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1. Introduction

It is well known that the critical issue encountered by Moore’s law since the begin-
ning of the new millennium is the power dissipation, linked to the blast of leakage
current due to the continuous miniaturization of CMOS devices. Spintronics is a
technological field that aims to use the electron spin properties, rather than its elec-
tric charge, for storing and manipulating information. For this reason it is expected
to carry some great advantages with respect to traditional electronic devices, such
as non-volatility and low power consumption.

In the spintronics field many different possibilities have been explored. In some
cases, like for the bubble memories, some of them even became a commercial prod-
uct. However, bubble memories soon became uncompetitive in terms of cost and
completely disappeared from the market within a decade [20]. The main issues
were the need of applying an external magnetic field for manipulating them, besides
their not so small dimensions. As a result, the great strides made in improving
semiconductor memories completely wiped them out.

Another example are the domain walls (DWs), which have already been exten-
sively studied both from a theoretical and from an experimental point of view. Many
designs have also been proposed, like the DW-based racetrack memories, where the
binary data is encoded like a sequence of spin-up or spin-down magnetic domains
separated by DWs. However, the main issue of DWs is the high current density
required for allowing their movement (depinning current density) with a reasonable
velocity, and this raises again the issue of the Joule heating and of the consequent
power dissipation.

Skyrmions are one of the possibilities for carrying information that are being
explored in the field of spintronics. They show many advantages with respect to
domain walls, like a lower depinning current density and a smaller size, which allows
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1 – Introduction

a denser storage of information. Theoretical studies have in fact proven that the
depinning current density for isolated skyrmions can be as low as 1 × 108 A/m2, two
or three orders of magnitude lower with respect to the depinning current density
needed by domain walls [20]. Concerning its size, a skyrmion can have a diameter
of only few nanometres, while a domain wall is hardly below 30 nm [20]. Since the
mechanism which allows their motion while applying a current density is the same
as for DWs, also their velocities are comparable under the same current applied;
however, since the smaller skyrmions’ dimensions allow to pack the same amount of
information in a smaller space, even when moving at a lower velocity with respect
to DWs they still allow to obtain a higher throughput. For this reason they are
promising information carriers for future non-volatile, ultra-dense and low-power
logic devices and memories.

Chapter 2 of this thesis tries to sum up the main characteristics and physical laws
involved in the manipulation of skyrmions. A number of applications are also briefly
presented, either to offer a more practical interpretation of the physical phenomena
described, or to show the possibilities offered by the use of skyrmions as information
carriers.

As proven by some of these applications, which have already appeared in litera-
ture, skyrmions can be exploited as information carriers both in logic gates and in
racetrack memories. The goal of this thesis is to explore the possibilities offered by
some of these designs when building a skyrmionic computing architecture. In par-
ticular, the model of logic gates used throughout the whole thesis comes from [5].
These logic gates, as it will be detailed more carefully in chapter 2, allow to perform
the AND, OR and NOT elaboration of bits that are represented by skyrmions. The
gates proposed in [5], however, were tested via micromagnetic simulations assuming
a uniform current density throughout the gates, which is not a realistic assumption:
the first aim of this thesis, then, is to prove that the behaviour of these structures is
correct even when imposing the current density that should be found in reality inside
the heavy metal layer of these gates. The results of the micromagnetic simulations
performed with this goal can be found in chapter 3.

Once the behaviour of these gates is proven correct even under realistic assump-
tions, it makes sense to try to use them inside a more complex architecture. In
chapter 4 the full adder proposed in [5] is used, slightly modified, to build a N-bit
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ripple carry adder. The structure of the adder is optimized in order to reduce as
much as possible the energetic inefficiencies, which are due to the need of providing
skyrmions that are not needed as information carriers but only as enable signals; the
performances of the adder are analysed as well, by assuming for the main physical
constants and parameters the values that were found in the micromagnetic simula-
tions of chapter 3. The design of a complex structure allows to identify some of the
main challenges that still need to be solved from a physical and technological point
of view: the most crucial point, in fact, is the absence, in literature, of something
that could behave like the electrical via in the PCB (printed circuit boards). To
date, in fact, no solution that allows two nanotracks to cross has been proposed yet.

Finally, the architectural analysis continues on a different path. Chapter 5 starts
from the study of a logic in memory (LiM) architecture that has already appeared
in literature, and adapts it in order to find a memory array based on skyrmions with
the same functionalities and that allows the same algorithms to be executed. The
LiM architecture addressed in chapter 5 allows a large flexibility and adaptability
to a wide range of different algorithms, apart from introducing a mechanism useful
to reuse all those skyrmions that have already been nucleated but that are no more
useful for the computations; the resulting structure, however, is very complex, heavy
and not optimized.

Giving up on the flexibility and on the energy-saving structures that were in-
troduced in chapter 5, a new LiM architecture is studied in chapter 6. Focusing
on the execution of a specific algorithm (the minimum/maximum search algorithm
proposed in [37]), the resulting skyrmionic memory array becomes much lighter and
smaller, and the execution more efficient. The LiM array obtained, however, is also
less flexible and less efficient from an energetic point of view.

3



2. Physics and applications of
skyrmions

In the following the main physical laws and properties of skyrmions will be described,
together with the issues in using them as information carriers. Some applicative as-
pects, that can either be useful to better understand the practical meaning of some
physical properties, or that can be helpful in solving the main issues, will be pre-
sented too. The aim of this chapter is not to give an exhaustive and detailed insight
into the complex physical phenomena linked to these topological configurations, but
just to offer an overview on the principal difficulties and on the main mechanisms
involved when trying to use skyrmions as information carriers inside computing ar-
chitectures. In the end of the chapter, moreover, will be described some applications
which exploit and sum up well all the physical characteristics exposed in the first
part. Among them will be presented also the results that are the starting point for
the architectural analysis that is the subject of this thesis.

2.1. Physical properties
To employ skyrmions as information carriers it is of vital importance the ability of

performing some elementary tasks, including their creation, manipulation, detection
and eventually annihilation. The first topic addressed in this section is the structure
of a skyrmion and what are the main energetic contributions that compete in its
creation. Then will be described the laws of motion and the main possibilities
available to move it along the device; finally it will be detailed how is possible to
nucleate it and to detect it. The topic of the skyrmion radius will be discussed at
the end of the section, since it exploits some results presented in other papers.
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2.1 – Physical properties

2.1.1. Topological properties
2.1.1.1. Topological charge

A magnetic skyrmion is a non-collinear 2D configuration of magnetic moments
resulting from the competition of different energetic terms (which will be detailed
in section 2.1.2.1). This configuration has a whirling structure, like shown in figure
2.1, and is described from a topological point of view by the topological charge Q,
also called skyrmion number or Pontryagin number; its expression is 1

Q =
1

4π

∫
dxdy(∂xm× ∂ym) ·m (2.1)

where m is the unit vector representing the orientation of the local magnetic mo-
ment. The skyrmion number counts how many times the magnetic spins constituting
the structure of the skyrmion can be wrapped around a unit sphere: all the spins at
the boundary are collected into a single vector mapped on one pole of the sphere, and
this is possible only because these spins point all in the same direction; the core is
mapped at the opposite pole of the sphere, while the intermediate spins are mapped
on the remaining parts of the sphere. In the case of a skyrmion-like structure, the
topological charge is an integer equal to ±1.

(a) (b) (c)

Figure 2.1. (a) Mapping of the Néel skyrmion onto the unit sphere. Figure ex-
tracted from [35]. (b) Bloch skyrmion, (c) Néel skyrmion. Figures extracted from

[20].

1Like observed in [23], the sign in this formula is not consistently defined in literature. An
example in which the topological charge is defined with a minus sign can be found in [43].
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2 – Physics and applications of skyrmions

The magnetization of a skyrmion in polar coordinates [19] is described by

M = MS

cosφ(ϕ)sinθ(r)sinφ(ϕ)sinθ(r)

cosθ(r)

 (2.2)

while the expression of r in polar coordinates is r = r(cosϕ,sinϕ). Inserting equa-
tion 2.2 into equation 2.1 it can be obtained that

Q =
1

4π

∫ ∞

0

dr

∫ 2π

0

dϕ
dθ(r)

dr

dφ(ϕ)

dϕ
sinθ(r) =

1

4π
cosθ(r)

∣∣∣∣∣
r=∞

r=0

φ(ϕ)

∣∣∣∣∣
ϕ=2π

ϕ=0

(2.3)

This equation will be commented later in section 2.1.1.3.
The in-plane magnetization angle φ is assumed to be a linear function of the

azimuthal angle ϕ [19], so that

φ = mϕ+ γ (2.4)

This equation will be discussed later in section 2.1.1.5. For now is enough to re-
member this: let’s assume that the skyrmion’s structure lays in the xy-plane; the
magnetic moments are organized on circumferences that are concentric with the
skyrmion core (of course in first approximation and only if the skyrmion is not be-
ing deformed); the angle giving the position of each magnetic moment along the
corresponding circumference with respect to the x-axis is ϕ, with unit vector ϕ̂.
Then, φ is the angle that the spin at position ϕ has with respect to the unit vector
ϕ̂. For example, in the skyrmion represented in figure 2.1c, each moment has angle
φ = 0, while in the skyrmion shown in figure 2.1b each moment has an angle φ = π

2
.

2.1.1.2. Dzyaloshinskii-Moriya Interaction
The Dzyaloshinskii-Moriya Interaction (DMI) is a key element for the stabiliza-

tion of magnetic skyrmions. The bulk DMI comes from the breaking of the bulk
inversion symmetry (r 9 −r) and from the presence of atoms with high spin-
orbit coupling in ferromagnetic alloys (for example B20 materials). The interfacial
DMI (i-DMI) comes instead from the breaking of the structure inversion symmetry
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2.1 – Physical properties

(z 9 −z) at the interfaces of a multilayer system, where a thin layer of ferromag-
netic material is deposited above a substrate made of a material with large spin-orbit
coupling (for example Co on Pt) [9, 13].

These two types of DMI give rise to two different types of skyrmion structures,
both shown in figure 2.1: the Bloch skyrmion (also spiral skyrmion) and the Néel
skyrmion (also hedgehog skyrmion). In both cases there is a central domain and an
outer domain, both with out-of-plane magnetization, separated by a domain wall.
When the domain wall has a circular chirality (either clockwise or counterclockwise)
the skyrmion is a Block skyrmion: in this case the magnetization rotates in the
tangential plane while going from the core to the tail of the skyrmion. If the domain
wall has a radial chirality (either inward or outward), then the skyrmion is of Néel
type and the magnetization rotates in the radial plane [9, 20].

The DMI is an interaction between two magnetic spins mediated by the pres-
ence of a third non-magnetic atom with a strong spin-orbit coupling (SOC). The
Hamiltonian of this interaction is

HDM = −D12 · (S1 × S2) (2.5)

where S1 and S2 are the two magnetic spins and D12 is the DMI vector, perpendicu-
lar to the plane containing the three atoms involved. Starting from a ferromagnetic
state with S1 parallel to S2, the DMI tilts S1 with respect to S2 by a rotation around
D12 [8]. This energetic term is minimized when the two magnetic spins are perpen-
dicular to each other. At the same time, however, the exchange energy (detailed in
section 2.1.2.1) in a ferromagnetic material is minimized when all the magnetic spins
are aligned with each other: skyrmions are the result of the competition of these two
mechanisms and of the minimization of the energy inside the system, like explained
in section 2.1.2.1. The Néel skyrmion is the configuration minimizing the energy
when D12 ⊥ R12, the Bloch skyrmion instead minimizes the energy for D12 ‖ R12

[8], like shown in figure 2.2c, where R12 is the vector joining spin S1 with spin S2.
The asymmetry due to the presence of the non-magnetic atom in the lattice or

at the interface with the bottom metal layer is needed because, in this way, the DMI
cannot be compensated by the DMI coming from a symmetric triangle [8].

The magnitude and sign of the vector D12 depend on the materials involved,
on the interface and on the strength of the spin-orbit coupling of the non-magnetic

7



2 – Physics and applications of skyrmions

(a) (b)
(c)

Figure 2.2. (a) DMI vector generated by the interaction of two atomic spins with
an atom with strong SOC (blue) in a ultrathin magnetic film. (b) DMI vector
generated at the interface between a FM thin layer (grey) and a metal with strong
SOC (blue). Figures extracted from [8]. (c) The top configuration gives rise to a
Néel skyrmion, the bottom configuration to a Bloch skyrmion. Figure extracted

from [1].

atom, and has an important role in determining the size of the resulting skyrmion,
like detailed in section 2.1.6.

Spin-orbit coupling
While considering the orbiting motion of the electron around the proton from the

point of view of the electron, the same atomic system can be seen like the proton
orbiting around the electron. Due to Ampere’s law, this positive charge motion
generates a magnetic field, which of course will interact with the magnetic moment
(proportional to the spin) of the electron: this phenomenon is known as spin-orbit
coupling (SOC).

2.1.1.3. Vorticity number
Another parameter useful in characterizing the skyrmion topological structure

is the vorticity number m, defined as the winding number of the spin configurations
projected into the xy-plane [20]. The winding number of an oriented curve counts
how many times the curve encircles a well defined point in a plane in the counter-
clockwise direction. Describing this curve in polar coordinates (r,θ), the winding
number can be computed like

W =
θ(end)− θ(start)

2π
(2.6)

8



2.1 – Physical properties

Since the initial and the final position, when following the full path of the curve
around the point, must be coincident, then the two θ angles must differ by an
integer multiple of 2π: this implies that the winding number is either a positive or
negative integer.

In the specific case of magnetic topological structures, the winding number can
be defined also like the total variation of the magnetization angle when moving
counterclockwise along a circle traced around the centre of the structure, divided by
2π [30, 1]. Each value of the magnetization angle can be mapped into a point on
the circle, which in this context is formally called order-parameter space. According
to the oriented movement along the order-parameter space, the winding number is
computed.

(a)

(b)

Figure 2.3. (a) Examples of computation of the winding number for different
spin configurations. The two cases with W = 1 can be assimilated to a Néel
skyrmion (left) and to a Bloch skyrmion (right). Figure adapted from [3]. (b)
Other examples of computation of the winding number, including the mapping on

the order-parameter space. Figure extracted from [24].
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2 – Physics and applications of skyrmions

The skyrmion number can be computed also through the vorticity number, using
the relation

Q =
m

2

[
lim
r→∞

cos(θ(r))− cos(θ(0))
]

(2.7)

which can be recognized simply like a rewriting of equation 2.3, where m = 1
2π
φ(ϕ)|ϕ=2π

ϕ=0

is the vorticity that has just been defined. Observing 2.2 it can be deduced that
cos(θ(r)) is the z-component of the unit vector representing the local magnetic mo-
ment. So, the skyrmion number depends both on the vorticity and on the direction
of the magnetization at the tail and at the core of the skyrmion. Is important to
notice that, in a skyrmion, the direction of the core is always opposite to the direc-
tion of the tail, which is the same of the background magnetization present in the
material.

2.1.1.4. Helicity number and polarity
The third parameter needed to describe the skyrmion structure is the helicity

number γ, determined uniquely by the type of DMI that intervenes in the energetic
competition. A Bloch skyrmion (bulk DMI) is characterized by γ = π

2
or γ = 3π

2
,

while a Néel skyrmion (interfacial DMI) corresponds to γ = 0 or γ = π. It’s
important to notice that the helicity does not contribute to the topological number.

Finally, the polarity p describes the orientation of the centre with respect to the
z-direction: if p = 1 the magnetization of the core points in the positive z-direction,
vice versa if p = −1.

2.1.1.5. Meaning of the helicity number
Looking back at equation 2.4, which expresses the in-plane magnetization angle

φ, it can be recognized now that m is the vorticity number and γ the helicity
number, while ϕ is the azimuthal angle of the polar coordinates system, describing
the position of a point in the xy-plane. For both Bloch and Néel skyrmions the
vorticity number is equal to 1, like it can be observed comparing figure 2.3a with
the two structures shown in figure 2.1. In section 2.1.1.4 it has been said that for
a Bloch skyrmion γ = π

2
or γ = 3π

2
, while for a Néel skyrmion γ = 0 or γ = π.

Summing up:

10
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Néel:φ = ϕ

φ = ϕ+ π
(2.8)

Bloch:φ = ϕ+ π
2

φ = ϕ+ 3π
2

(2.9)

From these expressions is easy to predict one of the experimental results reported
in section 2.1.1.7: if γ = 0 the in-plane magnetization is aligned with the unit vector
ϕ̂ and the spins will be out-going, while if γ = π the magnetization is antiparallel
with respect to ϕ̂ and the spins will be in-going. Similarly, if γ = π

2
the in-plane

magnetization has a 90° phase difference with respect to ϕ̂ and the spins of the
Bloch skyrmion will rotate in a counterclockwise direction, while if γ = 3π

2
the phase

difference is by −90° and the spins rotate in a clockwise direction. The confirmation
to these statements can be easily found in the top half of figure 2.4.

Figure 2.4. Magnetization configuration of skyrmions (Q = 1) and antiskyrmions
(Q = −1) with fixed polarity (p = 1) and varying helicity γ. The length and
direction of the arrows represents the in-plane magnetization component, while
the colour represents the magnitude of the out-of-plane component: blue stands

for +z, red for −z. Figure extracted from [12].
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2.1.1.6. Topological protection
The topological charge of skyrmions is always an integer equal to +1, at least

if this particle is in a region larger than its diameter. For this reason, even if its
spin texture may be deformed (for example due to the presence of impurities in
the material), the Pontryagin number doesn’t change and as a result the skyrmion
can be neither destroyed nor separated into pieces: it is said to be topologically
protected. This protection fails only when the skyrmion touches the sample edges,
because in this condition the topological charge is allowed to change continuously:
in this condition the skyrmion can be annihilated and the information it carries gets
lost.

2.1.1.7. Practical examples
Some examples, which show well the practical meaning of all the parameters

presented up to this point, can be found in [40], where the results presented in [43]
are exploited.

In [43] is demonstrated the possibility to convert in a reversible way a domain
wall (DW) pair into a skyrmion and vice versa by using a junction made of a narrow
nanowire (W < 2R, where W is the width of the nanotrack and R the skyrmion
radius) connected to a wide nanowire (W > 2R). Like explained in [40], when a
topological object, like a skyrmion, that previously was in a wide region enters a
narrow region, it loses its topological numbers, like the skyrmion number and the
helicity, and becomes a DW pair, which is a non-topological object (Q = 0); when
it is ejected again into a new wide region, it is assigned new topological numbers to
adjust the physical properties of the new region, which may be different from the
properties of the former wide region. Skyrmions, as mentioned, are topologically
protected only when the sample is enough large, and this protection is broken when
they touch an edge: this is what happens when the skyrmion enters the narrow
junction.

Another result of [43] that has been used in [40] (like explained in section 2.2.1) is
shown in figure 2.5b (g-l frames): using the same junction but reducing the current
density needed to move the domain wall, the particle obtained is not a skyrmion,
but a meron. A meron is a different type of topological object, very similar to a
skyrmion, but with |Q| = 1

2
: this means that its spins can wrap only the north pole
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(a) (b)

Figure 2.5. (a) Reversible conversion DW pair→skyrmion (a-c) and vice versa
(d-f). g-l: when the size of the narrow part of the junction increases the DW pair
is still converted into a skyrmion, but with more fluctuations in the radius and the
shape (g-i); the skyrmion instead cannot be converted back into a DW pair (j-l).
The middle plots show the time variation of the components of the magnetization;
the bottom plots show the time variation of the skyrmion number. (b) Detail on
the conversion from DW pair. a-f: when the current density is high enough the
right DW pins at the junction, while the remaining part of the DW pair continues
to move: as a result, the DW is deformed into a curve shape. When the other
DW reaches the junction the skyrmion is formed. g-l: when the current density
is reduced a meron is formed; the meron remains in contact with the nanotrack

edge. Figures extracted from [43].

or the south pole of the unit sphere, like shown in figure 2.6. Its peculiarity is to
remain attached to the sample edges even during its movement.

The first part of [40] verifies how different physical properties of the materials
on the left and on the right side of a narrow nanotrack influence the assignment
of new topological numbers to the skyrmion ejected from the junction, and allows
to understand the practical meaning that these numbers have when considering the
skyrmion’s structure.

In figure 2.7a the parameter that changes from left to right is the sign of the DMI,
which is positive on the left side and negative on the right side. As mentioned in
section 2.1.1.4, the helicity is uniquely determined by the DMI. Since the skyrmions
considered in this article are only of Néel type, the helicity can be either γ = 0 or
γ = π. On the left side the triplet of numbers (Q,m,γ) (topological charge, vorticity

13



2 – Physics and applications of skyrmions

Figure 2.6. Splitting a skyrmion in two halves, a meron and an anti-meron are
obtained. A skyrmion covers the entire unit sphere, while a meron covers only half

of it: so the topological charge of a meron is ±1
2 . Figure extracted from [22].

and helicity; this notation will be used from now on in all the rest of this thesis)
is (1,1,0), whereas on the right side it is (1,1,π) (while in the junction it becomes
(0,0,0)). Observing the picture, it can be noticed that the direction of the core has
remained −z, while the spins from out-going have become in-going. So the helicity,
like anticipated in section 2.1.1.5, determines the radial direction of the spins: when
γ = 0 the spins point outwards, when γ = π they point inwards.

In figure 2.7b the sign of the DMI is the same in both regions, while the direction
of the background magnetization is reversed from left to right. According to equation
2.7, the topological charge depends both on the vorticity and on the direction of the
spins at the core and at the tail of the skyrmion, and the spin direction at the tail
is always the same as the background magnetization. Reversing the background
magnetization then the second factor of 2.7 is reversed (from the picture it can
be observed that the core now points in the +z direction and the tail in the −z

direction), while the vorticity remains unchanged: as a consequence the topological
number becomes Q = −1 and the magnetic texture obtained is called antiskyrmion.
Moreover, in this condition also the helicity changes from γ = 0 to γ = π to minimize
the energy of the system. So, the topological numbers change as (1,1,0) → (−1,1,π).

Finally, in 2.7c both the sign of the DMI and the background magnetization
are reversed from left to right. Combining the two effects discussed above, then,
the skyrmion becomes an antiskyrmion due to the background reversal, while the
helicity remains unchanged and so the spin direction remains out-going. The change
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of the topological numbers is (1,1,0) → (−1,1,0)

(a) (b)

(c)

Figure 2.7. Skyrmion→DW pair→skyrmion conversion. Red(blue) is the +z(−z)
direction of the magnetization. (a) Reversing the sign of the DMI (1,1,0) → (1,1,π)
(b) Reversing the background magnetization (1,1,0) → (−1,1,π) (c) Reversing both
DMI and background magnetization (1,1,0) → (−1,1,0). Figures extracted from

[40].

Skyrmions and antiskyrmions
Like mentioned, antiskyrmions are spin textures very similar to skyrmions, but

with topological charge equal to −1 2. They can still be mapped on a unit sphere, like
shown in figure 2.8. Some examples of antiskyrmions can be found also in the bottom
half of figure 2.4, where is shown the disposition of the in-plane magnetization by
varying the helicity.

According to the examples just discussed and to the theory exposed up to now,
the skyrmion and antiskyrmion main figures are summed up in table 2.1 (if the
background magnetization is along +z, then lim

r→∞
cos(θ(r))− cos(θ(0)) = 2, while if

it is along −z lim
r→∞

cos(θ(r))− cos(θ(0)) = −2).

2Some attention must be paid in the definition of antiskyrmions. Many examples in literature
define as antiskyrmions those particles with Q = −1, while other authors consider antiskyrmions
those particles that have m = −1, usually regardless of the topological charge. This inconsistency
is evident when reading [40] and its supplementary information, [21], [13], [25] and [4]. In this
thesis we conform ourselves to the first definition.
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2 – Physics and applications of skyrmions

Figure 2.8. Mapping of a skyrmion (1,1,0) and of an antiskyrmion (−1, − 1,0)
with p = 1 on the unit sphere (order-parameter space). Figure extracted from

[14].

Table 2.1. Summary of topological numbers for skyrmions and anti-
skyrmions

BACKGROUND: +z BACKGROUND: −z

SKYRMION Q = 1, m = 1 Q = 1, m = −1

ANTISKYRMION Q = −1, m = −1 Q = −1, m = 1

The confirmation to this table can be found in the supplementary information
of [40], where the figure 2.9 is shown.

2.1.2. Micromagnetic model
The static properties of skyrmions can be studied theoretically with the help of

the micromagnetic model, a theory used to describe the magnetization of a material
from the nanoscale to the microscale. This length scale is large enough for avoiding
the use of all the mathematical operators required by quantum mechanics, but at
the same time it is small enough to carefully describe magnetization patterns like
skyrmions or domain walls, among the others [19]. This theory allows to model the
relationship between the spatial distribution of the effective magnetic field Heff ,
determined by the energetic contributions competing in the system, and the mag-
netization vector field M [9]. The key equation on which the micromagnetic model
is based is the Landau-Lifshitz-Gilbert (LLG) equation.
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Figure 2.9. Examples of skyrmions and antiskyrmions by varying vorticity, helic-
ity and background magnetization (and so polarization). Each triplet of numbers
reports (Q,m,γ); red(blue) denotes the +z(−z) direction of the magnetization.

Figure extracted from the supplementary information of [40].

2.1.2.1. LLG equation
This equation relates the effective field Heff to the time evolution of the mag-

netization vector field M . It is a torque equation, and its expression is

dM

dt
= −γ0M ×Heff + α

(
M × dM

dt

)
(2.10)

where M is the magnetization, Heff is the effective magnetic field (not necessar-
ily an external magnetic field, it can be also the field experienced locally by the
magnetic moments inside the material), γ0 is the gyromagnetic ratio and α the
Gilbert damping coefficient. The first term describes the precession movement that
the magnetic moments perform around the effective magnetic field when they are
not fully aligned with it: this is known as Larmor precession. While performing
this precession movement the magnetization also relaxes along the field line, finally
becoming aligned with it, in order to minimize the energy of the system: this is
modelled by the second term, containing the Gilbert damping.

It can be demonstrated [19] that only the direction of the magnetization changes
with time, while its magnitude remains constantly equal to the saturation magneti-
zation MS.
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2 – Physics and applications of skyrmions

Figure 2.10. Sketch of the Larmor precession performed by a magnetic moment
around a field line of Heff , and of the Gilbert damping contribution which, de-
termining a spiraling motion around the field line, eventually makes the magnetic

moment align with it. Figure extracted from [19].

The direction of the effective magnetic field is the direction in which the magne-
tization will have the minimum of the micromagnetic energy: therefore the effective
field can be written in terms of the micromagnetic energy [19] as

Heff = − 1

µ0

∂EV

∂M
(2.11)

where EV is the micromagnetic energy density.

Micromagnetic energy density
The contributions to the micromagnetic energy come from the exchange en-

ergy, the Zeeman energy, the demagnetizing field energy, the anisotropy energy and
the DMI. Also other terms could be considered, like the RKKY (Ruderman-Kittel-
Kasuya-Yosida) interaction, but when considering skyrmions in most of the cases
they are neglected, so they won’t be considered here.

Exchange energy The exchange interaction (sometimes also Heisenberg in-
teraction) is the phenomenon which makes the magnetic moments inside a ferro-
magnetic material align with each other, allowing them to generate a magnetic field
observable from the external. If the sign of the exchange constant J present in the
Hamiltonian of this interaction is positive, then the material is a ferromagnetic ma-
terial and the spins align parallel to each other; if the sign of J is negative, instead,
the material is an antiferromagnet and the spins arrange antiparallel to each other.
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The energy density of the exchange interaction is [20]

EV = A[∇m]2 (2.12)

where A is the exchange constant.

Zeeman energy When applying an external magnetic field, the magnetic mo-
ments tend to align with its field lines: this is due to the Zeeman interaction. Its
energy density is [43]

EV = −µ0M ·Hext (2.13)

where Hext is the magnetic field applied externally.

Demagnetizing field energy The magnetic induction is B = µ0(H +M ),
where H is the magnetic field and M is the magnetization. Since M = χH , where
χ = µr − 1 is the susceptibility, then B = µ0(1 + χ)H = µ0µrH .

Inside a magnetic material H is directed oppositely with respect to M , like
shown in figure 2.11. For this reason, when considering the value of B inside the
material, H contributes by reducing this value. This is why it is called demagne-
tizing field (while it is named stray field outside the material).

The energy density associated to the demagnetizing field Hd is

EV = −µ0

2
M ·Hd(M ) (2.14)

Anisotropy energy The magnetocrystalline anisotropy is the property of
some magnetic materials which makes some directions for the magnetization more
energetically favourable than others; it is is linked to the spin-orbit coupling and to
the atomic structure of the material. As a result, some directions may be easier to
be magnetized than others. In particular, when this energetically favourable direc-
tion (called easy-axis) is perpendicular to the material, then we’re dealing with the
perpendicular magnetic anisotropy (PMA). The PMA can be found in some layered
ultrathin films, like for example Pd/Co [19].
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Figure 2.11. Depiction of the magnetic field H, the magnetization M and the
magnetic induction B inside a magnetic material. The magnetic field H takes the
name of demagnetizing field inside the material and of stray field outside it. Figure

adapted from [7].

The energy density for the PMA is [43]

EV = Ku[1− (m · ẑ)2] (2.15)

where Ku is the uniaxial anisotropy constant and the unit vector ẑ represents the
easy-axis.

In layered structures of ultrathin films, where the surface effects are not negli-
gible, a form of PMA arises at the interface due to exchange interactions between
some of the electronic orbitals of the materials involved. It has been discovered that
the strength of this PMA can be modified by applying an external electric field: this
field modifies the occupation of the orbitals and so is able to affect the exchange
interactions [19].

As a result, if Ku is the PMA constant, the voltage controlled PMA will induce
a variation ∆KuvE dependent on the electric field applied, so that the expression of
the total PMA constant is [42]

Kuv = Ku +∆KuvE (2.16)

Of course, according to the sign of the z-component of the electric field, the PMA
can either increase or decrease with respect to its bias level Ku.
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DMI energy The bulk DMI energy density is [19]

E
(bulk)
V = Dm · (∇×m) (2.17)

The interfacial DMI energy density is instead (assuming to consider an ultrathin
film, where ∂m

∂z
= 0) [43]

E
(interfacial)
V = D[mz(∇ ·m)− (m · ∇)mz] (2.18)

Summing all these energy density contributions together the total energy density
EV,TOT is obtained. The total energy of a system of volume V is

ETOT =

∫
V

EV,TOTdV (2.19)

The spin configuration then is found by minimizing the total energy ETOT [1].

2.1.3. Motion
There are many possibilities both for nucleating and for moving skyrmions: some

of them consist in applying an external magnetic field or temperature gradients.
However, is clear than none of these options can be easily used inside an integrated
circuit based on skyrmions, where it would be preferable to use current-based mech-
anisms instead.

When it comes to current, there are mainly two mechanisms available, both
exploiting the spin-transfer-torque phenomenon.

2.1.3.1. Spin Transfer Torque (STT)
When a charge current is injected into a material with a certain magnetization

pattern, the spin of each conduction electron will interact with the magnetization
vector field. This interaction leads to the formation of two torques: one tends to align
the spin of the electron with the direction of the local magnetic moment, while the
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other, equal and opposite due to the conservation of the total angular momentum,
at the same time tries to align the local magnetization with the direction of the
electron spin. This is the spin-transfer-torque (STT) mechanism.

The STT contributes in modifying the orientation of the local magnetic moment:
for this reason it can be included in the LLG equation. Since the current flows inside
the ferromagnet along the in-plane direction, this torque is indicated as τIP . It is
composed by two contributions. The first is the adiabatic STT, where adiabatic
refers to the assumption that the spin of the electron passing through the magnetic
material relaxes fast enough so that is always aligns with the local magnetic mo-
ment [19]. The second term of τIP has been added phenomenologically to explain
unexpected experimental results and it is the non-adiabatic STT: the adiabatic ap-
proximation fails when the magnetization pattern changes so quickly in space that
the electrons are not fast enough to align their spin with the local magnetic moment.

The expression of τIP is

τIP =
γ0}P

2µ0eMS

(j · ∇)m− γ0}P
2µ0eMS

βm× (j · ∇)m (2.20)

where the first term is the adiabatic STT and the second term is the non-adiabatic
STT. Here γ0 is the gyromagnetic ratio, P is the polarization coefficient of the in-
plane electrical current, e is the electron charge, MS is the saturation magnetization,
j is the in-plane electrical current flowing through the ferromagnet, m is the nor-
malized magnetization, and β is the non-adiabaticity factor, quantifying the relative
strength of the non-adiabatic STT with respect to the adiabatic STT.

The term τIP is added to the LLG equation when a current is flowing along the
in-plane direction of a ferromagnet. The geometry used for the skyrmion motion
that uses this effect is then called current-in-plane (CIP) geometry and is shown in
figure 2.12a.

As mentioned, the spins of the conduction electrons exert a torque on the spin
texture of the skyrmion; at the same time, the spin texture exerts a torque equal in
magnitude and opposite in sign on the spin of the conduction electrons. As a result,
the magnetic moments of the skyrmion subjected to the torque will rotate, allowing
the movement of the particle, and at the same time the conduction electrons are
deflected from the original direction of the current flux: this is known as topological
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Hall effect, and the reason behind this is the Berry phase.
The Berry phase is the rotation that a vector experiences while moving along

a closed path on a curved surface. The skyrmion, as already mentioned, is a 2D
structure, but the magnetic moments that constitute it can be organized on a unit
sphere: assuming that the conduction electrons are able to follow exactly the ori-
entation of the local magnetic moment of the skyrmion (adiabatic approximation),
while crossing the particle they gain a Berry phase. This Berry phase is the reason
behind the emergent magnetic field experienced by the conduction electrons. This
field will make the conduction electrons experience a Lorentz force

F = q(E + v ×B) (2.21)

If the skyrmion texture is localized in the xy plane, the emergent field points along
the z-axis, so the Lorentz force belongs to the xy plane and is perpendicular to the
motion of the conduction electrons, making them deflect from their original direction
[19].

(a)
(b)

(c)

Figure 2.12. (a) CIP configuration: a spin-polarized current flows directly inside
the FM layer (yellow) deposited above the HM layer (blue). Figure extracted from
[20]. (b) Sketch of the Berry phase α acquired by a vector t (depicted in red) in
the movement along the oriented curve on the curved surface of a sphere. Figure
extracted from [11]. (c) Effect of the torque exerted by the skyrmion texture on
the spin of the conduction electron and depiction of the topological Hall effect.

Figure extracted from [32].

2.1.3.2. Spin Hall Effect (SHE)
The spin Hall effect is a phenomenon that originates in spin-Hall devices, where

a ferromagnetic (FM) thin film is deposited above a heavy metal (HM) substrate,
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like shown in figure 2.13. Here the electrical current is injected inside the HM layer.
Due to spin-dependent scattering mechanisms (which include also SOC [29]), the
electrons will experience a deflection perpendicular to their flow direction and to
the orientation of their spin. As a result, the SHE leads to an accumulation of
charges at the sides of the wire, and each side is populated by electrons with a
well defined spin orientation. For example, if the current flows in the +x-direction
and if the anomalous velocity acquired by the electrons is directed along the +z-
axis, making them accumulate at the top surface of the wire, their spin orientation
will be along the +y-axis. Moreover, this spin current flowing in the z-direction
and polarized along the y-direction, can be collected by the FM thin film deposited
above the HM substrate. This transverse spin current then will interact with the
magnetization of the HM layer, again through the STT mechanism [26, 29].

Since this time the current that interacts with the magnetization is directed
perpendicularly to the film plane, this configuration is called current-perpendicular-
to-plane (CPP) geometry.

Figure 2.13. CPP configuration: an electrical current flows inside the HM layer
(blue); the spin-Hall effect determines the creation of a spin-polarized current
directed in the vertical direction that is collected by the FM layer (yellow) deposited

above. Figure extracted from [20]

The expression of the torque τSHE associated to this phenomenon is

τSHE = − γ0}jθsh
2µ0eMStf

m× (m× p) (2.22)

where tf is the thickness of the FM layer, p is the spin-current polarization direction
(+y in the example reported above), j is the current density and θsh is the spin
Hall angle. The spin Hall angle measures the efficiency of the conversion from
charge current Jch to spin current Js and depends on material parameters [39]. Its
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expression is
θsh =

Js
Jch

(2.23)

2.1.3.3. Thiele equation and skyrmion Hall effect
When assuming that the skyrmion moves without deforming its texture, the

time-dependent evolution of the magnetization pattern can be written like

M (r,t) = M0[r −R(t)] (2.24)

where M0 is the initial configuration of the skyrmion when located in the axis
origin, and R(t) is the position of the skyrmion’s centre of mass at time t [27].
Thiele recognized that, in this case, the time derivative of the magnetization can be
written as

dM

dt
=

∂R

∂t

∂M

∂R
=

∂R

∂t

(
−∂M

∂r

)
= −(v · ∇)M (2.25)

Substituting the time derivatives that appear in the LLG equation with the ex-
pression 2.25, and converting the LLG equation into a force density equation, like
detailed in [27], the LLG equation can be rewritten into the Thiele equation [19].
Its expression for the CIP configuration is

G× (vs − vd) +D(βvs − αvd) +∇V (r) = 0 (2.26)

Here G = (0,0,G) = (0,0,4πQ) is the gyromagnetic coupling vector; vd is the drift
velocity of the skyrmion core; vs is the velocity of the conduction electrons, where
vs = − Pa3

2eMS
j (P is the spin polarization of the electrical current and a is the

lattice constant); D is the dissipative force tensor, where D =
( Dxx 0

0 Dyy

)
and Dxx =

Dyy =
∫
unit cell

(∂im · ∂jm)dxdy for both skyrmions and antiskyrmions; β is the
non-adiabaticity factor; α is the Gilbert damping; ∇V (r) represents the repulsion
forces due to process impurities, the nanotrack edges or due to skyrmion-skyrmion
repulsion.

Considering a skyrmion that moves far away from the edges along the x-axis (so,
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vs,x 6= 0, vs,y = 0 and V = 0), it can be found that [41]
vd,x =

(
β
α
+ G2

α
α−β

G2+(αD)2

)
vs,x

vd,y =
(
DG α−β

G2+(αD)2

)
vs,x

(2.27)

The Thiele equation for the CPP configuration is

G× vd − αD · vd + 4πB · JHM +∇V (r) = 0 (2.28)

Here B =
( Bxx 0

0 Byy

)
, where Bxx = Byy for skyrmions and Bxx = −Byy for anti-

skyrmions, is the tensor linked to the STT effect quantifying the efficiency of the
spin Hall-spin torque over the spin texture of the skyrmion [18], and it can be de-
termined starting from the spin configuration; JHM = Js

θsh
is the electrical current

density flowing in the HM, where Js is the spin current density and θsh is the spin
Hall angle of the HM [20, 18].

From the Thiele equation of the CPP configuration it can be proven that the
velocity components of both skyrmion and antiskyrmion are [15, 17]

vd,x = −jαDBxx

(αD)2+Q2

vd,y =
jQBxx

(αD)2+Q2

(2.29)

It has been demonstrated in [20] that the driving efficiency of the CPP configura-
tion is much higher with respect to the efficiency of the CIP configuration: applying
the same current density, the skyrmion velocity obtained with the CPP geometry is
higher than the velocity obtained with the CIP geometry.

The drift velocity vd for both geometries includes not only a component vd,x

parallel to the direction of the driving current, but also a transverse component vd,y
perpendicular to it that drives the skyrmion towards the track edges. The term
inside the Thiele equation that gives rise to this component is the Magnus force
G × vd. Since G = (0,0,4πQ), the reason why the skyrmion is subjected to this
force is that it carries a topological charge different from 0.
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With both configurations, increasing the current density also the skyrmion veloc-
ity will increase. However, there is a limit current density above which the repulsive
forces from the edges of the nanotrack, due to the tilting of the magnetization in-
duced by the DMI [15, 16] and taken into account with the term ∇V (r), are not
strong enough to balance the Magnus force, so that the skyrmion collides with the
edges and gets annihilated due to the breaking of the topological protection.

The Magnus force behaves like the Lorentz force for electrical charges and gives
rise to a phenomenon very similar to the traditional Hall effect, even if here the
skyrmion does not carry any electrical charge but only a topological charge. This is
why this effect is called skyrmion Hall effect.

Like discussed in [18] and in [15], reversing the sign of the magnetization and
thus the sign of the topological charge, turning it from Q = +1 to Q = −1, the
topological Magnus force G× vd is reversed, since G = (0,0,4πQ) is strictly related
to the skyrmion number. As a consequence, reversing the sign of the topological
charge, the skyrmions become antiskyrmions and will be accumulated at the opposite
edge of the sample, in strict analogy to what happened with the Hall effect for
electrical charges. Of course, when the Magnus force deviates the trajectory of an
antiskyrmion, the resulting effect is called antiskyrmion Hall effect.

This can be proven also looking at the expression of vd,y for both geometries:

vd,y =


(
DG α−β

G2+(αD)2

)
vs,x for CIP

jQBxx

(αD)2+Q2 for CPP
(2.30)

The vd,y component for the CIP case is directly proportional to G = 4πQ: reversing
the sign of the topological charge also the velocity component will be reversed. The
component for the CPP case is proportional directly to Q and thus behaves in the
same way. So, applying the same current density, both skyrmions and antiskyrmions
propagate in the x-direction with the same speed, while they exhibit equal and
opposite transverse velocities.

The (anti)skyrmion Hall angle is defined as the angle between the direction of
the applied current and the direction of the resulting motion of the texture, and its
expression is

Φsk = arctan

(
vy
vx

)
(2.31)
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Figure 2.14. Schematic representation of the topological Hall effect and of the
skyrmion Hall effect. Electrons are deflected by the Lorentz force due to the
emergent magnetic field of the skyrmion, and this results into the topological Hall
effect. The velocity of the skyrmion has a transverse component due to the Magnus
force in the Thiele equation, and this is the skyrmion Hall effect. Due to the time
variation of the emergent magnetic field carried by the skyrmion, is present also
an emergent electric field, that is, emergent electromagnetic induction. Figure

extracted from [31].

Focusing on the CPP geometry, both the skyrmion and the antiskyrmion Hall angle
[15, 18] are equal to

Φsk = arctan

(
− Q

αD

)
(2.32)

This equality can be easily found by substituting equation 2.29 inside the definition
of the (anti)skyrmion Hall angle.

Due to some differences inside the symmetry of the spin texture constituting
the antiskyrmions, the antiskyrmion Hall angle, differently from the skyrmion Hall
angle, is dependent on the angle θ that the applied current density has with the
x-direction, so that its complete expression actually is

Φask = arctan

(
− Q

αD

)
− 2θ (2.33)

It has been proven in [15] that if the current is injected along the direction θ =
1
2
arctan(− Q

αD ), so that Φask = 0, the antiskyrmion Hall effect is cancelled and the
texture moves exactly along the current direction, without any transverse motion.
Since the maximum speed at which both skyrmions and antiskyrmions can move
inside a nanotrack without being annihilated is limited by the competition between
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the (anti)skyrmion Hall effect and the edge repulsion, enabling a motion with zero
antiskyrmion Hall angle can largely increase the maximum velocity of antiskyrmions,
allowing a higher throughput for the devices potentially based on them.

2.1.3.4. Mitigation of the skyrmion Hall effect
Since the skyrmion Hall effect may lead to the annihilation of the particle and

so of the information it carries, it is a well known issue in the design of skyrmionic
devices. Looking at the expression of vd,y in 2.27, it can be noticed that if α = β the
transverse velocity component is cancelled and the skyrmion Hall effect disappears.
However, these two parameters depend on material properties, and it’s clear that is
impossible to rely on this equality from a design point of view; of course, thanks to
the repulsion from the edges of the nanotrack, the skyrmion is able to travel along
the nanotrack even if β is not too different from α, but in this case the current
density must remain below a certain threshold so that the Magnus force doesn’t
overcome the repulsive forces from the boundaries, and this of course limits the
maximum throughput of the device. So, it’s clear why some other solutions to the
skyrmion Hall effect must be found, and these solutions must be able to work both
with the CIP and with the CPP geometry (even if the CPP configuration has a
higher driving efficiency with respect to CIP).

In [10] two methods have been proposed for engineering a potential well, needed
for confining the skyrmion in the centre of the nanotrack and preventing its annihi-
lation. The first method proposed tunes the magnetic anisotropy along the width
of the nanotrack, reducing the value of the PMA in the centre with respect to the
edges. This will form a path of lower resistance all along the nanotrack, since there
the magnetization will be allowed to flip more easily due to a lower value of the ef-
fective field. Of course, however, there is still a certain value of velocity above which
the repulsion from the edges won’t be enough and the skyrmion can be destroyed.
The patterning of the PMA can be performed by ion irradiation, combined together
with high-resolution litography. Of course this must be done during the fabrication
step and is a static control, without any possibility of change during the lifetime of
the device.

The second method proposed is to add more ferromagnetic material at the edges
of the nanotrack. Doing so the demagnetization field is increased at the inner edges
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of the modified nanotrack and decreased at its centre: so there is again a magnetic
potential well which forces the skyrmion to move at the centre of the track. The
threshold velocity above which annihilation happens in this case is even higher that
the one that can be obtained through PMA patterning.

(a)
(b)

Figure 2.15. (a) z-axis anisotropy field along the width of the nanotrack after
patterning of the PMA constant: Ku has a lower value at the centre of the nan-
otrack. (b) z-axis demagnetization field for the traditional nanotrack (black curve)
and for the modified nanotrack shown in the inset (red curve). Figures extracted

from [10].

A completely different possibility is presented in [41]. The structure of the de-
vice described in this article is reported in figure 2.16: a FM layer with positive
background magnetization is separated from a bottom FM layer with opposite back-
ground magnetization by an insulating spacer. Below the bottom FM layer, a HM
substrate allows the flow of a current in the x-direction and is able to generate a spin-
polarized current vertically directed with spin direction along +y. The peculiarity
of this structure is to have an antiferromagnetic (AFM) exchange coupling between
the top and the bottom FM layers. The Hamiltonian for this kind of interaction is

Hinter = −Ainter

∑
i

mT
i ·mB

i (2.34)

where T stands for top, B stands for bottom and Ainter, the interlayer AFM exchange
stiffness, is negative. As a result, if the magnetic moments of the top layer point in
one direction, the moments of the bottom layer will point exactly in the opposite
direction, in order to minimize the total energy of the system, equal to Htotal =
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HT +HB +Hinter.

Figure 2.16. Schematic of the AFM exchange coupled bilayer system. (a) MTJ
write-head needed for the nucleation of a single skyrmion in the top FM layer.
(b-c) Bilayer nanotrack where the CPP geometry (b) or the CIP geometry (c) is
exploited for the skyrmion motion. (d) Illustration of the bilayer-skyrmion. (e)
Side view of the bilayer skyrmion along the diameter section. Figure extracted

from [41].

In this structure is possible to nucleate a skyrmion by injecting a current inside
the MTJ shown in figure 2.16 (the nucleation of a skyrmion by allowing a current flow
through a MTJ is explained in section 2.1.5); the resulting spin-polarized current
is not able to reach the bottom FM layer, so if the AFM exchange coupling is not
strong enough only a single skyrmion will be nucleated in the top layer. If instead
the coupling between the two layers is strong, the nucleation of a skyrmion in the top
FM layer will induce the nucleation of a skyrmion with opposite topological charge
(since the spin directions are opposite, as detailed by equation 2.7) also in the bottom
FM layer. These two skyrmions (magnetic bilayer skyrmion) are bounded and move
together along the track. If the current is injected according to the CIP geometry,
the texture of both skyrmions will be subjected to the torque from the conduction
electrons. If instead is adopted the CPP geometry, only the bottom skyrmion will
be subjected to the torque of the spin-polarized current coming from the SHE: the
top skyrmion will move only due to the AFM exchange coupling.
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The key point is that the two textures have opposite topological charge: for
this reason, the G × v(d) term (Magnus force) that appears in the Thiele equation
of both CIP and CPP geometry is cancelled. Like mentioned in section 2.1.3.3,
in fact, G = (0,0,4πQ) depends on the topological charge, and if the sign of the
topological charge is reversed also the Magnus force will change its sign. Thanks to
the bound connecting the skyrmions inside the two layers, the total Magnus force
on the system of the bilayer skyrmion is exactly zero. In this way is possible to
obtain the movement along a straight line without any skyrmion Hall effect: this
allows to obtain a system in which the velocity of the information carriers can reach
even 1000 ms−1. Moreover, in the article is demonstrated that the bilayer skyrmion
maintains the same (low) depinning current density of a single skyrmion, and that
the CPP geometry is again the most efficient configuration, like it happened in the
case of single skyrmions.

In the same article is proposed also a second method to nucleate a bilayer
skyrmion, exploiting the result presented in [43]: it is enough in fact first to nu-
cleate an AFM-coupled DW pair, to move it along a narrow track an then, through
a narrow-wide junction geometry, to convert it into a bilayer skyrmion, similarly to
what has been discussed in section 2.1.1.7.

2.1.4. Nucleation
The nucleation of skyrmions can be obtained in many different ways: by means

of an electrical current, of magnetic fields, or even with local heating using laser
irradiation; again, from an application point of view the nucleation through the
injection of an electrical current is the most promising mechanism.

2.1.4.1. STT
In [33] has been studied the nucleation of a single skyrmion in a thin magnetic

film by injecting a out-of-plane spin-polarized current perpendicularly to the film
plane. By changing the simulation parameters it has been studied also the depen-
dence of the threshold current density on the Gilbert damping, on the magnitude
of the DMI and on the PMA coefficient.
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2.1.4.2. Notch
Another mechanism for the nucleation of skyrmions has been proposed in [16].

Here a notch inside the ferromagnetic material is exposed to a magnetic field and
to a flowing current. Even if the magnetic field considered in the article is directed
along +z, the spin direction along the edges of the sample is in-plane due to the DM
interaction. When injecting an electric current, the STT and the DMI together make
the spins first swell out around the corner, then twist and point down at the core of
the new skyrmion, which after some fluctuations in the radius size will detach from
the corner and move in the sample due to the STT from the current. The authors
have studied the dependence on the sign of the magnetic field, on the sign of the
current density and on the shape and dimension of the notch. It has been proved
that the essential feature is the spin pattern along the edge of the sample, together
with the direction of the injected current: a current with opposite sign is not able
to generate a skyrmion, due to the unique direction that the spin movement has in
the Larmor precession. If the in-plane component of the spin is guaranteed and if
the current has the correct direction (given the sign of the applied magnetic field),
then even a notch with round shape would allow the nucleation.

Figure 2.17. Simulation snapshots showing the nucleation of a skyrmion around
a rectangular notch. Blue(red) represents the +z(−z) component of the magneti-

zation. Figure extracted from [16].
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2.1.5. Detection
The detection of skyrmions can be accomplished mainly through either the topo-

logical Hall effect or the magnetoresistance effect; only the latter method, however,
can be easily performed in a fully electrical way, and so is the easiest to be imple-
mented in an electronic device [20].

In [36] the electrical detection of a single skyrmion based on the tunnel magne-
toresistance (TMR) effect at room temperature has been detailed. The structure of
the proposed read-head is made by a HM layer, above which is deposited an ultra-
thin ferromagnetic layer, in order to achieve a strong i-DMI (interfacial DMI). This
ferromagnetic layer will host the skyrmion and is at the same time the free layer
of a MTJ; it has an elliptical cross section with the major axis oriented along the
y-direction. The pinned layer of the MTJ has a fixed out-of-plane easy axis of the
magnetization and is a nano-contact with 50 nm of diameter, since the average value
of the skyrmion diameter, with the parameters chosen for the simulation, is around
40 nm. First of all, the skyrmion nucleation is achieved, like proposed in [33], by
injecting a current pulse through the MTJ.

Spin-polarized current
The current passing through the ferromagnetic layer with fixed magnetization

becomes spin-polarized. Like explained by [29], in fact, the density of states (DOS)
of a ferromagnetic metal is different from the DOS of a normal metal: like shown
in figure 2.18a, in this case the DOS is different for the two spin states, so that
the spin-up band at the Fermi level is mostly filled, while there are many empty
states available in the spin-down band. So, the conduction electrons injected in
the ferromagnet will encounter a different resistivity, according to their spin: the
spin-down electrons have more states to scatter into, and as a result they see a
higher resistivity (ρ↓) compared to the one (ρ↑) seen by the spin up electrons. So,
overall, this leads to the spin-polarization of the current injected, where the degree
of spin-polarization is given by

P =
ρ↓ − ρ↑
ρ↓ + ρ↑

(2.35)
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(a)

(b)

Figure 2.18. (a) DOS of a metal and of a ferromagnetic material. The misalign-
ment of the spin-up and of the spin-down band in the energy diagram determines
a higher number of states available in the spin-down band. Adapted from [2].
(b) Structure of the detection-head proposed in [36]. The MTJ structure is ex-
ploited both for the detection and for the nucleation, while a current flowing in
the HM layer controls the motion of the skyrmion in the free layer via SHE. Figure

extracted from [36].

Once the skyrmion is nucleated, the main problem to solve is its thermal drift
below the detection head. This thermal drift induces shape deformations, apart
from the so called breathing (expansions and compressions of the spin texture), and
most of all makes the skyrmion follow a Brownian motion, which forces it to stay
most of the time away from the detection head: that’s why it cannot be detected by
means of just a current flowing through the read-head. The motion of the skyrmion
must instead become controlled, and must force it to pass periodically below the
detection area. To do so, an electrical microwave current is made flow in the HM
layer in the x-direction: in this way, thanks to the SHE, the skyrmion is forced to
move along the y-axis of the free layer. The consequence of this periodic passage is
a periodic variation of the out-of-plane component of the magnetization: then, due
to the tunnel magnetoresistance effect, the resistance that a current density JMTJ

across the MTJ encounters will change periodically, and this allows the detection of
the skyrmion.

2.1.6. Skyrmion size
Like observed in [38], a bit of confusion can be found in literature about the topic

of the skyrmion size, and many different and non-equivalent expressions have been
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used up to now. Skyrmions are made of an inner core, an outer domain and a wall
separating them; so, when dealing with the skyrmion size, first of all is necessary to
distinguish between the contour of the region where mz = 0, whose radius is called
skyrmion size R, and the wall width w surrounding the core. These two quantities
are visually defined in figure 2.19.

Figure 2.19. Schematic of a Néel skyrmion showing the visual definition of the
skyrmion size R and of the wall width w. Figure extracted from [38].

The authors of this article focus on Néel skyrmions stabilized by i-DMI in a
ultra-thin ferromagnetic film; they confirm that the same results apply also to Bloch
skyrmions stabilized by bulk DMI. However, the basic assumption is that the thick-
ness of the film is much smaller than both R and w, so that the demagnetizing field
can be neglected. If the thickness of the film increases, the model they present and
all the 2D theories behind it are no longer applicable.

The energy terms taken into account are the exchange energy, the DMI energy,
the anisotropy energy and the Zeeman energy, where A is the exchange constant,
D is the DMI coefficient, K is the perpendicular easy-axis anisotropy and B the
perpendicular magnetic field. In the article it is first found the general and exact
expression of the total energy E including these terms. The skyrmion radius and
the wall width are those values that minimize the energy of the system: so, their
dependence on A, D, K and B is found by minimizing the total energy with respect
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to R and w separately. This is the main innovation that this article brings on the
topic: usually the domain wall width was either considered constant or dependent
on the value of R. Doing so, instead, the simulation points are quite perfectly
interpolated by the curve obtained by minimizing the exact expression of E with
respect to R and w and by varying the values of A, K, D and B that appear in it. In
figure 2.20 are shown the four plots, where the symbols represent the simulation data
and the solid lines are the results obtained theoretically from the exact expression
of the energy.

However, doing so is not possible to get the complete expression of R and w,
expression which would be useful to have a clear idea about their dependence on the
four parameters. For this reason, in the same article the expression of the energy
was approximated under the assumption R >> w, and minimizing it again with
respect to R and w the following expressions can be found for B = 0:

R = πD

√
A

16AK2 − π2D2K
(2.36)

w =
πD

4K
(2.37)

If B 6= 0 there is no closed-form solution; however, the approximated dependency of
both R and w on B can still be simulated by varying its value in the two minimized
expressions. In this way the dashed curves shown in figure 2.20 are obtained.

Figure 2.20. Comparison between simulation data (symbols), exact theoretical
result (solid curve) and approximated theoretical result (dashed curve) for both
the skyrmion size R and the wall width w. The limit of the region where the
skyrmion is the configuration minimizing the energy of the system is shown by the

vertical dashed line. Figure extracted from [38].

From equation 2.36, imposing that R is a real and finite number, it can be derived
that

16AK > π2D2 (2.38)
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From this expression is possible to determine the limit value for A, D and K: these
values are reported in the plots like a vertical dashed line, which agrees well with
the simulations even if it has been derived from an approximate expression. If these
three parameters do not respect the range obtainable from equation 2.38, the stable
state is not a skyrmion but stripe domains.

In figure 2.21 is shown the comparison with the results obtained from two differ-
ent articles. In particular, the one indicated as Ref. [26] is [42], whose results are
commented in section 2.2.3. From this comparison is possible to realize the validity
of the model proposed, and how it should be trusted more than different models
proposed in other articles.

Figure 2.21. Skyrmion size: comparison between simulation data, the results pro-
vided by the approximated expression of the energy and the results obtained in

two different articles. Figure extracted from [38].

In article [38] the skyrmions are assumed to be isolated inside an infinite medium,
so the edge effects are not taken into account. In [6] instead are studied the effects
that the repulsive forces from the boundaries of a tapered nanotrack have on the
skyrmion size. The nanotrack used in the simulations, shown in figure 2.22, exploits
the results of [41]: it is in fact made by two FM layers separated by a spacer, so that
the skyrmion Hall effect is cancelled thanks to the AFM exchange coupling between
the two layers, like already discussed in section 2.1.3.4. The skyrmion movement is
achieved through the SHE.

The results shown in the article are reported in figure 2.23. The variation of
the skyrmion size according to the track width is shown in figure 2.23a: while the
skyrmion moves along the track, the edges exert a repulsive force on its texture,
shrinking it. In particular, at the end of the nanotrack, where the width is of 30 nm,
the skyrmion diameter is 10 nm. It’s difficult to obtain such a small size directly
with the nucleation of a skyrmion via STT: that’s why a tapered nanotrack could
become useful in increasing the packaging density of information in a skyrmionic
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Figure 2.22. Tapered nanotrack used in [6]: two FM layers are AFM exchange-
coupled, so that the skyrmion Hall effect is suppressed. The skyrmion is moved by
a current flowing in the HM layer via SHE. The varying width of the nanotrack
exerts a compression on the skyrmion texture. The slope is defined by k = tan(β).

Figure extracted from [6].

(a)
(b) (c)

Figure 2.23. (a) Dependence of the diameter of the skyrmion on the width of the
nanotrack. The dependence on the slope k of the nanotrack is very weak. (b)
The resultant of the repulsive forces from the edges increases when the skyrmion
radius decreases; increasing the slope of the nanotrack the force component that
opposes to the skyrmion’s motion increases. The inset shows the force components
competing in the motion. (c) The velocity of the skyrmion decreases when the
track width decreases; increasing the slope of the nanotrack the velocity decreases

as well. Figures extracted from [6].

memory.
The authors observe also that the repulsive force exerted by the non-parallel

edges makes the velocity decrease with the track width (figure 2.23c). The summary
of the forces competing in the system is shown in the inset of figure 2.23b: each edge
exerts a force Fedge on the texture, and the sum of these two forces is Fre, opposite
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in sign with respect to the force FSHE responsible of the motion of the skyrmion.
Like shown in figure 2.23b, Fre increases while the width of the track decreases, and
opposing to FSHE it makes the resulting skyrmion velocity decrease.

The result concerning the skyrmion size shown in figure 2.23a is confirmed also by
the simulation results presented in [10], where the width of the considered nanotrack
spans between 28 nm and 10 nm.

2.2. Applications
Like already mentioned in the introduction to this thesis, skyrmions present

many advantages with respect to domain walls: they need a lower depinning current
density and they are smaller, so overall they allow either to consume less power while
maintaining the same throughput, or to increase the throughput while maintaining
the same power consumption.

It is a fact that a lot of research has already been done on DW racetrack memo-
ries: however, thanks to the result shown in [43], is now possible to reversibly convert
DW pairs into skyrmions and vice versa. This allows to exploit all the work already
done on the optimization of racetrack memories, together with all the advantages
presented by skyrmions. Not only: as it will be shown in this section, different
designs for skyrmionic logic gates have been proposed. This allows even to realize
some logic in memory: the information could be stored in the form of DW pairs,
which can then be elaborated by skyrmionic gates after a conversion, and the result
of the elaboration can be stored again like DW pair somewhere else.

Of course, as soon as the basic logic gates are available, it is then possible to
build more complex computing architectures: this topic will be discussed in chapter
4.

2.2.1. Logic gates using the DW pair-skyrmion re-
versible conversion

In the first part of [40] is studied the variation of the topological numbers of
skyrmionic structures according to the physical parameters of the material used for
the wide part of a nanojunction, exploiting the reversible conversion from DW pair
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to skyrmion proposed in [43]. This topic has been detailed in section 2.1.1.7. In the
second part of [40] the DW pair-skyrmion conversion is exploited for designing the
basic logic gates. Here a skyrmion signifies a logic 1, while its absence represents a
0.

(a)
(b)

Figure 2.24. (a) OR gate: snapshots of micromagnetic simulation at different
instants showing the cases 1 + 0, 0 + 1 and 1 + 1. The 0 + 0 case is trivial. (b)
AND gate: snapshots of micromagnetic simulations for the cases 1 · 0, 0 · 1 and

1 · 1. The 0 · 0 case is trivial. Figures extracted from [40].

Figure 2.24a shows the structure of the OR gate in different simulation points
and according to different input combinations. In the 1 + 0 and the 0 + 1 case,
the only skyrmion on the input is converted into a DW pair thanks to the presence
of the narrow junction, is propagated along the structure and is converted back
into a skyrmion in the wide output region. When two skyrmions are present they
are both converted into a DW pair, and when these two structures meet at the
central junction of the Y structure they merge into a single DW pair, which is
then propagated towards the output and converted back into a single skyrmion like
before.

In figure 2.24b is represented the structure of the AND gate. It is very similar
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to the OR gate, with the only difference of a wider bottom half in the Y central
junction. In this way, considering the 1·0 and the 0·1 cases, when injecting the same
current density as before, the current density in the bottom half of the junction will
be lower with respect to the case of the OR gate, so the DW pair, since it is pushed
towards a wider region, is converted not into a skyrmion but into a meron. Since
the meron has the peculiarity of remaining attached to the sample edge, when it
reaches the output junction it is driven away from the nanotrack: so in both cases
the output of the function is 0, as expected. In the 1 · 1 case, instead, the two DW
pairs are still able to merge into a single DW pair, which is propagated towards the
output and converted back into a single skyrmion, correctly providing a 1 on the
output.

The cases 0+0 and 0 · 0 are not shown since they are trivial: if we don’t provide
any skyrmion on the inputs of the gates, the output will be for sure 0.

Figure 2.25. Duplication of a skyrmion. The middle panel shows the time evolu-
tion of the magnetization components mx, my and mz. The bottom panel shows
the time evolution of the skyrmion number: from Q = 1 (one skyrmion) it becomes
Q = 0 (DW pair) and then Q = 2 (two skyrmions). Figure extracted from [40].

It is worth noticing that, using the same structure of the OR gate but exchanging
output and inputs, the gate obtained is able to perform the duplication of a single
skyrmion, as shown in figure 2.25. Like observed by the authors, the capability of
duplicating the information carried by a single skyrmion is very important for any

42



2.2 – Applications

skyrmionic device.
Even if not specified by the authors of the article, is worth noticing that these

gates could in principle be used inside a conservative skyrmionic logic system: the
skyrmions on the output of each of these gates could in fact be used in the remaining
part of a larger circuit to trigger the computation of other logic functions, like
proposed in [5] for a different type of logic gates (see 2.2.2).

2.2.2. Logic gates for conservative logic systems
The application proposed in [5] is a different method to realize the basic logic

gates. It exploits the results shown in [10], adopting an additional layer of FM
material at the edges of the nanotrack to achieve the confinement of the skyrmion,
like shown in figure 2.26. Moreover, the system that can be obtained from these
gates is defined ”conservative”, because once the skyrmions have crossed the whole
gate, allowing the computation of the logic function, they can be collected at the
other end and used to trigger the computation of new functions, without the need
of nucleating new skyrmions, which is an energetically expensive operation. Finally,
the way in which is taken advantage of the complex physics of skyrmions in real-
izing the computations deserves an additional mention: here the features that in
other skyrmionic devices represent a problem, like the edge-skyrmion repulsion, the
skyrmion-skyrmion repulsion, and most of all the skyrmion Hall effect, are not only
tolerated, but actually exploited for realizing the computation.

Figure 2.26. Structure of the nanotrack used in [5], made of Pt HM (blue) and
Co FM (gray, with polarization P ). The current J injected in the HM is converted
via SHE into the spin-polarized current JS , producing on the skyrmion (multicolor
circle) a force FSH in the direction of the electrical current (+y) and a force FSkH ,

due to the skyrmion Hall effect, directed along −x. Figure extracted from [5].

43



2 – Physics and applications of skyrmions

The structure of the gates proposed is shown in figure 2.27. Also in this case
a logic 1 is represented by a skyrmion and a 0 by its absence. The device shown
in 2.27a implements the AND and the OR function at once: remembering that
each skyrmion is subjected at the same time to a force component along +y and
to a second force component directed along −x, is easy to understand the working
mechanism behind the gate. When a single skyrmion is present (case A = 0, B = 1

or A = 1, B = 0), it moves along its track as long as there is no way to move
towards the −x-direction. If the skyrmion is in the rightmost track and it reaches
the central junction, the skyrmion Hall effect will make it move towards left and
change its track. This won’t happen only if there is already a skyrmion occupying
the left track (A = 1, B = 1): in this case the skyrmion-skyrmion repulsion prevails
and both skyrmions continue on their respective track, correctly providing a logic 1

on both outputs.

(a)
(b)

Figure 2.27. (a) AND/OR gate: schematic of the behaviour of the gate for the
cases (A = 0, B = 1), (A = 1, B = 0), (A = 1, B = 1). The (A = 0, B = 0) case
is trivial. (b) COPY/NOT gate: schematic of the behaviour of the gate for the

cases IN = 1 and IN = 0. Figures extracted from [5].

In 2.27b is shown the structure of the INV/COPY gate. This time, to allow
the correct functioning, the CTRL input must always be set to 1. Then, if both
skyrmions are present, the skyrmion-skyrmion repulsion in the central junction will
make the rightmost go towards the COPY2 output, and together with the skyrmion
Hall effect it will make the leftmost reach the COPY1 output. In this way the value
of the input (IN = 1) is copied on the two COPY outputs, while it is inverted on
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the NOT output. If a single skyrmion is present, the skyrmion Hall effect will make
it go towards the −x direction, but it is not strong enough to make it reach the
COPY1 track: again, the value of the input is copied on the two COPY outputs
and inverted on the NOT output.

Having the implementation of both the AND/OR function and of the NOT
function, it is in principle possible to realize any boolean logic function. However,
here the correct functioning of the device is based on the forces that arise from the
interactions of skyrmions inside the same logic gate. It is then of vital importance
to synchronize their movement and to control their timing: differently from the
traditional electric circuits, in which (at least in lumped circuits) the speed of the
signal propagation can be approximated as infinite, here the speed of skyrmions is
limited and the time they take in propagating along each track must be carefully
considered. That’s why in the same article has been proposed also the structure of
a signal synchronizer, shown in figure 2.28a. It is realized with a 7 nm wide notch
that blocks the passage of the skyrmion, which is around 20 nm wide.

Like discussed in section 2.1.6, a tapered nanotrack has the effect of decreasing
the radius of a skyrmion passing through it. However, the repulsion from the edges
gives rise to a force component antiparallel with respect to the force FSH , which
is coming from the SHE and is responsible for the skyrmion motion. The force
component FSH is directly proportional to the current density applied ([6]): as a
result, if the current density is not enough, the skyrmion propagation will be blocked
by the notch. The passage of the skyrmion is allowed only when a higher current
density is applied: in this way the force component FSH becomes able to overcome
the repulsion force coming from the edges, the skyrmion diameter is reduced due
to edge repulsions, and the information can go through the restriction and continue
the propagation along the circuit.

In this way the current needed to allow the data propagation becomes at the
same time also the clock needed for synchronizing it: the low logic level of the current
will correspond to a value higher than the depinning current, but lower than the
value needed for allowing the passage of the skyrmions through the notches present
in the circuit; this high value will be applied periodically only for a short period of
time, so that the resulting waveform of the current will have a very small duty cycle.

The last structure proposed in the paper is the one of a FULL ADDER, shown

45



2 – Physics and applications of skyrmions

(a)
(b)

Figure 2.28. (a) Signal synchronizer: the 7 nm wide notch blocks the passage
of the skyrmion until a higher current density level is applied. (b) Full Adder
structure, built using the INV/COPY gate, the signal synchronizer and some join

tracks. Figures extracted from [5].

in figure 2.28b. For understanding its behaviour is important to notice that the
structure of the INV/COPY gate is able to perform also different logic computations,
if the assumption of having always an input CTRL = 1 is relaxed. It’s easy to verify
that the same structure corresponds to the truth table 2.2. The names of the inputs
and of the outputs of the gate have been redefined, like shown in figure 2.29, for
avoiding any confusion about the actual logic function implemented.

Table 2.2. Truth table for
the INV/COPY gate

A B OUT2 OUT1 OUT0
0 0 0 0 0
0 1 0 1 0
1 0 1 0 0
1 1 1 0 1


OUT2 = A

OUT1 = A ·B
OUT0 = A ·B

(2.39)

Fig-
ure 2.29.

The structures proposed in this article will be the starting point first for the
micromagnetic analysis (chapter 3), then for the architectural analysis (chapter 4)
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that are the topic of this thesis. They will be used in chapters 5 and 6 as well.

2.2.3. Skyrmion-based transistors
In [42] it was proposed a skyrmionic device able to behave like a conventional

CMOS transistor. Its structure is shown in figure 2.30a.

(a) (b)

Figure 2.30. (a) Structure of the skyrmionic transistor: two MTJ are used re-
spectively for writing and for reading the skyrmion, whose motion is achieved via
SHE. The gating effect is obtained applying a voltage on the gate terminal and
tuning the magnetic anisotropy of the gate region of the nanotrack. (b) Snapshots
of micromagnetic simulation: if no voltage is applied Kuv = Ku and the transistor
is on. If Kuv > Ku the skyrmion encounters a potential barrier and pins at the
left of the gate region; if Kuv > Ku it finds a potential well and pins at the right
side of the gate area. In both cases, increasing the current density is possible to

depin the skyrmion and turn the transistor on. Figures extracted from [42].

In this device, a MTJ is used for nucleating the skyrmion and a second MTJ is
used for reading it, just like described in section 2.1.5; the skyrmion is moved from
source to drain via the SHE by a JHM flowing in the bottom HM layer. Finally,
the gating is obtained by applying a voltage on the gate terminal: this will induce
a variation of the PMA parameter Kuv, according to the relation

Kuv = Ku +∆KuvE (2.40)

where E is the applied electric field.
In the off state both the current density and the electric field are applied, while

in the on state only the electric field is turned off, so that Kuv = 1.00Ku. Like
equation 2.40 shows, the electric field increases the value of the PMA; the energy of
the skyrmion is

Esk = − D2π4

4Kπ + 16
π
B

+ 38.7A (2.41)
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while its radius, according to this article, is

Rsk = − Dπ2

2Kπ + 8
π
B

(2.42)

where K is the PMA constant, D is the DMI magnitude, A is the exchange constant
and B is the magnetic field. However, like discussed in section 2.1.6, this equation
for the radius of the skyrmion has been proven wrong in [38], according to which
the correct (approximated) definition of the radius is

Rsk = πD

√
A

16AK2 − π2D2K
(2.43)

where the label of each parameter has remained the same. In this way it is repre-
sented the dependence of the radius not only on D and K (whereas the dependence
on B is more complex to be represented), but also on the exchange interaction stiff-
ness A. However, the key point here is that the dependence on the PMA constant
has remained similar: if the PMA increases the skyrmion radius decreases, and vice
versa, decreasing the PMA the radius increases. According to equation 2.41, in-
creasing the magnetic anisotropy the energy of the skyrmion increases too and vice
versa, decreasing the magnetic anisotropy the energy decreases.

As a result, from the snapshot (a) in 2.30b it can be observed that, if the electric
field is turned off, the skyrmion is free to go through the voltage-gated region and to
reach the drain. If the electric field increases the PMA, it means that the skyrmions
finds a potential barrier on the left side of the gated region and stops there. If, in
the contrary, the field decreases the PMA, the skyrmion finds at first a potential well
and is able to enter the gated region (and its radius there increases, like predicted);
then, going out of the potential well it finds a potential barrier, and if the current
density is not enough it won’t be able to exit the potential well, remaining pinned
at the other side of the gated region. However, in both cases there is always a
current density threshold above which the skyrmion is able to overcome the barrier
and reach the drain. In the article the authors have studied the dependence of this
threshold on the PMA value and on the intensity of the DMI. Finally, it has been
demonstrated that the same behaviour is verified even if the size of the nanotrack is
reduced, and this indicates the good scalability of this skyrmionic transistor, which
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could be used as a component of hybrid skyrmionic-electronic devices.
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In section 2.2.2 the key principle behind the implementation of some basic skyrmionic
logic gates has been described. The results presented in the article, however, were
obtained by assuming a uniform distribution of the current density throughout the
whole gate: this, of course, is an unrealistic assumption. The aim of this chapter
is to verify whether those structures are able to correctly work within a simulation
that receives as input a realistic current distribution.

3.1. Methods
The results presented in the article [5] were obtained by using the software

mumax3, a GPU-accelerated simulation software that, given a structure and given
a subdivision of this structure into cells, solves the LLG equation in each cell pro-
viding, among the possible outputs, the time evolution of the magnetization. In
writing the code to be simulated is necessary to describe the structure and the ini-
tial magnetization state; besides that, to obtain any kind of result is also necessary
to add some kind of excitation, either in the form of a magnetic field or of an elec-
tric current. It’s even possible to provide as input a spin-polarized current, whose
direction must be specified by a vector. In this particular case, a spin-polarized
electric current directed along +z and with polarization direction along −y must be
provided: this current can be set uniformly in the whole structure (and this is what
was done in [5]), but is also possible to specify different current density values inside
the structure by subdividing it in regions; the version of mumax3 that has been used
in this thesis supports up to 255 different regions, and each of them can in general
be specified not only by a different current density, but also by different material
parameters. In this case, however, it is assumed that the material parameters are
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uniform in the whole structure and take the values specified in table 3.1. These
values have been adopted from [5] and from [10].

Table 3.1. Material parameters used in mumax3 simulations
Symbol Description Value
Msat Saturation magnetization 5.8 × 105 A/m
Aex Exchange stiffness 1.5 × 10−11 J/m
α Gilbert damping coefficient 0.1
ξ STT non-adiabacity 0.35

Dind DMI constant 3.0 × 10−3 J/m2

Ku1 Magneto-crystalline anisotropy constant 6 × 105 J/m3

Ku2 Magneto-crystalline anisotropy constant 1.5 × 105 J/m3

Temp Temperature 0 K
Pol Spin polarization 1
Λ Slonczewski parameter 1
ε′ Slonczewski secondary STT term 0
θSH Spin Hall angle 1

The values of current density needed by mumax3 to initialize the 255 regions in
which the gate is divided are provided COMSOL Multiphysics. With this simulation
software is possible to describe the full structure of the gate, including the platinum
tracks, which are not taken into account by mumax3. So, the gate is described
both in terms of structure and in terms of materials. Here the track is made of
cobalt and the metal traces of platinum: the resistivity of platinum was set to
ρPt = 9.8 × 10−8 Ω m and the resistivity of cobalt to ρCo = 5.6 × 10−8 Ω m. Another
parameter that needs to be specified is the relative permittivity of both materials:
it was set respectively to εPt = 0.7347 and to εCo = −1.1825. The value of all the
other parameters was left equal to the default one, since they are not needed in
performing these specific simulations.

To induce a current distribution inside the structure, a voltage difference is ap-
plied across the gate. The voltage is applied only in correspondence of the platinum
tracks; however, since cobalt is conductive, a certain distribution of current density
will be found in the cobalt layer as well; this topic will be discussed later more in
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detail.
The skyrmion is driven by the spin-current which originates from the charge

current injected inside the HM layer: the SHE converts this charge current into a
spin current with an efficiency described by the parameter θSH , the spin-Hall angle,
presented in section 2.1.3.2. Being an efficiency factor, the spin-Hall angle can be
at most equal to 1. In the following simulations, its value is always assumed to be
exactly 1, but it can be changed into a lower value with very simple modifications.
Since θSH = 1, the values of current density present inside the platinum layer are ex-
actly equal to the values of spin-current density that must be set inside the mumax3

code to initialize the regions constituting the gate structure: so, it is enough to sam-
ple the charge-current density present inside the platinum traces and to use those
same values inside the mumax3 code, without applying any scaling factor.

In order to sample the current density distribution, the platinum traces have
been divided into a grid, whose parameters can be set according to the preferences.
In the following simulations, the grid is placed exactly in the middle with respect
to the thickness of the platinum layer. The horizontal tracks are then divided into
a user-defined number of regions, and the samples of current density are taken in
correspondence of the central point inside each region. In figure 3.1a and 3.1b are
shown the regions chosen for the simulations of the INV/COPY and of the AND/OR
gate. As already mentioned, up to 255 regions could be exploited, but the simulation
time would be prohibitive: a compromise between simulation time and resolution
has led to the choice of only 23 regions in the case of the INV/COPY gate and of
18 regions in the case of the AND/OR gate.

The geometrical parameters describing each structure to be simulated, together
with the voltage value to be applied across the gate and the spacing of the sampling
grid in the horizontal directions, are all provided to COMSOL Multiphysics by a
parameters.txt file. The values sampled by COMSOL Multiphysics are then read
and plotted by MATLAB, which also blends together into a single file all the files
containing the current density values sampled by COMSOL; finally, a C program
reads the file provided by MATLAB, along with the parameters file describing the
structure of the gate, and writes the mumax3 code accordingly, taking into account
also the preferences of the user regarding the type of simulation that must be per-
formed. The MATLAB and C code used for writing the mumax3 code for each
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3.2 – INV/COPY gate

(a)
(b)

Figure 3.1. Position inside the INV/COPY gate (a) and inside the AND/OR
gate (b) of the regions used for assigning variable current density values in the
mumax3 simulations. Each regions is assigned a single current density value,
which is sampled by COMSOL in the central point of the corresponding region.
The number identifying each region is used in the mumax3 code for labelling it

and for associating it the correct current density value.

simulation are reported in appendix A, together with the parameter.txt files describ-
ing the structures that will be detailed in the following sections of this chapter.

3.2. INV/COPY gate
The first structure that will be considered is the NOT/COPY gate: due to its

higher complexity, in fact, this gate has a larger number of structural parameters
that can be tuned, and so a larger number of degrees of freedom in launching the
simulation. This, in turn, permits to obtain many kinds of different results, which
will allow a more in depth analysis of the effects that each structural parameter has
on the result of the simulation. The topic of the AND gate will be covered only
when these effects will become very clear.

3.2.1. Uniform current density
The first attempt made has been to deduct the approximative dimensions for

the structure of the gate from the figures provided in [5]. Measuring the width and
length of each track and comparing them with the length scale of 40 nm provided in
the article, the dimensions reported in table 3.2 were obtained. Those parameters
are all used for describing the structure of the gate inside the mumax3 model. From
now on, this structure will be referred to as NOT_Structure 1.

Track length is the length of the bottom and middle track; concerning the top
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Table 3.2. Dimensions for the NOT gate - NOT_Structure 1
Parameter Value
track length 256 nm
track width 20 nm

bottom junction width 30 nm
top junction width 25 nm

bottom junction height 20 nm
top junction height 20 nm

x-coordinate junctions start 113 nm
x-coordinate top track start 100 nm

offset top junction 0 nm
external boundary width 34 nm

thickness layer 0.4 nm

track, its starting point is located at x-coordinate top track start and its length, if
needed, must be computed as track length − x-coordinate top track start. Track
width controls the width of the three main tracks, while the horizontal and vertical
dimensions of the two junctions are controlled respectively by bottom(top) junction
width and bottom(top) junction height. The x-coordinate for the left wall of both
junctions is given by x-coordinate junctions start: in this way, both junctions can be
rigidly moved along the whole length of the gate. An additional degree of freedom
is given by offset top junction: this parameter controls the relative position of the
top junction with respect to the bottom junction, and it can be positive, negative
or null. So, actually, the x-coordinate of the left wall of the top junction is not just
x-coordinate junctions start, but x-coordinate junctions start + offset top junction.
Finally, a boundary all around each track is needed for confining the skyrmion and
avoiding its annihilation due to the skyrmion Hall effect: external boundary width
controls only the horizontal width of the boundary on the right side of the bottom
track and on the left side of the top track, that is, the outermost boundaries; all the
other boundaries are chosen so that they fill all the available space left between one
track and the other.

Figure 3.2 shows a sketch of the gate where the most important dimensions are
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reported.

Figure 3.2. Structural parameters of the INV/COPY gate.

The thickness used for this first simulation has been of 0.4 nm for both the track
and the platinum layer, and so of 0.8 nm for the boundaries (the thickness of the
boundaries is equal to the sum of the thickness of the track, plus the thickness of
the metal trace below it): this was the thickness value chosen in [5].

The first simulation was performed by imposing a uniform current density of
5 × 1010 A/m2 all across the gate, in order to verify its correct functioning in the
basic conditions. However, with these simulation parameters, a single skyrmion in
the bottom track travels through both junctions and goes out from the top track.
So, the behaviour of the gate is wrong. When tested with two skyrmions at once,
since the repulsive interaction between the two skyrmions is not enough, the top
skyrmion correctly goes out from the top track, while the bottom skyrmion reaches
the middle track, tries to go through the top junction, but since its dimension (which
has increased while crossing the bottom junction) is too large, it comes back and
goes out from the middle track.

In figure 3.3 and 3.4 are shown simulation snapshots taken in some key instants
of the skyrmions’ movement in the two cases. The shape of the NOT gate could be
recognized thanks to the tilting of the magnetization vector along the edges of the
structure; however, for facilitating the observation of the figures, the position of the
internal boundaries of the structure has been highlighted by means of a black line.

The fact that the bottom skyrmion, when alone, is able to reach the top track,
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(a) (b)

(c) (d)

Figure 3.3. mumax3 simulation of NOT_Structure 1 with a uniform current den-
sity of 5 × 1010 A/m2. A single skyrmion is able to cross both junctions and reach

the top output: the behaviour of the gate is wrong.

means that the width of the two junctions should be reduced in order to prevent
this from happening; at the same time, some other geometrical parameter should
be tuned in order to increase the skyrmion-skyrmion repulsion when two skyrmions
at once are present in the gate.

However, the aim of this chapter is to verify the behaviour of the gates with a
non-uniform current density. One can easily imagine that, by changing the distri-
bution of the parameter that makes the skyrmion move, also the behaviour of the
skyrmion, together with its timing, is likely to change. So, already knowing that
the first version of the NOT gate has a low probability of correctly working, the
same structure has been tested also with a non-uniform current density, in order to
evaluate from the start how much the behaviour of the gate can change by switching
to a realistic current distribution.
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(a) (b)

(c) (d)

Figure 3.4. mumax3 simulation of NOT_Structure 1 with a uniform current den-
sity of 5 × 1010 A/m2. The repulsive interaction between the two skyrmions is not
enough and the bottom skyrmion is able to enter the middle track: the behaviour

of the gate is wrong.

3.2.2. Realistic current distribution
The voltage value needed to have a current distribution centred around the

5 × 1010 A/m2 used in [5] is equal to 1 mV. In figure 3.5 is shown the current
distribution inside the gate as reported by COMSOL Multiphysics, when viewed
from the top (only cobalt is visible) and from the bottom (both the platinum traces
and the cobalt boundaries are visible).

By applying 1 mV across NOT_Structure 1, a non-uniform current density dis-
tribution is induced inside the platinum traces. However, as mentioned in section
3.1, the resistivity of cobalt is about one half with respect to the resistivity of plat-
inum: this means that the highest values of current density will be concentrated in
the cobalt layer, not in the platinum traces, where they would be more useful (the
conversion from charge current to spin current due to the SHE can take place only
in the platinum layer).

The main problem that figure 3.5 shows, however, is not related to the mean
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(a) (b)

Figure 3.5. Current density distribution estimated by COMSOL Multiphysics for
NOT_Structure 1 with a voltage of 1 mV applied, when looking from top (a) and
from bottom (b) of the gate. Due to the higher resistivity of platinum, the mean
value of the current distribution there is smaller with respect to what happens

inside cobalt, as shown in (b).

value of the current density inside the two materials, but to its peak value. The
maximum current density value inside the structure is in fact of 2.16 × 1012 A/m2,
located at the interface between cobalt and platinum. This value is a big problem
from an applicative point of view, since the gate is likely to start melting above
a value of 1 × 1012 A/m2. Moreover, it would be better to remain under a value
approximately equal to 20 × 1010 A/m2, to avoid that the skyrmion may be expelled
from the track due to a too high Magnus force which, from a certain point on, is no
more balanced by the repulsion forces from the track edges.

However, is interesting to notice where the highest values of current density
are concentrated. They are all located in the points where the voltage is applied:
the current in fact is forced to pass through those small areas (the cross-section of
platinum, for NOT_Structure 1, is of 20 nm × 0.4 nm), and only then it is free to
expand in all the rest of the structure, including cobalt, according to the different
resistivity values; the same applies to the ground contacts, at the other end of the
gate.

Verifying the value of the current density samples with the MATLAB script
becomes evident how these border effects, due only to how the voltage is applied,
influence the behaviour of the current all along the platinum traces. As figure 3.6
shows, the sampled values are highly variable along the trace, and assume the highest
values precisely at the two ends. So, using this kind of structure, the behaviour of the
skyrmion would be highly influenced by the border effects: as a result, the same gate
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Figure 3.6. MATLAB 3D plot of the current density values sampled inside the
platinum layer, considering NOT_Structure 1 with 1 mV applied. The blue points
are extracted from the bottom track, the red points from the two junctions, the

cyan points from the middle track and the green points from the top track.

would have a different behaviour when inserted inside a circuit composed of many
different gates in cascade, with a voltage difference applied only at the beginning
and at the end of the circuit.

A solution to this problem could be the insertion of two regions of proper length
at the two extremities of the gate, so as to allow the current to stabilize before
reaching the actual gate core and thus avoiding that the border effects may influence
the skyrmion motion. The length of these stabilization regions has been chosen equal
to 130 nm. The current density distribution in the new structure is reported in figure
3.7: looking at the figure is clear that now the border effects are confined far away
from the gate, so the current behaviour along the platinum traces is likely to be
much more regular. Not only: separating the contact region from the actual gate
structure, it is now possible, in principle, to tune the cross-section of the contacts
used for applying the voltage difference in order to reduce the maximum value of the
current density. Doing so, the peak value of 1.5 × 1012 A/m2 reported in figure 3.7
could be reduced down to 20 × 1010 A/m2 or even less, according to the preferences
and to the space available in the circuit: in this way any damage to the gate structure
would be prevented. So, even if it is well above the safe-operating threshold, the
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maximum current density value is not actually a problem, and can be ignored from
now on.

(a) (b)

Figure 3.7. Current density distribution estimated by COMSOL Multiphysics for
NOT_Structure 1 with a voltage of 1 mV applied and two stabilization regions
130 nm long (NOT_Structure 2), when looking from top (a) and from bottom (b)
of the gate. The stabilization regions on the left and on the right of the gate

prevent the border effects from reaching the gate core.

Figure 3.8. MATLAB 3D plot of the current density values sampled inside the
platinum layer, considering NOT_Structure 1 with 1 mV applied and two stabi-
lization regions 130 nm long (NOT_Structure 2). The blue points are extracted
from the bottom track, the red points from the two junctions, the cyan points
from the middle track and the green points from the top track. The pattern is now

much more regular, but the sampled values are too low.

The behaviour of the current density along the x direction is now much more
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regular, as figure 3.8 shows (the sampled values, assuming the reference coordinate
to be in the middle of the gate, are still from −128 nm to 128 nm). However, pushing
away the border effects, the values reached inside the traces are now too low. In
order to come back to a mean value of 5 × 1010 A/m2, is now necessary to apply
2.8 mV at the two ends of the gate.

The parameters describing the new gate structure are summed up in table 3.3.
This structure will be referred to as NOT_Structure 2: it is exactly equal to NOT_-
Structure 1, apart from the insertion of the two stabilization regions, whose length
is defined by the parameter size contact.

Table 3.3. Dimensions for the NOT gate - NOT_Structure 2
Parameter Value
size contact 130 nm
track length 256 nm
track width 20 nm

bottom junction width 30 nm
top junction width 25 nm

bottom junction height 20 nm
top junction height 20 nm

x-coordinate junctions start 113 nm
x-coordinate top track start 100 nm

offset top junction 0 nm
external boundary width 34 nm

thickness layer 0.4 nm

Since the structure of the gate core hasn’t changed, when excited with a uniform
current density the gate behaves exactly like reported in section 3.2.1, so there is no
need to repeat the simulations already discussed.

When excited with a realistic current density, the overall behaviour of the gate
doesn’t change: a single skyrmion goes out from the top track, and when two
skyrmions are present one goes out from the middle track and one from the top
track. This means that the current distribution obtained with the elongated struc-
ture is sufficiently uniform, so the behaviour of the skyrmion and its timing don’t
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change significantly. However, this doesn’t mean that, when switching from a uni-
form to a realistic current density, the behaviour always remains the same: exciting
NOT_Structure 1 with the current distribution shown in figure 3.6, in fact, when a
single skyrmion is present, it is the middle output the one that switches to 1, and
not the top output as it happened imposing a uniform current density. The current
distribution shown in figure 3.6 in fact is far from uniform, to a point that it is
enough to substantially change the behaviour of the skyrmion.

3.2.3. Final version
As already mentioned, the fact that the bottom skyrmion is able to reach the top

track when it is the only particle present inside the gate could mean that the width
of the two junctions must be reduced. This modification leads to NOT_Structure
3, whose parameters are summed up in table 3.4.

Table 3.4. Dimensions for the NOT gate - NOT_Structure 3
Parameter Value
size contact 130 nm
track length 256 nm
track width 20 nm

bottom junction width 27 nm
top junction width 25 nm

bottom junction height 20 nm
top junction height 20 nm

x-coordinate junctions start 113 nm
x-coordinate top track start 100 nm

offset top junction 0 nm
external boundary width 34 nm

thickness layer 0.8 nm

The parameter bottom junction width has been reduced from 30 nm to 27 nm.
Also the parameter thickness layer has changed: the reason is that the lattice con-
stant of cobalt is equal to 406.95 × 10−12 pm, while that of platinum is of 392.42 × 10−12

pm. A thickness of only 0.4 nm is technologically very difficult to be realized for
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both materials, since it implies the deposition of a single atomic layer. Doubling
the thickness the technological realization should become a bit easier; this change,
moreover, influences also the behaviour of the skyrmion, since it modifies the cur-
rent distribution inside the gate. The thickness of the layer has apparently an effect
also on the size of the skyrmion: in figure 3.9 is reported the comparison between
NOT_Structure 3 and the same structure, but with thickness layer equal to 0.4 nm
(NOT_Structure 5: its parameters .txt file is reported in appendix A). In both pic-
tures the skyrmion is crossing the bottom junction, so is possible to make a compar-
ison, in the two cases, between its size and the width of the bottom junction, equal
to 27 nm in both structures. It is clear that in the case of thickness layer = 0.4 nm
the skyrmion is smaller: as a result, looking at the remaining part of the simulation,
the same skyrmion is able to cross also the top junction and to go out from the top
track, making the gate fail the computation.

(a) (b)

Figure 3.9. Comparison between NOT_Structure 3 (a) and the same geometry
with thickness layer = 0.4 nm (b). In the latter case the skyrmion size is smaller:
this allows the skyrmion to enter the top junction and go out from the top out-
put, making the computation fail. So, the thickness of the layer influences the
skyrmion’s size and the computation results. The gate is viewed from the bottom

to better highlight the position of the boundaries.

However, the increase in the skyrmion size obtained by doubling thickness layer
is not enough, alone, to confine the bottom skyrmion in the bottom track when
the gate hosts two skyrmions at once. Simulating NOT_Structure 2 with thickness
layer= 0.8 nm (NOT_Structure 6: again, its parameters .txt file is reported in
appendix A), the increased size is enough to prevent the bottom skyrmion, when
alone, from entering the top 25 nm-wide junction, but as just mentioned the bottom
junction is still to wide, so that the repulsive interaction between the two skyrmions
is not enough to make the bottom skyrmion change direction: as a result, both the
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top and the middle output switch to 1 and the gate fails. This is why both thickness
layer and bottom junction width have been changed when defining NOT_Structure
3.

Figure 3.10 and figure 3.11 report respectively the current distribution inside
the structure when viewed from top and from bottom and the values of the samples
collected in the platinum layer.

(a) (b)

Figure 3.10. Current density distribution estimated by COMSOL Multiphysics
for NOT_Structure 3 with a voltage of 2.8 mV applied, when looking from top (a)

and from bottom (b) of the gate.

Figure 3.11. MATLAB 3D plot of the current density values sampled inside the
platinum layer, considering NOT_Structure 3 with 2.8 mV applied. The blue
points are extracted from the bottom track, the red points from the two junctions,
the cyan points from the middle track and the green points from the top track.
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3.2 – INV/COPY gate

This version of the gate is fully working, as demonstrated by the simulation
snapshots reported in figure 3.12 and 3.13. When a single skyrmion is present, after
crossing the bottom junction and trying to enter the top junction, it comes back and
goes out from the middle output. This happens because the increased thickness layer
has made the skyrmion size increase, thus preventing the skyrmion from entering
the top junction.

(a) (b)

(c) (d)

Figure 3.12. mumax3 simulation of NOT_Structure 3 with the current density
obtained applying 2.8 mV. A single skyrmion crosses the bottom junction and goes

out from the middle output: the behaviour of the gate is correct.

When two skyrmions are injected the repulsive interaction, assisted by the re-
duced bottom junction width, is enough to make the bottom skyrmion change di-
rection and go back inside the bottom track, while the top skyrmion can follow its
path along the top track. Not only: with these geometrical parameters, the timing
of the two skyrmions hasn’t a large difference, so the two outputs are almost syn-
chronized with each other, as shown in figure 3.13d. Moreover, in some structures
with different geometrical parameters, it might happen that the repulsive interaction
between the bottom and the top skyrmion at the bottom junction could make the
top skyrmion move backwards a bit, as long as the other skyrmion is nearby. This
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phenomena of course slows down the computation. However, this doesn’t happen
in this particular structure: the movement of the skyrmions is smooth and almost
perfectly synchronized. This means that there is no time wasted during the com-
putation, and so the gate could hardly become faster while maintaining the same
voltage applied. For all these reasons, this version of the INV/COPY gate will be
considered the final one.

(a) (b)

(c) (d)

Figure 3.13. mumax3 simulation of NOT_Structure 3 with the current density
obtained applying 2.8 mV. : the behaviour of the gate is correct, so NOT_-

Structure 3 is fully working.

Of course, NOT_Structure 3 is not the only geometry able to correctly work. For
example, another version could be the one characterized by the parameters reported
in table 3.5. However, in this case the timing difference between the two skyrmions
becomes much larger: when the top skyrmion arrives at the end of the top track,
the bottom skyrmion is still entering the bottom track. Still, the point that should
be underlined here is that, once a completely working version has been found, other
correct versions can be derived from it by slightly varying one or more parameters
at once.
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3.3 – AND/OR gate

Table 3.5. Dimensions for the NOT gate - NOT_Structure 4
Parameter Value
size contact 130 nm
track length 256 nm
track width 20 nm

bottom junction width 26 nm
top junction width 26 nm

bottom junction height 20 nm
top junction height 20 nm

x-coordinate junctions start 113 nm
x-coordinate top track start 100 nm

offset top junction −4 nm
external boundary width 34 nm

thickness layer 0.8 nm

3.3. AND/OR gate
With the experience acquired in tuning the parameters of the INV/COPY gate

in order to make everything work, finding the proper structure able to implement
the AND/OR functions becomes really straightforward, also thanks to the reduced
number of parameters that must be managed.

The methodology remains the same: first the solution proposed in [5] is tested
both with a uniform and with a realistic current density (this time the stabilization
regions 130 nm long will be included from the very beginning); the results of the
simulations will then be discussed in order to find a correct version with acceptable
performances by properly tuning thickness layer and some other parameters.

The material parameters used in the mumax3 simulations remain the ones re-
ported in table 3.1; also the parameters used in the COMSOL Multiphysics simula-
tions didn’t change from the ones discussed in section 3.1.
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3.3.1. Uniform current density
The dimensions deducted from the figures of [5] are reported in table 3.6. The

resulting structure will be referred to as H_Structure 1.

Table 3.6. Dimensions for the AND/OR gate - H_Structure 1

Parameter Value
size contact 130 nm
track length 256 nm
track width 20 nm

junction width 30 nm
junction height 20 nm

external boundary width 34 nm
thickness layer 0.4 nm

(a) (b)

(c) (d)

Figure 3.14. mumax3 simulation of H_Structure 1 with a uniform current density
of 5 × 1010 A/m2. A single skyrmion is able to cross the junction and reach the

top output: the behaviour of the gate is correct.
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3.3 – AND/OR gate

(a) (b)

(c) (d)

Figure 3.15. mumax3 simulation of H_Structure 1 with a uniform current density
of 5 × 1010 A/m2. The repulsive interaction between the two skyrmions at the
junction is not enough to confine the bottom skyrmion inside the bottom track:

the behaviour of the gate is wrong.

Imposing a uniform current density of 5 × 1010 A/m2 and simulating the be-
haviour of a single skyrmion in the bottom track, the gate works as expected and
the skyrmion exits from the top output. However, with two skyrmions at once the
gate fails: when the bottom skyrmion is crossing the junction, the repulsive interac-
tion is enough to make the top skyrmion shrink in size, but it is not strong enough to
confine the bottom skyrmion inside the bottom track. As a result, both skyrmions
go out from the top output.

Some simulation snapshots of the two conditions are shown in figure 3.14 and in
figure 3.15.

3.3.2. Realistic current distribution
When imposing a voltage of 2.8 mV across the gate described in table 3.6, the

current density distribution obtained is the one shown in figure 3.16. Like it hap-
pened with the INV/COPY gate, the maximum current density obtained (here equal
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to 2.7 × 1012 A/m2) is well above the critical threshold of 20 × 1010 A/m2; however,
thanks to the possibility of patterning the contacts, which are now separated from
the actual gate structure, this peak value is not a problem and it can be ignored.

Also in this case a length of 130 nm for the two stabilization regions is enough
for avoiding that the border effects can influence the skyrmion motion. This is
confirmed also by the pattern of the sampled current density values provided by the
MATLAB script: the plot is reported in figure 3.17.

(a) (b)

Figure 3.16. Current density distribution estimated by COMSOL Multiphysics
for H_Structure 1 with a voltage of 2.8 mV applied, when looking from top (a)
and from bottom (b) of the gate. The border effects are far from the core of the

gate.

As it happened for the INV/COPY gate, when switching from the uniform
current density to a realistic distribution, the overall behaviour of the gate doesn’t
change: a single skyrmion makes the top output switch to 1, but when two skyrmions
are present they both go out from the same track. This is the third and final
confirmation: the current density inside the gate is almost uniform, so also the
behaviour of the skyrmion doesn’t change too much.

3.3.3. Final version
As already discussed in section 3.2.3, both the thickness of the layers and the

width of the junctions can be used to control the size and so the motion of the
skyrmion. In this particular case, the repulsive interaction between the two skyrmions
is not strong enough, so it is necessary to make the crossing of the junction a bit
more difficult for the bottom skyrmion, in order to assist the repulsive interaction
between skyrmions with the repulsive force between the skyrmion and the track
boundaries. To do so, is possible either to increase the thickness of the two layers,
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3.3 – AND/OR gate

Figure 3.17. MATLAB 3D plot of the current density values sampled inside the
platinum layer, considering H_Structure 1 with 2.8 mV applied. Assuming θSH =
1, these values will be used as they are inside the mumax3 code. The blue values
are sampled inside the bottom track, the red values inside the junction and the
green values inside the top track. The pattern along the x direction, especially at
the two sides of the track, is quite uniform: this means that the border effects are

avoided.

or to reduce the junction width; it could happen, however, that both changes need
to be made, as it happened in the case of the INV/COPY gate.

Table 3.7. Dimensions for the AND/OR gate - H_Structure 2

Parameter Value
size contact 130 nm
track length 256 nm
track width 20 nm

junction width 30 nm
junction height 20 nm

external boundary width 34 nm
thickness layer 0.8 nm

The first attempt made was to double the parameter thickness layer, for the
reasons explained in section 3.2.3. This leads to the definition of H_Structure 2,
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described in table 3.7. The current distribution inside the structure is reported in
figure 3.18.

(a) (b)

Figure 3.18. Current density distribution estimated by COMSOL Multiphysics
for H_Structure 2 with a voltage of 2.8 mV applied, when looking from top (a)

and from bottom (b) of the gate.

(a) (b)

Figure 3.19. Comparison between H_Structure 2 (a) and the same geometry with
thickness layer = 0.4 nm (b) (H_Structure 1): in the latter case the skyrmion size
is smaller. The gate is viewed from the bottom to better highlight the position of

the boundaries.

