testing and synthesis
	Functional verification
	Testing methodology

	Synthesis results
	Arbiters
	Entry selectors
	Issue queue
	Issue logic
	Register status
	Register files
	Reservation stations
	Load-store unit
	Common Data Bus
	Reorder Buffer
	Execution pipeline area and performance

	Conclusions and further improvements
	Conclusion
	What is missing
	Further improvements
	Overall optimization
	Multiple Issue
	Unaligned memory address
	Full support for m-mode and s-mode
	Other ISA Extensions

	Code
	General code organization
	Switches

	Data structure control
	Assertions

	Bibliography
	Acronyms