In figure 3.19 is shown the effect of the increase of thickness layer : as it happened
for the INV/COPY gate, when the thickness is doubled also the skyrmion size
increases. Figure 3.20 shows that this time this size increase alone is enough to
correct the result of the computation: thanks to the increased repulsion from the
track boundaries, this time the repulsive interaction between the two skyrmions is
enough to confine the bottom skyrmion inside the bottom track. At the same time,
the behaviour of the gate with a single skyrmion inside the bottom track doesn’t
change: the top output still correctly switches to 1, since the bottom skyrmion is
still able to cross the junction and reach the top track. So, H_Structure 2 is fully
working. Also in this case the interaction between the two skyrmions at the junction
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3.3 – AND/OR gate

is not strong enough to make the top skyrmion move backwards inside the top track
as long as the bottom skyrmion is nearby. However, here the synchronization of
the two skyrmions is less accurate, and the time difference between the two arrival
moments is larger with respect to the one obtained with NOT_Structure 3. Still,
this version is fully working and will be considered the final one.

(a) (b)

(c) (d)

Figure 3.20. mumax3 simulation of H_Structure 2 with the current density ob-
tained by applying 2.8 mV. The repulsive interaction between the two skyrmions
at the junction is aided by the increased skyrmion-track edges repulsion, so that
the bottom skyrmion remains confined inside the bottom track: the behaviour of

the gate is correct, and H_Structure 2 is fully working.

As already discussed, this doesn’t mean that this is the only working structure.
Small modifications to one or more parameters at once can be made, finding many
different versions, all fully working. For example, one possibility could be to reduce
both the width and the height of the junction, apart from increasing the thickness
of the two layers. This is what was done for structure H_Structure 3, described in
table 3.8.
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Table 3.8. Dimensions for the AND/OR gate - H_Structure 3

Parameter Value
size contact 130 nm
track length 256 nm
track width 20 nm

junction width 25 nm
junction height 14 nm

external boundary width 34 nm
thickness layer 0.8 nm

3.4. Balancing of current density
Now that both the INV/COPY gate and the AND/OR gate have been studied

and verified, a final optimization should be made. Since the resistivity of cobalt
is about half with respect to the resistivity of platinum (ρCo = 5.6 × 10−8 Ω m and
ρPt = 9.8 × 10−8 Ω m), the highest concentrations of current density are found in the
cobalt layer, not in the platinum traces. This raises a problem of efficiency: only
the charge current flowing inside the platinum traces, in fact, is available for the
conversion into spin-current due to the SHE, and the skyrmion moves only thanks
to the spin-current. It could be put into movement also by the STT mechanism
(presented in section 2.1.3.1) by the charge current which diffuses inside the cobalt
layer, but it has been said in section 2.1.3.3 that the driving efficiency of the CPP
configuration is much higher with respect to that of the CIP: in [20] it has been
proven that, with β = 0.6 (while in our case β = 0.35), with J = 5 × 106 A/cm2 the
velocity induced by the STT mechanism is about ten times lower with respect to
the one due only to the SHE. For this reason, the STT contribution to the skyrmion
motion can be reasonably neglected. So, it is only a matter of efficiency: it could
be useful to find a structure where the vertical and horizontal dimensions are tuned
so that the current density inside platinum is closer to the one that can be found in
cobalt. This is the topic of this section. The structures that will be presented here,
however, won’t be studied via micromagnetic simulations, so their correct behaviour
is not guaranteed.
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To analyse the results provided by COMSOL Multiphysics, a new MATLAB
script has been developed. The code can be found in appendix A, together with the
parameters.txt files used for the current distribution analysis.

3.4.1. INV/COPY
3.4.1.1. Original version

The first structure to be analysed is NOT_Structure 3, which is the final version
found in section 3.2.3. The results of this analysis will serve as a reference for the
following optimizations.

The COMSOL Multiphysics simulation file has been slightly changed to allow an
automatic sampling in the whole structure. So, this time the sampling grid is placed
both in the middle of the platinum layer and in the middle of the cobalt layer; the
samples are still taken in correspondence of the middle point inside each sampling
cell, and the user is still able to vary the number of sampling cells by means of
the parameters.txt file. In this particular case there is no limitation on the number
of samples that can be taken, because these samples won’t be used for a mumax3

simulation: for this reason, the sampling resolution has been slightly increased.
Two sets of samples are taken for each part of the gate structure: one set comes

from the platinum layer, the other from the cobalt layer. For example, considering
the bottom track, 30 samples are taken along the x direction inside the platinum
layer and 30 samples inside the cobalt layer. So, considering the sample number #i
inside the array taken from the cobalt layer and the sample with the same index
inside the array taken from the platinum layer, the x and y coordinates will be the
same, while the only difference will be in the z coordinate and of course in the value
of the sampled current density. For this reason, is possible to plot both arrays on
a graph having as x coordinate the index of the sample (plots 3.21a, 3.21c, 3.21e,
3.21g and 3.21i), and is possible also to compute the difference between the two
arrays in order to plot the absolute difference, value by value, with respect to the
sample index (plots 3.21b, 3.21d, 3.21f, 3.21h and 3.21j).
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 3.21. Current density samples taken in the platinum and in the cobalt
layers inside the original version of the INV/COPY gate. Plots (a), (c), (e), (g)
and (i) show the sampled values (the red samples come from cobalt, the blue
samples from platinum), while plots (b), (d), (f), (h) and (j) show the absolute
difference computed value-by value. The average absolute difference is around

4.4 × 1010 A/m2.

It can be observed from the right column of plots, all showing the absolute
difference value-by-value, that the difference between the two current densities is
not very large. However, as already discussed, the more this value is reduced, the
more the efficiency of the structure will improve.

3.4.1.2. First version
The first attempt has been to increase the thickness of the platinum layer while

maintaining fixed the cobalt thickness, and at the same time to apply a scaling
factor greater than 1 to the dimensions characterizing the gate core. In the results
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shown in figure 3.22, the parameter thickness layer Pt has been increased up to
80 nm, while all the horizontal dimensions of the track have increased by a factor 6.
Doing so, the gate maintains the same proportions and becomes a bit larger.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 3.22. Current density samples taken in the platinum and in the cobalt
layers inside the first modified version of the INV/COPY gate. Plots (a), (c), (e),
(g) and (i) show the sampled values (the red samples come from cobalt, the blue
samples from platinum), while plots (b), (d), (f), (h) and (j) show the absolute
difference computed value-by value. The average absolute difference is around

8.8 × 109 A/m2.

Looking at the plots showing the absolute difference, is clear that the goal has
been achieved: now the largest difference between the two current densities is lower
than 9.35 × 109 A/m2. Of course, the reduced difference is due also to the reduced
absolute value of both current densities: looking at the left column of plots, is easy
to see that the current density inside the cobalt is still a bit less than twice the
current density present inside platinum, and this of course comes from the different
resistivity values. Still, if the aim is to make the two sets of samples as similar as
possible, this particular version would be the solution to the problem.
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3.4.1.3. Second version
A final attempt has been made by increasing a bit more the parameter thickness

layer Pt (up to 100 nm) and scaling by a different factor the geometry parameters
along the x direction with respect to the ones along the y direction. The aim, in fact,
was to make the gate wider, not only larger. For this reason, a scaling factor of 10
has been applied to the parameters track width, external boundary width, bottom/top
junction width and bottom/top junction height (it was chosen to maintain the same
proportions for the two junctions, since their dimensions are critical for the behaviour
of the gate). A scaling factor of only 4 has been applied instead to the parameters
size contact, track length, x-coordinate junctions start, x-coordinate top track start
and offset top junction. The results of the sampling are reported in figure 3.23

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)

Figure 3.23. Current density samples taken in the platinum and in the cobalt
layers inside the second modified version of the INV/COPY gate. Plots (a), (c),
(e), (g) and (i) show the sampled values (the red samples come from cobalt, the
blue samples from platinum), while plots (b), (d), (f), (h) and (j) show the absolute
difference computed value-by value. The average absolute difference is around

1 × 1010 A/m2.
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Also the results obtained from this version are very good, even if the maximum
absolute difference here is a bit higher with respect to the first modified version.
Still, also this structure could be a possible and valid solution to the problem.

3.4.2. AND/OR
The same optimization has been performed also on the AND/OR gate, following

exactly the same procedure. The same modifications to the structure have been
applied as well. The reason is that, if the INV/COPY and the AND/OR gate were
to be inserted inside the same system, it would be better to have the same thickness
for the two layers and the same width for the tracks: the behaviour of the skyrmion,
in fact, highly depends on these parameters, as it has been demonstrated previously
in this chapter. So, once that a version of the INV/COPY gate has been accepted,
it’s better to make the modifications to the AND/OR gate as similar as possible to
the ones already performed.

3.4.2.1. Original version
The version taken as reference for the AND/OR gate is H_Structure 2, presented

in section 3.3.3. First the original version is analysed, in order to have a basis for
the comparison with the modified versions.

Looking at the plots reported in figure 3.24, is possible to recognize values very
similar to the one already encountered in section 3.4.1.1, apart from the absolute
difference values, which are a bit smaller, but not in a significant way.

(a) (b)
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(c) (d)

(e) (f)

Figure 3.24. Current density samples taken in the platinum and in the cobalt
layers inside original version of the AND/OR gate. Plots (a), (c) and (e) show
the sampled values (the red samples come from cobalt, the blue samples from
platinum), while plots (b), (d) and (f) show the absolute difference computed

value-by value. The average absolute difference is around 4 × 1010 A/m2.

3.4.2.2. First version
In the first modified version, the parameter thickness layer Pt is increased up

to 80 nm and a scaling factor of 6 is applied to all the horizontal dimensions.
Doing so the absolute difference values are greatly decreased, as it happened for
the INV/COPY gate. Also in this case the mean absolute difference value is a
bit smaller than for the INV/COPY ; the maximum difference value is lower than
8.15 × 1010 A/m2, so this structure is fully satisfying the requests and can be con-
sidered a possible solution to the problem of balancing the current density values
inside the platinum and the cobalt layers.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25. Current density samples taken in the platinum and in the cobalt
layers inside the first modified version of the AND/OR gate. Plots (a), (c) and
(e) show the sampled values (the red samples come from cobalt, the blue samples
from platinum), while plots (b), (d) and (f) show the absolute difference computed

value-by value. The average absolute difference is around 7.5 × 109 A/m2.
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3.4.2.3. Second version
The second modification consists in increasing the parameter thickness layer Pt

from 80 nm to 100 nm and in modifying the scaling constant between the parameters
along the x and the y direction. In particular, external boundary width, track width,
hole height and hole width have been increased by a factor 10 with respect to the
original version, while size contact and track length have been scaled by only a factor
4.

Also in this case the results are good, but not as good as the ones obtained in the
previous section. The maximum difference, however, is equal to 1.09 × 1010 A/m2,
which is still good enough, if the aim is to make the current density values in the
platinum as similar as possible to the values in the cobalt. So, as it happened for
the INV/COPY gate, also this second modified version is a valid one.

(a) (b)

(c) (d)
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(e) (f)

Figure 3.26. Current density samples taken in the platinum and in the cobalt
layers inside the second modified version of the AND/OR gate. Plots (a), (c) and
(e) show the sampled values (the red samples come from cobalt, the blue samples
from platinum), while plots (b), (d) and (f) show the absolute difference computed

value-by value. The average absolute difference is around 9.5 × 109 A/m2.

86



4. Ripple carry adder

In section 2.2.2 the structure and the working principle of some basic logic gates
have been described, and in chapter 3 it has been proven their correct functioning
under realistic conditions. The second task of this thesis is to investigate if these
logic gates can be used to build a more complex computing architecture.

In [5] it has been said that these gates can build a conservative logic system: the
skyrmions that have propagated through one gate can in fact be collected at the
output and used again to trigger new computations in the following gates, without
the need of nucleating new skyrmions, which is an energetically expensive operation.
Then, what happens if these logic gates are put one after the other? Is it really
possible to reuse these skyrmions, without the need of nucleating new ones? And
what are the limits of a structure like this? The INV/COPY gate needs one control
skyrmion in input in order to perform its task: then how many skyrmions in total
must be provided in input to a computing architecture, in order to make it work?
Can these skyrmions be taken from the set of skyrmions that have already been
nucleated?

Finally, other topics that must be addressed are: how complex is to build a
computing architecture based on skyrmions? What are the main issues to be solved?
And once this architecture is ready and working, what are its performances?

The aim of this chapter is to address each of these questions and to present the
computing architecture that has been developed in response to them. Having already
the implementation of the Full Adder structure from [5], the architecture that has
been developed is a generic N-bit ripple carry adder, but in general any other kind
of computing architecture could be realized by following a similar methodology.
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4 – Ripple carry adder

4.1. First version
4.1.1. Half Adder - first version

The first step towards the creation of a skyrmionic ripple carry adder is to derive
the structure of a Half Adder (HA). This can be done simply by starting from the
structure of the Full Adder already provided in [5] and reported in figure 2.28b.
Deleting all the gates not strictly needed for the computation of the functions A⊕B

and A ·B, the structure that remains is shown in figure 4.1.
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A*(0)B(0)
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B(0)
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B(0)
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Figure 4.1. Basic scheme for the Half Adder. Each input must be provided twice,
three signals are not used and only two outputs (sum and carry-out) are available.

One line element is needed for synchronizing the two outputs.

This is a high level scheme, where the details of each logic gate are hidden inside
a simple rectangle showing the name of the gate. The link between each of the
high-level blocks that will be used from now and the gates presented in section 2.2.2
is shown in figure 4.2.

The structure of the HA reported in figure 4.1 is very simple: two INV/COPY
gates are used according to table 2.2 to provide as output respectively A(0)B(0)

and A(0)B(0). These two outputs are then combined by a JOIN gate. It must be
noticed that if both inputs were equal to 1, the JOIN gate would concatenate the
two skyrmions, thus providing two consecutive 1 on its output. This gate then is not
exactly coincident with the OR gate shown in 2.2.2. However, here the two inputs
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4.1 – First version

Figure 4.2. High-level representation (left) for each of the basic logic gates (right)
used in the ripple carry adder. From top to bottom: inverter, join and notch (signal

synchronizer) gate.

are mutually exclusive, so the JOIN gate can be used in place of the more complex
OR gate to provide the function A(0)⊕B(0) on its output.

The carry bit is produced at the output of the inverter INV4. To synchronize
this output with the sum bit it has been added a skewing line. The only function of
this element is to add a delay on the propagation of the skyrmion, simulating what
happens in an actual nanotrack.

This is the basic structure of a Half Adder. It is worth noticing that up to three
skyrmions are wasted: INV3 produces A(0) and A(0)B(0), while INV4 produces
B(0), and none of them is needed for producing the outputs. So, it might be a
good idea to try to collect them somewhere and maybe use them as ready-to-use
skyrmions when needed, instead of nucleating new ones. The main problem is that
the value of each of these signals is unknown: if our aim is to recycle the already
nucleated skyrmions, we should at least know if the signal they represent is a 1,
and so if a skyrmion is actually present in the nanotrack. The topic of recycling
the skyrmions that are no more needed for the computations will be discussed with
more detail in chapter 5.

Both A(0) and B(0) must be provided twice on the input of the HA; not only:
also the Full Adder (FA) shown in figure 2.28b needs each input to be doubled. The
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aim of this architectural analysis is trying to reduce the number of skyrmions to be
nucleated and at the same time to make each structure as symmetrical as possible,
in order to allow a higher modularity and to make easier the extension of the adder
to a generic N-bit adder: for this reason, the HA already shown has been modified
into the structure shown in figure 4.12. In this new scheme some gates have been
added, while the ones already present in figure 4.1 have maintained their label and
their function.

INV1 and INV2 have the responsibility of duplicating respectively A(0) and
B(0). Both of these two gates need an input fixed to 1 in order to work as
INV/COPY gate, and these two skyrmions are an overhead that must be paid
in order to allow the architecture to correctly work. All the inputs are synchronized
by means of one notch each: these skyrmions in fact are nucleated externally with
respect to the HA, which must be able to work even if each input takes a different
amount of time before being available for the propagation in the circuit.

Also the FA will need a copy of each of its inputs, that are A(i), B(i) and
COUT (i − 1). Concerning A(i) and B(i), their value is unknown and the only
possibility for reducing the number of skyrmions to be produced is to nucleate each
of them just once, and then duplicate them with one INV/COPY gate each. As
mentioned, the INV/COPY gate needs one input (CTRL) to be fixed to 1, so in
principle also the FA will need at least two additional skyrmions (three if we consider
also the input COUT (i − 1)). The most interesting point, however, is that each
INV/COPY gate provides also the complemented version of its unknown input: in
the case of the HA, INV1 and INV2 provide not only two copies of A(0) and B(0),
but also A(0) and B(0). Now, it must be remembered that the basic version of the
HA (shown in figure 4.1) had three signals that were not exploited: two of them
were A(0) and B(0). So, using these unused skyrmions for computing A(0) + A(0)

and B(0) + B(0), is possible to have two signals that are for sure equal to 1: these
signals can then be provided towards the next FA in order to allow the duplication
of its inputs A(i) and B(i). The computation of A(0) + A(0) and B(0) + B(0) is
done respectively by the gates JOIN1 and JOIN2, which provide two outputs equal
to 1. Also in this case the two inputs are mutually exclusive, so there is no way to
get two consecutive skyrmions on the output (which would produce an error).

The FA at the next stage will need also the input COUT (i− 1) to be doubled.
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Also in this case there is no problem: the third input that was not exploited in the
basic version of the HA was exactly equal to A(0)B(0), which is the value needed
by the FA. So, is enough to propagate this value towards the output of the HA and
to provide it in input to the FA.

Finally, to understand the placement of the line elements along the circuit, it
could be useful to look at figure 4.13. In this scheme, the red numbers indicate the
depth of the logic level for each element. The inputs are labelled with a 0; INV1 and
INV2, which receive them, are at level 1, and their outputs are at level 1 as well;
INV3 and INV4 are at level 2... and so on. The line elements are inserted either to
force the synchronization of all the outputs from the HA, or in all the cases in which
a gate receives two inputs belonging to different logic levels. For example, JOIN2
receives B(0) at level 1 and B(0) at level 2: INV4 will take a certain time to produce
the output B(0), so the signal B(0) needs to be delayed by an equal amount of time,
in order to be synchronized with the other input of gate JOIN2. The assumption
here is that the delay introduced by each line element is exactly coincident with the
amount of time required by each gate for the elaboration. However, this is not a
heavy hypothesis: from an applicative point of view this could be guaranteed simply
by tuning the length of each nanotrack.

In figure 4.12 three crosses appear: these structures are needed in the schematic
to signify the crossing of two nanotracks. This topic will be discussed more in detail
in section 4.1.2. However, the important point to underline here is that in this work
it has been assumed that these crosses do not introduce any delay on the signal
propagation. If it was required to leave this hypothesis, a new design of the HA
should be made, because a new logic level should be assigned to these crosses too.

So, the structure obtained for the HA allows for sure the computation of a two-
bit sum with an overhead of two skyrmions: there are no skyrmions wasted and the
FA after it (FA(1)) doesn’t need any input skyrmion apart the ones encoding the
value of A(1) and B(1).

4.1.2. Cross
In a traditional PCB (printed circuit board) the crossing of two lines would

be solved simply by introducing two vias and moving a small piece of one of the
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two traces into another layer. With skyrmions this topic is a bit more difficult to
solve, and to date no solution has appeared yet in literature. The major problem,
with skyrmions, is in the need of maintaining the contact between the HM and
the FM layers, because otherwise the DM interaction, responsible for stabilizing
the skyrmion and actively involved in its nucleation mechanism, would vanish. It
becomes quite difficult, then, to think how a structure equivalent to the usual via
used in PCBs would be realized without renouncing to the presence of the DMI. For
sure it becomes much easier to find a solution to the problem that remains inside a
2D plane, instead of a structure which exploits a 3D space.

This said, probably the most promising possibility would be to exploit the voltage
controlled PMA, already described in section 2.1.2.1 and exploited in the application
described in section 2.2.3. In this way, by properly patterning some nanocontacts,
needed for applying a voltage control, in correspondence of the input to each path,
it would be possible to create a potential barrier that doesn’t allow the skyrmions
to enter the path they should avoid. Doing so, it would be possible to actively guide
each particle along the path it must follow. The problem of course comes from the
need of actively controlling at least one voltage signal per each cross structure.

Another possibility, that however has still to be verified with micromagnetic
simulations, could be to adopt the structure shown in figure 4.3. Like mentioned
in section 2.2.2, each skyrmion driven via SHE by a current flowing in the HM
layer below the nanotrack is subject to two force components: the former drives the
skyrmion along the nanotrack (+y direction in figure 2.26), while the latter is the
Magnus force that moves the skyrmion towards left with respect to the direction
of the current flow (−x direction in figure 2.26). As a consequence, like already
discussed, each skyrmion will follow its nanotrack as long as it doesn’t have any
other choice, but it will move towards left as soon as it has the possibility to do so.

In 4.3a the skyrmion coming from input A arrives at the central junction and,
due to the skyrmion Hall effect, is driven towards the rightmost track for output A′.
The skyrmion coming from input B, in figure 4.3b, is again driven towards the B′

output due to the skyrmion Hall effect. Finally, when both inputs are equal to 1, like
in figure 4.3c, the two skyrmions will be subject to a repulsive skyrmion-skyrmion
interaction that will drive skyrmion A towards input B and skyrmion B towards the
leftmost nanotrack for output A′. So, the two skyrmions are exchanged. However,
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(a) (b) (c)

Figure 4.3. Basic scheme for a possible solution to the crossing of two nanotracks.
When only one skyrmion is present, it is driven towards the correct output by the
skyrmion Hall effect. When two skyrmions are present their skyrmion-skyrmion
repulsion is exploited. This structure is only a suggestion, and it could be necessary

to tune some parameters in order to make it work.

this is not a problem: what is essential is that if(A = 1 and B = 1) =⇒ A′ =

1 and B′ = 1.
Since this structure has not yet been verified with the help of micromagnetic

simulations, it is not clear what could happen in terms of current in the central
junction. Moreover, it could happen that with this exact geometry some skyrmions
may not be able to propagate until the output, so it could be necessary to tune
some parameters like the angles, the exact dimension and position of each nanotrack,
besides their shape and their curves. However, the key principle behind the structure
should remain approximately the same.

In any case, it should be possible to allow two tracks to cross each other without
the need of any multilayer structure, like the one used for traditional vias: as a
result, it can be assumed that two tracks can cross each other and that a solution
to the problem should be available.

4.1.3. Full Adder - first version
The structure of the FA has already been shown in 2.28b. However, that version

needs each input to be provided twice and is not able to generate any logic 1 that
could be provided by FA(i) to FA(i+1) to allow the duplication of its inputs. So,
that structure has been modified like shown in figure 4.14.

Focusing on FA(1), INV1 and INV2 receive the two signals equal to 1 generated
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by the HA together with the inputs A(1) and B(1). In this way, the duplication
of the input signals is done without any additional cost, like already discussed in
section 4.1.1; the input CIN(1), moreover, is provided twice directly by the HA
itself. Concerning the outputs from the FA, JOIN1 and JOIN3 are dedicated to the
production of two signals equal to 1, so that they can be provided to the following
FA in the chain and again allow the duplication of its inputs. Also in this case
the duplication of the output carry can be obtained without any additional cost:
it is enough to use the bottom output from INV6 and combine it in OR with the
bottom output of INV3 by using the gate JOIN5 (also in this case the two inputs
to JOIN5, [A(i) ⊕ B(i)]CIN(i) and A(i)B(i), are mutually exclusive); both these
signals were not exploited in the starting version of the FA shown in 2.28b. This is a
very good result: it means that is possible to build a generic N-bit ripple carry adder
by concatenating self-sustaining full adder structures. The only cost that must be
paid is of two additional skyrmions to be provided on the input of the half adder at
the head of the chain.

It is worth noticing that in the case of the FA one signal remains not exploited:
it is the top output of INV6, equal to CIN(i). It won’t be used in this design of
the adder, but being equal to the carry input to each FA it could be exploited to
perform some more advanced elaborations.

Here both lines and notches have been used for synchronizing the data propaga-
tion. The technique used for deciding where to introduce them was the same as the
one adopted in 4.1.1, and the logic depth of each element is underlined by the red
numbers that appear in figure 4.14. The aim here was to make the HA the critical
path of the whole circuit: for this reason a row of notches has been inserted after
three levels of logic, composed by the cascade of two inverters and one join gate. In
all the cases in which the need was to synchronize either the outputs from the FA
or two inputs to the same gate, some lines have been used instead.

4.1.4. Adder - first version
Once the structure of both the HA and the FAs has been defined, is enough

to concatenate them to build the structure of the ripple carry adder. Some more
crosses are needed at the interface between the different elements, like shown in
figure 4.4.
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Figure 4.4. Sketch of the interfaces among a HA and two consecutive FAs, showing
all the cross elements needed for connecting each output with the corresponding

input.

In skyrmionic devices, like already mentioned, the synchronization in the propa-
gation of the different skyrmions is of vital importance. In a ripple carry adder each
element needs the output carry from the previous stage, in order to obtain the cor-
rect result: this means that each FA has to wait the propagation of the output-carry
skyrmion from the previous stage, before receiving its inputs and going on with the
computation. The key difference with the traditional combinational electric circuits
is that the signals do not maintain their value until it is no more needed, but they
are transformed into a particle that propagates along the circuit: if the timing of
this particle is wrong, then the result of the computation will be wrong as well.

For this reason a skewing structure, shown in figure 4.5, is needed at the input of
the adder. Each input bit A(i), B(i) is delayed with respect to the bits A(i−1), B(i−
1) by an amount of clock cycles equal to the depth of the pipeline of the previous
stage. For example, the HA has only one pipeline stage on its inputs (notches from
01 to 04 in figure 4.12): then the skewing structure at the input of FA(1) is made by
only one notch; FA(1) has two rows of notches inside its structure, so the skewing
network before FA(2) will be made by 1+ 2 = 3 notches... and so on. The law that
gives the number of notches at the input of each element is Notch(i) = 1+ 2(i− 1),
where 1 ≤ i ≤ N − 1 is the index of the bit, N is the adder’s parallelism, and
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Notch(0) = 0.
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Figure 4.5. Skewing network needed at the input of the first version of the ripple
carry adder in order to synchronize the input data together with the output-carry

chain.

4.1.5. VHDL description
The behaviour of the adder has been simulated with ModelSim. To do so, a

VHDL description of its components is needed. This description must be a bridge
between what happens in an actual physical device and the needs of simplification
and abstraction of the electronic designs: that is, it must describe the physical
movement of the skyrmions inside the nanotrack, while providing at the same time
a simplified interface towards the higher abstraction level, allowing to ignore all the
physical details of each gate.

The VHDL model of the elements INV/COPY, join, line and notch was already
provided by a previous work. Here this model will be described in broad terms, in
order to give an idea about the main approximations and simplifications done in
simulating the movement of the skyrmions inside each structure. The values chosen
for each physical parameter used in the code are reported in table 4.1: some of them
have been extracted from literature and should be reasonable, while others come
directly from the micromagnetic simulations already discussed. Of course, these are
mean and approximate values, especially the speed values, since all the simulations
considered in chapter 3 use a variable current-density distribution.

The VHDL code for each of these gates can be found in appendix B.
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Table 4.1. Values chosen for the physical constants
CONSTANT NAME VALUE

Horizontal speed 150 m/s
Vertical speed 40 m/s

Depinning current density 1.24 × 1010 A/m2

Notch depinning current density 2 × 1011 A/m2

Horizontal speed with notch depinning current density 484 m/s
Minimum skyrmion-skyrmion distance 22 nm

Skyrmion diameter 18 nm
Low current density value 5 × 1010 A/m2

High current density value 2 × 1011 A/m2

4.1.5.1. Not gate
A sketch showing the structure of the INV/COPY gate, together with the co-

ordinates (measured in nanometres) of the most relevant points for understanding
its model, is shown in figure 4.6. These coordinates are the ones describing NOT_-
Structure 3, which was presented in section 3.2.3.

Figure 4.6. Coordinates of the most relevant points inside the structure of the
INV/COPY gate. Each value is measured in nanometres. The red coordinates are

referred to an horizontal axis, the blue coordinates to a vertical axis.

Every time that a skyrmion is detected on one of the two inputs, a variable
counting the number of skyrmions present inside the gate is incremented and the
corresponding coordinates are inserted inside an array: if the skyrmion was detected
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on the bottom track it is assigned the coordinates (0.0, 10.0), whereas if it was de-
tected on the middle track it is assigned the coordinates (0.0, 50.0). Each simulation
step lasts 10 ps: this means that every 10 ps the coordinates of each skyrmion inside
the gate are updated. This is done by a function which receives the old coordinates,
the value of the current, the elapsed time and the index of the skyrmion. The new
coordinates are computed only if the value of the current applied is higher than the
value of the depinning current. The x coordinate is computed by multiplying the
velocity along x by the elapsed time and adding the old horizontal coordinate, while
the y coordinate is found by adding the old vertical coordinate to the velocity along
y multiplied by the elapsed time.

The value of the x and of the y velocity are chosen according to the old position
of the skyrmion:

• If its coordinates (x,y) were 113 < x < 140 and y < 20, it may be about to
change track. This, however, can happen only if there are no other skyrmions
in position 113 < x < 140 and 40 < y < 60, that is, if there are no skyrmions
that are already occupying the middle nanotrack nearby the junction region:
if this is the case, then, the skyrmion is allowed to change track and its velocity
is purely vertical, otherwise the velocity will be purely horizontal.

• If the skyrmion is in the middle track, so 40 < y < 60, and it has 113 < x <

138, it will for sure change track since no repulsive effect is possible there, and
again its velocity is purely vertical.

• If the skyrmion is somewhere in the top junction, again its velocity will be
purely vertical.

• If it is inside the bottom junction with 33 < y < 50, it means that it is
performing a curve towards the middle track and it has both a horizontal and
a vertical velocity component. If instead it is inside the bottom junction with
20 < y < 33, the velocity is purely vertical.

• In all the other cases, the velocity is purely horizontal.

A skyrmion is emitted every time that the x coordinate computed is larger than
256: then, according to the value of the y coordinate, it is decided whether the top,
the middle or the bottom output has to be set to 1 for 1 ns, which is the width of
each pulse identifying a skyrmion.

98



4.1 – First version

From this overview it’s clear that the complex phenomena involved in the interac-
tion between the two skyrmions inside the junction area are not taken into account.
Actually, all these phenomena, which have been partially detailed in chapter 3, are
often too complex even to be forecasted, and only a micromagnetic simulation can
reveal, according to the structural parameters of the gate, what is likely to happen
inside that region.

4.1.5.2. Line element
The model for the line element is very simple with respect to the INV/COPY

gate. The simulation step is again of 10 ps. Every time a skyrmion is detected at
the input of the line it is assigned the coordinates (0.0, 0.0); these coordinates are
updated every 10 ps only if the current is higher than the depinning current value.
If this is the case, the new x coordinate is computed as the old x coordinate, plus
the elapsed time multiplied by the horizontal speed, while the y coordinate remains
always equal to zero. So, in this case any transverse movement of the skyrmion in-
side the nanotrack is completely ignored (actually, the nanotrack width is not even
considered as a parameter). Again, a skyrmion is emitted if the computed x coor-
dinate is larger than the track length. It could happen that two or more skyrmions
may verify this condition at the same time: if this is the case, the simulation step
must be reduced. The width of the pulse at the output, which signifies the presence
of a skyrmion, is equal to 10 ps.

4.1.5.3. Join gate
The join gate is quite different from a simple line element, but its VHDL de-

scription is instead quite the same. Here the two inputs are considered as point-like
and coincident, that is, a skyrmion can enter from two different inputs, but both
these inputs are considered exactly like the single input of a line element. This
means that the variable counting the number of skyrmions inside the gate can be
incremented in two different conditions, but the coordinates assigned to the new
detected skyrmions are always equal to (0.0, 0.0). Moreover, a possible skyrmion-
skyrmion collision at the junction is not taken into account. From this point on,
the description of the gate is exactly the same as for the line: the simulation step
is of 10 ps, the y coordinate is always considered equal to 0 (again the track width
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is not taken into account), and the x coordinate is computed in the same way. Also
in this case a skyrmion is emitted when its x coordinate becomes larger than the
track length, and it may happen that two or more skyrmions verify this condition
simultaneously: again, the solution to this problem is to reduce the simulation step.
Also here the output pulse width is equal to 10 ps.

4.1.5.4. Notch
Here two depinning current values must be taken into account: the first one is

the usual depinning current value, necessary to put the skyrmion into movement; the
second value is the current needed for the skyrmion to go through the notch. These
two current values correspond to two different values for the horizontal velocity
(also in this case the track width and the transversal movements are not taken into
account, since the y coordinate is always maintained fixed to 0.0).

The behaviour of the skyrmion then depends on the value of the current applied:
if it is below the traditional depinning current no movement is allowed at all, as it
happened in all the previous gates.

If the current applied is equal or higher than the current value needed for making
the skyrmion go through the notch, the signal synchronizer becomes a simple delay
line and its model is exactly the same used for the line element: if this is the case,
in order to compute the new x position, the highest velocity value must be used.

If the current applied is intermediate between the two depinning current values,
a more complex behaviour is described. First of all, is necessary to understand if
the skyrmion whose coordinates are being updated (the simulation step is again
of 10 ps) has already crossed the notch: if this is the case, is enough to compute
its new x coordinate like always (this time using the lowest velocity value). If
instead it still has to go through the notch (and so the distance old_xCoordinate−
notch_xCoordinate ≤ 0), first is necessary to understand if it is the only skyrmion
that is moving before the notch, or if there are any others. The number of skyrmions
that are present between the skyrmion currently considered and the notch is stored
in the variable blocking_skyrmions, which can also be equal to 0. The minimum
distance from the notch that is allowed for the considered skyrmion, as a function
of the number of blocking skyrmions, is computed like the diameter of a skyrmion
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plus the minimum skyrmion-skyrmion distance, multiplied by blocking_skyrmions:

minimum_distance = blocking_skyrmions · (SKY RMION_DIAMETER+

+SK_SK_MIN_DISTANCE)

(4.1)

If the skyrmion’s distance from the notch (notch_distance = notch_xCoordinate−
old_xCoordinate) is larger than minimum_distance by at least
∆_distance = horizontalV elocity·elapsedT ime (so if notch_distance−∆_distance >

minimum_distance), then the new x coordinate can again be computed like al-
ways, adding to the old x coordinate the value of ∆_distance. On the contrary, if
the skyrmion is not allowed to complete its movement due to the other blocking_-
skyrmions skyrmions packed right before the notch (and so if notch_distance −
∆_distance ≤ minimum_distance), then the skyrmion must be placed right be-
fore the last of the packed skyrmions, that is, the new x coordinate must be
equal to notch_xCoordinate − minimum_distance. It is worth noticing that, if
blocking_skyrmions = 0, the new x coordinate of the skyrmion will be coinci-
dent with the notch position: this means that the notch is simplified as a point-like
structure.

The distances taken into account in this section are represented in figure 4.7

Figure 4.7. Sketch representing the definition of the distances used for describing
the behaviour of the notch element.
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As usual, a skyrmion is emitted whenever the x coordinate becomes larger than
the track length; if this condition is verified by more than one skyrmion at once the
simulation step must be reduced. The width of the output pulse is of 10 ps.

4.1.5.5. Cross
The model used for the cross elements is very basic and high-level: it consists in

two simple assignments A′ = A and B′ = B, where A and B are the two input signals
and A′ and B′ are the corresponding output signals. In this way is has been possible
to include inside the structure of the adder an element which behaves like the cross
described so far. When a more stable and verified structure will be available, its
VHDL description can be used to substitute this very basic model without changing
anything else, as long as the interface (the port map) remains the same.

4.1.6. Simulation of adder
4.1.6.1. Tuning of the delay elements

As already stated several times, the timing of the skyrmions inside the structures
considered in this thesis is of vital importance: if one skyrmion is just a bit faster
than another, the whole behaviour of the resulting adder may be compromised. In
this particular version of the adder, the main feature is the use of the line elements,
that are used as delay lines needed for the skyrmion synchronization. By looking at
figures 4.12 and 4.14 it can be noticed that the delay lines work in parallel either to
a NOT gate, or to a join gate. For sure the NOT gate will be slower with respect
to the join gate: for this reason, the length of both the line element and of the join
element must be tuned in order to make them introduce a delay on the skyrmion
propagation as similar as possible to the one introduced by the NOT gate.

The delay introduced by the NOT gate changes according to the input: if one
skyrmion is injected in the bottom input, it will come out from the middle output
and the resulting delay is of 2.346 ns; if a single skyrmion enters the top input, it
comes out from the top output and the delay is of 2.449 ns; finally, if both skyrmions
are provided, they will come out from the top and from the bottom output, with a
delay of about 2.974 ns (measured from the rising edge of the inputs to half width of
the high-level on the slowest output pulse). A good guess for the delay that the join
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and the line elements must introduce could be of 2.5 ns: knowing that the horizontal
speed is of 150 m/s, this means that both elements must have a length of 375 nm.
Using these values, the behaviour of both the HA and of the FA has been verified
correct with all the possible input combinations.

4.1.6.2. Simulation results
The critical path for this version of the adder is given by the cascade of two

inverters and one join gate inside the HA structure. This is why is enough to
simulate the HA and to observe the obtained waveform in order to decide the period
needed for the clock cycle.

Figure 4.8. ModelSim snapshot showing the simulation of the first HA ver-
sion. The delay highlighted between the two cursors is the time needed for the

propagation through two inverters and one join gate.

From figure 4.8 it can be noticed that, once the input skyrmions have overcome
the notches 01-04, they need a bit more than 8 ns in order to reach the output
(this value of course depends on the value of the physical constants chosen for the
simulation). Then a reasonable value for the clock cycle could be of 10 ns, where
the high current density needed for the signal synchronization is applied for 150 ps.
This leads to an operating frequency of 100 MHz.

Using this value for the clock period, both the HA and the FA structure have
been verified again for all the possible combinations of the inputs. A 16-bits wide
ripple carry adder has been verified in the conditions 0+0, 65535+65535, 0+65535

and with 25 couples of random inputs. The latency is about 318 ns long.
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4.2. Increase of performance
The version of the N-bit adder presented until now has two main problems:

first of all, the use of the line elements. Due to their presence, the design and the
verification of both HA and FA must proceed by trials and errors: every time that
a physical constant, that could be even the size of a single inverter, is changed,
also the delay of the inverters and so the length of the lines required for the data
synchronization is likely to change. Moreover, the first version of both HA and FA
can be made faster by reducing the critical path and making it equal to the delay
of just a single inverter. To do so, is enough to eliminate all the line elements and
add in their place some rows of notches.

4.2.1. Half Adder - second version
The new version of the HA is presented in figure 4.15. While the basic structure

has remained the same, all the lines have disappeared and some rows of notches
have appeared to substitute them. To verify the correctness of the placement of the
notches, as usual, some red numbers showing the logic depth of each element have
been inserted in the schematic. The notches from 11 to 16 are not necessary for
the data synchronization, but are needed for breaking the critical path; the notches
from 21 to 28 are needed also for assuring the data synchronization.

4.2.2. Full Adder - second version
Also the basic structure of the FA has remained the same, like 4.16 shows. Here

the notches 51-58 are only needed for breaking the critical path, while all the other
notches are needed also for the data synchronization.

It is worth noticing that here the length of the join elements is not critical. There
is only one join element which works in parallel with a NOT gate, and it is the join
4 shown in figure 4.16; however, its output arrives directly on a row of notches,
which assure the data synchronization, whatever the length of the line. In all the
other cases, more join elements work in parallel occupying an entire clock cycle: if
their length is reduced, their outputs will arrive sooner at the row of notches placed
on their outputs, without any other consequence. For this reason, in the following
simulations the length of the join elements’ line has been reduced down to 256 nm,
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4.2 – Increase of performance

to be sure that the critical path is associated to the NOT gate.

4.2.3. Adder - second version
The only difference in the structure of the adder itself is in the complexity of the

skewing network, which here is slightly increased. The HA now has three levels of
pipeline, while each FA introduces six levels. So, the law describing the number of
notches required for skewing each bit 1 ≤ i ≤ N − 1 is Notch(i) = 3+6(i− 1), with
Notch(0) = 0. The new structure is shown in figure 4.9.

FA(7) FA(6) FA(5) FA(4) FA(3) FA(2) FA(1) HA

A(1) 
B(1)

A(2) 
B(2)

A(3) 
B(3)

A(4) 
B(4)

A(5) 
B(5)

A(6) 
B(6)

A(7)
B(7)

A(0) 
B(0)

39

33

27

21

15

9

3

Figure 4.9. Skewing network needed at the input of the second version of the
ripple carry adder.

4.2.4. Simulation of adder v2
This time the critical path inside the entire structure of the generic N-bit adder

is defined by the delay of a single inverter, or of a single join gate, according to
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4 – Ripple carry adder

which is the largest between the two. With a length of 256 nm for the join elements,
as mentioned, the NOT gate should be the slowest between the two. In order to
decide the length of the clock period, is enough to simulate the HA and concentrate
the attention on the behaviour, let’s say, of INV1 and of JOIN1 (reference in figure
4.15).

Figure 4.10. ModelSim snapshot showing the simulation of the second version
of the HA. Also the input and output waveforms of the INV1 and JOIN1 gates
appear. The delay of INV1 is larger than the delay of JOIN1, and so the inverters

represent the critical path of the second version of the ripple carry adder.

The simulation snapshot reported in figure 4.10 shows that INV1 has a delay of
about 2.99 ns, while JOIN1 of only 1.73 ns: thus the critical path is defined by the
delay of the inverter, as desired. The chosen clock period is equal to 3.8 ns, where the
time length of the current spike is again of 150 ps: the operating frequency then is
equal to 263.1 MHz, almost three times the frequency achieved with the first version
of the adder.

The 16-bits adder has been verified in the 0 + 0, 65535 + 65535 and 0 + 65535

cases and with 25 couples of random inputs. The latency is equal to 355.6 ns.

4.3. Pipelining
Having now a version with enhanced performances, it makes sense to try to verify

the behaviour of the adder when providing new data at each clock cycle. In the pre-
vious simulations, in fact, the interval adopted between each set of data was equal
to the latency of the adder, and so the fact that the sum bits came out at different
instants of time wasn’t such a big deal. The skyrmions representing the sum output
are in fact provided at different instants of time, just like the carry-out bit, that has
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4.3 – Pipelining

to be propagated all along the chain: if the aim is to have a new result every clock
cycle, then it is necessary to synchronize all these sum bits with one another. This
is done by an additional skewing structure at the output of the adder, like shown
in figure 4.11. Here the delay between the bit S(i) and the bit S(i− 1) is equal to
the number of pipeline stages inside FA(i): if FA(i) has six pipeline stages, like in
this case, then the sum bit S(i− 1) must be delayed by six clock cycles, and so six
notches are needed at the output of FA(i − 1). So, the law that gives the number
of output notches is Notch(i) = 6(N − 1 − i) for 0 ≤ i ≤ N − 1, where N is the
adder parallelism.

Since the structure of the adder hasn’t changed, the clock period is again of
3.8 ns. After a latency of 357.7 ns, the adder is able to provide a new result every
clock period. Its behaviour has been verified in the 0+0, 65535+65535 and 0+65535

cases and with 60 couples of random inputs.
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FA(7) FA(6) FA(5) FA(4) FA(3) FA(2) FA(1) HA

A(1) 
B(1)

A(2) 
B(2)

A(3) 
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Figure 4.11. Sketch showing the skewing network both on the input and on the
output of the second version of the ripple carry adder.
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5. Logic in memory - first
architecture

The final aim of this thesis has been to use the logic gates from [5] to build a
logic-in-memory (LiM) architecture.

The first attempt that was made consists in a direct mapping from a CMOS
architecture that had already appeared in literature: in [34] was in fact proposed a
model for LiM cells that allows a high degree of flexibility and adaptability to a wide
range of different algorithms. In figure 5.1 is shown the high-level organization of the
original cells, which from now on will be used as a model: as it can be observed from
the figure, each cell is able to communicate with the surrounding ones, exchanging
both results and carry bits.

The simplest among the depicted cells is cell 00, that is, the cell at the intersection
between the first row and the leftmost column. The bold red numbers that appear
in the picture label the multiplexers needed for directing the data flow. Cell 00 is
able to elaborate the stored bit together with a value coming from the external world
and provided by the input EXT_IN ; starting from these data, both the configurable
logic and the full adder perform their computations and provide a result. Multiplexer
2 selects the result of interest, which may be transmitted towards the other cells
or could be needed to update the value stored in the cell, while the other result is
discarded. The value stored in the memory cell can be updated not only with the
result produced by the cell itself, but also with a value coming from the bit line,
thanks to multiplexer 1: this is the method used to initialized the memory at the
very beginning of the elaboration.

Either the value stored in the cell or the result produced by the logic blocks
can be sent to the cell 10, passing through multiplexer 3; the output of multiplexer
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Figure 5.1. Structure of the memory array proposed in [34]: each cell contains
a FA and a configurable logic block, and is able to exchange the results with the
cells nearby, according to the needs of the algorithm to be implemented. Figure

adapted from [34].

3 is one of the two possible choices available for the second operand of cell 10.
Differently from cell 00, in fact, inside this cell, slightly more complex, is present
also multiplexer 5, which allows to choose between two values for the second operand
of the elaboration, while the first operand remains the stored value, as before. The
function of multiplexers 4, 6 and 7 hasn’t changed with respect to the corresponding
multiplexers inside cell 00.

Multiplexer 9 inside cell 01 has three inputs: the second operand here can be
either the result of cell 00, or the result of cell 10, or the external input. The input
carry to the full adder, moreover, comes from cell 00; since the structure of all the
other cells inside row 0 will be equal to the one of cell 01, this additional input
allows to configure the whole row as a ripple-carry adder, where the carry chain is
established by the connections between the carry-out of cell (0,i) (row 0, column i)
and the carry-in of cell (0,i+1). This possibility, as discussed more in detail in [34],
ensures a great flexibility of the structure and even allows to use the memory array
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5 – Logic in memory - first architecture

as a multiplier.
Cell 11 is the most complex out of the four, and it’s the one that is used in the

majority of the memory array: while cell 01 is used through the whole row 0 and
cell 10 through the whole column 0, the structure of all the remaining cells, apart
from cell 00 which has its own organization, will copy the one of cell 11. In this cell,
multiplexer 14 has now four inputs: the second operand can be either the result of
cell 01, or of cell 10, or of cell 20 (which lays outside the picture), or the external
input. Also the input carry comes from a multiplexer (13), and can be either the
output carry of cell 10, or the output carry of cell 01: this allows the memory array
to work as an array multiplier, as detailed in [34].

From this brief explanation it should be clear now that is enough to convert into
skyrmion-based cells only the cells 00, 10, 01 and 11, because the remaining cells
inside the array are all equal to one or the other.

Since all the memory cells are connected to one another and exchange their
results, is clear also that their functioning must be delayed in time: if cell 10 needs
the result of cell 00 in order to perform its computations, it cannot for sure start
the elaboration together with cell 00. This means that the memory array must be
controlled by a Finite State Machine (FSM) that launches the elaboration of cell 00,
waits until its results are available, and only then enables cell 10 to start its own
computations. Of course, as soon as cell 00 has finished the first elaboration, it can
receive new data in order to go on and produce new results. This sequence applies
throughout the whole memory array: all the cells connected to cell 10 will have to
wait before receiving their own start, and so the cells after them.

Figure 5.2 shows the time requirements for each of the cells. Cell 00, marked in
red, is the first cell that starts the elaboration, since its second operand can only
come from the external world. When the results of cell 00 are available, cell 10,
which doesn’t need anything else, can start the computation. The results of cell 00
are received by cell 01 as well; however, this cell needs also the results of cell 10 in
order to start; that’s why it is marked in green, together with cell 20: they both
need the results of cell 10, and so their functioning is allocated in the third phase
of the elaboration. Finally, cell 11 needs the results of cell 10, 01 and 20, and so it
must be allocated in the fourth phase.

Another key point, of course, is the need for cell 10 to maintain stable its results
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Figure 5.2. Scheme showing the timing requirements for some of the cells inside
the array. The colour of each cell corresponds to the phase into which its function-
ing time is allocated, as detailed by the legend inside the figure; the same colour
applies also to the outputs from the cell. Each cell can start its elaboration only

when all the inputs are available.

until cell 11, which is the most distant in time regarding the start of the computation,
has received them. Following the same reasoning, also cell 00 needs to maintain
available its results until cell 01 has read them. This means that, exploiting the
particle-nature of skyrmions, each of these cells could even receive the new data and
start a new computation while maintaining available the skyrmions on its outputs.

117



5 – Logic in memory - first architecture

This, however, is just a matter of optimization: first of all is necessary to find a
correctly working FSM, and only then the architecture can be optimized and made
faster. For this reason, the assumption from now on will be that each cell will be
frozen in its functioning cycle until all its results have been collected and read by
the proper cells connected to it.

Since each cell contains a number of multiplexers, and since potentially there
could be the need to drive two or more of them at the same time, according to the
particular instant in which each cell is working and to the needs of the particular
algorithm that is being implemented, is necessary also that each cell has its own
FSM. Considering four cells only, their four FSMs will then be coordinated by a
master FSM, which receives their status signals and decides what to do accordingly.
The FSM of each cell (let’s call them slave FSM) will receive a start signal from
the master FSM and will notify it when the result is available. Each slave FSM,
moreover, will receive from the external world some signals that depend on the
particular algorithm that needs to be implemented. These signals will be used for
deciding, for each multiplexer, which input should be selected. Since these signal
depend on the particular algorithm chosen they cannot come from the master FSM,
and must be provided from outside directly to each cell. In the schematics of the
FSMs reported at the end of this chapter, these signals, coming from the external
and arriving directly to the slave FSM of competence, are all named as DES_x,
where x depends on the particular signals. Some examples are DES_EXTIN_00,
towards the slave FSM of cell 00, or DES_DATA_X0, towards the slave FSM of
cell 10.

A final point that should be underlined here regards the configurable logic block
that appears inside each cell in figure 5.1. The particular type of logic gates presented
in [5] and discussed up to now are predetermined in their behaviour by their own
shape: the AND/OR gate has a particular shape that will never allow it to behave
as an INV/COPY gate. In [28], however, a design for reconfigurable logic gates has
been proposed: by simply changing the voltage pattern applied to the structure, the
logic function of the gate changes. To build a reconfigurable logic block using the
gates proposed in [5] a much more complex structure should be designed instead,
together with the control signals needed to allow its functioning. Since the structure
of the memory array is already quite complex, the reconfigurable logic block inside
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each cell in figure 5.1 has been changed in this work into a fixed logic block composed
by a single AND/OR logic gate. A more advanced logic elaboration could be realized,
however, by simply replacing this single gate with a more complex logic block.

5.1. Cell 00
The structure of cell 00 is reported in figure 5.22; the FSM that controls it is

described in figures 5.23 and 5.24, where are detailed also the control signals that
are activated during each state. The VHDL describing both the datapath and the
FSM of the cell is reported in appendix C. Since the datapath is huge and quite
complex, some small portions of it will be shown in this chapter little by little, as
the explanation of the structure goes on, in order to facilitate the comprehension.

Figure 5.3. Portion involved in the nucleation and in the storing of a new
skyrmion inside the memory element.

In realizing these cells, the results proposed in many different articles have been
exploited. The mechanism used for initializing the memory comes from [44]. Differ-
ently from the article this is a random access memory, not just a racetrack: however,
similarly to what happens in the article, the skyrmions are nucleated at the begin-
ning of the bitline by a writing head (labelled as MTJ_W4) and put into movement
by applying a voltage VBL all along the bitline; to identify the point where the volt-
age must be applied, some black contacts carrying the name of the voltage signal
(including GND) have been inserted in the picture.

As soon as the desired skyrmion reaches the input of its destination cell, the
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voltage VBL is switched off and the voltage VSTORE, applied orthogonally with re-
spect to the previous one, is turned on, so that only the skyrmion at the intersection
between the bitline and the cell input (this intersection is labelled CELL00_IN in
the picture) is pushed towards right, entering the memory element. This memory
element is simply a notch, introduced in chapter 2 and widely used in chapter 4 as
a synchronization element for the data flow. Since the skyrmion that reaches the
notch will stay there until a current peak is applied, the notch behaves exactly like
a memory element.

This current peak is generated when the voltage source VSTART is turned on.
This voltage source is different from the sources such as VSTORE or VBL, because
the current value needed to make the skyrmion go through the notch is much higher
than the value needed to simply put it into movement. For this reason, the VHDL
description of these voltage generators is different: while VSTORE and VBL are de-
scribed by the component voltage_genL, VSTART is described by voltage_genH. The
difference in the behaviour between these two components is that voltage_genL al-
lows a current flow of intensity CURRENT_LOW as long as its control signal is
active, while voltage_genH generates a single peak of current of intensity CUR-
RENT_HIGH and then turns off, if its control signal is active for a single clock
cycle.

Figure 5.4. Path followed by the first and the second operand towards the com-
putational area.
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The current that allows the skyrmion to leave the memory element’s output
and to reach the region where both the FA and the logic are allocated is generated
by VMOV E1, again of type voltage_genL. Along its path the skyrmion finds some
duplication elements, needed to provide its value both to the two computational
elements and to the structure that implements the multiplexer 3 of figure 5.1. These
duplication elements have been presented in [40] and exploit the reversible conversion
from skyrmion to domain wall pair and vice versa, realised thanks to a chain of
large and narrow junctions. So, pushed by CURRENT_Vmove1, the skyrmion goes
through the elements x2_1 and x2_2, through the element CROSSM1 (exactly the
same type of cross used also in chapter 4), and finally reaches the input of the FA
and of the logic block.

To perform the data elaboration, however, the memory cell must receive also the
second operand, which in the case of cell 00 can come only from the external world.
Not only: this data must reach the computational region together with the skyrmion
that just come out of the memory element. To do so, the output of a writing head
MTJ_W3 is conveyed inside the track by the element JOIN1, exactly the same join
structure used also in chapter 4, and the skyrmion just nucleated is moved along the
track again by the current CURRENT_Vmove1, the same that moves also operand
1. Before reaching the computational region it is duplicated by element x2_3 and
goes through CROSSM1.

When the voltage VMOV E1 is turned on, also the write heads MTJ_W1 and
MTJ_W2 are activated. Their presence is due to the structure of the FA, which is
the same that has been developed in chapter 4: in order to correctly work, the FA
must receive as input two additional skyrmions, which do not carry any informa-
tion but are just needed as enable signals. The duty of those two write heads is to
provide these two skyrmions to the FA. The two skyrmions are put into movement
by the same current which transports also the two operands, so they will reach the
input of the FA at the same time, and they will be given back by the FA together
with the other results (the sum plus the two output carries).

Two key points must be discussed here. The first revolves around the timing
requirements: in the description of these cells many assumptions around the topic
of timing synchronization have been made. These assumptions, however, are not
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Figure 5.5. Nucleation of the two skyrmions needed as enable by the FA and
outputs from the FA.

difficult to be satisfied: technologically speaking is in fact enough to tune the length
of this or of that track in order to tune the time that each skyrmion needs for going
from one point to another, and so synchronizing their movement is not particularly
challenging.

The second point is a bit more tricky and involves the different voltages applied.
Simply looking at figure 5.22 and remembering that each black rectangle is a voltage
contact, is easy to guess how many different voltages are involved in controlling
each of these cells. The value of these voltages, however, is in many cases always
the same: the only request is to have a current flowing inside the tracks at least
equal to CURRENT_LOW (that is, a current density higher than the depinning
threshold), so, as long as the skyrmion can move, there is no reason for changing
the value of the voltage applied. As already mentioned, it is necessary to have a
second voltage value, able to induce a current density equal to CURRENT_HIGH,
otherwise the skyrmion wouldn’t be able leave the memory element; this however
isn’t different from what already assumed in chapter 4. To make the FA work, in
fact, is necessary to provide a current waveform that assumes a low (not null) value
for most of the time, and then a peak value for a small extent of the clock period;
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since this kind of waveform is needed also in these memory cells due to the presence
of the FA, the voltage that imposes CURRENT_LOW can be made equal to the
one that produces the low value of the current used in the FA, and the voltage that
imposes CURRENT_HIGH can be made equal to the voltage that produces the
peak.

The most tricky point in controlling all these voltages, however, is due to the
need of having regions without any voltage applied adjacent to regions where in-
stead a current is flowing to make the skyrmion move. This condition corresponds,
inside figure 5.22, to all the points where a GND contact is placed nearby a con-
tact with a different label. Technologically speaking, it should be possible to realize
this condition by cutting the metal trace for a very small extension and interposing
between the two pieces an insulating material. Since the voltages needed are not
high (in chapter 3 values around 1 mV have been used), there shouldn’t be problems
of breakdown; it should also be possible to allow the skyrmion to overcome this
region, if very small, without heavily compromising the DMI which stabilizes it at
the interface between the heavy metal and the ferromagnetic material.

Figure 5.6. Logic block and FA, together with the contacts used for applying
VOP .

123



5 – Logic in memory - first architecture

When the data arrives the the beginning of the computational region of the cell,
VMOV E1 is switched off and VOP is applied. As already explained, VOP has exactly the
same waveform used for controlling the adder of chapter 4, so its VHDL description
must be different from the one of the other voltage sources already encountered: the
component that describes this voltage source is vclock_gen. Since the final version of
the FA has a pipeline with 6 stages (including also the row of notches placed right on
the input), two set of notches have been inserted also before and after the AND/OR
logic gate: SYNC. NET. is composed by a single row of notches, while SKEWING
NET. is made by five rows of notches one after the other. Their presence, however,
is not fundamental, because the movement of the skyrmions is controlled by the
voltage applied: even if the output of the AND/OR block were available before the
second clock cycle since the switching on of VOP , the skyrmions wouldn’t be able to
move on along the trace, because the voltage VMOV E2 would still be turned off.

The elements denoted as MTJ_CON are made by the sequence of a reading
head and of a writing head. Elements of this type have been inserted in the picture
wherever a change in the technology of the tracks is needed. Inside figure 5.22,
in fact, two types of tracks can be distinguished: the former type is denoted by
black tracks, the latter by red tracks. The reason for this difference is the need, in
some regions of the cell, to suppress the Magnus force that makes the skyrmion turn
towards left as soon as the possibility is available. In these regions the confinement
adopted in [5] wouldn’t work, because it is good only to avoid the annihilation of the
skyrmion at the edges of the nanotrack: as demonstrated by the working principle of
the gates presented in [5], the Magnus force is still present and makes the skyrmion
move towards left at each junction.

Like already discussed in chapter 2, a possibility for completely cancelling the
Magnus force is to realize an antiferromagnetic coupling between two layers of ferro-
magnetic material separated by an insulating spacer. Doing so, with the same type
of writing head used also for the component MTJ_W3, is possible to nucleate a
skyrmion in the top layer and an antiskyrmion in the bottom layer; thanks to their
opposite topological charge and to the coupling between the two FM layers, the
Magnus force is cancelled by construction and the bilayer skyrmion moves along a
straight line even if there is the possibility for it to turn left at the junctions present
along the track. So, in all the cases in which this kind on technology is needed, a red
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track has been used in figure 5.22, in place of a black track, that uses the technology
exploited in [5]. It is worth noticing that a red track is used also at the input of the
cell: in [44], in fact, it is used exactly the technology proposed in [41].

FM
INS
FM
HM

FM
HM
INS
INS

MTJ_CON

Figure 5.7. Layers composing the technology used for the red and for the black
tracks. A conversion head is required when going from a black to a red track, while
it is not needed in the opposite direction of movement. FM stands for ferromagnetic

layer, HM for heavy metal layer, INS for insulating layer.

Then, why are the elements MTJ_CON needed? These elements are placed
only in the points where a black track (single FM layer above a platinum trace, with
the confinement proposed in [10]) is replaced by a red track (antiferromagnetically
coupled FM layers), and not vice versa, as shown schematically in figure 5.7. If one
imagines to put the two types of track one next to the other, in fact (and assuming
to have between them the space needed to put in contact the two HM traces, so that
the current continues to flow from one track to the other), is easy to imagine that
a bilayer skyrmion coming out from the red track splits into a separated skyrmion
and a separated antiskyrmion as soon as the coupling vanishes; the skyrmion will
find, going on along its path, the confinement structure used in the black tracks and
will remain inside the track, while the antiskyrmion is no longer useful and can be
destroyed. To do so, is should be enough to interrupt the bottom FM track with an
insulating layer, as shown in figure 5.7: as a result, the antiskyrmion will be expelled
from the bottom track, leaving the skyrmion alone in the top track, confined by the
boundaries. If the direction of the movement instead is opposite, that is, from the
black track to the red track, it could happen that the bottom skyrmion, as soon
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as the confinement vanishes, is expelled from the top track without being able to
induce the formation of an antiskyrmion in the coupled layer. For this reason, it
should be enough to detect the presence of the skyrmion before it is expelled, and to
control accordingly a writing head placed just at the beginning of the red track. In
this way, even if the skyrmion gets expelled from the track, the information doesn’t
get lost and a bilayer skyrmion can correctly be nucleated inside the red track, if
needed. The sequence of the read and of the write head needed for this conversion,
as mentioned, is summed up by the component MTJ_CON.

Figure 5.8. Structure that implements the multiplexer 2 of figure 5.1.

The red tracks are needed after the computational structures due to the mul-
tiplexer 2 of figure 5.1: having computed the result of the sum, of the AND and
of the OR between the two operands, it is now necessary in fact to choose one of
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the three results, in order to send it to the neighbouring cells and maybe to store
it inside the memory element of cell 00 itself. So, there is the need of a multiplexer
with three inputs. Since with skyrmions the information is always conserved, the
two skyrmions at most that will be discarded have to go out from the structure as
well: for this reason the multiplexer has one main output, plus four other secondary
outputs. Among these four secondary outputs, two of them are traces controlled
respectively by the voltages V1 and V3, while the remaining two outputs are both
controlled by the voltage V2. The selection of the input to be transmitted is done in
the following way: first the voltage VMOV E2, together with VMOV E2C , which controls
the movement of the output carry, is turned on in order to allow the three (at most)
input skyrmions to reach the intersection with the first secondary output, which
is controlled by V1, and then they are both turned off. In order to allow the out-
put carry to overcome the crosses CROSS11, CROSS12, CROSS21 and CROSS22,
VMOV E2C is switched on for one more state. At this point the selection can take
place: if the result of the OR is desired, then V1 is switched on, so that both the
skyrmion carrying the value of the AND and the skyrmion coming out from the FA
are forced to move along the first secondary output, crossing both CROSS11 and
CROSS21 in the vertical direction, up to the bottom tank. At this point VMOV E2

can be turned on again, allowing the selected result to reach the output of the mul-
tiplexer (that is, the GND contact right at the end of the multiplexing structure).
If instead the SUM result is desired, the voltage VMOV E2 will be turned on again for
a small amount of time, allowing the three skyrmions to reach the second secondary
output: then, turning on V3, both outputs of the AND/OR gate will be flushed away
towards the top tank; applying again VMOV E2, the only skyrmion left can reach the
output of the multiplexer, just like before. Finally, if the result desired is the output
of the AND, first the three skyrmions will reach the final secondary output; then,
turning on V2, the top and the bottom skyrmion will be flushed respectively towards
the top and the bottom tank, leaving the middle skyrmion alone. In any case, one
result will be available at the end of the multiplexing structure, while the skyrmions
carrying the value of the two other results are collected inside the top or the bottom
tank, or maybe inside both of them (if V2 was turned on).

The top and the bottom tank are two structures able to collect all the skyrmions
that have been nucleated inside the cell, but that are not needed as information
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Figure 5.9. Structure of the bottom tank, with the inputs and outputs involved
in the movement of the skyrmions that are used as enable by the FA.

carriers in the current computational cycle. Since nucleating new skyrmions is an
energetically expensive operation, having spare skyrmions ready to be used when
needed should highly decrease the power consumption associated to each computa-
tion. The top and the bottom tank inside each cell of this design are able to collect
all the unused outputs of each multiplexing operation, together with the two input
skyrmions needed by the FA to correctly perform its computation. Focusing on these
two skyrmions, the FA gives them back as an output at the end of the computation
cycle (as already explained in chapter 4): the two skyrmions then reach the input of
the bottom tank thanks to CURRENT_Vop, and will stay there from the moment
when the voltage VOP is turned off. Before starting a new computational cycle,
all the skyrmions available at the inputs of the tank will be pushed inside the its
middle nanotrack by applying CURRENT_Vtankb (which is of type vclock_gen).
The bottom tank has three outputs, differently from the top tank, which has only
one output. The three outputs are connected to the nearby traces according to a
priority order: inside the bottom tank, in fact, there will be for sure at least two
skyrmions (the two skyrmions provided by the FA at the end of the elaboration).
These two skyrmions must be given back to the FA in order to allow a new com-
putation: for this reason, when CURRENT_Vtankb is applied, since those tracks
inside the bottom tank are of the black type (that is to say, the Magnus force is
still present), the skyrmion coming out from the track labelled as 1(1) will occupy
the output of the tank that enters the element JOIN3, preventing other skyrmions
to occupy the same output thanks to the skyrmion-skyrmion repulsion; at the same
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time, the skyrmion coming out from 1(2) will occupy the output that goes towards
the element JOIN2. Both skyrmions will occupy the corresponding output until a
current peak is provided, thanks to the notches that block them.

Figure 5.10. Structure of the bottom tank, with the connections needed to put
back inside the tank a skyrmion that came out from the lowest priority output.

If the tank hosts more than two skyrmions, one more skyrmion will go out from
the remaining output, which, thanks to is placement, has the lowest priority. If
desired, this skyrmion could be used as a second operand in the following compu-
tational cycle, without the need of nucleating a new skyrmion with the MTJ_W3
head. However, the second operand desired could be equal to 0, that is, no skyrmion
is required: what if the tank hosts more than two skyrmions? When the current
peak allows the two skyrmions with highest priority to go out, also a third skyrmion
will go out from the tank. Since its presence is not desired, this condition must be
detected and, in case, the skyrmion must be put back inside the tank. To do so,
the read head MTJ_R1 detects the presence of the skyrmion and notifies it to the
FSM of cell 00, and at the same time CURRENT_Vmove1 will push it inside the
component DEV1: if a skyrmion was detected and its presence is undesired, the
voltage VNOEXT will be turned on, flushing it away back inside the bottom tank.
If instead the skyrmion detected is desired, CURRENT_Vmove1 will be turned on
again, allowing the skyrmion to go across JOIN1 and in the end to reach the input
of the two logic blocks, together with operand 1. If, on the contrary, no skyrmion
is detected while operand 2 should be equal to 1, then a new skyrmion must be
nucleated: exactly as it happened in the first half of the cycle, MTJ_W3 will be
turned on together with CURRENT_Vmove1, so that the just nucleated skyrmion
is able to reach the computational area together with operand 1.

These operations, however, take place only inside the second half of the cycle,
that is, after the first iteration has been completed and the first results have come
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out. Before them, is necessary to complete the first cycle transmitting the results
to the nearby cells and updating the value stored in the memory element.

Figure 5.11. Element that duplicates the result and merging element that com-
presses the two output carries into a single particle.

First of all, the skyrmion which survived the selection among the three results is
pushed by CURRENT_Vmove3 through the element x2_4 (so that the result will
be available also for the store operation, later in the cycle), through CROSS4, up
to the junction controlled by voltage V_SOUT.

Figure 5.12. Structure that implements multiplexer 3 of figure 5.1.

CURRENT_Vmove3, however, moves also the skyrmion carrying the value stored
inside the memory element, which was doubled by element x2_1 and is ready to be
used: this skyrmion so will moved by CURRENT_Vmove3 up to the junction con-
trolled by VROUT . Now the multiplexing operation carried out by multiplexer 3
of figure 5.1 takes place: if the output of the cell has to be the result previously
selected, VROUT is turned on, flushing the value of the stored element towards the
bottom tank; if instead the value of the memory element is desired, VSOUT is turned
on, flushing away the skyrmion carrying the value of the result computed. In any
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case, the undesired skyrmion is collected inside the bottom tank. Then VMOV E3 is
turned on again, allowing the selected skyrmion to reach the GND contact right at
the output of the multiplexer.

Now that the output has been chosen, the cycle is almost over. The remaining
things to do are to choose what kind of data must be used to update the memory
element, to transmit the outputs (the one just selected, plus the carry-out bit)
towards the nearby cells, and to request a new start to the master FSM.

Figure 5.13. Structure of the top tank.

First of all, the skyrmion that was moved up to MTJ_CON9 by CURRENT_-
Vmove3 is pushed inside DEV2 by applying for a short time the voltage VMOV E4.
Then, if the result of the computation must be used to update the memory element,
VMOV E4 is applied again, so that the skyrmion continues along the track until it
reaches the next GND contact: there it will wait for the master FSM to turn on,
after the activation of the signal REQUEST_NEW_STORE by the slave FSM, the
voltage VSTORE, so that a new cycle can begin.

Figure 5.14. Connection between the output from the top tank to the input of
the cell.

If instead the data to be written inside the memory element must come from the
external, that is, from the bitline, the skyrmion inside DEV2 will be flushed towards
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the input of the top tank by the activation of VNEWDATA; then, according to the
value desired for the data to be written in the memory element, two possibilities are
available: either the data desired is 0, and so nothing has to be done, or the data
desired is 1; if this is the case, VTANKT is activated until the skyrmion that may
be inside the top tank comes out: then VDETECT turns on, allowing the skyrmion
to pass through the read head MTJ_R2: if the skyrmion is actually there, the
signal REQUEST_NEW_START is activated by the slave FSM. The master FSM,
detecting the activation of this signal, will activate VBL, which allows the skyrmion
to go out from JOIN4 and to reach the inside of CELL00_IN ; then it will switch off
VBL and turn on VSTORE, allowing the data to update the content of the memory
element without the need of nucleating new skyrmions. If instead the desired data
is 1, while no skyrmion has been detected by MTJ_R2, the slave FSM activates the
signal REQUEST_NEW_START_W, so that the master FSM knows that it has
to activate the write head MTJ_W4 together with VBL; then the FSM turns it off
and activates VSTORE to store the skyrmion inside the memory element. Finally, if
the desired data to be written inside the cell comes from the external and it is equal
to 0, after pushing the result of the computation inside the top tank, the signal
REQUEST_NEW_START is activated: in this way the master FSM activates VBL

(doing so, if the bitline is by chance filled with skyrmions, they will be shifted by
some positions, allowing a 0 to be positioned inside CELL00_IN ), and then activates
VSTORE, allowing the 0 to be ”stored” inside the memory element.

Figure 5.15. Duplication element placed at the output of the cell.

This is the sequence that is performed in order to update the memory element.
However, this happens only after the results have been transmitted to the cells
nearby. When the skyrmion has just been moved either by CURRENT_Vmove4
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until the input of CELL00_IN, or by VNEWDATA to the input of the top tank, the
slave FSM freezes waiting for the activation of the signal READY_FOR_DATA_-
RIGHT, which means that the destination cells, equal to cell 10 and cell 01 in the
case of cell 00, are ready to accept new data from cell 00. This has the aim of
avoiding that the skyrmions carrying the value of both the result and of the carry-
out bit pile up at the input of each destination cell, since this would result into an
error. As mentioned, a possible optimization would be to allow cell 00 to start a
new computation while maintaining the results of the previous cycle fixed at the
output ports and ready to be sent towards the destination cells.

Figure 5.16. Merging element placed on the path of the output carry.

When the signal READY_FOR_DATA_RIGHT is activated, the slave FSM
turns on the voltage sources VMOV ERES and VMOV ECOUT : in this way the skyrmion
of the result (or of the value that was stored in the cell) is duplicated before being
sent to cell 10 and to cell 01 (both have, inside their structure, a GND contact
for voltage VMOV ERES), while the two carry-out skyrmions are packed into a single
skyrmion by the element x1_1 and then are sent towards cell 01, where the GND
contact for VMOV ECOUT is placed. The element x1_1 exploits again the results of
[40], and is used just to simplify the routing between the cells; another possibility,
since the two carry skyrmions have the same value, would be to send just one of
the two towards cell 01, while the other could be collected inside the bottom tanks
and maybe reused again, instead of nucleating a new second operand. Finally, to
tell the master FSM that the results of the cell have been correctly transferred, the
slave FSM activates the signal RES_AVAILABLE.

When the results have been transmitted and the memory element updated with
the new data, the cycle ends. However, is easy to guess that the very first iteration
is slightly different from all the subsequent ones: in the first iteration, in fact, is
necessary to activate the write heads MTJ_W1 and MTJ_W2 in order to nucleate
the skyrmions needed by the FA to perform the computation; these write heads
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then won’t ever be used again, since the two skyrmions nucleated are collected by
the bottom tank and kept in the system. At the same time, at the very beginning
is necessary to nucleate a skyrmion for the second operand (unless the desired value
is equal to 0), while in all the following cycles the corresponding skyrmion could
come out from the bottom tank, without the need of activating MTJ_W3. For this
reason, as soon as the START signal provided to the slave FSM is activated, the
voltage VTANKB is turned on, and according to the value of the skyrmion detected
on the lowest priority output the voltage VNOEXT and MTJ_W3 are directed, as
already explained. All the remaining steps are not different from what happens in
the very first iteration.

5.2. Cell 10
The first cell that starts the elaboration as soon as the results of cell 00 are

available is cell 10. The structure of this and of the remaining cells is very similar
to the one of cell 00, with only some small and localized differences due to the
different number of inputs and of outputs to be provided; the same applies to the
corresponding slave FSM: the differences are few and well localized. For this reason,
this section and the following ones will focus just on the relevant differences, without
repeating the sequence of steps to be performed from the start to the end of the
computation in order to correctly coordinate the datapath components.

Figure 5.25 shows the datapath of cell 10, while the slave FSM is divided in
figure 5.26 and 5.27. The VHDL describing it, as usual, can be found in appendix
C, together with the VHDL of the remaining cells.

As already discussed in this chapter, the only difference between cell 10 and cell
00 lays in the number of possible inputs available to be chosen as operand 2, that
is, in the number of inputs to multiplexer 5 in figure 5.1: while cell 00 can take as
second operand only a value coming from the external world, cell 10 can choose as
operand also the result of cell 00. This is the only meaningful difference in the whole
cell. Knowing this, is easy to detect where the main changes have been applied to
the datapath of cell 00: as shown in figure 5.25, the result provided by cell 00 and
put into movement by CURRENT_Vmoveres (switched on by the FSM of cell 00)
goes through the element CROSS3 and arrives up to the GND contact right before
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DEV3.

Figure 5.17. Structure implementing multiplexer 5 in figure 5.1.

This result will be available before the slave FSM of cell 10 receives the START
from the master FSM: the slave FSMs of cells 01, 20 and 11, in fact, receive their very
first start only when the cell that has to produce their inputs has already notified
the master FSM that the result are available to be consumed, through the activation
of the signal RES_xx_AVAILABLE, where xx is the label of the cell. So, the slave
FSM of cell 10 will receive the very first start only after the signal RES_00_-
AVAILABLE has been activated. At the same time, as already said, the slave FSM
of cell 00 remains frozen until the signal READY_FOR_NEWDATA_RIGHT_00
is activated, as already explained before. This signal is activated only when all the
cells receiving the results of cell 00, in this case, have collected them and are ready
to accept new results. For this reason is vital that the results are collected as soon as
possible, so as not to slow down the overall work of the memory array. This is why, in
the case of cell 10 and more in general of all the cells different from 00, the very first
action that is performed is the activation of VNOEXT for the amount of time needed
to place each input skyrmion inside the corresponding DEV component: in the case
of cell 10, the only input skyrmion is labelled as TOP_RESULT, and activating
VNOEXT for the proper amount of time it will enter the component DEV3. Doing
so, the input of the cell is now free from skyrmions and new data can be accepted:
this is notified through the activation of READY_FOR_NEW_DATA. Of course,
in order to activate the signal READY_FOR_NEWDATA_RIGHT_00, the same
procedure must be done also by cell 01, which receives the results of cell 00 as well.
Since this procedure is done after the activation of the START signal, and since cell
01 cannot start until the results of cell 10 are available as well, cell 00 will have to
remain frozen for a little more. More details concerning the mechanism that allows
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each slave FSM to know when to start the elaboration will be given in section 5.3.
At this point, focusing on the new multiplexer inside cell 10, there are two

possibilities available: either the desired data for the second operand is exactly the
result just imported, or the second operand must be nucleated according to a value
provided externally, that is, activating MTJ_W3 according to the desired value.
In the former case, the skyrmion that is inside DEV3 can be pushed towards the
main track by activating VRESTOP ; at the same time, VSTART is applied as well, to
allow the skyrmion inside the memory element to cross the notch, so that in the
next state the enable skyrmions needed by the FA can be nucleated and VMOV E1

can be applied, carrying all the data right at the input of the computational blocks.
If instead the second operand must come from outside, the skyrmion inside DEV3
is moved towards the input of the bottom tank by applying the voltage VNOEXT ,
the same that is used also from the second iteration on to avoid that an undesired
skyrmion that came out from the bottom tank can take the place of the second
operand when a value 0 is required. At the same time VSTART is applied. In the
following state, as in the other case, the two enable skyrmions needed by the FA
are nucleated and VMOV E1 is applied; according to the value desired for the external
skyrmion, MTJ_W3 may or may not be activated. Of course, it could be possible
to detect the value of the result of cell 00 that has been rejected and maybe reuse
right away that same skyrmion instead of activating MTJ_W3: this, however, would
contribute to complicating the FSM, and for this reason this option has been avoided.

From this moment to the end of the computation the data flow is exactly the
same as before: this can be verified by inspecting the FSM shown in figures 5.26 and
5.27. The only additional difference to the datapath is due to the need of providing
the result not to two, but to three different cells (cell 20, cell 11 and cell 01): this is
why the duplication element x2_6 has been added at the output port.

In this cell and in all the remaining ones, as already said, a new cycle of com-
putations can start only when new results are provided as input. In this particular
case, new results from cell 00 must be available at the input of the cell. The mecha-
nism that allows the cell to decide whether to start or not, according to the signals
coming from the master FSM and to the status signals coming from the datapath,
will be discussed more in detail in section 5.3.

When a new START is detected, the FSM allows the skyrmion just stored in
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the memory element to cross the notch by applying VSTART , it applies VTANKB to
allow at most three skyrmions to go out from the bottom tank, it applies VNOEXT to
import the new data provided by cell 00, and it activates the signal READY_FOR_-
NEW_DATA to notify that all the data have been imported. Then, according to
the desired source for the second operand, either VRESTOP or VNOEXT is activated.
If the result of cell 00 has been chosen, VMOV E1 is then applied until a possible
skyrmion coming out from the lowest priority output of the bottom tank can reach
the inside of component DEV1: then, according to the output provided by the read
head MTJ_R1, VNOEXT may or may not be turned on, in order to flush away any
undesired skyrmion. If, on the contrary, the second operand was chosen to be an
external data, after applying VNOEXT to move away the skyrmion inside DEV3 and
VMOV E1 to move a possible skyrmion coming out from the bottom tank until the
inside of DEV1, the same sequence of steps already seen for cell 00 is performed:
if a skyrmion is present and the desired value is 0, the skyrmion is put back inside
the tank; if the value of the skyrmion (either 0 or 1) corresponds to the desired one,
VMOV E1 will transport it, together with all the other data, towards the input of the
computational blocks; if, finally, there is no skyrmion where it should be, MTJ_W3
is activated in order to nucleate it. In any case, in the end VMOV E1 will allow the
skyrmion that has survived the selection process to reach the input of the FA and
of the AND/OR gate, after being duplicated by x2_3. From this moment on, all
the steps remain the same with respect to the first cycle.

5.3. Master FSM and cell 01
In this section the focus will be essentially on the signals that allow the slave

FSMs to correctly synchronize their behaviour without loading of work the master
FSM, which must be fast and reactive to the interrupt requests of all the cells
inside the array. The activities of the master FSM are simply a consequence of
the requests sent by the slave FSMs and, having read the previous sections of this
chapter, shouldn’t be hard to be understood.

The structure of the master FSM is reported in figures 5.34, 5.35, 5.36, 5.37
and 5.38. It is composed essentially by a loop and by a number of interrupt service
routines (ISRs) equal to the number of cells present in the array. After the reset
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state, the first operation done by the FSM is the initialization of the memory array,
activating the write heads at the beginning of each bitline and the voltage that allows
the skyrmion to reach the input of the cell; in the state S2, applying the voltage
VSTORE, each memory element is initialized. Only at this point the elaboration can
start: for this reason, in state S3 cell 00 receives the START_00 signal. From this
point on, the master FSM will continue to loop around a state of idle, ready to
answer to any interrupt request coming from the cells of the array. Each interrupt
signal is determined by the OR combinations of the signals that are then investigates
inside the corresponding ISR, as shown in figure 5.18.

INTERRUPT_00

RES_00_AVAILABLE

REQUEST_NEW_START_00

REQUEST_NEW_START_W_00

REQUEST_NEW_STORE_00

INTERRUPT_10

RES_10_AVAILABLE

REQUEST_NEW_START_10

REQUEST_NEW_START_W_10

REQUEST_NEW_STORE_10

INTERRUPT_01

RES_01_AVAILABLE

REQUEST_NEW_START_01 

REQUEST_NEW_START_W_01

REQUEST_NEW_STORE_01

INTERRUPT_11 

RES_11_AVAILABLE

REQUEST_NEW_START_11 

REQUEST_NEW_START_W_11

REQUEST_NEW_STORE_11

Figure 5.18. Generation of the INTERRUPT_xx signals from the status signals
activated by each slave FSM.

Figure 5.19 shows, for the first four cells, the signals involved in deciding when
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the slave FSM can start a new elaboration and in notifying the other slave FSMs
when the cell is available for receiving new results.
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Figure 5.19. Sketch of the structure implemented for each cell in order to correctly
activate the START signal received in input by each slave FSM. This structure
allows also the transfer of the results from each cell towards its destination cells.
The coloured latches are used to report whether new data are available; the colour
of each latch corresponds to the colour that identifies the cell that has to send the
data (the source cell): the red latches, for example, all correspond to cell 00; in
particular, the red latch inside cell 01 reports whether the data coming from cell

00 are available to be used by cell 01.

At the very beginning of the elaboration, when the master FSM is in the reset
state, all the latches inside each cell (shown in figure 5.19) are initialized to 1. So,
when cell 00 receives its very first start from the master FSM, the signal READY_-
FOR_NEW_DATA_RIGHT is equal to 1, signifying that both cell 10 and cell 01
are ready to accept the results of cell 00. As soon as cell 00 transfers the results to
cell 10 and 01, its slave FSM activates the signal RES_AVAILABLE towards the
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master FSM: as a consequence, the master FSM enters the interrupt service routine
(ISR) of cell 00, and seeing that RES_00_AVAILABLE has been activated it resets
the red latches inside both cell 10 and cell 01, meaning that the data from 00 has
already been sent and the cells are no more available to accept new results; it also
turns on, for a clock period, the signal FIRST_START_10 (in general, during the
state ISRxx_S1 of each ISR, it is activated the FIRST_START_xx of all the cells
allocated in the next phase with respect to the cell that activates them, as detailed
in figure 5.2); then the master FSM resets the latch FIRST_RUN inside cell 00:
this latch, which was initialized to 1, will be equal to 0 from now on, signifying
that cell 00 has already performed its very first iteration. After this sequence of
operations, since all the data have been correctly transferred, cell 00 is free to
start a new elaboration, so it requests a new start to the master FSM through the
activation of either REQUEST_NEW_STORE, REQUEST_NEW_START_W or
REQUEST_NEW_START : after all the steps required for correctly storing the new
data inside the memory element (steps that have already been detailed in section
5.1), the master FSM will activate the signal START_00, allowing the cell to start
the second iteration.

The latch FIRST_RUN inside cell 10 is still equal to 1: the AND combination
of this signal with the signal FIRST_START_10, activated by the FSM for a clock
cycle, is equal to 1; at the same time, the red latch had just been reset by the master
FSM, signifying that the data sent by cell 00 and needed to start the elaboration are
available: as a result, the signal START turns on and the first iteration of cell 10
starts. As soon as the cell accepts the data from 00 by making the skyrmion enter
the element DEV3, the FSM 10 turns on for a clock cycle the signal READY_-
FOR_NEW_DATA: as a consequence, one of the latches that prevent cell 00 to
send new data becomes again equal to 1. At this point, however, the red latch
inside cell 01 is still equal to 0, so, even if cell 00 had new results ready to be sent,
it would have to wait until cell 01 imports the previous ones.

When also cell 10 produces its first results, its FSM investigates around the value
of signal READY_FOR_NEWDATA_RIGHT : since all the blue latches inside cell
01, cell 11 and cell 20 (which are the destinations for the results of cell 10) are still
equal to 1 from the initialization, the cell is able to send the results it has produced.
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So, after activating its VMOV ECOUT and VMOV ERES, it turns on the signal RES_-
AVAILABLE towards the master FSM. This makes the master FSM enter the ISR
10: as a result, the blue latches inside cell 01, cell 11 and cell 20 will be reset to
0, signifying that the cells are no more available to accept new results from cell
10, and at the same time both FIRST_START_01 and FIRST_START_20 will
be activated: as shown in figure 5.2, in fact, these are the only two cells allowed to
work during the third phase. Finally, the master FSM resets the latch FIRST_RUN
inside cell 10. When the master FSM receives the request of a new start from cell 10,
then, after performing all the steps needed to allow the new data to be memorized
inside the cell, it grants a new start to the cell by activating the signal START_10.

It can be noticed here that, apart from cell 00, which is a very particular case, all
the other cells have two different types of START signals coming from the master
FSM. Let’s consider cell 10: the signal FIRST_START_10 is activated during the
state ISR00_S1 inside the ISR 00, as a consequence of the completed transfer of
the new data. This works if the cell has never performed any computation and is
waiting to start. If there was a single START signal, instead of FIRST_START_10
and START_10, the FSM would receive a new start any time that the cell 00 has
produced new results; this shouldn’t happen, because each of these FSMs has its
individual work flow and may take a different time to produce the results, according
also to the control signals it receives from the external. For this reason, after the
very first iteration, each slave FSM decides in complete autonomy, together with
the master FSM, when to start a new iteration, by activating one of the three sig-
nals which request a new start to the master FSM and waiting for the activation of
signal START_xx. This is why the latch FIRST_RUN inside each cell is needed:
this latch is used to mask any other activation of FIRST_START_xx, which may
mess up the behaviour of the cell that receives it.

Let’s focus now on the behaviour of cell 01. With respect to cell 10, the differ-
ences inside cell 01 are in the number of inputs to multiplexer 9 in figure 5.1, and
in the use of the carry provided by cell 00. Up to now, in fact, the input carry to
the FA was always set equal to 0, both in cell 00 and in cell 10, and so there was
no need for connecting a nanotrack to the input of the FA. Now, instead, the carry
coming out from cell 00 must be duplicated, due to the particular structure of the
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FA, and provided in input to it.
The datapath of the cell is shown in figure 5.28, while the FSM is described in

figures 5.29 and 5.30.
Having already analysed the behaviour of cell 10, there should be no difficulties

in understanding how the structure equivalent to multiplexer 9 in figure 5.1 works,
so this time the analysis of the first and last steps of the iteration will be focused
more on the consequences that the signals that appear in figure 5.18 have on the
workflow of the cell.

Figure 5.20. Input results to cell 01 and multiplexing structure needed to select
one of them.

When cell 01 receives FIRST_START_01 from the ISR 10, since both the red
and blue latch shown in figure 5.19 are equal to 0, meaning that all the data needed
are available, it is able to start its very first iteration. Like already explained before,
the first operation that is performed is the importation of the data by activating the
voltage VNOEXT , so that in the same state also the signal READY_FOR_NEW_-
DATA is activated, changing to 1 the value stored in the red and in the blue latch:
in this way both cell 00 and cell 10 know that they are free to send new data towards
cell 01. The activation of VNOEXT makes the skyrmions labelled as LEFT_RESULT
and BOT_LEFT_RESULT (respectively the result of cell 00 and cell 10) enter the
components DEV4 and DEV5; at the same time, also the skyrmion labelled as
LEFT_COUT (coming from cell 00) is imported. Then a selection process almost
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identical to the one already described for cell 10 is performed: if one of the two results
is desired as input for operand 2, either VRESLEFT or VRESBOTLEFT is activated; in
the following state, apart from activating VMOV E1 and the two writing heads for
nucleating the two enable skyrmions needed by the FA, also VNOEXT is activated
once more, in order to flush away towards the bottom tank the skyrmion that was
not chosen. If instead the desired input for operand 2 is a value coming from the
external, the steps are exactly the same as the ones described for cell 10.

Then the behaviour is the same as for the other cells already analysed: the result
is computed and placed right at the output of the cell, ready to be exported. Then
the cell waits for the activation of READY_FOR_NEWDATA_RIGHT : since at the
first iteration this signal is equal to 1 from the initialization (the green latches inside
cell 11 and cell 02 are already storing a 1), no freezing of the FSM happens; however,
in a following iteration these latches may be still equal to 0 (if the destinations cells
have already received results, but they still hadn’t the time to consume them), so
at this point a freezing of the FSM may happen. This is why it is so important to
import the results as a first thing, when starting a new iteration.

When READY_FOR_NEWDATA_RIGHT becomes equal to 1 the result can
be exported: cell 01 activates VMOV ERES and VMOV ECOUT , moving the skyrmions
towards their destination, and then activates the signal RES_AVAILABLE towards
the master FSM, and waits for its acknowledge. The main FSM may in fact be busy
in serving some other interrupt request, so cell 01 must maintain active the signal
until it receives the acknowledge from the master FSM (this is true also for all the
other cells: any activation of the signal RES_AVAILABLE freezes the slave FSM
until the corresponding acknowledge is activated); apart from activating ACK_-
RES01_AVAILABLE the master FSM, since the results of cell 01 have just been
exported, resets the green latches inside cell 11 and cell 02 and activates the signals
FIRST_START_11 and FIRST_START_30 (both cells are allocated in the fourth
phase of figure 5.2). Now: cell 01 had received the start signal together with cell 20,
which is allocated in the third phase as well; however, it may happen that cell 20 is
slower in producing its result, due to the particular workflow it has to follow, and as
a result the grey latch inside cell 11 may still be equal to 1 from the initialization:
this would mean that cell 11 is still available to receive new results, which still have
to be send (of course the same applies to the condition where cell 20 is faster than
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cell 01). The presence of a latch that is still equal to 1 prevents the FSM 11 from
receiving a START signal equal to 1, and so the activation of FIRST_SIGNAL_11
by cell 01 (during ISR 01) is lost. However, this doesn’t result into an error, and the
structure shown in figure 5.18 is correctly working also in this case: let’s assume in
fact that cell 01 finishes its computation before cell 20. After exporting its results
and receiving ACK_RES01_AVAILABLE from the master FSM, the FSM 01 will
send a request for a new start and go on with the next iteration. Then, finally,
sooner or later the results from cell 20 will be available: in their ISR, inside the
state ISRxx_S1, apart from setting to 0 the corresponding latch inside cell 11, both
cell 01 and cell 20 activate the signal FIRST_START_11: this means that, if the
activation of FIRST_START_11 by cell 01 was lost due to the grey latch, which
was still equal to 1, now that cell 20 has finished that latch will be reset to 0 and a
new impulse on FIRST_START_11 will be provided, finally allowing the FSM 11
to start its first iteration.

So, thanks to the structure shown in figure 5.18, the structure of the master
FSM is kept simple and neat, allowing a faster detection and answer to the inter-
rupt requests coming from the cells of the array. If this same control was to be
implemented by the master FSM alone, the complexity of the machine would grow
very quickly, due to the difficulties in keeping trace, for each cell, of when all the
inputs are provided, and to forecast when its outputs may be available.

A final comment deserves the decision block, labelled ALL_INPUTS_AVAIL-
ABLE_xx, inside the ISR of cell 10, cell 01 and cell 11 (figures 5.36, 5.37 and 5.38).
The signal ALL_INPUTS_AVAILABLE_xx is exactly the signal produced by the
NOR combination of all the latches, inside a certain cell, which indicate whether
the cell is available for receiving new data (the same signal used as input to the
AND gate that produces the START signal inside each cell). If this signal is equal
to 0, it means that there is at least one latch equal to 1, that is, there are still some
data that must be received before starting a new elaboration. Placing the decision
block based on this signal in that position inside the three ISRs, all the subsequent
investigations regarding the remaining status signals can be avoided. Not only: if
the ISR wasn’t sensible to this signal too, it could happen that the cell continues
asking for a new start, which is always granted by the master FSM, keeping it use-
lessly busy, without being able to actually start the computation, since the latches
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prevent it from doing so. So, thanks to that decision block, the behaviour of the
master FSM receives a not negligible speed up. Actually, it is not only a matter of
optimization: the behaviour of the machine would be wrong without that decisional
block, because if the signal that the cell keeps activating without being able to ac-
tually start is REQUEST_NEW_START_W, the master FSM would continue to
nucleate new skyrmions at the beginning of the bitline, trying to satisfy the requests
of the cell, and this of course would result into an error.

Let’s come back to cell 01 now. When the second elaboration starts, the slave
FSM allows the skyrmion just stored in the memory element to come out from it,
it makes at most three skyrmions go out from the bottom tank, it imports the
new data provided by cell 00 and cell 10, activating at the same time READY_-
FOR_NEWDATA, so that the red and the blue latch are again set to 1, and it
activates the voltage VOUTTANK , so that the lowest priority skyrmion which may
have just come out of the bottom tank stops right before DEV1. Then the selection
process takes places: either one of the two results provided is chosen, or they are
both flushed away towards the bottom tank. Then, activating VMOV E1 until the
skyrmion that had stopped right before DEV1 enters it, the same steps performed
also for cell 10 take place, in order to decide if that skyrmion can continue towards
the computational area together with the other data, or if it has to go back inside
the tank. Then the same steps performed also in the first iteration are repeated.

5.4. Cell 11
Having already analysed in detail the previous three cells, almost nothing new

is left to be said about the cell 11. The datapath is shown in figure 5.31, while the
FSM is divided in figures 5.32 and 5.33. Cell 11 is the most complex out of the four,
since multiplexer 14 of figure 5.1 has now four inputs, and multiplexer 13 also is
added, in order to allow the choice between two possible input carries, one coming
from cell 01 and one from cell 10.

When the cell receives the FIRST_START_11 signal that actually makes it start
(as already discussed in section 5.3), the first action that is performed, apart from
taking out the skyrmion stored in the memory element, is to import the new data
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Figure 5.21. Results in input to cell 11 and multiplexing structure needed to
select one of them.

applying an impulse on VNOEXT : doing so, the elements DEV3, DEV4, DEV5, DEV6
and DEV7 will host at most one skyrmion each, depending on the results produced
by the previous cells. At the same time the signal READY_FOR_NEWDATA
is asserted, to restore back to 1 the value stored in the latches, needed to notify
to the other slave FSMs the availability of the cells to accept new data. Then
two selection processes take place; first of all, it is decided which skyrmion among
TOP_COUT and LEFT_COUT must be flushed away towards the top tank: this
is done by applying either VCOUTLEFT or VCOUTTOP ; the skyrmion that has been
chosen as input carry to be used in the following computations, instead, will remain
for the moment inside the corresponding DEV element. Immediately after this
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first selection, in fact, takes place the choice of the result to be used as second
operand: if the top, the left or the bottom left result is chosen, VRESTOP , VRESLEFT

or VRESBOTLEFT respectively are turned on. Then, applying both VNOEXT and
VMOV E1 at the same time, and nucleating the enable skyrmions needed by the FA,
the skyrmions that were not chosen are flushed towards the bottom tank and the
input carry, the second operand and the first operand can all reach the computational
area, together with the enable skyrmions. If instead the value desired for the second
operand must come from the external world, first of all the skyrmions hosted in
DEV3, DEV4 and DEV5 are pushed towards the bottom tank by applying VNOEXT ;
then VMOV E1 is turned on, MTJ_W1 and MTJ_W2 are activated, and MTJ_W3
is controlled according to the preferences. The following steps, finally, are the same
as always.

When the START signal, produced as detailed in figure 5.19, becomes active,
the slave FSM imports the new data, activates READY_FOR_NEWDATA, reads
the skyrmion inside the memory element and takes at most three skyrmions out of
the bottom tank. Then two consecutive selection processes take place, and since
the following steps are simply the adaptation of the corresponding states inside the
FSMs already analysed to the selection process just described, the remaining states
won’t be explained here.

5.5. VHDL code
To verify the functioning of the memory array, together with the FSMs that have

been discussed until now, a VHDL behavioural description of the memory array has
been implemented. In writing the code, the focus has been mainly on reproducing
in the simplest way possible the behaviour of each of the components used inside the
cells: the aim was in fact to verify if the timing of a FSM machine designed while
thinking about the physical movement of skyrmions was correct. To do so, each
component has to read its inputs and produce its outputs only when the equivalent
physical version of that same component would able to do so when controlled by
that same FSM, and not in any other instant of time. This implies that most of the
work has been focused in controlling the instant of switch of inputs and outputs, and
not in how the single component is described internally: the behavioural description
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that has been adopted is in fact at a very high level. The main limitation in this
analysis around the switching time of each signal is the assumption that, as soon
as the component is enabled, the output switches instantly: this means that all the
components that have been described from a behavioural point of view have a null
delay. This assumption, however, should have an effect only on the length of the
clock period needed to make the FSMs transition from one state to the other, due to
the cascade of elements with non-zero delay, and it shouldn’t affect the functionality
of the structure, thanks to the use of enable signals for each component.

Each component, in fact, is sensitive to the changes on its inputs in any instant
of time, independently from the particular voltage that is turned on. Each of them,
however, receives as input the current that flows inside the environment into which
that particular component is inserted: for example, the MTJ_R components can
receive only one current value, while the DEV elements receive always two different
current values, which become different from zero according to the particular path
that the skyrmion must follow. These current signals are produced by the voltage
source components and are different from zero only when the particular voltage
source which produces them is enabled by the FSM. For this reason these current
signals, which are not needed in a high level behavioural description of the compo-
nents, are used as enable signals. The outputs of a particular component, then, are
allowed to change only when the current that the component receives is different
from zero: if this is not the case, all outputs will be equal to 0, independently from
what happens on the inputs. This is what would happen in a physical realization of
these components: even if a skyrmion is present, if the current that moves it is null
the outputs of the components will remain 0.

In the following list is offered, for each component, a brief description of its
behaviour. The code that implements each of them can be found in appendix C.

Voltage_genL If the control signal in input is equal to 1, the output CURRENT
becomes equal to CURRENT_LOW ; in any other case CURRENT is equal
to 0.

Voltage_genH If the control signal in input is equal to 1, the output CURRENT
becomes equal to CURRENT_HIGH ; in any other case CURRENT is equal
to 0.
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Vclock_gen If the control signal in input is equal to 1, the output CURRENT
copies the input signal CURRENTclk, which is the same signal provided as
clock signal to the FSMs; in any other case CURRENT is equal to 0.

MTJ_R If a skyrmion has been detected (no matter the value of the current in in-
put) and if the input current becomes different from 0, the output experiences
an impulse; in any other case the output remains fixed to 0.

MTJ_W If the input CTRL is becomes active, the output experiences a pulse
(that is, a skyrmion is nucleated); in any other case the output remains fixed
to 0.

MTJ_CONV It is composed by a MTJ_R and by a MTJ_W. The MTJ_R de-
tects the presence of a skyrmion on the input of the component and, when the
current is on, notifies it by enabling an internal signal. The MTJ_W receives
this internal signal as control input and nucleates the skyrmion accordingly.

CROSS with Magnus force If a skyrmion has been detected on input A (no
matter the current applied) and the current related to that input is turned
on, the output A’ experiences an impulse; in any other case it remains fixed
to 0. Similarly, if a skyrmion has been detected on input B (no matter the
current applied) and the current related to that input is turned on, the output
B’ experiences an impulse; in any other case it remains fixed to 0.

CROSS without Magnus force The VHDL description is exactly the one of
component CROSS with Magnus force.

Duplication element If a skyrmion is detected on the input (no matter the current
applied), and if the input current is different from 0, both outputs experience
an impulse (the input skyrmion is duplicated); in any other case both outputs
remain fixed to 0.

Merging element If one or two skyrmions are detected on input (no matter the
current applied) and if the input current is different from 0, the output expe-
riences an impulse (a single skyrmion is ejected); in any other case the output
remains fixed to 0.
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Deviation element A skyrmion can be detected on the input no matter the cur-
rent applied, and if no current is flowing both outputs are equal to 0. If the
current on the main track, called CURRENT, assumes a value different from
0, the outputs are enabled, but nothing happens yet (the skyrmion reaches
the centre of the structure). If CURRENT is applied again, the main output,
called OUT_SK, experiences an impulse; if instead is the other input current,
called CURRENTDEV, to become different from 0, it is the secondary output,
called OUT_SK_DEV, to experience an impulse. In any other case the two
outputs remain fixed to 0.

Bottom tank A skyrmion can be detected on any of the seven inputs of the com-
ponent no matter the current applied. When the input current assumes the
value CURRENT_LOW, depending on the number of skyrmions present in-
side the structure, one or more of the three outputs from the core of the
structure experience an impulse: this is done by inducing an impulse on three
internal signals. These three internal signals are the input of three notches,
whose outputs are the outputs of the component itself. The notches receive
the same current that is provided as input to the component.

Top tank A skyrmion can be detected on any of the three inputs of the component
no matter the current applied. When the input current assumes the value
CURRENT_LOW, if at least one skyrmion is present inside the structure,
the internal signal which represents the output from the core of the structure
experiences an impulse. This internal signal is the input of a notch, whose
output is the output of the component itself.

Top tank (only cell 11) The description is the same as for Top tank, with the
only difference in the number of inputs, here equal to five.

Results multiplexer A skyrmion can be detected on any of the three inputs no
matter the current applied. When the current related to one of the three selec-
tion inputs (CURRENT_V1, CURRENT_V2 or CURRENT_V3) becomes
different from 0, according to the value of the skyrmion detected on the input
chosen the main output from the multiplexer may or may not experience an
impulse. Then, according to the number of skyrmions to be rejected, the sec-
ondary outputs (V1OUT, V3OUT, V2OUTt and V2OUTb) may experience
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one or more consecutive impulses.

Result/Stored element multiplexer A skyrmion can be detected on any of the
two inputs no matter the current applied. When the current related to one
of the two selection inputs (CURRENT_Vst or CURRENT_Vres) becomes
different from 0, according to the value of the skyrmion detected on the input
chosen the main output from the multiplexer may or may not experience an
impulse. Then, according to the value of the skyrmion to be rejected, one of
the two the secondary outputs (either VstOUT or VresOUT) may experience
one impulse.

SRlatch It is a standard SR latch: when RST is active the output is reset to 0,
and when an edge is detected on SET the output switches to 1.

SRlatch_H It is exactly like SRlatch, with the difference that it is initialized to 1,
and only RST can reset it to 0.

Cell_input A skyrmion can be detected on any of the two inputs no matter the
current applied. When the current directed along the vertical direction (CUR-
RENT_T) becomes different from 0, an internal variable is set. When the
horizontal current (CURRENT_L) is turned on, if a skyrmion was detected
on either of the two inputs, the right output experiences an impulse. Some
internal variables are used to deal with the possibility that a skyrmion is de-
tected on both outputs, but maybe only the horizontal current is applied.
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6. Logic in memory - second
architecture

The structure for the logic-in-memory array described in chapter 5 is very powerful
and allows almost a full flexibility and adaptability to the request of the particular
algorithm that has to be implemented. Due to this huge flexibility, however, the
structure of the array and most of all the FSM that controls the memory itself is
very complex and not optimized. A simpler structure could be derived from that
one by renouncing to some capabilities of the array, like for example the transfer of
the result both to the cells on the right and on the bottom and to the cell on the
top right.

Another possibility could be to specialize the structure of each cell: one memory
row, for example, could contain only full adders, while the row after that could
be specialised in the computation of the AND/OR logic functions. In this way it
would be avoided the production of two results at the same time, so it wouldn’t be
necessary to to choose one of them before going on with the computations.

Another reason for the complexity of the array comes from the desire of reducing
as much as possible the energetic inefficiencies by collecting back all the skyrmions
that are no more needed for the computation cycle. If the top and the bottom tank
were eliminated the complexity of each cell would decrease: this, however, would
deteriorate the energetic performances of the structure.

So, it is possible to simplify the structure already analysed, renouncing either to
its flexibility or to its energetic performances.

The aim of this chapter, however, isn’t to find a simpler version for a LiM
array by starting from the structure already analysed. One of the reasons why
the array studied in chapter 5 is so complex is that it allows the execution of many
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different algorithms, without being specifically built for any of them. For this reason,
in order to find a simpler and more efficient LiM structure, a specific algorithm
application has been studied. The article that has been taken as a reference for this
chapter is [37], where a LiM architecture capable of a minimum/maximum search
inside the memory array has been proposed. The algorithm and the memory cells
presented in the article are analysed in detail in section 6.1. After the description
of the steps performed by the search algorithm in order to find the maximum or
the minimum number stored inside the array, it will be shown the memory array
based on skyrmions that has been developed starting from the original array version.
Finally, in section 6.3 will be presented all those blocks that belong to the datapath
of the memory, but that are at the same time needed for the control of its behaviour.
These blocks, described only approximately in [37], have been developed specifically
for the control of the memory array presented in section 6.2.

6.1. Original architecture and control blocks
Let’s assume to have a memory array containing a set of N numbers, each

represented on Nbit bits: each row of memory contains Nbit cells, each storing a
single bit of the corresponding number. The aim of the algorithm is to find the
maximum (or the minimum) out of these numbers. Let’s assume that the search is
aimed at finding the maximum value: a possibility for doing this is to use a shifting
mask, like shown in figure 6.1.

Figure 6.1. Steps of the algorithm described in [37]. Figure extracted from [37].
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A shift register containing Nbit bits is initialized with a 1 in the MSB (most
significant bit) position and with a series of 0 in the remaining bits; then the value
of the Nbit bits of the mask is provided in parallel to each of the N rows of cells
containing the N numbers to be analysed. Each memory cell contains an AND gate:
during each search step, each cell will perform an AND operation on the bit it stores
together with the bit that it receives from the mask register. For example, let’s say
that the aim is to find the maximum number in a set of three numbers represented
on 4 bits each: the mask register will be initialized to the value 1000, and these bits
will be provided in parallel to the three rows composing the memory array: the cells
in the column 0 will receive the MSB, set to 1, while the three remaining columns
will all receive a 0. At this point, the 12 cells inside the array will compare the value
they store with the bit received from the mask register. The output of the AND
gate contained inside each cell will be 1 only if the bit stored in it is equal to 1, and
if at the same time the bit coming from the mask is 1 as well. So, in the first step of
the algorithm, only the cells belonging to the first column (and containing the MSB
of the three numbers) will be allowed to produce a 1 as an output: if this happens, it
means that the MSB of the corresponding number is equal to 1. Since the aim is to
find the maximum number, if some cells produce a 1 while others produce a 0, this
already allows to discard all the numbers that do not provide a 1 as output from
the AND gate: this, in fact, implies that the MSB of the corresponding number
is equal to 0, and so that number will be for sure be lower than a number that
provides as output a 1. However, if all the cells produce a 0 (or a 1), no action can
be performed, because at this point all the numbers seem equally low (or equally
high), so the algorithm must go on.

The second step, either if some rows have already been discarded or if all of
them must still be considered, consists in a shift towards right of the mask register,
so that in this particular case it will contain the value 0100. Then the same steps
are repeated: a bitwise AND is performed in parallel within each row; all those
rows that will produce a 1 as output of the AND gate contain a 1 in the MSB − 1

position of the number they store, while all the remaining rows contain a 0 in that
position and can be discarded, because the number they contain is for sure lower
with respect to the other numbers, which have a 1 in that position.

171



6 – Logic in memory - second architecture

The algorithm is iterated until the mask register has performed Nbit shifts to-
wards right: this in fact means that all the bits inside the numbers have been
compared with the bit set to 1 contained in the mask, and so all the rows that were
not of interest have already been discarded. The rows that have remained, then,
are the ones that contain the result of the search. It is interesting to notice that the
algorithm works correctly even if the same maximum number is contained in two or
more rows at the same time: those rows, in fact, will all survive the comparison and
reach the end of the algorithm together, as shown for example in figure 6.1.

The same algorithm is able to perform the search for the minimum value with
just a simple change: instead of rejecting all those rows that during the particular
search step produce a 0, is enough to reject all those that produce a 1 instead. If
the cell inside each row that is comparing its value with the 1 coming from the mask
register (let’s call it ”active cell”) produces a 1, in fact, it means that the number
stored in that row has a 1 inside that position: so, that number for sure will be
larger than the numbers considered in the same search step that have a 0 in that
position, and so it can be rejected.

It is clear that each memory cell must contain an AND gate, needed to perform
the comparison with the bit that comes out from the mask register. At each com-
parison step only one of the cells inside each row (the ”active cell”) will have an
AND output equal to 1, and all the following decisions must be taken considering
in parallel the output of all these N ”active cells”. In order to reduce the number
of signals that must be analysed at each search step, is then possible to produce a
single signal in output from each row by cascading a series of OR gates. Each OR
gate will have as inputs the output of the AND gate of the cell i and the output of
the OR of the cell i − 1: in this way, all the outputs of the AND gates are put in
OR together, and if the active cell inside that particular row produces a 1, then for
sure the output of the last OR inside the row will be 1 on its turn. Then, according
to the type of search, that particular row may or may not be discarded.

As mentioned in the article, the memory array behaves as a traditional memory
array, able to perform standard read and write operations, and now and then it can
be used to do a min/max search as well. To grant the capabilities of a traditional
memory array, then, bitlines connecting the cells inside the same column and word
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lines activating the cells inside the same row must be included as well. These
considerations lead to the structure shown in figure 6.2. This is the structure of the
cell that will be used as a model for the construction of the memory array, detailed
in section 6.2.

Figure 6.2. Structure of the LiM cells proposed in [37]. Figure extracted from
[37].

All the decisions taken starting from the OR-wise output of each row are per-
formed by additional datapath blocks: this is one of the main advantages of this
architecture, since in this way a less complex FSM will be needed to control the
whole memory structure.

The organization of these blocks inside the memory architecture is shown schemat-
ically in figure 6.3.

Figure 6.3. Structure of the smart memory presented in [37]. Figure extracted
from [37].

In [37] only a brief description for each of these block is provided and no scheme
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is available. Since the behaviour of these blocks is extremely important for the
comprehension of the whole memory structure, a more detailed explanation will
be provided in section 6.3, where will be shown also the structures that have been
developed while thinking about the necessities of the memory array described in
section 6.2.

6.2. Memory array structure
The memory array based on skyrmions that has been developed starting from

the original LiM array is shown in figure 6.14. The array, the control signals and all
the control blocks described in section 6.3 have been defined and developed in order
to suit an array hosting three numbers with three bits each, but of course the the
generalization to any different value of N and Nbit is straightforward.

When looking at figure 6.14, the first fundamental difference with respect to the
organization proposed in [37] that must be underlined is the placement of the num-
bers inside the array. Until this point, in fact, the numbers where occupying one
row each, with the MSB bit in the leftmost position inside the row and the LSB (less
significant bit) in the rightmost. This is the most straightforward representation of
numbers when using a CMOS-based memory array. The main difference when de-
veloping a memory array based on skyrmions, however, is in the fact that skyrmions
are already non-volatile information carriers. This means that is enough to nucleate
them inside a nanotrack for having a storing of information: it isn’t necessary to
move them anywhere else. This is the principle exploited in the well known race-
track memories, where skyrmions are nucleated by a write head and moved along a
racetrack, implementing in this way the memorization of information with a serial
organization. In this case, however, a serial organization of the information is not
desired: the aim here is to analyse in parallel the value of N different numbers, each
composed by Nbit bits. This implies the presence in parallel of N racetracks: in each
racetrack a writing head nucleates Nbit skyrmions, according to the value of each bit
in the corresponding number, and these skyrmions remain hosted by the racetrack
until an elaboration is requested. This explains why, in the memory array shown in
figure 6.14, each number is occupying a column instead of a row, with the MSB bit
placed at the input of the bottom cell and the LSB at the input of the top cell. Each
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column is in fact a racetrack: during the initialization of the memory each writing
head, placed at the beginning of the racetrack, nucleates first the MSB bit, which
is then pushed towards the bottom by applying the voltage Vbl; then the MSB − 1

bit follows, and so on until the LSB bit, which will be the last to be nucleated and
will stop in correspondence of the top cell. Figure 6.4 should dissipate any possible
doubt concerning the organization of the numbers inside the array.

cell 02 
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LSB

...

Figure 6.4. Organization of the numbers inside the skyrmionic memory array of
figure 6.14.

This organization implies, of course, that the Nbit bits coming from the mask
register must be distributed along the columns, and not along the rows: the MSB

of the mask register must be provided in parallel to cell 02, cell 12 and cell 22, the
MSB − 1 bit to cell 01, cell 11 and cell 21, and so on.

In order to know the value to be nucleated along each racetrack, it’s necessary
to look bit by bit at the words that the external world desires to store inside the
memory. To do so, three shift registers (more in general, N shift registers) are
employed, as shown in figure 6.5. At each clock cycle, if the signal CTRL_WORD_-
SHIFT is asserted, the registers are shifted towards left by one bit, and the writing
heads at the head of each racetrack are controlled according to the value that comes
out from the corresponding shift register: in this way, if the leftmost bit inside the
register is a 1, a skyrmion is nucleated, while no action is performed if the bit is set
to 0. This writing operation can take place on the three racetrack in parallel: it is
simply a matter of controlling the signals which guide the writing operation. This
control is operated by the control blocks detailed in section 6.3.
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Of course, concerning the signals that appear in figure 6.5, both the inputs
WORDx and the controls CTRL_WORDx_STORE are activated by the external
world, while the remaining signals are managed by the memory.

WORD0 SHIFT REG
CLK

CTRL_WORD_RST CTRL_WORD_SHIFT

CTRL_WORD0_STORE

WORD0_OUT

WORD0

WORD1 SHIFT REG
CLK

CTRL_WORD_RST CTRL_WORD_SHIFT

CTRL_WORD1_STORE

WORD1_OUT

WORD1

WORD2 SHIFT REG
CLK

CTRL_WORD_RST CTRL_WORD_SHIFT

CTRL_WORD2_STORE

WORD2_OUT

WORD2

Nbit

Nbit

Nbit

Nbit

Nbit

Nbit

Figure 6.5. Shift registers hosting the words to be written in the array.

Let’s focus now on the structure of the array shown in figure 6.14. Once nucleated
by the writing head MTJ_WBx and put into movement by the voltage VBx (where
x stands for the index of the column), the skyrmions reach the blue areas Dxx.
These rectangles are inserted in the drawing simply to signify the region where
each skyrmion stops inside the racetrack. From that point on, each skyrmion can
move right (towards the input of the elaboration region), towards left (more on this
later), or maybe towards bottom, if a new impulse is applied on VBx. Still, for
the implementation of the algorithm described in section 6.1, only the movement
towards right is of interest. As soon as each skyrmion inside the racetrack reaches
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the proper blue rectangle, that is, the proper stop region, the voltage VBx is turned
off: as a consequence, the skyrmions representing the bits of each number stop inside
the racetrack, and this corresponds to the memorization of the information.

This information may be read with a reading operation. To do so, the voltage
Vopx is applied. Doing so, each skyrmion enters the elaboration region and, as soon
as a peak of current occurs (so, the voltage Vopx should provide at least one peak of
current, at some point), the skyrmion goes past the notch, enters the H structure
of the AND/OR gate and, since no other input is applied, goes out from the top
output of the gate (the OR output). In this way, pushed a bit forward by the voltage
Vopx, the skyrmion reaches the read head MTJ_Rxx, where its value is detected.
Finally, the skyrmion may be expelled from the track or it may stop right at the end
of it until a new skyrmion arrives and pushes it out from the track: in any case, it
won’t be collected and reused later, as it happened in the cells described in chapter
5.

When the skyrmion is pushed by the voltage Vopx, before going past the notch,
it crosses a green duplication element. This element is exactly the one used also in
chapter 5, proposed in [40] and exploiting the technology described in [43]. Thanks to
this element, the value of the bit represented by the skyrmion is not lost, because as
soon as the skyrmion is pushed towards the elaboration area, it is also duplicated and
a copy of it is placed back inside the blue ”stop region” of the racetrack. Moreover,
it is not needed any additional voltage source to control this operation, because
everything can work simply with the voltage Vopx, needed for moving the skyrmion
towards the read head.
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Figure 6.6. Latches storing the output of the read heads that appear inside the
memory array.
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Of course, the read head generates only a brief impulse when the skyrmion passes
below it. This impulse must be stored somewhere, together with the remaining
Nbit − 1 impulses from the other read heads, which are dealing at the same time
with the other bits of the same word: the requested word in fact has to be read
externally by the electronic component which requested it, and it is not guaranteed
that this component is able to capture the brief impulses of the read heads. For this
reason, each read head is connected to a SR latch (which is sensitive to the rising
edges on the output the corresponding read head only if the signal EN_READ is
active): the outputs of these latches are then used to form a bus, which is selected by
a multiplexer according to the memory word that was requested. The latches used
inside the array, together with the signals that control them, are shown in figure 6.6,
while the multiplexer used to select the memory word requested is shown in figure
6.7. The signals that appear inside these two pictures are managed and activated
by the control blocks that will be detailed in section 6.3.

Now that the topic of both the reading and the writing operations has been
covered, it is time to concentrate on the operations needed for implementing the
search algorithm. Let’s assume that three numbers have been written and are stored
inside their respective racetrack, waiting for Vopx to be applied. If a search operation
is desired, first of all the mask register must be initialized and its value must be used
in order to nucleate the skyrmions needed for performing the AND operation inside
each column. The signals that control the mask register (again a shift register, but
this time the shift direction is towards right) are shown in figure 6.8.

So, the first operation to be done is the activation of the signal CTRL_MASK_-
STORE : doing so, the value that is fixed at the input, with only the MSB set to 1,
will be stored inside the register. Three copies of the output from the mask register
are sent in parallel to the three columns of cells, and the three bits composing the
value of the mask register’s output are used to drive the write head MTJ_Wxx

inside each cell. In particular, in the first step of the algorithm only the write
heads MTJ_W02, MTJ_W12 and MTJ_W22 will nucleate a skyrmion, while
the remaining heads won’t perform any action, since their control bits are still set
to 0.

When these skyrmions are nucleated according to the output from the mask
register, the voltage Vopx can be applied. Differently from what happened with a

178



6.2 – Memory array structure

AA
ou
t2

AA
ou
t1

AA
ou
t0

00
1

01
0

10
0

CTRL_RST_L_MTJR_0

CTRL_RST_L_MTJR_0

CTRL_RST_L_MTJR_0

MTJ_R00_out

EN_READ

EN_READ

MTJ_R01_out

EN_READ

MTJ_R02_out

S

R

Q

S

R

Q

S

R

Q

S

R

Q

CTRL_RST_L_MTJR_1

S

R

Q

CTRL_RST_L_MTJR_1

S

R

Q

CTRL_RST_L_MTJR_1

MTJ_R10_out

EN_READ

EN_READ

MTJ_R11_out

EN_READ

MTJ_R12_out

S

R

Q

CTRL_RST_L_MTJR_2

S

R

Q

CTRL_RST_L_MTJR_2

S

R

Q

CTRL_RST_L_MTJR_2

MTJ_R20_out

EN_READ

EN_READ

MTJ_R21_out

EN_READ

MTJ_R22_out

READ_WORD
muxREAD_OUT

C
LK C
TR

L_
R
EA

D
W
O
R
D
_R

ST

C
TR

L_
R
EA

D
W
O
R
D
_E

N

READWORD_OUT
Nbit Nbit

Figure 6.7. Multiplexer used to select the memory word requested from the
external.

read operation, this time there may be up to two skyrmion that are pushed towards
the AND/OR structure: if this is the case, the output of the AND will be 1, just
like the output of the OR; if instead only one skyrmion is present, only the output
of the OR will switch to 1. The output of the OR is ignored in this operation, and
its value, even if it is detected by the read heads MTJ_Rxx, it is not stored inside
the latches of figure 6.6 because the signal EN_READ is not asserted.

It should be underlined here that, thanks to the duplication elements across
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Figure 6.8. Mask register: at each step of the algorithm the content of the register
is shifted towards right by one position.

which the skyrmion passes through before crossing the notch at the input of the
AND/OR gate, the value stored in the racetrack is always restored back, so that
there is no need to write back its value by activating the write head at the beginning
of the racetrack. It would be possible to avoid the use of these duplication elements
by exploiting the shift registers shown in figure 6.5 for keeping trace of the infor-
mation to be written back: if at each shift the bit coming out from the left of each
register is injected back on the right, the word stored inside the register wouldn’t
get lost after each write operation. Every time that a skyrmion is extracted from
the racetrack, then, the word stored inside the corresponding shift register could
be used again to perform a new write operation inside the racetrack, with the aim
of restoring back the information that was lost. The control of the memory would
become a bit more complex, but no additional memory elements would be needed
for allowing this write-back operation, apart from a slight modification of the word-
shift register, which now would need also a serial input and a serial output, apart
from a parallel input and output.

As already explained, only one cell inside each column, that is, the ”active cell”
of that particular search step, will produce a 1 on the output of the AND gate: all
the other AND outputs inside that particular column will be 0. This means that,
joining the output from the AND gates together, only one skyrmion (at most) will
be coming out from the output of the join. As a result, to implement the chain of
bitwise-OR gates, in the memory array based on skyrmions is enough to use a chain
of join elements, connecting together all the outputs from the AND gates. Then,
to detect the actual presence of a skyrmion, the read head MTJ_RRx is placed at
the output of the last join element; also the output from this read head is stored
inside a latch, as shown in figure 6.6, so that the signal is maintained stable and can
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be analysed by the control blocks, which must take their decisions according to the
value detected.

A final comment, before concluding the topic of the memory array structure,
must be spent around the left output from the Dxx elements. The skyrmion is al-
lowed to leave the racetrack from that output only when the voltage Vtrxx is applied.
The destination of that path is always the corresponding cell inside the column (the
word) on the right: this connection, in fact, allows each cell to use as operand the
value stored inside the corresponding cell inside the word on the left, that is, it allows
to perform bitwise operations between adjacent words. This is not a request of the
search algorithm presented in [37] and for this reason, even if the controls needed
to manage this movement of data have been implemented, they are not actively
controlled by the FSM. The possibility of performing also this kind of operation
has been taken into account only to formulate a slightly more powerful and generic
memory array, but if the desire is to actively use this functionality, as soon as an
algorithm is chosen and a specific application is desired, the FSM that controls the
memory must be modified and tailored in order to fit that specific algorithm.

6.3. Control blocks
Looking at the memory array shown in figure 6.14, some concerns may arise

from the number of signals that are again needed to control the whole array. Even
if these signals are similar in their name, in fact, the moment in which they must be
turned on to control the specific cell to which they are dedicated changes depending
on the steps of the algorithm, on the particular values needed to be stored and on
many other conditions. A FSM that controls all these signals one by one, then,
must be for sure very complex, almost as complex as the FSM described in chapter
5. In this particular case, however, the strength of the structure proposed in [37]
is to use a set of datapath blocks, which are useful for deciding what actions must
be performed according to the results obtained in each step of the search algorithm.
These same blocks, however, are extremely useful also to mask and select in a finer
way all the signals that are needed by the skyrmionic memory array, for example
for nucleating the skyrmions, for moving them, for detecting their presence and so
on. Thanks to these same control blocks, then, the FSM can be made much simpler,
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even completely independent on the particular number of words that the array is
able to host.

For this reason, the functionality of each of the control blocks depicted in figure
6.3 is of vital importance for the correct behaviour of the array and must be discussed
in detail. In the following, a in-depth explanation of the role of each control block
is provided, together with the scheme that has been developed in order to fit the
particular memory array shown in figure 6.14: as already mentioned, a generalization
to any other value of both N and Nbit is straightforward.

6.3.1. Detector
The main aim of the detector block is to identify all those conditions in which

some words can be excluded from the comparisons to be performed in the future
steps of the search algorithm. The condition in which some words can be excluded
is verified when the outputs of the bitwise OR performed inside each column are
not uniform, that is, some outputs are 0 while others are 1. As suggested in [37],
to verify this condition is enough to use two trees of AND gates, whose outputs are
then combined by a single XNOR gate. The structure derived from this description
is shown in figure 6.9.

In this figure, the signals L_MTJ_RR_out_x correspond to the bitwise-OR
outputs coming out from the array (they are the reading of the MTJ_RRx at the
end of each column, after being latched in the memory elements of figure 6.6), while
the selection signals LATCHx_OUT come from the block row disabler and are equal
to 1 when the corresponding row must be rejected from the comparisons.

The left tree produces as output a 1 only when all its inputs are equal to 1;
at the same time, the right tree produces a 1 only when all the inputs are equal
to 0. If neither condition is verified, then some words can be excluded from the
comparisons of the next steps: this condition is signified by the activation of the
signal ENABLE_Rowdis, which is obtained by the XNOR combination of the two
outputs from the trees.

As discussed in [37], for the correct functioning of the algorithm is essential
that the bitwise-OR coming from the words that must not be taken into account
are excluded from the inputs to these trees of AND gates: for this reason some
multiplexer are interposed. The other input of each multiplexer has been chosen
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Figure 6.9. Structure of the detector block: two trees of AND gates combine
together the outputs of the bitwise-OR.

according to the following reasoning: the ”transparent” value for the left tree, that
is, the value that is never able, alone, to determine the value of the output, is equal
to 1: this means that the values that must not be taken into account should be
masked by a value fixed to 1, since by itself it is not able to change the output of
the AND tree. Vice versa, the ”transparent” value for the right tree is equal to 0,
and so that is the value chosen for the other input of the multiplexers.

6.3.2. Row disabler
The detector block produces as output the signal ENABLE_Rowdis which, when

active, identifies all those conditions in which some words can be discarded. For this
reason this signal is used as enable to the block row disabler, whose structure is
shown in figure 6.10.
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Figure 6.10. Structure of the row disabler. A latch storing a 1 means that the
corresponding row must be rejected from the future comparisons.

The main components of row disabler are the latches needed to remember whether
the corresponding word must be considered in the comparisons. At the very begin-
ning of the search operation each of these latches is reset to 0, and only when the set
of conditions that drive the bunch of gates at its input are satisfied, the value stored
inside the latch becomes 1, signifying that from that moment on the corresponding
word must be ignored. The latches which switch to 1 during the search are reset
back to 0 only at the end of the algorithm, when the desired memory word has been
found.
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The conditions that must be satisfied in order to reject a certain word are the
following: first of all, it is necessary to know if the aim of the search is the maximum
or the minimum value stored in the memory. If the maximum is desired, then the
word may be rejected if the output of the bitwise-OR is equal to 0, vice versa if the
minimum is desired. However, the value coming out from the bitwise-OR must be
considered only if there are other outputs different from that value, that is to say, if
the signal ENABLE_Rowdis, produced by the detector, is active. Finally, of course,
the memory array must be in the find mode, and not for example in the read or
in the write mode, where it should behave like an ordinary memory array. Only if
all these conditions are satisfied at the same time, the output of the last AND gate
switches to 1, enabling the input of the latch to have a rising edge, which is readily
stored by the memory element: from now on the latch will store a bit equal to 1,
signifying that the corresponding word must be ignored in the following steps of the
algorithm.

6.3.3. Encoder
The encoder is the block that allows the external world to know, at the end of

the search operation, what is the address of the word found. Its structure is shown
in figure 6.11.

ENCODER

LATCH2_OUT

LATCH1_OUT

LATCH0_OUT

0

CTRL_ENCODER_EN

ADD_REG
ADDRESS_FOUND

CTRL_ADDREG_RST

CTRL_ADDREG_STORE

ADDRESS_FOUND_REGout

CLK

ceil(log2N) ceil(log2N)

Figure 6.11. Structure of the encoder. It is a priority encoder, so only one address
will be provided to the external, even if more than one word corresponding to the

search needs has been found.

The encoder used in this block is a priority encoder: this means that, even if
more than one word corresponding to the search parameters has been found, the
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address that will be provided to the external will be only one. However, since the
array and the algorithm itself allow to find more than a single word that satisfies
the requests, in order to exploit this capability it would be enough to modify the
electronic component, allowing it to use more than one output port at the same
time.

The address of the word that has been found at the end of the search process
is recorded by the latch (or the latches, if more than one word has been found)
that is still equal to 0 inside the row disabler block. This address is transmitted to
the external by enabling the encoder to activate its output according to this input
values, and at the same time allowing the register after the decoder to store the
value of the address just encoded.

6.3.4. And array
The aim of the and array is to activate selectively the word lines of the memory

array, according to the outputs from the row enabler block. In the particular case
of a skyrmionic memory array, this block is exploited, together with the FSM-array
adapter discussed in section 6.3.5, for preventing the activation of all those signals
(for example, the voltage generators’ control signals) that would make the corre-
sponding memory column start the computations. The structure of the component
is shown in figure 6.12.

The signals that are directly used to understand whether a certain memory word
has to be considered or not are the outputs AAoutx. These signals can become active
only if the corresponding latch inside the row disabler is still equal to 0: as soon as
its content switches to 1, in fact, the output of the AND gate inside the and array
block goes to 0 and the corresponding memory word is disabled, since its AAoutx
signal becomes equal to 0.

Another condition is needed in order to activate the AAoutx signals. As men-
tioned, these signals are used to select a word inside the array, whatever the modality
(read, write or find) in which the memory is currently. For this reason, these sig-
nals must be equal to 1 when the decoder, which is used when a specific memory
word must be read/written, is activated. Both in the read and in the write mode
all the latches inside the row enabler block are reset to 0, so it is enough for the
decoder to activate one of its outputs (in figure 6.12 they are called DEC1, DEC2
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Figure 6.12. Structure of the and array.

and DEC3) in order to activate the corresponding AAoutx signal, thus selecting the
memory word of interest.

When the memory array is in the find mode, however, all the words inside the
memory must be considered, at least until some of them get disabled by the latches
inside row disabler. During this operation mode, so, the decoder is not used: this
is why the signal FIND is one of the inputs of an OR gate, together with decoder
outputs. If the memory is in the find mode, the FIND signal is asserted, thus
allowing all the memory words to be selected at the beginning of the algorithm.
FIND will remain asserted until the end of the search operation, and the latches
inside row enabler will take care of masking the memory words that must be excluded
from the comparisons during each step.

A third condition that allows the activation of AAoutx, as long as the output
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of the corresponding latch is equal to 0, is the activation of the signal RESET_n
(active low) from the external. This signal is the same used for the reset of the
FSM. The reason why this signal is used for activating AAoutx will become clear in
section 6.3.5. Finally, the last condition that allows the activation of AAoutx (again,
as long as the latches inside row enabler are reset to 0) is the activation of the signal
IDLE. Also in this case the reason why this signal is used as input to the OR gate
will become clear in section 6.3.5.

Each of the signals AAoutx is one of the inputs of a OR gate, whose output is the
signal AAoutOR. This is done with the aim of simplifying the FSM that controls the
memory, whose structure is shown in figure 6.15. Exploiting the signal AAoutOR,
in fact, is possible to write a unique procedure for dealing with the writing requests
from the external world, independently on the number of words stored inside the
array and on the particular output line from the decoder that has been activated.
More details on the structure of the FSM will be given in section 6.3.5.

As it can be observed from the structure of the FSM, to perform the writing
operation of a single word, in general Nbit clock cycles are needed. During these
clock cycles the output of the decoder must remain stable, so that the signal AAoutx
is kept active through the whole operation. The array is able, in principle, to write
three words at the same time, but to do so there would be the need of a decoder
able to activate three output lines at the same time (that is, a decoder with N input
ports, in general, where N is the number of words stored in the memory).

6.3.5. FSM-array adapter and FSM structure
An additional block has been developed with respect to the ones proposed in

[37]. The aim of this block is to generate, starting from the few signals activated by
the FSM and from the output signals of the block and array, all the control signals
that are necessary to actually drive the memory array during its tasks. The FSM
machine in figure 6.15, in fact, asserts only generic signals, which in most of the
cases never arrive directly to the component that needs them. These signals are
asserted according to the operations to be done, assuming that there is always at
least one memory cell that needs them. Whether the actual signals will be activated
starting from these generic signals, it depends only on the decisions performed by
this block, shown in figure 6.13.
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Figure 6.13. Structure of the FSM-array adapter, needed to translate the generic
signals activated by the FSM into the actual signals needed by the memory array.

This block is simply an array of AND gates, which receive on one side the generic
signal activated by the FSM, and on the other side the signal AAoutx, activated by
the block and array and needed to know on which memory word the action requested
must be performed.

To guide the reader in the analysis of the signals that are generated by this
block, a description state-by-state of the actions performed by the FSM is offered in
the following. The order in which these states will be described follows the order in
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which each operation is logically placed during the use of the memory: this means
that first the reset state, then the initialization of the memory, then the states
related to the find mode, and finally the states linked to a read operation will be
described.

reset During the reset state all the memory elements present inside the architecture
are reset: this means that the signals asserted are

• CTRL_WORD_RST
• CTRL_MASK_RST
• CTRL_RST_L_MTJRR
• CTRL_RST_L_MTJR
• CTRL_LATCH_RST
• CTRL_ADDREG_RST
• CTRL_READWORD_RST

Among these signals, both CTRL_RST_L_MTJRR and CTRL_RST_L_-
MTJR pass through the FSM-array adapter before being sent to the compo-
nents that need them, while all the remaining signals are provided directly.
The aim in asserting both CTRL_RST_L_MTJRR and CTRL_RST_L_-
MTJR is to reset the latches inside the memory array that store the signal
coming out from the read heads. During the reset state, also the latches inside
the row enabler are reset: this means that, even if the decoder is not activat-
ing any output line yet, and even if FIND is still equal to 0, since the signal
RESET_n coming from the external is asserted, all the signals AAoutx will
become active, thus allowing the reset of the latches inside the memory array
(their reset signal is put in AND with the proper AAoutx by the FSM-array
adapter). As shown in figure 6.13, three AND gates receive the signal CTRL_-
RST_L_MTJRR, and put it in AND together with either AAout0, AAout1 or
AAout2 to determine the signals CTRL_RST_L_MTJRR_0, CTRL_RST_-
L_MTJRR_1 and CTRL_RST_L_MTJRR_2; a similar thing happens with
the signal CTRL_RST_L_MTJR. In this way the FSM activates only two
signals, but since the memory array hosts three words, actually six different
signals will be asserted at the same time, since all of the three signal AAoutx
are active.

190



6.3 – Control blocks

S0 The FSM remains in the reset state as long as the signal RESET_n is asserted.
When this signal becomes inactive, the FSM moves to the state S0. This
state is an idle state, where the FSM waits for new requests, which could
be a read, a write or a find operation. This state will be discussed more
than once, respectively in states S9, S4 and S6, to prove how the signals that
are asserted here are used to complete each operation and restore back the
employed registers to their default value. Here a list of the signals that are
activated is provided, to prove how, after the reset state, no relevant action is
performed.

• IDLE : the idle signal is activated.
• CTRL_RST_L_MTJRR, CTRL_RST_L_MTJR: they are the reset

signals of the latches needed for storing the output of the read heads
inside the array. Even if FIND, the decoder outputs and RESET_n are
all inactive, thanks to the activation of the signal IDLE the latches are
able to receive a reset impulse; the latches, however, have already been
initialized in the reset state, so actually no relevant action is performed.

• CTRL_LATCH_RST : the latches inside the row disabler receive their
reset signal directly, so they will be kept in the reset state also during
S0.

• CTRL_MASK_STORE : by activating this signal, the mask register
stores the value fixed at its input, that is, all bits equal to 0 apart from
the MSB, which is set to 1. Doing so, the register is now ready to provide
the value to the memory array, as soon as a search operation is requested.

Before going on with the description of the remaining states, a disclaimer must be
inserted here. It should be very clear that the structure of a FSM is tightly linked to
the behaviour of the components which form the datapath that the machine controls.
If the timing of one component changes, also the FSM structure must change as well.
Now, the aim of this and of the previous chapter has been the project of a LiM array
based on skyrmions; in the previous chapter the project has been tested in VHDL,
and a VHDL description is offered also for the array discussed in this chapter. This
VHDL description always tries to remain as close as possible to the actual behaviour
of the components that would be used in a physical realization of the array, but this
may be not always possible, depending on the particular situation. In this case, for
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example, great difficulties arise from the desire of describing in a behavioural way
the mechanism of nucleation and of movement of the skyrmions along the racetrack,
until each skyrmion stops exactly in correspondence of the cell that must elaborate
it. The main difficulty arises exactly from the desire of a behavioural description: if
the skyrmions were described as in the gates used in chapter 4, in fact, the problem
wouldn’t be so difficult to be solved.

The components that raise the largest problem in this description are the ones
labelled as Dxx. These are not even actual components, in the physical realization
of the array: they would simply be a point in the racetrack where a number of
paths arrive and where the skyrmion is able to take one direction or the other,
according to the voltage that is turned on. This is where the difficulties begin.
The skyrmions are described in VHDL as pulses imposed on a signal: this said, the
behavioural VHDL description of the components Dxx becomes very tricky. This
description is such that, after detecting a skyrmion on one of their inputs, they store
it inside themselves in correspondence of the first rising edge on one of the three
currents they are sensitive to (either the racetrack current, or the current due to
the activation of either Vopx or Vtrxx); then, a new rising edge on one of these three
currents makes the skyrmion inside the component go out from the selected output.
This kind of description is inevitable if the choice is to describe the component from
a behavioural point of view: in an actual physical component, in fact, there would
be no need for these sequential activations and deactivations of voltage controls,
because the timing of the operation is determined uniquely by the velocity of the
particle: these controls could even be turned on all at once and the result of the
operation would still be correct. At a behavioural level, where the skyrmions are
simply pulses and no propagation mechanism inside the components of the array is
simulated, this kind of description for the Dxx is really inevitable; the timing of the
operation must then be determined by the succession of the events on the control
signals, imposed by the FSM, since it cannot be decided by the movement of the
skyrmion. This is the first reason why the VHDL description of this array starts to
be less adherent to the reality.

In a physical realization of the racetrack, it would be enough to nucleate three
skyrmions one after the other, tuning the time distance between the impulses on
the writing head depending on the amount of current imposed by the activation
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of Vbl and on the velocity of each skyrmion; at the same time, applying a single
impulse on Vbl (long enough to allow the complete movement of the skyrmions),
each particle would reach the corresponding cell input, without any kind of difficulty.
A behavioural VHDL description of this mechanism is almost impossible: the Dxx
VHDL components, first of all, are all connected to the same input signal, that is
the output of the writing head at the beginning of the corresponding racetrack: this
means that, as soon as a skyrmion is nucleated, they all sense it at their input, all
at the same time. Even if some delay lines where put between one Dxx component
and the other, in order to introduce a delay on the detection of the input skyrmion,
the problem wouldn’t be solved, because they also sense the activation of the same
current (linked to Vbl) all at the same time, and the activation of this current messes
up the behavioural description of the component. For this reason, the only way
to obtain a description as close as possible to the actual physical realization of the
array is to do the following: first the MSB is nucleated, moved along the racetrack
and then placed inside the component Dx2. Then this component is deactivated:
this means that it receives an enable signal, and when this signal is not asserted
the component is not able to detect neither an input skyrmion, nor a rising edge
on any of its input currents. Then a second skyrmion is nucleated, moved along
the racetrack and stored inside Dx1, which is then deactivated. Finally, the last
skyrmion is nucleated, moved and stored inside Dx0: only at this point the other
two Dxx component can be enabled again, ready to allow the skyrmion to go out
from one of the three possible outputs.

As a result, the FSM is a bit different from the one that would control the
equivalent physical array: the consequences of these differences are in the need of
introducing the signals CTRL_in_EN_2 and CTRL_in_EN_1, whose meaning is
completely unrelated from the physical realization of the array, and in the need of
applying a series of pulses on the signal CTRL_Vbl during each state. Of course, it
is possible to modify the description of the components Dxx, maybe making them
less ”behavioural” and more adherent to the reality of the facts: doing so also the
FSM would become more adherent to the machine that would control the actual
physical array.

Having said this, is now possible to discuss the remaining states, particularly
those involved into a writing operation, with a slightly deeper knowledge about the
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reason why some signals are used.

S7 The first operation that must be done in order to use the memory is to initialize
it. To do so, an address must be provided from the external, together with the
word to be written inside the array, and the address must be maintained stable
at the input of the decoder until the write operation is completed. Moreover,
the memory input READ_WRITE_n must be driven accordingly from the
external. After a new word has been stored in one of the registers shown in
figure 6.5, the decoder activates one of the lines DEC0, DEC1 or DEC2 in
figure 6.12: as a consequence the corresponding AAoutx, which up to now was
equal to 0, becomes active, since the corresponding latch inside row enabler is
still reset to 0. Differently from what happened in the reset state, this time
only one AAoutx at the time will be activated, unless the decoder has more
than one input port, able to accept more than one address at the same time.
The activation of AAoutx makes AAoutOR (figure 6.12) switch to 1, so the
FSM enters state S7.
During this state, the FSM activates the signals CTRL_MTJW and CTRL_-
Vbl. CTRL_MTJW is needed for allowing the nucleation of a skyrmion at
the beginning of the selected racetrack, according to the value of the MSB
inside the word register of reference. As figure 6.13 shows, the three signals
CTRL_MTJW_0, CTRL_MTJW_1 and CTRL_MTJW_2 are generated by
computing the AND of CTRL_MTJW, of AAoutx and of the bit coming out
from the word register of competence: each of the signal CTRL_MTJW_x
then can become active only if the corresponding memory racetrack has been
chosen as a destination for the writing operation (AAoutx is active) and if the
bit that must be represented is a 1 (SHIFT_WORD_OUT_x is 1): if the bit
to be represented is 0, in fact, no nucleation must be performed.
Thanks to the activation of CTRL_Vbl (which is again put in AND with
AAoutx), the skyrmion that has just been nucleated can then move along the
racetrack. Five pulses are imposed on this signal, in order to allow the MSB
to reach the component Dx2.
During the S7 state, also the signal CTRL_WORD_SHIFT is activated. This
has as consequence the shift of all the word registers towards left by one
position. There is no possibility, in fact, that these registers may contain
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any kind of information that must be preserved: if more than one register is
storing some kind of information, it means that this information is being used
in the current writing step and has to be properly shifted. At the end of the
writing step the memory will be ready to accept new data inside these registers,
together with the address(es) where this data must be stored. Shifting the
word registers involved in the write operation, of course, has the aim of making
available for the next writing step, performed in state S8, the second bit to be
written inside the racetrack.

S8 The operations performed in this state are very similar to the one already dis-
cussed for state S7. First of all, thanks to the deactivation of the component
Dx2, a new skyrmion can be nucleated and moved without affecting the in-
formation already stored inside the racetrack. So, a new pulse is applied to
CTRL_MTJW, in order to nucleate the MSB − 1 bit of the word, according
to the value that is coming out from SHIFT_WORD_OUT_x; CTRL_Vbl
experiences three consecutive pulsed, so that the skyrmions moves along the
racetrack until it reaches the component Dx1; finally, the word registers are
shifted once more towards left.

S9 This is the last state needed for performing the writing of a word inside the
memory array. Now both CTRL_in_EN_2 and CTRL_in_EN_1 are set
equal to 0, so that both Dx2 and Dx1 are deactivated. In this way it is possible
to nucleate a new skyrmion by activating once more the signal CTRL_MTJW ;
then, by imposing a single pulse on CTRL_Vbl, this skyrmion is stored inside
the component Dx0. This completes the writing operation. One final shift is
imposed to the word registers: doing so, either the value initially stored in the
register is completely shifted out, so that the register now is filled with zeros,
or, if the register were modified with the introduction of a serial input and
a serial output, with this final shift the initial word would be fully restored
inside it.
Coming back to state S0, let’s look again the signals that are asserted in that
state:

• IDLE : the idle signal is activated again.
• CTRL_LATCH_RST : the latches inside the row disabler will be reset
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again; however, they don’t contain any relevant information yet, so this
operation has no consequence.

• CTRL_RST_L_MTJRR, CTRL_RST_L_MTJR: the latches connected
to the read heads inside the memory array, again, sense the activation
of their reset signals, because even if FIND is still 0, RESET_n is no
more active and the outputs of the decoder have already been turned off
(the writing operation is over), since the IDLE signal is activated and
the latches inside row disabler are reset, then all the signals AAoutx are
allowed to switch.

• CTRL_MASK_STORE : the mask register stores again the value fixed
at its input. It was already containing exactly that same value, so no
relevant action is performed.

S1 If, during the idle state that is S0, the activation of the signal START_FIND,
coming from the external, is detected, the machine moves to state S1. The
first action that is performed is the activation of the signal FIND: doing so,
as shown in figure 6.12, all the signals AAoutx will switch to 1 (since all the
latches inside row disabler are still set to 0), thus enabling the following ac-
tions to be performed on all the memory words in parallel.
In order to start the search of the minimum/maximum word, the value of the
mask must be distributed along all the columns inside the array. To do so, the
FSM activates the signal CTRL_MTJ_CELL: this signal is then filtered by
the FSM-array adapter block, which puts it in AND with the signals AAoutx
and with the bit from the mask that must be written inside each cell. Let’s
consider for example the MSB of the mask, equal to 1: this bit is used in the
AND that determines the value of CTRL_MTJ_CELL_02, of CTRL_MTJ_-
CELL_12 and of CTRL_MTJ_CELL_22; since all of the AAoutx signals, at
this stage, are equal to 1, these three signals will be all set to 1 on their turn.
This doesn’t happen for the remaining CTRL_MTJ_CELL_xx, instead: even
if CTRL_MTJ_CELL is active, together with the respective AAoutx, all the
remaining bits of the mask are equal to 0, and so no skyrmion is nucleated by
the write heads. As a result, only cell 20, cell 12 and cell 22, dedicated to the
elaboration of the MSB of the three numbers, will have a skyrmion nucleated
by the write head.
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During this same state, also the signal CTRL_Vop is applied: this has the
effect of turning on the current that allows the skyrmion stored inside each
racetrack (also CTRL_Vop is manipulated by an AND with AAoutx, but ev-
ery AAoutx is equal to 1 now) to go out from the Dxx component where it
is placed and enter the cell where the elaboration will be performed. This
same current pushes both this skyrmion and the skyrmion just nucleated to-
wards the input of the AND/OR gate. Before the elaboration can start, a
peak of current must be applied on CURRENT_Vop: it is of vital importance
for the correct functioning of the AND/OR gate, in fact, that the couples of
skyrmions are perfectly synchronized at the input: for this reason a couple of
notches has been inserted at the input of each gate. Finally, thanks again to
the voltage Vopx, each skyrmion is pushed through the gate, and the results of
each AND are collected by the chain of join components, all the way towards
the read head MTJ_RRx, where the presence or the absence of the skyrmion,
according to the value of the MSB of each number, is detected. As soon as the
output of this read head switches (if it switches), it is latched inside one of the
memory elements shown in figure 6.6: as a consequence, the two AND trees
of figure 6.9 decide whether the row enabler must be activated, and if this is
the case, some of the latches inside figure 6.10 will be set to 1, thus disabling
the corresponding word from the future comparisons.
The final action that is done during this state is the shift towards right by one
position of the content inside the mask register: in this way, the register will
be ready, in the next step, to provide the correct bit to any of the cells inside
the array that must receive it.
One more signal, CTRL_Vbl, is activated during this state: the aim in do-
ing this is allowing the skyrmion produced by the duplicating element inside
each cell (according to the value of the input skyrmion) to be stored inside
the component Dxx. Again, the activation of this signal is due only to the
particular VHDL description that has been adopted for that component, and
would have no real correspondence in a physical realization of the array.

S2 The first action that is performed in this step is to impose a pulse on the signal
CTRL_RST_L_MTJRR: this reset won’t be sensed by all the latches that
were involved in the last step, because now some latches inside row disabler
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may have been set to 1, masking the activation of this signal to the columns
that have been discarded. However, even if those latches are not reset now, it
is not a problem, because their output will be ignored from now on. They will
be reset only at the end of the search operation, together with all the latches
inside the array.
The remaining operations performed in this and in the following state are
very similar to what already discussed: new skyrmions are nucleated only in
the enabled columns according to the pattern described by the mask register,
which is then shifted by one position. Vopx is turned on again, allowing the
skyrmion to move and to reach the read head: then, according to the requests
of the search, each of the columns that are currently being considered may or
may not be disabled.

S3 The actions performed in this state are equal to the ones that appear in state
S2, so they won’t be discussed any further. It must be underlined, however,
that in an array containing numbers represented on three bits, this is the final
search step: at the end of this state the latches inside row disabler will contain
the indication of the address of the word(s) found. For this reason, all the
signals that must be activated from now on have the aim of concluding the
search operation and of providing the result to the external, restoring at the
same time the registers inside the memory, in order to be ready for a new
operation.

S4 During this state is it activated the signal CTRL_ENCODER_EN of figure
6.11: as soon as its enable is turned on, its output won’t be anymore equal
to a high-impedance value, but will encode the address of one of the latches
still equal to 0 it sees in its input. So, now the register shown in figure 6.11
will be able to transmit to the external the value of the address of the word
found, provided on its input by the encoder: for this reason also the signal
CTRL_ADDREG_STORE is turned on. During this state, finally, a new
impulse is provided on CTRL_RST_L_MTJRR, so as to reset the latches
that participated in the detection of the skyrmions in the last search step.
This is the last state involved in the writing operation. Now the machine
comes back to the idle state S0, with all the latches that still need to be reset.
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Let’s look again at the signals that are activated during S0:

• IDLE : the idle signal is activated again.
• CTRL_LATCH_RST : activating this signal, the latches inside the row

disabler are all reset back to 0. Their reset signal in fact comes directly
from the FSM, without passing through the adapter block, so it will be
detected by all the latches at the same time. Since from now on all
the latches will contain again the same value, all the future actions will
have the same effect throughout the whole memory structure, because
no AAoutx signal will be able to mask them anymore.

• CTRL_RST_L_MTJRR, CTRL_RST_L_MTJR: the signals FIND,
RESET_n and all the outputs from the decoder are inactive; however,
since IDLE is asserted, and since all the latches inside the row disabler
are being reset right now, all the signals AAoutx are able to experi-
ence an impulse. This allows the signals CTRL_RST_L_MTJRR and
CTRL_RST_L_MTJR to be sensed by all the latches contained inside
the memory array: in this way they are all reset to their default value.

• CTRL_MASK_STORE : the mask register stores again the value fixed
at its input. In this way it will be ready for a new search operation, if
desired.

S6 The last request the memory must be able to satisfy is a read request. In order
to read a memory word an address must be provided externally, and this ad-
dress must remain fixed at the input of the memory until the operation is over.
When the address has been provided at the input of the decoder, which has
also been enabled by the external world, the activation of the signal READ_-
WRITE_n (which must be equal to 1 to signify that a reading is requested)
makes the machine enter the reading routine. At this point, since the latches
inside row disabler have been all reset to 0, but since only one signal among
DEC1, DEC2 and DEC3 is enabled, then only one of the signals AAoutx will
switch to 1: as a result, the following operations will be allowed only on the
selected memory word, while all the remaining words inside the memory array
won’t be affected.
During this state, the signals EN_READ and CTRL_Vop are activated. It
should be easy to guess, at this point, that CTRL_Vop will allow only the
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skyrmions inside the selected racetrack to move towards right, inside the elab-
oration area, crossing the notch at the top input of the AND/OR gate, going
through the gate itself, coming out from the OR output, up to the read head
placed right at the output of the OR gate. The output of this read head is
latched inside a memory element, since the signal EN_READ, which appears
in figure 6.7, is enabled as well. As a result, only the latches related to the
memory word selected will switch according to the pattern detected; finally,
since the signal AAoutx linked to that particular word is turned on (because
the address of the word must be maintained fixed at the input of the decoder
until the read is over), the multiplexer of figure 6.7 will allow the output of the
group of latches selected to pass through. Finally, this information is latched
inside the register READ_WORD, so that the external world can read the
requested word.
Then the machine comes back to state S0. Again, the signals that are activated
here are:

• IDLE : the idle signal is activated again.
• CTRL_LATCH_RST : the latches inside the row disabler, already con-

taining 0, are all reset again. Thanks to the activation of the IDLE
signal, all the AAoutx signals will switch to 1.

• CTRL_RST_L_MTJRR, CTRL_RST_L_MTJR: since all the signals
AAoutx are now equal to 1, the reset is sensed equally by all the latches
present inside the array. In this way all the latches that participated to
the previous operation are again restored back to 0.

• CTRL_MASK_STORE : the mask register stores again the value fixed
at its input, even if the read operation hasn’t changed the value already
stored.

6.4. Conclusions
This concludes the description of this second LiM array. The strengths of this

architecture with respect to the one presented in chapter 5 are for sure the simplic-
ity of the structure and of the FSM that controls it. In particular, thanks to all
the control blocks described in section 6.3, the array is completely independent on
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the number of words it hosts, while of course some small changes (which anyway
shouldn’t be hard to be made) are needed in order to adapt the control blocks to
an array able to host words represented on a different number of bits.

The main weakness of this structure with respect to the LiM array of chapter
5 is the degraded power efficiency: this time, in fact, all the skyrmions that are no
more needed in the computing cycle are all expelled from the nanotrack, sooner or
later, without being accumulated in a structure able to put them again in movement
according to the requests, as it was the tank (top and bottom) proposed in chapter
5.

The information is never lost: every time that a skyrmion is needed from the
racetrack, its value is readily restored back by using the duplication elements in-
serted inside each cell. This doesn’t involve the nucleation of a new skyrmion, a
process which is energetically expensive; however, the duplication elements exploit
the skyrmion-DW pair-skyrmion conversion proposed in [43], and it is a fact that
the DW pairs need higher current densities with respect to skyrmions, in order to be
put in movement. So, the energetic efficiency of the array could be improved. Any
improvement, however, would also complicate the structure and FSM that controls
it. As it always happens in electronics, then, it all reduces to a trade-off, in this
particular case between energetic efficiency and complexity.
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Figure 6.15. FSM controlling the whole memory datapath.
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7. Summary and prospects for
future studies

Starting from the logic gates proposed in [5], a micromagnetic analysis has been per-
formed in order to verify their correct functioning in realistic current distribution
conditions. The gates that have been tested are only the AND/OR and INV/COPY
gates: no test has been performed yet on the synchronization element and on the
full adder, which puts all these structures together. The testing of the full adder
structure is for sure the most critical to be performed, not only for the huge compu-
tational resources that would be needed, but also for the need of tuning the physical
dimensions of each element in order to assure the synchronization of the skyrmions
inside each gate. The notches proposed in [5] can in fact reduce the synchronization
problem, but have not the power to completely eliminate it: as showed in chapter
3, tiny differences in the size of each gate imply huge differences in the behaviour of
the skyrmions that are hosted.

Different structures have been developed starting from these gates, whose be-
haviour has been proved correct even in realistic current conditions. First of all, a
ripple carry adder has been designed and simulated. Most of the efforts have been
spent in optimizing the structure proposed, in order to reduce as much as possible
the number of skyrmions to be nucleated. The methodology adopted during this
design phase, however, can be extended to the project of any type of electronic
component based on skyrmions.

Finally, the topic of logic in memory architectures has been investigated. Two
different versions of LiM arrays have been proposed, the former more general and
flexible, the latter optimized for the execution of a particular algorithm. Both
structures have been described in VHDL only from a behavioural point of view: one
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possible evolution of this work could be a more accurate description, which takes into
account also the simulation of the skyrmion’s movement inside the array structure.

Many other different LiM structures could be designed as well, following the
same steps and reasoning adopted in this work. Since the physics of skyrmions
is very rich, a large variety of mechanisms is available for manipulating them in
the most different ways. For this reason, during the design phase is possible to
find in literature the solution to almost any problem, thanks to the huge variety of
applications that have already been studied and published.

Another possibility, finally, could be to start from the second LiM array, proposed
in chapter 6, maybe slightly modifying it to make it more powerful and generic, and
to use it in order to support the execution of other algorithms, apart from the
minimum/maximum search algorithm already discussed.

Some issues, however, still need to be solved: the key assumption made behind
this whole thesis work, in fact, is the possibility of allowing two nanotracks to cross
without altering the information (the skyrmions) carried inside each of them. To
date, no solution is yet available in literature around this topic, which must be solved
before anything else, because otherwise even the structure of the ripple carry adder
of chapter 4 would be impossible to be implemented.

Another assumption made in this thesis that should be verified from a physical
point of view, finally, concerns the possibility to separate two metal traces with
some dielectric in between without significantly altering the DMI, responsible for
the stabilization of the skyrmion. As already explained in chapter 5, in fact, in
some cases there is the need to apply two different voltage signals to two metal
contacts placed one next to the other, in order to control the movement of the
skyrmion according to the requests of the algorithm that is being executed. If this
assumption were proved wrong, some other mechanisms for dynamically controlling
the skyrmion motion should be found, because otherwise both LiM arrays would be
impossible to be used.
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A. Micromagnetic simulations
code

A.1. Not/Copy gate
A.1.1. Matlab code

1 clc
2 clear all
3 close all
4

5 %%
6 fp_parameters=fopen('PARAMETERS.txt','r');
7 parameters=fscanf(fp_parameters,'%*s\t%lf\n',[1,20]);
8 fclose(fp_parameters);
9

10 %%
11 nCell_X_bmtracks = parameters(14);
12 nCell_Y_bmtracks = parameters(15);
13 nCell_X_ttrack = parameters(16);
14 nCell_Y_ttrack = parameters(17);
15 nCell_X_holes = parameters(18);
16 nCell_Y_holes = parameters(19);
17

18 nCell_bottomtr = nCell_X_bmtracks*nCell_Y_bmtracks;
19 nCell_middletr = nCell_X_bmtracks*nCell_Y_bmtracks;
20 nCell_toptr = nCell_X_ttrack*nCell_Y_ttrack;
21 nCell_hole1 = nCell_X_holes*nCell_Y_holes;
22 nCell_hole2 = nCell_X_holes*nCell_Y_holes;
23

24 %%
25 tab_data_bottomtr =

readtable('currdensnorm_bottomtr.txt','Format','%f%f%f%f\n');↪→

26 tab_data_hole1 = readtable('currdensnorm_hole1.txt','Format','%f%f%f%f\n');
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A.1 – Not/Copy gate

27 tab_data_middletr =
readtable('currdensnorm_middletr.txt','Format','%f%f%f%f\n');↪→

28 tab_data_hole2 = readtable('currdensnorm_hole2.txt','Format','%f%f%f%f\n');
29 tab_data_toptr = readtable('currdensnorm_toptr.txt','Format','%f%f%f%f\n');
30

31 %%
32 matrix_data_bottomtr = table2array(tab_data_bottomtr);
33 matrix_data_hole1 = table2array(tab_data_hole1);
34 matrix_data_middletr= table2array(tab_data_middletr);
35 matrix_data_hole2 = table2array(tab_data_hole2);
36 matrix_data_toptr = table2array(tab_data_toptr);
37

38 %%
39 Xvec_bottomtr = matrix_data_bottomtr(:,1);
40 Yvec_bottomtr = matrix_data_bottomtr(:,2);
41 Jvec_bottomtr = matrix_data_bottomtr(:,4);
42

43 Xvec_hole1 = matrix_data_hole1(:,1);
44 Yvec_hole1 = matrix_data_hole1(:,2);
45 Jvec_hole1 = matrix_data_hole1(:,4);
46

47 Xvec_middletr = matrix_data_middletr(:,1);
48 Yvec_middletr= matrix_data_middletr(:,2);
49 Jvec_middletr = matrix_data_middletr(:,4);
50

51 Xvec_hole2 = matrix_data_hole2(:,1);
52 Yvec_hole2 = matrix_data_hole2(:,2);
53 Jvec_hole2 = matrix_data_hole2(:,4);
54

55 Xvec_toptr = matrix_data_toptr(:,1);
56 Yvec_toptr = matrix_data_toptr(:,2);
57 Jvec_toptr = matrix_data_toptr(:,4);
58

59 %%
60 plot3(Xvec_bottomtr,Yvec_bottomtr,Jvec_bottomtr,'b*',Xvec_middletr, c

Yvec_middletr,Jvec_middletr,'c*',Xvec_toptr,Yvec_toptr,Jvec_toptr,'g*')↪→

61 hold on
62 plot3(Xvec_hole1,Yvec_hole1,Jvec_hole1,'r*',Xvec_hole2,Yvec_hole2,Jvec_hole2, c

'r*')↪→

63 grid on
64 xlabel('x - track length')
65 ylabel('y - track width')
66 zlabel('current density norm.')
67

68 %%
69 j=1;
70 jdensity=fopen('jdensity.txt','w');
71

72 %bottom track
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73 for i=1:1:nCell_bottomtr
74 fprintf(jdensity,'%d \n', Jvec_bottomtr(i));
75 Jvec_whole(j) = Jvec_bottomtr(i);
76 j=j+1;
77 end
78

79 %hole1
80 for i=(nCell_bottomtr+1):1:(nCell_bottomtr+nCell_hole1)
81 fprintf(jdensity,'%d \n', Jvec_hole1(i-nCell_bottomtr));
82 Jvec_whole(j) = Jvec_hole1(i-nCell_bottomtr);
83 j=j+1;
84 end
85

86 %middle track
87 for i=(nCell_bottomtr+nCell_hole1+1):1:(nCell_bottomtr+nCell_hole1+ c

nCell_middletr)↪→

88 fprintf(jdensity,'%d \n', Jvec_middletr(i-nCell_bottomtr-nCell_hole1));
89 Jvec_whole(j) = Jvec_middletr(i-nCell_bottomtr-nCell_hole1);
90 j=j+1;
91 end
92

93 %hole2
94 for i=(nCell_bottomtr+nCell_hole1+nCell_middletr+1):1:(nCell_bottomtr+ c

nCell_hole1+nCell_middletr+nCell_hole2)↪→

95 fprintf(jdensity,'%d \n',
Jvec_hole2(i-nCell_bottomtr-nCell_hole1-nCell_middletr));↪→

96 Jvec_whole(j) = Jvec_hole2(i-nCell_bottomtr-nCell_hole1-nCell_middletr);
97 j=j+1;
98 end
99

100 %top track
101 for i=(nCell_bottomtr+nCell_hole1+nCell_middletr+nCell_hole2+ c

1):1:(nCell_bottomtr+nCell_hole1+nCell_middletr+nCell_hole2+nCell_toptr)↪→

102 fprintf(jdensity,'%d \n',
Jvec_toptr(i-nCell_bottomtr-nCell_hole1-nCell_middletr-nCell_hole2));↪→

103 Jvec_whole(j) =
Jvec_toptr(i-nCell_bottomtr-nCell_hole1-nCell_middletr-nCell_hole2);↪→

104 j=j+1;
105 end
106

107 maxj=max(Jvec_whole)
108 minj=min(Jvec_whole)
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A.1.2. C code

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 int main ()
5 {
6 FILE *fp_in, *fp_param, *fp_mx3;
7 fp_in = fopen("..\\jdensity.txt", "r");
8 fp_param = fopen("..\\PARAMETERS.txt", "r");
9 fp_mx3 = fopen("..\\prova.mx3", "w");

10

11 double jdensity;
12 int i, j;
13 int nReg=1;
14 double coord_x;
15 double coord_y;
16 double parameters[20]={0};
17

18 double sim_time=1e-9;
19 int j_uniform=1;
20

21 printf("Simulation time:\n");
22 scanf("%lf",&sim_time);
23 printf("Uniform current density?\n");
24 scanf("%d",&j_uniform);
25

26

27 for(i=1; i<21; i++) {
28 fscanf(fp_param,"%*s\t%lf\n",&parameters[i]);
29 //printf("%e\n",parameters[i]);
30 }
31

32 double size_contact = parameters[1];
33 double track_length = parameters[2];
34 double track_width = parameters[3];
35 double out_bound_width = parameters[4];
36 double thickness_layer = parameters[5];
37 double hole1_width = parameters[6];
38 double hole2_width = parameters[7];
39 double hole1_height = parameters[8];
40 double hole2_height = parameters[9];
41 double xcoord_holestart = parameters[10];
42 double xcoord_track3start = parameters[11];
43 double offset_hole2 = parameters[12];
44

45 int nCell_X_bmtracks = parameters[14];
46 int nCell_Y_bmtracks = parameters[15];

215



A – Micromagnetic simulations code

47 int nCell_X_ttrack = parameters[16];
48 int nCell_Y_ttrack = parameters[17];
49 int nCell_X_holes = parameters[18];
50 int nCell_Y_holes = parameters[19];
51

52 double SHangle = parameters[20];
53

54 double X_grid_spacing_bmtracks = track_length/nCell_X_bmtracks;
55 double Y_grid_spacing_bmtracks = track_width/nCell_Y_bmtracks;
56 double X_grid_spacing_ttrack =

(track_length-xcoord_track3start)/nCell_X_ttrack;↪→

57 double Y_grid_spacing_ttrack = track_width/nCell_Y_ttrack;
58 double X_grid_spacing_hole1 = hole1_width/nCell_X_holes;
59 double Y_grid_spacing_hole1 = hole1_height/nCell_Y_holes;
60 double X_grid_spacing_hole2 = hole2_width/nCell_X_holes;
61 double Y_grid_spacing_hole2 = hole2_height/nCell_Y_holes;
62

63 int nCell_bmtracks = nCell_X_bmtracks*nCell_Y_bmtracks;
64 int nCell_ttrack = nCell_X_ttrack*nCell_Y_ttrack;
65 int nCell_hole1 = nCell_X_holes*nCell_Y_holes;
66 int nCell_hole2 = nCell_X_holes*nCell_Y_holes;
67

68

69 fprintf(fp_mx3,"//MATERIAL PARAMETERS\n");
70 fprintf(fp_mx3,"Temp = 0\n");
71 fprintf(fp_mx3,"Msat = 5.8e5\n");
72 fprintf(fp_mx3,"Aex = 1.5e-11\n");
73 fprintf(fp_mx3,"alpha = 0.1\n");
74 fprintf(fp_mx3,"Dind = 3.0e-3\n");
75 fprintf(fp_mx3,"Ku1 = 6e5\n");
76 fprintf(fp_mx3,"Ku2 = 1.5e5\n");
77 fprintf(fp_mx3,"Xi = 0.35\n");
78 fprintf(fp_mx3,"Pol = 1\n");
79 fprintf(fp_mx3,"Lambda = 1\n");
80 fprintf(fp_mx3,"AnisU = vector(0,0,1)\n");
81 fprintf(fp_mx3,"EpsilonPrime = 0\n");
82 fprintf(fp_mx3,"fixedlayer = vector(0,-1,0)\n");
83 fprintf(fp_mx3,"B_ext = vector(0,0,0)\n\n");
84

85 fprintf(fp_mx3,"//GEOMETRY PARAMETERS\n");
86 fprintf(fp_mx3,"size_contact := %e\n",size_contact);
87 fprintf(fp_mx3,"track_length := %e\n",track_length);
88 fprintf(fp_mx3,"track_width := %e\n",track_width);
89 fprintf(fp_mx3,"out_bound_width := %e\n",out_bound_width);
90 fprintf(fp_mx3,"thickness_layer := %e\n",thickness_layer);
91 fprintf(fp_mx3,"hole1_width := %e\n",hole1_width);
92 fprintf(fp_mx3,"hole2_width := %e\n",hole2_width);
93 fprintf(fp_mx3,"hole1_height := %e\n",hole1_height);
94 fprintf(fp_mx3,"hole2_height := %e\n",hole2_height);
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95 fprintf(fp_mx3,"xcoord_holestart := %e\n",xcoord_holestart);
96 fprintf(fp_mx3,"xcoord_track3start := %e\n",xcoord_track3start);
97 fprintf(fp_mx3,"offset_hole2 := %e\n\n",offset_hole2);
98

99 fprintf(fp_mx3,"//GRID SETTING\n");
100 fprintf(fp_mx3,"grid_x := 256\n");
101 fprintf(fp_mx3,"grid_y := 128\n");
102 fprintf(fp_mx3,"grid_z := 4\n");
103 fprintf(fp_mx3,"SetGridSize(256, 128, 4)\n\n");
104

105 fprintf(fp_mx3, c
"///////////////////////////////////////////////////////////////\n\n");↪→

106

107 fprintf(fp_mx3,"cell_x := track_length/grid_x\n");
108 fprintf(fp_mx3,"cell_y :=

(2*out_bound_width+3*track_width+hole1_height+hole2_height)/grid_y\n");↪→

109 fprintf(fp_mx3,"cell_z := 2*thickness_layer/grid_z\n");
110 fprintf(fp_mx3,"SetCellSize(cell_x, cell_y, cell_z)\n");
111 fprintf(fp_mx3,"SetPBC(0, 0, 0)\n\n");
112

113 fprintf(fp_mx3, c
"////////////////////////////////////////////////////////////\n\n\n");↪→

114

115 if(j_uniform==1) {
116 fprintf(fp_mx3,"//STRUCTURE\n");
117 fprintf(fp_mx3,"bottomtr := Rect(track_length,track_width).transl(0,-

track_width/2-hole1_height-track_width/2,0)\n");↪→

118 fprintf(fp_mx3,"middletr :=
Rect(track_length,track_width).transl(0,0,0)\n");↪→

119 fprintf(fp_mx3,"toptr := Rect(track_length-xcoord_track3start, c
track_width).transl(track_length/2-(track_length-
xcoord_track3start)/2,track_width/2+hole2_height+track_width/2, c
0)\n");

↪→

↪→

↪→

120 fprintf(fp_mx3,"hole1 :=
Rect(hole1_width,hole1_height).transl(-track_length/2+ c
xcoord_holestart+hole1_width/2,-track_width/2-hole1_height/2,0)\n");

↪→

↪→

121 fprintf(fp_mx3,"hole2 := Rect(hole2_width,hole2_height).transl(-
track_length/2+xcoord_holestart+hole2_width/2+offset_hole2, c
track_width/2+hole2_height/2,0)\n");

↪→

↪→

122 fprintf(fp_mx3,"track_full :=
bottomtr.add(middletr).add(toptr).add(hole1).add(hole2)\n");↪→

123 fprintf(fp_mx3,"track := track_full.intersect(ZRange(-inf, 0))\n");
124 fprintf(fp_mx3,"SetGeom(Universe().Sub(track))\n\n");
125

126 fprintf(fp_mx3,"//REGIONS\n");
127 fprintf(fp_mx3,"DefRegion(1, bottomtr)\n");
128 fprintf(fp_mx3,"DefRegion(2, middletr)\n\n");
129

130 fprintf(fp_mx3,"//INITIAL MAGNETIZATION\n");
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131 fprintf(fp_mx3,"m = uniform(0, 0, 1)\n");
132 fprintf(fp_mx3,"m.setregion(1, NeelSkyrmion(1,

-1).transl(-track_length/2+20e-9, -track_width-hole1_height,
0))\n");

↪→

↪→

133 fprintf(fp_mx3,"m.setregion(2, NeelSkyrmion(1,
-1).transl(-track_length/2+20e-9, 0, 0))\n\n");↪→

134 }
135 else {
136 fprintf(fp_mx3,"//STRUCTURE\n");
137 fprintf(fp_mx3,"elem_cell_bmtracks := Rect(%e,

%e)\n",X_grid_spacing_bmtracks,Y_grid_spacing_bmtracks);↪→

138 fprintf(fp_mx3,"elem_cell_ttrack := Rect(%e,
%e)\n",X_grid_spacing_ttrack,Y_grid_spacing_ttrack);↪→

139 fprintf(fp_mx3,"elem_cell_hole1 := Rect(%e,
%e)\n",X_grid_spacing_hole1,Y_grid_spacing_hole1);↪→

140 fprintf(fp_mx3,"elem_cell_hole2 := Rect(%e,
%e)\n",X_grid_spacing_hole2,Y_grid_spacing_hole2);↪→

141 fprintf(fp_mx3,"\n\n");
142

143 //bottom track
144 for(j=0; j<nCell_Y_bmtracks ; j++) {
145 coord_y = -track_width/2-hole1_height-track_width+ c

Y_grid_spacing_bmtracks/2+j*Y_grid_spacing_bmtracks;↪→

146 for(i=0; i<nCell_X_bmtracks ; i++){
147 coord_x = -track_length/2+X_grid_spacing_bmtracks/2+ c

i*X_grid_spacing_bmtracks;↪→

148 fprintf(fp_mx3,"reg%d := elem_cell_bmtracks.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

149 fprintf(fp_mx3,"defRegion(%d,reg%d)\n", nReg, nReg);
150 nReg++;
151 }
152 }
153

154 //hole1
155 for(j=0; j<nCell_Y_holes; j++) {
156 coord_y = -track_width/2-hole1_height+Y_grid_spacing_hole1/2+ c

j*Y_grid_spacing_hole1;↪→

157 for(i=0; i<nCell_X_holes; i++){
158 coord_x = -track_length/2+xcoord_holestart+ c

X_grid_spacing_hole1/2+i*X_grid_spacing_hole1;↪→

159 fprintf(fp_mx3,"reg%d := elem_cell_hole1.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

160 fprintf(fp_mx3,"defRegion(%d,reg%d)\n", nReg, nReg);
161 nReg++;
162 }
163 }
164

165 //middle track
166 for(j=0; j<nCell_Y_bmtracks; j++) {
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167 coord_y = -track_width/2+Y_grid_spacing_bmtracks/2+ c
j*Y_grid_spacing_bmtracks;↪→

168 for(i=0; i<nCell_X_bmtracks; i++){
169 coord_x = -track_length/2+X_grid_spacing_bmtracks/2+ c

i*X_grid_spacing_bmtracks;↪→

170 fprintf(fp_mx3,"reg%d := elem_cell_bmtracks.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

171 fprintf(fp_mx3,"defRegion(%d,reg%d)\n", nReg, nReg);
172 nReg++;
173 }
174 }
175

176 //hole2
177 for(j=0; j<nCell_Y_holes; j++) {
178 coord_y =

track_width/2+Y_grid_spacing_hole2/2+j*Y_grid_spacing_hole2;↪→

179 for(i=0; i<nCell_X_holes; i++){
180 coord_x = -track_length/2+xcoord_holestart+offset_hole2+ c

X_grid_spacing_hole2/2+i*X_grid_spacing_hole2;↪→

181 fprintf(fp_mx3,"reg%d := elem_cell_hole2.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

182 fprintf(fp_mx3,"defRegion(%d,reg%d)\n", nReg, nReg);
183 nReg++;
184 }
185 }
186

187 //top track
188 for(j=0; j<nCell_Y_ttrack; j++) {
189 coord_y = track_width/2+hole2_height+Y_grid_spacing_ttrack/2+ c

j*Y_grid_spacing_ttrack;↪→

190 for(i=0; i<nCell_X_ttrack; i++){
191 coord_x = -track_length/2+xcoord_track3start+ c

X_grid_spacing_ttrack/2+i*X_grid_spacing_ttrack;↪→

192 fprintf(fp_mx3,"reg%d := elem_cell_ttrack.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

193 fprintf(fp_mx3,"defRegion(%d,reg%d)\n", nReg, nReg);
194 nReg++;
195 }
196 }
197

198 nReg--;
199 fprintf(fp_mx3,"\n");
200

201 fprintf(fp_mx3,"track_full := reg1");
202 for (i=2; i<nReg+1; i++) {
203 fprintf(fp_mx3,".add(reg%d)",i);
204 }
205

206 fprintf(fp_mx3,"\n");

219



A – Micromagnetic simulations code

207 fprintf(fp_mx3,"track := track_full.intersect(ZRange(-inf, 0))\n");
208 fprintf(fp_mx3,"SetGeom(Universe().Sub(track))\n\n");
209 fprintf(fp_mx3,"\n\n");
210

211 fprintf(fp_mx3,"//LOCAL CURRENT EXCITATION\n");
212 for(i=1; i<nReg+1; i++) {
213 fscanf(fp_in,"%lf \n", &jdensity);
214 fprintf(fp_mx3,"j.setRegion(%d,vector(0, 0, %e))\n", i,

jdensity*SHangle);↪→

215 }
216

217 //bottom track
218 fprintf(fp_mx3,"\n\n");
219

220 fprintf(fp_mx3,"//INITIAL MAGNETIZATION\n");
221 fprintf(fp_mx3,"m = uniform(0, 0, 1)\n");
222 fprintf(fp_mx3,"m.setRegion(1,NeelSkyrmion(1,-1).transl(-

track_length/2+20e-9,-hole1_height-track_width,0))\n");↪→

223 fprintf(fp_mx3,"m.setRegion(%d,NeelSkyrmion(1,-1).transl(-
track_length/2+20e-9,0,0))\n\n",nCell_bmtracks+nCell_hole1+1);↪→

224 }
225

226 fprintf(fp_mx3, c
"////////////////////////////////////////////////////////////\n\n\n");↪→

227

228 fprintf(fp_mx3,"//OUTPUT SAVE\n");
229 fprintf(fp_mx3,"OutputFormat = OVF1_TEXT\n");
230 fprintf(fp_mx3,"tableAdd(ext_topologicalcharge)\n");
231 fprintf(fp_mx3,"tableautosave(1e-12)\n");
232 fprintf(fp_mx3,"AutoSnapShot(m_full, 5e-11)\n");
233 fprintf(fp_mx3,"AutoSave(m, 2e-11)\n\n");
234

235 fprintf(fp_mx3,"//SIMULATION\n");
236 if(j_uniform==1) {
237 fprintf(fp_mx3,"J = vector(0, 0, 5e10)\n");
238 }
239 fprintf(fp_mx3,"Run(%e)\n",sim_time);
240

241 fclose(fp_in);
242 fclose(fp_param);
243 fclose(fp_mx3);
244

245 return 0;
246 }
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A.1.3. Parameters file
A.1.3.1. Not_Structure 1

1 size_contact 0
2 track_length 256e-9
3 track_width 20e-9
4 out_bound_width 34e-9
5 thickness_layer 0.4e-9
6 hole1_width 30e-9
7 hole2_width 25e-9
8 hole1_height 20e-9
9 hole2_height 20e-9

10 xcoord_holestart 113e-9
11 xcoord_track3start 100e-9
12 offset_hole2 0
13 Vappl 100e-5
14 nCell_X_bmtracks 7
15 nCell_Y_bmtracks 1
16 nCell_X_ttrack 5
17 nCell_Y_ttrack 1
18 nCell_X_holes 1
19 nCell_Y_holes 2
20 SHangle 1
21 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
22 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
23 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
24 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
25 X_grid_spacing_hole1 hole1_width/nCell_X_holes
26 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
27 X_grid_spacing_hole2 hole2_width/nCell_X_holes
28 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes

A.1.3.2. Not_Structure 2

1 size_contact 130e-9
2 track_length 256e-9
3 track_width 20e-9
4 out_bound_width 34e-9
5 thickness_layer 0.4e-9
6 hole1_width 30e-9
7 hole2_width 25e-9
8 hole1_height 20e-9
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9 hole2_height 20e-9
10 xcoord_holestart 113e-9
11 xcoord_track3start 100e-9
12 offset_hole2 0
13 Vappl 280e-5
14 nCell_X_bmtracks 7
15 nCell_Y_bmtracks 1
16 nCell_X_ttrack 5
17 nCell_Y_ttrack 1
18 nCell_X_holes 1
19 nCell_Y_holes 2
20 SHangle 1
21 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
22 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
23 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
24 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
25 X_grid_spacing_hole1 hole1_width/nCell_X_holes
26 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
27 X_grid_spacing_hole2 hole2_width/nCell_X_holes
28 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes

A.1.3.3. Not_Structure 3

1 size_contact 130e-9
2 track_length 256e-9
3 track_width 20e-9
4 out_bound_width 34e-9
5 thickness_layer 0.8e-9
6 hole1_width 27e-9
7 hole2_width 25e-9
8 hole1_height 20e-9
9 hole2_height 20e-9

10 xcoord_holestart 113e-9
11 xcoord_track3start 100e-9
12 offset_hole2 0
13 Vappl 280e-5
14 nCell_X_bmtracks 7
15 nCell_Y_bmtracks 1
16 nCell_X_ttrack 5
17 nCell_Y_ttrack 1
18 nCell_X_holes 1
19 nCell_Y_holes 2
20 SHangle 1
21 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
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22 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
23 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
24 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
25 X_grid_spacing_hole1 hole1_width/nCell_X_holes
26 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
27 X_grid_spacing_hole2 hole2_width/nCell_X_holes
28 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes

A.1.3.4. Not_Structure 4

1 size_contact 130e-9
2 track_length 256e-9
3 track_width 20e-9
4 out_bound_width 34e-9
5 thickness_layer 0.8e-9
6 hole1_width 26e-9
7 hole2_width 26e-9
8 hole1_height 20e-9
9 hole2_height 20e-9

10 xcoord_holestart 113e-9
11 xcoord_track3start 100e-9
12 offset_hole2 -4e-9
13 Vappl 280e-5
14 nCell_X_bmtracks 7
15 nCell_Y_bmtracks 1
16 nCell_X_ttrack 5
17 nCell_Y_ttrack 1
18 nCell_X_holes 1
19 nCell_Y_holes 2
20 SHangle 1
21 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
22 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
23 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
24 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
25 X_grid_spacing_hole1 hole1_width/nCell_X_holes
26 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
27 X_grid_spacing_hole2 hole2_width/nCell_X_holes
28 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes
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A.1.3.5. Not_Structure 5

1 size_contact 130e-9
2 track_length 256e-9
3 track_width 20e-9
4 out_bound_width 34e-9
5 thickness_layer 0.4e-9
6 hole1_width 27e-9
7 hole2_width 25e-9
8 hole1_height 20e-9
9 hole2_height 20e-9

10 xcoord_holestart 113e-9
11 xcoord_track3start 100e-9
12 offset_hole2 0
13 Vappl 280e-5
14 nCell_X_bmtracks 7
15 nCell_Y_bmtracks 1
16 nCell_X_ttrack 5
17 nCell_Y_ttrack 1
18 nCell_X_holes 1
19 nCell_Y_holes 2
20 SHangle 1
21 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
22 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
23 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
24 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
25 X_grid_spacing_hole1 hole1_width/nCell_X_holes
26 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
27 X_grid_spacing_hole2 hole2_width/nCell_X_holes
28 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes

A.1.3.6. Not_Structure 6

1 size_contact 130e-9
2 track_length 256e-9
3 track_width 20e-9
4 out_bound_width 34e-9
5 thickness_layer 0.8e-9
6 hole1_width 30e-9
7 hole2_width 25e-9
8 hole1_height 20e-9
9 hole2_height 20e-9

10 xcoord_holestart 113e-9
11 xcoord_track3start 100e-9
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12 offset_hole2 0
13 Vappl 280e-5
14 nCell_X_bmtracks 7
15 nCell_Y_bmtracks 1
16 nCell_X_ttrack 5
17 nCell_Y_ttrack 1
18 nCell_X_holes 1
19 nCell_Y_holes 2
20 SHangle 1
21 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
22 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
23 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
24 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
25 X_grid_spacing_hole1 hole1_width/nCell_X_holes
26 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
27 X_grid_spacing_hole2 hole2_width/nCell_X_holes
28 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes

A.2. And/Or gate
A.2.1. Matlab code

1 clc
2 clear all
3 close all
4

5 %%
6 fp_parameters=fopen('PARAMETERS.txt','r');
7 parameters=fscanf(fp_parameters,'%*s\t%lf\n',[1,13]);
8 fclose(fp_parameters);
9

10 %%
11 nCell_X_topbottom = parameters(9);
12 nCell_Y_topbottom = parameters(10);
13 nCell_X_junc = parameters(11);
14 nCell_Y_junc = parameters(12);
15

16 nCell_bottomtr = nCell_X_topbottom*nCell_Y_topbottom;
17 nCell_toptr = nCell_X_topbottom*nCell_Y_topbottom;
18 nCell_junct = nCell_X_junc*nCell_Y_junc;
19

20 %%
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21 tab_data_bottomtr =
readtable('currdensnorm_bottomtr.txt','Format','%f%f%f%f\n');↪→

22 tab_data_middlejun =
readtable('currdensnorm_middlejun.txt','Format','%f%f%f%f\n');↪→

23 tab_data_toptr = readtable('currdensnorm_toptr.txt','Format','%f%f%f%f\n');
24

25 %%
26 matrix_data_bottomtr = table2array(tab_data_bottomtr);
27 matrix_data_middlejun = table2array(tab_data_middlejun);
28 matrix_data_toptr = table2array(tab_data_toptr);
29

30 %%
31 Xvec_bottomtr = matrix_data_bottomtr(:,1);
32 Yvec_bottomtr = matrix_data_bottomtr(:,2);
33 Jvec_bottomtr = matrix_data_bottomtr(:,4);
34

35 Xvec_middlejun = matrix_data_middlejun(:,1);
36 Yvec_middlejun = matrix_data_middlejun(:,2);
37 Jvec_middlejun = matrix_data_middlejun(:,4);
38

39 Xvec_toptr = matrix_data_toptr(:,1);
40 Yvec_toptr = matrix_data_toptr(:,2);
41 Jvec_toptr = matrix_data_toptr(:,4);
42

43 %%
44 figure(1)
45 plot3(Xvec_bottomtr,Yvec_bottomtr,Jvec_bottomtr,'b*',Xvec_middlejun, c

Yvec_middlejun,Jvec_middlejun,'r*',Xvec_toptr,Yvec_toptr,Jvec_toptr,'g*')↪→

46 grid on
47 xlabel('x - track length')
48 ylabel('y - track width')
49 zlabel('current density norm.')
50

51 %%
52 j=1;
53 jdensity=fopen('jdensity.txt','w');
54 for i=1:1:nCell_bottomtr
55 fprintf(jdensity,'%d \n', Jvec_bottomtr(i));
56 Jvec_whole(j) = Jvec_bottomtr(i);
57 j=j+1;
58 end
59

60 for i=(nCell_bottomtr+1):1:(nCell_bottomtr+nCell_junct)
61 fprintf(jdensity,'%d \n', Jvec_middlejun(i-nCell_bottomtr));
62 Jvec_whole(j) = Jvec_middlejun(i-nCell_bottomtr);
63 j=j+1;
64 end
65

66 for i=(nCell_bottomtr+nCell_junct+1):1:(nCell_bottomtr+nCell_junct+nCell_toptr)
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67 fprintf(jdensity,'%d \n', Jvec_toptr(i-nCell_bottomtr-nCell_junct));
68 Jvec_whole(j) = Jvec_toptr(i-nCell_bottomtr-nCell_junct);
69 j=j+1;
70 end
71

72 maxj=max(Jvec_whole)
73 minj=min(Jvec_whole)

A.2.2. C code

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 int main ()
5 {
6 FILE *fp_in, *fp_param, *fp_mx3;
7 fp_in = fopen("..\\jdensity.txt", "r");
8 fp_param = fopen("..\\PARAMETERS.txt", "r");
9 fp_mx3 = fopen("..\\prova.mx3", "w");

10

11 double jdensity;
12 int i, j;
13 int nReg=1;
14 double coord_x;
15 double coord_y;
16 double parameters[13]={0};
17

18 double sim_time=1e-9;
19 int j_uniform=1;
20

21 printf("Simulation time:\n");
22 scanf("%lf",&sim_time);
23 printf("Uniform current density?\n");
24 scanf("%d",&j_uniform);
25

26

27 for(i=1; i<14; i++) {
28 fscanf(fp_param,"%*s\t%lf\n",&parameters[i]);
29 //printf("%e\n",parameters[i]);
30 }
31

32 double size_contact = parameters[1];
33 double track_length = parameters[2];
34 double out_bound_width = parameters[3];
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35 double track_width = parameters[4];
36 double thickness_layer = parameters[5];
37 double hole_height = parameters[6];
38 double hole_width = parameters[7];
39

40 int nCell_X_topbottom = parameters[9];
41 int nCell_Y_topbottom = parameters[10];
42 int nCell_X_junc = parameters[11];
43 int nCell_Y_junc = parameters[12];
44

45 double SHangle = parameters[13];
46

47

48 double X_grid_spacing_topbottom = track_length/nCell_X_topbottom;
49 double Y_grid_spacing_topbottom = track_width/nCell_Y_topbottom;
50 double X_grid_spacing_junc = hole_width/nCell_X_junc;
51 double Y_grid_spacing_junc = hole_height/nCell_Y_junc;
52

53 int nCell_topbottom = nCell_X_topbottom*nCell_Y_topbottom;
54 int nCell_junc = nCell_X_junc*nCell_Y_junc;
55

56 fprintf(fp_mx3,"//MATERIAL PARAMETERS\n");
57 fprintf(fp_mx3,"Temp = 0\n");
58 fprintf(fp_mx3,"Msat = 5.8e5\n");
59 fprintf(fp_mx3,"Aex = 1.5e-11\n");
60 fprintf(fp_mx3,"alpha = 0.1\n");
61 fprintf(fp_mx3,"Dind = 3.0e-3\n");
62 fprintf(fp_mx3,"Ku1 = 6e5\n");
63 fprintf(fp_mx3,"Ku2 = 1.5e5\n");
64 fprintf(fp_mx3,"Xi = 0.35\n");
65 fprintf(fp_mx3,"Pol = 1\n");
66 fprintf(fp_mx3,"Lambda = 1\n");
67 fprintf(fp_mx3,"AnisU = vector(0,0,1)\n");
68 fprintf(fp_mx3,"EpsilonPrime = 0\n");
69 fprintf(fp_mx3,"fixedlayer = vector(0,-1,0)\n");
70 fprintf(fp_mx3,"B_ext = vector(0,0,0)\n\n");
71

72 fprintf(fp_mx3,"//GEOMETRY PARAMETERS\n");
73 fprintf(fp_mx3,"size_contact := %e\n",size_contact);
74 fprintf(fp_mx3,"track_length := %e\n",track_length);
75 fprintf(fp_mx3,"out_bound_width := %e\n",out_bound_width);
76 fprintf(fp_mx3,"track_width := %e\n",track_width);
77 fprintf(fp_mx3,"thickness_layer := %e\n",thickness_layer);
78 fprintf(fp_mx3,"hole_height := %e\n",hole_height);
79 fprintf(fp_mx3,"hole_width := %e\n\n",hole_width);
80

81 fprintf(fp_mx3,"//GRID SETTING\n");
82 fprintf(fp_mx3,"grid_x := 256\n");
83 fprintf(fp_mx3,"grid_y := 128\n");
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84 fprintf(fp_mx3,"grid_z := 4\n");
85 fprintf(fp_mx3,"SetGridSize(256, 128, 4)\n\n");
86

87

88 fprintf(fp_mx3, c
"////////////////////////////////////////////////////////////////\n\n");↪→

89

90 fprintf(fp_mx3,"cell_x := track_length/grid_x\n");
91 fprintf(fp_mx3,"cell_y :=

(2*out_bound_width+2*track_width+hole_height)/grid_y\n");↪→

92 fprintf(fp_mx3,"cell_z := 2*thickness_layer/grid_z\n");
93 fprintf(fp_mx3,"SetCellSize(cell_x, cell_y, cell_z)\n");
94 fprintf(fp_mx3,"SetPBC(0, 0, 0)\n\n");
95

96 fprintf(fp_mx3, c
"////////////////////////////////////////////////////////////\n\n\n");↪→

97

98 if(j_uniform==1) {
99 fprintf(fp_mx3,"//STRUCTURE\n");

100 fprintf(fp_mx3,"trackb := Rect(track_length, track_width).transl(0,
-hole_height/2-track_width/2, 0)\n");↪→

101 fprintf(fp_mx3,"trackt := Rect(track_length, track_width).transl(0,
hole_height/2+track_width/2, 0)\n");↪→

102 fprintf(fp_mx3,"jun := Rect(hole_width, hole_height)\n");
103 fprintf(fp_mx3,"track_full := trackb.add(trackt).add(jun)\n");
104 fprintf(fp_mx3,"track := track_full.intersect(ZRange(-inf, 0))\n");
105 fprintf(fp_mx3,"SetGeom(Universe().Sub(track))\n\n");
106

107 fprintf(fp_mx3,"//REGIONS\n");
108 fprintf(fp_mx3,"DefRegion(1, trackb)\n");
109 fprintf(fp_mx3,"DefRegion(2, trackt)\n\n");
110

111 fprintf(fp_mx3,"//INITIAL MAGNETIZATION\n");
112 fprintf(fp_mx3,"m = uniform(0, 0, 1)\n");
113 fprintf(fp_mx3,"m.setregion(1, NeelSkyrmion(1,

-1).transl(-track_length/2+20e-9, -track_width, 0))\n");↪→

114 fprintf(fp_mx3,"m.setregion(2, NeelSkyrmion(1,
-1).transl(-track_length/2+20e-9, track_width, 0))\n\n");↪→

115 }
116 else {
117 fprintf(fp_mx3,"//STRUCTURE\n");
118 fprintf(fp_mx3,"elem_cell_track := Rect(%e,

%e)\n",X_grid_spacing_topbottom,Y_grid_spacing_topbottom);↪→

119 fprintf(fp_mx3,"elem_cell_junc := Rect(%e,
%e)\n",X_grid_spacing_junc,Y_grid_spacing_junc);↪→

120 fprintf(fp_mx3,"\n\n");
121

122 //bottom track
123 for(j=0; j<nCell_Y_topbottom; j++) {
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124 coord_y = -hole_height/2-track_width+Y_grid_spacing_topbottom/2+ c
j*Y_grid_spacing_topbottom;↪→

125 for(i=0; i<nCell_X_topbottom; i++){
126 coord_x = -track_length/2+X_grid_spacing_topbottom/2+ c

i*X_grid_spacing_topbottom;↪→

127 fprintf(fp_mx3,"reg%d := elem_cell_track.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

128 nReg++;
129 }
130 }
131

132 //middle junction
133 for(j=0; j<nCell_Y_junc; j++) {
134 coord_y =

-hole_height/2+Y_grid_spacing_junc/2+j*Y_grid_spacing_junc;↪→

135 for(i=0; i<nCell_X_junc; i++){
136 coord_x =

-hole_width/2+X_grid_spacing_junc/2+i*X_grid_spacing_junc;↪→

137 fprintf(fp_mx3,"reg%d := elem_cell_junc.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

138 nReg++;
139 }
140 }
141

142 //top track
143 for(j=0; j<nCell_Y_topbottom; j++) {
144 coord_y = hole_height/2+Y_grid_spacing_topbottom/2+ c

j*Y_grid_spacing_topbottom;↪→

145 for(i=0; i<nCell_X_topbottom; i++){
146 coord_x = -track_length/2+X_grid_spacing_topbottom/2+ c

i*X_grid_spacing_topbottom;↪→

147 fprintf(fp_mx3,"reg%d := elem_cell_track.transl(%e,%e,0)\n",
nReg, coord_x, coord_y);↪→

148 nReg++;
149 }
150 }
151

152 nReg--;
153 fprintf(fp_mx3,"\n");
154

155 fprintf(fp_mx3,"track_full := reg1");
156 for (i=2; i<nReg+1; i++) {
157 fprintf(fp_mx3,".add(reg%d)",i);
158 }
159

160 fprintf(fp_mx3,"\n");
161 fprintf(fp_mx3,"track := track_full.intersect(ZRange(-inf, 0))\n");
162 fprintf(fp_mx3,"SetGeom(Universe().Sub(track))\n\n");
163 fprintf(fp_mx3,"\n");
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164

165 fprintf(fp_mx3,"//REGIONS\n");
166 for(i=1;i<nReg+1;i++) {
167 fprintf(fp_mx3,"defRegion(%d,reg%d)\n", i, i);
168 }
169 fprintf(fp_mx3,"\n\n\n");
170

171 fprintf(fp_mx3,"//LOCAL CURRENT EXCITATION\n");
172 for(i=1; i<nReg+1; i++) {
173 fscanf(fp_in,"%lf \n", &jdensity);
174 fprintf(fp_mx3,"j.setRegion(%d,vector(0, 0, %e))\n", i,

jdensity*SHangle);↪→

175 }
176

177 fprintf(fp_mx3,"\n\n");
178

179 fprintf(fp_mx3,"//INITIAL MAGNETIZATION\n");
180 fprintf(fp_mx3,"m = uniform(0, 0, 1)\n");
181 fprintf(fp_mx3,"m.setRegion(1,NeelSkyrmion(1,-1).transl(-

track_length/2+20e-9,-hole_height/2-track_width/2,0))\n");↪→

182 fprintf(fp_mx3,"m.setRegion(%d,NeelSkyrmion(1,-1).transl(-
track_length/2+20e-9,hole_height/2+track_width/2,0))\n\n", c
nCell_topbottom+nCell_junc+1);

↪→

↪→

183 }
184

185 fprintf(fp_mx3, c
"///////////////////////////////////////////////////////////////\n\n");↪→

186

187 fprintf(fp_mx3,"//OUTPUT SAVE\n");
188 fprintf(fp_mx3,"OutputFormat = OVF1_TEXT\n");
189 fprintf(fp_mx3,"tableAdd(ext_topologicalcharge)\n");
190 fprintf(fp_mx3,"tableautosave(1e-12)\n");
191 fprintf(fp_mx3,"AutoSnapShot(m_full, 5e-11)\n");
192 fprintf(fp_mx3,"AutoSave(m, 2e-11)\n\n");
193

194 fprintf(fp_mx3,"//SIMULATION\n");
195 if(j_uniform==1) {
196 fprintf(fp_mx3,"J = vector(0, 0, 5e10)\n");
197 }
198 fprintf(fp_mx3,"Run(%e)\n",sim_time);
199

200 fclose(fp_in);
201 fclose(fp_param);
202 fclose(fp_mx3);
203

204 return 0;
205 }
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A.2.3. Parameters file
A.2.3.1. H_Structure 1

1 size_contact 130e-9
2 track_length 256e-9
3 out_bound_width 34e-9
4 track_width 20e-9
5 thickness_layer 0.4e-9
6 hole_height 20e-9
7 hole_width 30e-9
8 Vappl 280e-5
9 nCell_X_topbottom 8

10 nCell_Y_topbottom 1
11 nCell_X_junc 1
12 nCell_Y_junc 2
13 SHangle 1
14 X_grid_spacing_topbottom track_length/nCell_X_topbottom
15 Y_grid_spacing_topbottom track_width/nCell_Y_topbottom
16 X_grid_spacing_junc hole_width/nCell_X_junc
17 Y_grid_spacing_junc hole_height/nCell_Y_junc

A.2.3.2. H_Structure 2

1 size_contact 130e-9
2 track_length 256e-9
3 out_bound_width 34e-9
4 track_width 20e-9
5 thickness_layer 0.8e-9
6 hole_height 20e-9
7 hole_width 30e-9
8 Vappl 280e-5
9 nCell_X_topbottom 8

10 nCell_Y_topbottom 1
11 nCell_X_junc 1
12 nCell_Y_junc 2
13 SHangle 1
14 X_grid_spacing_topbottom track_length/nCell_X_topbottom
15 Y_grid_spacing_topbottom track_width/nCell_Y_topbottom
16 X_grid_spacing_junc hole_width/nCell_X_junc
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17 Y_grid_spacing_junc hole_height/nCell_Y_junc

A.2.3.3. H_Structure 3

1 size_contact 130e-9
2 track_length 256e-9
3 out_bound_width 34e-9
4 track_width 20e-9
5 thickness_layer 0.8e-9
6 hole_height 14e-9
7 hole_width 25e-9
8 Vappl 280e-5
9 nCell_X_topbottom 10

10 nCell_Y_topbottom 1
11 nCell_X_junc 1
12 nCell_Y_junc 2
13 SHangle 1
14 X_grid_spacing_topbottom track_length/nCell_X_topbottom
15 Y_grid_spacing_topbottom track_width/nCell_Y_topbottom
16 X_grid_spacing_junc hole_width/nCell_X_junc
17 Y_grid_spacing_junc hole_height/nCell_Y_junc

A.3. Balancing of current density
A.3.1. Not/Copy gate
A.3.1.1. Matlab code

1 clc
2 clear all
3 close all
4 %%
5 tab_data_bottomtr =

readtable('currdensnorm_bottomtr.txt','Format','%f%f%f%f\n');↪→

6 tab_data_hole1 = readtable('currdensnorm_hole1.txt','Format','%f%f%f%f\n');
7 tab_data_middletr =

readtable('currdensnorm_middletr.txt','Format','%f%f%f%f\n');↪→
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8 tab_data_hole2 = readtable('currdensnorm_hole2.txt','Format','%f%f%f%f\n');
9 tab_data_toptr = readtable('currdensnorm_toptr.txt','Format','%f%f%f%f\n');

10

11 tab_data_bottomtr_Co =
readtable('currdensnorm_bottomtr_Co.txt','Format','%f%f%f%f\n');↪→

12 tab_data_hole1_Co =
readtable('currdensnorm_hole1_Co.txt','Format','%f%f%f%f\n');↪→

13 tab_data_middletr_Co =
readtable('currdensnorm_middletr_Co.txt','Format','%f%f%f%f\n');↪→

14 tab_data_hole2_Co =
readtable('currdensnorm_hole2_Co.txt','Format','%f%f%f%f\n');↪→

15 tab_data_toptr_Co =
readtable('currdensnorm_toptr_Co.txt','Format','%f%f%f%f\n');↪→

16

17

18 %%
19 matrix_data_bottomtr = table2array(tab_data_bottomtr);
20 matrix_data_hole1 = table2array(tab_data_hole1);
21 matrix_data_middletr= table2array(tab_data_middletr);
22 matrix_data_hole2 = table2array(tab_data_hole2);
23 matrix_data_toptr = table2array(tab_data_toptr);
24

25 matrix_data_bottomtr_Co = table2array(tab_data_bottomtr_Co);
26 matrix_data_hole1_Co = table2array(tab_data_hole1_Co);
27 matrix_data_middletr_Co= table2array(tab_data_middletr_Co);
28 matrix_data_hole2_Co = table2array(tab_data_hole2_Co);
29 matrix_data_toptr_Co = table2array(tab_data_toptr_Co);
30

31 %%
32 Xvec_bottomtr = matrix_data_bottomtr(:,1);
33 Yvec_bottomtr = matrix_data_bottomtr(:,2);
34 Jvec_bottomtr = matrix_data_bottomtr(:,4);
35

36 Xvec_hole1 = matrix_data_hole1(:,1);
37 Yvec_hole1 = matrix_data_hole1(:,2);
38 Jvec_hole1 = matrix_data_hole1(:,4);
39

40 Xvec_middletr = matrix_data_middletr(:,1);
41 Yvec_middletr= matrix_data_middletr(:,2);
42 Jvec_middletr = matrix_data_middletr(:,4);
43

44 Xvec_hole2 = matrix_data_hole2(:,1);
45 Yvec_hole2 = matrix_data_hole2(:,2);
46 Jvec_hole2 = matrix_data_hole2(:,4);
47

48 Xvec_toptr = matrix_data_toptr(:,1);
49 Yvec_toptr = matrix_data_toptr(:,2);
50 Jvec_toptr = matrix_data_toptr(:,4);
51
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52

53 Xvec_bottomtr_Co = matrix_data_bottomtr_Co(:,1);
54 Yvec_bottomtr_Co = matrix_data_bottomtr_Co(:,2);
55 Jvec_bottomtr_Co = matrix_data_bottomtr_Co(:,4);
56

57 Xvec_hole1_Co = matrix_data_hole1_Co(:,1);
58 Yvec_hole1_Co = matrix_data_hole1_Co(:,2);
59 Jvec_hole1_Co = matrix_data_hole1_Co(:,4);
60

61 Xvec_middletr_Co = matrix_data_middletr_Co(:,1);
62 Yvec_middletr_Co= matrix_data_middletr_Co(:,2);
63 Jvec_middletr_Co = matrix_data_middletr_Co(:,4);
64

65 Xvec_hole2_Co = matrix_data_hole2_Co(:,1);
66 Yvec_hole2_Co = matrix_data_hole2_Co(:,2);
67 Jvec_hole2_Co = matrix_data_hole2_Co(:,4);
68

69 Xvec_toptr_Co = matrix_data_toptr_Co(:,1);
70 Yvec_toptr_Co = matrix_data_toptr_Co(:,2);
71 Jvec_toptr_Co = matrix_data_toptr_Co(:,4);
72

73 %%
74 figure(1)
75 x=1:1:length(matrix_data_bottomtr_Co(:,4));
76 plot(x,matrix_data_bottomtr(:,4),'b*',x,matrix_data_bottomtr_Co(:,4),'r*')
77 title('bottom track')
78 xlabel('sample index')
79 ylabel('current density [A/m^2]')
80 figure(6)
81 plot(x,(matrix_data_bottomtr_Co(:,4)-matrix_data_bottomtr(:, c

4))./matrix_data_bottomtr_Co(:,4),'g*')↪→

82 title('bottom track')
83 xlabel('sample index')
84 ylabel('relative difference')
85 figure(11)
86 plot(x,(matrix_data_bottomtr_Co(:,4)-matrix_data_bottomtr(:,4)),'k*')
87 title('bottom track')
88 xlabel('sample index')
89 ylabel('absolute difference [A/m^2]')
90

91 figure(2)
92 x=1:1:length(matrix_data_hole1_Co(:,4));
93 plot(x,matrix_data_hole1(:,4),'b*',x,matrix_data_hole1_Co(:,4),'r*')
94 title('bottom junction')
95 xlabel('sample index')
96 ylabel('current density [A/m^2]')
97 figure(7)
98 plot(x,(matrix_data_hole1_Co(:,4)-matrix_data_hole1(:, c

4))./matrix_data_hole1_Co(:,4),'g*')↪→
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99 title('bottom junction')
100 xlabel('sample index')
101 ylabel('relative difference')
102 figure(12)
103 plot(x,(matrix_data_hole1_Co(:,4)-matrix_data_hole1(:,4)),'k*')
104 title('top junction')
105 xlabel('sample index')
106 ylabel('absolute difference [A/m^2]')
107

108 figure(3)
109 x=1:1:length(matrix_data_middletr_Co(:,4));
110 plot(x,matrix_data_middletr(:,4),'b*',x,matrix_data_middletr_Co(:,4),'r*')
111 title('middle track')
112 xlabel('sample index')
113 ylabel('current density [A/m^2]')
114 figure(8)
115 plot(x,(matrix_data_middletr_Co(:,4)-matrix_data_middletr(:, c

4))./matrix_data_middletr_Co(:,4),'g*')↪→

116 title('middle track')
117 xlabel('sample index')
118 ylabel('relative difference')
119 figure(13)
120 plot(x,(matrix_data_middletr_Co(:,4)-matrix_data_middletr(:,4)),'k*')
121 title('middle track')
122 xlabel('sample index')
123 ylabel('absolute difference [A/m^2]')
124

125 figure(4)
126 x=1:1:length(matrix_data_hole2_Co(:,4));
127 plot(x,matrix_data_hole2(:,4),'b*',x,matrix_data_hole2_Co(:,4),'r*')
128 title('top junction')
129 xlabel('sample index')
130 ylabel('current density [A/m^2]')
131 figure(9)
132 plot(x,(matrix_data_hole2_Co(:,4)-matrix_data_hole2(:, c

4))./matrix_data_hole2_Co(:,4),'g*')↪→

133 title('top junction')
134 xlabel('sample index')
135 ylabel('relative difference')
136 figure(14)
137 plot(x,(matrix_data_hole2_Co(:,4)-matrix_data_hole2(:,4)),'k*')
138 title('top junction')
139 xlabel('sample index')
140 ylabel('absolute difference [A/m^2]')
141

142 figure(5)
143 x=1:1:length(matrix_data_toptr_Co(:,4));
144 plot(x,matrix_data_toptr(:,4),'b*',x,matrix_data_toptr_Co(:,4),'r*')
145 title('top track')
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146 xlabel('sample index')
147 ylabel('current density [A/m^2]')
148 figure(10)
149 plot(x,(matrix_data_toptr_Co(:,4)-matrix_data_toptr(:, c

4))./matrix_data_toptr_Co(:,4),'g*')↪→

150 title('top track')
151 xlabel('sample index')
152 ylabel('relative difference')
153 figure(15)
154 plot(x,(matrix_data_toptr_Co(:,4)-matrix_data_toptr(:,4)),'k*')
155 title('top track')
156 xlabel('sample index')
157 ylabel('absolute difference [A/m^2]')

A.3.1.2. Parameters file
Original version

1 size_contact scale*130e-9
2 track_length scale*256e-9
3 track_width scalew*20e-9
4 out_bound_width scalew*10e-9
5 thickness_layer_Co 0.8e-9
6 thickness_layer_Pt 0.8e-9
7 hole1_width scalew*27e-9
8 hole2_width scalew*25e-9
9 hole1_height scalew*20e-9

10 hole2_height scalew*20e-9
11 xcoord_holestart scale*113e-9
12 xcoord_track3start scale*100e-9
13 offset_hole2 scale*0
14 Vappl 280e-5
15 nCell_X_bmtracks 30
16 nCell_Y_bmtracks 1
17 nCell_X_ttrack 30
18 nCell_Y_ttrack 1
19 nCell_X_holes 2
20 nCell_Y_holes 15
21 SHangle 1
22 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
23 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
24 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
25 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
26 X_grid_spacing_hole1 hole1_width/nCell_X_holes
27 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes

237



A – Micromagnetic simulations code

28 X_grid_spacing_hole2 hole2_width/nCell_X_holes
29 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes
30 scale 1
31 scalew 1

First version

1 size_contact scale*130e-9
2 track_length scale*256e-9
3 track_width scalew*20e-9
4 out_bound_width scalew*10e-9
5 thickness_layer_Co 0.8e-9
6 thickness_layer_Pt 80e-9
7 hole1_width scalew*27e-9
8 hole2_width scalew*25e-9
9 hole1_height scalew*20e-9

10 hole2_height scalew*20e-9
11 xcoord_holestart scale*113e-9
12 xcoord_track3start scale*100e-9
13 offset_hole2 scale*0
14 Vappl 280e-5
15 nCell_X_bmtracks 30
16 nCell_Y_bmtracks 1
17 nCell_X_ttrack 30
18 nCell_Y_ttrack 1
19 nCell_X_holes 2
20 nCell_Y_holes 15
21 SHangle 1
22 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
23 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
24 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
25 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
26 X_grid_spacing_hole1 hole1_width/nCell_X_holes
27 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
28 X_grid_spacing_hole2 hole2_width/nCell_X_holes
29 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes
30 scale 6
31 scalew 6
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Second version

1 size_contact scale*130e-9
2 track_length scale*256e-9
3 track_width scalew*20e-9
4 out_bound_width scalew*10e-9
5 thickness_layer_Co 0.8e-9
6 thickness_layer_Pt 100e-9
7 hole1_width scalew*27e-9
8 hole2_width scalew*25e-9
9 hole1_height scalew*20e-9

10 hole2_height scalew*20e-9
11 xcoord_holestart scale*113e-9
12 xcoord_track3start scale*100e-9
13 offset_hole2 scale*0
14 Vappl 280e-5
15 nCell_X_bmtracks 30
16 nCell_Y_bmtracks 1
17 nCell_X_ttrack 30
18 nCell_Y_ttrack 1
19 nCell_X_holes 2
20 nCell_Y_holes 15
21 SHangle 1
22 X_grid_spacing_bmtracks track_length/nCell_X_bmtracks
23 Y_grid_spacing_bmtracks track_width/nCell_Y_bmtracks
24 X_grid_spacing_ttrack (track_length-xcoord_track3start)/nCell_X_ttrack
25 Y_grid_spacing_ttrack track_width/nCell_Y_ttrack
26 X_grid_spacing_hole1 hole1_width/nCell_X_holes
27 Y_grid_spacing_hole1 hole1_height/nCell_Y_holes
28 X_grid_spacing_hole2 hole2_width/nCell_X_holes
29 Y_grid_spacing_hole2 hole2_height/nCell_Y_holes
30 scale 4
31 scalew 10

A.3.2. And/Or gate
A.3.2.1. Matlab code

1 clc
2 clear all
3 close all
4

5 %%
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6 tab_data_bottomtr =
readtable('currdensnorm_bottomtr.txt','Format','%f%f%f%f\n');↪→

7 tab_data_middlejun =
readtable('currdensnorm_middlejun.txt','Format','%f%f%f%f\n');↪→

8 tab_data_toptr = readtable('currdensnorm_toptr.txt','Format','%f%f%f%f\n');
9

10 tab_data_bottomtr_Co =
readtable('currdensnorm_bottomtr_Co.txt','Format','%f%f%f%f\n');↪→

11 tab_data_middlejun_Co =
readtable('currdensnorm_middlejun_Co.txt','Format','%f%f%f%f\n');↪→

12 tab_data_toptr_Co =
readtable('currdensnorm_toptr_Co.txt','Format','%f%f%f%f\n');↪→

13

14 %%
15 matrix_data_bottomtr = table2array(tab_data_bottomtr);
16 matrix_data_middlejun = table2array(tab_data_middlejun);
17 matrix_data_toptr = table2array(tab_data_toptr);
18

19 matrix_data_bottomtr_Co = table2array(tab_data_bottomtr_Co);
20 matrix_data_middlejun_Co = table2array(tab_data_middlejun_Co);
21 matrix_data_toptr_Co = table2array(tab_data_toptr_Co);
22

23 %%
24 Xvec_bottomtr = matrix_data_bottomtr(:,1);
25 Yvec_bottomtr = matrix_data_bottomtr(:,2);
26 Jvec_bottomtr = matrix_data_bottomtr(:,4);
27

28 Xvec_middlejun = matrix_data_middlejun(:,1);
29 Yvec_middlejun = matrix_data_middlejun(:,2);
30 Jvec_middlejun = matrix_data_middlejun(:,4);
31

32 Xvec_toptr = matrix_data_toptr(:,1);
33 Yvec_toptr = matrix_data_toptr(:,2);
34 Jvec_toptr = matrix_data_toptr(:,4);
35

36

37 Xvec_bottomtr_Co = matrix_data_bottomtr_Co(:,1);
38 Yvec_bottomtr_Co = matrix_data_bottomtr_Co(:,2);
39 Jvec_bottomtr_Co = matrix_data_bottomtr_Co(:,4);
40

41 Xvec_middlejun_Co = matrix_data_middlejun_Co(:,1);
42 Yvec_middlejun_Co = matrix_data_middlejun_Co(:,2);
43 Jvec_middlejun_Co = matrix_data_middlejun_Co(:,4);
44

45 Xvec_toptr_Co = matrix_data_toptr_Co(:,1);
46 Yvec_toptr_Co = matrix_data_toptr_Co(:,2);
47 Jvec_toptr_Co = matrix_data_toptr_Co(:,4);
48

49 %%
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50 figure(1)
51 x=1:1:length(matrix_data_bottomtr_Co(:,4));
52 plot(x,matrix_data_bottomtr(:,4),'b*',x,matrix_data_bottomtr_Co(:,4),'r*')
53 title('bottom track')
54 xlabel('sample index')
55 ylabel('current density [A/m^2]')
56 figure(4)
57 plot(x,(matrix_data_bottomtr_Co(:,4)-matrix_data_bottomtr(:, c

4))./matrix_data_bottomtr_Co(:,4),'g*')↪→

58 title('bottom track')
59 xlabel('sample index')
60 ylabel('relative difference')
61 figure(7)
62 plot(x,(matrix_data_bottomtr_Co(:,4)-matrix_data_bottomtr(:,4)),'k*')
63 title('bottom track')
64 xlabel('sample index')
65 ylabel('absolute difference [A/m^2]')
66

67 figure(2)
68 x=1:1:length(matrix_data_middlejun_Co(:,4));
69 plot(x,matrix_data_middlejun(:,4),'b*',x,matrix_data_middlejun_Co(:,4),'r*')
70 title('junction')
71 xlabel('sample index')
72 ylabel('current density [A/m^2]')
73 figure(5)
74 plot(x,(matrix_data_middlejun_Co(:,4)-matrix_data_middlejun(:, c

4))./matrix_data_middlejun_Co(:,4),'g*')↪→

75 title('junction')
76 xlabel('sample index')
77 ylabel('relative difference')
78 figure(8)
79 plot(x,(matrix_data_middlejun_Co(:,4)-matrix_data_middlejun(:,4)),'k*')
80 title('junction')
81 xlabel('sample index')
82 ylabel('absolute difference [A/m^2]')
83

84 figure(3)
85 x=1:1:length(matrix_data_toptr_Co(:,4));
86 plot(x,matrix_data_toptr(:,4),'b*',x,matrix_data_toptr_Co(:,4),'r*')
87 title('top track')
88 xlabel('sample index')
89 ylabel('current density [A/m^2]')
90 figure(6)
91 plot(x,(matrix_data_toptr_Co(:,4)-matrix_data_toptr(:, c

4))./matrix_data_toptr_Co(:,4),'g*')↪→

92 title('top track')
93 xlabel('sample index')
94 ylabel('relative difference')
95 figure(9)
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96 plot(x,(matrix_data_toptr_Co(:,4)-matrix_data_toptr(:,4)),'k*')
97 title('top track')
98 xlabel('sample index')
99 ylabel('absolute difference [A/m^2]')

A.3.2.2. Parameters file
Original version

1 size_contact scale*130e-9
2 track_length scale*256e-9
3 out_bound_width scalew*34e-9
4 track_width scalew*20e-9
5 thickness_layer_Co 0.8e-9
6 thickness_layer_Pt 0.8e-9
7 hole_height scalew*20e-9
8 hole_width scalew*30e-9
9 Vappl 280e-5

10 nCell_X_topbottom 30
11 nCell_Y_topbottom 1
12 nCell_X_junc 2
13 nCell_Y_junc 15
14 SHangle 1
15 X_grid_spacing_topbottom track_length/nCell_X_topbottom
16 Y_grid_spacing_topbottom track_width/nCell_Y_topbottom
17 X_grid_spacing_junc hole_width/nCell_X_junc
18 Y_grid_spacing_junc hole_height/nCell_Y_junc
19 scale 1
20 scalew 1

First version

1 size_contact scale*130e-9
2 track_length scale*256e-9
3 out_bound_width scalew*34e-9
4 track_width scalew*20e-9
5 thickness_layer_Co 0.8e-9
6 thickness_layer_Pt 80e-9
7 hole_height scalew*20e-9
8 hole_width scalew*30e-9
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9 Vappl 280e-5
10 nCell_X_topbottom 30
11 nCell_Y_topbottom 1
12 nCell_X_junc 2
13 nCell_Y_junc 15
14 SHangle 1
15 X_grid_spacing_topbottom track_length/nCell_X_topbottom
16 Y_grid_spacing_topbottom track_width/nCell_Y_topbottom
17 X_grid_spacing_junc hole_width/nCell_X_junc
18 Y_grid_spacing_junc hole_height/nCell_Y_junc
19 scale 6
20 scalew 6

Second version

1 size_contact scale*130e-9
2 track_length scale*256e-9
3 out_bound_width scalew*34e-9
4 track_width scalew*20e-9
5 thickness_layer_Co 0.8e-9
6 thickness_layer_Pt 100e-9
7 hole_height scalew*20e-9
8 hole_width scalew*30e-9
9 Vappl 280e-5

10 nCell_X_topbottom 30
11 nCell_Y_topbottom 1
12 nCell_X_junc 2
13 nCell_Y_junc 15
14 SHangle 1
15 X_grid_spacing_topbottom track_length/nCell_X_topbottom
16 Y_grid_spacing_topbottom track_width/nCell_Y_topbottom
17 X_grid_spacing_junc hole_width/nCell_X_junc
18 Y_grid_spacing_junc hole_height/nCell_Y_junc
19 scale 4
20 scalew 10
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B.1. Adder - first version
B.1.1. Gates
B.1.1.1. Globals

1 package GLOBALS is
2 type coordinates_xy is array (0 to 1) of real;
3 type parameters_array is array(0 to 9) of coordinates_xy;
4 type bool_array is array(integer range <>) of boolean;
5 type real_array is array(integer range <>) of real;
6

7 constant HORIZONTAL_SPEED : real := 150.0; --m/s
8 constant VERTICAL_SPEED : real := 40.0; --m/s
9 constant DEPINNING_CURRENT : real := 260.0; --nA

10 constant NOTCH_DEPINNING_CURRENT : real := 3200.0; --nA
11 constant HORIZONTAL_SPEED_HIGH : real := 484.0; --m/s
12 constant SKYRMION_DIAMETER : real := 18.0; --nm
13 constant SKYRMION_MIN_DISTANCE : real := 22.0; --nm
14 constant CURRENT_LOW : real := 800.0; --nA
15 constant CURRENT_HIGH : real := 3200.0; --nA
16 constant CLOCK_LOW : time := 9.85 ns;
17 constant CLOCK_HIGH : time := 150 ps;
18 constant CLOCK_PERIOD : time := 10 ns;
19 constant INPUTS_HIGH : time := 500 ps;
20 end package GLOBALS;
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B.1.1.2. Not/Copy

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONNOT is
8 port( INPUT : in std_logic;
9 CONTROL : in std_logic;

10 CURRENT : in real;
11 COPY1 : out std_logic; --TOP
12 COPY2 : out std_logic; --BOTTOM
13 OUTPUT : out std_logic --MIDDLE
14 );
15 end entity SKYRMIONNOT;
16

17 architecture BLACKBOX of SKYRMIONNOT is
18 ------------ CONSTANTS -------------------------------------------
19 constant TRACK_LENGTH : real := 256.0; --nm
20 constant HOLE_X_START : real := 113.0; --nm
21 constant HOLE_X_END : real := 140.0; --nm
22 constant HOLE2_X_START : real := 113.0; --nm
23 constant HOLE2_X_END : real := 138.0; --nm
24 constant HOLE_Y_BOTTOM : real := 20.0; --nm
25 constant HOLE_Y_TOP : real := 40.0; --nm
26 constant HOLE_Y_INT1 : real := 27.0; --nm
27 constant HOLE_Y_INT2 : real := 33.0; --nm
28 constant HOLE2_Y_BOTTOM : real := 60.0; --nm
29 constant HOLE2_Y_TOP : real := 80.0; --nm
30 constant TRACK_0_Y : real := 10.0; --nm
31 constant TRACK_1_Y : real := 50.0; --nm
32 constant TRACK_2_Y : real := 90.0; --nm
33

34 ------------ INTERNAL SIGNALS ------------------------------------
35 signal emit : std_logic_vector (2 downto 0) := "000";
36 signal inputPortState: std_logic_vector(1 downto 0) := "00";
37 signal ACK : std_logic := '0';
38 signal skyrmion_position_debug : parameters_array;
39 signal skyrmion_number_debug : integer;
40

41 ----------- FUNCTIONS --------------------------------------------
42 function updatePosition (elapsedTimeNs: real; actualPosition:

parameters_array; currentValue : real; index: integer) return
coordinates_xy is

↪→

↪→

43 variable speed : coordinates_xy;
44 variable output : coordinates_xy;
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45 variable changeTrack : boolean;
46 variable skyrmion_X_position : real;
47 begin
48 changeTrack := false;
49 output(0) := 0.0;
50 output(1) := 0.0;
51

52 if(currentValue > DEPINNING_CURRENT) then
53 speed(1) := 0.0;
54 speed(0) := 0.0;
55

56 if(actualPosition(index)(0) > HOLE_X_START and actualPosition(index)(0)<
HOLE_X_END and (actualPosition(index)(1) <= HOLE_Y_BOTTOM )) then↪→

57 changeTrack := true;
58 for i in 0 to 9 loop
59 if(index /= i and actualPosition(i)(0) > HOLE_X_START and

actualPosition(i)(0) < HOLE_X_END and actualPosition(i)(1) >=
HOLE_Y_TOP and actualPosition(i)(1) <= HOLE2_Y_BOTTOM) then

↪→

↪→

60 changeTrack := false;
61 end if;
62 end loop;
63 end if;
64 if(actualPosition(index)(0) > HOLE2_X_START and actualPosition(index)(0)<

HOLE2_X_END and (actualPosition(index)(1) > HOLE_Y_TOP and
actualPosition(index)(1) <= HOLE2_Y_BOTTOM)) then

↪→

↪→

65 changeTrack := true;
66 end if;
67

68 if (changeTrack or (actualPosition(index)(1) > HOLE_Y_BOTTOM and
actualPosition(index)(1) < HOLE_Y_INT2) or (actualPosition(index)(1) >
HOLE2_Y_BOTTOM and actualPosition(index)(1)<HOLE2_Y_TOP)) then

↪→

↪→

69 speed(1) := VERTICAL_SPEED;
70 speed(0) := 0.0;
71 elsif (actualPosition(index)(1)>=HOLE_Y_INT2 and

actualPosition(index)(1)<TRACK_1_Y) then↪→

72 speed(1) := VERTICAL_SPEED;
73 speed(0) := HORIZONTAL_SPEED;
74 else
75 speed(1) := 0.0;
76 speed(0) := HORIZONTAL_SPEED;
77 end if;
78

79 output(0) := actualPosition(index)(0)+speed(0)*elapsedTimeNs;
80 output(1) := actualPosition(index)(1)+speed(1)*elapsedTimeNs;
81 end if;
82 return output;
83 end updatePosition;
84

85 begin
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86

87 RECEIVER: process(INPUT, CONTROL, ACK)
88 begin
89 if (ACK'event and ACK='1') then
90 inputPortState <= "00";
91 end if;
92 if (INPUT'event and INPUT='1') then
93 inputPortState(1) <= '1';
94 end if;
95 if (CONTROL'event and CONTROL='1') then
96 inputPortState(0) <= '1';
97 end if;
98 end process;
99

100

101 EVOLUTION:process
102 variable v_TIME : time := 0 ns;
103 variable skyrmion_number : integer := 0;
104 variable skyrmion_position : parameters_array;
105 variable skyrmion_position_old : parameters_array;
106 variable skyrmion_number_old : integer := 0;
107 variable result : coordinates_xy;
108 variable timeNsReal : real := 0.0;
109 variable trackBusy : bool_array(2 downto 0);
110 variable write_index : integer := 0;
111 begin
112 wait for 5 ps;
113 v_TIME := now - v_TIME;
114 timeNsReal := 0.01; --ns
115 trackBusy(0) := false;
116 trackBusy(1) := false;
117 trackBusy(2) := false;
118 ACK <= '0';
119 if (inputPortState(0) = '1') then
120 skyrmion_number := skyrmion_number +1;
121 skyrmion_position(skyrmion_number-1)(0) := 0.0;
122 skyrmion_position(skyrmion_number-1)(1) := TRACK_0_Y;
123 ACK <= '1';
124 end if;
125

126 if (inputPortState(1) = '1') then
127 skyrmion_number := skyrmion_number +1;
128 skyrmion_position(skyrmion_number-1)(0) := 0.0;
129 skyrmion_position(skyrmion_number-1)(1) := TRACK_1_Y;
130 ACK <= '1';
131 end if;
132

133 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
134 skyrmion_position_old := skyrmion_position;
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135 skyrmion_number_old := skyrmion_number;
136 write_index := -1;
137 for i in 0 to skyrmion_number_old-1 loop
138 result := updatePosition(timeNsReal,skyrmion_position_old,CURRENT,i);
139 if (result(0) > TRACK_LENGTH ) then
140 skyrmion_number := skyrmion_number-1;
141 if result(1) > HOLE2_Y_TOP then
142 emit(2) <= '1' after 5 ps;
143 trackBusy(2) := true;
144 elsif result(1) > HOLE_Y_TOP then
145 emit(1) <= '1' after 5 ps;
146 trackBusy(1) := true;
147 else
148 emit(0) <= '1' after 5 ps;
149 trackBusy(0) := true;
150 end if;
151 else
152 write_index := write_index + 1;
153 skyrmion_position(write_index) := result;
154 end if;
155

156 end loop;
157 if (write_index < 9) then
158 write_index := write_index+1;
159 for i in write_index to 9 loop
160 skyrmion_position(i)(0) := 0.0;
161 skyrmion_position(i)(1) := 0.0;
162 end loop;
163 end if;
164

165 if (not(trackBusy(0))) then
166 emit(0) <= '0' after 5 ps;
167 end if;
168 if (not(trackBusy(1))) then
169 emit(1) <= '0' after 5 ps;
170 end if;
171 if (not(trackBusy(2))) then
172 emit(2) <= '0' after 5 ps;
173 end if;
174 elsif (skyrmion_number=0) then
175 emit <= "000" after 15 ps;
176 for i in 0 to 9 loop
177 skyrmion_position(i)(0) := 0.0;
178 skyrmion_position(i)(1) := 0.0;
179 end loop;
180 else
181 report "Skyrmion number exceeded maximum admitted";
182 end if;
183

248



B.1 – Adder - first version

184 skyrmion_position_debug <= skyrmion_position after 5 ps;
185 skyrmion_number_debug <= skyrmion_number after 5 ps;
186 wait for 5 ps;
187 end process;
188

189

190 EMITTER: process(emit)
191 begin
192 if(emit(0)'event and emit(0)='1') then
193 COPY1<='1';
194 else
195 COPY1<='0' after 1 ns;
196 end if;
197 if(emit(1)'event and emit(1)='1') then
198 OUTPUT<='1';
199 else
200 OUTPUT<='0' after 1 ns;
201 end if;
202 if(emit(2)'event and emit(2)='1') then
203 COPY2<='1';
204 else
205 COPY2<='0' after 1 ns;
206 end if;
207 end process;
208 end BLACKBOX;

B.1.1.3. Line

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use IEEE.math_real.all;
6 use work.globals.all;
7

8 entity SKYRMIONLINE is
9 port( INPUT : in std_logic;

10 CURRENT : in real;
11 OUTPUT : out std_logic
12 );
13 end entity SKYRMIONLINE;
14

15 architecture BLACKBOX of SKYRMIONLINE is
16 ------------ CONSTANTS -------------------------------------------
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17 constant TRACK_LENGTH : real := 375.0; --nm
18

19 ------------ INTERNAL SIGNALS ------------------------------------
20 signal emit : std_logic := '0';
21 signal inputPortState: std_logic:= '0';
22 signal ACK : std_logic := '0';
23 signal skyrmion_position_debug : parameters_array;
24 signal skyrmion_number_debug : integer;
25

26 ------------ FUNCTIONS -------------------------------------------
27 function updatePosition (elapsedTimeNs: real; actualPosition:

parameters_array; currentValue : real ) return parameters_array is↪→

28 variable output : parameters_array;
29 begin
30 if(currentValue > DEPINNING_CURRENT) then
31 for i in 0 to 9 loop
32 output(i)(1) := 0.0;
33 output(i)(0) := actualPosition(i)(0) + HORIZONTAL_SPEED*elapsedTimeNs;
34 end loop;
35 end if;
36 return output;
37 end updatePosition;
38

39 begin
40

41 RECEIVER: process(INPUT, ACK)
42 begin
43 if (ACK'event and ACK='1') then
44 inputPortState <= '0';
45 end if;
46 if (INPUT'event and INPUT='1') then
47 inputPortState <= '1';
48 end if;
49 end process;
50

51

52 EVOLUTION:process
53 variable v_TIME : time := 0 ns;
54 variable skyrmion_number : integer := 0;
55 variable skyrmion_number_old : integer := 0;
56 variable skyrmion_position : parameters_array;
57 variable skyrmion_position_old : parameters_array;
58 variable results : parameters_array;
59 variable timeNsReal : real := 0.0;
60 variable trackBusy : boolean;
61 variable write_index : integer := 0;
62 begin
63 wait for 5 ps;
64 v_TIME := now - v_TIME;
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65 timeNsReal := 0.01;
66 trackBusy := false;
67 ACK <= '0';
68

69 if (inputPortState = '1') then
70 skyrmion_number := skyrmion_number +1;
71 skyrmion_position(skyrmion_number-1)(0) := 0.0;
72 skyrmion_position(skyrmion_number-1)(1) := 0.0;
73 ACK <= '1';
74 end if;
75

76 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
77 skyrmion_position_old := skyrmion_position;
78 skyrmion_number_old := skyrmion_number;
79 write_index := -1;
80 results := updatePosition(timeNsReal, skyrmion_position_old, CURRENT);
81 for i in 0 to skyrmion_number_old-1 loop
82 if (results(i)(0) > TRACK_LENGTH and not(trackBusy)) then
83 skyrmion_number := skyrmion_number-1;
84 emit <= '1' after 5 ps;
85 trackBusy := true;
86 else
87 if(results(i)(0) > TRACK_LENGTH and trackBusy) then
88 report "More than one skyrmion reached the output in this step; Try

reducing the simulation step; The second skyrmion to reach the
output will be delayed by one step";

↪→

↪→

89 end if;
90 write_index := write_index + 1;
91 skyrmion_position(write_index) := results(i);
92 end if;
93 end loop;
94 if (write_index < 9) then
95 write_index := write_index+1;
96 for i in write_index to 9 loop
97 skyrmion_position(i)(0) := 0.0;
98 skyrmion_position(i)(1) := 0.0;
99 end loop;

100 end if;
101

102 if (not(trackBusy)) then
103 emit <= '0' after 5 ps;
104 end if;
105 elsif (skyrmion_number=0) then
106 emit <= '0' after 5 ps;
107 for i in 0 to 9 loop
108 skyrmion_position(i)(0) := 0.0;
109 skyrmion_position(i)(1) := 0.0;
110 end loop;
111 else
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112 report "Skyrmion number exceeded maximum admitted";
113 end if;
114

115 skyrmion_position_debug <= skyrmion_position after 5 ps;
116 skyrmion_number_debug <= skyrmion_number after 5 ps;
117 wait for 5 ps;
118 end process;
119

120

121 EMITTER: process(emit)
122 begin
123 if(emit'event and emit='1') then
124 OUTPUT<='1';
125 else
126 OUTPUT<='0' after 10 ps;
127 end if;
128 end process;
129 end BLACKBOX;

B.1.1.4. Join

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use IEEE.math_real.all;
6 use work.globals.all;
7

8 entity SKYRMIONJOIN is
9 port( A : in std_logic;

10 B : in std_logic;
11 CURRENT : in real;
12 OUTPUT : out std_logic
13 );
14 end entity SKYRMIONJOIN;
15

16 architecture BLACKBOX of SKYRMIONJOIN is
17 ------------ CONSTANTS -------------------------------------------
18 constant TRACK_LENGTH : real := 375.0; --nm
19

20 ------------ INTERNAL SIGNALS ------------------------------------
21 signal emit : std_logic := '0';
22 signal inputPortState: std_logic_vector(1 downto 0):= "00";
23 signal ACK : std_logic := '0';
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24 signal skyrmion_position_debug : parameters_array;
25 signal skyrmion_number_debug : integer;
26

27 ----------- FUNCTIONS --------------------------------------------
28 function updatePosition (elapsedTimeNs: real; actualPosition:

parameters_array; currentValue : real ) return parameters_array is↪→

29 variable output : parameters_array;
30 begin
31 if(currentValue > DEPINNING_CURRENT) then
32 for i in 0 to 9 loop
33 output(i)(1) := 0.0;
34 output(i)(0) := actualPosition(i)(0) + HORIZONTAL_SPEED*elapsedTimeNs;
35 end loop;
36 end if;
37 return output;
38 end updatePosition;
39

40 begin
41

42 RECEIVER: process(A, B, ACK)
43 begin
44 if (ACK'event and ACK='1') then
45 inputPortState <= "00";
46 end if;
47 if (B'event and B='1') then
48 inputPortState(0) <= '1';
49 end if;
50 if (A'event and A='1') then
51 inputPortState(1) <= '1';
52 end if;
53 end process;
54

55

56 EVOLUTION:process
57 variable v_TIME : time := 0 ns;
58 variable skyrmion_number : integer := 0;
59 variable skyrmion_number_old : integer := 0;
60 variable skyrmion_position : parameters_array;
61 variable skyrmion_position_old : parameters_array;
62 variable results : parameters_array;
63 variable timeNsReal : real := 0.0;
64 variable trackBusy : boolean;
65 variable write_index : integer := 0;
66 begin
67 wait for 5 ps;
68 v_TIME := now - v_TIME;
69 timeNsReal := 0.01;
70 trackBusy := false;
71 ACK <= '0';
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72

73 if (inputPortState(0) = '1') then
74 skyrmion_number := skyrmion_number +1;
75 skyrmion_position(skyrmion_number-1)(0) := 0.0;
76 skyrmion_position(skyrmion_number-1)(1) := 0.0;
77 ACK <= '1';
78 end if;
79 if (inputPortState(1) = '1') then
80 skyrmion_number := skyrmion_number +1;
81 skyrmion_position(skyrmion_number-1)(0) := 0.0;
82 skyrmion_position(skyrmion_number-1)(1) := 0.0;
83 ACK <= '1';
84 end if;
85

86 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
87 skyrmion_position_old := skyrmion_position;
88 skyrmion_number_old := skyrmion_number;
89 write_index := -1;
90 results := updatePosition(timeNsReal, skyrmion_position_old, CURRENT);
91 for i in 0 to skyrmion_number_old-1 loop
92 if (results(i)(0) > TRACK_LENGTH and not(trackBusy)) then
93 skyrmion_number := skyrmion_number-1;
94 emit <= '1' after 5 ps;
95 trackBusy := true;
96 else
97 if(results(i)(0) > TRACK_LENGTH and trackBusy) then
98 report "More than one skyrmion reached the output in this step; Join

gate does not account the skyrmion collisions yet. The skyrmions
will be emitted in sequence with one step distance";

↪→

↪→

99 end if;
100 write_index := write_index + 1;
101 skyrmion_position(write_index) := results(i);
102 end if;
103 end loop;
104 if (write_index < 9) then
105 write_index := write_index+1;
106 for i in write_index to 9 loop
107 skyrmion_position(i)(0) := 0.0;
108 skyrmion_position(i)(1) := 0.0;
109 end loop;
110 end if;
111

112 if (not(trackBusy)) then
113 emit <= '0' after 5 ps;
114 end if;
115 elsif (skyrmion_number=0) then
116 emit <= '0' after 5 ps;
117 for i in 0 to 9 loop
118 skyrmion_position(i)(0) := 0.0;
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119 skyrmion_position(i)(1) := 0.0;
120 end loop;
121 else
122 report "Skyrmion number exceeded maximum admitted";
123 end if;
124

125 skyrmion_position_debug <= skyrmion_position after 5 ps;
126 skyrmion_number_debug <= skyrmion_number after 5 ps;
127 wait for 5 ps;
128 end process;
129

130

131 EMITTER: process(emit)
132 begin
133

134 if(emit'event and emit='1') then
135 OUTPUT<='1';
136 else
137 OUTPUT<='0' after 10 ps;
138 end if;
139 end process;
140 end BLACKBOX;

B.1.1.5. Notch

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use IEEE.math_real.all;
6 use work.globals.all;
7 use work.all;
8

9 entity SKYRMIONNOTCH is
10 port( INPUT : in std_logic;
11 CURRENT : in real;
12 OUTPUT : out std_logic
13 );
14 end entity SKYRMIONNOTCH;
15

16 architecture BLACKBOX of SKYRMIONNOTCH is
17 ------------ CONSTANTS -------------------------------------------
18 constant TRACK_LENGTH : real := 256.0; --nm
19 constant NOTCH_POSITION: real := 113.0; --nm
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20

21 ------------ INTERNAL SIGNALS ------------------------------------
22 signal emit : std_logic := '0';
23 signal inputPortState: std_logic:= '0';
24 signal ACK : std_logic := '0';
25 signal skyrmion_position_debug : parameters_array;
26 signal skyrmion_number_debug : integer;
27

28 ----------- FUNCTIONS --------------------------------------------
29 function findSkyrmionsCloserToNotch (notch_distance: real_array(9 downto 0);

index: integer) return integer is↪→

30 variable output : integer := 0;
31 begin
32 for i in 0 to 9 loop
33 if(notch_distance(index) < notch_distance(i)) then
34 output := output + 1;
35 end if;
36 end loop;
37 return output;
38 end findSkyrmionsCloserToNotch;
39

40

41 function updatePosition (elapsedTimeNs: real; actualPosition:
parameters_array; currentValue : real ) return parameters_array is↪→

42 variable speed : coordinates_xy;
43 variable output : parameters_array;
44 variable blocking_skyrmions : integer;
45 variable notch_distance : real_array(9 downto 0);
46 variable delta_distance : real;
47 begin
48 if(currentValue > DEPINNING_CURRENT) then
49 if (currentValue < NOTCH_DEPINNING_CURRENT) then
50 for i in 0 to 9 loop
51 output(i)(1) := 0.0;
52 notch_distance(i) := actualPosition(i)(0)-NOTCH_POSITION;
53 delta_distance := HORIZONTAL_SPEED*elapsedTimeNs;
54 if(notch_distance(i) > 0.0) then
55 output(i)(0) := actualPosition(i)(0)+delta_distance;
56 else
57 blocking_skyrmions := findSkyrmionsCloserToNotch(notch_distance, i);
58 if (abs(notch_distance(i)) - real(blocking_skyrmions) *

(SKYRMION_DIAMETER + SKYRMION_MIN_DISTANCE) > delta_distance)
then

↪→

↪→

59 output(i)(0) := actualPosition(i)(0)+ delta_distance;
60 else
61 output(i)(0) := NOTCH_POSITION - real(blocking_skyrmions) *

(SKYRMION_DIAMETER + SKYRMION_MIN_DISTANCE);↪→

62 end if;
63 end if;
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64 end loop;
65 else
66 for i in 0 to 9 loop
67 output(i)(1) := 0.0;
68 output(i)(0) := actualPosition(i)(0) +

HORIZONTAL_SPEED_HIGH*elapsedTimeNs;↪→

69 end loop;
70 end if;
71 end if;
72 return output;
73 end updatePosition;
74

75 begin
76

77 RECEIVER: process(INPUT, ACK)
78 begin
79 if (ACK'event and ACK='1') then
80 inputPortState <= '0';
81 end if;
82 if (INPUT'event and INPUT='1') then
83 inputPortState <= '1';
84 end if;
85 end process;
86

87

88 EVOLUTION:process
89 variable v_TIME : time := 0 ns;
90 variable skyrmion_number : integer := 0;
91 variable skyrmion_number_old : integer := 0;
92 variable skyrmion_position : parameters_array;
93 variable skyrmion_position_old : parameters_array;
94 variable results : parameters_array;
95 variable timeNsReal : real := 0.0;
96 variable trackBusy : boolean;
97 variable write_index : integer := 0;
98 begin
99 wait for 5 ps;

100 v_TIME := now - v_TIME;
101 timeNsReal := 0.01;
102 trackBusy := false;
103 ACK <= '0';
104

105 if (inputPortState = '1') then
106 skyrmion_number := skyrmion_number +1;
107 skyrmion_position(skyrmion_number-1)(0) := 0.0;
108 skyrmion_position(skyrmion_number-1)(1) := 0.0;
109 ACK <= '1';
110 end if;
111
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112 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
113 skyrmion_position_old := skyrmion_position;
114 skyrmion_number_old := skyrmion_number;
115 write_index := -1;
116 results := updatePosition(timeNsReal, skyrmion_position_old, CURRENT);
117 for i in 0 to skyrmion_number_old-1 loop
118 if (results(i)(0) > TRACK_LENGTH and not(trackBusy)) then
119 skyrmion_number := skyrmion_number-1;
120 emit <= '1' after 5 ps;
121 trackBusy := true;
122 else
123 if(results(i)(0) > TRACK_LENGTH and trackBusy) then
124 report "More than one skyrmion reached the output in this step; Try

reducing the simulation step; The second skyrmion to reach the
output will be delayed by one step";

↪→

↪→

125 end if;
126 write_index := write_index + 1;
127 skyrmion_position(write_index) := results(i);
128 end if;
129 end loop;
130 if (write_index < 9) then
131 write_index := write_index+1;
132 for i in write_index to 9 loop
133 skyrmion_position(i)(0) := 0.0;
134 skyrmion_position(i)(1) := 0.0;
135 end loop;
136 end if;
137

138 if (not(trackBusy)) then
139 emit <= '0' after 5 ps;
140 end if;
141 elsif (skyrmion_number=0) then
142 emit <= '0' after 5 ps;
143 for i in 0 to 9 loop
144 skyrmion_position(i)(0) := 0.0;
145 skyrmion_position(i)(1) := 0.0;
146 end loop;
147 else
148 report "Skyrmion number exceeded maximum admitted";
149 end if;
150

151 skyrmion_position_debug <= skyrmion_position after 5 ps;
152 skyrmion_number_debug <= skyrmion_number after 5 ps;
153 wait for 5 ps;
154 end process;
155

156

157 EMITTER: process(emit)
158 begin

258



B.1 – Adder - first version

159

160 if(emit'event and emit='1') then
161 OUTPUT<='1';
162 else
163 OUTPUT<='0' after 10 ps;
164 end if;
165 end process;
166 end BLACKBOX;

B.1.1.6. Cross

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONCROSS is
8 port( A: in std_logic;
9 B: in std_logic;

10 CURRENT: in real;
11 Aout: out std_logic;
12 Bout: out std_logic
13 );
14 end entity SKYRMIONCROSS;
15

16 architecture BLACKBOX of SKYRMIONCROSS is
17 begin
18 Aout <= A;
19 Bout <= B;
20 end BLACKBOX;

B.1.1.7. Notch_seq

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
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6

7 entity SKYRMIONNOTCHseq is
8 generic (N: integer := 5);
9 port( INPUT: in std_logic;

10 CURRENT: in real;
11 OUTPUT: out std_logic
12 );
13 end entity SKYRMIONNOTCHseq;
14

15 architecture Structure of SKYRMIONNOTCHseq is
16 component SKYRMIONNOTCH is
17 port( INPUT : in std_logic;
18 CURRENT : in real;
19 OUTPUT : out std_logic
20 );
21 end component;
22

23 signal internal: std_logic_vector(N-2 downto 0);
24

25 begin
26

27 NOTCH0: SKYRMIONNOTCH port map (INPUT => INPUT, CURRENT => CURRENT, OUTPUT =>
internal(0));↪→

28 gen_notch: for i in 1 to N-2 generate
29 NOTCH_i: SKYRMIONNOTCH port map (INPUT => internal(i-1), CURRENT => CURRENT,

OUTPUT => internal(i));↪→

30 end generate;
31 NOTCH_last: SKYRMIONNOTCH port map (INPUT => internal(N-2), CURRENT =>

CURRENT, OUTPUT => OUTPUT);↪→

32

33 end Structure;

B.1.1.8. SRlatch

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SRlatch is
8 port( SET: in std_logic;
9 RST: in std_logic;

10 Q: out std_logic
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11 );
12 end entity SRlatch;
13

14 architecture Behaviour of SRlatch is
15 begin
16 latch: process (SET, RST)
17 begin
18 if (RST='1') then
19 Q <= '0';
20 elsif(SET'event and SET='1') then
21 Q <= '1';
22 end if;
23 end process latch;
24 end architecture Behaviour;

B.1.2. Adder (16 bit)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONADDER is
8 generic (N: integer := 16);
9 port ( A : in std_logic_vector(N-1 downto 0);

10 B : in std_logic_vector(N-1 downto 0);
11 ONE1 : in std_logic;
12 ONE2 : in std_logic;
13 CURRENT : in real;
14 SUM : out std_logic_vector(N-1 downto 0);
15 COUT1 : out std_logic;
16 COUT2 : out std_logic;
17 CTRL1 : out std_logic;
18 CTRL2 : out std_logic
19 );
20 end entity SKYRMIONADDER;
21

22 architecture BLACKBOX of SKYRMIONADDER is
23 component SKYRMIONHALFADDER is
24 port( A: in std_logic;
25 B: in std_logic;
26 ONE1: in std_logic;
27 ONE2: in std_logic;
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28 CURRENT: in real;
29 CTRL1: out std_logic;
30 COUT1: out std_logic;
31 SUM: out std_logic;
32 CTRL2: out std_logic;
33 COUT2: out std_logic
34 );
35 end component SKYRMIONHALFADDER;
36

37 component SKYRMIONFULLADDER is
38 port( A : in std_logic;
39 B : in std_logic;
40 CIN1 : in std_logic;
41 CIN2 : in std_logic;
42 ONE1 : in std_logic;
43 ONE2 : in std_logic;
44 CURRENT : in real;
45 CTRL1 : out std_logic;
46 SUM : out std_logic;
47 COUT1 : out std_logic;
48 COUT2 : out std_logic;
49 CTRL2 : out std_logic
50 );
51 end component SKYRMIONFULLADDER;
52

53 component SKYRMIONCROSS is
54 port( A: in std_logic;
55 B: in std_logic;
56 CURRENT: in real;
57 Aout: out std_logic;
58 Bout: out std_logic
59 );
60 end component SKYRMIONCROSS;
61

62 component SKYRMIONNOTCHseq is
63 generic (N: integer := 5);
64 port( INPUT: in std_logic;
65 CURRENT: in real;
66 OUTPUT: out std_logic
67 );
68 end component SKYRMIONNOTCHseq;
69

70 component SKYRMIONNOTCH is
71 port( INPUT : in std_logic;
72 CURRENT : in real;
73 OUTPUT : out std_logic
74 );
75 end component;
76
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77 signal cross01Aout, cross03Bout: std_logic;
78 signal Adelayed, Bdelayed: std_logic_vector(N-1 downto 1);
79 signal CTRL1vector, COUT1vector, CTRL2vector, COUT2vector:

std_logic_vector(N-2 downto 0);↪→

80 signal CIN1vector, CIN2vector, ONE1vector, ONE2vector: std_logic_vector(N-1
downto 1);↪→

81 signal crossi1Aout: std_logic_vector(N-2 downto 1);
82

83 begin
84

85 HA: SKYRMIONHALFADDER port map (A => A(0),
86 B => B(0),
87 ONE1 => ONE1,
88 ONE2 => ONE2,
89 CURRENT => CURRENT,
90 CTRL1 => CTRL1vector(0),
91 COUT1 => COUT1vector(0),
92 SUM => SUM(0),
93 CTRL2 => CTRL2vector(0),
94 COUT2 => COUT2vector(0)
95 );
96

97 CROSS01: SKYRMIONCROSS port map (A => CTRL1vector(0), B => COUT1vector(0),
CURRENT => CURRENT, Aout => cross01Aout, Bout => CIN1vector(1));↪→

98 CROSS02: SKYRMIONCROSS port map (A => cross01Aout, B => cross03Bout, CURRENT
=> CURRENT, Aout => ONE1vector(1), Bout => CIN2vector(1));↪→

99 CROSS03: SKYRMIONCROSS port map (A => CTRL2vector(0), B => COUT2vector(0),
CURRENT => CURRENT, Aout => ONE2vector(1), Bout => cross03Bout);↪→

100

101 NOTCHES_1_A: SKYRMIONNOTCH port map (INPUT => A(1), CURRENT => CURRENT, OUTPUT
=> Adelayed(1));↪→

102 NOTCHES_1_B: SKYRMIONNOTCH port map (INPUT => B(1), CURRENT => CURRENT, OUTPUT
=> Bdelayed(1));↪→

103 NOTCHES_2_A: SKYRMIONNOTCHseq generic map (N => 3) port map (INPUT => A(2),
CURRENT => CURRENT, OUTPUT => Adelayed(2));↪→

104 NOTCHES_2_B: SKYRMIONNOTCHseq generic map (N => 3) port map (INPUT => B(2),
CURRENT => CURRENT, OUTPUT => Bdelayed(2));↪→

105 NOTCHES_3_A: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT => A(3),
CURRENT => CURRENT, OUTPUT => Adelayed(3));↪→

106 NOTCHES_3_B: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT => B(3),
CURRENT => CURRENT, OUTPUT => Bdelayed(3));↪→

107 NOTCHES_4_A: SKYRMIONNOTCHseq generic map (N => 7) port map (INPUT => A(4),
CURRENT => CURRENT, OUTPUT => Adelayed(4));↪→

108 NOTCHES_4_B: SKYRMIONNOTCHseq generic map (N => 7) port map (INPUT => B(4),
CURRENT => CURRENT, OUTPUT => Bdelayed(4));↪→

109 NOTCHES_5_A: SKYRMIONNOTCHseq generic map (N => 9) port map (INPUT => A(5),
CURRENT => CURRENT, OUTPUT => Adelayed(5));↪→

110 NOTCHES_5_B: SKYRMIONNOTCHseq generic map (N => 9) port map (INPUT => B(5),
CURRENT => CURRENT, OUTPUT => Bdelayed(5));↪→
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111 NOTCHES_6_A: SKYRMIONNOTCHseq generic map (N => 11) port map (INPUT => A(6),
CURRENT => CURRENT, OUTPUT => Adelayed(6));↪→

112 NOTCHES_6_B: SKYRMIONNOTCHseq generic map (N => 11) port map (INPUT => B(6),
CURRENT => CURRENT, OUTPUT => Bdelayed(6));↪→

113 NOTCHES_7_A: SKYRMIONNOTCHseq generic map (N => 13) port map (INPUT => A(7),
CURRENT => CURRENT, OUTPUT => Adelayed(7));↪→

114 NOTCHES_7_B: SKYRMIONNOTCHseq generic map (N => 13) port map (INPUT => B(7),
CURRENT => CURRENT, OUTPUT => Bdelayed(7));↪→

115 NOTCHES_8_A: SKYRMIONNOTCHseq generic map (N => 15) port map (INPUT => A(8),
CURRENT => CURRENT, OUTPUT => Adelayed(8));↪→

116 NOTCHES_8_B: SKYRMIONNOTCHseq generic map (N => 15) port map (INPUT => B(8),
CURRENT => CURRENT, OUTPUT => Bdelayed(8));↪→

117 NOTCHES_9_A: SKYRMIONNOTCHseq generic map (N => 17) port map (INPUT => A(9),
CURRENT => CURRENT, OUTPUT => Adelayed(9));↪→

118 NOTCHES_9_B: SKYRMIONNOTCHseq generic map (N => 17) port map (INPUT => B(9),
CURRENT => CURRENT, OUTPUT => Bdelayed(9));↪→

119 NOTCHES_10_A: SKYRMIONNOTCHseq generic map (N => 19) port map (INPUT => A(10),
CURRENT => CURRENT, OUTPUT => Adelayed(10));↪→

120 NOTCHES_10_B: SKYRMIONNOTCHseq generic map (N => 19) port map (INPUT => B(10),
CURRENT => CURRENT, OUTPUT => Bdelayed(10));↪→

121 NOTCHES_11_A: SKYRMIONNOTCHseq generic map (N => 21) port map (INPUT => A(11),
CURRENT => CURRENT, OUTPUT => Adelayed(11));↪→

122 NOTCHES_11_B: SKYRMIONNOTCHseq generic map (N => 21) port map (INPUT => B(11),
CURRENT => CURRENT, OUTPUT => Bdelayed(11));↪→

123 NOTCHES_12_A: SKYRMIONNOTCHseq generic map (N => 23) port map (INPUT => A(12),
CURRENT => CURRENT, OUTPUT => Adelayed(12));↪→

124 NOTCHES_12_B: SKYRMIONNOTCHseq generic map (N => 23) port map (INPUT => B(12),
CURRENT => CURRENT, OUTPUT => Bdelayed(12));↪→

125 NOTCHES_13_A: SKYRMIONNOTCHseq generic map (N => 25) port map (INPUT => A(13),
CURRENT => CURRENT, OUTPUT => Adelayed(13));↪→

126 NOTCHES_13_B: SKYRMIONNOTCHseq generic map (N => 25) port map (INPUT => B(13),
CURRENT => CURRENT, OUTPUT => Bdelayed(13));↪→

127 NOTCHES_14_A: SKYRMIONNOTCHseq generic map (N => 27) port map (INPUT => A(14),
CURRENT => CURRENT, OUTPUT => Adelayed(14));↪→

128 NOTCHES_14_B: SKYRMIONNOTCHseq generic map (N => 27) port map (INPUT => B(14),
CURRENT => CURRENT, OUTPUT => Bdelayed(14));↪→

129 NOTCHES_15_A: SKYRMIONNOTCHseq generic map (N => 29) port map (INPUT => A(15),
CURRENT => CURRENT, OUTPUT => Adelayed(15));↪→

130 NOTCHES_15_B: SKYRMIONNOTCHseq generic map (N => 29) port map (INPUT => B(15),
CURRENT => CURRENT, OUTPUT => Bdelayed(15));↪→

131

132 FA: for i in 1 to N-2 generate
133 FA_i: SKYRMIONFULLADDER port map ( A => Adelayed(i),
134 B => Bdelayed(i),
135 CIN1 => CIN1vector(i),
136 CIN2 => CIN2vector(i),
137 ONE1 => ONE1vector(i),
138 ONE2 => ONE2vector(i),
139 CURRENT => CURRENT,
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140 CTRL1 => CTRL1vector(i),
141 SUM => SUM(i),
142 COUT1 => COUT1vector(i),
143 COUT2 => COUT2vector(i),
144 CTRL2 => CTRL2vector(i)
145 );
146 CROSS_i1: SKYRMIONCROSS port map (A => CTRL1vector(i), B => COUT1vector(i),

CURRENT => CURRENT, Aout => crossi1Aout(i), Bout => CIN1vector(i+1));↪→

147 CROSS_i2: SKYRMIONCROSS port map (A => crossi1Aout(i), B => COUT2vector(i),
CURRENT => CURRENT, Aout => ONE1vector(i+1), Bout => CIN2vector(i+1));↪→

148 ONE2vector(i+1) <= CTRL2vector(i);
149 end generate;
150

151 FA_last: SKYRMIONFULLADDER port map ( A => Adelayed(N-1),
152 B => Bdelayed(N-1),
153 CIN1 => CIN1vector(N-1),
154 CIN2 => CIN2vector(N-1),
155 ONE1 => ONE1vector(N-1),
156 ONE2 => ONE2vector(N-1),
157 CURRENT => CURRENT,
158 CTRL1 => CTRL1,
159 SUM => SUM(N-1),
160 COUT1 => COUT1,
161 COUT2 => COUT2,
162 CTRL2 => CTRL2
163 );
164 end BLACKBOX;

B.1.3. FullAdder

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONFULLADDER is
8 port( A : in std_logic;
9 B : in std_logic;

10 CIN1 : in std_logic;
11 CIN2 : in std_logic;
12 ONE1 : in std_logic;
13 ONE2 : in std_logic;
14 CURRENT : in real;
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15 CTRL1 : out std_logic;
16 SUM : out std_logic;
17 COUT1 : out std_logic;
18 COUT2 : out std_logic;
19 CTRL2 : out std_logic
20 );
21 end entity SKYRMIONFULLADDER;
22

23 architecture BLACKBOX of SKYRMIONFULLADDER is
24 component SKYRMIONNOT is
25 port( INPUT : in std_logic;
26 CONTROL : in std_logic;
27 CURRENT : in real;
28 COPY1 : out std_logic;
29 COPY2 : out std_logic;
30 OUTPUT : out std_logic
31 );
32 end component;
33

34 component SKYRMIONNOTCH is
35 port( INPUT : in std_logic;
36 CURRENT : in real;
37 OUTPUT : out std_logic
38 );
39 end component;
40

41 component SKYRMIONLINE is
42 port( INPUT : in std_logic;
43 CURRENT : in real;
44 OUTPUT : out std_logic
45 );
46 end component;
47

48 component SKYRMIONJOIN is
49 port( A : in std_logic;
50 B : in std_logic;
51 CURRENT : in real;
52 OUTPUT : out std_logic
53 );
54 end component;
55

56 component SKYRMIONCROSS is
57 port( A: in std_logic;
58 B: in std_logic;
59 CURRENT: in real;
60 Aout: out std_logic;
61 Bout: out std_logic
62 );
63 end component;
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64

65 signal inv1copy2, inv1out, inv1copy1,
66 inv2copy2, inv2out, inv2copy1,
67 line1out, line2out,
68 inv3copy2, inv3out, inv3copy1,
69 inv4copy2, inv4out, inv4copy1,
70 join1out, join2out,
71 join3out, notch21out, notch22out,
72 notch23out, notch24out, notch25out,
73 notch26out, notch27out,
74 inv5copy2, inv5out, inv5copy1,
75 join4out,
76 inv6copy2, inv6out, inv6copy1,
77 notch01out, notch02out, notch03out,
78 notch04out, notch05out, notch06out,
79 cross1Aout, cross1Bout,
80 cross2Aout, cross2Bout,
81 cross3Aout, cross3Bout,
82 cross4Aout, cross4Bout,
83 cross5Aout, cross5Bout,
84 cross6Aout, cross6Bout,
85 cross7Aout, cross7Bout,
86 cross8Aout, cross8Bout,
87 cross9Aout, cross9Bout,
88 cross10Aout, cross10Bout,
89 cross11Aout, cross11Bout,
90 cross12Aout, cross12Bout,
91 line3out, line4out, line5out,
92 line6out, line7out, line8out,
93 line9out, line10out, line11out: std_logic;
94

95 begin
96

97 NOTCH01: SKYRMIONNOTCH port map (INPUT => CIN1, CURRENT => CURRENT, OUTPUT
=> notch01out);↪→

98 NOTCH02: SKYRMIONNOTCH port map (INPUT => CIN2, CURRENT => CURRENT, OUTPUT
=> notch02out);↪→

99 NOTCH03: SKYRMIONNOTCH port map (INPUT => A, CURRENT => CURRENT, OUTPUT =>
notch03out);↪→

100 NOTCH04: SKYRMIONNOTCH port map (INPUT => ONE1, CURRENT => CURRENT, OUTPUT
=> notch04out);↪→

101 NOTCH05: SKYRMIONNOTCH port map (INPUT => B, CURRENT => CURRENT, OUTPUT =>
notch05out);↪→

102 NOTCH06: SKYRMIONNOTCH port map (INPUT => ONE2, CURRENT => CURRENT, OUTPUT
=> notch06out);↪→

103

104 INV1: SKYRMIONNOT port map (INPUT => notch03out, CONTROL => notch04out,
CURRENT => CURRENT, COPY2 => inv1copy2, OUTPUT => inv1out, COPY1 =>
inv1copy1);

↪→

↪→
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105 CROSS1: SKYRMIONCROSS port map (A => inv1copy1, B => notch05out, CURRENT =>
CURRENT, Aout => cross1Aout, Bout => cross1Bout);↪→

106 CROSS2: SKYRMIONCROSS port map (A => cross1Aout, B => notch06out, CURRENT =>
CURRENT, Aout => cross2Aout, Bout => cross2Bout);↪→

107 CROSS3: SKYRMIONCROSS port map (A => inv1copy2, B => inv1out, CURRENT =>
CURRENT, Aout => cross3Aout, Bout => cross3Bout);↪→

108 INV2: SKYRMIONNOT port map (INPUT => cross1Bout, CONTROL => cross2Bout,
CURRENT => CURRENT, COPY2 => inv2copy2, OUTPUT => inv2out, COPY1 =>
inv2copy1);

↪→

↪→

109 LINE1: SKYRMIONLINE port map (INPUT => cross3Bout, CURRENT => CURRENT,
OUTPUT => line1out);↪→

110 INV3: SKYRMIONNOT port map (INPUT => cross3Aout, CONTROL => inv2copy2,
CURRENT => CURRENT, COPY2 => inv3copy2, OUTPUT => inv3out, COPY1 =>
inv3copy1);

↪→

↪→

111 LINE2: SKYRMIONLINE port map (INPUT => inv2out, CURRENT => CURRENT, OUTPUT
=> line2out);↪→

112 INV4: SKYRMIONNOT port map (INPUT => inv2copy1, CONTROL => cross2Aout,
CURRENT => CURRENT, COPY2 => inv4copy2, OUTPUT => inv4out, COPY1 =>
inv4copy1);

↪→

↪→

113 CROSS4: SKYRMIONCROSS port map (A => inv3copy1, B => cross5Bout, CURRENT =>
CURRENT, Aout => cross4Aout, Bout => cross4Bout);↪→

114 CROSS5: SKYRMIONCROSS port map (A => line2out, B => cross6Bout, CURRENT =>
CURRENT, Aout => cross5Aout, Bout => cross5Bout);↪→

115 CROSS6: SKYRMIONCROSS port map (A => inv4copy2, B => inv4out, CURRENT =>
CURRENT, Aout => cross6Aout, Bout => cross6Bout);↪→

116

117 JOIN1: SKYRMIONJOIN port map (A => line1out, B => inv3copy2, CURRENT=>
CURRENT, OUTPUT => join1out);↪→

118 JOIN2: SKYRMIONJOIN port map (A => inv3out, B => cross4Bout, CURRENT=>
CURRENT, OUTPUT => join2out);↪→

119 JOIN3: SKYRMIONJOIN port map (A => cross5Aout, B => cross6Aout, CURRENT=>
CURRENT, OUTPUT => join3out);↪→

120

121 NOTCH21: SKYRMIONNOTCH port map (INPUT => notch01out, CURRENT => CURRENT,
OUTPUT => notch21out);↪→

122 NOTCH22: SKYRMIONNOTCH port map (INPUT => notch02out, CURRENT => CURRENT,
OUTPUT => notch22out);↪→

123 NOTCH23: SKYRMIONNOTCH port map (INPUT => join1out, CURRENT => CURRENT,
OUTPUT => notch23out);↪→

124 NOTCH24: SKYRMIONNOTCH port map (INPUT => join2out, CURRENT => CURRENT,
OUTPUT => notch24out);↪→

125 NOTCH25: SKYRMIONNOTCH port map (INPUT => cross4Aout, CURRENT => CURRENT,
OUTPUT => notch25out);↪→

126 NOTCH26: SKYRMIONNOTCH port map (INPUT => join3out, CURRENT => CURRENT,
OUTPUT => notch26out);↪→

127 NOTCH27: SKYRMIONNOTCH port map (INPUT => inv4copy1, CURRENT => CURRENT,
OUTPUT => notch27out);↪→

128

129 CROSS7: SKYRMIONCROSS port map (A => notch26out, B => notch27out, CURRENT =>
CURRENT, Aout => cross7Aout, Bout => cross7Bout);↪→
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130 CROSS8: SKYRMIONCROSS port map (A => notch22out, B => notch23out, CURRENT =>
CURRENT, Aout => cross8Aout, Bout => cross8Bout);↪→

131 CROSS9: SKYRMIONCROSS port map (A => cross8Aout, B => notch24out, CURRENT =>
CURRENT, Aout => cross9Aout, Bout => cross9Bout);↪→

132

133 LINE3: SKYRMIONLINE port map (INPUT => notch21out, CURRENT => CURRENT,
OUTPUT => line3out);↪→

134 LINE4: SKYRMIONLINE port map (INPUT => cross8Bout, CURRENT => CURRENT,
OUTPUT => line4out);↪→

135 INV5: SKYRMIONNOT port map (INPUT => cross9Bout, CONTROL => cross9Aout,
CURRENT => CURRENT, COPY2 => inv5copy2, OUTPUT => inv5out, COPY1 =>
inv5copy1);

↪→

↪→

136 LINE5: SKYRMIONLINE port map (INPUT => notch25out, CURRENT => CURRENT,
OUTPUT => line5out);↪→

137 LINE6: SKYRMIONLINE port map (INPUT => cross7Bout, CURRENT => CURRENT,
OUTPUT => line6out);↪→

138 LINE7: SKYRMIONLINE port map (INPUT => cross7Aout, CURRENT => CURRENT,
OUTPUT => line7out);↪→

139

140 CROSS10: SKYRMIONCROSS port map (A => line3out, B => line4out, CURRENT =>
CURRENT, Aout => cross10Aout, Bout => cross10Bout);↪→

141 CROSS11: SKYRMIONCROSS port map (A => inv5copy1, B => line5out, CURRENT =>
CURRENT, Aout => cross11Aout, Bout => cross11Bout);↪→

142 LINE8: SKYRMIONLINE port map (INPUT => cross10Bout, CURRENT => CURRENT,
OUTPUT => line8out);↪→

143 INV6: SKYRMIONNOT port map (INPUT => cross10Aout, CONTROL => inv5copy2,
CURRENT => CURRENT, COPY2 => inv6copy2, OUTPUT => inv6out, COPY1 =>
inv6copy1);

↪→

↪→

144 LINE9: SKYRMIONLINE port map (INPUT => inv5out, CURRENT => CURRENT, OUTPUT
=> line9out);↪→

145 LINE10: SKYRMIONLINE port map (INPUT => cross11Bout, CURRENT => CURRENT,
OUTPUT => line10out);↪→

146 JOIN4: SKYRMIONJOIN port map (A => cross11Aout, B => line6out, CURRENT=>
CURRENT, OUTPUT => join4out);↪→

147 LINE11: SKYRMIONLINE port map (INPUT => line7out, CURRENT => CURRENT, OUTPUT
=> line11out);↪→

148 CROSS12: SKYRMIONCROSS port map (A => inv6copy1, B => line9out, CURRENT =>
CURRENT, Aout => cross12Aout, Bout => cross12Bout);↪→

149

150 LINE12: SKYRMIONLINE port map (INPUT => line8out, CURRENT => CURRENT, OUTPUT
=> CTRL1);↪→

151 JOIN6: SKYRMIONJOIN port map (A => inv6out, B => cross12Bout, CURRENT=>
CURRENT, OUTPUT => SUM);↪→

152 JOIN5: SKYRMIONJOIN port map (A => cross12Aout, B => line10out, CURRENT=>
CURRENT, OUTPUT => COUT1);↪→

153 LINE13: SKYRMIONLINE port map (INPUT => join4out, CURRENT => CURRENT, OUTPUT
=> COUT2);↪→

154 LINE14: SKYRMIONLINE port map (INPUT => line11out, CURRENT => CURRENT, OUTPUT
=> CTRL2);↪→
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155

156 end BLACKBOX;

B.1.4. HalfAdder

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONHALFADDER is
8 port( A: in std_logic;
9 B: in std_logic;

10 ONE1: in std_logic;
11 ONE2: in std_logic;
12 CURRENT: in real;
13 CTRL1: out std_logic;
14 COUT1: out std_logic;
15 SUM: out std_logic;
16 CTRL2: out std_logic;
17 COUT2: out std_logic
18 );
19 end entity SKYRMIONHALFADDER;
20

21 architecture BLACKBOX of SKYRMIONHALFADDER is
22 component SKYRMIONNOT is
23 port( INPUT : in std_logic;
24 CONTROL : in std_logic;
25 CURRENT : in real;
26 COPY1 : out std_logic;
27 COPY2 : out std_logic;
28 OUTPUT : out std_logic
29 );
30 end component;
31

32 component SKYRMIONLINE is
33 port( INPUT : in std_logic;
34 CURRENT : in real;
35 OUTPUT : out std_logic
36 );
37 end component;
38

39 component SKYRMIONJOIN is
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40 port( A : in std_logic;
41 B : in std_logic;
42 CURRENT : in real;
43 OUTPUT : out std_logic
44 );
45 end component;
46

47 component SKYRMIONNOTCH is
48 port( INPUT : in std_logic;
49 CURRENT : in real;
50 OUTPUT : out std_logic
51 );
52 end component;
53

54 component SKYRMIONCROSS is
55 port( A: in std_logic;
56 B: in std_logic;
57 CURRENT: in real;
58 Aout: out std_logic;
59 Bout: out std_logic
60 );
61 end component;
62

63 signal inv1copy1, inv1out, inv1copy2,
64 inv2copy1, inv2out, inv2copy2,
65 line1out, line2out,
66 inv3copy1, inv3out, inv3copy2,
67 inv4copy1, inv4out, inv4copy2,
68 notch01out, notch02out, notch03out,
69 notch04out, join2out,
70 cross1Aout, cross1Bout,
71 cross2Aout, cross2Bout, cross3Bout: std_logic;
72

73 begin
74

75 NOTCH01: SKYRMIONNOTCH port map (INPUT => A, CURRENT => CURRENT, OUTPUT =>
notch01out);↪→

76 NOTCH02: SKYRMIONNOTCH port map (INPUT => ONE1, CURRENT => CURRENT, OUTPUT
=> notch02out);↪→

77 NOTCH03: SKYRMIONNOTCH port map (INPUT => B, CURRENT => CURRENT, OUTPUT =>
notch03out);↪→

78 NOTCH04: SKYRMIONNOTCH port map (INPUT => ONE2, CURRENT => CURRENT, OUTPUT
=> notch04out);↪→

79

80 INV1: SKYRMIONNOT port map (INPUT => notch01out, CONTROL => notch02out,
CURRENT => CURRENT, COPY1 => inv1copy1, OUTPUT => inv1out, COPY2 =>
inv1copy2);

↪→

↪→

81 CROSS1: SKYRMIONCROSS port map (A => inv1copy2, B => inv1out, CURRENT =>
CURRENT, Aout => cross1Aout, Bout => cross1Bout);↪→
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82 INV2: SKYRMIONNOT port map (INPUT => notch03out, CONTROL => notch04out,
CURRENT => CURRENT, COPY1 => inv2copy1, OUTPUT => inv2out, COPY2 =>
inv2copy2);

↪→

↪→

83

84 LINE1: SKYRMIONLINE port map (INPUT => cross1Bout, CURRENT => CURRENT,
OUTPUT => line1out);↪→

85 INV3: SKYRMIONNOT port map (INPUT => cross1Aout, CONTROL => inv2copy2,
CURRENT => CURRENT, COPY1 => inv3copy1, OUTPUT => inv3out, COPY2 =>
inv3copy2);

↪→

↪→

86 LINE2: SKYRMIONLINE port map (INPUT => inv2out, CURRENT => CURRENT, OUTPUT
=> line2out);↪→

87 INV4: SKYRMIONNOT port map (INPUT => inv2copy1, CONTROL => inv1copy1,
CURRENT => CURRENT, COPY1 => inv4copy1, OUTPUT => inv4out, COPY2 =>
inv4copy2);

↪→

↪→

88 CROSS2: SKYRMIONCROSS port map (A => inv3out, B => inv3copy1, CURRENT =>
CURRENT, Aout => cross2Aout, Bout => cross2Bout);↪→

89

90 JOIN1: SKYRMIONJOIN port map (A => line1out, B => inv3copy2, CURRENT =>
CURRENT, OUTPUT => CTRL1);↪→

91 LINE3: SKYRMIONLINE port map (INPUT => cross2Bout, CURRENT => CURRENT,
OUTPUT => COUT1);↪→

92 JOIN2: SKYRMIONJOIN port map (A => line2out, B => inv4copy2, CURRENT =>
CURRENT, OUTPUT => join2out);↪→

93 LINE4: SKYRMIONLINE port map (INPUT => inv4copy1, CURRENT => CURRENT, OUTPUT
=> COUT2);↪→

94 CROSS3: SKYRMIONCROSS port map (A => join2out, B => inv4out, CURRENT =>
CURRENT, Aout => CTRL2, Bout => cross3Bout);↪→

95 JOIN3: SKYRMIONJOIN port map (A => cross2Aout, B => cross3Bout, CURRENT =>
CURRENT, OUTPUT => SUM);↪→

96

97 end BLACKBOX;

B.1.5. Testbench Adder (16 bit)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_unsigned.all;
4 use work.globals.all;
5 use ieee.numeric_std.all;
6 library std;
7 use std.textio.all;
8

9 entity testADDER is
10 end entity testADDER;
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11

12 architecture Structure of testADDER is
13 signal CURRENT : real;
14 signal A, B, SUM: std_logic_vector(15 downto 0);
15 signal ONE1, ONE2, CTRL1, COUT1, COUT2, CTRL2, sum_ready: std_logic;
16 signal sumDetectorOut, Aval, Bval: std_logic_vector(15 downto 0);
17 signal cout1DetectorOut, cout2DetectorOut, ctrl1DetectorOut, ctrl2DetectorOut:

std_logic := '0';↪→

18 signal RST_latch: std_logic;
19 signal sum_correct: std_logic_vector(15 downto 0);
20 signal Avalint, Bvalint: integer:= 0;
21

22 component SKYRMIONADDER is
23 generic (N: integer := 16);
24 port ( A : in std_logic_vector(N-1 downto 0);
25 B : in std_logic_vector(N-1 downto 0);
26 ONE1 : in std_logic;
27 ONE2 : in std_logic;
28 CURRENT : in real;
29 SUM : out std_logic_vector(N-1 downto 0);
30 COUT1 : out std_logic;
31 COUT2 : out std_logic;
32 CTRL1 : out std_logic;
33 CTRL2 : out std_logic
34 );
35 end component SKYRMIONADDER;
36

37 component SRlatch is
38 port( SET: in std_logic;
39 RST: in std_logic;
40 Q: out std_logic
41 );
42 end component SRlatch;
43

44

45 begin
46

47 DUT: SKYRMIONADDER generic map (N => 16) port map ( A => A,
48 B => B,
49 ONE1 => ONE1,
50 ONE2 => ONE2,
51 CURRENT => CURRENT,
52 SUM => SUM,
53 COUT1 => COUT1,
54 COUT2 => COUT2,
55 CTRL1 => CTRL1,
56 CTRL2 => CTRL2
57 );
58
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59 GENERATOR: process
60 file fp_in : text open READ_MODE is "./inputs.txt";
61 variable line_in : line;
62 variable xA, xB, xS : integer;
63 variable in1, in2: std_logic_vector(15 downto 0);
64 begin
65 if not endfile(fp_in) then
66 readline(fp_in, line_in);
67 read(line_in, xA);
68 in1 := std_logic_vector(to_unsigned(xA, 16));
69

70 readline(fp_in, line_in);
71 read(line_in, xB);
72 in2 := std_logic_vector(to_unsigned(xB, 16));
73

74 xS := xA+xB;
75 sum_correct <= std_logic_vector(to_unsigned(xS, 16));
76

77 A <= in1;
78 B <= in2;
79 Aval <= in1;
80 Bval <= in2;
81 Avalint <= xA;
82 Bvalint <= xB;
83 ONE1 <= '1';
84 ONE2 <= '1';
85 sum_ready <= '0';
86 RST_latch <= '1';
87 wait for INPUTS_HIGH;
88 A <= (others => '0');
89 B <= (others => '0');
90 ONE1 <= '0';
91 ONE2 <= '0';
92 RST_latch <= '0';
93 wait for (34*CLOCK_PERIOD-2*INPUTS_HIGH);
94 --wait for 11 ns;
95 sum_ready <= '1';
96 wait for INPUTS_HIGH;
97 end if;
98 end process GENERATOR;
99

100 SUM_latch: for i in 0 to 15 generate
101 latch_i: SRlatch port map (SET => SUM(i), RST => RST_latch, Q =>

sumDetectorOut(i));↪→

102 end generate SUM_latch;
103

104 DETECTOR: process(CTRL1,COUT1,CTRL2,COUT2,sum_ready)
105 begin
106 if(sum_ready'event and sum_ready='1') then
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107 cout1DetectorOut<= '0';
108 cout2DetectorOut<= '0';
109 ctrl1DetectorOut<= '0';
110 ctrl2DetectorOut<= '0';
111 end if;
112 if(COUT1'event and COUT1='1') then
113 cout1DetectorOut <= '1';
114 end if;
115 if(COUT2'event and COUT2='1') then
116 cout2DetectorOut <= '1';
117 end if;
118 if(CTRL1'event and CTRL1='1') then
119 ctrl1DetectorOut <= '1';
120 end if;
121 if(CTRL2'event and CTRL2='1') then
122 ctrl2DetectorOut <= '1';
123 end if;
124 end process;
125

126 CHECK: process(sum_ready, cout1DetectorOut, cout2DetectorOut,
ctrl1DetectorOut, ctrl2DetectorOut, CURRENT)↪→

127 variable cout1 : std_logic;
128 variable cout2 : std_logic;
129 variable ctrl1 : std_logic;
130 variable ctrl2 : std_logic;
131 begin
132 cout1 := cout1DetectorOut;
133 cout2 := cout2DetectorOut;
134 ctrl1 := ctrl1DetectorOut;
135 ctrl2 := ctrl2DetectorOut;
136

137 if(sum_ready'event and sum_ready='1') then
138 assert sumDetectorOut = sum_correct
139 report "Unexpected Sum for combination"&
140 integer'image(Avalint) & " " &
141 integer'image(Bvalint)
142 severity error;
143 end if;
144 if(cout1DetectorOut'event and cout1DetectorOut='1') then
145 assert cout1 = (Aval(15) and Bval(15))
146 report "Unexpected Reminder (cout1) for combination"&
147 std_logic'image(Aval(15))&" "&
148 std_logic'image(Bval(15))
149 severity error;
150 end if;
151 if(cout2DetectorOut'event and cout2DetectorOut='1') then
152 assert cout2 = (Aval(15) and Bval(15))
153 report "Unexpected Reminder (cout2) for combination"&
154 std_logic'image(Aval(15))&" "&
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155 std_logic'image(Bval(15))
156 severity error;
157 end if;
158 if(ctrl1DetectorOut'event and ctrl1DetectorOut='1') then
159 assert ctrl1 = '1'
160 report "Unexpected Control (ctrl1)"
161 severity error;
162 end if;
163 if(ctrl2DetectorOut'event and ctrl2DetectorOut='1') then
164 assert ctrl2 = '1'
165 report "Unexpected Control (ctrl2)"
166 severity error;
167 end if;
168 end process CHECK;
169

170 CURRENT_GEN : process
171 begin
172 CURRENT <= CURRENT_LOW;
173 wait for CLOCK_LOW;
174 CURRENT <= CURRENT_HIGH;
175 wait for CLOCK_HIGH;
176 end process CURRENT_GEN;
177

178 end architecture;

B.2. Adder - second version
B.2.1. Gates
B.2.1.1. Globals

1 package GLOBALS is
2 type coordinates_xy is array (0 to 1) of real;
3 type parameters_array is array(0 to 9) of coordinates_xy;
4 type bool_array is array(integer range <>) of boolean;
5 type real_array is array(integer range <>) of real;
6

7 constant HORIZONTAL_SPEED : real := 150.0; --m/s
8 constant VERTICAL_SPEED : real := 40.0; --m/s
9 constant DEPINNING_CURRENT : real := 260.0; --nA

10 constant NOTCH_DEPINNING_CURRENT : real := 3200.0; --nA
11 constant HORIZONTAL_SPEED_HIGH : real := 484.0; --m/s
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12 constant SKYRMION_DIAMETER : real := 18.0; --nm
13 constant SKYRMION_MIN_DISTANCE : real := 22.0; --nm
14 constant CURRENT_LOW : real := 800.0; --nA
15 constant CURRENT_HIGH : real := 3200.0; --nA
16 constant CLOCK_LOW : time := 9.85 ns;
17 constant CLOCK_HIGH : time := 150 ps;
18 constant CLOCK_PERIOD : time := 10 ns;
19 constant INPUTS_HIGH : time := 500 ps;
20 end package GLOBALS;

B.2.1.2. Join

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use IEEE.math_real.all;
6 use work.globals.all;
7

8 entity SKYRMIONJOIN is
9 port( A : in std_logic;

10 B : in std_logic;
11 CURRENT : in real;
12 OUTPUT : out std_logic
13 );
14 end entity SKYRMIONJOIN;
15

16 architecture BLACKBOX of SKYRMIONJOIN is
17 ------------ CONSTANTS -------------------------------------------
18 constant TRACK_LENGTH : real := 375.0; --nm
19

20 ------------ INTERNAL SIGNALS ------------------------------------
21 signal emit : std_logic := '0';
22 signal inputPortState: std_logic_vector(1 downto 0):= "00";
23 signal ACK : std_logic := '0';
24 signal skyrmion_position_debug : parameters_array;
25 signal skyrmion_number_debug : integer;
26

27 ----------- FUNCTIONS --------------------------------------------
28 function updatePosition (elapsedTimeNs: real; actualPosition:

parameters_array; currentValue : real ) return parameters_array is↪→

29 variable output : parameters_array;
30 begin
31 if(currentValue > DEPINNING_CURRENT) then
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32 for i in 0 to 9 loop
33 output(i)(1) := 0.0;
34 output(i)(0) := actualPosition(i)(0) + HORIZONTAL_SPEED*elapsedTimeNs;
35 end loop;
36 end if;
37 return output;
38 end updatePosition;
39

40 begin
41

42 RECEIVER: process(A, B, ACK)
43 begin
44 if (ACK'event and ACK='1') then
45 inputPortState <= "00";
46 end if;
47 if (B'event and B='1') then
48 inputPortState(0) <= '1';
49 end if;
50 if (A'event and A='1') then
51 inputPortState(1) <= '1';
52 end if;
53 end process;
54

55

56 EVOLUTION:process
57 variable v_TIME : time := 0 ns;
58 variable skyrmion_number : integer := 0;
59 variable skyrmion_number_old : integer := 0;
60 variable skyrmion_position : parameters_array;
61 variable skyrmion_position_old : parameters_array;
62 variable results : parameters_array;
63 variable timeNsReal : real := 0.0;
64 variable trackBusy : boolean;
65 variable write_index : integer := 0;
66 begin
67 wait for 5 ps;
68 v_TIME := now - v_TIME;
69 timeNsReal := 0.01;
70 trackBusy := false;
71 ACK <= '0';
72

73 if (inputPortState(0) = '1') then
74 skyrmion_number := skyrmion_number +1;
75 skyrmion_position(skyrmion_number-1)(0) := 0.0;
76 skyrmion_position(skyrmion_number-1)(1) := 0.0;
77 ACK <= '1';
78 end if;
79 if (inputPortState(1) = '1') then
80 skyrmion_number := skyrmion_number +1;
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81 skyrmion_position(skyrmion_number-1)(0) := 0.0;
82 skyrmion_position(skyrmion_number-1)(1) := 0.0;
83 ACK <= '1';
84 end if;
85

86 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
87 skyrmion_position_old := skyrmion_position;
88 skyrmion_number_old := skyrmion_number;
89 write_index := -1;
90 results := updatePosition(timeNsReal, skyrmion_position_old, CURRENT);
91 for i in 0 to skyrmion_number_old-1 loop
92 if (results(i)(0) > TRACK_LENGTH and not(trackBusy)) then
93 skyrmion_number := skyrmion_number-1;
94 emit <= '1' after 5 ps;
95 trackBusy := true;
96 else
97 if(results(i)(0) > TRACK_LENGTH and trackBusy) then
98 report "More than one skyrmion reached the output in this step; Join

gate does not account the skyrmion collisions yet. The skyrmions
will be emitted in sequence with one step distance";

↪→

↪→

99 end if;
100 write_index := write_index + 1;
101 skyrmion_position(write_index) := results(i);
102 end if;
103 end loop;
104 if (write_index < 9) then
105 write_index := write_index+1;
106 for i in write_index to 9 loop
107 skyrmion_position(i)(0) := 0.0;
108 skyrmion_position(i)(1) := 0.0;
109 end loop;
110 end if;
111

112 if (not(trackBusy)) then
113 emit <= '0' after 5 ps;
114 end if;
115 elsif (skyrmion_number=0) then
116 emit <= '0' after 5 ps;
117 for i in 0 to 9 loop
118 skyrmion_position(i)(0) := 0.0;
119 skyrmion_position(i)(1) := 0.0;
120 end loop;
121 else
122 report "Skyrmion number exceeded maximum admitted";
123 end if;
124

125 skyrmion_position_debug <= skyrmion_position after 5 ps;
126 skyrmion_number_debug <= skyrmion_number after 5 ps;
127 wait for 5 ps;
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128 end process;
129

130

131 EMITTER: process(emit)
132 begin
133

134 if(emit'event and emit='1') then
135 OUTPUT<='1';
136 else
137 OUTPUT<='0' after 10 ps;
138 end if;
139 end process;
140 end BLACKBOX;

B.2.2. Adder (16 bit)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONADDER is
8 generic (N: integer := 16);
9 port ( A : in std_logic_vector(N-1 downto 0);

10 B : in std_logic_vector(N-1 downto 0);
11 ONE1 : in std_logic;
12 ONE2 : in std_logic;
13 CURRENT : in real;
14 SUM : out std_logic_vector(N-1 downto 0);
15 COUT1 : out std_logic;
16 COUT2 : out std_logic;
17 CTRL1 : out std_logic;
18 CTRL2 : out std_logic
19 );
20 end entity SKYRMIONADDER;
21

22 architecture BLACKBOX of SKYRMIONADDER is
23 component SKYRMIONHALFADDER is
24 port( A: in std_logic;
25 B: in std_logic;
26 ONE1: in std_logic;
27 ONE2: in std_logic;
28 CURRENT: in real;
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29 CTRL1: out std_logic;
30 COUT1: out std_logic;
31 SUM: out std_logic;
32 CTRL2: out std_logic;
33 COUT2: out std_logic
34 );
35 end component SKYRMIONHALFADDER;
36

37 component SKYRMIONFULLADDER is
38 port( A : in std_logic;
39 B : in std_logic;
40 CIN1 : in std_logic;
41 CIN2 : in std_logic;
42 ONE1 : in std_logic;
43 ONE2 : in std_logic;
44 CURRENT : in real;
45 CTRL1 : out std_logic;
46 SUM : out std_logic;
47 COUT1 : out std_logic;
48 COUT2 : out std_logic;
49 CTRL2 : out std_logic
50 );
51 end component SKYRMIONFULLADDER;
52

53 component SKYRMIONCROSS is
54 port( A: in std_logic;
55 B: in std_logic;
56 CURRENT: in real;
57 Aout: out std_logic;
58 Bout: out std_logic
59 );
60 end component SKYRMIONCROSS;
61

62 component SKYRMIONNOTCHseq is
63 generic (N: integer := 5);
64 port( INPUT: in std_logic;
65 CURRENT: in real;
66 OUTPUT: out std_logic
67 );
68 end component SKYRMIONNOTCHseq;
69

70 component SKYRMIONNOTCH is
71 port( INPUT : in std_logic;
72 CURRENT : in real;
73 OUTPUT : out std_logic
74 );
75 end component;
76

77 signal cross01Aout, cross03Bout: std_logic;
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78 signal Adelayed, Bdelayed: std_logic_vector(N-1 downto 1);
79 signal CTRL1vector, COUT1vector, CTRL2vector, COUT2vector:

std_logic_vector(N-2 downto 0);↪→

80 signal CIN1vector, CIN2vector, ONE1vector, ONE2vector: std_logic_vector(N-1
downto 1);↪→

81 signal crossi1Aout: std_logic_vector(N-2 downto 1);
82 type delay is array(N-1 downto 1) of integer;
83 signal delay_vector: delay;
84

85 begin
86

87 HA: SKYRMIONHALFADDER port map (A => A(0),
88 B => B(0),
89 ONE1 => ONE1,
90 ONE2 => ONE2,
91 CURRENT => CURRENT,
92 CTRL1 => CTRL1vector(0),
93 COUT1 => COUT1vector(0),
94 SUM => SUM(0),
95 CTRL2 => CTRL2vector(0),
96 COUT2 => COUT2vector(0)
97 );
98

99 CROSS01: SKYRMIONCROSS port map (A => CTRL1vector(0), B => COUT1vector(0),
CURRENT => CURRENT, Aout => cross01Aout, Bout => CIN1vector(1));↪→

100 CROSS02: SKYRMIONCROSS port map (A => cross01Aout, B => cross03Bout, CURRENT
=> CURRENT, Aout => ONE1vector(1), Bout => CIN2vector(1));↪→

101 CROSS03: SKYRMIONCROSS port map (A => CTRL2vector(0), B => COUT2vector(0),
CURRENT => CURRENT, Aout => ONE2vector(1), Bout => cross03Bout);↪→

102

103 NOTCHES_1_A: SKYRMIONNOTCHseq generic map (N => 3) port map (INPUT => A(1),
CURRENT => CURRENT, OUTPUT => Adelayed(1));↪→

104 NOTCHES_1_B: SKYRMIONNOTCHseq generic map (N => 3) port map (INPUT => B(1),
CURRENT => CURRENT, OUTPUT => Bdelayed(1));↪→

105 NOTCHES_2_A: SKYRMIONNOTCHseq generic map (N => 9) port map (INPUT => A(2),
CURRENT => CURRENT, OUTPUT => Adelayed(2));↪→

106 NOTCHES_2_B: SKYRMIONNOTCHseq generic map (N => 9) port map (INPUT => B(2),
CURRENT => CURRENT, OUTPUT => Bdelayed(2));↪→

107 NOTCHES_3_A: SKYRMIONNOTCHseq generic map (N => 15) port map (INPUT => A(3),
CURRENT => CURRENT, OUTPUT => Adelayed(3));↪→

108 NOTCHES_3_B: SKYRMIONNOTCHseq generic map (N => 15) port map (INPUT => B(3),
CURRENT => CURRENT, OUTPUT => Bdelayed(3));↪→

109 NOTCHES_4_A: SKYRMIONNOTCHseq generic map (N => 21) port map (INPUT => A(4),
CURRENT => CURRENT, OUTPUT => Adelayed(4));↪→

110 NOTCHES_4_B: SKYRMIONNOTCHseq generic map (N => 21) port map (INPUT => B(4),
CURRENT => CURRENT, OUTPUT => Bdelayed(4));↪→

111 NOTCHES_5_A: SKYRMIONNOTCHseq generic map (N => 27) port map (INPUT => A(5),
CURRENT => CURRENT, OUTPUT => Adelayed(5));↪→

112 NOTCHES_5_B: SKYRMIONNOTCHseq generic map (N => 27) port map (INPUT => B(5),
CURRENT => CURRENT, OUTPUT => Bdelayed(5));↪→
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113 NOTCHES_6_A: SKYRMIONNOTCHseq generic map (N => 33) port map (INPUT => A(6),
CURRENT => CURRENT, OUTPUT => Adelayed(6));↪→

114 NOTCHES_6_B: SKYRMIONNOTCHseq generic map (N => 33) port map (INPUT => B(6),
CURRENT => CURRENT, OUTPUT => Bdelayed(6));↪→

115 NOTCHES_7_A: SKYRMIONNOTCHseq generic map (N => 39) port map (INPUT => A(7),
CURRENT => CURRENT, OUTPUT => Adelayed(7));↪→

116 NOTCHES_7_B: SKYRMIONNOTCHseq generic map (N => 39) port map (INPUT => B(7),
CURRENT => CURRENT, OUTPUT => Bdelayed(7));↪→

117 NOTCHES_8_A: SKYRMIONNOTCHseq generic map (N => 45) port map (INPUT => A(8),
CURRENT => CURRENT, OUTPUT => Adelayed(8));↪→

118 NOTCHES_8_B: SKYRMIONNOTCHseq generic map (N => 45) port map (INPUT => B(8),
CURRENT => CURRENT, OUTPUT => Bdelayed(8));↪→

119 NOTCHES_9_A: SKYRMIONNOTCHseq generic map (N => 51) port map (INPUT => A(9),
CURRENT => CURRENT, OUTPUT => Adelayed(9));↪→

120 NOTCHES_9_B: SKYRMIONNOTCHseq generic map (N => 51) port map (INPUT => B(9),
CURRENT => CURRENT, OUTPUT => Bdelayed(9));↪→

121 NOTCHES_10_A: SKYRMIONNOTCHseq generic map (N => 57) port map (INPUT => A(10),
CURRENT => CURRENT, OUTPUT => Adelayed(10));↪→

122 NOTCHES_10_B: SKYRMIONNOTCHseq generic map (N => 57) port map (INPUT => B(10),
CURRENT => CURRENT, OUTPUT => Bdelayed(10));↪→

123 NOTCHES_11_A: SKYRMIONNOTCHseq generic map (N => 63) port map (INPUT => A(11),
CURRENT => CURRENT, OUTPUT => Adelayed(11));↪→

124 NOTCHES_11_B: SKYRMIONNOTCHseq generic map (N => 63) port map (INPUT => B(11),
CURRENT => CURRENT, OUTPUT => Bdelayed(11));↪→

125 NOTCHES_12_A: SKYRMIONNOTCHseq generic map (N => 69) port map (INPUT => A(12),
CURRENT => CURRENT, OUTPUT => Adelayed(12));↪→

126 NOTCHES_12_B: SKYRMIONNOTCHseq generic map (N => 69) port map (INPUT => B(12),
CURRENT => CURRENT, OUTPUT => Bdelayed(12));↪→

127 NOTCHES_13_A: SKYRMIONNOTCHseq generic map (N => 75) port map (INPUT => A(13),
CURRENT => CURRENT, OUTPUT => Adelayed(13));↪→

128 NOTCHES_13_B: SKYRMIONNOTCHseq generic map (N => 75) port map (INPUT => B(13),
CURRENT => CURRENT, OUTPUT => Bdelayed(13));↪→

129 NOTCHES_14_A: SKYRMIONNOTCHseq generic map (N => 81) port map (INPUT => A(14),
CURRENT => CURRENT, OUTPUT => Adelayed(14));↪→

130 NOTCHES_14_B: SKYRMIONNOTCHseq generic map (N => 81) port map (INPUT => B(14),
CURRENT => CURRENT, OUTPUT => Bdelayed(14));↪→

131 NOTCHES_15_A: SKYRMIONNOTCHseq generic map (N => 87) port map (INPUT => A(15),
CURRENT => CURRENT, OUTPUT => Adelayed(15));↪→

132 NOTCHES_15_B: SKYRMIONNOTCHseq generic map (N => 87) port map (INPUT => B(15),
CURRENT => CURRENT, OUTPUT => Bdelayed(15));↪→

133

134 FA: for i in 1 to N-2 generate
135 FA_i: SKYRMIONFULLADDER port map ( A => Adelayed(i),
136 B => Bdelayed(i),
137 CIN1 => CIN1vector(i),
138 CIN2 => CIN2vector(i),
139 ONE1 => ONE1vector(i),
140 ONE2 => ONE2vector(i),
141 CURRENT => CURRENT,
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142 CTRL1 => CTRL1vector(i),
143 SUM => SUM(i),
144 COUT1 => COUT1vector(i),
145 COUT2 => COUT2vector(i),
146 CTRL2 => CTRL2vector(i)
147 );
148 CROSS_i1: SKYRMIONCROSS port map (A => CTRL1vector(i), B => COUT1vector(i),

CURRENT => CURRENT, Aout => crossi1Aout(i), Bout => CIN1vector(i+1));↪→

149 CROSS_i2: SKYRMIONCROSS port map (A => crossi1Aout(i), B => COUT2vector(i),
CURRENT => CURRENT, Aout => ONE1vector(i+1), Bout => CIN2vector(i+1));↪→

150 ONE2vector(i+1) <= CTRL2vector(i);
151 end generate;
152

153 FA_last: SKYRMIONFULLADDER port map ( A => Adelayed(N-1),
154 B => Bdelayed(N-1),
155 CIN1 => CIN1vector(N-1),
156 CIN2 => CIN2vector(N-1),
157 ONE1 => ONE1vector(N-1),
158 ONE2 => ONE2vector(N-1),
159 CURRENT => CURRENT,
160 CTRL1 => CTRL1,
161 SUM => SUM(N-1),
162 COUT1 => COUT1,
163 COUT2 => COUT2,
164 CTRL2 => CTRL2
165 );
166 end BLACKBOX;

B.2.3. FullAdder

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONFULLADDER is
8 port( A : in std_logic;
9 B : in std_logic;

10 CIN1 : in std_logic;
11 CIN2 : in std_logic;
12 ONE1 : in std_logic;
13 ONE2 : in std_logic;
14 CURRENT : in real;
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15 CTRL1 : out std_logic;
16 SUM : out std_logic;
17 COUT1 : out std_logic;
18 COUT2 : out std_logic;
19 CTRL2 : out std_logic
20 );
21 end entity SKYRMIONFULLADDER;
22

23 architecture BLACKBOX of SKYRMIONFULLADDER is
24 component SKYRMIONNOT is
25 port( INPUT : in std_logic;
26 CONTROL : in std_logic;
27 CURRENT : in real;
28 COPY1 : out std_logic;
29 COPY2 : out std_logic;
30 OUTPUT : out std_logic
31 );
32 end component;
33

34 component SKYRMIONNOTCH is
35 port( INPUT : in std_logic;
36 CURRENT : in real;
37 OUTPUT : out std_logic
38 );
39 end component;
40

41 component SKYRMIONJOIN is
42 port( A : in std_logic;
43 B : in std_logic;
44 CURRENT : in real;
45 OUTPUT : out std_logic
46 );
47 end component;
48

49 component SKYRMIONCROSS is
50 port( A: in std_logic;
51 B: in std_logic;
52 CURRENT: in real;
53 Aout: out std_logic;
54 Bout: out std_logic
55 );
56 end component;
57

58 signal inv1copy2, inv1out, inv1copy1,
59 inv2copy2, inv2out, inv2copy1,
60 inv3copy2, inv3out, inv3copy1,
61 inv4copy2, inv4out, inv4copy1,
62 notch11out, notch12out, notch13out,
63 notch14out, notch15out, notch16out,
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64 notch17out, notch18out, notch19out,
65 notch110out, join1out, join2out,
66 join3out, notch21out, notch22out,
67 notch23out, notch24out, notch25out,
68 notch26out, notch27out,
69 inv5copy2, inv5out, inv5copy1,
70 notch31out, notch32out, notch33out,
71 notch34out, notch35out, notch36out,
72 notch37out, notch38out, join4out,
73 inv6copy2, inv6out, inv6copy1,
74 notch42out,
75 notch43out, notch44out, notch45out,
76 notch01out, notch02out, notch03out,
77 notch04out, notch05out, notch06out,
78 notch51out, notch52out, notch53out,
79 notch54out, notch55out, notch56out,
80 notch57out, notch58out,
81 cross1Aout, cross1Bout,
82 cross2Aout, cross2Bout,
83 cross3Aout, cross3Bout,
84 cross4Aout, cross4Bout,
85 cross5Aout, cross5Bout,
86 cross6Aout, cross6Bout,
87 cross7Aout, cross7Bout,
88 cross8Aout, cross8Bout,
89 cross9Aout, cross9Bout,
90 cross10Aout, cross10Bout,
91 cross11Aout, cross11Bout,
92 cross12Aout, cross12Bout: std_logic;
93

94 begin
95

96 NOTCH01: SKYRMIONNOTCH port map (INPUT => CIN1, CURRENT => CURRENT, OUTPUT
=> notch01out);↪→

97 NOTCH02: SKYRMIONNOTCH port map (INPUT => CIN2, CURRENT => CURRENT, OUTPUT
=> notch02out);↪→

98 NOTCH03: SKYRMIONNOTCH port map (INPUT => A, CURRENT => CURRENT, OUTPUT =>
notch03out);↪→

99 NOTCH04: SKYRMIONNOTCH port map (INPUT => ONE1, CURRENT => CURRENT, OUTPUT
=> notch04out);↪→

100 NOTCH05: SKYRMIONNOTCH port map (INPUT => B, CURRENT => CURRENT, OUTPUT =>
notch05out);↪→

101 NOTCH06: SKYRMIONNOTCH port map (INPUT => ONE2, CURRENT => CURRENT, OUTPUT
=> notch06out);↪→

102

103 INV1: SKYRMIONNOT port map (INPUT => notch03out, CONTROL => notch04out,
CURRENT => CURRENT, COPY2 => inv1copy2, OUTPUT => inv1out, COPY1 =>
inv1copy1);

↪→

↪→

104 CROSS1: SKYRMIONCROSS port map (A => inv1copy1, B => notch05out, CURRENT =>
CURRENT, Aout => cross1Aout, Bout => cross1Bout);↪→
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105 CROSS2: SKYRMIONCROSS port map (A => cross1Aout, B => notch06out, CURRENT =>
CURRENT, Aout => cross2Aout, Bout => cross2Bout);↪→

106 CROSS3: SKYRMIONCROSS port map (A => inv1copy2, B => inv1out, CURRENT =>
CURRENT, Aout => cross3Aout, Bout => cross3Bout);↪→

107 INV2: SKYRMIONNOT port map (INPUT => cross1Bout, CONTROL => cross2Bout,
CURRENT => CURRENT, COPY2 => inv2copy2, OUTPUT => inv2out, COPY1 =>
inv2copy1);

↪→

↪→

108

109 NOTCH51: SKYRMIONNOTCH port map (INPUT => notch01out, CURRENT => CURRENT,
OUTPUT => notch51out);↪→

110 NOTCH52: SKYRMIONNOTCH port map (INPUT => notch02out, CURRENT => CURRENT,
OUTPUT => notch52out);↪→

111 NOTCH53: SKYRMIONNOTCH port map (INPUT => cross3Bout, CURRENT => CURRENT,
OUTPUT => notch53out);↪→

112 NOTCH54: SKYRMIONNOTCH port map (INPUT => cross3Aout, CURRENT => CURRENT,
OUTPUT => notch54out);↪→

113 NOTCH55: SKYRMIONNOTCH port map (INPUT => inv2copy2, CURRENT => CURRENT,
OUTPUT => notch55out);↪→

114 NOTCH56: SKYRMIONNOTCH port map (INPUT => inv2out, CURRENT => CURRENT,
OUTPUT => notch56out);↪→

115 NOTCH57: SKYRMIONNOTCH port map (INPUT => inv2copy1, CURRENT => CURRENT,
OUTPUT => notch57out);↪→

116 NOTCH58: SKYRMIONNOTCH port map (INPUT => cross2Aout, CURRENT => CURRENT,
OUTPUT => notch58out);↪→

117

118 INV3: SKYRMIONNOT port map (INPUT => notch54out, CONTROL => notch55out,
CURRENT => CURRENT, COPY2 => inv3copy2, OUTPUT => inv3out, COPY1 =>
inv3copy1);

↪→

↪→

119 INV4: SKYRMIONNOT port map (INPUT => notch57out, CONTROL => notch58out,
CURRENT => CURRENT, COPY2 => inv4copy2, OUTPUT => inv4out, COPY1 =>
inv4copy1);

↪→

↪→

120 CROSS4: SKYRMIONCROSS port map (A => inv3copy1, B => cross5Bout, CURRENT =>
CURRENT, Aout => cross4Aout, Bout => cross4Bout);↪→

121 CROSS5: SKYRMIONCROSS port map (A => notch56out, B => cross6Bout, CURRENT =>
CURRENT, Aout => cross5Aout, Bout => cross5Bout);↪→

122 CROSS6: SKYRMIONCROSS port map (A => inv4copy2, B => inv4out, CURRENT =>
CURRENT, Aout => cross6Aout, Bout => cross6Bout);↪→

123

124 NOTCH11: SKYRMIONNOTCH port map (INPUT => notch51out, CURRENT => CURRENT,
OUTPUT => notch11out);↪→

125 NOTCH12: SKYRMIONNOTCH port map (INPUT => notch52out, CURRENT => CURRENT,
OUTPUT => notch12out);↪→

126 NOTCH13: SKYRMIONNOTCH port map (INPUT => notch53out, CURRENT => CURRENT,
OUTPUT => notch13out);↪→

127 NOTCH14: SKYRMIONNOTCH port map (INPUT => inv3copy2, CURRENT => CURRENT,
OUTPUT => notch14out);↪→

128 NOTCH15: SKYRMIONNOTCH port map (INPUT => inv3out, CURRENT => CURRENT,
OUTPUT => notch15out);↪→

129 NOTCH16: SKYRMIONNOTCH port map (INPUT => cross4Bout, CURRENT => CURRENT,
OUTPUT => notch16out);↪→
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130 NOTCH17: SKYRMIONNOTCH port map (INPUT => cross4Aout, CURRENT => CURRENT,
OUTPUT => notch17out);↪→

131 NOTCH18: SKYRMIONNOTCH port map (INPUT => cross5Aout, CURRENT => CURRENT,
OUTPUT => notch18out);↪→

132 NOTCH19: SKYRMIONNOTCH port map (INPUT => cross6Aout, CURRENT => CURRENT,
OUTPUT => notch19out);↪→

133 NOTCH110: SKYRMIONNOTCH port map (INPUT => inv4copy1, CURRENT => CURRENT,
OUTPUT => notch110out);↪→

134

135 JOIN1: SKYRMIONJOIN port map (A => notch13out, B => notch14out, CURRENT=>
CURRENT, OUTPUT => join1out);↪→

136 JOIN2: SKYRMIONJOIN port map (A => notch15out, B => notch16out, CURRENT=>
CURRENT, OUTPUT => join2out);↪→

137 JOIN3: SKYRMIONJOIN port map (A => notch18out, B => notch19out, CURRENT=>
CURRENT, OUTPUT => join3out);↪→

138

139 NOTCH21: SKYRMIONNOTCH port map (INPUT => notch11out, CURRENT => CURRENT,
OUTPUT => notch21out);↪→

140 NOTCH22: SKYRMIONNOTCH port map (INPUT => notch12out, CURRENT => CURRENT,
OUTPUT => notch22out);↪→

141 NOTCH23: SKYRMIONNOTCH port map (INPUT => join1out, CURRENT => CURRENT,
OUTPUT => notch23out);↪→

142 NOTCH24: SKYRMIONNOTCH port map (INPUT => join2out, CURRENT => CURRENT,
OUTPUT => notch24out);↪→

143 NOTCH25: SKYRMIONNOTCH port map (INPUT => notch17out, CURRENT => CURRENT,
OUTPUT => notch25out);↪→

144 NOTCH26: SKYRMIONNOTCH port map (INPUT => join3out, CURRENT => CURRENT,
OUTPUT => notch26out);↪→

145 NOTCH27: SKYRMIONNOTCH port map (INPUT => notch110out, CURRENT => CURRENT,
OUTPUT => notch27out);↪→

146

147 CROSS7: SKYRMIONCROSS port map (A => notch26out, B => notch27out, CURRENT =>
CURRENT, Aout => cross7Aout, Bout => cross7Bout);↪→

148 CROSS8: SKYRMIONCROSS port map (A => notch22out, B => notch23out, CURRENT =>
CURRENT, Aout => cross8Aout, Bout => cross8Bout);↪→

149 CROSS9: SKYRMIONCROSS port map (A => cross8Aout, B => notch24out, CURRENT =>
CURRENT, Aout => cross9Aout, Bout => cross9Bout);↪→

150 INV5: SKYRMIONNOT port map (INPUT => cross9Bout, CONTROL => cross9Aout,
CURRENT => CURRENT, COPY2 => inv5copy2, OUTPUT => inv5out, COPY1 =>
inv5copy1);

↪→

↪→

151

152 NOTCH31: SKYRMIONNOTCH port map (INPUT => notch21out, CURRENT => CURRENT,
OUTPUT => notch31out);↪→

153 NOTCH32: SKYRMIONNOTCH port map (INPUT => cross8Bout, CURRENT => CURRENT,
OUTPUT => notch32out);↪→

154 NOTCH33: SKYRMIONNOTCH port map (INPUT => inv5copy2, CURRENT => CURRENT,
OUTPUT => notch33out);↪→

155 NOTCH34: SKYRMIONNOTCH port map (INPUT => inv5out, CURRENT => CURRENT,
OUTPUT => notch34out);↪→
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156 NOTCH35: SKYRMIONNOTCH port map (INPUT => inv5copy1, CURRENT => CURRENT,
OUTPUT => notch35out);↪→

157 NOTCH36: SKYRMIONNOTCH port map (INPUT => notch25out, CURRENT => CURRENT,
OUTPUT => notch36out);↪→

158 NOTCH37: SKYRMIONNOTCH port map (INPUT => cross7Bout, CURRENT => CURRENT,
OUTPUT => notch37out);↪→

159 NOTCH38: SKYRMIONNOTCH port map (INPUT => cross7Aout, CURRENT => CURRENT,
OUTPUT => notch38out);↪→

160

161 CROSS10: SKYRMIONCROSS port map (A => notch31out, B => notch32out, CURRENT =>
CURRENT, Aout => cross10Aout, Bout => cross10Bout);↪→

162 CROSS11: SKYRMIONCROSS port map (A => notch35out, B => notch36out, CURRENT =>
CURRENT, Aout => cross11Aout, Bout => cross11Bout);↪→

163 INV6: SKYRMIONNOT port map (INPUT => cross10Aout, CONTROL => notch33out,
CURRENT => CURRENT, COPY2 => inv6copy2, OUTPUT => inv6out, COPY1 =>
inv6copy1);

↪→

↪→

164 JOIN4: SKYRMIONJOIN port map (A => cross11Aout, B => notch37out, CURRENT=>
CURRENT, OUTPUT => join4out);↪→

165 CROSS12: SKYRMIONCROSS port map (A => inv6copy1, B => notch34out, CURRENT =>
CURRENT, Aout => cross12Aout, Bout => cross12Bout);↪→

166

167 NOTCH41: SKYRMIONNOTCH port map (INPUT => cross10Bout, CURRENT => CURRENT,
OUTPUT => CTRL1);↪→

168 NOTCH42: SKYRMIONNOTCH port map (INPUT => inv6out, CURRENT => CURRENT,
OUTPUT => notch42out);↪→

169 NOTCH43: SKYRMIONNOTCH port map (INPUT => cross12Bout, CURRENT => CURRENT,
OUTPUT => notch43out);↪→

170 NOTCH44: SKYRMIONNOTCH port map (INPUT => cross12Aout, CURRENT => CURRENT,
OUTPUT => notch44out);↪→

171 NOTCH45: SKYRMIONNOTCH port map (INPUT => cross11Bout, CURRENT => CURRENT,
OUTPUT => notch45out);↪→

172 NOTCH46: SKYRMIONNOTCH port map (INPUT => join4out, CURRENT => CURRENT,
OUTPUT => COUT2);↪→

173 NOTCH47: SKYRMIONNOTCH port map (INPUT => notch38out, CURRENT => CURRENT,
OUTPUT => CTRL2);↪→

174

175 JOIN5: SKYRMIONJOIN port map (A => notch44out, B => notch45out, CURRENT=>
CURRENT, OUTPUT => COUT1);↪→

176 JOIN6: SKYRMIONJOIN port map (A => notch42out, B => notch43out, CURRENT=>
CURRENT, OUTPUT => SUM);↪→

177

178 end BLACKBOX;

289



B – Adder VHDL code

B.2.4. HalfAdder

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONHALFADDER is
8 port( A: in std_logic;
9 B: in std_logic;

10 ONE1: in std_logic;
11 ONE2: in std_logic;
12 CURRENT: in real;
13 CTRL1: out std_logic;
14 COUT1: out std_logic;
15 SUM: out std_logic;
16 CTRL2: out std_logic;
17 COUT2: out std_logic
18 );
19 end entity SKYRMIONHALFADDER;
20

21 architecture BLACKBOX of SKYRMIONHALFADDER is
22 component SKYRMIONNOT is
23 port( INPUT : in std_logic;
24 CONTROL : in std_logic;
25 CURRENT : in real;
26 COPY1 : out std_logic;
27 COPY2 : out std_logic;
28 OUTPUT : out std_logic
29 );
30 end component;
31

32 component SKYRMIONJOIN is
33 port( A : in std_logic;
34 B : in std_logic;
35 CURRENT : in real;
36 OUTPUT : out std_logic
37 );
38 end component;
39

40 component SKYRMIONNOTCH is
41 port( INPUT : in std_logic;
42 CURRENT : in real;
43 OUTPUT : out std_logic
44 );
45 end component;
46
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47 component SKYRMIONCROSS is
48 port( A: in std_logic;
49 B: in std_logic;
50 CURRENT: in real;
51 Aout: out std_logic;
52 Bout: out std_logic
53 );
54 end component;
55

56 signal inv1copy1, inv1out, inv1copy2,
57 inv2copy1, inv2out, inv2copy2,
58 inv3copy1, inv3out, inv3copy2,
59 inv4copy1, inv4out, inv4copy2,
60 notch01out, notch02out, notch03out,
61 notch04out, join2out,
62 cross1Aout, cross1Bout,
63 cross2Aout, cross2Bout, cross3Bout,
64 notch11out, notch12out, notch13out,
65 notch14out, notch15out, notch16out,
66 notch21out, notch22out, notch24out,
67 notch25out, notch26out, notch27out: std_logic;
68

69 begin
70

71 NOTCH01: SKYRMIONNOTCH port map (INPUT => A, CURRENT => CURRENT, OUTPUT =>
notch01out);↪→

72 NOTCH02: SKYRMIONNOTCH port map (INPUT => ONE1, CURRENT => CURRENT, OUTPUT
=> notch02out);↪→

73 NOTCH03: SKYRMIONNOTCH port map (INPUT => B, CURRENT => CURRENT, OUTPUT =>
notch03out);↪→

74 NOTCH04: SKYRMIONNOTCH port map (INPUT => ONE2, CURRENT => CURRENT, OUTPUT
=> notch04out);↪→

75

76 INV1: SKYRMIONNOT port map (INPUT => notch01out, CONTROL => notch02out,
CURRENT => CURRENT, COPY1 => inv1copy1, OUTPUT => inv1out, COPY2 =>
inv1copy2);

↪→

↪→

77 CROSS1: SKYRMIONCROSS port map (A => inv1copy2, B => inv1out, CURRENT =>
CURRENT, Aout => cross1Aout, Bout => cross1Bout);↪→

78 INV2: SKYRMIONNOT port map (INPUT => notch03out, CONTROL => notch04out,
CURRENT => CURRENT, COPY1 => inv2copy1, OUTPUT => inv2out, COPY2 =>
inv2copy2);

↪→

↪→

79

80 NOTCH11: SKYRMIONNOTCH port map (INPUT => cross1Bout, CURRENT => CURRENT,
OUTPUT => notch11out);↪→

81 NOTCH12: SKYRMIONNOTCH port map (INPUT => cross1Aout, CURRENT => CURRENT,
OUTPUT => notch12out);↪→

82 NOTCH13: SKYRMIONNOTCH port map (INPUT => inv2copy2, CURRENT => CURRENT,
OUTPUT => notch13out);↪→

83 NOTCH14: SKYRMIONNOTCH port map (INPUT => inv2out, CURRENT => CURRENT,
OUTPUT => notch14out);↪→
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84 NOTCH15: SKYRMIONNOTCH port map (INPUT => inv2copy1, CURRENT => CURRENT,
OUTPUT => notch15out);↪→

85 NOTCH16: SKYRMIONNOTCH port map (INPUT => inv1copy1, CURRENT => CURRENT,
OUTPUT => notch16out);↪→

86

87 INV3: SKYRMIONNOT port map (INPUT => notch12out, CONTROL => notch13out,
CURRENT => CURRENT, COPY1 => inv3copy1, OUTPUT => inv3out, COPY2 =>
inv3copy2);

↪→

↪→

88 INV4: SKYRMIONNOT port map (INPUT => notch15out, CONTROL => notch16out,
CURRENT => CURRENT, COPY1 => inv4copy1, OUTPUT => inv4out, COPY2 =>
inv4copy2);

↪→

↪→

89 CROSS2: SKYRMIONCROSS port map (A => inv3out, B => inv3copy1, CURRENT =>
CURRENT, Aout => cross2Aout, Bout => cross2Bout);↪→

90

91 NOTCH21: SKYRMIONNOTCH port map (INPUT => notch11out, CURRENT => CURRENT,
OUTPUT => notch21out);↪→

92 NOTCH22: SKYRMIONNOTCH port map (INPUT => inv3copy2, CURRENT => CURRENT,
OUTPUT => notch22out);↪→

93 NOTCH23: SKYRMIONNOTCH port map (INPUT => cross2Bout, CURRENT => CURRENT,
OUTPUT => COUT1);↪→

94 NOTCH24: SKYRMIONNOTCH port map (INPUT => cross2Aout, CURRENT => CURRENT,
OUTPUT => notch24out);↪→

95 NOTCH25: SKYRMIONNOTCH port map (INPUT => notch14out, CURRENT => CURRENT,
OUTPUT => notch25out);↪→

96 NOTCH26: SKYRMIONNOTCH port map (INPUT => inv4copy2, CURRENT => CURRENT,
OUTPUT => notch26out);↪→

97 NOTCH27: SKYRMIONNOTCH port map (INPUT => inv4out, CURRENT => CURRENT,
OUTPUT => notch27out);↪→

98 NOTCH28: SKYRMIONNOTCH port map (INPUT => inv4copy1, CURRENT => CURRENT,
OUTPUT => COUT2);↪→

99

100 JOIN1: SKYRMIONJOIN port map (A => notch21out, B => notch22out, CURRENT =>
CURRENT, OUTPUT => CTRL1);↪→

101 JOIN2: SKYRMIONJOIN port map (A => notch25out, B => notch26out, CURRENT =>
CURRENT, OUTPUT => join2out);↪→

102 CROSS3: SKYRMIONCROSS port map (A => join2out, B => notch27out, CURRENT =>
CURRENT, Aout => CTRL2, Bout => cross3Bout);↪→

103 JOIN3: SKYRMIONJOIN port map (A => notch24out, B => cross3Bout, CURRENT =>
CURRENT, OUTPUT => SUM);↪→

104

105 end BLACKBOX;
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B.2.5. Testbench Adder (16 bit)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_unsigned.all;
4 use work.globals.all;
5 use ieee.numeric_std.all;
6 library std;
7 use std.textio.all;
8

9 entity testADDER is
10 end entity testADDER;
11

12 architecture Structure of testADDER is
13 signal CURRENT : real;
14 signal A, B, SUM: std_logic_vector(15 downto 0);
15 signal ONE1, ONE2, CTRL1, COUT1, COUT2, CTRL2, sum_ready: std_logic;
16 signal sumDetectorOut, Aval, Bval: std_logic_vector(15 downto 0);
17 signal cout1DetectorOut, cout2DetectorOut, ctrl1DetectorOut, ctrl2DetectorOut:

std_logic := '0';↪→

18 signal RST_latch: std_logic;
19 signal sum_correct: std_logic_vector(15 downto 0);
20 signal Avalint, Bvalint: integer:= 0;
21

22 component SKYRMIONADDER is
23 generic (N: integer := 16);
24 port ( A : in std_logic_vector(N-1 downto 0);
25 B : in std_logic_vector(N-1 downto 0);
26 ONE1 : in std_logic;
27 ONE2 : in std_logic;
28 CURRENT : in real;
29 SUM : out std_logic_vector(N-1 downto 0);
30 COUT1 : out std_logic;
31 COUT2 : out std_logic;
32 CTRL1 : out std_logic;
33 CTRL2 : out std_logic
34 );
35 end component SKYRMIONADDER;
36

37 component SRlatch is
38 port( SET: in std_logic;
39 RST: in std_logic;
40 Q: out std_logic
41 );
42 end component SRlatch;
43

44 begin
45
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46 DUT: SKYRMIONADDER generic map (N => 16) port map ( A => A,
47 B => B,
48 ONE1 => ONE1,
49 ONE2 => ONE2,
50 CURRENT => CURRENT,
51 SUM => SUM,
52 COUT1 => COUT1,
53 COUT2 => COUT2,
54 CTRL1 => CTRL1,
55 CTRL2 => CTRL2
56 );
57

58 GENERATOR: process
59 file fp_in : text open READ_MODE is "./inputs.txt";
60 variable line_in : line;
61 variable xA, xB, xS : integer;
62 variable in1, in2: std_logic_vector(15 downto 0);
63 begin
64 if not endfile(fp_in) then
65 readline(fp_in, line_in);
66 read(line_in, xA);
67 in1 := std_logic_vector(to_unsigned(xA, 16));
68

69 readline(fp_in, line_in);
70 read(line_in, xB);
71 in2 := std_logic_vector(to_unsigned(xB, 16));
72

73 xS := xA+xB;
74 sum_correct <= std_logic_vector(to_unsigned(xS, 16));
75

76 A <= in1;
77 B <= in2;
78 Aval <= in1;
79 Bval <= in2;
80 Avalint <= xA;
81 Bvalint <= xB;
82 ONE1 <= '1';
83 ONE2 <= '1';
84 sum_ready <= '0';
85 RST_latch <= '1';
86 wait for INPUTS_HIGH;
87 A <= (others => '0');
88 B <= (others => '0');
89 ONE1 <= '0';
90 ONE2 <= '0';
91 RST_latch <= '0';
92 wait for (100*CLOCK_PERIOD-2*INPUTS_HIGH);
93 --wait for 11 ns;
94 sum_ready <= '1';
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95 wait for INPUTS_HIGH;
96 end if;
97 end process GENERATOR;
98

99 SUM_latch: for i in 0 to 15 generate
100 latch_i: SRlatch port map (SET => SUM(i), RST => RST_latch, Q =>

sumDetectorOut(i));↪→

101 end generate SUM_latch;
102

103 DETECTOR: process(CTRL1,COUT1,CTRL2,COUT2,sum_ready)
104 begin
105 if(sum_ready'event and sum_ready='1') then
106 cout1DetectorOut<= '0';
107 cout2DetectorOut<= '0';
108 ctrl1DetectorOut<= '0';
109 ctrl2DetectorOut<= '0';
110 end if;
111 if(COUT1'event and COUT1='1') then
112 cout1DetectorOut <= '1';
113 end if;
114 if(COUT2'event and COUT2='1') then
115 cout2DetectorOut <= '1';
116 end if;
117 if(CTRL1'event and CTRL1='1') then
118 ctrl1DetectorOut <= '1';
119 end if;
120 if(CTRL2'event and CTRL2='1') then
121 ctrl2DetectorOut <= '1';
122 end if;
123 end process;
124

125 CHECK: process(sum_ready, cout1DetectorOut, cout2DetectorOut,
ctrl1DetectorOut, ctrl2DetectorOut, CURRENT)↪→

126 variable cout1 : std_logic;
127 variable cout2 : std_logic;
128 variable ctrl1 : std_logic;
129 variable ctrl2 : std_logic;
130 begin
131 cout1 := cout1DetectorOut;
132 cout2 := cout2DetectorOut;
133 ctrl1 := ctrl1DetectorOut;
134 ctrl2 := ctrl2DetectorOut;
135

136 if(sum_ready'event and sum_ready='1') then
137 assert sumDetectorOut = sum_correct --assert condition report

string severity severity_level; --The assert statement tests the
boolean condition. If this is false, it outputs a message containing
the report string to the simulator screen:

↪→

↪→

↪→

138 report "Unexpected Sum for combination"&
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139 integer'image(Avalint) & " " &
140 integer'image(Bvalint)
141 severity error;
142 end if;
143 if(cout1DetectorOut'event and cout1DetectorOut='1') then
144 assert cout1 = (Aval(15) and Bval(15))
145 report "Unexpected Reminder (cout1) for combination"&
146 std_logic'image(Aval(15))&" "&
147 std_logic'image(Bval(15))
148 severity error;
149 end if;
150 if(cout2DetectorOut'event and cout2DetectorOut='1') then
151 assert cout2 = (Aval(15) and Bval(15))
152 report "Unexpected Reminder (cout2) for combination"&
153 std_logic'image(Aval(15))&" "&
154 std_logic'image(Bval(15))
155 severity error;
156 end if;
157 if(ctrl1DetectorOut'event and ctrl1DetectorOut='1') then
158 assert ctrl1 = '1'
159 report "Unexpected Control (ctrl1)"
160 severity error;
161 end if;
162 if(ctrl2DetectorOut'event and ctrl2DetectorOut='1') then
163 assert ctrl2 = '1'
164 report "Unexpected Control (ctrl2)"
165 severity error;
166 end if;
167 end process CHECK;
168

169 CURRENT_GEN : process
170 begin
171 CURRENT <= CURRENT_LOW;
172 wait for CLOCK_LOW;
173 CURRENT <= CURRENT_HIGH;
174 wait for CLOCK_HIGH;
175 end process CURRENT_GEN;
176

177 end architecture;
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B.3. Adder - pipelined version
B.3.1. Adder (16 bit)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6

7 entity SKYRMIONADDER is
8 generic (N: integer := 16);
9 port ( A : in std_logic_vector(N-1 downto 0);

10 B : in std_logic_vector(N-1 downto 0);
11 ONE1 : in std_logic;
12 ONE2 : in std_logic;
13 CURRENT : in real;
14 SUM : out std_logic_vector(N-1 downto 0);
15 COUT1 : out std_logic;
16 COUT2 : out std_logic;
17 CTRL1 : out std_logic;
18 CTRL2 : out std_logic
19 );
20 end entity SKYRMIONADDER;
21

22 architecture BLACKBOX of SKYRMIONADDER is
23 component SKYRMIONHALFADDER is
24 port( A: in std_logic;
25 B: in std_logic;
26 ONE1: in std_logic;
27 ONE2: in std_logic;
28 CURRENT: in real;
29 CTRL1: out std_logic;
30 COUT1: out std_logic;
31 SUM: out std_logic;
32 CTRL2: out std_logic;
33 COUT2: out std_logic
34 );
35 end component SKYRMIONHALFADDER;
36

37 component SKYRMIONFULLADDER is
38 port( A : in std_logic;
39 B : in std_logic;
40 CIN1 : in std_logic;
41 CIN2 : in std_logic;
42 ONE1 : in std_logic;
43 ONE2 : in std_logic;
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44 CURRENT : in real;
45 CTRL1 : out std_logic;
46 SUM : out std_logic;
47 COUT1 : out std_logic;
48 COUT2 : out std_logic;
49 CTRL2 : out std_logic
50 );
51 end component SKYRMIONFULLADDER;
52

53 component SKYRMIONCROSS is
54 port( A: in std_logic;
55 B: in std_logic;
56 CURRENT: in real;
57 Aout: out std_logic;
58 Bout: out std_logic
59 );
60 end component SKYRMIONCROSS;
61

62 component SKYRMIONNOTCHseq is
63 generic (N: integer := 5);
64 port( INPUT: in std_logic;
65 CURRENT: in real;
66 OUTPUT: out std_logic
67 );
68 end component SKYRMIONNOTCHseq;
69

70 component SKYRMIONNOTCH is
71 port( INPUT : in std_logic;
72 CURRENT : in real;
73 OUTPUT : out std_logic
74 );
75 end component;
76

77 signal cross01Aout, cross03Bout: std_logic;
78 signal Adelayed, Bdelayed: std_logic_vector(N-1 downto 1);
79 signal CTRL1vector, COUT1vector, CTRL2vector, COUT2vector, SUMpredelay:

std_logic_vector(N-2 downto 0);↪→

80 signal CIN1vector, CIN2vector, ONE1vector, ONE2vector: std_logic_vector(N-1
downto 1);↪→

81 signal crossi1Aout: std_logic_vector(N-2 downto 1);
82 type delay is array(N-1 downto 1) of integer;
83 signal delay_vector: delay;
84

85 begin
86

87 HA: SKYRMIONHALFADDER port map (A => A(0),
88 B => B(0),
89 ONE1 => ONE1,
90 ONE2 => ONE2,
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91 CURRENT => CURRENT,
92 CTRL1 => CTRL1vector(0),
93 COUT1 => COUT1vector(0),
94 SUM => SUMpredelay(0),
95 CTRL2 => CTRL2vector(0),
96 COUT2 => COUT2vector(0)
97 );
98

99 CROSS01: SKYRMIONCROSS port map (A => CTRL1vector(0), B => COUT1vector(0),
CURRENT => CURRENT, Aout => cross01Aout, Bout => CIN1vector(1));↪→

100 CROSS02: SKYRMIONCROSS port map (A => cross01Aout, B => cross03Bout, CURRENT
=> CURRENT, Aout => ONE1vector(1), Bout => CIN2vector(1));↪→

101 CROSS03: SKYRMIONCROSS port map (A => CTRL2vector(0), B => COUT2vector(0),
CURRENT => CURRENT, Aout => ONE2vector(1), Bout => cross03Bout);↪→

102

103 NOTCHES_1_A: SKYRMIONNOTCHseq generic map (N => 3) port map (INPUT => A(1),
CURRENT => CURRENT, OUTPUT => Adelayed(1));↪→

104 NOTCHES_1_B: SKYRMIONNOTCHseq generic map (N => 3) port map (INPUT => B(1),
CURRENT => CURRENT, OUTPUT => Bdelayed(1));↪→

105 NOTCHES_2_A: SKYRMIONNOTCHseq generic map (N => 9) port map (INPUT => A(2),
CURRENT => CURRENT, OUTPUT => Adelayed(2));↪→

106 NOTCHES_2_B: SKYRMIONNOTCHseq generic map (N => 9) port map (INPUT => B(2),
CURRENT => CURRENT, OUTPUT => Bdelayed(2));↪→

107 NOTCHES_3_A: SKYRMIONNOTCHseq generic map (N => 15) port map (INPUT => A(3),
CURRENT => CURRENT, OUTPUT => Adelayed(3));↪→

108 NOTCHES_3_B: SKYRMIONNOTCHseq generic map (N => 15) port map (INPUT => B(3),
CURRENT => CURRENT, OUTPUT => Bdelayed(3));↪→

109 NOTCHES_4_A: SKYRMIONNOTCHseq generic map (N => 21) port map (INPUT => A(4),
CURRENT => CURRENT, OUTPUT => Adelayed(4));↪→

110 NOTCHES_4_B: SKYRMIONNOTCHseq generic map (N => 21) port map (INPUT => B(4),
CURRENT => CURRENT, OUTPUT => Bdelayed(4));↪→

111 NOTCHES_5_A: SKYRMIONNOTCHseq generic map (N => 27) port map (INPUT => A(5),
CURRENT => CURRENT, OUTPUT => Adelayed(5));↪→

112 NOTCHES_5_B: SKYRMIONNOTCHseq generic map (N => 27) port map (INPUT => B(5),
CURRENT => CURRENT, OUTPUT => Bdelayed(5));↪→

113 NOTCHES_6_A: SKYRMIONNOTCHseq generic map (N => 33) port map (INPUT => A(6),
CURRENT => CURRENT, OUTPUT => Adelayed(6));↪→

114 NOTCHES_6_B: SKYRMIONNOTCHseq generic map (N => 33) port map (INPUT => B(6),
CURRENT => CURRENT, OUTPUT => Bdelayed(6));↪→

115 NOTCHES_7_A: SKYRMIONNOTCHseq generic map (N => 39) port map (INPUT => A(7),
CURRENT => CURRENT, OUTPUT => Adelayed(7));↪→

116 NOTCHES_7_B: SKYRMIONNOTCHseq generic map (N => 39) port map (INPUT => B(7),
CURRENT => CURRENT, OUTPUT => Bdelayed(7));↪→

117 NOTCHES_8_A: SKYRMIONNOTCHseq generic map (N => 45) port map (INPUT => A(8),
CURRENT => CURRENT, OUTPUT => Adelayed(8));↪→

118 NOTCHES_8_B: SKYRMIONNOTCHseq generic map (N => 45) port map (INPUT => B(8),
CURRENT => CURRENT, OUTPUT => Bdelayed(8));↪→

119 NOTCHES_9_A: SKYRMIONNOTCHseq generic map (N => 51) port map (INPUT => A(9),
CURRENT => CURRENT, OUTPUT => Adelayed(9));↪→
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120 NOTCHES_9_B: SKYRMIONNOTCHseq generic map (N => 51) port map (INPUT => B(9),
CURRENT => CURRENT, OUTPUT => Bdelayed(9));↪→

121 NOTCHES_10_A: SKYRMIONNOTCHseq generic map (N => 57) port map (INPUT => A(10),
CURRENT => CURRENT, OUTPUT => Adelayed(10));↪→

122 NOTCHES_10_B: SKYRMIONNOTCHseq generic map (N => 57) port map (INPUT => B(10),
CURRENT => CURRENT, OUTPUT => Bdelayed(10));↪→

123 NOTCHES_11_A: SKYRMIONNOTCHseq generic map (N => 63) port map (INPUT => A(11),
CURRENT => CURRENT, OUTPUT => Adelayed(11));↪→

124 NOTCHES_11_B: SKYRMIONNOTCHseq generic map (N => 63) port map (INPUT => B(11),
CURRENT => CURRENT, OUTPUT => Bdelayed(11));↪→

125 NOTCHES_12_A: SKYRMIONNOTCHseq generic map (N => 69) port map (INPUT => A(12),
CURRENT => CURRENT, OUTPUT => Adelayed(12));↪→

126 NOTCHES_12_B: SKYRMIONNOTCHseq generic map (N => 69) port map (INPUT => B(12),
CURRENT => CURRENT, OUTPUT => Bdelayed(12));↪→

127 NOTCHES_13_A: SKYRMIONNOTCHseq generic map (N => 75) port map (INPUT => A(13),
CURRENT => CURRENT, OUTPUT => Adelayed(13));↪→

128 NOTCHES_13_B: SKYRMIONNOTCHseq generic map (N => 75) port map (INPUT => B(13),
CURRENT => CURRENT, OUTPUT => Bdelayed(13));↪→

129 NOTCHES_14_A: SKYRMIONNOTCHseq generic map (N => 81) port map (INPUT => A(14),
CURRENT => CURRENT, OUTPUT => Adelayed(14));↪→

130 NOTCHES_14_B: SKYRMIONNOTCHseq generic map (N => 81) port map (INPUT => B(14),
CURRENT => CURRENT, OUTPUT => Bdelayed(14));↪→

131 NOTCHES_15_A: SKYRMIONNOTCHseq generic map (N => 87) port map (INPUT => A(15),
CURRENT => CURRENT, OUTPUT => Adelayed(15));↪→

132 NOTCHES_15_B: SKYRMIONNOTCHseq generic map (N => 87) port map (INPUT => B(15),
CURRENT => CURRENT, OUTPUT => Bdelayed(15));↪→

133

134 FA: for i in 1 to N-2 generate
135 FA_i: SKYRMIONFULLADDER port map ( A => Adelayed(i),
136 B => Bdelayed(i),
137 CIN1 => CIN1vector(i),
138 CIN2 => CIN2vector(i),
139 ONE1 => ONE1vector(i),
140 ONE2 => ONE2vector(i),
141 CURRENT => CURRENT,
142 CTRL1 => CTRL1vector(i),
143 SUM => SUMpredelay(i),
144 COUT1 => COUT1vector(i),
145 COUT2 => COUT2vector(i),
146 CTRL2 => CTRL2vector(i)
147 );
148 CROSS_i1: SKYRMIONCROSS port map (A => CTRL1vector(i), B => COUT1vector(i),

CURRENT => CURRENT, Aout => crossi1Aout(i), Bout => CIN1vector(i+1));↪→

149 CROSS_i2: SKYRMIONCROSS port map (A => crossi1Aout(i), B => COUT2vector(i),
CURRENT => CURRENT, Aout => ONE1vector(i+1), Bout => CIN2vector(i+1));↪→

150 ONE2vector(i+1) <= CTRL2vector(i);
151 end generate;
152

153 FA_last: SKYRMIONFULLADDER port map ( A => Adelayed(N-1),
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154 B => Bdelayed(N-1),
155 CIN1 => CIN1vector(N-1),
156 CIN2 => CIN2vector(N-1),
157 ONE1 => ONE1vector(N-1),
158 ONE2 => ONE2vector(N-1),
159 CURRENT => CURRENT,
160 CTRL1 => CTRL1,
161 SUM => SUM(N-1),
162 COUT1 => COUT1,
163 COUT2 => COUT2,
164 CTRL2 => CTRL2
165 );
166

167 NOTCHES_14_SUM: SKYRMIONNOTCHseq generic map (N => 6) port map (INPUT =>
SUMpredelay(14), CURRENT => CURRENT, OUTPUT => SUM(14));↪→

168 NOTCHES_13_SUM: SKYRMIONNOTCHseq generic map (N => 12) port map (INPUT =>
SUMpredelay(13), CURRENT => CURRENT, OUTPUT => SUM(13));↪→

169 NOTCHES_12_SUM: SKYRMIONNOTCHseq generic map (N => 18) port map (INPUT =>
SUMpredelay(12), CURRENT => CURRENT, OUTPUT => SUM(12));↪→

170 NOTCHES_11_SUM: SKYRMIONNOTCHseq generic map (N => 24) port map (INPUT =>
SUMpredelay(11), CURRENT => CURRENT, OUTPUT => SUM(11));↪→

171 NOTCHES_10_SUM: SKYRMIONNOTCHseq generic map (N => 30) port map (INPUT =>
SUMpredelay(10), CURRENT => CURRENT, OUTPUT => SUM(10));↪→

172 NOTCHES_9_SUM: SKYRMIONNOTCHseq generic map (N => 36) port map (INPUT =>
SUMpredelay(9), CURRENT => CURRENT, OUTPUT => SUM(9));↪→

173 NOTCHES_8_SUM: SKYRMIONNOTCHseq generic map (N => 42) port map (INPUT =>
SUMpredelay(8), CURRENT => CURRENT, OUTPUT => SUM(8));↪→

174 NOTCHES_7_SUM: SKYRMIONNOTCHseq generic map (N => 48) port map (INPUT =>
SUMpredelay(7), CURRENT => CURRENT, OUTPUT => SUM(7));↪→

175 NOTCHES_6_SUM: SKYRMIONNOTCHseq generic map (N => 54) port map (INPUT =>
SUMpredelay(6), CURRENT => CURRENT, OUTPUT => SUM(6));↪→

176 NOTCHES_5_SUM: SKYRMIONNOTCHseq generic map (N => 60) port map (INPUT =>
SUMpredelay(5), CURRENT => CURRENT, OUTPUT => SUM(5));↪→

177 NOTCHES_4_SUM: SKYRMIONNOTCHseq generic map (N => 66) port map (INPUT =>
SUMpredelay(4), CURRENT => CURRENT, OUTPUT => SUM(4));↪→

178 NOTCHES_3_SUM: SKYRMIONNOTCHseq generic map (N => 72) port map (INPUT =>
SUMpredelay(3), CURRENT => CURRENT, OUTPUT => SUM(3));↪→

179 NOTCHES_2_SUM: SKYRMIONNOTCHseq generic map (N => 78) port map (INPUT =>
SUMpredelay(2), CURRENT => CURRENT, OUTPUT => SUM(2));↪→

180 NOTCHES_1_SUM: SKYRMIONNOTCHseq generic map (N => 84) port map (INPUT =>
SUMpredelay(1), CURRENT => CURRENT, OUTPUT => SUM(1));↪→

181 NOTCHES_0_SUM: SKYRMIONNOTCHseq generic map (N => 90) port map (INPUT =>
SUMpredelay(0), CURRENT => CURRENT, OUTPUT => SUM(0));↪→

182

183 end BLACKBOX;
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B.3.2. Testbench Adder (16 bit)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_unsigned.all;
4 use work.globals.all;
5 use ieee.numeric_std.all;
6 use ieee.std_logic_textio.all;
7 library std;
8 use std.textio.all;
9

10 entity testADDER is
11 end entity testADDER;
12

13 architecture Structure of testADDER is
14 signal CURRENT : real;
15 signal A, B, SUM: std_logic_vector(15 downto 0);
16 signal ONE1, ONE2, CTRL1, COUT1, COUT2, CTRL2: std_logic;
17 signal sum_ready: std_logic := '0';
18 signal Aval, Bval: std_logic_vector(15 downto 0);
19 signal sumDetectorOut: std_logic_vector(15 downto 0);
20 signal cout1DetectorOut, cout2DetectorOut, ctrl1DetectorOut, ctrl2DetectorOut:

std_logic := '0';↪→

21 signal RST_latch: std_logic;
22 signal Avalint, Bvalint: integer:= 0;
23 signal notch_in, notch_out, latchOut: std_logic_vector (19 downto 0);
24

25 component SKYRMIONADDER is
26 generic (N: integer := 16);
27 port ( A : in std_logic_vector(N-1 downto 0);
28 B : in std_logic_vector(N-1 downto 0);
29 ONE1 : in std_logic;
30 ONE2 : in std_logic;
31 CURRENT : in real;
32 SUM : out std_logic_vector(N-1 downto 0);
33 COUT1 : out std_logic;
34 COUT2 : out std_logic;
35 CTRL1 : out std_logic;
36 CTRL2 : out std_logic
37 );
38 end component SKYRMIONADDER;
39

40 component SKYRMIONNOTCH is
41 port( INPUT : in std_logic;
42 CURRENT : in real;
43 OUTPUT : out std_logic
44 );
45 end component SKYRMIONNOTCH;
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46

47 component SRlatch is
48 port( SET: in std_logic;
49 RST: in std_logic;
50 Q: out std_logic
51 );
52 end component SRlatch;
53

54 begin
55

56 DUT: SKYRMIONADDER generic map (N => 16) port map ( A => A,
57 B => B,
58 ONE1 => ONE1,
59 ONE2 => ONE2,
60 CURRENT => CURRENT,
61 SUM => SUM,
62 COUT1 => COUT1,
63 COUT2 => COUT2,
64 CTRL1 => CTRL1,
65 CTRL2 => CTRL2
66 );
67

68 notch_in <= CTRL2 & CTRL1 & COUT2 & COUT1 & SUM;
69 SYNC: for i in 0 to 19 generate
70 notch_i: SKYRMIONNOTCH port map (INPUT => notch_in(i), CURRENT => CURRENT,

OUTPUT => notch_out(i));↪→

71 end generate;
72

73 GENERATOR: process
74 file fp_in : text open READ_MODE is "./inputs.txt";
75 file sum_corr_fp : text open WRITE_MODE is "./sum_corr.txt";
76 file cout_corr_fp : text open WRITE_MODE is "./cout_corr.txt";
77 file ctrl_corr_fp : text open WRITE_MODE is "./ctrl_corr.txt";
78 variable line_in : line;
79 variable line_out_sum, line_out_cout, line_out_ctrl: line;
80 variable xA, xB, xS, xcout: integer;
81 variable in1, in2: std_logic_vector(15 downto 0);
82 variable sum_full: std_logic_vector(16 downto 0);
83 begin
84 if not endfile(fp_in) then
85 readline(fp_in, line_in);
86 read(line_in, xA);
87 in1 := std_logic_vector(to_unsigned(xA, 16));
88

89 readline(fp_in, line_in);
90 read(line_in, xB);
91 in2 := std_logic_vector(to_unsigned(xB, 16));
92

93 xS := xA+xB;
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94 sum_full := std_logic_vector(to_unsigned(xS, 17));
95

96 write(line_out_sum, to_integer(unsigned(sum_full(15 downto 0))));
97 writeline(sum_corr_fp, line_out_sum);
98

99 write(line_out_cout, to_bit(sum_full(16)));
100 writeline(cout_corr_fp, line_out_cout);
101

102 write(line_out_ctrl, to_bit('1'));
103 writeline(ctrl_corr_fp, line_out_ctrl);
104

105 A <= in1;
106 B <= in2;
107 Aval <= in1;
108 Bval <= in2;
109 Avalint <= xA;
110 Bvalint <= xB;
111 ONE1 <= '1';
112 ONE2 <= '1';
113 wait for INPUTS_HIGH;
114 A <= (others => '0');
115 B <= (others => '0');
116 ONE1 <= '0';
117 ONE2 <= '0';
118 wait for (CLOCK_PERIOD-INPUTS_HIGH);
119 end if;
120 end process GENERATOR;
121

122 sum_ready_proc: process (notch_out(19))
123 begin
124 if (notch_out(19)'event and notch_out(19)='1') then
125 sum_ready <= '1', '0' after 500 ps;
126 end if;
127 end process;
128

129 OUT_latch: for i in 0 to 19 generate
130 latch_i: SRlatch port map (SET => notch_out(i), RST => RST_latch, Q =>

latchOut(i));↪→

131 end generate OUT_latch;
132

133 sumDetectorOut <= latchOut(15 downto 0);
134 cout1DetectorOut <= latchOut(16);
135 cout2DetectorOut <= latchOut(17);
136 ctrl1DetectorOut <= latchOut(18);
137 ctrl2DetectorOut <= latchOut(19);
138

139 CHECK: process(sumDetectorOut, cout1DetectorOut, cout2DetectorOut,
ctrl1DetectorOut, ctrl2DetectorOut, CURRENT)↪→

140 variable sum: std_logic_vector(15 downto 0);
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141 variable cout : std_logic;
142 variable ctrl : std_logic;
143 variable xS: integer;
144 variable xcout, xctrl: boolean;
145

146 file sum_corr_fp : text open READ_MODE is "./sum_corr.txt";
147 file cout_corr_fp : text open READ_MODE is "./cout_corr.txt";
148 file ctrl_corr_fp : text open READ_MODE is "./ctrl_corr.txt";
149 variable line_in : line;
150 begin
151 if(sumDetectorOut'event) then
152 if not endfile(sum_corr_fp) then
153 readline(sum_corr_fp, line_in);
154 read(line_in, xS);
155 sum := std_logic_vector(to_unsigned(xS, 16));
156

157 assert sumDetectorOut = sum
158 report "Unexpected Sum"
159 severity error;
160 end if;
161 end if;
162 if(cout1DetectorOut'event or cout2DetectorOut'event) then
163 if not endfile(cout_corr_fp) then
164 readline(cout_corr_fp, line_in);
165 read(line_in, xcout);
166 if (xcout) then cout := '1'; else cout := '0'; end if;
167

168 assert cout1DetectorOut = cout
169 report "Unexpected Reminder (cout1)"
170 severity error;
171

172 assert cout2DetectorOut = cout
173 report "Unexpected Reminder (cout2)"
174 severity error;
175 end if;
176 end if;
177 if(ctrl1DetectorOut'event or ctrl2DetectorOut'event) then
178 if not endfile(ctrl_corr_fp) then
179 readline(ctrl_corr_fp, line_in);
180 read(line_in, xctrl);
181 if (xctrl) then ctrl := '1'; else ctrl := '0'; end if;
182

183 assert ctrl1DetectorOut = ctrl
184 report "Unexpected Control (ctrl1)"
185 severity error;
186

187 assert ctrl2DetectorOut = ctrl
188 report "Unexpected Control (ctrl2)"
189 severity error;
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190 end if;
191 end if;
192 end process CHECK;
193

194 CURRENT_GEN : process
195 begin
196 CURRENT <= CURRENT_LOW;
197 RST_latch <= '0';
198 wait for CLOCK_LOW;
199 CURRENT <= CURRENT_HIGH;
200 RST_latch <= '1';
201 wait for CLOCK_HIGH;
202 end process CURRENT_GEN;
203

204 end architecture;
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C.1. Shared components
C.1.1. Globals

1 package GLOBALS is
2 type coordinates_xy is array (0 to 1) of real;
3 type parameters_array is array(0 to 9) of coordinates_xy;
4 type bool_array is array(integer range <>) of boolean;
5 type real_array is array(integer range <>) of real;
6

7 constant HORIZONTAL_SPEED : real := 150.0; --m/s
8 constant VERTICAL_SPEED : real := 40.0; --m/s
9 constant DEPINNING_CURRENT : real := 260.0; --nA

10 constant NOTCH_DEPINNING_CURRENT : real := 3200.0; --nA
11 constant HORIZONTAL_SPEED_HIGH : real := 484.0; --m/2
12 constant SKYRMION_DIAMETER : real := 18.0; --nm
13 constant SKYRMION_MIN_DISTANCE : real := 22.0; --nm
14 constant CURRENT_LOW : real := 800.0; --nA
15 constant CURRENT_HIGH : real := 3200.0; --nA
16 constant CLOCK_LOW : time := 5.35 ns;
17 constant CLOCK_HIGH : time := 150 ps;
18 constant CLOCK_PERIOD : time := 5.5 ns;
19 constant INPUTS_HIGH : time := 500 ps;
20

21 end package GLOBALS;
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C.1.2. AND/OR gate (from a previous work)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONH is
8 port ( INPUTA : in std_logic;
9 INPUTB : in std_logic;

10 CURRENT : in real;
11 OUTPUTAND : out std_logic;
12 OUTPUTOR : out std_logic
13 );
14 end entity SKYRMIONH;
15

16 architecture CENTRALLOGIC of skyrmionh is
17 ------------ CONSTANTS -------------------------------------------
18 constant TRACK_LENGTH : real := 256.0; --nm
19 constant HOLE_X_START : real := 113.0; --nm
20 constant HOLE_X_END : real := 143.0; --nm
21 constant HOLE_X_POSITION : real := 128.0; --nm
22 constant TRACK_0_Y : real := 10.0; --nm
23 constant TRACK_1_Y : real := 50.0; --nm
24 constant HOLE_Y_BOTTOM : real := 20.0; --nm
25 constant HOLE_Y_TOP : real := 40.0; --nm
26

27 ----------- FUNCTIONS --------------------------------------------
28

29 function updatePosition (elapsedTimeNs: real; actualPosition:
parameters_array; currentValue : real; index: integer) return
coordinates_xy is

↪→

↪→

30 variable speed : coordinates_xy;
31 variable output : coordinates_xy;
32 variable changeTrack : boolean;
33 begin
34 changeTrack := false;
35 output(0) := 0.0;
36 output(1) := 0.0;
37 if(currentValue > DEPINNING_CURRENT) then
38 speed(1) := 0.0;
39 speed(0) := 0.0;
40 if(actualPosition(index)(0) > HOLE_X_START and actualPosition(index)(0) <

HOLE_X_END and actualPosition(index)(1) <= HOLE_Y_BOTTOM) then↪→

41 changeTrack := true;
42 for i in 0 to 9 loop
43 if(index /= i and actualPosition(i)(0) > HOLE_X_START and

actualPosition(i)(0) < HOLE_X_END and actualPosition(i)(1) > 0.0)
then

↪→

↪→
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44 changeTrack := false;
45 end if;
46 end loop;
47 end if;
48 if (changeTrack or (actualPosition(index)(1) > HOLE_Y_BOTTOM and

actualPosition(index)(1) < HOLE_Y_TOP)) then↪→

49 speed(1) := VERTICAL_SPEED;
50 speed(0) := 0.0;
51 else
52 speed(1) := 0.0;
53 speed(0) := HORIZONTAL_SPEED;
54 end if;
55 output(0) := actualPosition(index)(0)+speed(0)*elapsedTimeNs;
56 output(1) := actualPosition(index)(1)+speed(1)*elapsedTimeNs;
57 end if;
58 return output;
59 end updatePosition;
60

61

62 ------------ SIGNALS ---------------------------------
63 signal ACK : std_logic := '0';
64 signal inputPortState, emit : std_logic_vector(1 downto 0) := "00";
65 signal skyrmion_position_debug : parameters_array;
66 signal skyrmion_number_debug : integer := 0;
67 begin
68

69 RECEIVER: process(INPUTA, INPUTB, ACK)
70 begin
71 if (ACK'event and ACK='1') then
72 inputPortState <= "00";
73 end if;
74 if (INPUTA'event and INPUTA='1') then
75 inputPortState(1) <= '1';
76 end if;
77 if (INPUTB'event and INPUTB='1') then
78 inputPortState(0) <= '1';
79 end if;
80 end process;
81

82

83 EMITTER: process(emit)
84 begin
85 if(emit(0)'event and emit(0)='1') then
86 OUTPUTAND<='1';
87 else
88 OUTPUTAND<='0' after 1 ns;
89 end if;
90 if(emit(1)'event and emit(1)='1') then
91 OUTPUTOR<='1';
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92 else
93 OUTPUTOR<='0' after 1 ns;
94 end if;
95 end process;
96

97 EVOLUTION:process
98 variable v_TIME : time := 0 ns;
99 variable skyrmion_position : parameters_array;

100 variable skyrmion_position_old : parameters_array;
101 variable skyrmion_number, skyrmion_number_old, write_index : integer := 0;
102 variable result : coordinates_xy;
103 variable timeNsReal : real := 0.0;
104 variable trackBusy : bool_array(1 downto 0);
105 begin
106 wait for 5 ps;
107 v_TIME := now - v_TIME;
108 timeNsReal := 0.01;
109 trackBusy(0) := false;
110 trackBusy(1) := false;
111 ACK <= '0';
112 if (inputPortState(0) = '1') then --skyrmion detected on B
113 skyrmion_number := skyrmion_number +1;
114 skyrmion_position(skyrmion_number-1)(0) := 0.0;
115 skyrmion_position(skyrmion_number-1)(1) := TRACK_0_Y;
116 ACK <= '1';
117 end if;
118

119 if (inputPortState(1) = '1') then --skyrmion detected on A
120 skyrmion_number := skyrmion_number +1;
121 skyrmion_position(skyrmion_number-1)(0) := 0.0;
122 skyrmion_position(skyrmion_number-1)(1) := TRACK_1_Y;
123 ACK <= '1';
124 end if;
125

126 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
127 skyrmion_position_old := skyrmion_position;
128 skyrmion_number_old := skyrmion_number;
129 write_index := -1;
130 for i in 0 to skyrmion_number_old-1 loop
131 result := updatePosition(timeNsReal,skyrmion_position_old,CURRENT,i);
132 if (result(0) > TRACK_LENGTH ) then
133 skyrmion_number := skyrmion_number-1;
134 if result(1) > HOLE_Y_TOP then
135 emit(1) <= '1' after 5 ps; --OR=1
136 trackBusy(1) := true;
137 else
138 emit(0) <= '1' after 5 ps; --AND=1
139 trackBusy(0) := true;
140 end if;
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141 else
142 write_index := write_index + 1;
143 skyrmion_position(write_index) := result;
144 end if;
145

146 end loop;
147 if (write_index < 9) then
148 write_index := write_index+1;
149 for i in write_index to 9 loop
150 skyrmion_position(i)(0) := 0.0;
151 skyrmion_position(i)(1) := 0.0;
152 end loop;
153 end if;
154

155 if (not(trackBusy(0))) then
156 emit(0) <= '0' after 5 ps;
157 end if;
158 if (not(trackBusy(1))) then
159 emit(1) <= '0' after 5 ps;
160 end if;
161 elsif (skyrmion_number=0) then
162 emit <= "00" after 15 ps;
163 for i in 0 to 9 loop
164 skyrmion_position(i)(0) := 0.0;
165 skyrmion_position(i)(1) := 0.0;
166 end loop;
167 else
168 report "Skyrmion number exceeded maximum admitted";
169 end if;
170

171 skyrmion_position_debug <= skyrmion_position after 5 ps;
172 skyrmion_number_debug <= skyrmion_number after 5 ps;
173 wait for 5 ps;
174 end process;
175 end CENTRALLOGIC;

C.1.3. Read/Write heads
C.1.3.1. MTJ_R

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
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5 use WORK.all;
6 use work.globals.all;
7

8

9 entity MTJ_R is
10 port( IN_SK: in std_logic;
11 CURRENT: in real;
12 OUT_SIGN: out std_logic);
13 end entity MTJ_R;
14

15 architecture Behavioural of MTJ_R is
16 begin
17 SK_DETECT: process (IN_SK, CURRENT)
18 variable Nsk: std_logic := '0';
19 begin
20 if (IN_SK'event and IN_SK='1') then
21 Nsk := '1';
22 end if;
23 if (CURRENT /= 0.0) then
24 if (Nsk='1') then
25 OUT_SIGN <= '1', '0' after 10 ps;
26 Nsk:='0';
27 else
28 OUT_SIGN <= '0';
29 end if;
30 else
31 OUT_SIGN <= '0';
32 end if;
33 end process SK_DETECT;
34 end architecture Behavioural;

C.1.3.2. MTJ_W

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity MTJ_W is
10 port( CTRL: in std_logic;
11 OUT_SK: out std_logic);
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12 end entity MTJ_W;
13

14 architecture Behavioural of MTJ_W is
15 begin
16 SK_GEN: process (CTRL)
17 begin
18 if (CTRL'event and CTRL='1') then
19 OUT_SK <= '1', '0' after 10 ps;
20 else
21 OUT_SK <= '0';
22 end if;
23 end process SK_GEN;
24 end architecture Behavioural;

C.1.3.3. MTJ_CONV

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity MTJ_CONV is
10 port( IN_SK: in std_logic;
11 CURRENT: in real;
12 OUT_SK: out std_logic);
13 end entity MTJ_CONV;
14

15 architecture Behavioural of MTJ_CONV is
16 component MTJ_R is
17 port( IN_SK: in std_logic;
18 CURRENT: in real;
19 OUT_SIGN: out std_logic);
20 end component MTJ_R;
21

22 signal SK_DETECT_SIGN: std_logic;
23

24 begin
25 SK_DETECT: MTJ_R port map (IN_SK => IN_SK, CURRENT => CURRENT, OUT_SIGN =>

SK_DETECT_SIGN);↪→

26

27 SK_CONV: process (SK_DETECT_SIGN)
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28 begin
29 if (SK_DETECT_SIGN'event and SK_DETECT_SIGN='1') then
30 OUT_SK <= '1', '0' after 10 ps;
31 else
32 OUT_SK <= '0';
33 end if;
34 end process SK_CONV;
35 end architecture Behavioural;

C.1.4. Crosses
C.1.4.1. CROSS with Magnus force

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONCROSS_Magn is
8 port( A: in std_logic;
9 B: in std_logic;

10 CURRENTA: in real;
11 CURRENTB: in real;
12 Aout: out std_logic;
13 Bout: out std_logic);
14 end entity SKYRMIONCROSS_Magn;
15

16 architecture BLACKBOX of SKYRMIONCROSS_Magn is
17

18 begin
19 process (A, B, CURRENTA, CURRENTB) is
20 variable NskA, NskB: integer := 0;
21 begin
22 if (A'event and A='1') then
23 NskA := NskA+1;
24 end if;
25 if (B'event and B='1') then
26 NskB := NskB+1;
27 end if;
28

29 if (CURRENTA /= 0.0) then
30 if (NskA = 1) then
31 Aout <= '1', '0' after 9 ps;
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32 NskA := 0;
33 else
34 Aout <= '0';
35 end if;
36 end if;
37 if (CURRENTB /= 0.0) then
38 if (NskB = 1) then
39 Bout <= '1', '0' after 9 ps;
40 NskB := 0;
41 else
42 Bout <= '0';
43 end if;
44 end if;
45 end process;
46 end BLACKBOX;

C.1.4.2. CROSS without Magnus force

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONCROSS_noMagn is
8 port( A: in std_logic;
9 B: in std_logic;

10 CURRENTA: in real;
11 CURRENTB: in real;
12 Aout: out std_logic;
13 Bout: out std_logic);
14 end entity SKYRMIONCROSS_noMagn;
15

16 architecture BLACKBOX of SKYRMIONCROSS_noMagn is
17 begin
18 process (A, B, CURRENTA, CURRENTB)
19 variable NskA, NskB: integer := 0;
20 begin
21 if (A'event and A='1') then
22 NskA := NskA+1;
23 end if;
24 if (B'event and B='1') then
25 NskB := NskB+1;
26 end if;
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27

28 if (CURRENTA /= 0.0) then
29 if (NskA = 1) then
30 Aout <= '1', '0' after 10 ps;
31 NskA := 0;
32 else
33 Aout <= '0';
34 end if;
35 end if;
36 if (CURRENTB /= 0.0) then
37 if (NskB = 1) then
38 Bout <= '1', '0' after 10 ps;
39 NskB := 0;
40 else
41 Bout <= '0';
42 end if;
43 end if;
44 end process;
45 end BLACKBOX;

C.1.5. Duplication/Merging elements
C.1.5.1. Duplication element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity skyrmionDUPLICATE is
10 port( IN_SK: in std_logic;
11 CURRENT: in real;
12 OUT_SK_TOP: out std_logic;
13 OUT_SK_BOTTOM: out std_logic);
14 end entity skyrmionDUPLICATE;
15

16 architecture Behavioural of skyrmionDUPLICATE is
17 begin
18 SK_DUPL: process (IN_SK, CURRENT)
19 variable Nsk: integer := 0;
20 begin
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21 if (IN_SK'event and IN_SK='1') then
22 Nsk := Nsk+1;
23 end if;
24

25 if (CURRENT /= 0.0) then
26 if (Nsk /= 0) then
27 OUT_SK_TOP <= '1', '0' after 10 ps;
28 OUT_SK_BOTTOM <= '1', '0' after 10 ps;
29 Nsk:=Nsk-1;
30 else
31 OUT_SK_TOP <= '0';
32 OUT_SK_BOTTOM <= '0';
33 end if;
34 else
35 OUT_SK_TOP <= '0';
36 OUT_SK_BOTTOM <= '0';
37 end if;
38 end process SK_DUPL;
39 end architecture Behavioural;

C.1.5.2. Merging element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity skyrmionMERGE is
10 port( IN_SK_TOP: in std_logic;
11 IN_SK_BOTTOM: in std_logic;
12 CURRENT: in real;
13 OUT_SK: out std_logic);
14 end entity skyrmionMERGE;
15

16 architecture Behavioural of skyrmionMERGE is
17 begin
18 SK_MERGE: process (IN_SK_TOP, IN_SK_BOTTOM, CURRENT)
19 variable Nsk: integer := 0;
20 begin
21 if (IN_SK_TOP'event and IN_SK_TOP='1') then
22 Nsk := Nsk+1;
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23 end if;
24 if (IN_SK_BOTTOM'event and IN_SK_BOTTOM='1') then
25 Nsk := Nsk+1;
26 end if;
27

28 if (CURRENT /= 0.0) then
29 if (Nsk=1 or Nsk=2) then
30 OUT_SK <= '1', '0' after 10 ps;
31 Nsk := 0;
32 else
33 OUT_SK <= '0';
34 end if;
35 else
36 OUT_SK <= '0';
37 end if;
38 end process SK_MERGE;
39 end architecture Behavioural;

C.1.6. Deviation element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity skyrmionDEVIATION is
10 port( IN_SK: in std_logic;
11 CURRENT: in real;
12 CURRENTDEV: in real;
13 OUT_SK: out std_logic;
14 OUT_SK_DEV: out std_logic);
15 end entity skyrmionDEVIATION;
16

17 architecture Behavioural of skyrmionDEVIATION is
18 signal Nsks: integer;
19 signal outens: std_logic;
20 begin
21 SK_DEV: process (IN_SK, CURRENT, CURRENTDEV)
22 variable Nsk: integer := 0;
23 variable out_en: std_logic := '0';
24 begin
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25 if (IN_SK'event and IN_SK='1') then
26 Nsk := Nsk+1;
27 end if;
28

29 if (CURRENT = 0.0 and CURRENTDEV = 0.0) then
30 OUT_SK <= '0';
31 OUT_SK_DEV <= '0';
32 end if;
33

34 if(out_en = '1') then
35 if (CURRENTDEV'event and CURRENTDEV /= 0.0) then
36 if (Nsk=1) then
37 OUT_SK <= '0';
38 OUT_SK_DEV <= '1', '0' after 10 ps;
39 Nsk := Nsk-1;
40 out_en := '0';
41 else
42 OUT_SK <= '0';
43 OUT_SK_DEV <= '0';
44 out_en := '0';
45 end if;
46 elsif (CURRENT'event and CURRENT /= 0.0) then
47 if (Nsk=1) then
48 OUT_SK <= '1', '0' after 10 ps;
49 OUT_SK_DEV <= '0';
50 Nsk := Nsk-1;
51 out_en := '0';
52 else
53 OUT_SK <= '0';
54 OUT_SK_DEV <= '0';
55 out_en := '0';
56 end if;
57 end if;
58 end if;
59

60 if (CURRENT'event and CURRENT /= 0.0) then
61 if (out_en = '0' and Nsk /= 0) then
62 out_en:='1';
63 end if;
64 end if;
65

66 Nsks <= Nsk;
67 outens <= out_en;
68

69 end process SK_DEV;
70 end architecture Behavioural;
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C.1.7. Voltage generators
C.1.7.1. Voltage_genL

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity voltage_genL is
10 port( CTRL: in std_logic;
11 CURRENT: out real);
12 end entity voltage_genL;
13

14 architecture Behavioural of voltage_genL is
15 begin
16 CURR_GEN: process (CTRL)
17 begin
18 if (CTRL='1') then
19 CURRENT <= CURRENT_LOW;
20 else
21 CURRENT <= 0.0;
22 end if;
23 end process CURR_GEN;
24 end architecture Behavioural;

C.1.7.2. Voltage_genH

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity voltage_genH is
10 port( CTRL: in std_logic;
11 CURRENT: out real);
12 end entity voltage_genH;
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13

14 architecture Behavioural of voltage_genH is
15 begin
16 CURR_GEN: process (CTRL)
17 begin
18 if (CTRL='1') then
19 CURRENT <= CURRENT_HIGH;
20 else
21 CURRENT <= 0.0;
22 end if;
23 end process CURR_GEN;
24 end architecture Behavioural;

C.1.7.3. Vclock_gen

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity vclock_gen is
10 port( CTRL: in std_logic;
11 CURRENTclk: in real;
12 CURRENT: out real);
13 end entity vclock_gen;
14

15 architecture Behavioural of vclock_gen is
16 begin
17 CURR_GEN: process (CTRL, CURRENTclk)
18 begin
19 if (CTRL='1') then
20 CURRENT <= CURRENTclk;
21 else
22 CURRENT <= 0.0;
23 end if;
24 end process CURR_GEN;
25 end architecture Behavioural;
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C.1.8. Tanks
C.1.8.1. Bottom tank

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity tank_bottom is
10 port( IN1, IN2, IN3, IN4, IN5, IN6, IN7: in std_logic; --from left to right
11 CURRENT: in real;
12 tankOUT1, tankOUT2, tankOUT3: out std_logic); --priority order: from

right to left↪→

13 end entity tank_bottom;
14

15 architecture Behavioural of tank_bottom is
16 component SKYRMIONNOTCH is
17 port( INPUT : in std_logic;
18 CURRENT : in real;
19 OUTPUT : out std_logic);
20 end component SKYRMIONNOTCH;
21

22 signal OUT1, OUT2, OUT3: std_logic;
23 signal Nsks: integer;
24

25 begin
26 process (IN1, IN2, IN3, IN4, IN5, IN6, IN7, CURRENT)
27 variable Nsk: integer := 0;
28 variable out_en, OUT1_var, OUT2_var, OUT3_var: std_logic := '0';
29 begin
30 if (IN1'event and IN1='1') then
31 Nsk := Nsk+1;
32 end if;
33 if (IN2'event and IN2='1') then
34 Nsk := Nsk+1;
35 end if;
36 if (IN3'event and IN3='1') then
37 Nsk := Nsk+1;
38 end if;
39 if (IN4'event and IN4='1') then
40 Nsk := Nsk+1;
41 end if;
42 if (IN5'event and IN5='1') then
43 Nsk := Nsk+1;
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44 end if;
45 if (IN6'event and IN6='1') then
46 Nsk := Nsk+1;
47 end if;
48 if (IN7'event and IN7='1') then
49 Nsk := Nsk+1;
50 end if;
51

52 Nsks <= Nsk;
53

54 if (CURRENT'event and CURRENT = CURRENT_LOW) then
55 if (out_en='0') then
56 out_en := '1';
57 case Nsk is
58 when 1 => OUT1_var := '1';
59 OUT2_var := '0';
60 OUT3_var := '0';
61 Nsk := 0;
62 when 2 => OUT1_var := '1';
63 OUT2_var := '1';
64 OUT3_var := '0';
65 Nsk := 0;
66 when 3 => OUT1_var := '1';
67 OUT2_var := '1';
68 OUT3_var := '1';
69 Nsk := 0;
70 when 0 => OUT1_var := '0';
71 OUT2_var := '0';
72 OUT3_var := '0';
73 Nsk := 0;
74 when others => OUT1_var := '1';
75 OUT2_var := '1';
76 OUT3_var := '1';
77 Nsk := Nsk-3;
78 end case;
79 end if;
80 end if;
81

82 if (CURRENT'event and CURRENT = 0.0) then
83 out_en := '0';
84 end if;
85

86 if (OUT1_var = '1' or OUT2_var = '1' or OUT3_var = '1') then
87 if (OUT1_var = '1') then
88 OUT1_var := '0';
89 OUT1 <= '1', '0' after 10 ps;
90 else
91 OUT1 <= '0';
92 end if;
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93 if (OUT2_var = '1') then
94 OUT2_var := '0';
95 OUT2 <= '1', '0' after 10 ps;
96 else
97 OUT2 <= '0';
98 end if;
99 if (OUT3_var = '1') then

100 OUT3_var := '0';
101 OUT3 <= '1', '0' after 10 ps;
102 else
103 OUT3 <= '0';
104 end if;
105 else
106 OUT1 <= '0';
107 OUT2 <= '0';
108 OUT3 <= '0';
109 end if;
110 end process;
111

112 notch1: SKYRMIONNOTCH port map (INPUT => OUT1, CURRENT => CURRENT, OUTPUT =>
tankOUT1);↪→

113 notch2: SKYRMIONNOTCH port map (INPUT => OUT2, CURRENT => CURRENT, OUTPUT =>
tankOUT2);↪→

114 notch3: SKYRMIONNOTCH port map (INPUT => OUT3, CURRENT => CURRENT, OUTPUT =>
tankOUT3);↪→

115

116 end architecture Behavioural;

C.1.8.2. Top tank

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity tank_top is
10 port( IN1, IN2, IN3: in std_logic; --from right to left
11 CURRENT: in real;
12 tankOUT: out std_logic);
13 end entity tank_top;
14
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15 architecture Behavioural of tank_top is
16 component SKYRMIONNOTCH is
17 port( INPUT : in std_logic;
18 CURRENT : in real;
19 OUTPUT : out std_logic);
20 end component SKYRMIONNOTCH;
21

22 signal OUT1: std_logic;
23 signal Nsks: integer;
24

25 begin
26 process (IN1, IN2, IN3, CURRENT)
27 variable Nsk: integer := 0;
28 variable out_en, OUT1_var: std_logic := '0';
29 begin
30 if (IN1'event and IN1='1') then
31 Nsk := Nsk+1;
32 end if;
33 if (IN2'event and IN2='1') then
34 Nsk := Nsk+1;
35 end if;
36 if (IN3'event and IN3='1') then
37 Nsk := Nsk+1;
38 end if;
39

40 Nsks <= Nsk;
41

42 if (CURRENT'event and CURRENT = CURRENT_LOW) then
43 if (out_en='0') then
44 out_en := '1';
45 case Nsk is
46 when 1 => OUT1_var := '1';
47 Nsk := 0;
48 when 0 => OUT1_var := '0';
49 Nsk := 0;
50 when others => OUT1_var := '1';
51 Nsk := Nsk-1;
52 end case;
53 end if;
54 end if;
55

56 if (CURRENT'event and CURRENT = 0.0) then
57 out_en := '0';
58 end if;
59

60 if (OUT1_var = '1') then
61 OUT1_var := '0';
62 OUT1 <= '1', '0' after 10 ps;
63 else
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64 OUT1 <= '0';
65 end if;
66

67 end process;
68

69 notch1: SKYRMIONNOTCH port map (INPUT => OUT1, CURRENT => CURRENT, OUTPUT =>
tankOUT);↪→

70

71 end architecture Behavioural;

C.1.9. Multiplexers
C.1.9.1. Results multiplexer

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity mux1 is
10 port( inT, inM, inB: in std_logic;
11 CURRENT: in real;
12 CURRENT_V1, CURRENT_V2, CURRENT_V3: in real;
13 selection: in std_logic_vector(1 downto 0);
14 muxOUT, V1OUT, V3OUT, V2OUTt, V2OUTb: out std_logic);
15 end entity mux1;
16

17 architecture Behavioural of mux1 is
18 begin
19 process (inT, inM, inB, selection, CURRENT, CURRENT_V1, CURRENT_V2,

CURRENT_V3)↪→

20 variable skT, skM, skB: std_logic;
21 variable out_en, muxOUT_var: std_logic;
22 variable totSk: integer := 0;
23 begin
24 if (inT'event and inT='1') then
25 skT := '1';
26 totSk := totSk+1;
27 end if;
28 if (inM'event and inM='1') then
29 skM := '1';
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30 totSk := totSk+1;
31 end if;
32 if (inB'event and inB='1') then
33 skB := '1';
34 totSk := totSk+1;
35 end if;
36

37 if (CURRENT_V1 /= 0.0 or CURRENT_V2 /= 0.0 or CURRENT_V3 /= 0.0 ) then
--CURRENT /= 0.0 or↪→

38 if (selection = "01") then --OR, V1 si attiva
39 if (skT = '1') then
40 muxOUT_var := '1';
41 out_en := '1';
42 totSk := totSk-1;
43 else
44 muxOUT_var := '0';
45 out_en := '1';
46 end if;
47 case totSk is
48 when 1 => V1OUT <= '1', '0' after 10 ps;
49 V3OUT <= '0';
50 V2OUTt <= '0';
51 V2OUTb <= '0';
52 when 2 => V1OUT <= '1', '0' after 10 ps, '1' after 20 ps, '0' after

30 ps;↪→

53 V3OUT <= '0';
54 V2OUTt <= '0';
55 V2OUTb <= '0';
56 when others => V1OUT <= '0';
57 V3OUT <= '0';
58 V2OUTt <= '0';
59 V2OUTb <= '0';
60 end case;
61 totSk := 0;
62 skT := '0';
63 skM := '0';
64 skB := '0';
65 elsif (selection = "11") then --SUM, V3 si attiva
66 if (skB = '1') then
67 muxOUT_var := '1';
68 out_en := '1';
69 totSk := totSk-1;
70 else
71 muxOUT_var := '0';
72 out_en := '1';
73 end if;
74 case totSk is
75 when 1 => V3OUT <= '1', '0' after 10 ps;
76 V1OUT <= '0';
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77 V2OUTt <= '0';
78 V2OUTb <= '0';
79 when 2 => V3OUT <= '1', '0' after 10 ps, '1' after 20 ps, '0' after

30 ps;↪→

80 V1OUT <= '0';
81 V2OUTt <= '0';
82 V2OUTb <= '0';
83 when others => V3OUT <= '0';
84 V1OUT <= '0';
85 V2OUTt <= '0';
86 V2OUTb <= '0';
87 end case;
88 totSk := 0;
89 skT := '0';
90 skM := '0';
91 skB := '0';
92 elsif (selection = "10") then --AND, V2 si attiva
93 if (skM = '1') then
94 muxOUT_var := '1';
95 out_en := '1';
96 totSk := totSk-1;
97 else
98 muxOUT_var := '0';
99 out_en := '1';

100 end if;
101 case totSk is
102 when 1 => if (skT = '1') then
103 V2OUTt <= '1', '0' after 10 ps;
104 V2OUTb <= '0';
105 else
106 V2OUTb <= '1', '0' after 10 ps;
107 V2OUTt <= '0';
108 end if;
109 V3OUT <= '0';
110 V1OUT <= '0';
111

112 when 2 => V2OUTt <= '1', '0' after 10 ps;
113 V2OUTb <= '1', '0' after 10 ps;
114 V3OUT <= '0';
115 V1OUT <= '0';
116 when others => V3OUT <= '0';
117 V1OUT <= '0';
118 V2OUTt <= '0';
119 V2OUTb <= '0';
120 end case;
121 totSk := 0;
122 skT := '0';
123 skM := '0';
124 skB := '0';
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125 else
126 V3OUT <= '0';
127 V1OUT <= '0';
128 V2OUTt <= '0';
129 V2OUTb <= '0';
130 totSk := 0;
131 skT := '0';
132 skM := '0';
133 skB := '0';
134 end if;
135 else
136 V3OUT <= '0';
137 V1OUT <= '0';
138 V2OUTt <= '0';
139 V2OUTb <= '0';
140 end if;
141

142 if(CURRENT /= 0.0 and out_en='1') then
143 out_en := '0';
144 if (muxOUT_var='1') then
145 muxOUT_var := '0';
146 muxOUT <= '1', '0' after 10 ps;
147 else
148 muxOUT <= '0';
149 end if;
150 else
151 muxOUT <= '0';
152 end if;
153

154 end process;
155 end architecture Behavioural;

C.1.9.2. Result/Stored element multiplexer

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity mux2 is
10 port( inR, inL: in std_logic; --Right=result, Left=stored value
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11 CURRENT: in real;
12 CURRENT_Vst, CURRENT_Vres: in real;
13 selection: in std_logic; --'1'=result, '0'=stored value
14 muxOUT, VstOUT, VresOUT: out std_logic);
15 end entity mux2;
16

17 architecture Behavioural of mux2 is
18 begin
19 process (inR, inL, selection, CURRENT, CURRENT_Vst, CURRENT_Vres)
20 variable skR, skL: std_logic;
21 variable out_en, muxOUT_var: std_logic;
22 variable totSk: integer := 0;
23 begin
24 if (inR'event and inR='1') then
25 skR := '1';
26 totSk := totSk+1;
27 end if;
28 if (inL'event and inL='1') then
29 skL := '1';
30 totSk := totSk+1;
31 end if;
32

33 if (CURRENT_Vst /= 0.0 or CURRENT_Vres /= 0.0) then --CURRENT /= 0.0
34 if (selection = '1') then --result is desired
35 if (skR = '1') then
36 muxOUT_var := '1';
37 out_en := '1';
38 totSk := totSk-1;
39 else
40 muxOUT_var := '0';
41 out_en := '1';
42 end if;
43 case totSk is
44 when 1 => VstOUT <= '1', '0' after 10 ps;
45 VresOUT <= '0';
46 when others => VstOUT <= '0';
47 VresOUT <= '0';
48 end case;
49 totSk := 0;
50 skR := '0';
51 skL := '0';
52 else --stored value is desired: selection='0'
53 if (skL = '1') then
54 muxOUT_var := '1';
55 out_en := '1';
56 totSk := totSk-1;
57 else
58 muxOUT_var := '0';
59 out_en := '1';

330



C.1 – Shared components

60 end if;
61 case totSk is
62 when 1 => VresOUT <= '1', '0' after 10 ps;
63 VstOUT <= '0';
64 when others => VresOUT <= '0';
65 VstOUT <= '0';
66 end case;
67 totSk := 0;
68 skR := '0';
69 skL := '0';
70 end if;
71 else
72 VresOUT <= '0';
73 VstOUT <= '0';
74 end if;
75

76 if(CURRENT /= 0.0 and out_en='1') then
77 out_en := '0';
78 if (muxOUT_var='1') then
79 muxOUT_var := '0';
80 muxOUT <= '1', '0' after 10 ps;
81 else
82 muxOUT <= '0';
83 end if;
84 else
85 muxOUT <= '0';
86 end if;
87

88 end process;
89 end architecture Behavioural;

C.1.10. SRlatch

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SRlatch is
8 port( SET: in std_logic;
9 RST: in std_logic;

10 Q: out std_logic
11 );
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12 end entity SRlatch;
13

14 architecture Behaviour of SRlatch is
15

16 begin
17 latch: process (SET, RST)
18 begin
19 if (RST='1') then
20 Q <= '0';
21 elsif(SET'event and SET='1') then
22 Q <= '1';
23 end if;
24 end process latch;
25

26 end architecture Behaviour;

C.2. Cell00
C.2.1. Datapath

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity CELL_00 is
10 port( IN_CELL, RESET_n: in std_logic;
11 CURRENTclk: in real;
12

13 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop: in
std_logic;

↪→

↪→

↪→

14 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
15 CTRL_mux1: in std_logic_vector(1 downto 0);
16 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
17 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
18 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
19
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20 CELL_OUT_MTJ_CONV12_out, CELL_OUT_MTJ_CONV11_out, CELL_OUT_DEV2_out,
CELL_OUT_CROSS4_Aout, CELL_OUT_TANKT_out: out std_logic↪→

21 );
22 end entity CELL_00;
23

24 architecture Structure of CELL_00 is
25 component SKYRMIONNOTCH is
26 port( INPUT : in std_logic;
27 CURRENT : in real;
28 OUTPUT : out std_logic);
29 end component SKYRMIONNOTCH;
30

31 component SKYRMIONNOTCHseq is
32 generic (N: integer := 5);
33 port( INPUT: in std_logic;
34 CURRENT: in real;
35 OUTPUT: out std_logic);
36 end component SKYRMIONNOTCHseq;
37

38 component SKYRMIONJOIN is
39 port( A : in std_logic;
40 B : in std_logic;
41 CURRENT : in real;
42 OUTPUT : out std_logic);
43 end component SKYRMIONJOIN;
44

45 component SKYRMIONH is
46 port ( INPUTA : in std_logic;
47 INPUTB : in std_logic;
48 CURRENT : in real;
49 OUTPUTAND : out std_logic;
50 OUTPUTOR : out std_logic);
51 end component SKYRMIONH;
52

53 component SKYRMIONFULLADDER is
54 port( A : in std_logic;
55 B : in std_logic;
56 CIN1 : in std_logic;
57 CIN2 : in std_logic;
58 ONE1 : in std_logic;
59 ONE2 : in std_logic;
60 CURRENT : in real;
61 CTRL1 : out std_logic;
62 SUM : out std_logic;
63 COUT1 : out std_logic;
64 COUT2 : out std_logic;
65 CTRL2 : out std_logic);
66 end component SKYRMIONFULLADDER;
67
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68 component voltage_genH is
69 port( CTRL: in std_logic;
70 CURRENT: out real);
71 end component voltage_genH;
72

73 component voltage_genL is
74 port( CTRL: in std_logic;
75 CURRENT: out real);
76 end component voltage_genL;
77

78 component vclock_gen is
79 port( CTRL: in std_logic;
80 CURRENTclk: in real;
81 CURRENT: out real);
82 end component vclock_gen;
83

84 component skyrmionDUPLICATE is
85 port( IN_SK: in std_logic;
86 CURRENT: in real;
87 OUT_SK_TOP: out std_logic;
88 OUT_SK_BOTTOM: out std_logic);
89 end component skyrmionDUPLICATE;
90

91 component skyrmionMERGE is
92 port( IN_SK_TOP: in std_logic;
93 IN_SK_BOTTOM: in std_logic;
94 CURRENT: in real;
95 OUT_SK: out std_logic);
96 end component skyrmionMERGE;
97

98 component SKYRMIONCROSS_Magn is
99 port( A: in std_logic;

100 B: in std_logic;
101 CURRENTA: in real;
102 CURRENTB: in real;
103 Aout: out std_logic;
104 Bout: out std_logic);
105 end component SKYRMIONCROSS_Magn;
106

107 component SKYRMIONCROSS_noMagn is
108 port( A: in std_logic;
109 B: in std_logic;
110 CURRENTA: in real;
111 CURRENTB: in real;
112 Aout: out std_logic;
113 Bout: out std_logic);
114 end component SKYRMIONCROSS_noMagn;
115

116 component skyrmionDEVIATION is
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117 port( IN_SK: in std_logic;
118 CURRENT: in real;
119 CURRENTDEV: in real;
120 OUT_SK: out std_logic;
121 OUT_SK_DEV: out std_logic);
122 end component skyrmionDEVIATION;
123

124 component SRlatch is
125 port( SET: in std_logic;
126 RST: in std_logic;
127 Q: buffer std_logic);
128 end component SRlatch;
129

130 component MTJ_R is
131 port( IN_SK: in std_logic;
132 CURRENT: in real;
133 OUT_SIGN: out std_logic);
134 end component MTJ_R;
135

136 component MTJ_W is
137 port( CTRL: in std_logic;
138 OUT_SK: out std_logic);
139 end component MTJ_W;
140

141 component MTJ_CONV is
142 port( IN_SK: in std_logic;
143 CURRENT: in real;
144 OUT_SK: out std_logic);
145 end component MTJ_CONV;
146

147 component tank_bottom is
148 port( IN1, IN2, IN3, IN4, IN5, IN6, IN7: in std_logic; --from left to right
149 CURRENT: in real;
150 tankOUT1, tankOUT2, tankOUT3: out std_logic); --priority order: from

right to left↪→

151 end component tank_bottom;
152

153 component tank_top is
154 port( IN1, IN2, IN3: in std_logic; --from right to left
155 CURRENT: in real;
156 tankOUT: out std_logic);
157 end component tank_top;
158

159 component mux1 is
160 port( inT, inM, inB: in std_logic;
161 CURRENT: in real;
162 CURRENT_V1, CURRENT_V2, CURRENT_V3: in real;
163 selection: in std_logic_vector(1 downto 0);
164 muxOUT, V1OUT, V3OUT, V2OUTt, V2OUTb: out std_logic);
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165 end component mux1;
166

167 component mux2 is
168 port( inR, inL: in std_logic; --Right=result, Left=stored value
169 CURRENT: in real;
170 CURRENT_Vst, CURRENT_Vres: in real;
171 selection: in std_logic; --'1'=result, '0'=stored value
172 muxOUT, VstOUT, VresOUT: out std_logic);
173 end component mux2;
174

175

176

177 signal CURRENT_Vstart, CURRENT_Vmove1, CURRENT_Vop, CURRENT_Vmove2,
CURRENT_Vmove2C, CURRENT_Vmove3, CURRENT_MUX1_V1, CURRENT_MUX1_V2,
CURRENT_MUX1_V3, CURRENT_Vmovecout, CURRENT_Vtankbot, CURRENT_Vnoext,
CURRENT_Vmoveres, CURRENT_Vtanktop, CURRENT_Vmove4, CURRENT_Vnewdata,
CURRENT_Vdetect, CURRENT_Vrout, CURRENT_Vsout: real;

↪→

↪→

↪→

↪→

178

179 signal MEM_out: std_logic;
180 signal x2_1_outtop, x2_1_outbottom, x2_2_outtop, x2_2_outbottom, x2_3_outtop,

x2_3_outbottom, x2_4_outtop, x2_4_outbottom, x2_5_outright, x2_5_outleft,
x1_1_out: std_logic;

↪→

↪→

181 signal CROSSM1_outA, CROSSM1_outB, CROSSM2_outA, CROSSM2_outB, CROSSM3_outA,
CROSSM3_outB: std_logic;↪→

182 signal CROSS11_Aout, CROSS11_Bout, CROSS12_Aout, CROSS12_Bout, CROSS21_Aout,
CROSS21_Bout, CROSS22_Aout, CROSS22_Bout, CROSS4_Aout, CROSS4_Bout:
std_logic;

↪→

↪→

183 signal SYNC_LOG_TOP_out, SYNC_LOG_BOT_out, AND_out, OR_out, SKEW_OR_out,
SKEW_AND_out: std_logic;↪→

184 signal FA_CTRL1_out, FA_CTRL2_out, FA_COUT1_out, FA_COUT2_out, FA_SUM_out:
std_logic;↪→

185 signal RST_SR_MTJR1, RST_SR_MTJR2: std_logic;
186 signal MTJ_R1_out, MTJ_R2_out: std_logic;
187 signal MTJ_W1_out, MTJ_W2_out, MTJ_W3_out: std_logic;
188 signal MTJ_CONV1_out, MTJ_CONV2_out, MTJ_CONV3_out, MTJ_CONV4_out,

MTJ_CONV5_out, MTJ_CONV6_out, MTJ_CONV7_out, MTJ_CONV8_out, MTJ_CONV9_out,
MTJ_CONV10_out, MTJ_CONV11_out, MTJ_CONV12_out: std_logic;

↪→

↪→

189 signal MUX1_CTRL_V1, MUX1_CTRL_V2, MUX1_CTRL_V3: std_logic;
190 signal MUX1_out, MUX1_V1out, MUX1_V3out, MUX1_V2Tout, MUX1_V2Bout: std_logic;
191 signal CTRL_mux2, MUX2_Vstout, MUX2_Vresout, MUX2_out: std_logic;
192 signal JOIN1_out, JOIN2_out, JOIN3_out: std_logic;
193 signal DEV1_out, DEV1_devout, DEV2_out, DEV2_devout: std_logic;
194 signal TANKB_out1, TANKB_out2, TANKB_out3: std_logic;
195 signal TANKT_out: std_logic;
196

197

198 begin
199 Vstart: voltage_genH port map (CTRL => CTRL_Vstart, CURRENT =>

CURRENT_Vstart);↪→
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200 MEM: SKYRMIONNOTCH port map (INPUT => IN_CELL, CURRENT => CURRENT_Vstart,
OUTPUT => MEM_out);↪→

201 Vmove1: voltage_genL port map (CTRL => CTRL_Vmove1, CURRENT =>
CURRENT_Vmove1);↪→

202 x2_1: skyrmionDUPLICATE port map (IN_SK => MEM_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_1_outtop, OUT_SK_BOTTOM =>
x2_1_outbottom);

↪→

↪→

203 x2_2: skyrmionDUPLICATE port map (IN_SK => x2_1_outtop, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_2_outtop, OUT_SK_BOTTOM =>
x2_2_outbottom);

↪→

↪→

204

205 CROSSM1: SKYRMIONCROSS_Magn port map (A => x2_2_outbottom, B =>
x2_3_outtop, CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout
=> CROSSM1_outA, Bout => CROSSM1_outB);

↪→

↪→

206 Vop: vclock_gen port map (CTRL => CTRL_Vop, CURRENTclk => CURRENTclk,
CURRENT => CURRENT_Vop);↪→

207 SYNCNET_LOG_TOP: SKYRMIONNOTCH port map (INPUT => x2_2_outtop, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_TOP_out);↪→

208 SYNCNET_LOG_BOT: SKYRMIONNOTCH port map (INPUT => CROSSM1_outB, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_BOT_out);↪→

209 LOGIC: SKYRMIONH port map (INPUTA => SYNC_LOG_TOP_out, INPUTB =>
SYNC_LOG_BOT_out, CURRENT => CURRENT_Vop, OUTPUTAND => AND_OUT, OUTPUTOR
=> OR_OUT);

↪→

↪→

210 SKEW_OR: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT => OR_OUT,
CURRENT => CURRENT_Vop, OUTPUT => SKEW_OR_out);↪→

211 SKEW_AND: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT =>
AND_OUT, CURRENT => CURRENT_Vop, OUTPUT => SKEW_AND_out);↪→

212 FA: SKYRMIONFULLADDER port map (A => CROSSM1_outA, B =>
x2_3_outbottom, CIN1 => '0', CIN2 => '0', ONE1 => CROSSM2_outB, ONE2 =>
CROSSM3_outB, CURRENT => CURRENT_Vop, CTRL1 => FA_CTRL1_out, SUM =>
FA_SUM_out, COUT1 => FA_COUT1_out, COUT2 => FA_COUT2_out, CTRL2 =>
FA_CTRL2_out);

↪→

↪→

↪→

↪→

213

214 MTJ_CONV_1: MTJ_CONV port map (IN_SK => SKEW_OR_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV1_out);↪→

215 MTJ_CONV_2: MTJ_CONV port map (IN_SK => SKEW_AND_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV2_out);↪→

216 MTJ_CONV_3: MTJ_CONV port map (IN_SK => FA_SUM_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV3_out);↪→

217 MTJ_CONV_4: MTJ_CONV port map (IN_SK => FA_COUT1_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV4_out);↪→

218 MTJ_CONV_5: MTJ_CONV port map (IN_SK => FA_COUT2_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV5_out);↪→

219 Vmove2: voltage_genL port map (CTRL => CTRL_Vmove2, CURRENT =>
CURRENT_Vmove2);↪→

220 Vmove2C: voltage_genL port map (CTRL => CTRL_Vmove2C, CURRENT =>
CURRENT_Vmove2C);↪→

221

222 MUX1_CTRL_V1 <= CTRL_mux1(0) and (not CTRL_mux1(1));
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223 MUX1_CTRL_V2 <= CTRL_mux1(1) and (not CTRL_mux1(0));
224 MUX1_CTRL_V3 <= CTRL_mux1(1) and CTRL_mux1(0);
225 Vmux1_1: voltage_genL port map (CTRL => MUX1_CTRL_V1, CURRENT =>

CURRENT_MUX1_V1);↪→

226 Vmux1_2: voltage_genL port map (CTRL => MUX1_CTRL_V2, CURRENT =>
CURRENT_MUX1_V2);↪→

227 Vmux1_3: voltage_genL port map (CTRL => MUX1_CTRL_V3, CURRENT =>
CURRENT_MUX1_V3);↪→

228

229 MUX1_COM: mux1 port map (inT => MTJ_CONV1_out, inM => MTJ_CONV2_out, inB
=> MTJ_CONV3_out, CURRENT => CURRENT_Vmove2, CURRENT_V1 =>
CURRENT_MUX1_V1, CURRENT_V2 => CURRENT_MUX1_V2, CURRENT_V3 =>
CURRENT_MUX1_V3, selection => CTRL_mux1, muxOUT => MUX1_out, V1OUT =>
MUX1_V1out, V3OUT => MUX1_V3out, V2OUTt => MUX1_V2Tout, V2OUTb =>
MUX1_V2Bout);

↪→

↪→

↪→

↪→

↪→

230 Vmove3: voltage_genL port map (CTRL => CTRL_Vmove3, CURRENT =>
CURRENT_Vmove3);↪→

231 x2_4: skyrmionDUPLICATE port map (IN_SK => MUX1_out, CURRENT =>
CURRENT_Vmove3, OUT_SK_TOP => x2_4_outtop, OUT_SK_BOTTOM =>
x2_4_outbottom);

↪→

↪→

232 MTJ_CONV_7: MTJ_CONV port map (IN_SK => x2_4_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV7_out);↪→

233

234 CROSS11: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV4_out, B => MUX1_V1out,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1, Aout =>
CROSS11_Aout, Bout => CROSS11_Bout);

↪→

↪→

235 CROSS12: SKYRMIONCROSS_noMagn port map (A => CROSS11_Aout, B => MUX1_V2Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS12_Aout, Bout => CROSS12_Bout);

↪→

↪→

236 CROSS21: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV5_out, B =>
CROSS11_Bout, CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1,
Aout => CROSS21_Aout, Bout => CROSS21_Bout);

↪→

↪→

237 CROSS22: SKYRMIONCROSS_noMagn port map (A => CROSS21_Aout, B => CROSS12_Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS22_Aout, Bout => CROSS22_Bout);

↪→

↪→

238

239 Vmovecout: voltage_genL port map (CTRL => CTRL_Vmovecout, CURRENT =>
CURRENT_Vmovecout);↪→

240 x1_1: skyrmionMERGE port map (IN_SK_TOP => CROSS12_Aout, IN_SK_BOTTOM =>
CROSS22_Aout, CURRENT => CURRENT_Vmovecout, OUT_SK => x1_1_out);↪→

241 MTJ_CONV_6: MTJ_CONV port map (IN_SK => x1_1_out, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV6_out);↪→

242 CROSS4: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV6_out, B =>
MTJ_CONV7_out, CURRENTA => CURRENT_Vmovecout, CURRENTB => CURRENT_Vmove3,
Aout => CROSS4_Aout, Bout => CROSS4_Bout);

↪→

↪→

243

244 Vtankbot: vclock_gen port map (CTRL => CTRL_Vtankbot, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtankbot);↪→

245
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246 TANK_BOT: tank_bottom port map (IN1 => FA_CTRL2_out, IN2 => FA_CTRL1_out, IN3
=> CROSS21_Bout, IN4 => CROSS22_Bout, IN5 => DEV1_devout, IN6 =>
MUX2_Vresout, IN7 => MUX2_Vstout, CURRENT => CURRENT_Vtankbot, tankOUT1 =>
TANKB_out1, tankOUT2 => TANKB_out2, tankOUT3 => TANKB_out3);

↪→

↪→

↪→

247

248 MTJ_W_1: MTJ_W port map (CTRL => CTRL_MTJ_W1, OUT_SK => MTJ_W1_out);
249 MTJ_W_2: MTJ_W port map (CTRL => CTRL_MTJ_W2, OUT_SK => MTJ_W2_out);
250 JOIN2: SKYRMIONJOIN port map (A => MTJ_W1_out, B => TANKB_out2, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN2_out);↪→

251 JOIN3: SKYRMIONJOIN port map (A => MTJ_W2_out, B => TANKB_out1, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN3_out);↪→

252 CROSSM2: SKYRMIONCROSS_Magn port map (A => TANKB_out1, B => JOIN2_out,
CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM2_outA, Bout => CROSSM2_outB);

↪→

↪→

253 CROSSM3: SKYRMIONCROSS_Magn port map (A => CROSSM2_outA, B => JOIN3_out,
CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM3_outA, Bout => CROSSM3_outB);

↪→

↪→

254

255 MTJ_R_1: MTJ_R port map (IN_SK => CROSSM3_outA, CURRENT => CURRENT_Vmove1,
OUT_SIGN => MTJ_R1_out);↪→

256 RST_SR_MTJR1 <= ACK_DETECT_MTJ_R1 or (not RESET_n);
257 SR_MTJR1: SRlatch port map (SET => MTJ_R1_out, RST => RST_SR_MTJR1, Q =>

SR_MTJR1_out);↪→

258 MTJ_CONV_8: MTJ_CONV port map (IN_SK => CROSSM3_outA, CURRENT =>
CURRENT_Vmove1, OUT_SK => MTJ_CONV8_out);↪→

259 Vnoext: voltage_genL port map (CTRL => CTRL_Vnoext, CURRENT =>
CURRENT_Vnoext);↪→

260 DEV1: skyrmionDEVIATION port map (IN_SK => MTJ_CONV8_out, CURRENT =>
CURRENT_Vmove1, CURRENTDEV => CURRENT_Vnoext, OUT_SK => DEV1_out,
OUT_SK_DEV => DEV1_devout);

↪→

↪→

261 MTJ_W_3: MTJ_W port map (CTRL => CTRL_MTJ_W3, OUT_SK => MTJ_W3_out);
262 JOIN1: SKYRMIONJOIN port map (A => MTJ_W3_out, B => DEV1_out, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN1_out);↪→

263 x2_3: skyrmionDUPLICATE port map (IN_SK => JOIN1_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_3_outtop, OUT_SK_BOTTOM =>
x2_3_outbottom);

↪→

↪→

264

265 MTJ_CONV_10: MTJ_CONV port map (IN_SK => x2_1_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV10_out);↪→

266 CTRL_mux2 <= CTRL_Vrout;
267 Vmux2_Vsout: voltage_genL port map (CTRL => CTRL_Vsout, CURRENT =>

CURRENT_Vsout);↪→

268 Vmux2_Vrout: voltage_genL port map (CTRL => CTRL_Vrout, CURRENT =>
CURRENT_Vrout);↪→

269 MUX2_COM: mux2 port map (inR => CROSS4_Bout, inL => MTJ_CONV10_out,
CURRENT => CURRENT_Vmove3, CURRENT_Vst => CURRENT_Vsout, CURRENT_Vres =>
CURRENT_Vrout, selection => CTRL_mux2, muxOUT => MUX2_out, VstOUT =>
MUX2_Vstout, VresOUT => MUX2_Vresout);

↪→

↪→

↪→

270
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271 Vmoveres: voltage_genL port map (CTRL => CTRL_Vmoveres, CURRENT =>
CURRENT_Vmoveres);↪→

272 x2_5: skyrmionDUPLICATE port map (IN_SK => MUX2_out, CURRENT =>
CURRENT_Vmoveres, OUT_SK_TOP => x2_5_outright, OUT_SK_BOTTOM =>
x2_5_outleft);

↪→

↪→

273 MTJ_CONV_11: MTJ_CONV port map (IN_SK => x2_5_outright, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV11_out);↪→

274 MTJ_CONV_12: MTJ_CONV port map (IN_SK => x2_5_outleft, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV12_out);↪→

275

276 Vtanktop: vclock_gen port map (CTRL => CTRL_Vtanktop, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtanktop);↪→

277 TANK_TOP_C: tank_top port map (IN1 => MUX1_V2Tout, IN2 => MUX1_V3out, IN3 =>
DEV2_devout, CURRENT => CURRENT_Vtanktop, tankOUT => TANKT_out);↪→

278 MTJ_CONV_9: MTJ_CONV port map (IN_SK => x2_4_outtop, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV9_out);↪→

279 Vmove4: voltage_genL port map (CTRL => CTRL_Vmove4, CURRENT =>
CURRENT_Vmove4);↪→

280 Vnewdata: voltage_genL port map (CTRL => CTRL_Vnewdata, CURRENT =>
CURRENT_Vnewdata);↪→

281 DEV2: skyrmionDEVIATION port map (IN_SK => MTJ_CONV9_out, CURRENT =>
CURRENT_Vmove4, CURRENTDEV => CURRENT_Vnewdata, OUT_SK => DEV2_out,
OUT_SK_DEV => DEV2_devout);

↪→

↪→

282 Vdetect: voltage_genL port map (CTRL => CTRL_Vdetect, CURRENT =>
CURRENT_Vdetect);↪→

283 MTJ_R_2: MTJ_R port map (IN_SK => TANKT_out, CURRENT => CURRENT_Vdetect,
OUT_SIGN => MTJ_R2_out);↪→

284 RST_SR_MTJR2 <= ACK_DETECT_MTJ_R2 or (not RESET_n);
285 SR_MTJR2: SRlatch port map (SET => MTJ_R2_out, RST => RST_SR_MTJR2, Q =>

SR_MTJR2_out);↪→

286

287 CELL_OUT_MTJ_CONV12_out <= MTJ_CONV12_out;
288 CELL_OUT_MTJ_CONV11_out <= MTJ_CONV11_out;
289 CELL_OUT_DEV2_out <= DEV2_out;
290 CELL_OUT_CROSS4_Aout <= CROSS4_Aout;
291 CELL_OUT_TANKT_out <= TANKT_out;
292

293 CELL_OUT_CURRENT_Vmoveres <= CURRENT_Vmoveres;
294 CELL_OUT_CURRENT_Vmovecout <= CURRENT_Vmovecout;
295

296

297 end Structure;
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C.2.2. FSM

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity FSM_CELL_00 is
10 port( CURRENTclk: in real;
11 RESET_n: in std_logic;
12

13 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop: out
std_logic;

↪→

↪→

↪→

14 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
15 CTRL_mux1: out std_logic_vector(1 downto 0);
16 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
17 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
18

19 START, ACK_RES_AVAILABLE: in std_logic;
20 DES_EXTIN_00, DES_OUT_00, DES_STORE_00, DES_NEWDATA_00: in std_logic;
21 DES_RES_00: in std_logic_vector(1 downto 0);
22 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→

23 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic
24 );
25 end entity FSM_CELL_00;
26

27 architecture Behaviour of FSM_CELL_00 is
28

29 type state_type is (
30 reset, S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
31 S4_1, S4_2, S4_3, S4_4, S4_5, S4_6,
32 S11, S12, S13, S14, S15, S16, S17, S18, S19, S20,
33 S21, S22, S23, S24, S24_1, S25, S26, S27, S28, S29, S30,
34 S31, S32, S33, S34, S35, S36
35 );
36

37 signal pstate, nstate: state_type;
38

39 begin
40

41 state_register: process (CURRENTclk)
42 begin
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43 if (CURRENTclk'event and CURRENTclk=CURRENT_HIGH) then
44 if (RESET_n = '0') then
45 pstate <= reset;
46 else
47 pstate <= nstate;
48 end if;
49 end if;
50 end process state_register;
51

52 state_transition: process (pstate, CURRENTclk)
53 begin
54 case pstate is
55 when reset => nstate <= S0;
56 when S0 => if (START='0') then nstate <= S0; else if (FIRST_RUN='1')

then nstate <= S1; else nstate <= S29; end if; end if;↪→

57 when S1 => if(DES_EXTIN_00='1') then nstate <= S2; else nstate <= S3;
end if;↪→

58 when S2 => nstate <= S4;
59 when S3 => nstate <= S4;
60 when S4 => nstate <= S4_1;
61 when S4_1 => nstate <= S4_2;
62 when S4_2 => nstate <= S4_3;
63 when S4_3 => nstate <= S4_4;
64 when S4_4 => nstate <= S4_5;
65 when S4_5 => nstate <= S4_6;
66 when S4_6 => nstate <= S5;
67 when S5 => nstate <= S6;
68 when S6 => if(DES_RES_00="10") then nstate <= S7; elsif(DES_RES_00="01")

then nstate <= S8; else nstate <= S9; end if;↪→

69 when S7 => nstate <= S10;
70 when S8 => nstate <= S10;
71 when S9 => nstate <= S10;
72 when S10 => nstate <= S11;
73 when S11 => if(DES_OUT_00='1') then nstate <= S12; else nstate <= S13;

end if;↪→

74 when S12 => nstate <= S14;
75 when S13 => nstate <= S14;
76 when S14 => nstate <= S15;
77 when S15 => if(DES_STORE_00='1') then nstate <= S16; else nstate <= S17;

end if;↪→

78 when S16 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S16; else
nstate <= S18; end if;↪→

79 when S17 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S17; else
if(DES_NEWDATA_00='1') then nstate <= S19; else nstate <= S20; end if;
end if;

↪→

↪→

80 when S18 => nstate <= S22;
81 when S19 => nstate <= S21;
82 when S20 => nstate <= S24;
83 when S21 => nstate <= S23;
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84 when S22 => if(ACK_RES_AVAILABLE='0') then nstate <= S22; else nstate <=
S26; end if;↪→

85 when S23 => if(ACK_RES_AVAILABLE='0') then nstate <= S23; else nstate <=
S25; end if;↪→

86 when S24 => if(ACK_RES_AVAILABLE='0') then nstate <= S24; else nstate <=
S28; end if;↪→

87 when S25 => if(SR_MTJR2_out='0') then nstate <= S27; else nstate <= S28;
end if;↪→

88 when S26 => if (START='0') then nstate <= S26; else nstate <= S29; end
if;↪→

89 when S27 => if (START='0') then nstate <= S27; else nstate <= S29; end
if;↪→

90 when S28 => if (START='0') then nstate <= S28; else nstate <= S29; end
if;↪→

91 when S29 => nstate <= S30;
92 when S30 => if(DES_EXTIN_00='0') then nstate <= S31; else nstate <= S32;

end if;↪→

93 when S31 => if(SR_MTJR1_out='0') then nstate <= S35; else nstate <= S33;
end if;↪→

94 when S32 => if(SR_MTJR1_out='1') then nstate <= S36; else nstate <= S34;
end if;↪→

95 when S33 => nstate <= S35;
96 when S34 => nstate <= S36;
97 when S35 => nstate <= S4;
98 when S36 => nstate <= S4;
99 when others => nstate <= S0;

100 end case;
101 end process state_transition;
102

103 output: process (pstate)
104 begin
105 CTRL_Vstart <= '0';
106 CTRL_Vmove1 <= '0';
107 CTRL_Vop <= '0';
108 CTRL_Vmove2 <= '0';
109 CTRL_Vmove2C <= '0';
110 CTRL_Vmove3 <= '0';
111 CTRL_Vmovecout <= '0';
112 CTRL_Vtankbot <= '0';
113 CTRL_Vnoext <= '0';
114 CTRL_Vmoveres <= '0';
115 CTRL_Vmove4 <= '0';
116 CTRL_Vnewdata <= '0';
117 CTRL_Vdetect <= '0';
118 CTRL_Vrout <= '0';
119 CTRL_Vsout <= '0';
120 CTRL_Vtanktop <= '0';
121 CTRL_MTJ_W1 <= '0';
122 CTRL_MTJ_W2 <= '0';
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123 CTRL_MTJ_W3 <= '0';
124 CTRL_mux1 <= "00";
125 ACK_DETECT_MTJ_R1 <= '0';
126 ACK_DETECT_MTJ_R2 <= '0';
127 RES_AVAILABLE <= '0';
128 REQUEST_NEW_START <= '0';
129 REQUEST_NEW_START_W <= '0';
130 REQUEST_NEW_STORE <= '0';
131

132 case pstate is
133 when S0 => CTRL_Vstart <= '0';
134 CTRL_Vmove1 <= '0';
135 CTRL_Vop <= '0';
136 CTRL_Vmove2 <= '0';
137 CTRL_Vmove2C <= '0';
138 CTRL_Vmove3 <= '0';
139 CTRL_Vmovecout <= '0';
140 CTRL_Vtankbot <= '0';
141 CTRL_Vnoext <= '0';
142 CTRL_Vmoveres <= '0';
143 CTRL_Vmove4 <= '0';
144 CTRL_Vnewdata <= '0';
145 CTRL_Vdetect <= '0';
146 CTRL_Vrout <= '0';
147 CTRL_Vsout <= '0';
148 CTRL_Vtanktop <= '0';
149 CTRL_MTJ_W1 <= '0';
150 CTRL_MTJ_W2 <= '0';
151 CTRL_MTJ_W3 <= '0';
152 CTRL_mux1 <= "00";
153 ACK_DETECT_MTJ_R1 <= '0';
154 ACK_DETECT_MTJ_R2 <= '0';
155 RES_AVAILABLE <= '0';
156 REQUEST_NEW_START <= '0';
157 REQUEST_NEW_START_W <= '0';
158 REQUEST_NEW_STORE <= '0';
159 when S1 => CTRL_Vstart <= '1';
160 when S2 => CTRL_Vmove1 <= '1';
161 CTRL_MTJ_W1 <= '1';
162 CTRL_MTJ_W2 <= '1';
163 CTRL_MTJ_W3 <= '1';
164 when S3 => CTRL_Vmove1 <= '1';
165 CTRL_MTJ_W1 <= '1';
166 CTRL_MTJ_W2 <= '1';
167 when S4 => CTRL_Vop <= '1';
168 when S4_1 => CTRL_Vop <= '1';
169 when S4_2 => CTRL_Vop <= '1';
170 when S4_3 => CTRL_Vop <= '1';
171 when S4_4 => CTRL_Vop <= '1';
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172 when S4_5 => CTRL_Vop <= '1';
173 when S4_6 => CTRL_Vop <= '1';
174 when S5 => CTRL_Vmove2 <= '1';
175 CTRL_Vmove2C <= '1';
176 when S6 => CTRL_Vmove2C <= '1';
177 when S7 => CTRL_mux1 <= "10";
178 when S8 => CTRL_mux1 <= "01";
179 when S9 => CTRL_mux1 <= "11";
180 when S10 => CTRL_Vmove2 <= '1';
181 when S11 => CTRL_Vmove3 <= '1';
182 when S12 => CTRL_Vrout <= '1';
183 when S13 => CTRL_Vsout <= '1';
184 when S14 => CTRL_Vmove3 <= '1';
185 when S15 => CTRL_Vmove4 <= '1', '0' after CLOCK_PERIOD/2;
186 when S16 => CTRL_Vmove4 <= '1';
187 when S17 => CTRL_Vnewdata <= '1';
188 when S18 => CTRL_Vmoveres <= '1';
189 CTRL_Vmovecout <= '1';
190 when S19 => CTRL_Vtanktop <= '1';
191 CTRL_Vmoveres <= '1';
192 CTRL_Vmovecout <= '1';
193 when S20 => CTRL_Vmoveres <= '1';
194 CTRL_Vmovecout <= '1';
195 when S21 => CTRL_Vtanktop <= '1';
196 when S22 => RES_AVAILABLE <= '1';
197 when S23 => RES_AVAILABLE <= '1';
198 when S24 => RES_AVAILABLE <= '1';
199 when S25 => CTRL_Vdetect <= '1';
200 when S26 => REQUEST_NEW_STORE <= '1';
201 when S27 => REQUEST_NEW_START_W <= '1';
202 ACK_DETECT_MTJ_R2 <= '1';
203 when S28 => REQUEST_NEW_START <= '1';
204 ACK_DETECT_MTJ_R2 <= '1';
205 when S29 => CTRL_Vstart <= '1';
206 CTRL_Vtankbot <= '1';
207 when S30 => CTRL_Vtankbot <= '1';
208 when S31 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
209 when S32 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
210 when S33 => CTRL_Vnoext <= '1';
211 ACK_DETECT_MTJ_R1 <= '1';
212 when S34 => CTRL_MTJ_W3 <= '1';
213 when S35 => CTRL_Vmove1 <= '1';
214 when S36 => CTRL_Vmove1 <= '1';
215 ACK_DETECT_MTJ_R1 <= '1';
216

217 when others => CTRL_Vstart <= '0';
218 CTRL_Vmove1 <= '0';
219 CTRL_Vop <= '0';
220 CTRL_Vmove2 <= '0';
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221 CTRL_Vmove2C <= '0';
222 CTRL_Vmove3 <= '0';
223 CTRL_Vmovecout <= '0';
224 CTRL_Vtankbot <= '0';
225 CTRL_Vnoext <= '0';
226 CTRL_Vmoveres <= '0';
227 CTRL_Vmove4 <= '0';
228 CTRL_Vnewdata <= '0';
229 CTRL_Vdetect <= '0';
230 CTRL_Vrout <= '0';
231 CTRL_Vsout <= '0';
232 CTRL_Vtanktop <= '0';
233 CTRL_MTJ_W1 <= '0';
234 CTRL_MTJ_W2 <= '0';
235 CTRL_MTJ_W3 <= '0';
236 CTRL_mux1 <= "00";
237 ACK_DETECT_MTJ_R1 <= '0';
238 ACK_DETECT_MTJ_R2 <= '0';
239 RES_AVAILABLE <= '0';
240 REQUEST_NEW_START <= '0';
241 REQUEST_NEW_START_W <= '0';
242 REQUEST_NEW_STORE <= '0';
243 end case;
244 end process output;
245 end Behaviour;

C.3. Cell10
C.3.1. Datapath

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity CELL_X0 is
10 port( IN_CELL, RESET_n: in std_logic;
11 CURRENTclk: in real;
12
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13 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop: in
std_logic;

↪→

↪→

↪→

14 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
15 CTRL_mux1: in std_logic_vector(1 downto 0);
16 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
17 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
18 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
19

20 CELL_OUT_MTJ_CONV12_out, CELL_OUT_CROSS5_Aout, CELL_OUT_DEV2_out,
CELL_OUT_CROSS6_Aout, CELL_OUT_CROSS6_Bout, CELL_OUT_TANKT_out: out
std_logic;

↪→

↪→

21

22 CTRL_Vrestop: in std_logic;
23 TOP_RESULT: in std_logic;
24 TOP_RESULT_CURRENT: in real
25 );
26 end entity CELL_X0;
27

28 architecture Structure of CELL_X0 is
29 component SKYRMIONNOTCH is
30 port( INPUT : in std_logic;
31 CURRENT : in real;
32 OUTPUT : out std_logic);
33 end component SKYRMIONNOTCH;
34

35 component SKYRMIONNOTCHseq is
36 generic (N: integer := 5);
37 port( INPUT: in std_logic;
38 CURRENT: in real;
39 OUTPUT: out std_logic);
40 end component SKYRMIONNOTCHseq;
41

42 component SKYRMIONJOIN is
43 port( A : in std_logic;
44 B : in std_logic;
45 CURRENT : in real;
46 OUTPUT : out std_logic);
47 end component SKYRMIONJOIN;
48

49 component SKYRMIONH is
50 port ( INPUTA : in std_logic;
51 INPUTB : in std_logic;
52 CURRENT : in real;
53 OUTPUTAND : out std_logic;
54 OUTPUTOR : out std_logic);
55 end component SKYRMIONH;
56
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57 component SKYRMIONFULLADDER is
58 port( A : in std_logic;
59 B : in std_logic;
60 CIN1 : in std_logic;
61 CIN2 : in std_logic;
62 ONE1 : in std_logic;
63 ONE2 : in std_logic;
64 CURRENT : in real;
65 CTRL1 : out std_logic;
66 SUM : out std_logic;
67 COUT1 : out std_logic;
68 COUT2 : out std_logic;
69 CTRL2 : out std_logic);
70 end component SKYRMIONFULLADDER;
71

72 component voltage_genH is
73 port( CTRL: in std_logic;
74 CURRENT: out real);
75 end component voltage_genH;
76

77 component voltage_genL is
78 port( CTRL: in std_logic;
79 CURRENT: out real);
80 end component voltage_genL;
81

82 component vclock_gen is
83 port( CTRL: in std_logic;
84 CURRENTclk: in real;
85 CURRENT: out real);
86 end component vclock_gen;
87

88 component skyrmionDUPLICATE is
89 port( IN_SK: in std_logic;
90 CURRENT: in real;
91 OUT_SK_TOP: out std_logic;
92 OUT_SK_BOTTOM: out std_logic);
93 end component skyrmionDUPLICATE;
94

95 component skyrmionMERGE is
96 port( IN_SK_TOP: in std_logic;
97 IN_SK_BOTTOM: in std_logic;
98 CURRENT: in real;
99 OUT_SK: out std_logic);

100 end component skyrmionMERGE;
101

102 component SKYRMIONCROSS_Magn is
103 port( A: in std_logic;
104 B: in std_logic;
105 CURRENTA: in real;
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106 CURRENTB: in real;
107 Aout: out std_logic;
108 Bout: out std_logic);
109 end component SKYRMIONCROSS_Magn;
110

111 component SKYRMIONCROSS_noMagn is
112 port( A: in std_logic;
113 B: in std_logic;
114 CURRENTA: in real;
115 CURRENTB: in real;
116 Aout: out std_logic;
117 Bout: out std_logic);
118 end component SKYRMIONCROSS_noMagn;
119

120 component skyrmionDEVIATION is
121 port( IN_SK: in std_logic;
122 CURRENT: in real;
123 CURRENTDEV: in real;
124 OUT_SK: out std_logic;
125 OUT_SK_DEV: out std_logic);
126 end component skyrmionDEVIATION;
127

128 component SRlatch is
129 port( SET: in std_logic;
130 RST: in std_logic;
131 Q: buffer std_logic);
132 end component SRlatch;
133

134 component MTJ_R is
135 port( IN_SK: in std_logic;
136 CURRENT: in real;
137 OUT_SIGN: out std_logic);
138 end component MTJ_R;
139

140 component MTJ_W is
141 port( CTRL: in std_logic;
142 OUT_SK: out std_logic);
143 end component MTJ_W;
144

145 component MTJ_CONV is
146 port( IN_SK: in std_logic;
147 CURRENT: in real;
148 OUT_SK: out std_logic);
149 end component MTJ_CONV;
150

151 component tank_bottom is
152 port( IN1, IN2, IN3, IN4, IN5, IN6, IN7: in std_logic; --from left to right
153 CURRENT: in real;
154 tankOUT1, tankOUT2, tankOUT3: out std_logic); --priority order: from

right to left↪→
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155 end component tank_bottom;
156

157 component tank_top is
158 port( IN1, IN2, IN3: in std_logic; --from right to left
159 CURRENT: in real;
160 tankOUT: out std_logic);
161 end component tank_top;
162

163 component mux1 is
164 port( inT, inM, inB: in std_logic;
165 CURRENT: in real;
166 CURRENT_V1, CURRENT_V2, CURRENT_V3: in real;
167 selection: in std_logic_vector(1 downto 0);
168 muxOUT, V1OUT, V3OUT, V2OUTt, V2OUTb: out std_logic);
169 end component mux1;
170

171 component mux2 is
172 port( inR, inL: in std_logic; --Right=result, Left=stored value
173 CURRENT: in real;
174 CURRENT_Vst, CURRENT_Vres: in real;
175 selection: in std_logic; --'1'=result, '0'=stored value
176 muxOUT, VstOUT, VresOUT: out std_logic);
177 end component mux2;
178

179 signal CURRENT_Vstart, CURRENT_Vmove1, CURRENT_Vop, CURRENT_Vmove2,
CURRENT_Vmove2C, CURRENT_Vmove3, CURRENT_MUX1_V1, CURRENT_MUX1_V2,
CURRENT_MUX1_V3, CURRENT_Vmovecout, CURRENT_Vtankbot, CURRENT_Vnoext,
CURRENT_Vmoveres, CURRENT_Vtanktop, CURRENT_Vmove4, CURRENT_Vnewdata,
CURRENT_Vdetect, CURRENT_Vrout, CURRENT_Vsout, CURRENT_Vrestop: real;

↪→

↪→

↪→

↪→

180

181 signal MEM_out: std_logic;
182 signal x2_1_outtop, x2_1_outbottom, x2_2_outtop, x2_2_outbottom, x2_3_outtop,

x2_3_outbottom, x2_4_outtop, x2_4_outbottom, x2_5_outright, x2_5_outleft,
x2_6_outtop, x2_6_outbottom, x1_1_out: std_logic;

↪→

↪→

183 signal CROSSM1_outA, CROSSM1_outB, CROSSM2_outA, CROSSM2_outB, CROSSM3_outA,
CROSSM3_outB: std_logic;↪→

184 signal CROSS11_Aout, CROSS11_Bout, CROSS12_Aout, CROSS12_Bout, CROSS21_Aout,
CROSS21_Bout, CROSS22_Aout, CROSS22_Bout, CROSS3_Aout, CROSS3_Bout,
CROSS4_Aout, CROSS4_Bout, CROSS5_Aout, CROSS5_Bout, CROSS6_Aout,
CROSS6_Bout: std_logic;

↪→

↪→

↪→

185 signal SYNC_LOG_TOP_out, SYNC_LOG_BOT_out, AND_out, OR_out, SKEW_OR_out,
SKEW_AND_out: std_logic;↪→

186 signal FA_CTRL1_out, FA_CTRL2_out, FA_COUT1_out, FA_COUT2_out, FA_SUM_out:
std_logic;↪→

187 signal RST_SR_MTJR1, RST_SR_MTJR2: std_logic;
188 signal MTJ_R1_out, MTJ_R2_out: std_logic;
189 signal MTJ_W1_out, MTJ_W2_out, MTJ_W3_out: std_logic;
190 signal MTJ_CONV1_out, MTJ_CONV2_out, MTJ_CONV3_out, MTJ_CONV4_out,

MTJ_CONV5_out, MTJ_CONV6_out, MTJ_CONV7_out, MTJ_CONV8_out, MTJ_CONV9_out,
MTJ_CONV10_out, MTJ_CONV11_out, MTJ_CONV12_out, MTJ_CONV13_out: std_logic;

↪→

↪→
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191 signal MUX1_CTRL_V1, MUX1_CTRL_V2, MUX1_CTRL_V3: std_logic;
192 signal MUX1_out, MUX1_V1out, MUX1_V3out, MUX1_V2Tout, MUX1_V2Bout: std_logic;
193 signal CTRL_mux2, MUX2_Vstout, MUX2_Vresout, MUX2_out: std_logic;
194 signal JOIN1_out, JOIN2_out, JOIN3_out, JOIN5_out, JOIN6_out: std_logic;
195 signal DEV1_out, DEV1_devout, DEV2_out, DEV2_devout, DEV3_out, DEV3_devout:

std_logic;↪→

196 signal TANKB_out1, TANKB_out2, TANKB_out3: std_logic;
197 signal TANKT_out: std_logic;
198

199

200 begin
201 Vstart: voltage_genH port map (CTRL => CTRL_Vstart, CURRENT =>

CURRENT_Vstart);↪→

202 MEM: SKYRMIONNOTCH port map (INPUT => IN_CELL, CURRENT => CURRENT_Vstart,
OUTPUT => MEM_out);↪→

203 Vmove1: voltage_genL port map (CTRL => CTRL_Vmove1, CURRENT =>
CURRENT_Vmove1);↪→

204 x2_1: skyrmionDUPLICATE port map (IN_SK => MEM_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_1_outtop, OUT_SK_BOTTOM =>
x2_1_outbottom);

↪→

↪→

205 x2_2: skyrmionDUPLICATE port map (IN_SK => x2_1_outtop, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_2_outtop, OUT_SK_BOTTOM =>
x2_2_outbottom);

↪→

↪→

206

207 CROSSM1: SKYRMIONCROSS_Magn port map (A => x2_2_outbottom, B =>
x2_3_outtop, CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout
=> CROSSM1_outA, Bout => CROSSM1_outB);

↪→

↪→

208 Vop: vclock_gen port map (CTRL => CTRL_Vop, CURRENTclk => CURRENTclk,
CURRENT => CURRENT_Vop);↪→

209 SYNCNET_LOG_TOP: SKYRMIONNOTCH port map (INPUT => x2_2_outtop, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_TOP_out);↪→

210 SYNCNET_LOG_BOT: SKYRMIONNOTCH port map (INPUT => CROSSM1_outB, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_BOT_out);↪→

211 LOGIC: SKYRMIONH port map (INPUTA => SYNC_LOG_TOP_out, INPUTB =>
SYNC_LOG_BOT_out, CURRENT => CURRENT_Vop, OUTPUTAND => AND_OUT, OUTPUTOR
=> OR_OUT);

↪→

↪→

212 SKEW_OR: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT => OR_OUT,
CURRENT => CURRENT_Vop, OUTPUT => SKEW_OR_out);↪→

213 SKEW_AND: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT =>
AND_OUT, CURRENT => CURRENT_Vop, OUTPUT => SKEW_AND_out);↪→

214 FA: SKYRMIONFULLADDER port map (A => CROSSM1_outA, B =>
x2_3_outbottom, CIN1 => '0', CIN2 => '0', ONE1 => CROSSM2_outB, ONE2 =>
CROSSM3_outB, CURRENT => CURRENT_Vop, CTRL1 => FA_CTRL1_out, SUM =>
FA_SUM_out, COUT1 => FA_COUT1_out, COUT2 => FA_COUT2_out, CTRL2 =>
FA_CTRL2_out);

↪→

↪→

↪→

↪→

215

216 MTJ_CONV_1: MTJ_CONV port map (IN_SK => SKEW_OR_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV1_out);↪→

217 MTJ_CONV_2: MTJ_CONV port map (IN_SK => SKEW_AND_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV2_out);↪→
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218 MTJ_CONV_3: MTJ_CONV port map (IN_SK => FA_SUM_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV3_out);↪→

219 MTJ_CONV_4: MTJ_CONV port map (IN_SK => FA_COUT1_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV4_out);↪→

220 MTJ_CONV_5: MTJ_CONV port map (IN_SK => FA_COUT2_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV5_out);↪→

221 Vmove2: voltage_genL port map (CTRL => CTRL_Vmove2, CURRENT =>
CURRENT_Vmove2);↪→

222 Vmove2C: voltage_genL port map (CTRL => CTRL_Vmove2C, CURRENT =>
CURRENT_Vmove2C);↪→

223

224 MUX1_CTRL_V1 <= CTRL_mux1(0) and (not CTRL_mux1(1));
225 MUX1_CTRL_V2 <= CTRL_mux1(1) and (not CTRL_mux1(0));
226 MUX1_CTRL_V3 <= CTRL_mux1(1) and CTRL_mux1(0);
227 Vmux1_1: voltage_genL port map (CTRL => MUX1_CTRL_V1, CURRENT =>

CURRENT_MUX1_V1);↪→

228 Vmux1_2: voltage_genL port map (CTRL => MUX1_CTRL_V2, CURRENT =>
CURRENT_MUX1_V2);↪→

229 Vmux1_3: voltage_genL port map (CTRL => MUX1_CTRL_V3, CURRENT =>
CURRENT_MUX1_V3);↪→

230

231 MUX1_COM: mux1 port map (inT => MTJ_CONV1_out, inM => MTJ_CONV2_out, inB
=> MTJ_CONV3_out, CURRENT => CURRENT_Vmove2, CURRENT_V1 =>
CURRENT_MUX1_V1, CURRENT_V2 => CURRENT_MUX1_V2, CURRENT_V3 =>
CURRENT_MUX1_V3, selection => CTRL_mux1, muxOUT => MUX1_out, V1OUT =>
MUX1_V1out, V3OUT => MUX1_V3out, V2OUTt => MUX1_V2Tout, V2OUTb =>
MUX1_V2Bout);

↪→

↪→

↪→

↪→

↪→

232 Vmove3: voltage_genL port map (CTRL => CTRL_Vmove3, CURRENT =>
CURRENT_Vmove3);↪→

233 x2_4: skyrmionDUPLICATE port map (IN_SK => MUX1_out, CURRENT =>
CURRENT_Vmove3, OUT_SK_TOP => x2_4_outtop, OUT_SK_BOTTOM =>
x2_4_outbottom);

↪→

↪→

234 MTJ_CONV_7: MTJ_CONV port map (IN_SK => x2_4_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV7_out);↪→

235

236 CROSS11: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV4_out, B => MUX1_V1out,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1, Aout =>
CROSS11_Aout, Bout => CROSS11_Bout);

↪→

↪→

237 CROSS12: SKYRMIONCROSS_noMagn port map (A => CROSS11_Aout, B => MUX1_V2Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS12_Aout, Bout => CROSS12_Bout);

↪→

↪→

238 CROSS21: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV5_out, B =>
CROSS11_Bout, CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1,
Aout => CROSS21_Aout, Bout => CROSS21_Bout);

↪→

↪→

239 CROSS22: SKYRMIONCROSS_noMagn port map (A => CROSS21_Aout, B => CROSS12_Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS22_Aout, Bout => CROSS22_Bout);

↪→

↪→

240

241 Vmovecout: voltage_genL port map (CTRL => CTRL_Vmovecout, CURRENT =>
CURRENT_Vmovecout);↪→
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242 x1_1: skyrmionMERGE port map (IN_SK_TOP => CROSS12_Aout, IN_SK_BOTTOM =>
CROSS22_Aout, CURRENT => CURRENT_Vmovecout, OUT_SK => x1_1_out);↪→

243 MTJ_CONV_6: MTJ_CONV port map (IN_SK => x1_1_out, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV6_out);↪→

244 CROSS4: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV6_out, B =>
MTJ_CONV7_out, CURRENTA => CURRENT_Vmovecout, CURRENTB => CURRENT_Vmove3,
Aout => CROSS4_Aout, Bout => CROSS4_Bout);

↪→

↪→

245 CROSS6: SKYRMIONCROSS_noMagn port map (A => CROSS4_Aout, B => CROSS5_Bout,
CURRENTA => CURRENT_Vmovecout, CURRENTB => CURRENT_Vmoveres, Aout =>
CROSS6_Aout, Bout => CROSS6_Bout);

↪→

↪→

246

247 Vtankbot: vclock_gen port map (CTRL => CTRL_Vtankbot, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtankbot);↪→

248 TANK_BOT: tank_bottom port map (IN1 => FA_CTRL2_out, IN2 => FA_CTRL1_out, IN3
=> CROSS21_Bout, IN4 => CROSS22_Bout, IN5 => JOIN5_out, IN6 =>
MUX2_Vresout, IN7 => MUX2_Vstout, CURRENT => CURRENT_Vtankbot, tankOUT1 =>
TANKB_out1, tankOUT2 => TANKB_out2, tankOUT3 => TANKB_out3);

↪→

↪→

↪→

249

250 MTJ_W_1: MTJ_W port map (CTRL => CTRL_MTJ_W1, OUT_SK => MTJ_W1_out);
251 MTJ_W_2: MTJ_W port map (CTRL => CTRL_MTJ_W2, OUT_SK => MTJ_W2_out);
252 JOIN2: SKYRMIONJOIN port map (A => MTJ_W1_out, B => TANKB_out2, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN2_out);↪→

253 JOIN3: SKYRMIONJOIN port map (A => MTJ_W2_out, B => TANKB_out1, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN3_out);↪→

254 CROSSM2: SKYRMIONCROSS_Magn port map (A => TANKB_out1, B => JOIN2_out,
CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM2_outA, Bout => CROSSM2_outB);

↪→

↪→

255 CROSSM3: SKYRMIONCROSS_Magn port map (A => CROSSM2_outA, B => JOIN3_out,
CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM3_outA, Bout => CROSSM3_outB);

↪→

↪→

256

257 MTJ_R_1: MTJ_R port map (IN_SK => CROSSM3_outA, CURRENT => CURRENT_Vmove1,
OUT_SIGN => MTJ_R1_out);↪→

258 RST_SR_MTJR1 <= ACK_DETECT_MTJ_R1 or (not(RESET_n));
259 SR_MTJR1: SRlatch port map (SET => MTJ_R1_out, RST => RST_SR_MTJR1, Q =>

SR_MTJR1_out);↪→

260 MTJ_CONV_8: MTJ_CONV port map (IN_SK => CROSSM3_outA, CURRENT =>
CURRENT_Vmove1, OUT_SK => MTJ_CONV8_out);↪→

261 Vnoext: voltage_genL port map (CTRL => CTRL_Vnoext, CURRENT =>
CURRENT_Vnoext);↪→

262 DEV1: skyrmionDEVIATION port map (IN_SK => MTJ_CONV8_out, CURRENT =>
CURRENT_Vmove1, CURRENTDEV => CURRENT_Vnoext, OUT_SK => DEV1_out,
OUT_SK_DEV => DEV1_devout);

↪→

↪→

263 JOIN5: SKYRMIONJOIN port map (A => DEV1_devout, B => DEV3_out, CURRENT =>
CURRENT_Vnoext, OUTPUT => JOIN5_out);↪→

264 JOIN6: SKYRMIONJOIN port map (A => DEV1_out, B => DEV3_devout, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN6_out);↪→

265 Vrestop: voltage_genL port map (CTRL => CTRL_Vrestop, CURRENT =>
CURRENT_Vrestop);↪→
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266 DEV3: skyrmionDEVIATION port map (IN_SK => CROSS3_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vrestop, OUT_SK => DEV3_out,
OUT_SK_DEV => DEV3_devout);

↪→

↪→

267

268 MTJ_W_3: MTJ_W port map (CTRL => CTRL_MTJ_W3, OUT_SK => MTJ_W3_out);
269 JOIN1: SKYRMIONJOIN port map (A => MTJ_W3_out, B => JOIN6_out, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN1_out);↪→

270 x2_3: skyrmionDUPLICATE port map (IN_SK => JOIN1_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_3_outtop, OUT_SK_BOTTOM =>
x2_3_outbottom);

↪→

↪→

271

272 MTJ_CONV_10: MTJ_CONV port map (IN_SK => x2_1_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV10_out);↪→

273 CROSS3: SKYRMIONCROSS_noMagn port map (A => TOP_RESULT, B =>
MTJ_CONV10_out, CURRENTA => TOP_RESULT_CURRENT, CURRENTB =>
CURRENT_Vmove3, Aout => CROSS3_Aout, Bout => CROSS3_Bout);

↪→

↪→

274 CTRL_mux2 <= CTRL_Vrout;
275 Vmux2_Vsout: voltage_genL port map (CTRL => CTRL_Vsout, CURRENT =>

CURRENT_Vsout);↪→

276 Vmux2_Vrout: voltage_genL port map (CTRL => CTRL_Vrout, CURRENT =>
CURRENT_Vrout);↪→

277 MUX2_COM: mux2 port map (inR => CROSS4_Bout, inL => CROSS3_Bout, CURRENT
=> CURRENT_Vmove3, CURRENT_Vst => CURRENT_Vsout, CURRENT_Vres =>
CURRENT_Vrout, selection => CTRL_mux2, muxOUT => MUX2_out, VstOUT =>
MUX2_Vstout, VresOUT => MUX2_Vresout);

↪→

↪→

↪→

278

279 Vmoveres: voltage_genL port map (CTRL => CTRL_Vmoveres, CURRENT =>
CURRENT_Vmoveres);↪→

280 x2_5: skyrmionDUPLICATE port map (IN_SK => MUX2_out, CURRENT =>
CURRENT_Vmoveres, OUT_SK_TOP => x2_5_outright, OUT_SK_BOTTOM =>
x2_5_outleft);

↪→

↪→

281 MTJ_CONV_12: MTJ_CONV port map (IN_SK => x2_5_outleft, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV12_out);↪→

282 x2_6: skyrmionDUPLICATE port map (IN_SK => x2_5_outright, CURRENT =>
CURRENT_Vmoveres, OUT_SK_TOP => x2_6_outtop, OUT_SK_BOTTOM =>
x2_6_outbottom);

↪→

↪→

283 MTJ_CONV_11: MTJ_CONV port map (IN_SK => x2_6_outtop, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV11_out);↪→

284 MTJ_CONV_13: MTJ_CONV port map (IN_SK => x2_6_outbottom, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV13_out);↪→

285 CROSS5: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV11_out, B =>
MTJ_CONV13_out, CURRENTA => CURRENT_Vmoveres, CURRENTB =>
CURRENT_Vmoveres, Aout => CROSS5_Aout, Bout => CROSS5_Bout);

↪→

↪→

286

287 Vtanktop: vclock_gen port map (CTRL => CTRL_Vtanktop, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtanktop);↪→

288 TANK_TOP_C: tank_top port map (IN1 => MUX1_V2Tout, IN2 => MUX1_V3out, IN3 =>
DEV2_devout, CURRENT => CURRENT_Vtanktop, tankOUT => TANKT_out);↪→

289 MTJ_CONV_9: MTJ_CONV port map (IN_SK => x2_4_outtop, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV9_out);↪→
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290 Vmove4: voltage_genL port map (CTRL => CTRL_Vmove4, CURRENT =>
CURRENT_Vmove4);↪→

291 Vnewdata: voltage_genL port map (CTRL => CTRL_Vnewdata, CURRENT =>
CURRENT_Vnewdata);↪→

292 DEV2: skyrmionDEVIATION port map (IN_SK => MTJ_CONV9_out, CURRENT =>
CURRENT_Vmove4, CURRENTDEV => CURRENT_Vnewdata, OUT_SK => DEV2_out,
OUT_SK_DEV => DEV2_devout);

↪→

↪→

293 Vdetect: voltage_genL port map (CTRL => CTRL_Vdetect, CURRENT =>
CURRENT_Vdetect);↪→

294 MTJ_R_2: MTJ_R port map (IN_SK => TANKT_out, CURRENT => CURRENT_Vdetect,
OUT_SIGN => MTJ_R2_out);↪→

295 RST_SR_MTJR2 <= ACK_DETECT_MTJ_R2 or (not RESET_n);
296 SR_MTJR2: SRlatch port map (SET => MTJ_R2_out, RST => RST_SR_MTJR2, Q =>

SR_MTJR2_out);↪→

297

298 CELL_OUT_MTJ_CONV12_out <= MTJ_CONV12_out;
299 CELL_OUT_CROSS5_Aout <= CROSS5_Aout;
300 CELL_OUT_CROSS6_Aout <= CROSS6_Aout;
301 CELL_OUT_CROSS6_Bout <= CROSS6_Bout;
302 CELL_OUT_DEV2_out <= DEV2_out;
303 CELL_OUT_TANKT_out <= TANKT_out;
304

305 CELL_OUT_CURRENT_Vmoveres <= CURRENT_Vmoveres;
306 CELL_OUT_CURRENT_Vmovecout <= CURRENT_Vmovecout;
307

308

309 end Structure;

C.3.2. FSM

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8 entity FSM_CELL_X0 is
9 port( CURRENTclk: in real;

10 RESET_n: in std_logic;
11

12 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop: out
std_logic;

↪→

↪→

↪→
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13 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
14 CTRL_mux1: out std_logic_vector(1 downto 0);
15 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
16 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
17

18 START, ACK_RES_AVAILABLE: in std_logic;
19 DES_EXTIN_X0, DES_OUT_X0, DES_STORE_X0, DES_NEWDATA_X0: in std_logic;
20 DES_RES_X0: in std_logic_vector(1 downto 0);
21 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→

22 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic;
23

24 CTRL_Vrestop: out std_logic;
25 READY_FOR_NEWDATA: out std_logic;
26 DES_DATA_X0: in std_logic
27 );
28 end entity FSM_CELL_X0;
29

30 architecture Behaviour of FSM_CELL_X0 is
31

32 type state_type is (
33 reset, S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
34 S6_1, S6_2, S6_3, S6_4, S6_5, S6_6,
35 S11, S12, S13, S14, S15, S16, S17, S18, S19, S20,
36 S21, S22, S23, S24, S25, S26, S27, S28, S29, S30,
37 S31, S32, S33, S34, S35, S36, S37, S38, S39, S40
38 );
39

40 signal pstate, nstate: state_type;
41

42 begin
43

44 state_register: process (CURRENTclk)
45 begin
46 if (CURRENTclk'event and CURRENTclk=CURRENT_HIGH) then
47 if (RESET_n = '0') then
48 pstate <= reset;
49 else
50 pstate <= nstate;
51 end if;
52 end if;
53 end process state_register;
54

55 state_transition: process (pstate, CURRENTclk)
56 begin
57 case pstate is
58 when reset => nstate <= S0;
59 when S0 => if (START='0') then nstate <= S0; else if(FIRST_RUN='1') then

nstate <= S1; else nstate <= S31; end if; end if;↪→
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60 when S1 => if(DES_DATA_X0='1') then nstate <= S2; else nstate <= S3; end
if;↪→

61 when S2 => if(DES_EXTIN_X0='1') then nstate <= S4; else nstate <= S5;
end if;↪→

62 when S3 => nstate <= S5;
63 when S4 => nstate <= S6;
64 when S5 => nstate <= S6;
65 when S6 => nstate <= S6_1;
66 when S6_1 => nstate <= S6_2;
67 when S6_2 => nstate <= S6_3;
68 when S6_3 => nstate <= S6_4;
69 when S6_4 => nstate <= S6_5;
70 when S6_5 => nstate <= S6_6;
71 when S6_6 => nstate <= S7;
72 when S7 => nstate <= S8;
73 when S8 => if (DES_RES_X0="10") then nstate <= S9; elsif

(DES_RES_X0="01") then nstate <= S10; else nstate <= S11; end if;↪→

74 when S9 => nstate <= S12;
75 when S10 => nstate <= S12;
76 when S11 => nstate <= S12;
77 when S12 => nstate <= S13;
78 when S13 => if (DES_OUT_X0='1') then nstate <= S14; else nstate <= S15;

end if;↪→

79 when S14 => nstate <= S16;
80 when S15 => nstate <= S16;
81 when S16 => nstate <= S17;
82 when S17 => if(DES_STORE_X0='1') then nstate <= S18; else nstate <= S19;

end if;↪→

83 when S18 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S18; else
nstate <= S20; end if;↪→

84 when S19 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S19; else
if(DES_NEWDATA_X0='1') then nstate <= S21; else nstate <= S22; end if;
end if;

↪→

↪→

85 when S20 => nstate <= S24;
86 when S21 => nstate <= S23;
87 when S22 => nstate <= S26;
88 when S23 => nstate <= S25;
89 when S24 => if (ACK_RES_AVAILABLE='0') then nstate <= S24; else nstate

<= S28; end if;↪→

90 when S25 => if (ACK_RES_AVAILABLE='0') then nstate <= S25; else nstate
<= S27; end if;↪→

91 when S26 => if (ACK_RES_AVAILABLE='0') then nstate <= S26; else nstate
<= S30; end if;↪→

92 when S27 => if (SR_MTJR2_out='0') then nstate <= S29; else nstate <= S30;
end if;↪→

93 when S28 => if(START='0') then nstate <= S28; else nstate <= S31; end
if;↪→

94 when S29 => if(START='0') then nstate <= S29; else nstate <= S31; end
if;↪→
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95 when S30 => if(START='0') then nstate <= S30; else nstate <= S31; end
if;↪→

96 when S31 => nstate <= S32;
97 when S32 => if(DES_DATA_X0='0') then nstate <= S33; else nstate <= S34;

end if;↪→

98 when S33 => nstate <= S35;
99 when S34 => if(DES_EXTIN_X0='0') then nstate <= S35; else nstate <= S36;

end if;↪→

100 when S35 => if(SR_MTJR1_out='0') then nstate <= S39; else nstate <= S37;
end if;↪→

101 when S36 => if(SR_MTJR1_out='1') then nstate <= S40; else nstate <= S38;
end if;↪→

102 when S37 => nstate <= S39;
103 when S38 => nstate <= S40;
104 when S39 => nstate <= S6;
105 when S40 => nstate <= S6;
106 when others => nstate <= S0;
107 end case;
108 end process state_transition;
109

110 output: process (pstate)
111 begin
112 CTRL_Vstart <= '0';
113 CTRL_Vmove1 <= '0';
114 CTRL_Vop <= '0';
115 CTRL_Vmove2 <= '0';
116 CTRL_Vmove2C <= '0';
117 CTRL_Vmove3 <= '0';
118 CTRL_Vmovecout <= '0';
119 CTRL_Vtankbot <= '0';
120 CTRL_Vnoext <= '0';
121 CTRL_Vmoveres <= '0';
122 CTRL_Vmove4 <= '0';
123 CTRL_Vnewdata <= '0';
124 CTRL_Vdetect <= '0';
125 CTRL_Vrout <= '0';
126 CTRL_Vsout <= '0';
127 CTRL_Vtanktop <= '0';
128 CTRL_MTJ_W1 <= '0';
129 CTRL_MTJ_W2 <= '0';
130 CTRL_MTJ_W3 <= '0';
131 CTRL_mux1 <= "00";
132 ACK_DETECT_MTJ_R1 <= '0';
133 ACK_DETECT_MTJ_R2 <= '0';
134 RES_AVAILABLE <= '0';
135 REQUEST_NEW_START <= '0';
136 REQUEST_NEW_START_W <= '0';
137 REQUEST_NEW_STORE <= '0';
138 ---
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139 CTRL_Vrestop <= '0';
140 READY_FOR_NEWDATA <= '0';
141

142 case pstate is
143 when S0 => CTRL_Vstart <= '0';
144 CTRL_Vmove1 <= '0';
145 CTRL_Vop <= '0';
146 CTRL_Vmove2 <= '0';
147 CTRL_Vmove2C <= '0';
148 CTRL_Vmove3 <= '0';
149 CTRL_Vmovecout <= '0';
150 CTRL_Vtankbot <= '0';
151 CTRL_Vnoext <= '0';
152 CTRL_Vmoveres <= '0';
153 CTRL_Vmove4 <= '0';
154 CTRL_Vnewdata <= '0';
155 CTRL_Vdetect <= '0';
156 CTRL_Vrout <= '0';
157 CTRL_Vsout <= '0';
158 CTRL_Vtanktop <= '0';
159 CTRL_MTJ_W1 <= '0';
160 CTRL_MTJ_W2 <= '0';
161 CTRL_MTJ_W3 <= '0';
162 CTRL_mux1 <= "00";
163 ACK_DETECT_MTJ_R1 <= '0';
164 ACK_DETECT_MTJ_R2 <= '0';
165 RES_AVAILABLE <= '0';
166 REQUEST_NEW_START <= '0';
167 REQUEST_NEW_START_W <= '0';
168 REQUEST_NEW_STORE <= '0';
169 ---
170 CTRL_Vrestop <= '0';
171 when S1 => CTRL_Vnoext <= '1', '0' after CLOCK_PERIOD/2;
172 READY_FOR_NEWDATA <= '1';
173 when S2 => CTRL_Vnoext <= '1';
174 CTRL_Vstart <= '1';
175 when S3 => CTRL_Vrestop <= '1';
176 CTRL_Vstart <= '1';
177 when S4 => CTRL_Vmove1 <= '1';
178 CTRL_MTJ_W1 <= '1';
179 CTRL_MTJ_W2 <= '1';
180 CTRL_MTJ_W3 <= '1';
181 when S5 => CTRL_Vmove1 <= '1';
182 CTRL_MTJ_W1 <= '1';
183 CTRL_MTJ_W2 <= '1';
184 when S6 => CTRL_Vop <= '1';
185 when S6_1 => CTRL_Vop <= '1';
186 when S6_2 => CTRL_Vop <= '1';
187 when S6_3 => CTRL_Vop <= '1';
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188 when S6_4 => CTRL_Vop <= '1';
189 when S6_5 => CTRL_Vop <= '1';
190 when S6_6 => CTRL_Vop <= '1';
191 when S7 => CTRL_Vmove2 <= '1';
192 CTRL_Vmove2C <= '1';
193 when S8 => CTRL_Vmove2C <= '1';
194 when S9 => CTRL_mux1 <= "10";
195 when S10 => CTRL_mux1 <= "01";
196 when S11 => CTRL_mux1 <= "11";
197 when S12 => CTRL_Vmove2 <= '1';
198 when S13 => CTRL_Vmove3 <= '1';
199 when S14 => CTRL_Vrout <= '1';
200 when S15 => CTRL_Vsout <= '1';
201 when S16 => CTRL_Vmove3 <= '1';
202 when S17 => CTRL_Vmove4 <= '1', '0' after CLOCK_PERIOD/2;
203 when S18 => CTRL_Vmove4 <= '1';
204 when S19 => CTRL_Vnewdata <= '1';
205 when S20 => CTRL_Vmoveres <= '1';
206 CTRL_Vmovecout <= '1';
207 when S21 => CTRL_Vtanktop <= '1';
208 CTRL_Vmoveres <= '1';
209 CTRL_Vmovecout <= '1';
210 when S22 => CTRL_Vmoveres <= '1';
211 CTRL_Vmovecout <= '1';
212 when S23 => CTRL_Vtanktop <= '1';
213 when S24 => RES_AVAILABLE <= '1';
214 when S25 => RES_AVAILABLE <= '1';
215 when S26 => RES_AVAILABLE <= '1';
216 when S27 => CTRL_Vdetect <= '1';
217 when S28 => REQUEST_NEW_STORE <= '1';
218 when S29 => REQUEST_NEW_START_W <= '1';
219 ACK_DETECT_MTJ_R2 <= '1';
220 when S30 => REQUEST_NEW_START <= '1';
221 ACK_DETECT_MTJ_R2 <= '1';
222 when S31 => CTRL_Vstart <= '1';
223 CTRL_Vtankbot <= '1';
224 when S32 => CTRL_Vtankbot <= '1';
225 CTRL_Vnoext <= '1', '0' after CLOCK_PERIOD/2;
226 READY_FOR_NEWDATA <= '1';
227 when S33 => CTRL_Vrestop <= '1';
228 when S34 => CTRL_Vnoext <= '1';
229 when S35 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
230 when S36 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
231 when S37 => CTRL_Vnoext <= '1';
232 ACK_DETECT_MTJ_R1 <= '1';
233 when S38 => CTRL_MTJ_W3 <= '1';
234 when S39 => CTRL_Vmove1 <= '1';
235 when S40 => CTRL_Vmove1 <= '1';
236 ACK_DETECT_MTJ_R1 <= '1';
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237

238 when others => CTRL_Vstart <= '0';
239 CTRL_Vmove1 <= '0';
240 CTRL_Vop <= '0';
241 CTRL_Vmove2 <= '0';
242 CTRL_Vmove2C <= '0';
243 CTRL_Vmove3 <= '0';
244 CTRL_Vmovecout <= '0';
245 CTRL_Vtankbot <= '0';
246 CTRL_Vnoext <= '0';
247 CTRL_Vmoveres <= '0';
248 CTRL_Vmove4 <= '0';
249 CTRL_Vnewdata <= '0';
250 CTRL_Vdetect <= '0';
251 CTRL_Vrout <= '0';
252 CTRL_Vsout <= '0';
253 CTRL_Vtanktop <= '0';
254 CTRL_MTJ_W1 <= '0';
255 CTRL_MTJ_W2 <= '0';
256 CTRL_MTJ_W3 <= '0';
257 CTRL_mux1 <= "00";
258 ACK_DETECT_MTJ_R1 <= '0';
259 ACK_DETECT_MTJ_R2 <= '0';
260 RES_AVAILABLE <= '0';
261 REQUEST_NEW_START <= '0';
262 REQUEST_NEW_START_W <= '0';
263 REQUEST_NEW_STORE <= '0';
264 ---
265 CTRL_Vrestop <= '0';
266 end case;
267 end process output;
268 end Behaviour;

C.4. Cell01
C.4.1. Datapath

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
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6 use work.globals.all;
7

8

9 entity CELL_0X is
10 port( IN_CELL, RESET_n: in std_logic;
11 CURRENTclk: in real;
12

13 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop,
CTRL_Vouttank: in std_logic;

↪→

↪→

↪→

14 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
15 CTRL_mux1: in std_logic_vector(1 downto 0);
16 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
17 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
18 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
19

20 CELL_OUT_MTJ_CONV14_out, CELL_OUT_CROSS9_Bout, CELL_OUT_CROSS9_Aout,
CELL_OUT_MTJ_CONV12_out, CELL_OUT_DEV2_out, CELL_OUT_TANKT_out: out
std_logic;

↪→

↪→

21

22 CTRL_Vresbotleft, CTRL_Vresleft: in std_logic;
23 LEFT_COUT, LEFT_RESULT, BOTLEFT_RESULT: in std_logic;
24 LEFT_COUT_CURRENT, LEFT_RESULT_CURRENT, BOTLEFT_RESULT_CURRENT: in real
25 );
26 end entity CELL_0X;
27

28 architecture Structure of CELL_0X is
29 component SKYRMIONNOTCH is
30 port( INPUT : in std_logic;
31 CURRENT : in real;
32 OUTPUT : out std_logic);
33 end component SKYRMIONNOTCH;
34

35 component SKYRMIONNOTCHseq is
36 generic (N: integer := 5);
37 port( INPUT: in std_logic;
38 CURRENT: in real;
39 OUTPUT: out std_logic);
40 end component SKYRMIONNOTCHseq;
41

42 component SKYRMIONJOIN is
43 port( A : in std_logic;
44 B : in std_logic;
45 CURRENT : in real;
46 OUTPUT : out std_logic);
47 end component SKYRMIONJOIN;
48

49 component SKYRMIONH is
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50 port ( INPUTA : in std_logic;
51 INPUTB : in std_logic;
52 CURRENT : in real;
53 OUTPUTAND : out std_logic;
54 OUTPUTOR : out std_logic);
55 end component SKYRMIONH;
56

57 component SKYRMIONFULLADDER is
58 port( A : in std_logic;
59 B : in std_logic;
60 CIN1 : in std_logic;
61 CIN2 : in std_logic;
62 ONE1 : in std_logic;
63 ONE2 : in std_logic;
64 CURRENT : in real;
65 CTRL1 : out std_logic;
66 SUM : out std_logic;
67 COUT1 : out std_logic;
68 COUT2 : out std_logic;
69 CTRL2 : out std_logic);
70 end component SKYRMIONFULLADDER;
71

72 component voltage_genH is
73 port( CTRL: in std_logic;
74 CURRENT: out real);
75 end component voltage_genH;
76

77 component voltage_genL is
78 port( CTRL: in std_logic;
79 CURRENT: out real);
80 end component voltage_genL;
81

82 component vclock_gen is
83 port( CTRL: in std_logic;
84 CURRENTclk: in real;
85 CURRENT: out real);
86 end component vclock_gen;
87

88 component skyrmionDUPLICATE is
89 port( IN_SK: in std_logic;
90 CURRENT: in real;
91 OUT_SK_TOP: out std_logic;
92 OUT_SK_BOTTOM: out std_logic);
93 end component skyrmionDUPLICATE;
94

95 component skyrmionMERGE is
96 port( IN_SK_TOP: in std_logic;
97 IN_SK_BOTTOM: in std_logic;
98 CURRENT: in real;
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99 OUT_SK: out std_logic);
100 end component skyrmionMERGE;
101

102 component SKYRMIONCROSS_Magn is
103 port( A: in std_logic;
104 B: in std_logic;
105 CURRENTA: in real;
106 CURRENTB: in real;
107 Aout: out std_logic;
108 Bout: out std_logic);
109 end component SKYRMIONCROSS_Magn;
110

111 component SKYRMIONCROSS_noMagn is
112 port( A: in std_logic;
113 B: in std_logic;
114 CURRENTA: in real;
115 CURRENTB: in real;
116 Aout: out std_logic;
117 Bout: out std_logic);
118 end component SKYRMIONCROSS_noMagn;
119

120 component skyrmionDEVIATION is
121 port( IN_SK: in std_logic;
122 CURRENT: in real;
123 CURRENTDEV: in real;
124 OUT_SK: out std_logic;
125 OUT_SK_DEV: out std_logic);
126 end component skyrmionDEVIATION;
127

128 component SRlatch is
129 port( SET: in std_logic;
130 RST: in std_logic;
131 Q: buffer std_logic);
132 end component SRlatch;
133

134 component MTJ_R is
135 port( IN_SK: in std_logic;
136 CURRENT: in real;
137 OUT_SIGN: out std_logic);
138 end component MTJ_R;
139

140 component MTJ_W is
141 port( CTRL: in std_logic;
142 OUT_SK: out std_logic);
143 end component MTJ_W;
144

145 component MTJ_CONV is
146 port( IN_SK: in std_logic;
147 CURRENT: in real;
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148 OUT_SK: out std_logic);
149 end component MTJ_CONV;
150

151 component tank_bottom is
152 port( IN1, IN2, IN3, IN4, IN5, IN6, IN7: in std_logic; --from left to right
153 CURRENT: in real;
154 tankOUT1, tankOUT2, tankOUT3: out std_logic); --priority order: from

right to left↪→

155 end component tank_bottom;
156

157 component tank_top is
158 port( IN1, IN2, IN3: in std_logic; --from right to left
159 CURRENT: in real;
160 tankOUT: out std_logic);
161 end component tank_top;
162

163 component mux1 is
164 port( inT, inM, inB: in std_logic;
165 CURRENT: in real;
166 CURRENT_V1, CURRENT_V2, CURRENT_V3: in real;
167 selection: in std_logic_vector(1 downto 0);
168 muxOUT, V1OUT, V3OUT, V2OUTt, V2OUTb: out std_logic);
169 end component mux1;
170

171 component mux2 is
172 port( inR, inL: in std_logic; --Right=result, Left=stored value
173 CURRENT: in real;
174 CURRENT_Vst, CURRENT_Vres: in real;
175 selection: in std_logic; --'1'=result, '0'=stored value
176 muxOUT, VstOUT, VresOUT: out std_logic);
177 end component mux2;
178

179 signal CURRENT_Vstart, CURRENT_Vmove1, CURRENT_Vop, CURRENT_Vmove2,
CURRENT_Vmove2C, CURRENT_Vmove3, CURRENT_MUX1_V1, CURRENT_MUX1_V2,
CURRENT_MUX1_V3, CURRENT_Vmovecout, CURRENT_Vtankbot, CURRENT_Vnoext,
CURRENT_Vmoveres, CURRENT_Vtanktop, CURRENT_Vmove4, CURRENT_Vnewdata,
CURRENT_Vdetect, CURRENT_Vrout, CURRENT_Vsout, CURRENT_Vrestop,
CURRENT_Vresbotleft, CURRENT_Vresleft, CURRENT_Vouttank: real;

↪→

↪→

↪→

↪→

↪→

180

181 signal MEM_out: std_logic;
182 signal x2_1_outtop, x2_1_outbottom, x2_2_outtop, x2_2_outbottom, x2_3_outtop,

x2_3_outbottom, x2_4_outtop, x2_4_outbottom, x2_5_outright, x2_5_outleft,
x2_7_outtop, x2_7_outbottom, x2_8_outtop, x2_8_outbottom, x1_1_out:
std_logic;

↪→

↪→

↪→

183 signal CROSSM1_outA, CROSSM1_outB, CROSSM2_outA, CROSSM2_outB, CROSSM3_outA,
CROSSM3_outB, CROSSM4_outA, CROSSM4_outB: std_logic;↪→

184 signal CROSS11_Aout, CROSS11_Bout, CROSS12_Aout, CROSS12_Bout, CROSS21_Aout,
CROSS21_Bout, CROSS22_Aout, CROSS22_Bout, CROSS4_Aout, CROSS4_Bout,
CROSS5_Aout, CROSS5_Bout, CROSS6_Aout, CROSS6_Bout, CROSS7_Aout,
CROSS7_Bout, CROSS8_Aout, CROSS8_Bout, CROSS9_Aout, CROSS9_Bout:
std_logic;

↪→

↪→

↪→

↪→
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185 signal SYNC_LOG_TOP_out, SYNC_LOG_BOT_out, AND_out, OR_out, SKEW_OR_out,
SKEW_AND_out: std_logic;↪→

186 signal FA_CTRL1_out, FA_CTRL2_out, FA_COUT1_out, FA_COUT2_out, FA_SUM_out:
std_logic;↪→

187 signal RST_SR_MTJR1, RST_SR_MTJR2: std_logic;
188 signal MTJ_R1_out, MTJ_R2_out: std_logic;
189 signal MTJ_W1_out, MTJ_W2_out, MTJ_W3_out: std_logic;
190 signal MTJ_CONV1_out, MTJ_CONV2_out, MTJ_CONV3_out, MTJ_CONV4_out,

MTJ_CONV5_out, MTJ_CONV6_out, MTJ_CONV7_out, MTJ_CONV8_out, MTJ_CONV9_out,
MTJ_CONV10_out, MTJ_CONV11_out, MTJ_CONV12_out, MTJ_CONV14_out,
MTJ_CONV15_out: std_logic;

↪→

↪→

↪→

191 signal MUX1_CTRL_V1, MUX1_CTRL_V2, MUX1_CTRL_V3: std_logic;
192 signal MUX1_out, MUX1_V1out, MUX1_V3out, MUX1_V2Tout, MUX1_V2Bout: std_logic;
193 signal CTRL_mux2, MUX2_Vstout, MUX2_Vresout, MUX2_out: std_logic;
194 signal JOIN1_out, JOIN2_out, JOIN3_out, JOIN7_out, JOIN8_out, JOIN9_out,

JOIN10_out: std_logic;↪→

195 signal DEV1_out, DEV1_devout, DEV2_out, DEV2_devout, DEV4_out, DEV4_devout,
DEV5_out, DEV5_devout: std_logic;↪→

196 signal TANKB_out1, TANKB_out2, TANKB_out3: std_logic;
197 signal TANKT_out: std_logic;
198

199

200 begin
201 Vstart: voltage_genH port map (CTRL => CTRL_Vstart, CURRENT =>

CURRENT_Vstart);↪→

202 MEM: SKYRMIONNOTCH port map (INPUT => IN_CELL, CURRENT => CURRENT_Vstart,
OUTPUT => MEM_out);↪→

203 Vmove1: voltage_genL port map (CTRL => CTRL_Vmove1, CURRENT =>
CURRENT_Vmove1);↪→

204 x2_1: skyrmionDUPLICATE port map (IN_SK => MEM_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_1_outtop, OUT_SK_BOTTOM =>
x2_1_outbottom);

↪→

↪→

205 x2_2: skyrmionDUPLICATE port map (IN_SK => x2_1_outtop, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_2_outtop, OUT_SK_BOTTOM =>
x2_2_outbottom);

↪→

↪→

206

207 CROSSM1: SKYRMIONCROSS_Magn port map (A => x2_2_outbottom, B =>
CROSSM4_outB, CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout
=> CROSSM1_outA, Bout => CROSSM1_outB);

↪→

↪→

208 Vop: vclock_gen port map (CTRL => CTRL_Vop, CURRENTclk => CURRENTclk,
CURRENT => CURRENT_Vop);↪→

209 SYNCNET_LOG_TOP: SKYRMIONNOTCH port map (INPUT => x2_2_outtop, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_TOP_out);↪→

210 SYNCNET_LOG_BOT: SKYRMIONNOTCH port map (INPUT => CROSSM1_outB, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_BOT_out);↪→

211 LOGIC: SKYRMIONH port map (INPUTA => SYNC_LOG_TOP_out, INPUTB =>
SYNC_LOG_BOT_out, CURRENT => CURRENT_Vop, OUTPUTAND => AND_OUT, OUTPUTOR
=> OR_OUT);

↪→

↪→

212 SKEW_OR: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT => OR_OUT,
CURRENT => CURRENT_Vop, OUTPUT => SKEW_OR_out);↪→
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213 SKEW_AND: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT =>
AND_OUT, CURRENT => CURRENT_Vop, OUTPUT => SKEW_AND_out);↪→

214 FA: SKYRMIONFULLADDER port map (A => CROSSM1_outA, B =>
x2_3_outbottom, CIN1 => x2_7_outtop, CIN2 => x2_7_outbottom, ONE1 =>
CROSSM2_outB, ONE2 => CROSSM3_outB, CURRENT => CURRENT_Vop, CTRL1 =>
FA_CTRL1_out, SUM => FA_SUM_out, COUT1 => FA_COUT1_out, COUT2 =>
FA_COUT2_out, CTRL2 => FA_CTRL2_out);

↪→

↪→

↪→

↪→

215

216 MTJ_CONV_1: MTJ_CONV port map (IN_SK => SKEW_OR_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV1_out);↪→

217 MTJ_CONV_2: MTJ_CONV port map (IN_SK => SKEW_AND_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV2_out);↪→

218 MTJ_CONV_3: MTJ_CONV port map (IN_SK => FA_SUM_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV3_out);↪→

219 MTJ_CONV_4: MTJ_CONV port map (IN_SK => FA_COUT1_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV4_out);↪→

220 MTJ_CONV_5: MTJ_CONV port map (IN_SK => FA_COUT2_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV5_out);↪→

221 Vmove2: voltage_genL port map (CTRL => CTRL_Vmove2, CURRENT =>
CURRENT_Vmove2);↪→

222 Vmove2C: voltage_genL port map (CTRL => CTRL_Vmove2C, CURRENT =>
CURRENT_Vmove2C);↪→

223

224 MUX1_CTRL_V1 <= CTRL_mux1(0) and (not CTRL_mux1(1));
225 MUX1_CTRL_V2 <= CTRL_mux1(1) and (not CTRL_mux1(0));
226 MUX1_CTRL_V3 <= CTRL_mux1(1) and CTRL_mux1(0);
227 Vmux1_1: voltage_genL port map (CTRL => MUX1_CTRL_V1, CURRENT =>

CURRENT_MUX1_V1);↪→

228 Vmux1_2: voltage_genL port map (CTRL => MUX1_CTRL_V2, CURRENT =>
CURRENT_MUX1_V2);↪→

229 Vmux1_3: voltage_genL port map (CTRL => MUX1_CTRL_V3, CURRENT =>
CURRENT_MUX1_V3);↪→

230

231 MUX1_COM: mux1 port map (inT => MTJ_CONV1_out, inM => MTJ_CONV2_out, inB
=> MTJ_CONV3_out, CURRENT => CURRENT_Vmove2, CURRENT_V1 =>
CURRENT_MUX1_V1, CURRENT_V2 => CURRENT_MUX1_V2, CURRENT_V3 =>
CURRENT_MUX1_V3, selection => CTRL_mux1, muxOUT => MUX1_out, V1OUT =>
MUX1_V1out, V3OUT => MUX1_V3out, V2OUTt => MUX1_V2Tout, V2OUTb =>
MUX1_V2Bout);

↪→

↪→

↪→

↪→

↪→

232 Vmove3: voltage_genL port map (CTRL => CTRL_Vmove3, CURRENT =>
CURRENT_Vmove3);↪→

233 x2_4: skyrmionDUPLICATE port map (IN_SK => MUX1_out, CURRENT =>
CURRENT_Vmove3, OUT_SK_TOP => x2_4_outtop, OUT_SK_BOTTOM =>
x2_4_outbottom);

↪→

↪→

234 MTJ_CONV_7: MTJ_CONV port map (IN_SK => x2_4_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV7_out);↪→

235

236 CROSS11: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV4_out, B => MUX1_V1out,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1, Aout =>
CROSS11_Aout, Bout => CROSS11_Bout);

↪→

↪→
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237 CROSS12: SKYRMIONCROSS_noMagn port map (A => CROSS11_Aout, B => MUX1_V2Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS12_Aout, Bout => CROSS12_Bout);

↪→

↪→

238 CROSS21: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV5_out, B =>
CROSS11_Bout, CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1,
Aout => CROSS21_Aout, Bout => CROSS21_Bout);

↪→

↪→

239 CROSS22: SKYRMIONCROSS_noMagn port map (A => CROSS21_Aout, B => CROSS12_Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS22_Aout, Bout => CROSS22_Bout);

↪→

↪→

240

241 Vmovecout: voltage_genL port map (CTRL => CTRL_Vmovecout, CURRENT =>
CURRENT_Vmovecout);↪→

242 x1_1: skyrmionMERGE port map (IN_SK_TOP => CROSS12_Aout, IN_SK_BOTTOM =>
CROSS22_Aout, CURRENT => CURRENT_Vmovecout, OUT_SK => x1_1_out);↪→

243 MTJ_CONV_6: MTJ_CONV port map (IN_SK => x1_1_out, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV6_out);↪→

244 CROSS4: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV6_out, B =>
MTJ_CONV7_out, CURRENTA => CURRENT_Vmovecout, CURRENTB => CURRENT_Vmove3,
Aout => CROSS4_Aout, Bout => CROSS4_Bout);

↪→

↪→

245

246 x2_8: skyrmionDUPLICATE port map (IN_SK => CROSS4_Aout, CURRENT =>
CURRENT_Vmovecout, OUT_SK_TOP => x2_8_outtop, OUT_SK_BOTTOM =>
x2_8_outbottom);

↪→

↪→

247 MTJ_CONV_14: MTJ_CONV port map (IN_SK => x2_8_outtop, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV14_out);↪→

248 MTJ_CONV_15: MTJ_CONV port map (IN_SK => x2_8_outbottom, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV15_out);↪→

249 CROSS9: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV11_out, B =>
MTJ_CONV15_out, CURRENTA => CURRENT_Vmoveres, CURRENTB =>
CURRENT_Vmovecout, Aout => CROSS9_Aout, Bout => CROSS9_Bout);

↪→

↪→

250

251 Vtankbot: vclock_gen port map (CTRL => CTRL_Vtankbot, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtankbot);↪→

252 TANK_BOT: tank_bottom port map (IN1 => FA_CTRL2_out, IN2 => FA_CTRL1_out, IN3
=> CROSS21_Bout, IN4 => CROSS22_Bout, IN5 => JOIN10_out, IN6 =>
MUX2_Vresout, IN7 => MUX2_Vstout, CURRENT => CURRENT_Vtankbot, tankOUT1 =>
TANKB_out1, tankOUT2 => TANKB_out2, tankOUT3 => TANKB_out3);

↪→

↪→

↪→

253

254 MTJ_W_1: MTJ_W port map (CTRL => CTRL_MTJ_W1, OUT_SK => MTJ_W1_out);
255 MTJ_W_2: MTJ_W port map (CTRL => CTRL_MTJ_W2, OUT_SK => MTJ_W2_out);
256 JOIN2: SKYRMIONJOIN port map (A => MTJ_W1_out, B => TANKB_out2, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN2_out);↪→

257 JOIN3: SKYRMIONJOIN port map (A => MTJ_W2_out, B => TANKB_out1, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN3_out);↪→

258 Vouttank: voltage_genL port map (CTRL => CTRL_Vouttank, CURRENT =>
CURRENT_Vouttank);↪→

259 CROSSM2: SKYRMIONCROSS_Magn port map (A => TANKB_out1, B => JOIN2_out,
CURRENTA => CURRENT_Vouttank, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM2_outA, Bout => CROSSM2_outB);

↪→

↪→
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260 CROSSM3: SKYRMIONCROSS_Magn port map (A => CROSSM2_outA, B => JOIN3_out,
CURRENTA => CURRENT_Vouttank, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM3_outA, Bout => CROSSM3_outB);

↪→

↪→

261

262 MTJ_R_1: MTJ_R port map (IN_SK => CROSSM3_outA, CURRENT => CURRENT_Vouttank,
OUT_SIGN => MTJ_R1_out);↪→

263 RST_SR_MTJR1 <= ACK_DETECT_MTJ_R1 or (not(RESET_n));
264 SR_MTJR1: SRlatch port map (SET => MTJ_R1_out, RST => RST_SR_MTJR1, Q =>

SR_MTJR1_out);↪→

265 MTJ_CONV_8: MTJ_CONV port map (IN_SK => CROSSM3_outA, CURRENT =>
CURRENT_Vouttank, OUT_SK => MTJ_CONV8_out);↪→

266 Vnoext: voltage_genL port map (CTRL => CTRL_Vnoext, CURRENT =>
CURRENT_Vnoext);↪→

267 DEV1: skyrmionDEVIATION port map (IN_SK => MTJ_CONV8_out, CURRENT =>
CURRENT_Vmove1, CURRENTDEV => CURRENT_Vnoext, OUT_SK => DEV1_out,
OUT_SK_DEV => DEV1_devout);

↪→

↪→

268 JOIN9: SKYRMIONJOIN port map (A => DEV1_devout, B => CROSS8_Aout, CURRENT
=> CURRENT_Vnoext, OUTPUT => JOIN9_out);↪→

269 JOIN10: SKYRMIONJOIN port map (A => JOIN9_out, B => DEV5_out, CURRENT =>
CURRENT_Vnoext, OUTPUT => JOIN10_out);↪→

270

271 Vresleft: voltage_genL port map (CTRL => CTRL_Vresleft, CURRENT =>
CURRENT_Vresleft);↪→

272 Vresbotleft: voltage_genL port map (CTRL => CTRL_Vresbotleft, CURRENT =>
CURRENT_Vresbotleft);↪→

273 DEV4: skyrmionDEVIATION port map (IN_SK => CROSS6_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vresleft, OUT_SK => DEV4_out,
OUT_SK_DEV => DEV4_devout);

↪→

↪→

274 DEV5: skyrmionDEVIATION port map (IN_SK => CROSS7_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vresbotleft, OUT_SK => DEV5_out,
OUT_SK_DEV => DEV5_devout);

↪→

↪→

275 CROSS8: SKYRMIONCROSS_noMagn port map (A => DEV4_out, B => DEV5_devout,
CURRENTA => CURRENT_Vnoext, CURRENTB => CURRENT_Vresbotleft, Aout =>
CROSS8_Aout, Bout => CROSS8_Bout);

↪→

↪→

276 JOIN8: SKYRMIONJOIN port map (A => CROSS8_Bout, B => DEV1_out, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN8_out);↪→

277 JOIN7: SKYRMIONJOIN port map (A => DEV4_devout, B => JOIN8_out, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN7_out);↪→

278

279 MTJ_W_3: MTJ_W port map (CTRL => CTRL_MTJ_W3, OUT_SK => MTJ_W3_out);
280 JOIN1: SKYRMIONJOIN port map (A => MTJ_W3_out, B => JOIN7_out, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN1_out);↪→

281 x2_3: skyrmionDUPLICATE port map (IN_SK => JOIN1_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_3_outtop, OUT_SK_BOTTOM =>
x2_3_outbottom);

↪→

↪→

282 CROSSM4: SKYRMIONCROSS_Magn port map (A => CROSS5_Aout, B => x2_3_outtop,
CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM4_outA, Bout => CROSSM4_outB);

↪→

↪→

283 x2_7: skyrmionDUPLICATE port map (IN_SK => CROSSM4_outA, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_7_outtop, OUT_SK_BOTTOM =>
x2_7_outbottom);

↪→

↪→
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284

285 MTJ_CONV_10: MTJ_CONV port map (IN_SK => x2_1_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV10_out);↪→

286 CROSS5: SKYRMIONCROSS_noMagn port map (A => LEFT_COUT, B =>
MTJ_CONV10_out, CURRENTA => LEFT_COUT_CURRENT, CURRENTB => CURRENT_Vmove3,
Aout => CROSS5_Aout, Bout => CROSS5_Bout);

↪→

↪→

287 CROSS6: SKYRMIONCROSS_noMagn port map (A => LEFT_RESULT, B => CROSS5_Bout,
CURRENTA => LEFT_RESULT_CURRENT, CURRENTB => CURRENT_Vmove3, Aout =>
CROSS6_Aout, Bout => CROSS6_Bout);

↪→

↪→

288 CROSS7: SKYRMIONCROSS_noMagn port map (A => BOTLEFT_RESULT, B =>
CROSS6_Bout, CURRENTA => BOTLEFT_RESULT_CURRENT, CURRENTB =>
CURRENT_Vmove3, Aout => CROSS7_Aout, Bout => CROSS7_Bout);

↪→

↪→

289 CTRL_mux2 <= CTRL_Vrout;
290 Vmux2_Vsout: voltage_genL port map (CTRL => CTRL_Vsout, CURRENT =>

CURRENT_Vsout);↪→

291 Vmux2_Vrout: voltage_genL port map (CTRL => CTRL_Vrout, CURRENT =>
CURRENT_Vrout);↪→

292 MUX2_COM: mux2 port map (inR => CROSS4_Bout, inL => CROSS7_Bout, CURRENT
=> CURRENT_Vmove3, CURRENT_Vst => CURRENT_Vsout, CURRENT_Vres =>
CURRENT_Vrout, selection => CTRL_mux2, muxOUT => MUX2_out, VstOUT =>
MUX2_Vstout, VresOUT => MUX2_Vresout);

↪→

↪→

↪→

293

294 Vmoveres: voltage_genL port map (CTRL => CTRL_Vmoveres, CURRENT =>
CURRENT_Vmoveres);↪→

295 x2_5: skyrmionDUPLICATE port map (IN_SK => MUX2_out, CURRENT =>
CURRENT_Vmoveres, OUT_SK_TOP => x2_5_outright, OUT_SK_BOTTOM =>
x2_5_outleft);

↪→

↪→

296 MTJ_CONV_12: MTJ_CONV port map (IN_SK => x2_5_outleft, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV12_out);↪→

297 MTJ_CONV_11: MTJ_CONV port map (IN_SK => x2_5_outright, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV11_out);↪→

298

299 Vtanktop: vclock_gen port map (CTRL => CTRL_Vtanktop, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtanktop);↪→

300 TANK_TOP_C: tank_top port map (IN1 => MUX1_V2Tout, IN2 => MUX1_V3out, IN3 =>
DEV2_devout, CURRENT => CURRENT_Vtanktop, tankOUT => TANKT_out);↪→

301 MTJ_CONV_9: MTJ_CONV port map (IN_SK => x2_4_outtop, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV9_out);↪→

302 Vmove4: voltage_genL port map (CTRL => CTRL_Vmove4, CURRENT =>
CURRENT_Vmove4);↪→

303 Vnewdata: voltage_genL port map (CTRL => CTRL_Vnewdata, CURRENT =>
CURRENT_Vnewdata);↪→

304 DEV2: skyrmionDEVIATION port map (IN_SK => MTJ_CONV9_out, CURRENT =>
CURRENT_Vmove4, CURRENTDEV => CURRENT_Vnewdata, OUT_SK => DEV2_out,
OUT_SK_DEV => DEV2_devout);

↪→

↪→

305 Vdetect: voltage_genL port map (CTRL => CTRL_Vdetect, CURRENT =>
CURRENT_Vdetect);↪→

306 MTJ_R_2: MTJ_R port map (IN_SK => TANKT_out, CURRENT => CURRENT_Vdetect,
OUT_SIGN => MTJ_R2_out);↪→
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307 RST_SR_MTJR2 <= ACK_DETECT_MTJ_R2 or (not RESET_n);
308 SR_MTJR2: SRlatch port map (SET => MTJ_R2_out, RST => RST_SR_MTJR2, Q =>

SR_MTJR2_out);↪→

309

310 CELL_OUT_MTJ_CONV14_out <= MTJ_CONV14_out;
311 CELL_OUT_CROSS9_Bout <= CROSS9_Bout;
312 CELL_OUT_CROSS9_Aout <= CROSS9_Aout;
313 CELL_OUT_MTJ_CONV12_out <= MTJ_CONV12_out;
314 CELL_OUT_DEV2_out <= DEV2_out;
315 CELL_OUT_TANKT_out <= TANKT_out;
316

317 CELL_OUT_CURRENT_Vmoveres <= CURRENT_Vmoveres;
318 CELL_OUT_CURRENT_Vmovecout <= CURRENT_Vmovecout;
319

320

321 end Structure;

C.4.2. FSM

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity FSM_CELL_0X is
10 port( CURRENTclk: in real;
11 RESET_n: in std_logic;
12

13 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop,
CTRL_Vouttank: out std_logic;

↪→

↪→

↪→

14 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
15 CTRL_mux1: out std_logic_vector(1 downto 0);
16 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
17 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
18

19 START, ACK_RES_AVAILABLE: in std_logic;
20 DES_EXTIN_0X, DES_OUT_0X, DES_STORE_0X, DES_NEWDATA_0X: in std_logic;
21 DES_RES_0X: in std_logic_vector(1 downto 0);
22 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→
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23 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic;
24

25 CTRL_Vresleft, CTRL_Vresbotleft: out std_logic;
26 READY_FOR_NEWDATA: out std_logic;
27 DES_DATA_0X: in std_logic_vector(1 downto 0)
28 );
29 end entity FSM_CELL_0X;
30

31 architecture Behaviour of FSM_CELL_0X is
32

33 type state_type is (
34 reset, S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
35 S8_1, S8_2, S8_3, S8_4, S8_5, S8_6,
36 S11, S12, S13, S14, S15, S16, S17, S18, S19, S20,
37 S21, S22, S23, S24, S25, S26, S27, S28, S29, S30,
38 S31, S32, S33, S34, S35, S36, S37, S38, S39, S40,
39 S41, S42, S43, S44
40 );
41

42 signal pstate, nstate: state_type;
43

44 begin
45

46 state_register: process (CURRENTclk)
47 begin
48 if (CURRENTclk'event and CURRENTclk=CURRENT_HIGH) then
49 if (RESET_n = '0') then
50 pstate <= reset;
51 else
52 pstate <= nstate;
53 end if;
54 end if;
55 end process state_register;
56

57 state_transition: process (pstate, CURRENTclk)
58 begin
59 case pstate is
60 when reset => nstate <= S0;
61 when S0 => if (START='0') then nstate <= S0; else if(FIRST_RUN='1') then

nstate <= S1; else nstate <= S33; end if; end if;↪→

62 when S1 => if(DES_DATA_0X="01") then nstate <= S2; elsif
(DES_DATA_0X="10") then nstate <= S3; else nstate <= S4; end if;↪→

63 when S2 => nstate <= S5;
64 when S3 => nstate <= S5;
65 when S4 => if(DES_EXTIN_0X='1') then nstate <= S6; else nstate <= S7;

end if;↪→

66 when S5 => nstate <= S8;
67 when S6 => nstate <= S8;
68 when S7 => nstate <= S8;
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69 when S8 => nstate <= S8_1;
70 when S8_1 => nstate <= S8_2;
71 when S8_2 => nstate <= S8_3;
72 when S8_3 => nstate <= S8_4;
73 when S8_4 => nstate <= S8_5;
74 when S8_5 => nstate <= S8_6;
75 when S8_6 => nstate <= S9;
76 when S9 => nstate <= S10;
77 when S10 => if (DES_RES_0X="10") then nstate <= S11; elsif

(DES_RES_0X="01") then nstate <= S12; else nstate <= S13; end if;↪→

78 when S11 => nstate <= S14;
79 when S12 => nstate <= S14;
80 when S13 => nstate <= S14;
81 when S14 => nstate <= S15;
82 when S15 => if (DES_OUT_0X='1') then nstate <= S16; else nstate <= S17;

end if;↪→

83 when S16 => nstate <= S18;
84 when S17 => nstate <= S18;
85 when S18 => nstate <= S19;
86 when S19 => if(DES_STORE_0X='1') then nstate <= S20; else nstate <= S21;

end if;↪→

87 when S20 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S20; else
nstate <= S22; end if;↪→

88 when S21 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S21; else
if(DES_NEWDATA_0X='1') then nstate <= S23; else nstate <= S24; end if;
end if;

↪→

↪→

89 when S22 => nstate <= S26;
90 when S23 => nstate <= S25;
91 when S24 => nstate <= S28;
92 when S25 => nstate <= S27;
93 when S26 => if (ACK_RES_AVAILABLE='0') then nstate <= S26; else nstate

<= S30; end if;↪→

94 when S27 => if (ACK_RES_AVAILABLE='0') then nstate <= S27; else nstate
<= S29; end if;↪→

95 when S28 => if (ACK_RES_AVAILABLE='0') then nstate <= S28; else nstate
<= S32; end if;↪→

96 when S29 => if (SR_MTJR2_out='0') then nstate <= S31; else nstate <= S32;
end if;↪→

97 when S30 => if(START='0') then nstate <= S30; else nstate <= S33; end
if;↪→

98 when S31 => if(START='0') then nstate <= S31; else nstate <= S33; end
if;↪→

99 when S32 => if(START='0') then nstate <= S32; else nstate <= S33; end
if;↪→

100 when S33 => nstate <= S34;
101 when S34 => if (DES_DATA_0X="01") then nstate <= S35; elsif

(DES_DATA_0X="10") then nstate <= S36; else nstate <= S37; end if;↪→

102 when S35 => nstate <= S38;
103 when S36 => nstate <= S38;
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104 when S37 => if (DES_EXTIN_0X='0') then nstate <= S39; else nstate <=
S40; end if;↪→

105 when S38 => nstate <= S39;
106 when S39 => if (SR_MTJR1_out='0') then nstate <= S43; else nstate <=

S41; end if;↪→

107 when S40 => if (SR_MTJR1_out='1') then nstate <= S44; else nstate <=
S42; end if;↪→

108 when S41 => nstate <= S43;
109 when S42 => nstate <= S44;
110 when S43 => nstate <= S8;
111 when S44 => nstate <= S8;
112 when others => nstate <= S0;
113 end case;
114 end process state_transition;
115

116 output: process (pstate)
117 begin
118

119 CTRL_Vstart <= '0';
120 CTRL_Vmove1 <= '0';
121 CTRL_Vop <= '0';
122 CTRL_Vmove2 <= '0';
123 CTRL_Vmove2C <= '0';
124 CTRL_Vmove3 <= '0';
125 CTRL_Vmovecout <= '0';
126 CTRL_Vtankbot <= '0';
127 CTRL_Vnoext <= '0';
128 CTRL_Vmoveres <= '0';
129 CTRL_Vmove4 <= '0';
130 CTRL_Vnewdata <= '0';
131 CTRL_Vdetect <= '0';
132 CTRL_Vrout <= '0';
133 CTRL_Vsout <= '0';
134 CTRL_Vtanktop <= '0';
135 CTRL_Vouttank <= '0';
136 CTRL_MTJ_W1 <= '0';
137 CTRL_MTJ_W2 <= '0';
138 CTRL_MTJ_W3 <= '0';
139 CTRL_mux1 <= "00";
140 ACK_DETECT_MTJ_R1 <= '0';
141 ACK_DETECT_MTJ_R2 <= '0';
142 RES_AVAILABLE <= '0';
143 REQUEST_NEW_START <= '0';
144 REQUEST_NEW_START_W <= '0';
145 REQUEST_NEW_STORE <= '0';
146 ---
147 CTRL_Vresleft <= '0';
148 CTRL_Vresbotleft <= '0';
149 READY_FOR_NEWDATA <= '0';
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150

151 case pstate is
152 when S0 => CTRL_Vstart <= '0';
153 CTRL_Vmove1 <= '0';
154 CTRL_Vop <= '0';
155 CTRL_Vmove2 <= '0';
156 CTRL_Vmove2C <= '0';
157 CTRL_Vmove3 <= '0';
158 CTRL_Vmovecout <= '0';
159 CTRL_Vtankbot <= '0';
160 CTRL_Vnoext <= '0';
161 CTRL_Vmoveres <= '0';
162 CTRL_Vmove4 <= '0';
163 CTRL_Vnewdata <= '0';
164 CTRL_Vdetect <= '0';
165 CTRL_Vrout <= '0';
166 CTRL_Vsout <= '0';
167 CTRL_Vtanktop <= '0';
168 CTRL_Vouttank <= '0';
169 CTRL_MTJ_W1 <= '0';
170 CTRL_MTJ_W2 <= '0';
171 CTRL_MTJ_W3 <= '0';
172 CTRL_mux1 <= "00";
173 ACK_DETECT_MTJ_R1 <= '0';
174 ACK_DETECT_MTJ_R2 <= '0';
175 RES_AVAILABLE <= '0';
176 REQUEST_NEW_START <= '0';
177 REQUEST_NEW_START_W <= '0';
178 REQUEST_NEW_STORE <= '0';
179 ---
180 CTRL_Vresleft <= '0';
181 CTRL_Vresbotleft <= '0';
182 READY_FOR_NEWDATA <= '0';
183 when S1 => CTRL_Vnoext <= '1', '0' after CLOCK_PERIOD/2;
184 READY_FOR_NEWDATA <= '1';
185 CTRL_Vstart <= '1';
186 when S2 => CTRL_Vresleft <= '1';
187 when S3 => CTRL_Vresbotleft <= '1';
188 when S4 => CTRL_Vnoext <= '1';
189 when S5 => CTRL_Vnoext <= '1';
190 CTRL_Vmove1 <= '1';
191 CTRL_MTJ_W1 <= '1';
192 CTRL_MTJ_W2 <= '1';
193 when S6 => CTRL_Vmove1 <= '1';
194 CTRL_MTJ_W1 <= '1';
195 CTRL_MTJ_W2 <= '1';
196 CTRL_MTJ_W3 <= '1';
197 when S7 => CTRL_Vmove1 <= '1';
198 CTRL_MTJ_W1 <= '1';
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199 CTRL_MTJ_W2 <= '1';
200 when S8 => CTRL_Vop <= '1';
201 when S8_1 => CTRL_Vop <= '1';
202 when S8_2 => CTRL_Vop <= '1';
203 when S8_3 => CTRL_Vop <= '1';
204 when S8_4 => CTRL_Vop <= '1';
205 when S8_5 => CTRL_Vop <= '1';
206 when S8_6 => CTRL_Vop <= '1';
207 when S9 => CTRL_Vmove2 <= '1';
208 CTRL_Vmove2C <= '1';
209 when S10 => CTRL_Vmove2C <= '1';
210 when S11 => CTRL_mux1 <= "10";
211 when S12 => CTRL_mux1 <= "01";
212 when S13 => CTRL_mux1 <= "11";
213 when S14 => CTRL_Vmove2 <= '1';
214 when S15 => CTRL_Vmove3 <= '1';
215 when S16 => CTRL_Vrout <= '1';
216 when S17 => CTRL_Vsout <= '1';
217 when S18 => CTRL_Vmove3 <= '1';
218 when S19 => CTRL_Vmove4 <= '1', '0' after CLOCK_PERIOD/2;
219 when S20 => CTRL_Vmove4 <= '1';
220 when S21 => CTRL_Vnewdata <= '1';
221 when S22 => CTRL_Vmoveres <= '1';
222 CTRL_Vmovecout <= '1';
223 when S23 => CTRL_Vtanktop <= '1';
224 CTRL_Vmoveres <= '1';
225 CTRL_Vmovecout <= '1';
226 when S24 => CTRL_Vmoveres <= '1';
227 CTRL_Vmovecout <= '1';
228 when S25 => CTRL_Vtanktop <= '1';
229 when S26 => RES_AVAILABLE <= '1';
230 when S27 => RES_AVAILABLE <= '1';
231 when S28 => RES_AVAILABLE <= '1';
232 when S29 => CTRL_Vdetect <= '1';
233 when S30 => REQUEST_NEW_STORE <= '1';
234 when S31 => REQUEST_NEW_START_W <= '1';
235 ACK_DETECT_MTJ_R2 <= '1';
236 when S32 => REQUEST_NEW_START <= '1';
237 ACK_DETECT_MTJ_R2 <= '1';
238 when S33 => CTRL_Vstart <= '1';
239 CTRL_Vtankbot <= '1';
240 when S34 => CTRL_Vtankbot <= '1';
241 CTRL_Vnoext <= '1', '0' after CLOCK_PERIOD/2;
242 READY_FOR_NEWDATA <= '1';
243 CTRL_Vouttank <= '1';
244 when S35 => CTRL_Vresleft <= '1';
245 when S36 => CTRL_Vresbotleft <= '1';
246 when S37 => CTRL_Vnoext <= '1';
247 when S38 => CTRL_Vnoext <= '1';
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248 when S39 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
249 when S40 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
250 when S41 => CTRL_Vnoext <= '1';
251 ACK_DETECT_MTJ_R1 <= '1';
252 when S42 => CTRL_MTJ_W3 <= '1';
253 when S43 => CTRL_Vmove1 <= '1';
254 when S44 => CTRL_Vmove1 <= '1';
255 ACK_DETECT_MTJ_R1 <= '1';
256

257 when others => CTRL_Vstart <= '0';
258 CTRL_Vmove1 <= '0';
259 CTRL_Vop <= '0';
260 CTRL_Vmove2 <= '0';
261 CTRL_Vmove2C <= '0';
262 CTRL_Vmove3 <= '0';
263 CTRL_Vmovecout <= '0';
264 CTRL_Vtankbot <= '0';
265 CTRL_Vnoext <= '0';
266 CTRL_Vmoveres <= '0';
267 CTRL_Vmove4 <= '0';
268 CTRL_Vnewdata <= '0';
269 CTRL_Vdetect <= '0';
270 CTRL_Vrout <= '0';
271 CTRL_Vsout <= '0';
272 CTRL_Vtanktop <= '0';
273 CTRL_Vouttank <= '0';
274 CTRL_MTJ_W1 <= '0';
275 CTRL_MTJ_W2 <= '0';
276 CTRL_MTJ_W3 <= '0';
277 CTRL_mux1 <= "00";
278 ACK_DETECT_MTJ_R1 <= '0';
279 ACK_DETECT_MTJ_R2 <= '0';
280 RES_AVAILABLE <= '0';
281 REQUEST_NEW_START <= '0';
282 REQUEST_NEW_START_W <= '0';
283 REQUEST_NEW_STORE <= '0';
284 ---
285 CTRL_Vresleft <= '0';
286 CTRL_Vresbotleft <= '0';
287 READY_FOR_NEWDATA <= '0';
288 end case;
289 end process output;
290 end Behaviour;
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C.5. Cell11
C.5.1. Datapath

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8 entity CELL_XX is
9 port( IN_CELL, RESET_n: in std_logic;

10 CURRENTclk: in real;
11

12 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop,
CTRL_Vouttank: in std_logic;

↪→

↪→

↪→

13 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
14 CTRL_mux1: in std_logic_vector(1 downto 0);
15 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
16 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
17 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
18

19 CELL_OUT_MTJ_CONV14_out, CELL_OUT_MTJ_CONV15_out, CELL_OUT_MTJ_CONV11_out,
CELL_OUT_MTJ_CONV13_out, CELL_OUT_MTJ_CONV12_out, CELL_OUT_DEV2_out,
CELL_OUT_TANKT_out: out std_logic;

↪→

↪→

20

21 CTRL_Vcoutleft, CTRL_Vcouttop, CTRL_Vrestop, CTRL_Vresbotleft,
CTRL_Vresleft: in std_logic;↪→

22 TOP_COUT, LEFT_COUT, TOP_RESULT, LEFT_RESULT, BOTLEFT_RESULT: in std_logic;
23 TOP_COUT_CURRENT, LEFT_COUT_CURRENT, TOP_RESULT_CURRENT,

LEFT_RESULT_CURRENT, BOTLEFT_RESULT_CURRENT: in real↪→

24 );
25 end entity CELL_XX;
26

27 architecture Structure of CELL_XX is
28 component SKYRMIONNOTCH is
29 port( INPUT : in std_logic;
30 CURRENT : in real;
31 OUTPUT : out std_logic);
32 end component SKYRMIONNOTCH;
33

34 component SKYRMIONNOTCHseq is
35 generic (N: integer := 5);
36 port( INPUT: in std_logic;
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37 CURRENT: in real;
38 OUTPUT: out std_logic);
39 end component SKYRMIONNOTCHseq;
40

41 component SKYRMIONJOIN is
42 port( A : in std_logic;
43 B : in std_logic;
44 CURRENT : in real;
45 OUTPUT : out std_logic);
46 end component SKYRMIONJOIN;
47

48 component SKYRMIONH is
49 port ( INPUTA : in std_logic;
50 INPUTB : in std_logic;
51 CURRENT : in real;
52 OUTPUTAND : out std_logic;
53 OUTPUTOR : out std_logic);
54 end component SKYRMIONH;
55

56 component SKYRMIONFULLADDER is
57 port( A : in std_logic;
58 B : in std_logic;
59 CIN1 : in std_logic;
60 CIN2 : in std_logic;
61 ONE1 : in std_logic;
62 ONE2 : in std_logic;
63 CURRENT : in real;
64 CTRL1 : out std_logic;
65 SUM : out std_logic;
66 COUT1 : out std_logic;
67 COUT2 : out std_logic;
68 CTRL2 : out std_logic);
69 end component SKYRMIONFULLADDER;
70

71 component voltage_genH is
72 port( CTRL: in std_logic;
73 CURRENT: out real);
74 end component voltage_genH;
75

76 component voltage_genL is
77 port( CTRL: in std_logic;
78 CURRENT: out real);
79 end component voltage_genL;
80

81 component vclock_gen is
82 port( CTRL: in std_logic;
83 CURRENTclk: in real;
84 CURRENT: out real);
85 end component vclock_gen;
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86

87 component skyrmionDUPLICATE is
88 port( IN_SK: in std_logic;
89 CURRENT: in real;
90 OUT_SK_TOP: out std_logic;
91 OUT_SK_BOTTOM: out std_logic);
92 end component skyrmionDUPLICATE;
93

94 component skyrmionMERGE is
95 port( IN_SK_TOP: in std_logic;
96 IN_SK_BOTTOM: in std_logic;
97 CURRENT: in real;
98 OUT_SK: out std_logic);
99 end component skyrmionMERGE;

100

101 component SKYRMIONCROSS_Magn is
102 port( A: in std_logic;
103 B: in std_logic;
104 CURRENTA: in real;
105 CURRENTB: in real;
106 Aout: out std_logic;
107 Bout: out std_logic);
108 end component SKYRMIONCROSS_Magn;
109

110 component SKYRMIONCROSS_noMagn is
111 port( A: in std_logic;
112 B: in std_logic;
113 CURRENTA: in real;
114 CURRENTB: in real;
115 Aout: out std_logic;
116 Bout: out std_logic);
117 end component SKYRMIONCROSS_noMagn;
118

119 component skyrmionDEVIATION is
120 port( IN_SK: in std_logic;
121 CURRENT: in real;
122 CURRENTDEV: in real;
123 OUT_SK: out std_logic;
124 OUT_SK_DEV: out std_logic);
125 end component skyrmionDEVIATION;
126

127 component SRlatch is
128 port( SET: in std_logic;
129 RST: in std_logic;
130 Q: buffer std_logic);
131 end component SRlatch;
132

133 component MTJ_R is
134 port( IN_SK: in std_logic;

380



C.5 – Cell11

135 CURRENT: in real;
136 OUT_SIGN: out std_logic);
137 end component MTJ_R;
138

139 component MTJ_W is
140 port( CTRL: in std_logic;
141 OUT_SK: out std_logic);
142 end component MTJ_W;
143

144 component MTJ_CONV is
145 port( IN_SK: in std_logic;
146 CURRENT: in real;
147 OUT_SK: out std_logic);
148 end component MTJ_CONV;
149

150 component tank_bottom is
151 port( IN1, IN2, IN3, IN4, IN5, IN6, IN7: in std_logic; --from left to right
152 CURRENT: in real;
153 tankOUT1, tankOUT2, tankOUT3: out std_logic); --priority order: from

right to left↪→

154 end component tank_bottom;
155

156 component tank_top is
157 port( IN1, IN2, IN3: in std_logic; --from right to left
158 CURRENT: in real;
159 tankOUT: out std_logic);
160 end component tank_top;
161

162 component tank_topXX is
163 port( IN1, IN2, IN3, IN4, IN5: in std_logic; --from right to left
164 CURRENT: in real;
165 tankOUT: out std_logic);
166 end component tank_topXX;
167

168 component mux1 is
169 port( inT, inM, inB: in std_logic;
170 CURRENT: in real;
171 CURRENT_V1, CURRENT_V2, CURRENT_V3: in real;
172 selection: in std_logic_vector(1 downto 0);
173 muxOUT, V1OUT, V3OUT, V2OUTt, V2OUTb: out std_logic);
174 end component mux1;
175

176 component mux2 is
177 port( inR, inL: in std_logic; --Right=result, Left=stored value
178 CURRENT: in real;
179 CURRENT_Vst, CURRENT_Vres: in real;
180 selection: in std_logic; --'1'=result, '0'=stored value
181 muxOUT, VstOUT, VresOUT: out std_logic);
182 end component mux2;
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183

184 signal CURRENT_Vstart, CURRENT_Vmove1, CURRENT_Vop, CURRENT_Vmove2,
CURRENT_Vmove2C, CURRENT_Vmove3, CURRENT_MUX1_V1, CURRENT_MUX1_V2,
CURRENT_MUX1_V3, CURRENT_Vmovecout, CURRENT_Vtankbot, CURRENT_Vnoext,
CURRENT_Vmoveres, CURRENT_Vtanktop, CURRENT_Vouttank, CURRENT_Vmove4,
CURRENT_Vnewdata, CURRENT_Vdetect, CURRENT_Vrout, CURRENT_Vsout,
CURRENT_Vrestop, CURRENT_Vresbotleft, CURRENT_Vresleft,
CURRENT_Vcoutleft,CURRENT_Vcouttop: real;

↪→

↪→

↪→

↪→

↪→

↪→

185

186 signal MEM_out: std_logic;
187 signal x2_1_outtop, x2_1_outbottom, x2_2_outtop, x2_2_outbottom, x2_3_outtop,

x2_3_outbottom, x2_4_outtop, x2_4_outbottom, x2_5_outright, x2_5_outleft,
x2_6_outtop, x2_6_outbottom, x2_7_outtop, x2_7_outbottom, x2_8_outtop,
x2_8_outbottom, x1_1_out: std_logic;

↪→

↪→

↪→

188 signal CROSSM1_outA, CROSSM1_outB, CROSSM2_outA, CROSSM2_outB, CROSSM3_outA,
CROSSM3_outB, CROSSM4_outA, CROSSM4_outB: std_logic;↪→

189 signal CROSS11_Aout, CROSS11_Bout, CROSS12_Aout, CROSS12_Bout, CROSS21_Aout,
CROSS21_Bout, CROSS22_Aout, CROSS22_Bout, CROSS3_Aout, CROSS3_Bout,
CROSS4_Aout, CROSS4_Bout, CROSS6_Aout, CROSS6_Bout, CROSS7_Aout,
CROSS7_Bout, CROSS8_Aout, CROSS8_Bout, CROSS9_Aout, CROSS9_Bout,
CROSS10_Aout, CROSS10_Bout, CROSS13_Aout, CROSS13_Bout, CROSS14_Aout,
CROSS14_Bout, CROSS15_Aout, CROSS15_Bout, CROSS16_Aout, CROSS16_Bout,
CROSS17_Aout, CROSS17_Bout: std_logic;

↪→

↪→

↪→

↪→

↪→

↪→

190 signal SYNC_LOG_TOP_out, SYNC_LOG_BOT_out, AND_out, OR_out, SKEW_OR_out,
SKEW_AND_out: std_logic;↪→

191 signal FA_CTRL1_out, FA_CTRL2_out, FA_COUT1_out, FA_COUT2_out, FA_SUM_out:
std_logic;↪→

192 signal RST_SR_MTJR1, RST_SR_MTJR2: std_logic;
193 signal MTJ_R1_out, MTJ_R2_out: std_logic;
194 signal MTJ_W1_out, MTJ_W2_out, MTJ_W3_out: std_logic;
195 signal MTJ_CONV1_out, MTJ_CONV2_out, MTJ_CONV3_out, MTJ_CONV4_out,

MTJ_CONV5_out, MTJ_CONV6_out, MTJ_CONV7_out, MTJ_CONV8_out, MTJ_CONV9_out,
MTJ_CONV10_out, MTJ_CONV11_out, MTJ_CONV12_out, MTJ_CONV13_out,
MTJ_CONV14_out, MTJ_CONV15_out, MTJ_CONV16_out: std_logic;

↪→

↪→

↪→

196 signal MUX1_CTRL_V1, MUX1_CTRL_V2, MUX1_CTRL_V3: std_logic;
197 signal MUX1_out, MUX1_V1out, MUX1_V3out, MUX1_V2Tout, MUX1_V2Bout: std_logic;
198 signal CTRL_mux2, MUX2_Vstout, MUX2_Vresout, MUX2_out: std_logic;
199 signal JOIN1_out, JOIN2_out, JOIN3_out, JOIN5_out, JOIN6_out, JOIN7_out,

JOIN8_out, JOIN9_out, JOIN10_out, JOIN11_out: std_logic;↪→

200 signal DEV1_out, DEV1_devout, DEV2_out, DEV2_devout, DEV3_out, DEV3_devout,
DEV4_out, DEV4_devout, DEV5_out, DEV5_devout, DEV6_out, DEV6_devout,
DEV7_out, DEV7_devout: std_logic;

↪→

↪→

201 signal TANKB_out1, TANKB_out2, TANKB_out3: std_logic;
202 signal TANKT_out: std_logic;
203

204

205 begin
206 Vstart: voltage_genH port map (CTRL => CTRL_Vstart, CURRENT =>

CURRENT_Vstart);↪→
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207 MEM: SKYRMIONNOTCH port map (INPUT => IN_CELL, CURRENT =>
CURRENT_Vstart, OUTPUT => MEM_out);↪→

208 Vmove1: voltage_genL port map (CTRL => CTRL_Vmove1, CURRENT =>
CURRENT_Vmove1);↪→

209 x2_1: skyrmionDUPLICATE port map (IN_SK => MEM_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_1_outtop, OUT_SK_BOTTOM =>
x2_1_outbottom);

↪→

↪→

210 MTJ_CONV_16: MTJ_CONV port map (IN_SK => x2_1_outtop, CURRENT =>
CURRENT_Vmove1, OUT_SK => MTJ_CONV16_out);↪→

211 Vcoutleft: voltage_genL port map (CTRL => CTRL_Vcoutleft, CURRENT =>
CURRENT_Vcoutleft);↪→

212 Vcouttop: voltage_genL port map (CTRL => CTRL_Vcouttop, CURRENT =>
CURRENT_Vcouttop);↪→

213 CROSS14: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV16_out, B =>
DEV6_devout, CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vcoutleft,
Aout => CROSS14_Aout, Bout => CROSS14_Bout);

↪→

↪→

214 CROSS15: SKYRMIONCROSS_noMagn port map (A => CROSS14_Aout, B =>
CROSS13_Bout, CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vcouttop,
Aout => CROSS15_Aout, Bout => CROSS15_Bout);

↪→

↪→

215 x2_2: skyrmionDUPLICATE port map (IN_SK => CROSS15_Aout, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_2_outtop, OUT_SK_BOTTOM =>
x2_2_outbottom);

↪→

↪→

216

217 Vmove3: voltage_genL port map (CTRL => CTRL_Vmove3, CURRENT =>
CURRENT_Vmove3);↪→

218 MTJ_CONV_10: MTJ_CONV port map (IN_SK => x2_1_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV10_out);↪→

219 CROSS16: SKYRMIONCROSS_noMagn port map (A => TOP_COUT, B =>
MTJ_CONV10_out, CURRENTA => TOP_COUT_CURRENT, CURRENTB => CURRENT_Vmove3,
Aout => CROSS16_Aout, Bout => CROSS16_Bout);

↪→

↪→

220 CROSS17: SKYRMIONCROSS_noMagn port map (A => LEFT_COUT, B => CROSS16_Bout,
CURRENTA => LEFT_COUT_CURRENT, CURRENTB => CURRENT_Vmove3, Aout =>
CROSS17_Aout, Bout => CROSS17_Bout);

↪→

↪→

221

222 Vnoext: voltage_genL port map (CTRL => CTRL_Vnoext, CURRENT =>
CURRENT_Vnoext);↪→

223 DEV6: skyrmionDEVIATION port map (IN_SK => CROSS16_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vcoutleft, OUT_SK => DEV6_out,
OUT_SK_DEV => DEV6_devout);

↪→

↪→

224 DEV7: skyrmionDEVIATION port map (IN_SK => CROSS17_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vcouttop, OUT_SK => DEV7_out,
OUT_SK_DEV => DEV7_devout);

↪→

↪→

225 CROSS13: SKYRMIONCROSS_noMagn port map (A => DEV6_out, B => DEV7_devout,
CURRENTA => CURRENT_Vnoext, CURRENTB => CURRENT_Vcouttop, Aout =>
CROSS13_Aout, Bout => CROSS13_Bout);

↪→

↪→

226 JOIN11: SKYRMIONJOIN port map (A => CROSS13_Aout, B => DEV7_out, CURRENT =>
CURRENT_Vnoext, OUTPUT => JOIN11_out);↪→

227

228 CROSSM1: SKYRMIONCROSS_Magn port map (A => x2_2_outbottom, B =>
CROSSM4_outB, CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout
=> CROSSM1_outA, Bout => CROSSM1_outB);

↪→

↪→
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229 Vop: vclock_gen port map (CTRL => CTRL_Vop, CURRENTclk => CURRENTclk,
CURRENT => CURRENT_Vop);↪→

230 SYNCNET_LOG_TOP: SKYRMIONNOTCH port map (INPUT => x2_2_outtop, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_TOP_out);↪→

231 SYNCNET_LOG_BOT: SKYRMIONNOTCH port map (INPUT => CROSSM1_outB, CURRENT =>
CURRENT_Vop, OUTPUT => SYNC_LOG_BOT_out);↪→

232 LOGIC: SKYRMIONH port map (INPUTA => SYNC_LOG_TOP_out, INPUTB =>
SYNC_LOG_BOT_out, CURRENT => CURRENT_Vop, OUTPUTAND => AND_OUT, OUTPUTOR
=> OR_OUT);

↪→

↪→

233 SKEW_OR: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT => OR_OUT,
CURRENT => CURRENT_Vop, OUTPUT => SKEW_OR_out);↪→

234 SKEW_AND: SKYRMIONNOTCHseq generic map (N => 5) port map (INPUT =>
AND_OUT, CURRENT => CURRENT_Vop, OUTPUT => SKEW_AND_out);↪→

235 FA: SKYRMIONFULLADDER port map (A => CROSSM1_outA, B =>
x2_3_outbottom, CIN1 => x2_7_outtop, CIN2 => x2_7_outbottom, ONE1 =>
CROSSM2_outB, ONE2 => CROSSM3_outB, CURRENT => CURRENT_Vop, CTRL1 =>
FA_CTRL1_out, SUM => FA_SUM_out, COUT1 => FA_COUT1_out, COUT2 =>
FA_COUT2_out, CTRL2 => FA_CTRL2_out);

↪→

↪→

↪→

↪→

236

237 MTJ_CONV_1: MTJ_CONV port map (IN_SK => SKEW_OR_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV1_out);↪→

238 MTJ_CONV_2: MTJ_CONV port map (IN_SK => SKEW_AND_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV2_out);↪→

239 MTJ_CONV_3: MTJ_CONV port map (IN_SK => FA_SUM_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV3_out);↪→

240 MTJ_CONV_4: MTJ_CONV port map (IN_SK => FA_COUT1_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV4_out);↪→

241 MTJ_CONV_5: MTJ_CONV port map (IN_SK => FA_COUT2_out, CURRENT => CURRENT_Vop,
OUT_SK => MTJ_CONV5_out);↪→

242 Vmove2: voltage_genL port map (CTRL => CTRL_Vmove2, CURRENT =>
CURRENT_Vmove2);↪→

243 Vmove2C: voltage_genL port map (CTRL => CTRL_Vmove2C, CURRENT =>
CURRENT_Vmove2C);↪→

244

245 MUX1_CTRL_V1 <= CTRL_mux1(0) and (not CTRL_mux1(1));
246 MUX1_CTRL_V2 <= CTRL_mux1(1) and (not CTRL_mux1(0));
247 MUX1_CTRL_V3 <= CTRL_mux1(1) and CTRL_mux1(0);
248 Vmux1_1: voltage_genL port map (CTRL => MUX1_CTRL_V1, CURRENT =>

CURRENT_MUX1_V1);↪→

249 Vmux1_2: voltage_genL port map (CTRL => MUX1_CTRL_V2, CURRENT =>
CURRENT_MUX1_V2);↪→

250 Vmux1_3: voltage_genL port map (CTRL => MUX1_CTRL_V3, CURRENT =>
CURRENT_MUX1_V3);↪→

251

252 MUX1_COM: mux1 port map (inT => MTJ_CONV1_out, inM => MTJ_CONV2_out, inB
=> MTJ_CONV3_out, CURRENT => CURRENT_Vmove2, CURRENT_V1 =>
CURRENT_MUX1_V1, CURRENT_V2 => CURRENT_MUX1_V2, CURRENT_V3 =>
CURRENT_MUX1_V3, selection => CTRL_mux1, muxOUT => MUX1_out, V1OUT =>
MUX1_V1out, V3OUT => MUX1_V3out, V2OUTt => MUX1_V2Tout, V2OUTb =>
MUX1_V2Bout);

↪→

↪→

↪→

↪→

↪→
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253 x2_4: skyrmionDUPLICATE port map (IN_SK => MUX1_out, CURRENT =>
CURRENT_Vmove3, OUT_SK_TOP => x2_4_outtop, OUT_SK_BOTTOM =>
x2_4_outbottom);

↪→

↪→

254 MTJ_CONV_7: MTJ_CONV port map (IN_SK => x2_4_outbottom, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV7_out);↪→

255

256 CROSS11: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV4_out, B => MUX1_V1out,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1, Aout =>
CROSS11_Aout, Bout => CROSS11_Bout);

↪→

↪→

257 CROSS12: SKYRMIONCROSS_noMagn port map (A => CROSS11_Aout, B => MUX1_V2Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS12_Aout, Bout => CROSS12_Bout);

↪→

↪→

258 CROSS21: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV5_out, B =>
CROSS11_Bout, CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V1,
Aout => CROSS21_Aout, Bout => CROSS21_Bout);

↪→

↪→

259 CROSS22: SKYRMIONCROSS_noMagn port map (A => CROSS21_Aout, B => CROSS12_Bout,
CURRENTA => CURRENT_Vmove2C, CURRENTB => CURRENT_MUX1_V2, Aout =>
CROSS22_Aout, Bout => CROSS22_Bout);

↪→

↪→

260

261 Vmovecout: voltage_genL port map (CTRL => CTRL_Vmovecout, CURRENT =>
CURRENT_Vmovecout);↪→

262 x1_1: skyrmionMERGE port map (IN_SK_TOP => CROSS12_Aout, IN_SK_BOTTOM =>
CROSS22_Aout, CURRENT => CURRENT_Vmovecout, OUT_SK => x1_1_out);↪→

263 MTJ_CONV_6: MTJ_CONV port map (IN_SK => x1_1_out, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV6_out);↪→

264 CROSS4: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV6_out, B =>
MTJ_CONV7_out, CURRENTA => CURRENT_Vmovecout, CURRENTB => CURRENT_Vmove3,
Aout => CROSS4_Aout, Bout => CROSS4_Bout);

↪→

↪→

265

266 x2_8: skyrmionDUPLICATE port map (IN_SK => CROSS4_Aout, CURRENT =>
CURRENT_Vmovecout, OUT_SK_TOP => x2_8_outtop, OUT_SK_BOTTOM =>
x2_8_outbottom);

↪→

↪→

267 MTJ_CONV_14: MTJ_CONV port map (IN_SK => x2_8_outtop, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV14_out);↪→

268 MTJ_CONV_15: MTJ_CONV port map (IN_SK => x2_8_outbottom, CURRENT =>
CURRENT_Vmovecout, OUT_SK => MTJ_CONV15_out);↪→

269 --CROSS9: SKYRMIONCROSS_noMagn port map (A => MTJ_CONV11_out, B =>
MTJ_CONV15_out, CURRENTA => CURRENT_Vmoveres, CURRENTB =>
CURRENT_Vmovecout, Aout => CROSS9_Aout, Bout => CROSS9_Bout);

↪→

↪→

270

271 Vtankbot: vclock_gen port map (CTRL => CTRL_Vtankbot, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtankbot);↪→

272 TANK_BOT: tank_bottom port map (IN1 => FA_CTRL2_out, IN2 => FA_CTRL1_out, IN3
=> CROSS21_Bout, IN4 => CROSS22_Bout, IN5 => JOIN10_out, IN6 =>
MUX2_Vresout, IN7 => MUX2_Vstout, CURRENT => CURRENT_Vtankbot, tankOUT1 =>
TANKB_out1, tankOUT2 => TANKB_out2, tankOUT3 => TANKB_out3);

↪→

↪→

↪→

273

274 MTJ_W_1: MTJ_W port map (CTRL => CTRL_MTJ_W1, OUT_SK => MTJ_W1_out);
275 MTJ_W_2: MTJ_W port map (CTRL => CTRL_MTJ_W2, OUT_SK => MTJ_W2_out);
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276 JOIN2: SKYRMIONJOIN port map (A => MTJ_W1_out, B => TANKB_out2, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN2_out);↪→

277 JOIN3: SKYRMIONJOIN port map (A => MTJ_W2_out, B => TANKB_out1, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN3_out);↪→

278 Vouttank: voltage_genL port map (CTRL => CTRL_Vouttank, CURRENT =>
CURRENT_Vouttank);↪→

279 CROSSM2: SKYRMIONCROSS_Magn port map (A => TANKB_out1, B => JOIN2_out,
CURRENTA => CURRENT_Vouttank, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM2_outA, Bout => CROSSM2_outB);

↪→

↪→

280 CROSSM3: SKYRMIONCROSS_Magn port map (A => CROSSM2_outA, B => JOIN3_out,
CURRENTA => CURRENT_Vouttank, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM3_outA, Bout => CROSSM3_outB);

↪→

↪→

281

282 MTJ_R_1: MTJ_R port map (IN_SK => CROSSM3_outA, CURRENT => CURRENT_Vouttank,
OUT_SIGN => MTJ_R1_out);↪→

283 RST_SR_MTJR1 <= ACK_DETECT_MTJ_R1 or (not(RESET_n));
284 SR_MTJR1: SRlatch port map (SET => MTJ_R1_out, RST => RST_SR_MTJR1, Q =>

SR_MTJR1_out);↪→

285 MTJ_CONV_8: MTJ_CONV port map (IN_SK => CROSSM3_outA, CURRENT =>
CURRENT_Vouttank, OUT_SK => MTJ_CONV8_out);↪→

286 DEV1: skyrmionDEVIATION port map (IN_SK => MTJ_CONV8_out, CURRENT =>
CURRENT_Vmove1, CURRENTDEV => CURRENT_Vnoext, OUT_SK => DEV1_out,
OUT_SK_DEV => DEV1_devout);

↪→

↪→

287 JOIN5: SKYRMIONJOIN port map (A => DEV1_devout, B => CROSS9_Aout, CURRENT
=> CURRENT_Vnoext, OUTPUT => JOIN5_out);↪→

288 JOIN9: SKYRMIONJOIN port map (A => JOIN5_out, B => CROSS8_Aout, CURRENT =>
CURRENT_Vnoext, OUTPUT => JOIN9_out);↪→

289 JOIN10: SKYRMIONJOIN port map (A => JOIN9_out, B => DEV5_out, CURRENT =>
CURRENT_Vnoext, OUTPUT => JOIN10_out);↪→

290

291 Vrestop: voltage_genL port map (CTRL => CTRL_Vrestop, CURRENT =>
CURRENT_Vrestop);↪→

292 Vresleft: voltage_genL port map (CTRL => CTRL_Vresleft, CURRENT =>
CURRENT_Vresleft);↪→

293 Vresbotleft: voltage_genL port map (CTRL => CTRL_Vresbotleft, CURRENT =>
CURRENT_Vresbotleft);↪→

294 CROSS3: SKYRMIONCROSS_noMagn port map (A => TOP_RESULT, B =>
CROSS17_Bout, CURRENTA => TOP_RESULT_CURRENT, CURRENTB => CURRENT_Vmove3,
Aout => CROSS3_Aout, Bout => CROSS3_Bout);

↪→

↪→

295 CROSS6: SKYRMIONCROSS_noMagn port map (A => LEFT_RESULT, B => CROSS3_Bout,
CURRENTA => LEFT_RESULT_CURRENT, CURRENTB => CURRENT_Vmove3, Aout =>
CROSS6_Aout, Bout => CROSS6_Bout);

↪→

↪→

296 CROSS7: SKYRMIONCROSS_noMagn port map (A => BOTLEFT_RESULT, B =>
CROSS6_Bout, CURRENTA => BOTLEFT_RESULT_CURRENT, CURRENTB =>
CURRENT_Vmove3, Aout => CROSS7_Aout, Bout => CROSS7_Bout);

↪→

↪→

297

298 DEV3: skyrmionDEVIATION port map (IN_SK => CROSS3_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vrestop, OUT_SK => DEV3_out,
OUT_SK_DEV => DEV3_devout);

↪→

↪→
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299 DEV4: skyrmionDEVIATION port map (IN_SK => CROSS6_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vresleft, OUT_SK => DEV4_out,
OUT_SK_DEV => DEV4_devout);

↪→

↪→

300 DEV5: skyrmionDEVIATION port map (IN_SK => CROSS7_Aout, CURRENT =>
CURRENT_Vnoext, CURRENTDEV => CURRENT_Vresbotleft, OUT_SK => DEV5_out,
OUT_SK_DEV => DEV5_devout);

↪→

↪→

301 CROSS8: SKYRMIONCROSS_noMagn port map (A => DEV4_out, B => DEV5_devout,
CURRENTA => CURRENT_Vnoext, CURRENTB => CURRENT_Vresbotleft, Aout =>
CROSS8_Aout, Bout => CROSS8_Bout);

↪→

↪→

302 CROSS10: SKYRMIONCROSS_noMagn port map (A => DEV3_out, B => DEV4_devout,
CURRENTA => CURRENT_Vnoext, CURRENTB => CURRENT_Vresleft, Aout =>
CROSS10_Aout, Bout => CROSS10_Bout);

↪→

↪→

303 CROSS9: SKYRMIONCROSS_noMagn port map (A => CROSS10_Aout, B => CROSS8_Bout,
CURRENTA => CURRENT_Vnoext, CURRENTB => CURRENT_Vresbotleft, Aout =>
CROSS9_Aout, Bout => CROSS9_Bout);

↪→

↪→

304

305 JOIN8: SKYRMIONJOIN port map (A => CROSS9_Bout, B => DEV1_out, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN8_out);↪→

306 JOIN7: SKYRMIONJOIN port map (A => CROSS10_Bout, B => JOIN8_out, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN7_out);↪→

307 JOIN6: SKYRMIONJOIN port map (A => DEV3_devout, B => JOIN7_out, CURRENT =>
CURRENT_Vmove1, OUTPUT => JOIN6_out);↪→

308 MTJ_W_3: MTJ_W port map (CTRL => CTRL_MTJ_W3, OUT_SK => MTJ_W3_out);
309 JOIN1: SKYRMIONJOIN port map (A => MTJ_W3_out, B => JOIN6_out, CURRENT =>

CURRENT_Vmove1, OUTPUT => JOIN1_out);↪→

310 x2_3: skyrmionDUPLICATE port map (IN_SK => JOIN1_out, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_3_outtop, OUT_SK_BOTTOM =>
x2_3_outbottom);

↪→

↪→

311 CROSSM4: SKYRMIONCROSS_Magn port map (A => JOIN11_out, B => x2_3_outtop,
CURRENTA => CURRENT_Vmove1, CURRENTB => CURRENT_Vmove1, Aout =>
CROSSM4_outA, Bout => CROSSM4_outB);

↪→

↪→

312 x2_7: skyrmionDUPLICATE port map (IN_SK => CROSSM4_outA, CURRENT =>
CURRENT_Vmove1, OUT_SK_TOP => x2_7_outtop, OUT_SK_BOTTOM =>
x2_7_outbottom);

↪→

↪→

313

314 CTRL_mux2 <= CTRL_Vrout;
315 Vmux2_Vsout: voltage_genL port map (CTRL => CTRL_Vsout, CURRENT =>

CURRENT_Vsout);↪→

316 Vmux2_Vrout: voltage_genL port map (CTRL => CTRL_Vrout, CURRENT =>
CURRENT_Vrout);↪→

317 MUX2_COM: mux2 port map (inR => CROSS4_Bout, inL => CROSS7_Bout, CURRENT
=> CURRENT_Vmove3, CURRENT_Vst => CURRENT_Vsout, CURRENT_Vres =>
CURRENT_Vrout, selection => CTRL_mux2, muxOUT => MUX2_out, VstOUT =>
MUX2_Vstout, VresOUT => MUX2_Vresout);

↪→

↪→

↪→

318

319 Vmoveres: voltage_genL port map (CTRL => CTRL_Vmoveres, CURRENT =>
CURRENT_Vmoveres);↪→

320 x2_5: skyrmionDUPLICATE port map (IN_SK => MUX2_out, CURRENT =>
CURRENT_Vmoveres, OUT_SK_TOP => x2_5_outright, OUT_SK_BOTTOM =>
x2_5_outleft);

↪→

↪→
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321 MTJ_CONV_12: MTJ_CONV port map (IN_SK => x2_5_outleft, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV12_out);↪→

322 x2_6: skyrmionDUPLICATE port map (IN_SK => x2_5_outright, CURRENT =>
CURRENT_Vmoveres, OUT_SK_TOP => x2_6_outtop, OUT_SK_BOTTOM =>
x2_6_outbottom);

↪→

↪→

323 MTJ_CONV_11: MTJ_CONV port map (IN_SK => x2_6_outtop, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV11_out);↪→

324 MTJ_CONV_13: MTJ_CONV port map (IN_SK => x2_6_outbottom, CURRENT =>
CURRENT_Vmoveres, OUT_SK => MTJ_CONV13_out);↪→

325

326 Vtanktop: vclock_gen port map (CTRL => CTRL_Vtanktop, CURRENTclk =>
CURRENTclk, CURRENT => CURRENT_Vtanktop);↪→

327 TANK_TOP_C: tank_topXX port map (IN1 => MUX1_V2Tout, IN2 => MUX1_V3out, IN3
=> DEV2_devout, IN4 => CROSS15_Bout, IN5 => CROSS14_Bout, CURRENT =>
CURRENT_Vtanktop, tankOUT => TANKT_out);

↪→

↪→

328 MTJ_CONV_9: MTJ_CONV port map (IN_SK => x2_4_outtop, CURRENT =>
CURRENT_Vmove3, OUT_SK => MTJ_CONV9_out);↪→

329 Vmove4: voltage_genL port map (CTRL => CTRL_Vmove4, CURRENT =>
CURRENT_Vmove4);↪→

330 Vnewdata: voltage_genL port map (CTRL => CTRL_Vnewdata, CURRENT =>
CURRENT_Vnewdata);↪→

331 DEV2: skyrmionDEVIATION port map (IN_SK => MTJ_CONV9_out, CURRENT =>
CURRENT_Vmove4, CURRENTDEV => CURRENT_Vnewdata, OUT_SK => DEV2_out,
OUT_SK_DEV => DEV2_devout);

↪→

↪→

332 Vdetect: voltage_genL port map (CTRL => CTRL_Vdetect, CURRENT =>
CURRENT_Vdetect);↪→

333 MTJ_R_2: MTJ_R port map (IN_SK => TANKT_out, CURRENT => CURRENT_Vdetect,
OUT_SIGN => MTJ_R2_out);↪→

334 RST_SR_MTJR2 <= ACK_DETECT_MTJ_R2 or (not RESET_n);
335 SR_MTJR2: SRlatch port map (SET => MTJ_R2_out, RST => RST_SR_MTJR2, Q =>

SR_MTJR2_out);↪→

336

337 CELL_OUT_MTJ_CONV14_out <= MTJ_CONV14_out;
338 CELL_OUT_MTJ_CONV15_out <= MTJ_CONV15_out;
339 CELL_OUT_MTJ_CONV11_out <= MTJ_CONV11_out;
340 CELL_OUT_MTJ_CONV13_out <= MTJ_CONV13_out;
341 CELL_OUT_MTJ_CONV12_out <= MTJ_CONV12_out;
342 CELL_OUT_DEV2_out <= DEV2_out;
343 CELL_OUT_TANKT_out <= TANKT_out;
344

345 CELL_OUT_CURRENT_Vmoveres <= CURRENT_Vmoveres;
346 CELL_OUT_CURRENT_Vmovecout <= CURRENT_Vmovecout;
347

348

349 end Structure;
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C.5.1.1. Top tank (only cell 11)

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity tank_topXX is
10 port( IN1, IN2, IN3, IN4, IN5: in std_logic; --from right to left
11 CURRENT: in real;
12 tankOUT: out std_logic);
13 end entity tank_topXX;
14

15 architecture Behavioural of tank_topXX is
16 component SKYRMIONNOTCH is
17 port( INPUT : in std_logic;
18 CURRENT : in real;
19 OUTPUT : out std_logic);
20 end component SKYRMIONNOTCH;
21

22 signal OUT1: std_logic;
23

24 begin
25 process (IN1, IN2, IN3, IN4, IN5, CURRENT)
26 variable Nsk: integer := 0;
27 variable out_en, OUT1_var: std_logic := '0';
28 begin
29 if (IN1'event and IN1='1') then
30 Nsk := Nsk+1;
31 end if;
32 if (IN2'event and IN2='1') then
33 Nsk := Nsk+1;
34 end if;
35 if (IN3'event and IN3='1') then
36 Nsk := Nsk+1;
37 end if;
38 if (IN4'event and IN4='1') then
39 Nsk := Nsk+1;
40 end if;
41 if (IN5'event and IN5='1') then
42 Nsk := Nsk+1;
43 end if;
44

45 if (CURRENT'event and CURRENT = CURRENT_LOW) then
46 if (out_en='0') then
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47 out_en := '1';
48 case Nsk is
49 when 1 => OUT1_var := '1';
50 Nsk := 0;
51 when 0 => OUT1_var := '0';
52 Nsk := 0;
53 when others => OUT1_var := '1';
54 Nsk := Nsk-1;
55 end case;
56 end if;
57 end if;
58

59 if (CURRENT'event and CURRENT = 0.0) then
60 out_en := '0';
61 end if;
62

63 if (OUT1_var = '1') then
64 OUT1_var := '0';
65 OUT1 <= '1', '0' after 10 ps;
66 else
67 OUT1 <= '0';
68 end if;
69

70 end process;
71

72 notch1: SKYRMIONNOTCH port map (INPUT => OUT1, CURRENT => CURRENT, OUTPUT =>
tankOUT);↪→

73

74 end architecture Behavioural;

C.5.2. FSM

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity FSM_CELL_XX is
10 port( CURRENTclk: in real;
11 RESET_n: in std_logic;
12
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13 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C, CTRL_Vmove3,
CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext, CTRL_Vmoveres, CTRL_Vmove4,
CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout, CTRL_Vsout, CTRL_Vtanktop,
CTRL_Vouttank: out std_logic;

↪→

↪→

↪→

14 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
15 CTRL_mux1: out std_logic_vector(1 downto 0);
16 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
17 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
18

19 START, ACK_RES_AVAILABLE: in std_logic;
20 DES_EXTIN_XX, DES_OUT_XX, DES_STORE_XX, DES_NEWDATA_XX: in std_logic;
21 DES_RES_XX: in std_logic_vector(1 downto 0);
22 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→

23 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic;
24

25 CTRL_Vcouttop, CTRL_Vcoutleft, CTRL_Vrestop, CTRL_Vresleft,
CTRL_Vresbotleft: out std_logic;↪→

26 READY_FOR_NEWDATA: out std_logic;
27 DES_COUT_XX: in std_logic;
28 DES_DATA_XX: in std_logic_vector(1 downto 0)
29 );
30 end entity FSM_CELL_XX;
31

32 architecture Behaviour of FSM_CELL_XX is
33

34 type state_type is (
35 reset, S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
36 S11_1, S11_2, S11_3, S11_4, S11_5, S11_6,
37 S11, S12, S13, S14, S15, S16, S17, S18, S19, S20,
38 S21, S22, S23, S24, S25, S26, S27, S28, S29, S30,
39 S31, S32, S33, S34, S35, S36, S37, S38, S39, S40,
40 S41, S42, S43, S44, S45, S46, S47, S48, S49, S50
41 );
42

43 signal pstate, nstate: state_type;
44

45 begin
46

47 state_register: process (CURRENTclk)
48 begin
49 if (CURRENTclk'event and CURRENTclk=CURRENT_HIGH) then
50 if (RESET_n = '0') then
51 pstate <= reset;
52 else
53 pstate <= nstate;
54 end if;
55 end if;
56 end process state_register;
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57

58 state_transition: process (pstate, CURRENTclk)
59 begin
60 case pstate is
61 when reset => nstate <= S0;
62 when S0 => if (START='0') then nstate <= S0; else if(FIRST_RUN='1') then

nstate <= S1; else nstate <= S36; end if; end if;↪→

63 when S1 => if(DES_COUT_XX='0') then nstate <= S2; else nstate <= S3; end
if;↪→

64 when S2 => if (DES_DATA_XX="00") then nstate <= S4;
elsif(DES_DATA_XX="01") then nstate <= S5; elsif
(DES_DATA_XX="10") then nstate <= S6; else nstate <= S7; end if;

↪→

↪→

65 when S3 => if (DES_DATA_XX="00") then nstate <= S4;
elsif(DES_DATA_XX="01") then nstate <= S5; elsif
(DES_DATA_XX="10") then nstate <= S6; else nstate <= S7; end if;

↪→

↪→

66 when S4 => nstate <= S8;
67 when S5 => nstate <= S8;
68 when S6 => nstate <= S8;
69 when S7 => if(DES_EXTIN_XX='1') then nstate <= S9; else nstate <= S10;

end if;↪→

70 when S8 => nstate <= S11;
71 when S9 => nstate <= S11;
72 when S10 => nstate <= S11;
73 when S11 => nstate <= S11_1;
74 when S11_1 => nstate <= S11_2;
75 when S11_2 => nstate <= S11_3;
76 when S11_3 => nstate <= S11_4;
77 when S11_4 => nstate <= S11_5;
78 when S11_5 => nstate <= S11_6;
79 when S11_6 => nstate <= S12;
80 when S12 => nstate <= S13;
81 when S13 => if (DES_RES_XX="10") then nstate <= S14; elsif

(DES_RES_XX="01") then nstate <= S15; else nstate <= S16; end if;↪→

82 when S14 => nstate <= S17;
83 when S15 => nstate <= S17;
84 when S16 => nstate <= S17;
85 when S17 => nstate <= S18;
86 when S18 => if (DES_OUT_XX='1') then nstate <= S19; else nstate <= S20;

end if;↪→

87 when S19 => nstate <= S21;
88 when S20 => nstate <= S21;
89 when S21 => nstate <= S22;
90 when S22 => if(DES_STORE_XX='1') then nstate <= S23; else nstate <= S24;

end if;↪→

91 when S23 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S23; else
nstate <= S25; end if;↪→

92 when S24 => if(READY_FOR_NEWDATA_RIGHT='0') then nstate <= S24; else
if(DES_NEWDATA_XX='1') then nstate <= S26; else nstate <= S27; end if;
end if;

↪→

↪→
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93 when S25 => nstate <= S29;
94 when S26 => nstate <= S28;
95 when S27 => nstate <= S31;
96 when S28 => nstate <= S30;
97 when S29 => if (ACK_RES_AVAILABLE='0') then nstate <= S29; else nstate

<= S33; end if;↪→

98 when S30 => if (ACK_RES_AVAILABLE='0') then nstate <= S30; else nstate
<= S32; end if;↪→

99 when S31 => if (ACK_RES_AVAILABLE='0') then nstate <= S31; else nstate
<= S35; end if;↪→

100 when S32 => if (SR_MTJR2_out='0') then nstate <= S34; else nstate <= S35;
end if;↪→

101 when S33 => if(START='0') then nstate <= S33; else nstate <= S36; end
if;↪→

102 when S34 => if(START='0') then nstate <= S34; else nstate <= S36; end
if;↪→

103 when S35 => if(START='0') then nstate <= S35; else nstate <= S36; end
if;↪→

104 when S36 => nstate <= S37;
105 when S37 => if (DES_COUT_XX='0') then nstate <= S38; else nstate <= S39;

end if;↪→

106 when S38 => if (DES_DATA_XX="00") then nstate <= S40; elsif
(DES_DATA_XX="01") then nstate <= S41; elsif (DES_DATA_XX="10") then
nstate <= S42; else nstate <= S43; end if;

↪→

↪→

107 when S39 => if (DES_DATA_XX="00") then nstate <= S40; elsif
(DES_DATA_XX="01") then nstate <= S41; elsif (DES_DATA_XX="10") then
nstate <= S42; else nstate <= S43; end if;

↪→

↪→

108 when S40 => nstate <= S44;
109 when S41 => nstate <= S44;
110 when S42 => nstate <= S44;
111 when S43 => if (DES_EXTIN_XX='0') then nstate <= S45; else nstate <=

S46; end if;↪→

112 when S44 => nstate <= S45;
113 when S45 => if (SR_MTJR1_out='0') then nstate <= S49; else nstate <=

S47; end if;↪→

114 when S46 => if (SR_MTJR1_out='1') then nstate <= S50; else nstate <=
S48; end if;↪→

115 when S47 => nstate <= S49;
116 when S48 => nstate <= S50;
117 when S49 => nstate <= S11;
118 when S50 => nstate <= S11;
119 when others => nstate <= S0;
120 end case;
121 end process state_transition;
122

123 output: process (pstate)
124 begin
125

126 CTRL_Vstart <= '0';
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127 CTRL_Vmove1 <= '0';
128 CTRL_Vop <= '0';
129 CTRL_Vmove2 <= '0';
130 CTRL_Vmove2C <= '0';
131 CTRL_Vmove3 <= '0';
132 CTRL_Vmovecout <= '0';
133 CTRL_Vtankbot <= '0';
134 CTRL_Vnoext <= '0';
135 CTRL_Vmoveres <= '0';
136 CTRL_Vmove4 <= '0';
137 CTRL_Vnewdata <= '0';
138 CTRL_Vdetect <= '0';
139 CTRL_Vrout <= '0';
140 CTRL_Vsout <= '0';
141 CTRL_Vtanktop <= '0';
142 CTRL_Vouttank <= '0';
143 CTRL_MTJ_W1 <= '0';
144 CTRL_MTJ_W2 <= '0';
145 CTRL_MTJ_W3 <= '0';
146 CTRL_mux1 <= "00";
147 ACK_DETECT_MTJ_R1 <= '0';
148 ACK_DETECT_MTJ_R2 <= '0';
149 RES_AVAILABLE <= '0';
150 REQUEST_NEW_START <= '0';
151 REQUEST_NEW_START_W <= '0';
152 REQUEST_NEW_STORE <= '0';
153 ---
154 CTRL_Vcouttop <= '0';
155 CTRL_Vcoutleft <= '0';
156 CTRL_Vrestop <= '0';
157 CTRL_Vresleft <= '0';
158 CTRL_Vresbotleft <= '0';
159 READY_FOR_NEWDATA <= '0';
160

161 case pstate is
162 when S0 => CTRL_Vstart <= '0';
163 CTRL_Vmove1 <= '0';
164 CTRL_Vop <= '0';
165 CTRL_Vmove2 <= '0';
166 CTRL_Vmove2C <= '0';
167 CTRL_Vmove3 <= '0';
168 CTRL_Vmovecout <= '0';
169 CTRL_Vtankbot <= '0';
170 CTRL_Vnoext <= '0';
171 CTRL_Vmoveres <= '0';
172 CTRL_Vmove4 <= '0';
173 CTRL_Vnewdata <= '0';
174 CTRL_Vdetect <= '0';
175 CTRL_Vrout <= '0';
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176 CTRL_Vsout <= '0';
177 CTRL_Vtanktop <= '0';
178 CTRL_Vouttank <= '0';
179 CTRL_MTJ_W1 <= '0';
180 CTRL_MTJ_W2 <= '0';
181 CTRL_MTJ_W3 <= '0';
182 CTRL_mux1 <= "00";
183 ACK_DETECT_MTJ_R1 <= '0';
184 ACK_DETECT_MTJ_R2 <= '0';
185 RES_AVAILABLE <= '0';
186 REQUEST_NEW_START <= '0';
187 REQUEST_NEW_START_W <= '0';
188 REQUEST_NEW_STORE <= '0';
189 ---
190 CTRL_Vcouttop <= '0';
191 CTRL_Vcoutleft <= '0';
192 CTRL_Vrestop <= '0';
193 CTRL_Vresleft <= '0';
194 CTRL_Vresbotleft <= '0';
195 READY_FOR_NEWDATA <= '0';
196 when S1 => CTRL_Vnoext <= '1', '0' after CLOCK_PERIOD/2;
197 READY_FOR_NEWDATA <= '1';
198 CTRL_Vstart <= '1';
199 when S2 => CTRL_Vcouttop <= '1';
200 when S3 => CTRL_Vcoutleft <= '1';
201 when S4 => CTRL_Vrestop <= '1';
202 when S5 => CTRL_Vresleft <= '1';
203 when S6 => CTRL_Vresbotleft <= '1';
204 when S7 => CTRL_Vnoext <= '1';
205 when S8 => CTRL_Vnoext <= '1';
206 CTRL_Vmove1 <= '1';
207 CTRL_MTJ_W1 <= '1';
208 CTRL_MTJ_W2 <= '1';
209 when S9 => CTRL_Vmove1 <= '1';
210 CTRL_MTJ_W1 <= '1';
211 CTRL_MTJ_W2 <= '1';
212 CTRL_MTJ_W3 <= '1';
213 when S10 => CTRL_Vmove1 <= '1';
214 CTRL_MTJ_W1 <= '1';
215 CTRL_MTJ_W2 <= '1';
216 when S11 => CTRL_Vop <= '1';
217 when S11_1 => CTRL_Vop <= '1';
218 when S11_2 => CTRL_Vop <= '1';
219 when S11_3 => CTRL_Vop <= '1';
220 when S11_4 => CTRL_Vop <= '1';
221 when S11_5 => CTRL_Vop <= '1';
222 when S11_6 => CTRL_Vop <= '1';
223 when S12 => CTRL_Vmove2 <= '1';
224 CTRL_Vmove2C <= '1';
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225 when S13 => CTRL_Vmove2C <= '1';
226 when S14 => CTRL_mux1 <= "10";
227 when S15 => CTRL_mux1 <= "01";
228 when S16 => CTRL_mux1 <= "11";
229 when S17 => CTRL_Vmove2 <= '1';
230 when S18 => CTRL_Vmove3 <= '1';
231 when S19 => CTRL_Vrout <= '1';
232 when S20 => CTRL_Vsout <= '1';
233 when S21 => CTRL_Vmove3 <= '1';
234 when S22 => CTRL_Vmove4 <= '1', '0' after CLOCK_PERIOD/2;
235 when S23 => CTRL_Vmove4 <= '1';
236 when S24 => CTRL_Vnewdata <= '1';
237 when S25 => CTRL_Vmoveres <= '1';
238 CTRL_Vmovecout <= '1';
239 when S26 => CTRL_Vtanktop <= '1';
240 CTRL_Vmoveres <= '1';
241 CTRL_Vmovecout <= '1';
242 when S27 => CTRL_Vmoveres <= '1';
243 CTRL_Vmovecout <= '1';
244 when S28 => CTRL_Vtanktop <= '1';
245 when S29 => RES_AVAILABLE <= '1';
246 when S30 => RES_AVAILABLE <= '1';
247 when S31 => RES_AVAILABLE <= '1';
248 when S32 => CTRL_Vdetect <= '1';
249 when S33 => REQUEST_NEW_STORE <= '1';
250 when S34 => REQUEST_NEW_START_W <= '1';
251 ACK_DETECT_MTJ_R2 <= '1';
252 when S35 => REQUEST_NEW_START <= '1';
253 ACK_DETECT_MTJ_R2 <= '1';
254 when S36 => CTRL_Vstart <= '1';
255 CTRL_Vtankbot <= '1';
256 when S37 => CTRL_Vtankbot <= '1';
257 CTRL_Vnoext <= '1', '0' after CLOCK_PERIOD/2;
258 READY_FOR_NEWDATA <= '1';
259 CTRL_Vouttank <= '1';
260 when S38 => CTRL_Vcouttop <= '1';
261 when S39 => CTRL_Vcoutleft <= '1';
262 when S40 => CTRL_Vrestop <= '1';
263 when S41 => CTRL_Vresleft <= '1';
264 when S42 => CTRL_Vresbotleft <= '1';
265 when S43 => CTRL_Vnoext <= '1';
266 when S44 => CTRL_Vnoext <= '1';
267 when S45 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
268 when S46 => CTRL_Vmove1 <= '1', '0' after CLOCK_PERIOD/2;
269 when S47 => CTRL_Vnoext <= '1';
270 ACK_DETECT_MTJ_R1 <= '1';
271 when S48 => CTRL_MTJ_W3 <= '1';
272 when S49 => CTRL_Vmove1 <= '1';
273 when S50 => CTRL_Vmove1 <= '1';
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274 ACK_DETECT_MTJ_R1 <= '1';
275 when others => CTRL_Vstart <= '0';
276 CTRL_Vmove1 <= '0';
277 CTRL_Vop <= '0';
278 CTRL_Vmove2 <= '0';
279 CTRL_Vmove2C <= '0';
280 CTRL_Vmove3 <= '0';
281 CTRL_Vmovecout <= '0';
282 CTRL_Vtankbot <= '0';
283 CTRL_Vnoext <= '0';
284 CTRL_Vmoveres <= '0';
285 CTRL_Vmove4 <= '0';
286 CTRL_Vnewdata <= '0';
287 CTRL_Vdetect <= '0';
288 CTRL_Vrout <= '0';
289 CTRL_Vsout <= '0';
290 CTRL_Vtanktop <= '0';
291 CTRL_Vouttank <= '0';
292 CTRL_MTJ_W1 <= '0';
293 CTRL_MTJ_W2 <= '0';
294 CTRL_MTJ_W3 <= '0';
295 CTRL_mux1 <= "00";
296 ACK_DETECT_MTJ_R1 <= '0';
297 ACK_DETECT_MTJ_R2 <= '0';
298 RES_AVAILABLE <= '0';
299 REQUEST_NEW_START <= '0';
300 REQUEST_NEW_START_W <= '0';
301 REQUEST_NEW_STORE <= '0';
302 ---
303 CTRL_Vcouttop <= '0';
304 CTRL_Vcoutleft <= '0';
305 CTRL_Vrestop <= '0';
306 CTRL_Vresleft <= '0';
307 CTRL_Vresbotleft <= '0';
308 READY_FOR_NEWDATA <= '0';
309 end case;
310 end process output;
311 end Behaviour;
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C.6. Memory array
C.6.1. Datapath

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity memory is
10 port( RESET_n: in std_logic;
11 CURRENTclk: in real;
12

13 DES_EXTIN_00, DES_OUT_00, DES_STORE_00, DES_NEWDATA_00: in std_logic;
14 DES_RES_00: in std_logic_vector(1 downto 0);
15

16 DES_EXTIN_10, DES_OUT_10, DES_STORE_10, DES_NEWDATA_10, DES_DATA_10: in
std_logic;↪→

17 DES_RES_10: in std_logic_vector(1 downto 0);
18

19 DES_EXTIN_01, DES_OUT_01, DES_STORE_01, DES_NEWDATA_01: in std_logic;
20 DES_DATA_01, DES_RES_01: in std_logic_vector(1 downto 0);
21

22 DES_EXTIN_11, DES_OUT_11, DES_STORE_11, DES_NEWDATA_11, DES_COUT_11: in
std_logic;↪→

23 DES_DATA_11, DES_RES_11: in std_logic_vector(1 downto 0)
24 );
25 end entity memory;
26

27 architecture Structure of memory is
28 component MTJ_W is
29 port( CTRL: in std_logic;
30 OUT_SK: out std_logic);
31 end component MTJ_W;
32

33 component voltage_genL is
34 port( CTRL: in std_logic;
35 CURRENT: out real);
36 end component voltage_genL;
37

38 component cell_input is
39 port( IN_SK_L: in std_logic;
40 IN_SK_T: in std_logic;
41 CURRENT_L: in real;
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42 CURRENT_T: in real;
43 OUT_SK_R: out std_logic;
44 OUT_SK_B: out std_logic);
45 end component cell_input;
46

47 component SKYRMIONJOIN is
48 port( A : in std_logic;
49 B : in std_logic;
50 CURRENT : in real;
51 OUTPUT : out std_logic);
52 end component SKYRMIONJOIN;
53

54 component SRlatch_H is
55 port( SET: in std_logic;
56 RST: in std_logic;
57 Q: buffer std_logic
58 );
59 end component SRlatch_H;
60

61 component FSM_MAIN is
62 port( CURRENTclk: in real;
63 RESET_n: in std_logic;
64

65 --from CELL 00
66 INTERRUPT_00, RES_00_AVAILABLE, REQUEST_NEW_START_00,

REQUEST_NEW_START_W_00, REQUEST_NEW_STORE_00, FIRST_RUN_00: in
std_logic;

↪→

↪→

67 --to CELL 00
68 CTRL_MTJ_W4_00, CTRL_Vbl_00, CTRL_Vstore_00, START_00,

ACK_RES00_AVAILABLE, RST_FIRST_RUN_00: out std_logic;↪→

69

70 --from CELL 10
71 INTERRUPT_10, RES_10_AVAILABLE, REQUEST_NEW_START_10,

REQUEST_NEW_START_W_10, REQUEST_NEW_STORE_10, FIRST_RUN_10,
ALL_INPUTS_AVAILABLE_10: in std_logic;

↪→

↪→

72 --to CELL 10
73 CTRL_MTJ_W4_10, CTRL_Vbl_10, CTRL_Vstore_10, FIRST_START_10, START_10,

ACK_RES10_AVAILABLE, RST_FIRST_RUN_10: out std_logic;↪→

74 RST_READY_10_00: out std_logic;
75

76 --from CELL 01
77 INTERRUPT_01, RES_01_AVAILABLE, REQUEST_NEW_START_01,

REQUEST_NEW_START_W_01, REQUEST_NEW_STORE_01, FIRST_RUN_01,
ALL_INPUTS_AVAILABLE_01: in std_logic;

↪→

↪→

78 --to CELL 01
79 CTRL_MTJ_W4_01, CTRL_Vbl_01, CTRL_Vstore_01, FIRST_START_01, START_01,

ACK_RES01_AVAILABLE, RST_FIRST_RUN_01: out std_logic;↪→

80 RST_READY_01_00, RST_READY_01_10: out std_logic;
81
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82 --from CELL 11
83 INTERRUPT_11, RES_11_AVAILABLE, REQUEST_NEW_START_11,

REQUEST_NEW_START_W_11, REQUEST_NEW_STORE_11, FIRST_RUN_11,
ALL_INPUTS_AVAILABLE_11: in std_logic;

↪→

↪→

84 --to CELL 11
85 CTRL_MTJ_W4_11, CTRL_Vbl_11, CTRL_Vstore_11, FIRST_START_11, START_11,

ACK_RES11_AVAILABLE, RST_FIRST_RUN_11: out std_logic;↪→

86 RST_READY_11_10, RST_READY_11_01: out std_logic
87 );
88 end component FSM_MAIN;
89

90 --***********************************************
91 --CELL00--***************************************
92 --***********************************************
93 component CELL_00 is
94 port( IN_CELL, RESET_n: in std_logic;
95 CURRENTclk: in real;
96

97 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop: in std_logic;

↪→

↪→

↪→

98 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
99 CTRL_mux1: in std_logic_vector(1 downto 0);

100 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
101 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
102 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
103

104 CELL_OUT_MTJ_CONV12_out, CELL_OUT_MTJ_CONV11_out, CELL_OUT_DEV2_out,
CELL_OUT_CROSS4_Aout, CELL_OUT_TANKT_out: out std_logic↪→

105 );
106 end component CELL_00;
107

108 component FSM_CELL_00 is
109 port( CURRENTclk: in real;
110 RESET_n: in std_logic;
111

112 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop: out std_logic;

↪→

↪→

↪→

113 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
114 CTRL_mux1: out std_logic_vector(1 downto 0);
115 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
116 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
117

118 START, ACK_RES_AVAILABLE: in std_logic;
119 DES_EXTIN_00, DES_OUT_00, DES_STORE_00, DES_NEWDATA_00: in std_logic;
120 DES_RES_00: in std_logic_vector(1 downto 0);
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121 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:
out std_logic;↪→

122 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic
123 );
124 end component FSM_CELL_00;
125

126 --CELL00
127 signal IN_CELL_00: std_logic;
128 signal CTRL_Vstart_00, CTRL_Vmove1_00, CTRL_Vop_00, CTRL_Vmove2_00,

CTRL_Vmove2C_00, CTRL_Vmove3_00, CTRL_Vmovecout_00, CTRL_Vtankbot_00,
CTRL_Vnoext_00, CTRL_Vmoveres_00, CTRL_Vmove4_00, CTRL_Vnewdata_00,
CTRL_Vdetect_00, CTRL_Vrout_00, CTRL_Vsout_00, CTRL_Vtanktop_00:
std_logic;

↪→

↪→

↪→

↪→

129 signal CTRL_MTJ_W1_00, CTRL_MTJ_W2_00, CTRL_MTJ_W3_00: std_logic;
130 signal CTRL_mux1_00: std_logic_vector(1 downto 0);
131 signal ACK_DETECT_MTJ_R1_00, ACK_DETECT_MTJ_R2_00: std_logic;
132 signal SR_MTJR1_out_00, SR_MTJR2_out_00: std_logic;
133 signal CELL_OUT_CURRENT_Vmoveres_00, CELL_OUT_CURRENT_Vmovecout_00: real;
134 ---
135 signal CELL_OUT_MTJ_CONV12_out_00, CELL_OUT_MTJ_CONV11_out_00,

CELL_OUT_DEV2_out_00, CELL_OUT_CROSS4_Aout_00, CELL_OUT_TANKT_out_00:
std_logic;

↪→

↪→

136 ---
137 signal START_00, ACK_RES00_AVAILABLE: std_logic;
138 signal RES_00_AVAILABLE, REQUEST_NEW_START_00,REQUEST_NEW_START_W_00,

REQUEST_NEW_STORE_00: std_logic;↪→

139 signal READY_FOR_NEWDATA_RIGHT_00: std_logic;
140 ---
141 signal CTRL_MTJ_W4_00, CTRL_Vbl_00, CTRL_Vstore_00: std_logic;
142 signal MTJ_W4_out_00, BL_00_bottom, JOIN4_00_out: std_logic;
143 signal CURRENT_Vbl_00, CURRENT_Vstore_00: real;
144 ---
145 signal START_00_AND: std_logic;
146 signal INTERRUPT_00, FIRST_RUN_00, RST_FIRST_RUN_00: std_logic;
147

148

149 --***********************************************
150 --CELLX0--***************************************
151 --***********************************************
152 component CELL_X0 is
153 port( IN_CELL, RESET_n: in std_logic;
154 CURRENTclk: in real;
155

156 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop: in std_logic;

↪→

↪→

↪→

157 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
158 CTRL_mux1: in std_logic_vector(1 downto 0);

401



C – Logic in memory VHDL code - architecture 1

159 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
160 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
161 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
162

163 CELL_OUT_MTJ_CONV12_out, CELL_OUT_CROSS5_Aout, CELL_OUT_DEV2_out,
CELL_OUT_CROSS6_Aout, CELL_OUT_CROSS6_Bout, CELL_OUT_TANKT_out: out
std_logic;

↪→

↪→

164

165 CTRL_Vrestop: in std_logic;
166 TOP_RESULT: in std_logic;
167 TOP_RESULT_CURRENT: in real
168 );
169 end component CELL_X0;
170

171 component FSM_CELL_X0 is
172 port( CURRENTclk: in real;
173 RESET_n: in std_logic;
174

175 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop: out std_logic;

↪→

↪→

↪→

176 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
177 CTRL_mux1: out std_logic_vector(1 downto 0);
178 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
179 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
180

181 START, ACK_RES_AVAILABLE: in std_logic;
182 DES_EXTIN_X0, DES_OUT_X0, DES_STORE_X0, DES_NEWDATA_X0: in std_logic;
183 DES_RES_X0: in std_logic_vector(1 downto 0);
184 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→

185 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic;
186

187 CTRL_Vrestop: out std_logic;
188 READY_FOR_NEWDATA: out std_logic;
189 DES_DATA_X0: in std_logic
190 );
191 end component FSM_CELL_X0;
192

193 --CELL10
194 signal IN_CELL_10: std_logic;
195 signal CTRL_Vstart_10, CTRL_Vmove1_10, CTRL_Vop_10, CTRL_Vmove2_10,

CTRL_Vmove2C_10, CTRL_Vmove3_10, CTRL_Vmovecout_10, CTRL_Vtankbot_10,
CTRL_Vnoext_10, CTRL_Vmoveres_10, CTRL_Vmove4_10, CTRL_Vnewdata_10,
CTRL_Vdetect_10, CTRL_Vrout_10, CTRL_Vsout_10, CTRL_Vtanktop_10:
std_logic;

↪→

↪→

↪→

↪→

196 signal CTRL_MTJ_W1_10, CTRL_MTJ_W2_10, CTRL_MTJ_W3_10: std_logic;
197 signal CTRL_mux1_10: std_logic_vector(1 downto 0);
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198 signal ACK_DETECT_MTJ_R1_10, ACK_DETECT_MTJ_R2_10: std_logic;
199 signal SR_MTJR1_out_10, SR_MTJR2_out_10: std_logic;
200 signal CELL_OUT_CURRENT_Vmoveres_10, CELL_OUT_CURRENT_Vmovecout_10: real;
201 ---
202 signal CELL_OUT_MTJ_CONV12_out_10, CELL_OUT_CROSS5_Aout_10,

CELL_OUT_DEV2_out_10, CELL_OUT_CROSS6_Aout_10, CELL_OUT_CROSS6_Bout_10,
CELL_OUT_TANKT_out_10: std_logic;

↪→

↪→

203 ---
204 signal CTRL_Vrestop_10: std_logic;
205 signal TOP_RESULT_10: std_logic;
206 signal TOP_RESULT_CURRENT_10: real;
207 ---
208 signal FIRST_START_10, ALL_INPUTS_AVAILABLE_10, START_10, ACK_RES10_AVAILABLE:

std_logic;↪→

209 signal RES_10_AVAILABLE, REQUEST_NEW_START_10, REQUEST_NEW_START_W_10,
REQUEST_NEW_STORE_10: std_logic;↪→

210 signal READY_FOR_NEWDATA_RIGHT_10: std_logic;
211 ---
212 signal READY_FOR_NEWDATA_10: std_logic;
213 ---
214 signal CTRL_MTJ_W4_10, CTRL_Vbl_10, CTRL_Vstore_10: std_logic;
215 signal MTJ_W4_out_10, BL_10_bottom, JOIN4_10_out: std_logic;
216 signal CURRENT_Vbl_10, CURRENT_Vstore_10: real;
217 ---
218 signal START_10_AND, LATCH_10_00_OUT: std_logic;
219 signal INTERRUPT_10, FIRST_RUN_10, RST_FIRST_RUN_10, RST_READY_10_00:

std_logic;↪→

220

221 --***********************************************
222 --CELL0X--***************************************
223 --***********************************************
224 component CELL_0X is
225 port( IN_CELL, RESET_n: in std_logic;
226 CURRENTclk: in real;
227

228 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop, CTRL_Vouttank: in std_logic;

↪→

↪→

↪→

229 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
230 CTRL_mux1: in std_logic_vector(1 downto 0);
231 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
232 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
233 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
234

235 CELL_OUT_MTJ_CONV14_out, CELL_OUT_CROSS9_Bout, CELL_OUT_CROSS9_Aout,
CELL_OUT_MTJ_CONV12_out, CELL_OUT_DEV2_out, CELL_OUT_TANKT_out: out
std_logic;

↪→

↪→

236
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237 CTRL_Vresbotleft, CTRL_Vresleft: in std_logic;
238 LEFT_COUT, LEFT_RESULT, BOTLEFT_RESULT: in std_logic;
239 LEFT_COUT_CURRENT, LEFT_RESULT_CURRENT, BOTLEFT_RESULT_CURRENT: in real
240 );
241 end component CELL_0X;
242

243 component FSM_CELL_0X is
244 port( CURRENTclk: in real;
245 RESET_n: in std_logic;
246

247 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop, CTRL_Vouttank: out std_logic;

↪→

↪→

↪→

248 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
249 CTRL_mux1: out std_logic_vector(1 downto 0);
250 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
251 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
252

253 START, ACK_RES_AVAILABLE: in std_logic;
254 DES_EXTIN_0X, DES_OUT_0X, DES_STORE_0X, DES_NEWDATA_0X: in std_logic;
255 DES_RES_0X: in std_logic_vector(1 downto 0);
256 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→

257 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic;
258

259 CTRL_Vresleft, CTRL_Vresbotleft: out std_logic;
260 READY_FOR_NEWDATA: out std_logic;
261 DES_DATA_0X: in std_logic_vector(1 downto 0)
262 );
263 end component FSM_CELL_0X;
264

265 --CELL01
266 signal IN_CELL_01: std_logic;
267 signal CTRL_Vstart_01, CTRL_Vmove1_01, CTRL_Vop_01, CTRL_Vmove2_01,

CTRL_Vmove2C_01, CTRL_Vmove3_01, CTRL_Vmovecout_01, CTRL_Vtankbot_01,
CTRL_Vnoext_01, CTRL_Vmoveres_01, CTRL_Vmove4_01, CTRL_Vnewdata_01,
CTRL_Vdetect_01, CTRL_Vrout_01, CTRL_Vsout_01, CTRL_Vtanktop_01,
CTRL_Vouttank_01: std_logic;

↪→

↪→

↪→

↪→

268 signal CTRL_MTJ_W1_01, CTRL_MTJ_W2_01, CTRL_MTJ_W3_01: std_logic;
269 signal CTRL_mux1_01: std_logic_vector(1 downto 0);
270 signal ACK_DETECT_MTJ_R1_01, ACK_DETECT_MTJ_R2_01: std_logic;
271 signal SR_MTJR1_out_01, SR_MTJR2_out_01: std_logic;
272 signal CELL_OUT_CURRENT_Vmoveres_01, CELL_OUT_CURRENT_Vmovecout_01: real;
273 ---
274 signal CELL_OUT_MTJ_CONV14_out_01, CELL_OUT_CROSS9_Bout_01,

CELL_OUT_CROSS9_Aout_01, CELL_OUT_MTJ_CONV12_out_01, CELL_OUT_DEV2_out_01,
CELL_OUT_TANKT_out_01: std_logic;

↪→

↪→

275 ---
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276 signal CTRL_Vresbotleft_01, CTRL_Vresleft_01: std_logic;
277 signal LEFT_COUT_01, LEFT_RESULT_01, BOTLEFT_RESULT_01: std_logic;
278 signal LEFT_COUT_CURRENT_01, LEFT_RESULT_CURRENT_01,

BOTLEFT_RESULT_CURRENT_01: real;↪→

279 ---
280 signal FIRST_START_01, ALL_INPUTS_AVAILABLE_01, START_01, ACK_RES01_AVAILABLE:

std_logic;↪→

281 signal RES_01_AVAILABLE, REQUEST_NEW_START_01, REQUEST_NEW_START_W_01,
REQUEST_NEW_STORE_01: std_logic;↪→

282 signal READY_FOR_NEWDATA_RIGHT_01: std_logic;
283 ---
284 signal READY_FOR_NEWDATA_01: std_logic;
285 ---
286 signal CTRL_MTJ_W4_01, CTRL_Vbl_01, CTRL_Vstore_01: std_logic;
287 signal MTJ_W4_out_01, BL_01_bottom, JOIN4_01_out: std_logic;
288 signal CURRENT_Vbl_01, CURRENT_Vstore_01: real;
289 ---
290 signal START_01_AND, LATCH_01_00_OUT, LATCH_01_10_OUT: std_logic;
291 signal INTERRUPT_01, FIRST_RUN_01, RST_FIRST_RUN_01, RST_READY_01_00,

RST_READY_01_10: std_logic;↪→

292

293 --***********************************************
294 --CELLXX--***************************************
295 --***********************************************
296 component CELL_XX is
297 port( IN_CELL, RESET_n: in std_logic;
298 CURRENTclk: in real;
299

300 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop, CTRL_Vouttank: in std_logic;

↪→

↪→

↪→

301 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: in std_logic;
302 CTRL_mux1: in std_logic_vector(1 downto 0);
303 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: in std_logic;
304 SR_MTJR1_out, SR_MTJR2_out: out std_logic;
305 CELL_OUT_CURRENT_Vmoveres, CELL_OUT_CURRENT_Vmovecout: out real;
306

307 CELL_OUT_MTJ_CONV14_out, CELL_OUT_MTJ_CONV15_out, CELL_OUT_MTJ_CONV11_out,
CELL_OUT_MTJ_CONV13_out, CELL_OUT_MTJ_CONV12_out, CELL_OUT_DEV2_out,
CELL_OUT_TANKT_out: out std_logic;

↪→

↪→

308

309 CTRL_Vcoutleft, CTRL_Vcouttop, CTRL_Vrestop, CTRL_Vresbotleft,
CTRL_Vresleft: in std_logic;↪→

310 TOP_COUT, LEFT_COUT, TOP_RESULT, LEFT_RESULT, BOTLEFT_RESULT: in
std_logic;↪→

311 TOP_COUT_CURRENT, LEFT_COUT_CURRENT, TOP_RESULT_CURRENT,
LEFT_RESULT_CURRENT, BOTLEFT_RESULT_CURRENT: in real↪→

312 );
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313 end component CELL_XX;
314

315 component FSM_CELL_XX is
316 port( CURRENTclk: in real;
317 RESET_n: in std_logic;
318

319 CTRL_Vstart, CTRL_Vmove1, CTRL_Vop, CTRL_Vmove2, CTRL_Vmove2C,
CTRL_Vmove3, CTRL_Vmovecout, CTRL_Vtankbot, CTRL_Vnoext,
CTRL_Vmoveres, CTRL_Vmove4, CTRL_Vnewdata, CTRL_Vdetect, CTRL_Vrout,
CTRL_Vsout, CTRL_Vtanktop, CTRL_Vouttank: out std_logic;

↪→

↪→

↪→

320 CTRL_MTJ_W1, CTRL_MTJ_W2, CTRL_MTJ_W3: out std_logic;
321 CTRL_mux1: out std_logic_vector(1 downto 0);
322 ACK_DETECT_MTJ_R1, ACK_DETECT_MTJ_R2: out std_logic;
323 SR_MTJR2_out, SR_MTJR1_out: in std_logic;
324

325 START, ACK_RES_AVAILABLE: in std_logic;
326 DES_EXTIN_XX, DES_OUT_XX, DES_STORE_XX, DES_NEWDATA_XX: in std_logic;
327 DES_RES_XX: in std_logic_vector(1 downto 0);
328 RES_AVAILABLE, REQUEST_NEW_START, REQUEST_NEW_START_W, REQUEST_NEW_STORE:

out std_logic;↪→

329 READY_FOR_NEWDATA_RIGHT, FIRST_RUN: in std_logic;
330

331 CTRL_Vcouttop, CTRL_Vcoutleft, CTRL_Vrestop, CTRL_Vresleft,
CTRL_Vresbotleft: out std_logic;↪→

332 READY_FOR_NEWDATA: out std_logic;
333 DES_COUT_XX: in std_logic;
334 DES_DATA_XX: in std_logic_vector(1 downto 0)
335 );
336 end component FSM_CELL_XX;
337

338 --CELL11
339 signal IN_CELL_11: std_logic;
340 signal CTRL_Vstart_11, CTRL_Vmove1_11, CTRL_Vop_11, CTRL_Vmove2_11,

CTRL_Vmove2C_11, CTRL_Vmove3_11, CTRL_Vmovecout_11, CTRL_Vtankbot_11,
CTRL_Vnoext_11, CTRL_Vmoveres_11, CTRL_Vmove4_11, CTRL_Vnewdata_11,
CTRL_Vdetect_11, CTRL_Vrout_11, CTRL_Vsout_11, CTRL_Vtanktop_11,
CTRL_Vouttank_11: std_logic;

↪→

↪→

↪→

↪→

341 signal CTRL_MTJ_W1_11, CTRL_MTJ_W2_11, CTRL_MTJ_W3_11: std_logic;
342 signal CTRL_mux1_11: std_logic_vector(1 downto 0);
343 signal ACK_DETECT_MTJ_R1_11, ACK_DETECT_MTJ_R2_11: std_logic;
344 signal SR_MTJR1_out_11, SR_MTJR2_out_11: std_logic;
345 signal CELL_OUT_CURRENT_Vmoveres_11, CELL_OUT_CURRENT_Vmovecout_11: real;
346 ---
347 signal CELL_OUT_MTJ_CONV14_out_11, CELL_OUT_MTJ_CONV15_out_11,

CELL_OUT_MTJ_CONV11_out_11, CELL_OUT_MTJ_CONV13_out_11,
CELL_OUT_MTJ_CONV12_out_11, CELL_OUT_DEV2_out_11, CELL_OUT_TANKT_out_11:
std_logic;

↪→

↪→

↪→

348 ---
349 signal CTRL_Vcoutleft_11, CTRL_Vcouttop_11, CTRL_Vrestop_11,

CTRL_Vresbotleft_11, CTRL_Vresleft_11: std_logic;↪→
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350 signal TOP_COUT_11, LEFT_COUT_11, TOP_RESULT_11, LEFT_RESULT_11,
BOTLEFT_RESULT_11: std_logic;↪→

351 signal TOP_COUT_CURRENT_11, LEFT_COUT_CURRENT_11, TOP_RESULT_CURRENT_11,
LEFT_RESULT_CURRENT_11, BOTLEFT_RESULT_CURRENT_11: real;↪→

352 ---
353 signal FIRST_START_11, ALL_INPUTS_AVAILABLE_11, START_11, ACK_RES11_AVAILABLE:

std_logic;↪→

354 signal RES_11_AVAILABLE, REQUEST_NEW_START_11, REQUEST_NEW_START_W_11,
REQUEST_NEW_STORE_11: std_logic;↪→

355 signal READY_FOR_NEWDATA_RIGHT_11: std_logic;
356 ---
357 signal READY_FOR_NEWDATA_11: std_logic;
358 ---
359 signal CTRL_MTJ_W4_11, CTRL_Vbl_11, CTRL_Vstore_11: std_logic;
360 signal MTJ_W4_out_11, BL_11_bottom, JOIN4_11_out: std_logic;
361 signal CURRENT_Vbl_11, CURRENT_Vstore_11: real;
362 ---
363 signal START_11_AND, LATCH_11_10_OUT, LATCH_11_01_OUT: std_logic;
364 signal INTERRUPT_11, FIRST_RUN_11, RST_FIRST_RUN_11, RST_READY_11_10,

RST_READY_11_01: std_logic;↪→

365

366 --***********************************************
367 ----------***************************************
368 --***********************************************
369

370

371 begin
372

373 INTERRUPT_00 <= RES_00_AVAILABLE or REQUEST_NEW_START_00 or
REQUEST_NEW_START_W_00 or REQUEST_NEW_STORE_00;↪→

374 INTERRUPT_10 <= RES_10_AVAILABLE or REQUEST_NEW_START_10 or
REQUEST_NEW_START_W_10 or REQUEST_NEW_STORE_10;↪→

375 INTERRUPT_01 <= RES_01_AVAILABLE or REQUEST_NEW_START_01 or
REQUEST_NEW_START_W_01 or REQUEST_NEW_STORE_01;↪→

376 INTERRUPT_11 <= RES_11_AVAILABLE or REQUEST_NEW_START_11 or
REQUEST_NEW_START_W_11 or REQUEST_NEW_STORE_11;↪→

377

378 MAINFSM: FSM_MAIN port map (
379 CURRENTclk => CURRENTclk,
380 RESET_n => RESET_n,
381 ---
382 INTERRUPT_00 => INTERRUPT_00,
383 RES_00_AVAILABLE => RES_00_AVAILABLE,
384 REQUEST_NEW_START_00 => REQUEST_NEW_START_00,
385 REQUEST_NEW_START_W_00 => REQUEST_NEW_START_W_00,
386 REQUEST_NEW_STORE_00 => REQUEST_NEW_STORE_00,
387 FIRST_RUN_00 => FIRST_RUN_00,
388 CTRL_MTJ_W4_00 => CTRL_MTJ_W4_00,
389 CTRL_Vbl_00 => CTRL_Vbl_00,
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390 CTRL_Vstore_00 => CTRL_Vstore_00,
391 START_00 => START_00,
392 ACK_RES00_AVAILABLE => ACK_RES00_AVAILABLE,
393 RST_FIRST_RUN_00 => RST_FIRST_RUN_00,
394 ---
395 INTERRUPT_10 => INTERRUPT_10,
396 RES_10_AVAILABLE => RES_10_AVAILABLE,
397 REQUEST_NEW_START_10 => REQUEST_NEW_START_10,
398 REQUEST_NEW_START_W_10 => REQUEST_NEW_START_W_10,
399 REQUEST_NEW_STORE_10 => REQUEST_NEW_STORE_10,
400 FIRST_RUN_10 => FIRST_RUN_10,
401 ALL_INPUTS_AVAILABLE_10 => ALL_INPUTS_AVAILABLE_10,
402 CTRL_MTJ_W4_10 => CTRL_MTJ_W4_10,
403 CTRL_Vbl_10 => CTRL_Vbl_10,
404 CTRL_Vstore_10 => CTRL_Vstore_10,
405 FIRST_START_10 => FIRST_START_10,
406 START_10 => START_10,
407 ACK_RES10_AVAILABLE => ACK_RES10_AVAILABLE,
408 RST_FIRST_RUN_10 => RST_FIRST_RUN_10,
409 RST_READY_10_00 => RST_READY_10_00,
410 ---
411 INTERRUPT_01 => INTERRUPT_01,
412 RES_01_AVAILABLE => RES_01_AVAILABLE,
413 REQUEST_NEW_START_01 => REQUEST_NEW_START_01,
414 REQUEST_NEW_START_W_01 => REQUEST_NEW_START_W_01,
415 REQUEST_NEW_STORE_01 => REQUEST_NEW_STORE_01,
416 FIRST_RUN_01 => FIRST_RUN_01,
417 ALL_INPUTS_AVAILABLE_01 => ALL_INPUTS_AVAILABLE_01,
418 CTRL_MTJ_W4_01 => CTRL_MTJ_W4_01,
419 CTRL_Vbl_01 => CTRL_Vbl_01,
420 CTRL_Vstore_01 => CTRL_Vstore_01,
421 FIRST_START_01 => FIRST_START_01,
422 START_01 => START_01,
423 ACK_RES01_AVAILABLE => ACK_RES01_AVAILABLE,
424 RST_FIRST_RUN_01 => RST_FIRST_RUN_01,
425 RST_READY_01_00 => RST_READY_01_00,
426 RST_READY_01_10 => RST_READY_01_10,
427 ---
428 INTERRUPT_11 => INTERRUPT_11,
429 RES_11_AVAILABLE => RES_11_AVAILABLE,
430 REQUEST_NEW_START_11 => REQUEST_NEW_START_11,
431 REQUEST_NEW_START_W_11 => REQUEST_NEW_START_W_11,
432 REQUEST_NEW_STORE_11 => REQUEST_NEW_STORE_11,
433 FIRST_RUN_11 => FIRST_RUN_11,
434 ALL_INPUTS_AVAILABLE_11 => ALL_INPUTS_AVAILABLE_11,
435 CTRL_MTJ_W4_11 => CTRL_MTJ_W4_11,
436 CTRL_Vbl_11 => CTRL_Vbl_11,
437 CTRL_Vstore_11 => CTRL_Vstore_11,
438 FIRST_START_11 => FIRST_START_11,
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439 START_11 => START_11,
440 ACK_RES11_AVAILABLE => ACK_RES11_AVAILABLE,
441 RST_FIRST_RUN_11 => RST_FIRST_RUN_11,
442 RST_READY_11_10 => RST_READY_11_10,
443 RST_READY_11_01 => RST_READY_11_01
444 );
445

446 --***********************************************
447 --CELL00--***************************************
448 --***********************************************
449

450 --BL00
451 MTJ4_00: MTJ_W port map (CTRL => CTRL_MTJ_W4_00, OUT_SK => MTJ_W4_out_00);
452 Vbl_00: voltage_genL port map (CTRL => CTRL_Vbl_00, CURRENT =>

CURRENT_Vbl_00);↪→

453 Vstore_00: voltage_genL port map (CTRL => CTRL_Vstore_00, CURRENT =>
CURRENT_Vstore_00);↪→

454 join4_00: SKYRMIONJOIN port map (A => MTJ_W4_out_00, B =>
CELL_OUT_TANKT_out_00, CURRENT => CURRENT_Vbl_00, OUTPUT => JOIN4_00_out);↪→

455 cell00_in: cell_input port map (IN_SK_L => CELL_OUT_DEV2_out_00, IN_SK_T =>
JOIN4_00_out, CURRENT_L => CURRENT_Vstore_00, CURRENT_T => CURRENT_Vbl_00,
OUT_SK_R => IN_CELL_00, OUT_SK_B => BL_00_bottom);

↪→

↪→

456

457 START_00_AND <= START_00;
458 READY_FOR_NEWDATA_RIGHT_00 <= LATCH_10_00_OUT and LATCH_01_00_OUT;
459

460 LATCH_FIRSTRUN_00: SRlatch_H port map (SET => '0', RST => RST_FIRST_RUN_00, Q
=> FIRST_RUN_00);↪→

461

462 CELL00: CELL_00 port map (
463 IN_CELL => IN_CELL_00,
464 RESET_n => RESET_n,
465 CURRENTclk => CURRENTclk,
466 ---
467 CTRL_Vstart => CTRL_Vstart_00,
468 CTRL_Vmove1 => CTRL_Vmove1_00,
469 CTRL_Vop => CTRL_Vop_00,
470 CTRL_Vmove2 => CTRL_Vmove2_00,
471 CTRL_Vmove2C => CTRL_Vmove2C_00,
472 CTRL_Vmove3 => CTRL_Vmove3_00,
473 CTRL_Vmovecout => CTRL_Vmovecout_00,
474 CTRL_Vtankbot => CTRL_Vtankbot_00,
475 CTRL_Vnoext => CTRL_Vnoext_00,
476 CTRL_Vmoveres => CTRL_Vmoveres_00,
477 CTRL_Vmove4 => CTRL_Vmove4_00,
478 CTRL_Vnewdata => CTRL_Vnewdata_00,
479 CTRL_Vdetect => CTRL_Vdetect_00,
480 CTRL_Vrout => CTRL_Vrout_00,
481 CTRL_Vsout => CTRL_Vsout_00,
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482 CTRL_Vtanktop => CTRL_Vtanktop_00,
483 CTRL_MTJ_W1 => CTRL_MTJ_W1_00,
484 CTRL_MTJ_W2 => CTRL_MTJ_W2_00,
485 CTRL_MTJ_W3 => CTRL_MTJ_W3_00,
486 CTRL_mux1 => CTRL_mux1_00,
487 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_00,
488 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_00,
489 SR_MTJR1_out => SR_MTJR1_out_00,
490 SR_MTJR2_out => SR_MTJR2_out_00,
491 CELL_OUT_CURRENT_Vmoveres => CELL_OUT_CURRENT_Vmoveres_00,
492 CELL_OUT_CURRENT_Vmovecout => CELL_OUT_CURRENT_Vmovecout_00,
493 ---
494 CELL_OUT_MTJ_CONV12_out => CELL_OUT_MTJ_CONV12_out_00,
495 CELL_OUT_MTJ_CONV11_out => CELL_OUT_MTJ_CONV11_out_00,
496 CELL_OUT_DEV2_out => CELL_OUT_DEV2_out_00,
497 CELL_OUT_CROSS4_Aout => CELL_OUT_CROSS4_Aout_00,
498 CELL_OUT_TANKT_out => CELL_OUT_TANKT_out_00
499 );
500

501 FSM00: FSM_CELL_00 port map (
502 CURRENTclk => CURRENTclk,
503 RESET_n => RESET_n,
504 ---
505 CTRL_Vstart => CTRL_Vstart_00,
506 CTRL_Vmove1 => CTRL_Vmove1_00,
507 CTRL_Vop => CTRL_Vop_00,
508 CTRL_Vmove2 => CTRL_Vmove2_00,
509 CTRL_Vmove2C => CTRL_Vmove2C_00,
510 CTRL_Vmove3 => CTRL_Vmove3_00,
511 CTRL_Vmovecout => CTRL_Vmovecout_00,
512 CTRL_Vtankbot => CTRL_Vtankbot_00,
513 CTRL_Vnoext => CTRL_Vnoext_00,
514 CTRL_Vmoveres => CTRL_Vmoveres_00,
515 CTRL_Vmove4 => CTRL_Vmove4_00,
516 CTRL_Vnewdata => CTRL_Vnewdata_00,
517 CTRL_Vdetect => CTRL_Vdetect_00,
518 CTRL_Vrout => CTRL_Vrout_00,
519 CTRL_Vsout => CTRL_Vsout_00,
520 CTRL_Vtanktop => CTRL_Vtanktop_00,
521 CTRL_MTJ_W1 => CTRL_MTJ_W1_00,
522 CTRL_MTJ_W2 => CTRL_MTJ_W2_00,
523 CTRL_MTJ_W3 => CTRL_MTJ_W3_00,
524 CTRL_mux1 => CTRL_mux1_00,
525 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_00,
526 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_00,
527 SR_MTJR2_out => SR_MTJR2_out_00,
528 SR_MTJR1_out => SR_MTJR1_out_00,
529 ---
530 START => START_00_AND,
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531 ACK_RES_AVAILABLE => ACK_RES00_AVAILABLE,
532 DES_EXTIN_00 => DES_EXTIN_00,
533 DES_OUT_00 => DES_OUT_00,
534 DES_STORE_00 => DES_STORE_00,
535 DES_NEWDATA_00 => DES_NEWDATA_00,
536 DES_RES_00 => DES_RES_00,
537 RES_AVAILABLE => RES_00_AVAILABLE,
538 REQUEST_NEW_START => REQUEST_NEW_START_00,
539 REQUEST_NEW_START_W => REQUEST_NEW_START_W_00,
540 REQUEST_NEW_STORE => REQUEST_NEW_STORE_00,
541 READY_FOR_NEWDATA_RIGHT => READY_FOR_NEWDATA_RIGHT_00,
542 FIRST_RUN => FIRST_RUN_00
543 );
544

545 --***********************************************
546 --CELL10--***************************************
547 --***********************************************
548

549 --BL10
550 MTJ4_10: MTJ_W port map (CTRL => CTRL_MTJ_W4_10, OUT_SK => MTJ_W4_out_10);
551 Vbl_10: voltage_genL port map (CTRL => CTRL_Vbl_10, CURRENT =>

CURRENT_Vbl_10);↪→

552 Vstore_10: voltage_genL port map (CTRL => CTRL_Vstore_10, CURRENT =>
CURRENT_Vstore_10);↪→

553 join4_10: SKYRMIONJOIN port map (A => MTJ_W4_out_10, B =>
CELL_OUT_TANKT_out_10, CURRENT => CURRENT_Vbl_10, OUTPUT => JOIN4_10_out);↪→

554 cell10_in: cell_input port map (IN_SK_L => CELL_OUT_DEV2_out_10, IN_SK_T =>
JOIN4_10_out, CURRENT_L => CURRENT_Vstore_10, CURRENT_T => CURRENT_Vbl_10,
OUT_SK_R => IN_CELL_10, OUT_SK_B => BL_10_bottom);

↪→

↪→

555

556 LATCH_10_00: SRlatch_H port map (SET => READY_FOR_NEWDATA_10, RST =>
RST_READY_10_00, Q => LATCH_10_00_OUT);↪→

557 START_10_AND <= ((FIRST_START_10 and FIRST_RUN_10) or START_10) and
ALL_INPUTS_AVAILABLE_10;↪→

558 ALL_INPUTS_AVAILABLE_10 <= not(LATCH_10_00_OUT);
559 READY_FOR_NEWDATA_RIGHT_10 <= LATCH_01_10_OUT and LATCH_11_10_OUT; --and

LATCH_20_10_OUT↪→

560

561 LATCH_FIRSTRUN_10: SRlatch_H port map (SET => '0', RST => RST_FIRST_RUN_10, Q
=> FIRST_RUN_10);↪→

562

563 TOP_RESULT_10 <= CELL_OUT_MTJ_CONV12_out_00;
564 TOP_RESULT_CURRENT_10 <= CELL_OUT_CURRENT_Vmoveres_00;
565

566 CELL10: CELL_X0 port map (
567 IN_CELL => IN_CELL_10,
568 RESET_n => RESET_n,
569 CURRENTclk => CURRENTclk,
570 ---
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571 CTRL_Vstart => CTRL_Vstart_10,
572 CTRL_Vmove1 => CTRL_Vmove1_10,
573 CTRL_Vop => CTRL_Vop_10,
574 CTRL_Vmove2 => CTRL_Vmove2_10,
575 CTRL_Vmove2C => CTRL_Vmove2C_10,
576 CTRL_Vmove3 => CTRL_Vmove3_10,
577 CTRL_Vmovecout => CTRL_Vmovecout_10,
578 CTRL_Vtankbot => CTRL_Vtankbot_10,
579 CTRL_Vnoext => CTRL_Vnoext_10,
580 CTRL_Vmoveres => CTRL_Vmoveres_10,
581 CTRL_Vmove4 => CTRL_Vmove4_10,
582 CTRL_Vnewdata => CTRL_Vnewdata_10,
583 CTRL_Vdetect => CTRL_Vdetect_10,
584 CTRL_Vrout => CTRL_Vrout_10,
585 CTRL_Vsout => CTRL_Vsout_10,
586 CTRL_Vtanktop => CTRL_Vtanktop_10,
587 CTRL_MTJ_W1 => CTRL_MTJ_W1_10,
588 CTRL_MTJ_W2 => CTRL_MTJ_W2_10,
589 CTRL_MTJ_W3 => CTRL_MTJ_W3_10,
590 CTRL_mux1 => CTRL_mux1_10,
591 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_10,
592 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_10,
593 SR_MTJR1_out => SR_MTJR1_out_10,
594 SR_MTJR2_out => SR_MTJR2_out_10,
595 CELL_OUT_CURRENT_Vmoveres => CELL_OUT_CURRENT_Vmoveres_10,
596 CELL_OUT_CURRENT_Vmovecout => CELL_OUT_CURRENT_Vmovecout_10,
597 ---
598 CELL_OUT_MTJ_CONV12_out => CELL_OUT_MTJ_CONV12_out_10,
599 CELL_OUT_CROSS5_Aout => CELL_OUT_CROSS5_Aout_10,
600 CELL_OUT_DEV2_out => CELL_OUT_DEV2_out_10,
601 CELL_OUT_CROSS6_Aout => CELL_OUT_CROSS6_Aout_10,
602 CELL_OUT_CROSS6_Bout => CELL_OUT_CROSS6_Bout_10,
603 CELL_OUT_TANKT_out => CELL_OUT_TANKT_out_10,
604 ---
605 CTRL_Vrestop => CTRL_Vrestop_10,
606 TOP_RESULT => TOP_RESULT_10,
607 TOP_RESULT_CURRENT => TOP_RESULT_CURRENT_10
608 );
609

610 FSM10: FSM_CELL_X0 port map (
611 CURRENTclk => CURRENTclk,
612 RESET_n => RESET_n,
613 ---
614 CTRL_Vstart => CTRL_Vstart_10,
615 CTRL_Vmove1 => CTRL_Vmove1_10,
616 CTRL_Vop => CTRL_Vop_10,
617 CTRL_Vmove2 => CTRL_Vmove2_10,
618 CTRL_Vmove2C => CTRL_Vmove2C_10,
619 CTRL_Vmove3 => CTRL_Vmove3_10,
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620 CTRL_Vmovecout => CTRL_Vmovecout_10,
621 CTRL_Vtankbot => CTRL_Vtankbot_10,
622 CTRL_Vnoext => CTRL_Vnoext_10,
623 CTRL_Vmoveres => CTRL_Vmoveres_10,
624 CTRL_Vmove4 => CTRL_Vmove4_10,
625 CTRL_Vnewdata => CTRL_Vnewdata_10,
626 CTRL_Vdetect => CTRL_Vdetect_10,
627 CTRL_Vrout => CTRL_Vrout_10,
628 CTRL_Vsout => CTRL_Vsout_10,
629 CTRL_Vtanktop => CTRL_Vtanktop_10,
630 CTRL_MTJ_W1 => CTRL_MTJ_W1_10,
631 CTRL_MTJ_W2 => CTRL_MTJ_W2_10,
632 CTRL_MTJ_W3 => CTRL_MTJ_W3_10,
633 CTRL_mux1 => CTRL_mux1_10,
634 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_10,
635 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_10,
636 SR_MTJR2_out => SR_MTJR2_out_10,
637 SR_MTJR1_out => SR_MTJR1_out_10,
638 ---
639 START => START_10_AND,
640 ACK_RES_AVAILABLE => ACK_RES10_AVAILABLE,
641 DES_EXTIN_X0 => DES_EXTIN_10,
642 DES_OUT_X0 => DES_OUT_10,
643 DES_STORE_X0 => DES_STORE_10,
644 DES_NEWDATA_X0 => DES_NEWDATA_10,
645 DES_RES_X0 => DES_RES_10,
646 RES_AVAILABLE => RES_10_AVAILABLE,
647 REQUEST_NEW_START => REQUEST_NEW_START_10,
648 REQUEST_NEW_START_W => REQUEST_NEW_START_W_10,
649 REQUEST_NEW_STORE => REQUEST_NEW_STORE_10,
650 READY_FOR_NEWDATA_RIGHT => READY_FOR_NEWDATA_RIGHT_10,
651 FIRST_RUN => FIRST_RUN_10,
652 ---
653 CTRL_Vrestop => CTRL_Vrestop_10,
654 READY_FOR_NEWDATA => READY_FOR_NEWDATA_10,
655 DES_DATA_X0 => DES_DATA_10
656 );
657

658 --***********************************************
659 --CELL01--***************************************
660 --***********************************************
661

662 --BL01
663 MTJ4_01: MTJ_W port map (CTRL => CTRL_MTJ_W4_01, OUT_SK => MTJ_W4_out_01);
664 Vbl_01: voltage_genL port map (CTRL => CTRL_Vbl_01, CURRENT =>

CURRENT_Vbl_01);↪→

665 Vstore_01: voltage_genL port map (CTRL => CTRL_Vstore_01, CURRENT =>
CURRENT_Vstore_01);↪→

666 join4_01: SKYRMIONJOIN port map (A => MTJ_W4_out_01, B =>
CELL_OUT_TANKT_out_01, CURRENT => CURRENT_Vbl_01, OUTPUT => JOIN4_01_out);↪→
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667 cell01_in: cell_input port map (IN_SK_L => CELL_OUT_DEV2_out_01, IN_SK_T =>
JOIN4_01_out, CURRENT_L => CURRENT_Vstore_01, CURRENT_T => CURRENT_Vbl_01,
OUT_SK_R => IN_CELL_01, OUT_SK_B => BL_01_bottom);

↪→

↪→

668

669 LATCH_01_00: SRlatch_H port map (SET => READY_FOR_NEWDATA_01, RST =>
RST_READY_01_00, Q => LATCH_01_00_OUT);↪→

670 LATCH_01_10: SRlatch_H port map (SET => READY_FOR_NEWDATA_01, RST =>
RST_READY_01_10, Q => LATCH_01_10_OUT);↪→

671 START_01_AND <= ((FIRST_START_01 and FIRST_RUN_01) or START_01) and
ALL_INPUTS_AVAILABLE_01;↪→

672 ALL_INPUTS_AVAILABLE_01 <= not(LATCH_01_00_OUT) and not (LATCH_01_10_OUT);
673 READY_FOR_NEWDATA_RIGHT_01 <= LATCH_11_01_OUT; --and LATCH_02_01_OUT
674

675 LATCH_FIRSTRUN_01: SRlatch_H port map (SET => '0', RST => RST_FIRST_RUN_01, Q
=> FIRST_RUN_01);↪→

676

677 LEFT_COUT_01 <= CELL_OUT_CROSS4_Aout_00;
678 LEFT_RESULT_01 <= CELL_OUT_MTJ_CONV11_out_00;
679 BOTLEFT_RESULT_01 <= CELL_OUT_CROSS6_Bout_10;
680 LEFT_COUT_CURRENT_01 <= CELL_OUT_CURRENT_Vmovecout_00;
681 LEFT_RESULT_CURRENT_01 <= CELL_OUT_CURRENT_Vmoveres_00;
682 BOTLEFT_RESULT_CURRENT_01 <= CELL_OUT_CURRENT_Vmoveres_10;
683

684 CELL01: CELL_0X port map (
685 IN_CELL => IN_CELL_01,
686 RESET_n => RESET_n,
687 CURRENTclk => CURRENTclk,
688 ---
689 CTRL_Vstart => CTRL_Vstart_01,
690 CTRL_Vmove1 => CTRL_Vmove1_01,
691 CTRL_Vop => CTRL_Vop_01,
692 CTRL_Vmove2 => CTRL_Vmove2_01,
693 CTRL_Vmove2C => CTRL_Vmove2C_01,
694 CTRL_Vmove3 => CTRL_Vmove3_01,
695 CTRL_Vmovecout => CTRL_Vmovecout_01,
696 CTRL_Vtankbot => CTRL_Vtankbot_01,
697 CTRL_Vnoext => CTRL_Vnoext_01,
698 CTRL_Vmoveres => CTRL_Vmoveres_01,
699 CTRL_Vmove4 => CTRL_Vmove4_01,
700 CTRL_Vnewdata => CTRL_Vnewdata_01,
701 CTRL_Vdetect => CTRL_Vdetect_01,
702 CTRL_Vrout => CTRL_Vrout_01,
703 CTRL_Vsout => CTRL_Vsout_01,
704 CTRL_Vtanktop => CTRL_Vtanktop_01,
705 CTRL_Vouttank => CTRL_Vouttank_01,
706 CTRL_MTJ_W1 => CTRL_MTJ_W1_01,
707 CTRL_MTJ_W2 => CTRL_MTJ_W2_01,
708 CTRL_MTJ_W3 => CTRL_MTJ_W3_01,
709 CTRL_mux1 => CTRL_mux1_01,
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710 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_01,
711 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_01,
712 SR_MTJR1_out => SR_MTJR1_out_01,
713 SR_MTJR2_out => SR_MTJR2_out_01,
714 CELL_OUT_CURRENT_Vmoveres => CELL_OUT_CURRENT_Vmoveres_01,
715 CELL_OUT_CURRENT_Vmovecout => CELL_OUT_CURRENT_Vmovecout_01,
716 ---
717 CELL_OUT_MTJ_CONV14_out => CELL_OUT_MTJ_CONV14_out_01,
718 CELL_OUT_CROSS9_Bout => CELL_OUT_CROSS9_Bout_01,
719 CELL_OUT_CROSS9_Aout => CELL_OUT_CROSS9_Aout_01,
720 CELL_OUT_MTJ_CONV12_out => CELL_OUT_MTJ_CONV12_out_01,
721 CELL_OUT_DEV2_out => CELL_OUT_DEV2_out_01,
722 CELL_OUT_TANKT_out => CELL_OUT_TANKT_out_01,
723 ---
724 CTRL_Vresbotleft => CTRL_Vresbotleft_01,
725 CTRL_Vresleft => CTRL_Vresleft_01,
726 LEFT_COUT => LEFT_COUT_01,
727 LEFT_RESULT => LEFT_RESULT_01,
728 BOTLEFT_RESULT => BOTLEFT_RESULT_01,
729 LEFT_COUT_CURRENT => LEFT_COUT_CURRENT_01,
730 LEFT_RESULT_CURRENT => LEFT_RESULT_CURRENT_01,
731 BOTLEFT_RESULT_CURRENT => BOTLEFT_RESULT_CURRENT_01
732 );
733

734 FSM01: FSM_CELL_0X port map (
735 CURRENTclk => CURRENTclk,
736 RESET_n => RESET_n,
737 ---
738 CTRL_Vstart => CTRL_Vstart_01,
739 CTRL_Vmove1 => CTRL_Vmove1_01,
740 CTRL_Vop => CTRL_Vop_01,
741 CTRL_Vmove2 => CTRL_Vmove2_01,
742 CTRL_Vmove2C => CTRL_Vmove2C_01,
743 CTRL_Vmove3 => CTRL_Vmove3_01,
744 CTRL_Vmovecout => CTRL_Vmovecout_01,
745 CTRL_Vtankbot => CTRL_Vtankbot_01,
746 CTRL_Vnoext => CTRL_Vnoext_01,
747 CTRL_Vmoveres => CTRL_Vmoveres_01,
748 CTRL_Vmove4 => CTRL_Vmove4_01,
749 CTRL_Vnewdata => CTRL_Vnewdata_01,
750 CTRL_Vdetect => CTRL_Vdetect_01,
751 CTRL_Vrout => CTRL_Vrout_01,
752 CTRL_Vsout => CTRL_Vsout_01,
753 CTRL_Vtanktop => CTRL_Vtanktop_01,
754 CTRL_Vouttank => CTRL_Vouttank_01,
755 CTRL_MTJ_W1 => CTRL_MTJ_W1_01,
756 CTRL_MTJ_W2 => CTRL_MTJ_W2_01,
757 CTRL_MTJ_W3 => CTRL_MTJ_W3_01,
758 CTRL_mux1 => CTRL_mux1_01,
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759 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_01,
760 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_01,
761 SR_MTJR2_out => SR_MTJR2_out_01,
762 SR_MTJR1_out => SR_MTJR1_out_01,
763 ---
764 START => START_01_AND,
765 ACK_RES_AVAILABLE => ACK_RES01_AVAILABLE,
766 DES_EXTIN_0X => DES_EXTIN_01,
767 DES_OUT_0X => DES_OUT_01,
768 DES_STORE_0X => DES_STORE_01,
769 DES_NEWDATA_0X => DES_NEWDATA_01,
770 DES_RES_0X => DES_RES_01,
771 RES_AVAILABLE => RES_01_AVAILABLE,
772 REQUEST_NEW_START => REQUEST_NEW_START_01,
773 REQUEST_NEW_START_W => REQUEST_NEW_START_W_01,
774 REQUEST_NEW_STORE => REQUEST_NEW_STORE_01,
775 READY_FOR_NEWDATA_RIGHT => READY_FOR_NEWDATA_RIGHT_01,
776 FIRST_RUN => FIRST_RUN_01,
777 ---
778 CTRL_Vresleft => CTRL_Vresleft_01,
779 CTRL_Vresbotleft => CTRL_Vresbotleft_01,
780 READY_FOR_NEWDATA => READY_FOR_NEWDATA_01,
781 DES_DATA_0X => DES_DATA_01
782 );
783

784 --***********************************************
785 --CELL11--***************************************
786 --***********************************************
787

788 --BL11
789 MTJ4_11: MTJ_W port map (CTRL => CTRL_MTJ_W4_11, OUT_SK => MTJ_W4_out_11);
790 Vbl_11: voltage_genL port map (CTRL => CTRL_Vbl_11, CURRENT =>

CURRENT_Vbl_11);↪→

791 Vstore_11: voltage_genL port map (CTRL => CTRL_Vstore_11, CURRENT =>
CURRENT_Vstore_11);↪→

792 join4_11: SKYRMIONJOIN port map (A => MTJ_W4_out_11, B =>
CELL_OUT_TANKT_out_11, CURRENT => CURRENT_Vbl_11, OUTPUT => JOIN4_11_out);↪→

793 cell11_in: cell_input port map (IN_SK_L => CELL_OUT_DEV2_out_11, IN_SK_T =>
JOIN4_11_out, CURRENT_L => CURRENT_Vstore_11, CURRENT_T => CURRENT_Vbl_11,
OUT_SK_R => IN_CELL_11, OUT_SK_B => BL_11_bottom);

↪→

↪→

794

795 LATCH_11_10: SRlatch_H port map (SET => READY_FOR_NEWDATA_11, RST =>
RST_READY_11_10, Q => LATCH_11_10_OUT);↪→

796 LATCH_11_01: SRlatch_H port map (SET => READY_FOR_NEWDATA_11, RST =>
RST_READY_11_01, Q => LATCH_11_01_OUT);↪→

797 START_11_AND <= ((FIRST_START_11 and FIRST_RUN_11) or START_11) and
ALL_INPUTS_AVAILABLE_11;↪→

798 ALL_INPUTS_AVAILABLE_11 <= not(LATCH_11_10_OUT) and not (LATCH_11_01_OUT);
799 READY_FOR_NEWDATA_RIGHT_11 <= '0', '1' after 520 ns, '0' after 530 ns;

--PROVVISORIO, sarebbe LATCH_21_11_OUT and LATCH_02_11_OUT and
LATCH_12_11_OUT;

↪→

↪→
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800

801 LATCH_FIRSTRUN_11: SRlatch_H port map (SET => '0', RST => RST_FIRST_RUN_11, Q
=> FIRST_RUN_11);↪→

802

803 TOP_COUT_11 <= CELL_OUT_CROSS9_Bout_01;
804 LEFT_COUT_11 <= CELL_OUT_CROSS6_Aout_10;
805 TOP_RESULT_11 <= CELL_OUT_MTJ_CONV12_out_01;
806 LEFT_RESULT_11 <= CELL_OUT_CROSS5_Aout_10;
807 BOTLEFT_RESULT_11 <= '0'; --PROVVISORIO
808 TOP_COUT_CURRENT_11 <= CELL_OUT_CURRENT_Vmovecout_01;
809 LEFT_COUT_CURRENT_11 <= CELL_OUT_CURRENT_Vmovecout_10;
810 TOP_RESULT_CURRENT_11 <= CELL_OUT_CURRENT_Vmoveres_01;
811 LEFT_RESULT_CURRENT_11 <= CELL_OUT_CURRENT_Vmoveres_10;
812 BOTLEFT_RESULT_CURRENT_11 <= 0.0; --PROVVISORIO
813

814 CELL11: CELL_XX port map (
815 IN_CELL => IN_CELL_11,
816 RESET_n => RESET_n,
817 CURRENTclk => CURRENTclk,
818 ---
819 CTRL_Vstart => CTRL_Vstart_11,
820 CTRL_Vmove1 => CTRL_Vmove1_11,
821 CTRL_Vop => CTRL_Vop_11,
822 CTRL_Vmove2 => CTRL_Vmove2_11,
823 CTRL_Vmove2C => CTRL_Vmove2C_11,
824 CTRL_Vmove3 => CTRL_Vmove3_11,
825 CTRL_Vmovecout => CTRL_Vmovecout_11,
826 CTRL_Vtankbot => CTRL_Vtankbot_11,
827 CTRL_Vnoext => CTRL_Vnoext_11,
828 CTRL_Vmoveres => CTRL_Vmoveres_11,
829 CTRL_Vmove4 => CTRL_Vmove4_11,
830 CTRL_Vnewdata => CTRL_Vnewdata_11,
831 CTRL_Vdetect => CTRL_Vdetect_11,
832 CTRL_Vrout => CTRL_Vrout_11,
833 CTRL_Vsout => CTRL_Vsout_11,
834 CTRL_Vtanktop => CTRL_Vtanktop_11,
835 CTRL_Vouttank => CTRL_Vouttank_11,
836 CTRL_MTJ_W1 => CTRL_MTJ_W1_11,
837 CTRL_MTJ_W2 => CTRL_MTJ_W2_11,
838 CTRL_MTJ_W3 => CTRL_MTJ_W3_11,
839 CTRL_mux1 => CTRL_mux1_11,
840 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_11,
841 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_11,
842 SR_MTJR1_out => SR_MTJR1_out_11,
843 SR_MTJR2_out => SR_MTJR2_out_11,
844 CELL_OUT_CURRENT_Vmoveres => CELL_OUT_CURRENT_Vmoveres_11,
845 CELL_OUT_CURRENT_Vmovecout => CELL_OUT_CURRENT_Vmovecout_11,
846 ---
847 CELL_OUT_MTJ_CONV14_out => CELL_OUT_MTJ_CONV14_out_11,
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848 CELL_OUT_MTJ_CONV15_out => CELL_OUT_MTJ_CONV15_out_11,
849 CELL_OUT_MTJ_CONV11_out => CELL_OUT_MTJ_CONV11_out_11,
850 CELL_OUT_MTJ_CONV13_out => CELL_OUT_MTJ_CONV13_out_11,
851 CELL_OUT_MTJ_CONV12_out => CELL_OUT_MTJ_CONV12_out_11,
852 CELL_OUT_DEV2_out => CELL_OUT_DEV2_out_11,
853 CELL_OUT_TANKT_out => CELL_OUT_TANKT_out_11,
854 ---
855 CTRL_Vcoutleft => CTRL_Vcoutleft_11,
856 CTRL_Vcouttop => CTRL_Vcouttop_11,
857 CTRL_Vrestop => CTRL_Vrestop_11,
858 CTRL_Vresbotleft => CTRL_Vresbotleft_11,
859 CTRL_Vresleft => CTRL_Vresleft_11,
860 TOP_COUT => TOP_COUT_11,
861 LEFT_COUT => LEFT_COUT_11,
862 TOP_RESULT => TOP_RESULT_11,
863 LEFT_RESULT => LEFT_RESULT_11,
864 BOTLEFT_RESULT => BOTLEFT_RESULT_11,
865 TOP_COUT_CURRENT => TOP_COUT_CURRENT_11,
866 LEFT_COUT_CURRENT => LEFT_COUT_CURRENT_11,
867 TOP_RESULT_CURRENT => TOP_RESULT_CURRENT_11,
868 LEFT_RESULT_CURRENT => LEFT_RESULT_CURRENT_11,
869 BOTLEFT_RESULT_CURRENT => BOTLEFT_RESULT_CURRENT_11
870 );
871

872 FSM11: FSM_CELL_XX port map (
873 CURRENTclk => CURRENTclk,
874 RESET_n => RESET_n,
875 ---
876 CTRL_Vstart => CTRL_Vstart_11,
877 CTRL_Vmove1 => CTRL_Vmove1_11,
878 CTRL_Vop => CTRL_Vop_11,
879 CTRL_Vmove2 => CTRL_Vmove2_11,
880 CTRL_Vmove2C => CTRL_Vmove2C_11,
881 CTRL_Vmove3 => CTRL_Vmove3_11,
882 CTRL_Vmovecout => CTRL_Vmovecout_11,
883 CTRL_Vtankbot => CTRL_Vtankbot_11,
884 CTRL_Vnoext => CTRL_Vnoext_11,
885 CTRL_Vmoveres => CTRL_Vmoveres_11,
886 CTRL_Vmove4 => CTRL_Vmove4_11,
887 CTRL_Vnewdata => CTRL_Vnewdata_11,
888 CTRL_Vdetect => CTRL_Vdetect_11,
889 CTRL_Vrout => CTRL_Vrout_11,
890 CTRL_Vsout => CTRL_Vsout_11,
891 CTRL_Vtanktop => CTRL_Vtanktop_11,
892 CTRL_Vouttank => CTRL_Vouttank_11,
893 CTRL_MTJ_W1 => CTRL_MTJ_W1_11,
894 CTRL_MTJ_W2 => CTRL_MTJ_W2_11,
895 CTRL_MTJ_W3 => CTRL_MTJ_W3_11,
896 CTRL_mux1 => CTRL_mux1_11,

418



C.6 – Memory array

897 ACK_DETECT_MTJ_R1 => ACK_DETECT_MTJ_R1_11,
898 ACK_DETECT_MTJ_R2 => ACK_DETECT_MTJ_R2_11,
899 SR_MTJR2_out => SR_MTJR2_out_11,
900 SR_MTJR1_out => SR_MTJR1_out_11,
901 ---
902 START => START_11_AND,
903 ACK_RES_AVAILABLE => ACK_RES11_AVAILABLE,
904 DES_EXTIN_XX => DES_EXTIN_11,
905 DES_OUT_XX => DES_OUT_11,
906 DES_STORE_XX => DES_STORE_11,
907 DES_NEWDATA_XX => DES_NEWDATA_11,
908 DES_RES_XX => DES_RES_11,
909 RES_AVAILABLE => RES_11_AVAILABLE,
910 REQUEST_NEW_START => REQUEST_NEW_START_11,
911 REQUEST_NEW_START_W => REQUEST_NEW_START_W_11,
912 REQUEST_NEW_STORE => REQUEST_NEW_STORE_11,
913 READY_FOR_NEWDATA_RIGHT => READY_FOR_NEWDATA_RIGHT_11,
914 FIRST_RUN => FIRST_RUN_11,
915 ---
916 CTRL_Vcouttop => CTRL_Vcouttop_11,
917 CTRL_Vcoutleft => CTRL_Vcoutleft_11,
918 CTRL_Vrestop => CTRL_Vrestop_11,
919 CTRL_Vresleft => CTRL_Vresleft_11,
920 CTRL_Vresbotleft => CTRL_Vresbotleft_11,
921 READY_FOR_NEWDATA => READY_FOR_NEWDATA_11,
922 DES_COUT_XX => DES_COUT_11,
923 DES_DATA_XX => DES_DATA_11
924 );
925

926 end architecture Structure;

C.6.1.1. SRlatch_H

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SRlatch_H is
8 port( SET: in std_logic;
9 RST: in std_logic;

10 Q: out std_logic
11 );
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12 end entity SRlatch_H;
13

14 architecture Behaviour of SRlatch_H is
15

16 begin
17 latch: process (SET, RST)
18 variable first: std_logic := '1';
19 begin
20 if (first='1') then
21 first := '0';
22 Q <= '1';
23 end if;
24 if (RST='1') then
25 Q <= '0';
26 elsif(SET'event and SET='1') then
27 Q <= '1';
28 end if;
29 end process latch;
30

31 end architecture Behaviour;

C.6.1.2. Cell_input

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity cell_input is
10 port( IN_SK_L: in std_logic;
11 IN_SK_T: in std_logic;
12 CURRENT_L: in real;
13 CURRENT_T: in real;
14 OUT_SK_R: out std_logic;
15 OUT_SK_B: out std_logic);
16 end entity cell_input;
17

18 architecture Behavioural of cell_input is
19 begin
20 process (IN_SK_L, IN_SK_T, CURRENT_L, CURRENT_T)
21 variable NskL, NskT: integer := 0;
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22 variable st_T: integer := 0;
23 begin
24 if (IN_SK_L'event and IN_SK_L='1') then
25 NskL := NskL+1;
26 end if;
27 if (IN_SK_T'event and IN_SK_T='1') then
28 NskT := NskT+1;
29 end if;
30

31 if (CURRENT_T /= 0.0) then
32 st_T := 1;
33 OUT_SK_R <= '0';
34 OUT_SK_B <= '0'; --suppongo che lo sk si fermi esattamente

all'intersezione, e non proceda oltre↪→

35 end if;
36 if (CURRENT_L /= 0.0) then
37 if (st_T=1) then
38 st_T := 0;
39 if (NskT=1) then
40 OUT_SK_R <= '1', '0' after 10 ps;
41 OUT_SK_B <= '0';
42 NskT := 0;
43 else
44 OUT_SK_R <= '0';
45 OUT_SK_B <= '0';
46 end if;
47 else
48 if (NskL=1) then
49 OUT_SK_R <= '1', '0' after 10 ps;
50 OUT_SK_B <= '0';
51 NskL := 0;
52 else
53 OUT_SK_R <= '0';
54 OUT_SK_B <= '0';
55 end if;
56 end if;
57 else
58 OUT_SK_R <= '0';
59 OUT_SK_B <= '0';
60 end if;
61 end process;
62 end architecture Behavioural;
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C.6.2. Master FSM

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity FSM_MAIN is
10 port( CURRENTclk: in real;
11 RESET_n: in std_logic;
12

13 --from CELL 00
14 INTERRUPT_00, RES_00_AVAILABLE, REQUEST_NEW_START_00,

REQUEST_NEW_START_W_00, REQUEST_NEW_STORE_00, FIRST_RUN_00: in
std_logic;

↪→

↪→

15 --to CELL 00
16 CTRL_MTJ_W4_00, CTRL_Vbl_00, CTRL_Vstore_00, START_00, ACK_RES00_AVAILABLE,

RST_FIRST_RUN_00: out std_logic;↪→

17

18 --from CELL 10
19 INTERRUPT_10, RES_10_AVAILABLE, REQUEST_NEW_START_10,

REQUEST_NEW_START_W_10, REQUEST_NEW_STORE_10, FIRST_RUN_10,
ALL_INPUTS_AVAILABLE_10: in std_logic;

↪→

↪→

20 --to CELL 10
21 CTRL_MTJ_W4_10, CTRL_Vbl_10, CTRL_Vstore_10, FIRST_START_10, START_10,

ACK_RES10_AVAILABLE, RST_FIRST_RUN_10: out std_logic;↪→

22 RST_READY_10_00: out std_logic;
23

24 --from CELL 01
25 INTERRUPT_01, RES_01_AVAILABLE, REQUEST_NEW_START_01,

REQUEST_NEW_START_W_01, REQUEST_NEW_STORE_01, FIRST_RUN_01,
ALL_INPUTS_AVAILABLE_01: in std_logic;

↪→

↪→

26 --to CELL 01
27 CTRL_MTJ_W4_01, CTRL_Vbl_01, CTRL_Vstore_01, FIRST_START_01, START_01,

ACK_RES01_AVAILABLE, RST_FIRST_RUN_01: out std_logic;↪→

28 RST_READY_01_00, RST_READY_01_10: out std_logic;
29

30 --from CELL 11
31 INTERRUPT_11, RES_11_AVAILABLE, REQUEST_NEW_START_11,

REQUEST_NEW_START_W_11, REQUEST_NEW_STORE_11, FIRST_RUN_11,
ALL_INPUTS_AVAILABLE_11: in std_logic;

↪→

↪→

32 --to CELL 11
33 CTRL_MTJ_W4_11, CTRL_Vbl_11, CTRL_Vstore_11, FIRST_START_11, START_11,

ACK_RES11_AVAILABLE, RST_FIRST_RUN_11: out std_logic;↪→

34 RST_READY_11_10, RST_READY_11_01: out std_logic
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35 );
36 end entity FSM_MAIN;
37

38 architecture Behaviour of FSM_MAIN is
39

40 type state_type is (
41 S0, S1, S2, S3, idle, ISR_00, ISR_10, ISR_01, ISR_11,
42 ISR00_S1, ISR00_S2, ISR00_S3, ISR00_S4, ISR00_S5,
43 ISR10_S1, ISR10_S2, ISR10_S3, ISR10_S4, ISR10_S5,
44 ISR01_S1, ISR01_S2, ISR01_S3, ISR01_S4, ISR01_S5,
45 ISR11_S1, ISR11_S2, ISR11_S3, ISR11_S4, ISR11_S5
46 );
47

48 signal pstate, nstate: state_type;
49

50 begin
51

52 state_register: process (CURRENTclk)
53 begin
54 if (CURRENTclk'event and CURRENTclk=CURRENT_HIGH) then
55 if (RESET_n = '0') then
56 pstate <= S0;
57 else
58 pstate <= nstate;
59 end if;
60 end if;
61 end process state_register;
62

63 state_transition: process (pstate, CURRENTclk)
64 begin
65 case pstate is
66 when S0 => nstate <= S1;
67 when S1 => nstate <= S2;
68 when S2 => nstate <= S3;
69 when S3 => if (INTERRUPT_00='1') then nstate <= ISR_00; elsif

(INTERRUPT_10='1') then nstate <= ISR_10; elsif (INTERRUPT_01='1')
then nstate <= ISR_01; elsif (INTERRUPT_11='1') then nstate <= ISR_11;
else nstate <= idle; end if;

↪→

↪→

↪→

70 when idle => if (INTERRUPT_00='1') then nstate <= ISR_00; elsif
(INTERRUPT_10='1') then nstate <= ISR_10; elsif (INTERRUPT_01='1')
then nstate <= ISR_01; elsif (INTERRUPT_11='1') then nstate <= ISR_11;
else nstate <= idle; end if;

↪→

↪→

↪→

71 ---
72 when ISR_00 => if (RES_00_AVAILABLE='1') then nstate <= ISR00_S1;

elsif (REQUEST_NEW_START_00='1') then nstate <= ISR00_S3; elsif
(REQUEST_NEW_START_W_00='1') then nstate <= ISR00_S4; elsif
(REQUEST_NEW_STORE_00='1') then nstate <= ISR00_S5; end if;

↪→

↪→

↪→

73 when ISR00_S1 => if (FIRST_RUN_00='1') then nstate <= ISR00_S2; else if
(INTERRUPT_10='1') then nstate <= ISR_10; elsif (INTERRUPT_01='1')
then nstate <= ISR_01; elsif (INTERRUPT_11='1') then nstate <= ISR_11;
else nstate <= idle; end if; end if;

↪→

↪→

↪→
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74 when ISR00_S2 => if (INTERRUPT_10='1') then nstate <= ISR_10; elsif
(INTERRUPT_01='1') then nstate <= ISR_01; elsif (INTERRUPT_11='1')
then nstate <= ISR_11; else nstate <= idle; end if;

↪→

↪→

75 when ISR00_S3 => nstate <= ISR00_S5;
76 when ISR00_S4 => nstate <= ISR00_S5;
77 when ISR00_S5 => if (INTERRUPT_10='1') then nstate <= ISR_10; elsif

(INTERRUPT_01='1') then nstate <= ISR_01; elsif (INTERRUPT_11='1')
then nstate <= ISR_11; else nstate <= idle; end if;

↪→

↪→

78 ---
79 when ISR_10 => if (RES_10_AVAILABLE='1') then
80 nstate <= ISR10_S1;
81 elsif (ALL_INPUTS_AVAILABLE_10='0') then
82 if (INTERRUPT_01='1') then nstate <= ISR_01; elsif

(INTERRUPT_11='1') then nstate <= ISR_11; else nstate <=
idle; end if;

↪→

↪→

83 else
84 if (REQUEST_NEW_START_10='1') then nstate <= ISR10_S3; elsif

(REQUEST_NEW_START_W_10='1') then nstate <= ISR10_S4;
elsif (REQUEST_NEW_STORE_10='1') then nstate <= ISR10_S5;
end if;

↪→

↪→

↪→

85 end if;
86 when ISR10_S1 => if (FIRST_RUN_10='1') then nstate <= ISR10_S2; else if

(INTERRUPT_01='1') then nstate <= ISR_01; elsif (INTERRUPT_11='1')
then nstate <= ISR_11; else nstate <= idle; end if; end if;

↪→

↪→

87 when ISR10_S2 => if (INTERRUPT_01='1') then nstate <= ISR_01; elsif
(INTERRUPT_11='1') then nstate <= ISR_11; else nstate <= idle; end if;↪→

88 when ISR10_S3 => nstate <= ISR10_S5;
89 when ISR10_S4 => nstate <= ISR10_S5;
90 when ISR10_S5 => if (INTERRUPT_01='1') then nstate <= ISR_01; elsif

(INTERRUPT_11='1') then nstate <= ISR_11; else nstate <= idle; end if;↪→

91 ---
92 when ISR_01 => if (RES_01_AVAILABLE='1') then
93 nstate <= ISR01_S1;
94 elsif (ALL_INPUTS_AVAILABLE_01='0') then
95 if (INTERRUPT_11='1') then nstate <= ISR_11; else nstate <=

idle; end if;↪→

96 else
97 if (REQUEST_NEW_START_01='1') then nstate <= ISR01_S3; elsif

(REQUEST_NEW_START_W_01='1') then nstate <= ISR01_S4;
elsif (REQUEST_NEW_STORE_01='1') then nstate <= ISR01_S5;
end if;

↪→

↪→

↪→

98 end if;
99 when ISR01_S1 => if (FIRST_RUN_01='1') then nstate <= ISR01_S2; else if

(INTERRUPT_11='1') then nstate <= ISR_11; else nstate <= idle; end if;
end if;

↪→

↪→

100 when ISR01_S2 => if (INTERRUPT_11='1') then nstate <= ISR_11; else nstate
<= idle; end if;↪→

101 when ISR01_S3 => nstate <= ISR01_S5;
102 when ISR01_S4 => nstate <= ISR01_S5;
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103 when ISR01_S5 => if (INTERRUPT_11='1') then nstate <= ISR_11; else nstate
<= idle; end if;↪→

104 ---
105 when ISR_11 => if (RES_11_AVAILABLE='1') then
106 nstate <= ISR11_S1;
107 elsif (ALL_INPUTS_AVAILABLE_11='0') then
108 nstate <= idle;
109 else
110 if (REQUEST_NEW_START_11='1') then nstate <= ISR11_S3; elsif

(REQUEST_NEW_START_W_11='1') then nstate <= ISR11_S4;
elsif (REQUEST_NEW_STORE_11='1') then nstate <= ISR11_S5;
end if;

↪→

↪→

↪→

111 end if;
112 when ISR11_S1 => if (FIRST_RUN_11='1') then nstate <= ISR11_S2; else

nstate <= idle; end if;↪→

113 when ISR11_S2 => nstate <= idle;
114 when ISR11_S3 => nstate <= ISR11_S5;
115 when ISR11_S4 => nstate <= ISR11_S5;
116 when ISR11_S5 => nstate <= idle;
117 ---
118 when others => nstate <= idle;
119 end case;
120 end process state_transition;
121

122 output: process (pstate)
123 begin
124 CTRL_MTJ_W4_00 <= '0';
125 CTRL_Vbl_00 <= '0';
126 CTRL_Vstore_00 <= '0';
127 START_00 <= '0';
128 ACK_RES00_AVAILABLE <= '0';
129 RST_FIRST_RUN_00 <= '0';
130 ---
131 CTRL_MTJ_W4_10 <= '0';
132 CTRL_Vbl_10 <= '0';
133 CTRL_Vstore_10 <= '0';
134 FIRST_START_10 <= '0';
135 START_10 <= '0';
136 ACK_RES10_AVAILABLE <= '0';
137 RST_FIRST_RUN_10 <= '0';
138 RST_READY_10_00 <= '0';
139 ---
140 CTRL_MTJ_W4_01 <= '0';
141 CTRL_Vbl_01 <= '0';
142 CTRL_Vstore_01 <= '0';
143 FIRST_START_01 <= '0';
144 START_01 <= '0';
145 ACK_RES01_AVAILABLE <= '0';
146 RST_FIRST_RUN_01 <= '0';
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147 RST_READY_01_00 <= '0';
148 RST_READY_01_10 <= '0';
149 ---
150 CTRL_MTJ_W4_11 <= '0';
151 CTRL_Vbl_11 <= '0';
152 CTRL_Vstore_11 <= '0';
153 FIRST_START_11 <= '0';
154 START_11 <= '0';
155 ACK_RES11_AVAILABLE <= '0';
156 RST_FIRST_RUN_11 <= '0';
157 RST_READY_11_10 <= '0';
158 RST_READY_11_01 <= '0';
159

160 case pstate is
161 when S0 => CTRL_MTJ_W4_00 <= '0';
162 CTRL_Vbl_00 <= '0';
163 CTRL_Vstore_00 <= '0';
164 START_00 <= '0';
165 ACK_RES00_AVAILABLE <= '0';
166 RST_FIRST_RUN_00 <= '0';
167 ---
168 CTRL_MTJ_W4_10 <= '0';
169 CTRL_Vbl_10 <= '0';
170 CTRL_Vstore_10 <= '0';
171 FIRST_START_10 <= '0';
172 START_10 <= '0';
173 ACK_RES10_AVAILABLE <= '0';
174 RST_FIRST_RUN_10 <= '0';
175 RST_READY_10_00 <= '0';
176 ---
177 CTRL_MTJ_W4_01 <= '0';
178 CTRL_Vbl_01 <= '0';
179 CTRL_Vstore_01 <= '0';
180 FIRST_START_01 <= '0';
181 START_01 <= '0';
182 ACK_RES01_AVAILABLE <= '0';
183 RST_FIRST_RUN_01 <= '0';
184 RST_READY_01_00 <= '0';
185 RST_READY_01_10 <= '0';
186 ---
187 CTRL_MTJ_W4_11 <= '0';
188 CTRL_Vbl_11 <= '0';
189 CTRL_Vstore_11 <= '0';
190 FIRST_START_11 <= '0';
191 START_11 <= '0';
192 ACK_RES11_AVAILABLE <= '0';
193 RST_FIRST_RUN_11 <= '0';
194 RST_READY_11_10 <= '0';
195 RST_READY_11_01 <= '0';
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196 when S1 => CTRL_MTJ_W4_00 <= '1'; --PROVVISORIO
197 CTRL_MTJ_W4_10 <= '1'; --PROVVISORIO
198 CTRL_MTJ_W4_01 <= '1'; --PROVVISORIO
199 CTRL_MTJ_W4_11 <= '1'; --PROVVISORIO
200 CTRL_Vbl_00 <= '1';
201 CTRL_Vbl_10 <= '1';
202 CTRL_Vbl_01 <= '1';
203 CTRL_Vbl_11 <= '1';
204 when S2 => CTRL_Vstore_00 <= '1';
205 CTRL_Vstore_10 <= '1';
206 CTRL_Vstore_01 <= '1';
207 CTRL_Vstore_11 <= '1';
208 when S3 => START_00 <= '1';
209

210 when idle => null;
211 ---
212 when ISR_00 => null;
213 when ISR00_S1 => ACK_RES00_AVAILABLE <= '1';
214 RST_READY_10_00 <= '1';
215 RST_READY_01_00 <= '1';
216 FIRST_START_10 <= '1';
217 when ISR00_S2 => RST_FIRST_RUN_00 <= '1';
218 when ISR00_S3 => CTRL_Vbl_00 <= '1';
219 when ISR00_S4 => CTRL_MTJ_W4_00 <= '1';
220 CTRL_Vbl_00 <= '1';
221 when ISR00_S5 => CTRL_Vstore_00 <= '1';
222 START_00 <= '1';
223 ---
224 when ISR_10 => null;
225 when ISR10_S1 => ACK_RES10_AVAILABLE <= '1';
226 --RST_READY_20_10 <= '1';
227 RST_READY_01_10 <= '1';
228 RST_READY_11_10 <= '1';
229 --FIRST_START20 <= '1';
230 FIRST_START_01 <= '1';
231 when ISR10_S2 => RST_FIRST_RUN_10 <= '1';
232 when ISR10_S3 => CTRL_Vbl_10 <= '1';
233 when ISR10_S4 => CTRL_MTJ_W4_10 <= '1';
234 CTRL_Vbl_10 <= '1';
235 when ISR10_S5 => CTRL_Vstore_10 <= '1';
236 START_10 <= '1';
237 ---
238 when ISR_01 => null;
239 when ISR01_S1 => ACK_RES01_AVAILABLE <= '1';
240 RST_READY_11_01 <= '1';
241 --RST_READY_02_01 <= '1';
242 FIRST_START_11 <= '1';
243 --FIRST_START_30 <= '1';
244 when ISR01_S2 => RST_FIRST_RUN_01 <= '1';
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245 when ISR01_S3 => CTRL_Vbl_01 <= '1';
246 when ISR01_S4 => CTRL_MTJ_W4_01 <= '1';
247 CTRL_Vbl_01 <= '1';
248 when ISR01_S5 => CTRL_Vstore_01 <= '1';
249 START_01 <= '1';
250 ---
251 when ISR_11 => null;
252 when ISR11_S1 => ACK_RES11_AVAILABLE <= '1';
253 --RST_READY_21_11 <= '1';
254 --RST_READY_02_11 <= '1';
255 --RST_READY_12_11 <= '1';
256 --FIRST_START_40 <= '1';
257 --FIRST_START_21 <= '1';
258 --FIRST_START_02 <= '1';
259 when ISR11_S2 => RST_FIRST_RUN_11 <= '1';
260 when ISR11_S3 => CTRL_Vbl_11 <= '1';
261 when ISR11_S4 => CTRL_MTJ_W4_11 <= '1';
262 CTRL_Vbl_11 <= '1';
263 when ISR11_S5 => CTRL_Vstore_11 <= '1';
264 START_11 <= '1';
265 ---
266 when others => null;
267 end case;
268 end process output;
269 end Behaviour;

C.6.3. Testbench

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity TB_memory is
10 end entity TB_memory;
11

12 architecture Structure of TB_memory is
13 component memory is
14 port( RESET_n: in std_logic;
15 CURRENTclk: in real;
16
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17 DES_EXTIN_00, DES_OUT_00, DES_STORE_00, DES_NEWDATA_00: in std_logic;
18 DES_RES_00: in std_logic_vector(1 downto 0);
19

20 DES_EXTIN_10, DES_OUT_10, DES_STORE_10, DES_NEWDATA_10, DES_DATA_10: in
std_logic;↪→

21 DES_RES_10: in std_logic_vector(1 downto 0);
22

23 DES_EXTIN_01, DES_OUT_01, DES_STORE_01, DES_NEWDATA_01: in std_logic;
24 DES_DATA_01, DES_RES_01: in std_logic_vector(1 downto 0);
25

26 DES_EXTIN_11, DES_OUT_11, DES_STORE_11, DES_NEWDATA_11, DES_COUT_11: in
std_logic;↪→

27 DES_DATA_11, DES_RES_11: in std_logic_vector(1 downto 0)
28 );
29 end component memory;
30

31 signal RESET_n: std_logic;
32 signal CURRENTclk: real;
33

34 signal DES_EXTIN_00, DES_OUT_00, DES_STORE_00, DES_NEWDATA_00: std_logic;
35 signal DES_RES_00: std_logic_vector(1 downto 0);
36

37 signal DES_EXTIN_10, DES_OUT_10, DES_STORE_10, DES_NEWDATA_10, DES_DATA_10:
std_logic;↪→

38 signal DES_RES_10: std_logic_vector(1 downto 0);
39

40 signal DES_EXTIN_01, DES_OUT_01, DES_STORE_01, DES_NEWDATA_01: std_logic;
41 signal DES_DATA_01, DES_RES_01: std_logic_vector(1 downto 0);
42

43 signal DES_EXTIN_11, DES_OUT_11, DES_STORE_11, DES_NEWDATA_11, DES_COUT_11:
std_logic;↪→

44 signal DES_DATA_11, DES_RES_11: std_logic_vector(1 downto 0);
45

46

47 begin
48

49 DUT: memory port map (
50 RESET_n => RESET_n,
51 CURRENTclk => CURRENTclk,
52 ---
53 DES_EXTIN_00 => DES_EXTIN_00,
54 DES_OUT_00 => DES_OUT_00,
55 DES_STORE_00 => DES_STORE_00,
56 DES_NEWDATA_00 => DES_NEWDATA_00,
57 DES_RES_00 => DES_RES_00,
58 ---
59 DES_EXTIN_10 => DES_EXTIN_10,
60 DES_OUT_10 => DES_OUT_10,
61 DES_STORE_10 => DES_STORE_10,
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62 DES_NEWDATA_10 => DES_NEWDATA_10,
63 DES_DATA_10 => DES_DATA_10,
64 DES_RES_10 => DES_RES_10,
65 ---
66 DES_EXTIN_01 => DES_EXTIN_01,
67 DES_OUT_01 => DES_OUT_01,
68 DES_STORE_01 => DES_STORE_01,
69 DES_NEWDATA_01 => DES_NEWDATA_01,
70 DES_DATA_01 => DES_DATA_01,
71 DES_RES_01 => DES_RES_01,
72 ---
73 DES_EXTIN_11 => DES_EXTIN_11,
74 DES_OUT_11 => DES_OUT_11,
75 DES_STORE_11 => DES_STORE_11,
76 DES_NEWDATA_11 => DES_NEWDATA_11,
77 DES_COUT_11 => DES_COUT_11,
78 DES_DATA_11 => DES_DATA_11,
79 DES_RES_11 => DES_RES_11
80 );
81

82 RESET_n <= '0', '1' after 50 ps;
83

84 DES_EXTIN_00 <= '1';
85 DES_OUT_00 <= '1';
86 DES_STORE_00 <= '0';
87 DES_NEWDATA_00 <= '1';
88 DES_RES_00 <= "01";
89

90 DES_EXTIN_10 <= '0';
91 DES_OUT_10 <= '1';
92 DES_STORE_10 <= '1';
93 DES_NEWDATA_10 <= '0';
94 DES_DATA_10 <= '0';
95 DES_RES_10 <= "10";
96

97 DES_EXTIN_01 <= '1';
98 DES_OUT_01 <= '0';
99 DES_STORE_01 <= '1';

100 DES_NEWDATA_01 <= '1';
101 DES_DATA_01 <= "10", "11" after 480 ns, "00" after 530 ns;
102 --DES_DATA_01 <= "10";
103 DES_RES_01 <= "10";
104

105 DES_EXTIN_11 <= '0';
106 DES_OUT_11 <= '1';
107 DES_STORE_11 <= '1';
108 DES_NEWDATA_11 <= '0';
109 DES_COUT_11 <= '1', '0' after 640 ns;
110 DES_DATA_11 <= "10", "11" after 640 ns;
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111 DES_RES_11 <= "01";
112

113 CURRENT_GEN : process
114 begin
115 CURRENTclk <= CURRENT_LOW;
116 wait for CLOCK_LOW;
117 CURRENTclk <= CURRENT_HIGH;
118 wait for CLOCK_HIGH;
119 end process;
120

121 end architecture Structure;
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D.1. Array components and related files
D.1.1. Components
D.1.1.1. Standard voltage generator

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity voltage_genL is
10 port( CTRL: in std_logic;
11 CURRENT: out real);
12 end entity voltage_genL;
13

14 architecture Behavioural of voltage_genL is
15 begin
16 CURR_GEN: process (CTRL)
17 begin
18 if (CTRL='1') then
19 CURRENT <= CURRENT_LOW;
20 else
21 CURRENT <= 0.0;
22 end if;
23 end process CURR_GEN;
24 end architecture Behavioural;
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D.1.1.2. Vop generator

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity voltage_genPEAK is
10 port( CTRL: in std_logic;
11 CURRENT: out real);
12 end entity voltage_genPEAK;
13

14 architecture Behavioural of voltage_genPEAK is
15 begin
16 CURR_GEN: process (CTRL)
17 begin
18 if (CTRL='1') then
19 CURRENT <= CURRENT_LOW, CURRENT_HIGH after CLOCK_PERIOD/2, CURRENT_LOW

after CLOCK_PERIOD/2+CLOCK_HIGH;↪→

20 else
21 CURRENT <= 0.0;
22 end if;
23 end process CURR_GEN;
24 end architecture Behavioural;

D.1.1.3. And/Or gate

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONH is
8 port ( INPUTA : in std_logic;
9 INPUTB : in std_logic;

10 CURRENT : in real;
11 OUTPUTAND : out std_logic;
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12 OUTPUTOR : out std_logic
13 );
14 end entity SKYRMIONH;
15

16 architecture CENTRALLOGIC of skyrmionh is
17 ------------ CONSTANTS -------------------------------------------
18 constant TRACK_LENGTH : real := 256.0; --nm
19 constant HOLE_X_START : real := 113.0; --nm
20 constant HOLE_X_END : real := 143.0; --nm
21 constant HOLE_X_POSITION : real := 128.0; --nm
22 constant TRACK_0_Y : real := 10.0; --nm
23 constant TRACK_1_Y : real := 50.0; --nm
24 constant HOLE_Y_BOTTOM : real := 20.0; --nm
25 constant HOLE_Y_TOP : real := 40.0; --nm
26

27 ----------- FUNCTIONS --------------------------------------------
28

29 function updatePosition (elapsedTimeNs: real; actualPosition:
parameters_array; currentValue : real; index: integer) return
coordinates_xy is

↪→

↪→

30 variable speed : coordinates_xy;
31 variable output : coordinates_xy;
32 variable changeTrack : boolean;
33 begin
34 changeTrack := false;
35 output(0) := 0.0;
36 output(1) := 0.0;
37 if(currentValue > DEPINNING_CURRENT) then
38 speed(1) := 0.0;
39 speed(0) := 0.0;
40 if(actualPosition(index)(0) > HOLE_X_START and actualPosition(index)(0) <

HOLE_X_END and actualPosition(index)(1) <= HOLE_Y_BOTTOM) then↪→

41 changeTrack := true;
42 for i in 0 to 9 loop
43 if(index /= i and actualPosition(i)(0) > HOLE_X_START and

actualPosition(i)(0) < HOLE_X_END and actualPosition(i)(1) > 0.0)
then

↪→

↪→

44 changeTrack := false;
45 end if;
46 end loop;
47 end if;
48 if (changeTrack or (actualPosition(index)(1) > HOLE_Y_BOTTOM and

actualPosition(index)(1) < HOLE_Y_TOP)) then↪→

49 speed(1) := VERTICAL_SPEED;
50 speed(0) := 0.0;
51 else
52 speed(1) := 0.0;
53 speed(0) := HORIZONTAL_SPEED;
54 end if;
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55 output(0) := actualPosition(index)(0)+speed(0)*elapsedTimeNs;
56 output(1) := actualPosition(index)(1)+speed(1)*elapsedTimeNs;
57 end if;
58 return output;
59 end updatePosition;
60

61

62 ------------ SIGNALS ---------------------------------
63 signal ACK : std_logic := '0';
64 signal inputPortState, emit : std_logic_vector(1 downto 0) := "00";
65 signal skyrmion_position_debug : parameters_array;
66 signal skyrmion_number_debug : integer := 0;
67 begin
68

69 RECEIVER: process(INPUTA, INPUTB, ACK)
70 begin
71 if (ACK'event and ACK='1') then
72 inputPortState <= "00";
73 end if;
74 if (INPUTA'event and INPUTA='1') then
75 inputPortState(1) <= '1';
76 end if;
77 if (INPUTB'event and INPUTB='1') then
78 inputPortState(0) <= '1';
79 end if;
80 end process;
81

82

83 EMITTER: process(emit)
84 begin
85 if(emit(0)'event and emit(0)='1') then
86 OUTPUTAND<='1';
87 else
88 OUTPUTAND<='0' after 1 ns;
89 end if;
90 if(emit(1)'event and emit(1)='1') then
91 OUTPUTOR<='1';
92 else
93 OUTPUTOR<='0' after 1 ns;
94 end if;
95 end process;
96

97 EVOLUTION:process
98 variable v_TIME : time := 0 ns;
99 variable skyrmion_position : parameters_array;

100 variable skyrmion_position_old : parameters_array;
101 variable skyrmion_number, skyrmion_number_old, write_index : integer := 0;
102 variable result : coordinates_xy;
103 variable timeNsReal : real := 0.0;
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104 variable trackBusy : bool_array(1 downto 0);
105 begin
106 wait for 5 ps;
107 v_TIME := now - v_TIME;
108 timeNsReal := 0.01;
109 trackBusy(0) := false;
110 trackBusy(1) := false;
111 ACK <= '0';
112 if (inputPortState(0) = '1') then --skyrmion detected on B
113 skyrmion_number := skyrmion_number +1;
114 skyrmion_position(skyrmion_number-1)(0) := 0.0;
115 skyrmion_position(skyrmion_number-1)(1) := TRACK_0_Y;
116 ACK <= '1';
117 end if;
118

119 if (inputPortState(1) = '1') then --skyrmion detected on A
120 skyrmion_number := skyrmion_number +1;
121 skyrmion_position(skyrmion_number-1)(0) := 0.0;
122 skyrmion_position(skyrmion_number-1)(1) := TRACK_1_Y;
123 ACK <= '1';
124 end if;
125

126 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
127 skyrmion_position_old := skyrmion_position;
128 skyrmion_number_old := skyrmion_number;
129 write_index := -1;
130 for i in 0 to skyrmion_number_old-1 loop
131 result := updatePosition(timeNsReal,skyrmion_position_old,CURRENT,i);
132 if (result(0) > TRACK_LENGTH ) then
133 skyrmion_number := skyrmion_number-1;
134 if result(1) > HOLE_Y_TOP then
135 emit(1) <= '1' after 5 ps; --OR=1
136 trackBusy(1) := true;
137 else
138 emit(0) <= '1' after 5 ps; --AND=1
139 trackBusy(0) := true;
140 end if;
141 else
142 write_index := write_index + 1;
143 skyrmion_position(write_index) := result;
144 end if;
145

146 end loop;
147 if (write_index < 9) then
148 write_index := write_index+1;
149 for i in write_index to 9 loop
150 skyrmion_position(i)(0) := 0.0;
151 skyrmion_position(i)(1) := 0.0;
152 end loop;
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153 end if;
154

155 if (not(trackBusy(0))) then
156 emit(0) <= '0' after 5 ps;
157 end if;
158 if (not(trackBusy(1))) then
159 emit(1) <= '0' after 5 ps;
160 end if;
161 elsif (skyrmion_number=0) then
162 emit <= "00" after 15 ps;
163 for i in 0 to 9 loop
164 skyrmion_position(i)(0) := 0.0;
165 skyrmion_position(i)(1) := 0.0;
166 end loop;
167 else
168 report "Skyrmion number exceeded maximum admitted";
169 end if;
170

171 skyrmion_position_debug <= skyrmion_position after 5 ps;
172 skyrmion_number_debug <= skyrmion_number after 5 ps;
173 wait for 5 ps;
174 end process;
175 end CENTRALLOGIC;

D.1.1.4. Join element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use IEEE.math_real.all;
6 use work.globals.all;
7

8 entity SKYRMIONJOIN is
9 port( A : in std_logic;

10 B : in std_logic;
11 CURRENT : in real;
12 OUTPUT : out std_logic
13 );
14 end entity SKYRMIONJOIN;
15

16 architecture BLACKBOX of SKYRMIONJOIN is
17

18 ------------ CONSTANTS -------------------------------------------
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19 constant TRACK_LENGTH : real := 256.0; --nm
20

21 ------------ INTERNAL SIGNALS ------------------------------------
22 signal emit : std_logic := '0';
23 signal inputPortState: std_logic_vector(1 downto 0):= "00";
24 signal ACK : std_logic := '0';
25 signal skyrmion_position_debug : parameters_array;
26 signal skyrmion_number_debug : integer;
27

28 ----------- FUNCTIONS --------------------------------------------
29 function updatePosition (elapsedTimeNs: real; actualPosition:

parameters_array; currentValue : real ) return parameters_array is↪→

30 variable output : parameters_array;
31 begin
32 if(currentValue > DEPINNING_CURRENT) then
33 for i in 0 to 9 loop
34 output(i)(1) := 0.0;
35 output(i)(0) := actualPosition(i)(0) + HORIZONTAL_SPEED*elapsedTimeNs;
36 end loop;
37 end if;
38 return output;
39 end updatePosition;
40

41 begin
42

43 RECEIVER: process(A, B, ACK)
44 begin
45 if (ACK'event and ACK='1') then
46 inputPortState <= "00";
47 end if;
48 if (B'event and B='1') then
49 inputPortState(0) <= '1';
50 end if;
51 if (A'event and A='1') then
52 inputPortState(1) <= '1';
53 end if;
54 end process;
55

56

57 EVOLUTION:process
58 variable v_TIME : time := 0 ns;
59

60 variable skyrmion_number : integer := 0;
61 variable skyrmion_number_old : integer := 0;
62 variable skyrmion_position : parameters_array;
63 variable skyrmion_position_old : parameters_array;
64

65 variable results : parameters_array;
66 variable timeNsReal : real := 0.0;
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67 variable trackBusy : boolean;
68 variable write_index : integer := 0;
69 begin
70 wait for 5 ps;
71 v_TIME := now - v_TIME;
72 timeNsReal := 0.01;
73 trackBusy := false;
74 ACK <= '0';
75

76 if (inputPortState(0) = '1') then
77 skyrmion_number := skyrmion_number +1;
78 skyrmion_position(skyrmion_number-1)(0) := 0.0;
79 skyrmion_position(skyrmion_number-1)(1) := 0.0;
80 ACK <= '1';
81 end if;
82 if (inputPortState(1) = '1') then
83 skyrmion_number := skyrmion_number +1;
84 skyrmion_position(skyrmion_number-1)(0) := 0.0;
85 skyrmion_position(skyrmion_number-1)(1) := 0.0;
86 ACK <= '1';
87 end if;
88

89 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
90 skyrmion_position_old := skyrmion_position;
91 skyrmion_number_old := skyrmion_number;
92 write_index := -1;
93 results := updatePosition(timeNsReal, skyrmion_position_old, CURRENT);
94 for i in 0 to skyrmion_number_old-1 loop
95 if (results(i)(0) > TRACK_LENGTH and not(trackBusy)) then
96 skyrmion_number := skyrmion_number-1;
97 emit <= '1' after 5 ps;
98 trackBusy := true;
99 else

100 if(results(i)(0) > TRACK_LENGTH and trackBusy) then
101 report "More than one skyrmion reached the output in this step; Join

gate does not account the skyrmion collisions yet. The skyrmions
will be emitted in sequence with one step distance";

↪→

↪→

102 end if;
103 write_index := write_index + 1;
104 skyrmion_position(write_index) := results(i);
105 end if;
106 end loop;
107 if (write_index < 9) then
108 write_index := write_index+1;
109 for i in write_index to 9 loop
110 skyrmion_position(i)(0) := 0.0;
111 skyrmion_position(i)(1) := 0.0;
112 end loop;
113 end if;
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114

115 if (not(trackBusy)) then
116 emit <= '0' after 5 ps;
117 end if;
118 elsif (skyrmion_number=0) then
119 emit <= '0' after 5 ps;
120 for i in 0 to 9 loop
121 skyrmion_position(i)(0) := 0.0;
122 skyrmion_position(i)(1) := 0.0;
123 end loop;
124 else
125 report "Skyrmion number exceeded maximum admitted";
126 end if;
127

128 skyrmion_position_debug <= skyrmion_position after 5 ps;
129 skyrmion_number_debug <= skyrmion_number after 5 ps;
130 wait for 5 ps;
131 end process;
132

133

134 EMITTER: process(emit)
135 begin
136

137 if(emit'event and emit='1') then
138 OUTPUT<='1';
139 else
140 OUTPUT<='0' after 10 ps;
141 end if;
142 end process;
143 end BLACKBOX;

D.1.1.5. Notch element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use IEEE.math_real.all;
6 use work.globals.all;
7 use work.all;
8

9 entity SKYRMIONNOTCH is
10 port( INPUT : in std_logic;
11 CURRENT : in real;
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12 OUTPUT : out std_logic
13 );
14 end entity SKYRMIONNOTCH;
15

16 architecture BLACKBOX of SKYRMIONNOTCH is
17 ------------ CONSTANTS -------------------------------------------
18 constant TRACK_LENGTH : real := 256.0; --nm
19 constant NOTCH_POSITION: real := 113.0; --nm
20

21 ------------ INTERNAL SIGNALS ------------------------------------
22 signal emit : std_logic := '0';
23 signal inputPortState: std_logic:= '0';
24 signal ACK : std_logic := '0';
25 signal skyrmion_position_debug : parameters_array;
26 signal skyrmion_number_debug : integer;
27

28 ----------- FUNCTIONS --------------------------------------------
29 function findSkyrmionsCloserToNotch (notch_distance: real_array(9 downto 0);

index: integer) return integer is↪→

30 variable output : integer := 0;
31 begin
32 for i in 0 to 9 loop
33 if(notch_distance(index) < notch_distance(i)) then
34 output := output + 1;
35 end if;
36 end loop;
37 return output;
38 end findSkyrmionsCloserToNotch;
39

40

41 function updatePosition (elapsedTimeNs: real; actualPosition:
parameters_array; currentValue : real ) return parameters_array is↪→

42 variable speed : coordinates_xy;
43 variable output : parameters_array;
44 variable blocking_skyrmions : integer;
45 variable notch_distance : real_array(9 downto 0);
46 variable delta_distance : real;
47 begin
48 if(currentValue > DEPINNING_CURRENT) then
49 if (currentValue < NOTCH_DEPINNING_CURRENT) then
50 for i in 0 to 9 loop
51 output(i)(1) := 0.0;
52 notch_distance(i) := actualPosition(i)(0)-NOTCH_POSITION;
53 delta_distance := HORIZONTAL_SPEED*elapsedTimeNs;
54 if(notch_distance(i) > 0.0) then
55 output(i)(0) := actualPosition(i)(0)+delta_distance;
56 else
57 blocking_skyrmions := findSkyrmionsCloserToNotch(notch_distance, i);
58 if (abs(notch_distance(i)) - real(blocking_skyrmions) *

(SKYRMION_DIAMETER + SKYRMION_MIN_DISTANCE) > delta_distance)
then

↪→

↪→
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59 output(i)(0) := actualPosition(i)(0)+ delta_distance;
60 else
61 output(i)(0) := NOTCH_POSITION - real(blocking_skyrmions) *

(SKYRMION_DIAMETER + SKYRMION_MIN_DISTANCE);↪→

62 end if;
63 end if;
64 end loop;
65 else
66 for i in 0 to 9 loop
67 output(i)(1) := 0.0;
68 output(i)(0) := actualPosition(i)(0) +

HORIZONTAL_SPEED_HIGH*elapsedTimeNs;↪→

69 end loop;
70 end if;
71 end if;
72 return output;
73 end updatePosition;
74

75 begin
76

77 RECEIVER: process(INPUT, ACK)
78 begin
79 if (ACK'event and ACK='1') then
80 inputPortState <= '0';
81 end if;
82 if (INPUT'event and INPUT='1') then
83 inputPortState <= '1';
84 end if;
85 end process;
86

87

88 EVOLUTION:process
89 variable v_TIME : time := 0 ns;
90 variable skyrmion_number : integer := 0;
91 variable skyrmion_number_old : integer := 0;
92 variable skyrmion_position : parameters_array;
93 variable skyrmion_position_old : parameters_array;
94 variable results : parameters_array;
95 variable timeNsReal : real := 0.0;
96 variable trackBusy : boolean;
97 variable write_index : integer := 0;
98 begin
99 wait for 5 ps;

100 v_TIME := now - v_TIME;
101 timeNsReal := 0.01;
102 trackBusy := false;
103 ACK <= '0';
104

105 if (inputPortState = '1') then
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106 skyrmion_number := skyrmion_number +1;
107 skyrmion_position(skyrmion_number-1)(0) := 0.0;
108 skyrmion_position(skyrmion_number-1)(1) := 0.0;
109 ACK <= '1';
110 end if;
111

112 if (skyrmion_number>0 and CURRENT>DEPINNING_CURRENT) then
113 skyrmion_position_old := skyrmion_position;
114 skyrmion_number_old := skyrmion_number;
115 write_index := -1;
116 results := updatePosition(timeNsReal, skyrmion_position_old, CURRENT);
117 for i in 0 to skyrmion_number_old-1 loop
118 if (results(i)(0) > TRACK_LENGTH and not(trackBusy)) then
119 skyrmion_number := skyrmion_number-1;
120 emit <= '1' after 5 ps;
121 trackBusy := true;
122 else
123 if(results(i)(0) > TRACK_LENGTH and trackBusy) then
124 report "More than one skyrmion reached the output in this step; Try

reducing the simulation step; The second skyrmion to reach the
output will be delayed by one step";

↪→

↪→

125 end if;
126 write_index := write_index + 1;
127 skyrmion_position(write_index) := results(i);
128 end if;
129 end loop;
130 if (write_index < 9) then
131 write_index := write_index+1;
132 for i in write_index to 9 loop
133 skyrmion_position(i)(0) := 0.0;
134 skyrmion_position(i)(1) := 0.0;
135 end loop;
136 end if;
137

138 if (not(trackBusy)) then
139 emit <= '0' after 5 ps;
140 end if;
141 elsif (skyrmion_number=0) then
142 emit <= '0' after 5 ps;
143 for i in 0 to 9 loop
144 skyrmion_position(i)(0) := 0.0;
145 skyrmion_position(i)(1) := 0.0;
146 end loop;
147 else
148 report "Skyrmion number exceeded maximum admitted";
149 end if;
150

151 skyrmion_position_debug <= skyrmion_position after 5 ps;
152 skyrmion_number_debug <= skyrmion_number after 5 ps;
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153 wait for 5 ps;
154 end process;
155

156

157 EMITTER: process(emit)
158 begin
159

160 if(emit'event and emit='1') then
161 OUTPUT<='1';
162 else
163 OUTPUT<='0' after 10 ps;
164 end if;
165 end process;
166 end BLACKBOX;

D.1.1.6. Duplication element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity skyrmionDUPLICATE is
10 port( IN_SK: in std_logic;
11 CURRENT: in real;
12 OUT_SK_TOP: out std_logic;
13 OUT_SK_BOTTOM: out std_logic);
14 end entity skyrmionDUPLICATE;
15

16 architecture Behavioural of skyrmionDUPLICATE is
17 begin
18 SK_DUPL: process (IN_SK, CURRENT)
19 variable Nsk: integer := 0;
20 begin
21 if (IN_SK'event and IN_SK='0') then
22 Nsk := Nsk+1;
23 end if;
24

25 if (CURRENT /= 0.0) then
26 if (Nsk /= 0) then
27 OUT_SK_TOP <= '1' after 1 ps, '0' after 11 ps;
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28 OUT_SK_BOTTOM <= '1' after 1 ps, '0' after 11 ps;
29 Nsk:=Nsk-1;
30 else
31 OUT_SK_TOP <= '0';
32 OUT_SK_BOTTOM <= '0';
33 end if;
34 else
35 OUT_SK_TOP <= '0';
36 OUT_SK_BOTTOM <= '0';
37 end if;
38 end process SK_DUPL;
39 end architecture Behavioural;

D.1.1.7. Cross element

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity SKYRMIONCROSS is
8 port( A: in std_logic;
9 B: in std_logic;

10 CURRENTA: in real;
11 CURRENTB: in real;
12 Aout: out std_logic;
13 Bout: out std_logic);
14 end entity SKYRMIONCROSS;
15

16 architecture BLACKBOX of SKYRMIONCROSS is
17

18 begin
19 process (A, B, CURRENTA, CURRENTB) is
20 variable NskA, NskB: integer := 0;
21 begin
22 if (A'event and A='1') then
23 NskA := NskA+1;
24 end if;
25 if (B'event and B='1') then
26 NskB := NskB+1;
27 end if;
28

29 if (CURRENTA /= 0.0) then
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30 if (NskA = 1) then
31 Aout <= '1', '0' after 9 ps;
32 NskA := 0;
33 else
34 Aout <= '0';
35 end if;
36 end if;
37 if (CURRENTB /= 0.0) then
38 if (NskB = 1) then
39 Bout <= '1', '0' after 9 ps;
40 NskB := 0;
41 else
42 Bout <= '0';
43 end if;
44 end if;
45 end process;
46 end BLACKBOX;

D.1.1.8. Read head

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity MTJ_R is
10 port( IN_SK: in std_logic;
11 CURRENT: in real;
12 OUT_SIGN: out std_logic);
13 end entity MTJ_R;
14

15 architecture Behavioural of MTJ_R is
16 begin
17 SK_DETECT: process (IN_SK, CURRENT)
18 variable Nsk: std_logic := '0';
19 begin
20 if (IN_SK'event and IN_SK='1') then
21 Nsk := '1';
22 end if;
23 if (CURRENT /= 0.0) then
24 if (Nsk='1') then
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25 --OUT_SIGN <= '0', '1' after 10 ps, '0' after 20 ps;
26 OUT_SIGN <= '1', '0' after 10 ps;
27 Nsk:='0';
28 else
29 OUT_SIGN <= '0';
30 end if;
31 else
32 OUT_SIGN <= '0';
33 end if;
34 end process SK_DETECT;
35 end architecture Behavioural;

D.1.1.9. Write head

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity MTJ_W is
10 port( CTRL: in std_logic;
11 OUT_SK: out std_logic);
12 end entity MTJ_W;
13

14 architecture Behavioural of MTJ_W is
15 begin
16 SK_GEN: process (CTRL)
17 begin
18 if (CTRL'event and CTRL='1') then
19 OUT_SK <= '1', '0' after 10 ps;
20 else
21 OUT_SK <= '0';
22 end if;
23 end process SK_GEN;
24 end architecture Behavioural;

447



D – Logic in memory VHDL code - architecture 2

D.1.1.10. Dxx component

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8 entity cell_input is
9 port( IN_SK_L: in std_logic;

10 IN_SK_R: in std_logic;
11 IN_SK_T: in std_logic;
12 ENABLE: in std_logic;
13 CURRENT_T: in real;
14 CURRENT_L: in real;
15 CURRENT_R: in real;
16 OUT_SK_L: out std_logic;
17 OUT_SK_R: out std_logic;
18 OUT_SK_B: out std_logic);
19 end entity cell_input;
20

21 architecture Behavioural of cell_input is
22 signal Nsks: integer;
23 signal outens: std_logic;
24 begin
25 SK_DEV: process (IN_SK_L, IN_SK_R, IN_SK_T, CURRENT_T, CURRENT_L, CURRENT_R)
26 variable Nsk: integer := 0;
27 variable out_en: std_logic := '0';
28 variable outr_en: std_logic := '1';
29 begin
30 if (ENABLE='1') then
31 if (IN_SK_L'event and IN_SK_L='1') then
32 Nsk := Nsk+1;
33 end if;
34 if (IN_SK_R'event and IN_SK_R='1') then
35 Nsk := Nsk+1;
36 end if;
37 if (IN_SK_T'event and IN_SK_T='1') then
38 Nsk := Nsk+1;
39 end if;
40

41 if (CURRENT_T = 0.0 and CURRENT_L = 0.0 and CURRENT_R = 0.0) then
42 OUT_SK_B <= '0';
43 OUT_SK_L <= '0';
44 OUT_SK_R <= '0';
45 end if;
46
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47 if(out_en = '1') then
48 if (CURRENT_L'event and CURRENT_L /= 0.0) then
49 if (Nsk=1) then
50 OUT_SK_B <= '0';
51 OUT_SK_L <= '1', '0' after 10 ps;
52 OUT_SK_R <= '0';
53 Nsk := Nsk-1;
54 out_en := '0';
55 else
56 OUT_SK_B <= '0';
57 OUT_SK_L <= '0';
58 OUT_SK_R <= '0';
59 out_en := '0';
60 end if;
61 elsif (CURRENT_R'event and CURRENT_R /= 0.0 and outr_en = '1') then
62 if (Nsk=1) then
63 OUT_SK_B <= '0';
64 OUT_SK_L <= '0';
65 OUT_SK_R <= '1', '0' after 10 ps;
66 Nsk := Nsk-1;
67 out_en := '0';
68 outr_en := '0';
69 else
70 OUT_SK_B <= '0';
71 OUT_SK_L <= '0';
72 OUT_SK_R <= '0';
73 out_en := '0';
74 outr_en := '0';
75 end if;
76 elsif (CURRENT_T'event and CURRENT_T /= 0.0) then
77 if (Nsk=1) then
78 OUT_SK_B <= '1', '0' after 10 ps;
79 OUT_SK_L <= '0';
80 OUT_SK_R <= '0';
81 Nsk := Nsk-1;
82 out_en := '0';
83 else
84 OUT_SK_B <= '0';
85 OUT_SK_L <= '0';
86 OUT_SK_R <= '0';
87 out_en := '0';
88 end if;
89 end if;
90 end if;
91

92 if (CURRENT_T'event and CURRENT_T /= 0.0) then
93 if (out_en = '0' and Nsk /= 0) then
94 out_en:='1';
95 end if;
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96 end if;
97

98 if (CURRENT_R'event and CURRENT_R = 0.0) then
99 if (outr_en='0') then

100 outr_en := '1';
101 end if;
102 end if;
103 else
104 OUT_SK_B <= '0';
105 OUT_SK_L <= '0';
106 OUT_SK_R <= '0';
107 end if;
108

109 Nsks <= Nsk;
110 outens <= out_en;
111

112 end process SK_DEV;
113 end architecture Behavioural;

D.1.2. Cells of row 0

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Cell0 is
8 port( IN_R: in std_logic;
9 IN_L: in std_logic;

10 CTRL_MTJ: in std_logic;
11 CURRENT_OP: in real;
12 CURRENT_TR: in real;
13 OUTFEED_R: out std_logic;
14 OUTFEED_L: out std_logic;
15 OUTTRAN: out std_logic;
16 OUTOR: out std_logic;
17 OUTOP: out std_logic);
18 end entity Cell0;
19

20 architecture Behaviour of Cell0 is
21 component skyrmionDUPLICATE is
22 port( IN_SK: in std_logic;
23 CURRENT: in real;
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24 OUT_SK_TOP: out std_logic;
25 OUT_SK_BOTTOM: out std_logic);
26 end component skyrmionDUPLICATE;
27

28 component SKYRMIONNOTCH is
29 port( INPUT : in std_logic;
30 CURRENT : in real;
31 OUTPUT : out std_logic);
32 end component SKYRMIONNOTCH;
33

34 component MTJ_W is
35 port( CTRL: in std_logic;
36 OUT_SK: out std_logic);
37 end component MTJ_W;
38

39 component SKYRMIONH is
40 port ( INPUTA : in std_logic;
41 INPUTB : in std_logic;
42 CURRENT : in real;
43 OUTPUTAND : out std_logic;
44 OUTPUTOR : out std_logic);
45 end component SKYRMIONH;
46

47 signal xRout_bottom, MTJout, notchtop_out, notchbot_out: std_logic;
48

49 begin
50 xR: skyrmionDUPLICATE port map (IN_SK => IN_R, CURRENT => CURRENT_OP,

OUT_SK_TOP => OUTFEED_R, OUT_SK_BOTTOM => xRout_bottom);↪→

51 MTJ: MTJ_W port map (CTRL => CTRL_MTJ, OUT_SK => MTJout);
52 notchtop: SKYRMIONNOTCH port map (INPUT => xRout_bottom, CURRENT =>

CURRENT_OP, OUTPUT => notchtop_out);↪→

53 notchbot: SKYRMIONNOTCH port map (INPUT => MTJout, CURRENT => CURRENT_OP,
OUTPUT => notchbot_out);↪→

54 ANDc: SKYRMIONH port map (INPUTA => notchtop_out, INPUTB => notchbot_out,
CURRENT => CURRENT_OP, OUTPUTAND => OUTOP, OUTPUTOR => OUTOR);↪→

55

56 xL: skyrmionDUPLICATE port map (IN_SK => IN_L, CURRENT => CURRENT_TR,
OUT_SK_TOP => OUTFEED_L, OUT_SK_BOTTOM => OUTTRAN);↪→

57

58 end architecture Behaviour;
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D.1.3. Cells of any other row

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Cellx is
8 port( IN_R: in std_logic;
9 IN_L: in std_logic;

10 IN_TR: in std_logic;
11 CTRL_MTJ: in std_logic;
12 CURRENT_OP: in real;
13 CURRENT_TR: in real;
14 OUTFEED_R: out std_logic;
15 OUTFEED_L: out std_logic;
16 OUTTRAN: out std_logic;
17 OUTOR: out std_logic;
18 OUTOP: out std_logic
19 );
20 end entity Cellx;
21

22 architecture Behaviour of Cellx is
23 component skyrmionDUPLICATE is
24 port( IN_SK: in std_logic;
25 CURRENT: in real;
26 OUT_SK_TOP: out std_logic;
27 OUT_SK_BOTTOM: out std_logic);
28 end component skyrmionDUPLICATE;
29

30 component SKYRMIONNOTCH is
31 port( INPUT : in std_logic;
32 CURRENT : in real;
33 OUTPUT : out std_logic);
34 end component SKYRMIONNOTCH;
35

36 component MTJ_W is
37 port( CTRL: in std_logic;
38 OUT_SK: out std_logic);
39 end component MTJ_W;
40

41 component SKYRMIONH is
42 port ( INPUTA : in std_logic;
43 INPUTB : in std_logic;
44 CURRENT : in real;
45 OUTPUTAND : out std_logic;
46 OUTPUTOR : out std_logic);
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47 end component SKYRMIONH;
48

49 component SKYRMIONJOIN is
50 port( A : in std_logic;
51 B : in std_logic;
52 CURRENT : in real;
53 OUTPUT : out std_logic);
54 end component SKYRMIONJOIN;
55

56 signal xRout_bottom, MTJout, notchtop_out, notchbot_out, JOIN_out: std_logic;
57

58 begin
59 xR: skyrmionDUPLICATE port map (IN_SK => IN_R, CURRENT => CURRENT_OP,

OUT_SK_TOP => OUTFEED_R, OUT_SK_BOTTOM => xRout_bottom);↪→

60 MTJ: MTJ_W port map (CTRL => CTRL_MTJ, OUT_SK => MTJout);
61 join: SKYRMIONJOIN port map (A => MTJout, B => IN_TR, CURRENT =>

CURRENT_OP, OUTPUT => JOIN_out);↪→

62 notchtop: SKYRMIONNOTCH port map (INPUT => xRout_bottom, CURRENT =>
CURRENT_OP, OUTPUT => notchtop_out);↪→

63 notchbot: SKYRMIONNOTCH port map (INPUT => JOIN_out, CURRENT => CURRENT_OP,
OUTPUT => notchbot_out);↪→

64 ANDc: SKYRMIONH port map (INPUTA => notchtop_out, INPUTB => notchbot_out,
CURRENT => CURRENT_OP, OUTPUTAND => OUTOP, OUTPUTOR => OUTOR);↪→

65

66 xL: skyrmionDUPLICATE port map (IN_SK => IN_L, CURRENT => CURRENT_TR,
OUT_SK_TOP => OUTFEED_L, OUT_SK_BOTTOM => OUTTRAN);↪→

67

68 end architecture Behaviour;

D.1.4. Word 0

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Word0 is
8 port( CTRL_Vbl: in std_logic;
9 CTRL_Vop: in std_logic;

10 CTRL_Vtr0: in std_logic;
11 CTRL_Vtr1: in std_logic;
12 CTRL_Vtr2: in std_logic;
13 CTRL_MTJW: in std_logic;

453



D – Logic in memory VHDL code - architecture 2

14 CTRL_in0_EN: in std_logic;
15 CTRL_in1_EN: in std_logic;
16 CTRL_in2_EN: in std_logic;
17 CTRL_MTJ_cell0: in std_logic;
18 CTRL_MTJ_cell1: in std_logic;
19 CTRL_MTJ_cell2: in std_logic;
20 BL_out: out std_logic;
21 MTJ_RR0_out: out std_logic;
22 MTJ_R0_out: out std_logic;
23 MTJ_R1_out: out std_logic;
24 MTJ_R2_out: out std_logic;
25 CELL0_tran: out std_logic;
26 CELL1_tran: out std_logic;
27 CELL2_tran: out std_logic;
28 CELL0_tran_CURR: out real;
29 CELL1_tran_CURR: out real;
30 CELL2_tran_CURR: out real);
31 end entity Word0;
32

33 architecture Behaviour of Word0 is
34 component Cell0 is
35 port( IN_R: in std_logic;
36 IN_L: in std_logic;
37 CTRL_MTJ: in std_logic;
38 CURRENT_OP: in real;
39 CURRENT_TR: in real;
40 OUTFEED_R: out std_logic;
41 OUTFEED_L: out std_logic;
42 OUTTRAN: out std_logic;
43 OUTOR: out std_logic;
44 OUTOP: out std_logic);
45 end component Cell0;
46

47 component MTJ_W is
48 port( CTRL: in std_logic;
49 OUT_SK: out std_logic);
50 end component MTJ_W;
51

52 component MTJ_R is
53 port( IN_SK: in std_logic;
54 CURRENT: in real;
55 OUT_SIGN: out std_logic);
56 end component MTJ_R;
57

58 component SKYRMIONJOIN is
59 port( A : in std_logic;
60 B : in std_logic;
61 CURRENT : in real;
62 OUTPUT : out std_logic);
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63 end component SKYRMIONJOIN;
64

65 component voltage_genL is
66 port( CTRL: in std_logic;
67 CURRENT: out real);
68 end component voltage_genL;
69

70 component voltage_genPEAK is
71 port( CTRL: in std_logic;
72 CURRENT: out real);
73 end component voltage_genPEAK;
74

75 component cell_input is
76 port( IN_SK_L: in std_logic;
77 IN_SK_R: in std_logic;
78 IN_SK_T: in std_logic;
79 ENABLE: in std_logic;
80 CURRENT_T: in real;
81 CURRENT_L: in real;
82 CURRENT_R: in real;
83 OUT_SK_L: out std_logic;
84 OUT_SK_R: out std_logic;
85 OUT_SK_B: out std_logic);
86 end component cell_input;
87

88 component SKYRMIONCROSS is
89 port( A: in std_logic;
90 B: in std_logic;
91 CURRENTA: in real;
92 CURRENTB: in real;
93 Aout: out std_logic;
94 Bout: out std_logic);
95 end component SKYRMIONCROSS;
96

97 signal CURRENT_Vbl, CURRENT_Vop, CURRENT_Vtr0, CURRENT_Vtr1, CURRENT_Vtr2:
real;↪→

98 signal MTJW_out: std_logic;
99 ---

100 signal cell0_IN_R, cell0_IN_L, cell0_OUTFEED_R, cell0_OUTFEED_L,
cell0_OUTTRAN, cell0_OUTOR, cell0_OUTOP: std_logic;↪→

101 signal D0_Bout, C0L_Aout, C0L_Bout, C0R_Aout, C0R_Bout: std_logic;
102 ---
103 signal cell1_IN_R, cell1_IN_L, cell1_OUTFEED_R, cell1_OUTFEED_L,

cell1_OUTTRAN, cell1_OUTOR, cell1_OUTOP: std_logic;↪→

104 signal D1_Bout, C1L_Aout, C1L_Bout, C1R_Aout, C1R_Bout, JOIN1_out: std_logic;
105 ---
106 signal cell2_IN_R, cell2_IN_L, cell2_OUTFEED_R, cell2_OUTFEED_L,

cell2_OUTTRAN, cell2_OUTOR, cell2_OUTOP: std_logic;↪→

107 signal D2_Bout, C2L_Aout, C2L_Bout, C2R_Aout, C2R_Bout, JOIN2_out: std_logic;

455



D – Logic in memory VHDL code - architecture 2

108

109 begin
110 Vbl: voltage_genL port map (CTRL => CTRL_Vbl, CURRENT => CURRENT_Vbl);
111 Vop: voltage_genPEAK port map (CTRL => CTRL_Vop, CURRENT => CURRENT_Vop);
112 MTJW: MTJ_W port map (CTRL => CTRL_MTJW, OUT_SK => MTJW_out);
113

114 Vtr0: voltage_genL port map (CTRL => CTRL_Vtr0, CURRENT => CURRENT_Vtr0);
115 input0: cell_input port map (IN_SK_L => cell0_OUTFEED_L, IN_SK_R =>

cell0_OUTFEED_R, IN_SK_T => MTJW_out, ENABLE => CTRL_in0_EN, CURRENT_T =>
CURRENT_Vbl, CURRENT_L => CURRENT_Vtr0, CURRENT_R => CURRENT_Vop, OUT_SK_L
=> cell0_IN_L, OUT_SK_R => cell0_IN_R, OUT_SK_B => D0_Bout);

↪→

↪→

↪→

116 cell0c: Cell0 port map (IN_R => cell0_IN_R, IN_L => cell0_IN_L, CTRL_MTJ =>
CTRL_MTJ_cell0, CURRENT_OP => CURRENT_Vop, CURRENT_TR => CURRENT_Vtr0,
OUTFEED_R => cell0_OUTFEED_R, OUTFEED_L => cell0_OUTFEED_L, OUTTRAN =>
cell0_OUTTRAN, OUTOR => cell0_OUTOR, OUTOP => cell0_OUTOP);

↪→

↪→

↪→

117 C0L: SKYRMIONCROSS port map (A => cell0_OUTTRAN, B => D0_Bout, CURRENTA =>
CURRENT_Vtr0, CURRENTB => CURRENT_Vbl, Aout => C0L_Aout, Bout =>
C0L_Bout);

↪→

↪→

118 C0R: SKYRMIONCROSS port map (A => C0L_Aout, B => cell0_OUTOP, CURRENTA =>
CURRENT_Vtr0, CURRENTB => CURRENT_Vop, Aout => C0R_Aout, Bout =>
C0R_Bout);

↪→

↪→

119 MTJR0: MTJ_R port map (IN_SK => cell0_OUTOR, CURRENT => CURRENT_Vop,
OUT_SIGN => MTJ_R0_out);↪→

120

121 Vtr1: voltage_genL port map (CTRL => CTRL_Vtr1, CURRENT => CURRENT_Vtr1);
122 input1: cell_input port map (IN_SK_L => cell1_OUTFEED_L, IN_SK_R =>

cell1_OUTFEED_R, IN_SK_T => C0L_Bout, ENABLE => CTRL_in1_EN, CURRENT_T =>
CURRENT_Vbl, CURRENT_L => CURRENT_Vtr1, CURRENT_R => CURRENT_Vop, OUT_SK_L
=> cell1_IN_L, OUT_SK_R => cell1_IN_R, OUT_SK_B => D1_Bout);

↪→

↪→

↪→

123 cell1: Cell0 port map (IN_R => cell1_IN_R, IN_L => cell1_IN_L, CTRL_MTJ =>
CTRL_MTJ_cell1, CURRENT_OP => CURRENT_Vop, CURRENT_TR => CURRENT_Vtr1,
OUTFEED_R => cell1_OUTFEED_R, OUTFEED_L => cell1_OUTFEED_L, OUTTRAN =>
cell1_OUTTRAN, OUTOR => cell1_OUTOR, OUTOP => cell1_OUTOP);

↪→

↪→

↪→

124 C1L: SKYRMIONCROSS port map (A => cell1_OUTTRAN, B => D1_Bout, CURRENTA =>
CURRENT_Vtr1, CURRENTB => CURRENT_Vbl, Aout => C1L_Aout, Bout =>
C1L_Bout);

↪→

↪→

125 join1: SKYRMIONJOIN port map (A => cell1_OUTOP, B => C0R_Bout, CURRENT =>
CURRENT_Vop, OUTPUT => JOIN1_out);↪→

126 C1R: SKYRMIONCROSS port map (A => C1L_Aout, B => JOIN1_out, CURRENTA =>
CURRENT_Vtr1, CURRENTB => CURRENT_Vop, Aout => C1R_Aout, Bout =>
C1R_Bout);

↪→

↪→

127 MTJR1: MTJ_R port map (IN_SK => cell1_OUTOR, CURRENT => CURRENT_Vop,
OUT_SIGN => MTJ_R1_out);↪→

128

129 Vtr2: voltage_genL port map (CTRL => CTRL_Vtr2, CURRENT => CURRENT_Vtr2);
130 input2: cell_input port map (IN_SK_L => cell2_OUTFEED_L, IN_SK_R =>

cell2_OUTFEED_R, IN_SK_T => C1L_Bout, ENABLE => CTRL_in2_EN, CURRENT_T =>
CURRENT_Vbl, CURRENT_L => CURRENT_Vtr2, CURRENT_R => CURRENT_Vop, OUT_SK_L
=> cell2_IN_L, OUT_SK_R => cell2_IN_R, OUT_SK_B => D2_Bout);

↪→

↪→

↪→
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131 cell2: Cell0 port map (IN_R => cell2_IN_R, IN_L => cell2_IN_L, CTRL_MTJ =>
CTRL_MTJ_cell2, CURRENT_OP => CURRENT_Vop, CURRENT_TR => CURRENT_Vtr2,
OUTFEED_R => cell2_OUTFEED_R, OUTFEED_L => cell2_OUTFEED_L, OUTTRAN =>
cell2_OUTTRAN, OUTOR => cell2_OUTOR, OUTOP => cell2_OUTOP);

↪→

↪→

↪→

132 C2L: SKYRMIONCROSS port map (A => cell2_OUTTRAN, B => D2_Bout, CURRENTA =>
CURRENT_Vtr2, CURRENTB => CURRENT_Vbl, Aout => C2L_Aout, Bout =>
C2L_Bout);

↪→

↪→

133 join2: SKYRMIONJOIN port map (A => cell2_OUTOP, B => C1R_Bout, CURRENT =>
CURRENT_Vop, OUTPUT => JOIN2_out);↪→

134 C2R: SKYRMIONCROSS port map (A => C2L_Aout, B => JOIN2_out, CURRENTA =>
CURRENT_Vtr2, CURRENTB => CURRENT_Vop, Aout => C2R_Aout, Bout =>
C2R_Bout);

↪→

↪→

135 MTJR2: MTJ_R port map (IN_SK => cell2_OUTOR, CURRENT => CURRENT_Vop,
OUT_SIGN => MTJ_R2_out);↪→

136

137 MTJRR: MTJ_R port map (IN_SK => C2R_Bout, CURRENT => CURRENT_Vop, OUT_SIGN
=> MTJ_RR0_out);↪→

138

139 BL_out <= C2L_Bout;
140 CELL0_tran <= C0R_Aout;
141 CELL1_tran <= C1R_Aout;
142 CELL2_tran <= C2R_Aout;
143 CELL0_tran_CURR <= CURRENT_Vtr0;
144 CELL1_tran_CURR <= CURRENT_Vtr1;
145 CELL2_tran_CURR <= CURRENT_Vtr2;
146

147 end architecture Behaviour;

D.1.5. Any other word

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Wordx is
8 port( CTRL_Vbl: in std_logic;
9 CTRL_Vop: in std_logic;

10 CTRL_Vtr0: in std_logic;
11 CTRL_Vtr1: in std_logic;
12 CTRL_Vtr2: in std_logic;
13 CTRL_MTJW: in std_logic;
14 CTRL_in0_EN: in std_logic;
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15 CTRL_in1_EN: in std_logic;
16 CTRL_in2_EN: in std_logic;
17 CTRL_MTJ_cell0: in std_logic;
18 CTRL_MTJ_cell1: in std_logic;
19 CTRL_MTJ_cell2: in std_logic;
20 CELL0_intr: in std_logic;
21 CELL1_intr: in std_logic;
22 CELL2_intr: in std_logic;
23 CELL0_intr_CURR: in real;
24 CELL1_intr_CURR: in real;
25 CELL2_intr_CURR: in real;
26 BL_out: out std_logic;
27 MTJ_RRx_out: out std_logic;
28 MTJ_R0_out: out std_logic;
29 MTJ_R1_out: out std_logic;
30 MTJ_R2_out: out std_logic;
31 CELL0_tran: out std_logic;
32 CELL1_tran: out std_logic;
33 CELL2_tran: out std_logic;
34 CELL0_tran_CURR: out real;
35 CELL1_tran_CURR: out real;
36 CELL2_tran_CURR: out real);
37 end entity Wordx;
38

39 architecture Behaviour of Wordx is
40 component Cellx is
41 port( IN_R: in std_logic;
42 IN_L: in std_logic;
43 IN_TR: in std_logic;
44 CTRL_MTJ: in std_logic;
45 CURRENT_OP: in real;
46 CURRENT_TR: in real;
47 OUTFEED_R: out std_logic;
48 OUTFEED_L: out std_logic;
49 OUTTRAN: out std_logic;
50 OUTOR: out std_logic;
51 OUTOP: out std_logic
52 );
53 end component Cellx;
54

55 component MTJ_W is
56 port( CTRL: in std_logic;
57 OUT_SK: out std_logic);
58 end component MTJ_W;
59

60 component MTJ_R is
61 port( IN_SK: in std_logic;
62 CURRENT: in real;
63 OUT_SIGN: out std_logic);
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64 end component MTJ_R;
65

66 component SKYRMIONJOIN is
67 port( A : in std_logic;
68 B : in std_logic;
69 CURRENT : in real;
70 OUTPUT : out std_logic);
71 end component SKYRMIONJOIN;
72

73 component voltage_genL is
74 port( CTRL: in std_logic;
75 CURRENT: out real);
76 end component voltage_genL;
77

78 component voltage_genPEAK is
79 port( CTRL: in std_logic;
80 CURRENT: out real);
81 end component voltage_genPEAK;
82

83 component cell_input is
84 port( IN_SK_L: in std_logic;
85 IN_SK_R: in std_logic;
86 IN_SK_T: in std_logic;
87 ENABLE: in std_logic;
88 CURRENT_T: in real;
89 CURRENT_L: in real;
90 CURRENT_R: in real;
91 OUT_SK_L: out std_logic;
92 OUT_SK_R: out std_logic;
93 OUT_SK_B: out std_logic);
94 end component cell_input;
95

96 component SKYRMIONCROSS is
97 port( A: in std_logic;
98 B: in std_logic;
99 CURRENTA: in real;

100 CURRENTB: in real;
101 Aout: out std_logic;
102 Bout: out std_logic);
103 end component SKYRMIONCROSS;
104

105 signal CURRENT_Vbl, CURRENT_Vop, CURRENT_Vtr0, CURRENT_Vtr1, CURRENT_Vtr2:
real;↪→

106 signal MTJW_out: std_logic;
107 ---
108 signal cell0_IN_R, cell0_IN_L, cell0_OUTFEED_R, cell0_OUTFEED_L,

cell0_OUTTRAN, cell0_OUTOR, cell0_OUTOP: std_logic;↪→

109 signal D0_Bout, C0L_Aout, C0L_Bout, C0R_Aout, C0R_Bout, I0L_Aout, I0L_Bout,
I0R_Aout, I0R_Bout: std_logic;↪→
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110 ---
111 signal cell1_IN_R, cell1_IN_L, cell1_OUTFEED_R, cell1_OUTFEED_L,

cell1_OUTTRAN, cell1_OUTOR, cell1_OUTOP: std_logic;↪→

112 signal D1_Bout, C1L_Aout, C1L_Bout, C1R_Aout, C1R_Bout, I1L_Aout, I1L_Bout,
I1R_Aout, I1R_Bout, JOIN1_out: std_logic;↪→

113 ---
114 signal cell2_IN_R, cell2_IN_L, cell2_OUTFEED_R, cell2_OUTFEED_L,

cell2_OUTTRAN, cell2_OUTOR, cell2_OUTOP: std_logic;↪→

115 signal D2_Bout, C2L_Aout, C2L_Bout, C2R_Aout, C2R_Bout, I2L_Aout, I2L_Bout,
I2R_Aout, I2R_Bout, JOIN2_out: std_logic;↪→

116

117 begin
118 Vbl: voltage_genL port map (CTRL => CTRL_Vbl, CURRENT => CURRENT_Vbl);
119 Vop: voltage_genPEAK port map (CTRL => CTRL_Vop, CURRENT => CURRENT_Vop);
120 MTJW: MTJ_W port map (CTRL => CTRL_MTJW, OUT_SK => MTJW_out);
121

122 Vtr0: voltage_genL port map (CTRL => CTRL_Vtr0, CURRENT => CURRENT_Vtr0);
123 input0: cell_input port map (IN_SK_L => cell0_OUTFEED_L, IN_SK_R =>

cell0_OUTFEED_R, IN_SK_T => MTJW_out, ENABLE => CTRL_in0_EN, CURRENT_T =>
CURRENT_Vbl, CURRENT_L => CURRENT_Vtr0, CURRENT_R => CURRENT_Vop, OUT_SK_L
=> cell0_IN_L, OUT_SK_R => cell0_IN_R, OUT_SK_B => D0_Bout);

↪→

↪→

↪→

124 I0L: SKYRMIONCROSS port map (A => CELL0_intr, B => cell0_OUTTRAN, CURRENTA
=> CELL0_intr_CURR, CURRENTB => CURRENT_Vtr0, Aout => I0L_Aout, Bout =>
I0L_Bout);

↪→

↪→

125 I0R: SKYRMIONCROSS port map (A => I0L_Aout, B => D0_Bout, CURRENTA =>
CELL0_intr_CURR, CURRENTB => CURRENT_Vbl, Aout => I0R_Aout, Bout =>
I0R_Bout);

↪→

↪→

126 cell0: Cellx port map (IN_R => cell0_IN_R, IN_L => cell0_IN_L, IN_TR =>
I0R_Aout, CTRL_MTJ => CTRL_MTJ_cell0, CURRENT_OP => CURRENT_Vop,
CURRENT_TR => CURRENT_Vtr0, OUTFEED_R => cell0_OUTFEED_R, OUTFEED_L =>
cell0_OUTFEED_L, OUTTRAN => cell0_OUTTRAN, OUTOR => cell0_OUTOR, OUTOP =>
cell0_OUTOP);

↪→

↪→

↪→

↪→

127 C0L: SKYRMIONCROSS port map (A => I0L_Bout, B => I0R_Bout, CURRENTA =>
CURRENT_Vtr0, CURRENTB => CURRENT_Vbl, Aout => C0L_Aout, Bout =>
C0L_Bout);

↪→

↪→

128 C0R: SKYRMIONCROSS port map (A => C0L_Aout, B => cell0_OUTOP, CURRENTA =>
CURRENT_Vtr0, CURRENTB => CURRENT_Vop, Aout => C0R_Aout, Bout =>
C0R_Bout);

↪→

↪→

129 MTJR0: MTJ_R port map (IN_SK => cell0_OUTOR, CURRENT => CURRENT_Vop,
OUT_SIGN => MTJ_R0_out);↪→

130

131 Vtr1: voltage_genL port map (CTRL => CTRL_Vtr1, CURRENT => CURRENT_Vtr1);
132 input1: cell_input port map (IN_SK_L => cell1_OUTFEED_L, IN_SK_R =>

cell1_OUTFEED_R, IN_SK_T => C0L_Bout, ENABLE => CTRL_in1_EN, CURRENT_T =>
CURRENT_Vbl, CURRENT_L => CURRENT_Vtr1, CURRENT_R => CURRENT_Vop, OUT_SK_L
=> cell1_IN_L, OUT_SK_R => cell1_IN_R, OUT_SK_B => D1_Bout);

↪→

↪→

↪→

133 I1L: SKYRMIONCROSS port map (A => CELL1_intr, B => cell1_OUTTRAN, CURRENTA
=> CELL1_intr_CURR, CURRENTB => CURRENT_Vtr1, Aout => I1L_Aout, Bout =>
I1L_Bout);

↪→

↪→

460



D.1 – Array components and related files

134 I1R: SKYRMIONCROSS port map (A => I1L_Aout, B => D1_Bout, CURRENTA =>
CELL1_intr_CURR, CURRENTB => CURRENT_Vbl, Aout => I1R_Aout, Bout =>
I1R_Bout);

↪→

↪→

135 cell1: Cellx port map (IN_R => cell1_IN_R, IN_L => cell1_IN_L, IN_TR =>
I1R_Aout, CTRL_MTJ => CTRL_MTJ_cell1, CURRENT_OP => CURRENT_Vop,
CURRENT_TR => CURRENT_Vtr1, OUTFEED_R => cell1_OUTFEED_R, OUTFEED_L =>
cell1_OUTFEED_L, OUTTRAN => cell1_OUTTRAN, OUTOR => cell1_OUTOR, OUTOP =>
cell1_OUTOP);

↪→

↪→

↪→

↪→

136 C1L: SKYRMIONCROSS port map (A => I1L_Bout, B => I1R_Bout, CURRENTA =>
CURRENT_Vtr1, CURRENTB => CURRENT_Vbl, Aout => C1L_Aout, Bout =>
C1L_Bout);

↪→

↪→

137 join1: SKYRMIONJOIN port map (A => cell1_OUTOP, B => C0R_Bout, CURRENT =>
CURRENT_Vop, OUTPUT => JOIN1_out);↪→

138 C1R: SKYRMIONCROSS port map (A => C1L_Aout, B => JOIN1_out, CURRENTA =>
CURRENT_Vtr1, CURRENTB => CURRENT_Vop, Aout => C1R_Aout, Bout =>
C1R_Bout);

↪→

↪→

139 MTJR1: MTJ_R port map (IN_SK => cell1_OUTOR, CURRENT => CURRENT_Vop,
OUT_SIGN => MTJ_R1_out);↪→

140

141 Vtr2: voltage_genL port map (CTRL => CTRL_Vtr2, CURRENT => CURRENT_Vtr2);
142 input2: cell_input port map (IN_SK_L => cell2_OUTFEED_L, IN_SK_R =>

cell2_OUTFEED_R, IN_SK_T => C1L_Bout, ENABLE => CTRL_in2_EN, CURRENT_T =>
CURRENT_Vbl, CURRENT_L => CURRENT_Vtr2, CURRENT_R => CURRENT_Vop, OUT_SK_L
=> cell2_IN_L, OUT_SK_R => cell2_IN_R, OUT_SK_B => D2_Bout);

↪→

↪→

↪→

143 I2L: SKYRMIONCROSS port map (A => CELL2_intr, B => cell2_OUTTRAN, CURRENTA
=> CELL2_intr_CURR, CURRENTB => CURRENT_Vtr2, Aout => I2L_Aout, Bout =>
I2L_Bout);

↪→

↪→

144 I2R: SKYRMIONCROSS port map (A => I2L_Aout, B => D2_Bout, CURRENTA =>
CELL2_intr_CURR, CURRENTB => CURRENT_Vbl, Aout => I2R_Aout, Bout =>
I2R_Bout);

↪→

↪→

145 cell2: Cellx port map (IN_R => cell2_IN_R, IN_L => cell2_IN_L, IN_TR =>
I2R_Aout, CTRL_MTJ => CTRL_MTJ_cell2, CURRENT_OP => CURRENT_Vop,
CURRENT_TR => CURRENT_Vtr2, OUTFEED_R => cell2_OUTFEED_R, OUTFEED_L =>
cell2_OUTFEED_L, OUTTRAN => cell2_OUTTRAN, OUTOR => cell2_OUTOR, OUTOP =>
cell2_OUTOP);

↪→

↪→

↪→

↪→

146 C2L: SKYRMIONCROSS port map (A => I2L_Bout, B => I2R_Bout, CURRENTA =>
CURRENT_Vtr2, CURRENTB => CURRENT_Vbl, Aout => C2L_Aout, Bout =>
C2L_Bout);

↪→

↪→

147 join2: SKYRMIONJOIN port map (A => cell2_OUTOP, B => C1R_Bout, CURRENT =>
CURRENT_Vop, OUTPUT => JOIN2_out);↪→

148 C2R: SKYRMIONCROSS port map (A => C2L_Aout, B => JOIN2_out, CURRENTA =>
CURRENT_Vtr2, CURRENTB => CURRENT_Vop, Aout => C2R_Aout, Bout =>
C2R_Bout);

↪→

↪→

149 MTJR2: MTJ_R port map (IN_SK => cell2_OUTOR, CURRENT => CURRENT_Vop,
OUT_SIGN => MTJ_R2_out);↪→

150

151 MTJRR: MTJ_R port map (IN_SK => C2R_Bout, CURRENT => CURRENT_Vop, OUT_SIGN
=> MTJ_RRx_out);↪→

152
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153 BL_out <= C2L_Bout;
154 CELL0_tran <= C0R_Aout;
155 CELL1_tran <= C1R_Aout;
156 CELL2_tran <= C2R_Aout;
157 CELL0_tran_CURR <= CURRENT_Vtr0;
158 CELL1_tran_CURR <= CURRENT_Vtr1;
159 CELL2_tran_CURR <= CURRENT_Vtr2;
160

161 end architecture Behaviour;

D.1.6. Memory array

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity MemArray is
8 port( CTRL_Vbl_0: in std_logic;
9 CTRL_Vop_0: in std_logic;

10 CTRL_Vtr_00: in std_logic;
11 CTRL_Vtr_01: in std_logic;
12 CTRL_Vtr_02: in std_logic;
13 CTRL_MTJW_0: in std_logic;
14 CTRL_in_EN_00: in std_logic;
15 CTRL_in_EN_01: in std_logic;
16 CTRL_in_EN_02: in std_logic;
17 CTRL_MTJ_cell_00: in std_logic;
18 CTRL_MTJ_cell_01: in std_logic;
19 CTRL_MTJ_cell_02: in std_logic;
20 MTJ_RR0_out: out std_logic;
21 MTJ_R00_out: out std_logic;
22 MTJ_R01_out: out std_logic;
23 MTJ_R02_out: out std_logic;
24 ---
25 CTRL_Vbl_1: in std_logic;
26 CTRL_Vop_1: in std_logic;
27 CTRL_Vtr_10: in std_logic;
28 CTRL_Vtr_11: in std_logic;
29 CTRL_Vtr_12: in std_logic;
30 CTRL_MTJW_1: in std_logic;
31 CTRL_in_EN_10: in std_logic;
32 CTRL_in_EN_11: in std_logic;
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33 CTRL_in_EN_12: in std_logic;
34 CTRL_MTJ_cell_10: in std_logic;
35 CTRL_MTJ_cell_11: in std_logic;
36 CTRL_MTJ_cell_12: in std_logic;
37 MTJ_RR1_out: out std_logic;
38 MTJ_R10_out: out std_logic;
39 MTJ_R11_out: out std_logic;
40 MTJ_R12_out: out std_logic;
41 ---
42 CTRL_Vbl_2: in std_logic;
43 CTRL_Vop_2: in std_logic;
44 CTRL_Vtr_20: in std_logic;
45 CTRL_Vtr_21: in std_logic;
46 CTRL_Vtr_22: in std_logic;
47 CTRL_MTJW_2: in std_logic;
48 CTRL_in_EN_20: in std_logic;
49 CTRL_in_EN_21: in std_logic;
50 CTRL_in_EN_22: in std_logic;
51 CTRL_MTJ_cell_20: in std_logic;
52 CTRL_MTJ_cell_21: in std_logic;
53 CTRL_MTJ_cell_22: in std_logic;
54 MTJ_RR2_out: out std_logic;
55 MTJ_R20_out: out std_logic;
56 MTJ_R21_out: out std_logic;
57 MTJ_R22_out: out std_logic);
58 end entity MemArray;
59

60 architecture Behaviour of MemArray is
61 component Word0 is
62 port( CTRL_Vbl: in std_logic;
63 CTRL_Vop: in std_logic;
64 CTRL_Vtr0: in std_logic;
65 CTRL_Vtr1: in std_logic;
66 CTRL_Vtr2: in std_logic;
67 CTRL_MTJW: in std_logic;
68 CTRL_in0_EN: in std_logic;
69 CTRL_in1_EN: in std_logic;
70 CTRL_in2_EN: in std_logic;
71 CTRL_MTJ_cell0: in std_logic;
72 CTRL_MTJ_cell1: in std_logic;
73 CTRL_MTJ_cell2: in std_logic;
74 BL_out: out std_logic;
75 MTJ_RR0_out: out std_logic;
76 MTJ_R0_out: out std_logic;
77 MTJ_R1_out: out std_logic;
78 MTJ_R2_out: out std_logic;
79 CELL0_tran: out std_logic;
80 CELL1_tran: out std_logic;
81 CELL2_tran: out std_logic;
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82 CELL0_tran_CURR: out real;
83 CELL1_tran_CURR: out real;
84 CELL2_tran_CURR: out real);
85 end component Word0;
86

87 component Wordx is
88 port( CTRL_Vbl: in std_logic;
89 CTRL_Vop: in std_logic;
90 CTRL_Vtr0: in std_logic;
91 CTRL_Vtr1: in std_logic;
92 CTRL_Vtr2: in std_logic;
93 CTRL_MTJW: in std_logic;
94 CTRL_in0_EN: in std_logic;
95 CTRL_in1_EN: in std_logic;
96 CTRL_in2_EN: in std_logic;
97 CTRL_MTJ_cell0: in std_logic;
98 CTRL_MTJ_cell1: in std_logic;
99 CTRL_MTJ_cell2: in std_logic;

100 CELL0_intr: in std_logic;
101 CELL1_intr: in std_logic;
102 CELL2_intr: in std_logic;
103 CELL0_intr_CURR: in real;
104 CELL1_intr_CURR: in real;
105 CELL2_intr_CURR: in real;
106 BL_out: out std_logic;
107 MTJ_RRx_out: out std_logic;
108 MTJ_R0_out: out std_logic;
109 MTJ_R1_out: out std_logic;
110 MTJ_R2_out: out std_logic;
111 CELL0_tran: out std_logic;
112 CELL1_tran: out std_logic;
113 CELL2_tran: out std_logic;
114 CELL0_tran_CURR: out real;
115 CELL1_tran_CURR: out real;
116 CELL2_tran_CURR: out real);
117 end component Wordx;
118

119 signal BL_out_0, CELL_tran_00, CELL_tran_01, CELL_tran_02: std_logic;
120 signal CELL_tran_CURR_00, CELL_tran_CURR_01, CELL_tran_CURR_02: real;
121 ---
122 signal BL_out_1, CELL_tran_10, CELL_tran_11, CELL_tran_12: std_logic;
123 signal CELL_tran_CURR_10, CELL_tran_CURR_11, CELL_tran_CURR_12: real;
124 --
125 signal BL_out_2, CELL_tran_20, CELL_tran_21, CELL_tran_22: std_logic;
126 signal CELL_tran_CURR_20, CELL_tran_CURR_21, CELL_tran_CURR_22: real;
127

128 begin
129

130 Word0_c: Word0 port map (
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131 CTRL_Vbl => CTRL_Vbl_0,
132 CTRL_Vop => CTRL_Vop_0,
133 CTRL_Vtr0 => CTRL_Vtr_00,
134 CTRL_Vtr1 => CTRL_Vtr_01,
135 CTRL_Vtr2 => CTRL_Vtr_02,
136 CTRL_MTJW => CTRL_MTJW_0,
137 CTRL_in0_EN => CTRL_in_EN_00,
138 CTRL_in1_EN => CTRL_in_EN_01,
139 CTRL_in2_EN => CTRL_in_EN_02,
140 CTRL_MTJ_cell0 => CTRL_MTJ_cell_00,
141 CTRL_MTJ_cell1 => CTRL_MTJ_cell_01,
142 CTRL_MTJ_cell2 => CTRL_MTJ_cell_02,
143 BL_out => BL_out_0,
144 MTJ_RR0_out => MTJ_RR0_out,
145 MTJ_R0_out => MTJ_R00_out,
146 MTJ_R1_out => MTJ_R01_out,
147 MTJ_R2_out => MTJ_R02_out,
148 CELL0_tran => CELL_tran_00,
149 CELL1_tran => CELL_tran_01,
150 CELL2_tran => CELL_tran_02,
151 CELL0_tran_CURR => CELL_tran_CURR_00,
152 CELL1_tran_CURR => CELL_tran_CURR_01,
153 CELL2_tran_CURR => CELL_tran_CURR_02
154 );
155

156 Word1: Wordx port map (
157 CTRL_Vbl => CTRL_Vbl_1,
158 CTRL_Vop => CTRL_Vop_1,
159 CTRL_Vtr0 => CTRL_Vtr_10,
160 CTRL_Vtr1 => CTRL_Vtr_11,
161 CTRL_Vtr2 => CTRL_Vtr_12,
162 CTRL_MTJW => CTRL_MTJW_1,
163 CTRL_in0_EN => CTRL_in_EN_10,
164 CTRL_in1_EN => CTRL_in_EN_11,
165 CTRL_in2_EN => CTRL_in_EN_12,
166 CTRL_MTJ_cell0 => CTRL_MTJ_cell_10,
167 CTRL_MTJ_cell1 => CTRL_MTJ_cell_11,
168 CTRL_MTJ_cell2 => CTRL_MTJ_cell_12,
169 ---
170 CELL0_intr => CELL_tran_00,
171 CELL1_intr => CELL_tran_01,
172 CELL2_intr => CELL_tran_02,
173 CELL0_intr_CURR => CELL_tran_CURR_00,
174 CELL1_intr_CURR => CELL_tran_CURR_01,
175 CELL2_intr_CURR => CELL_tran_CURR_02,
176 ---
177 BL_out => BL_out_1,
178 MTJ_RRx_out => MTJ_RR1_out,
179 MTJ_R0_out => MTJ_R10_out,
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180 MTJ_R1_out => MTJ_R11_out,
181 MTJ_R2_out => MTJ_R12_out,
182 CELL0_tran => CELL_tran_10,
183 CELL1_tran => CELL_tran_11,
184 CELL2_tran => CELL_tran_12,
185 CELL0_tran_CURR => CELL_tran_CURR_10,
186 CELL1_tran_CURR => CELL_tran_CURR_11,
187 CELL2_tran_CURR => CELL_tran_CURR_12
188 );
189

190 Word2: Wordx port map (
191 CTRL_Vbl => CTRL_Vbl_2,
192 CTRL_Vop => CTRL_Vop_2,
193 CTRL_Vtr0 => CTRL_Vtr_20,
194 CTRL_Vtr1 => CTRL_Vtr_21,
195 CTRL_Vtr2 => CTRL_Vtr_22,
196 CTRL_MTJW => CTRL_MTJW_2,
197 CTRL_in0_EN => CTRL_in_EN_20,
198 CTRL_in1_EN => CTRL_in_EN_21,
199 CTRL_in2_EN => CTRL_in_EN_22,
200 CTRL_MTJ_cell0 => CTRL_MTJ_cell_20,
201 CTRL_MTJ_cell1 => CTRL_MTJ_cell_21,
202 CTRL_MTJ_cell2 => CTRL_MTJ_cell_22,
203 ---
204 CELL0_intr => CELL_tran_10,
205 CELL1_intr => CELL_tran_11,
206 CELL2_intr => CELL_tran_12,
207 CELL0_intr_CURR => CELL_tran_CURR_10,
208 CELL1_intr_CURR => CELL_tran_CURR_11,
209 CELL2_intr_CURR => CELL_tran_CURR_12,
210 ---
211 BL_out => BL_out_2,
212 MTJ_RRx_out => MTJ_RR2_out,
213 MTJ_R0_out => MTJ_R20_out,
214 MTJ_R1_out => MTJ_R21_out,
215 MTJ_R2_out => MTJ_R22_out,
216 CELL0_tran => CELL_tran_20,
217 CELL1_tran => CELL_tran_21,
218 CELL2_tran => CELL_tran_22,
219 CELL0_tran_CURR => CELL_tran_CURR_20,
220 CELL1_tran_CURR => CELL_tran_CURR_21,
221 CELL2_tran_CURR => CELL_tran_CURR_22
222 );
223

224 end architecture Behaviour;
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D.2. Control blocks
D.2.1. Detector

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Detector is
8 port( L_MTJ_RR_out_0: in std_logic;
9 L_MTJ_RR_out_1: in std_logic;

10 L_MTJ_RR_out_2: in std_logic;
11 LATCH0_OUT: in std_logic;
12 LATCH1_OUT: in std_logic;
13 LATCH2_OUT: in std_logic;
14 ENABLE_Rowdis: out std_logic);
15 end entity Detector;
16

17 architecture Behaviour of Detector is
18 component mux2_1b is
19 port( IN0: in std_logic;
20 IN1: in std_logic;
21 SEL: in std_logic;
22 OUTM: out std_logic
23 );
24 end component mux2_1b;
25

26 signal mux0_L_out, mux1_L_out, mux2_L_out, mux0_R_out, mux1_R_out, mux2_R_out,
exnor_inL, exnor_inR: std_logic;↪→

27 begin
28 mux0_L: mux2_1b port map (IN0 => L_MTJ_RR_out_0, IN1 => '1', SEL =>

LATCH0_OUT, OUTM => mux0_L_out);↪→

29 mux1_L: mux2_1b port map (IN0 => L_MTJ_RR_out_1, IN1 => '1', SEL =>
LATCH1_OUT, OUTM => mux1_L_out);↪→

30 mux2_L: mux2_1b port map (IN0 => L_MTJ_RR_out_2, IN1 => '1', SEL =>
LATCH2_OUT, OUTM => mux2_L_out);↪→

31

32 mux0_R: mux2_1b port map (IN0 => L_MTJ_RR_out_0, IN1 => '0', SEL =>
LATCH0_OUT, OUTM => mux0_R_out);↪→

33 mux1_R: mux2_1b port map (IN0 => L_MTJ_RR_out_1, IN1 => '0', SEL =>
LATCH1_OUT, OUTM => mux1_R_out);↪→

34 mux2_R: mux2_1b port map (IN0 => L_MTJ_RR_out_2, IN1 => '0', SEL =>
LATCH2_OUT, OUTM => mux2_R_out);↪→

35

36 exnor_inL <= (mux0_L_out and mux1_L_out) and mux2_L_out;
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37 exnor_inR <= ((not mux0_R_out) and (not mux1_R_out)) and (not mux2_R_out);
38 ENABLE_Rowdis <= exnor_inL xnor exnor_inR;
39

40 end architecture Behaviour;

D.2.2. Row disabler

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Row_disabler is
8 port( L_MTJ_RR_out_0: in std_logic;
9 L_MTJ_RR_out_1: in std_logic;

10 L_MTJ_RR_out_2: in std_logic;
11 MAX_min_n: in std_logic;
12 ENABLE_Rowdis: in std_logic;
13 FIND: in std_logic;
14 CTRL_LATCH_RST: in std_logic;
15 LATCH0_OUT: out std_logic;
16 LATCH1_OUT: out std_logic;
17 LATCH2_OUT: out std_logic);
18 end entity Row_disabler;
19

20 architecture Behaviour of Row_disabler is
21 component mux2_1b is
22 port( IN0: in std_logic;
23 IN1: in std_logic;
24 SEL: in std_logic;
25 OUTM: out std_logic
26 );
27 end component mux2_1b;
28

29 component SRlatch is
30 port( SET: in std_logic;
31 RST: in std_logic;
32 Q: out std_logic
33 );
34 end component SRlatch;
35

36 signal notMTJ_0, notMTJ_1, notMTJ_2, mux0_Mm_out, mux1_Mm_out, mux2_Mm_out,
sel_mux0_01, sel_mux1_01, sel_mux2_01, mux0_01_out, mux1_01_out,
mux2_01_out: std_logic;

↪→

↪→

468



D.2 – Control blocks

37 begin
38 notMTJ_0 <= not L_MTJ_RR_out_0;
39 notMTJ_1 <= not L_MTJ_RR_out_1;
40 notMTJ_2 <= not L_MTJ_RR_out_2;
41

42 mux0_Mm: mux2_1b port map (IN0 => L_MTJ_RR_out_0, IN1 => notMTJ_0, SEL =>
MAX_min_n, OUTM => mux0_Mm_out);↪→

43 mux1_Mm: mux2_1b port map (IN0 => L_MTJ_RR_out_1, IN1 => notMTJ_1, SEL =>
MAX_min_n, OUTM => mux1_Mm_out);↪→

44 mux2_Mm: mux2_1b port map (IN0 => L_MTJ_RR_out_2, IN1 => notMTJ_2, SEL =>
MAX_min_n, OUTM => mux2_Mm_out);↪→

45

46 sel_mux0_01 <= mux0_Mm_out and ENABLE_Rowdis and FIND;
47 sel_mux1_01 <= mux1_Mm_out and ENABLE_Rowdis and FIND;
48 sel_mux2_01 <= mux2_Mm_out and ENABLE_Rowdis and FIND;
49

50 mux0_01: mux2_1b port map (IN0 => '0', IN1 => '1', SEL => sel_mux0_01, OUTM =>
mux0_01_out);↪→

51 mux1_01: mux2_1b port map (IN0 => '0', IN1 => '1', SEL => sel_mux1_01, OUTM =>
mux1_01_out);↪→

52 mux2_01: mux2_1b port map (IN0 => '0', IN1 => '1', SEL => sel_mux2_01, OUTM =>
mux2_01_out);↪→

53

54 latch0: SRlatch port map (SET => mux0_01_out, RST => CTRL_LATCH_RST, Q =>
LATCH0_OUT);↪→

55 latch1: SRlatch port map (SET => mux1_01_out, RST => CTRL_LATCH_RST, Q =>
LATCH1_OUT);↪→

56 latch2: SRlatch port map (SET => mux2_01_out, RST => CTRL_LATCH_RST, Q =>
LATCH2_OUT);↪→

57 end architecture Behaviour;

D.2.3. Encoder

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use ieee.numeric_std.all;
4 use work.globals.all;
5

6 entity Encoder is
7 port( CTRL_ENCODER_EN: in std_logic;
8 LATCH0_OUT: in std_logic;
9 LATCH1_OUT: in std_logic;

10 LATCH2_OUT: in std_logic;
11 CLK: in std_logic;
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12 CTRL_ADDREG_RST: in std_logic;
13 CTRL_ADDREG_STORE: in std_logic;
14 ADDRESS_FOUND_REGout: out std_logic_vector(1 downto 0) );
15 end entity Encoder;
16

17 architecture Behaviour of Encoder is
18 component Reg is
19 generic (N: integer:= 3);
20 port( CLK: in std_logic;
21 RST: in std_logic;
22 STORE: in std_logic;
23 DATA_IN: in std_logic_vector (N-1 downto 0);
24 DATA_OUT: buffer std_logic_vector (N-1 downto 0) );
25 end component Reg;
26

27 signal ADDRESS_FOUND: std_logic_vector(1 downto 0);
28 signal NOT_LATCH0_OUT, NOT_LATCH1_OUT, NOT_LATCH2_OUT: std_logic;
29 begin
30 NOT_LATCH0_OUT <= (not LATCH0_OUT) and CTRL_ENCODER_EN;
31 NOT_LATCH1_OUT <= (not LATCH1_OUT) and CTRL_ENCODER_EN;
32 NOT_LATCH2_OUT <= (not LATCH2_OUT) and CTRL_ENCODER_EN;
33

34 ADDRESS_FOUND <= "00" when NOT_LATCH0_OUT='1' else
35 "01" when NOT_LATCH1_OUT='1' else
36 "10" when NOT_LATCH2_OUT='1' else
37 "ZZ";
38

39 ADD_REG: Reg generic map (N=>2) port map (CLK => CLK, RST => CTRL_ADDREG_RST,
STORE => CTRL_ADDREG_STORE, DATA_IN => ADDRESS_FOUND, DATA_OUT =>
ADDRESS_FOUND_REGout);

↪→

↪→

40

41 end architecture Behaviour;

D.2.4. And array

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity And_array is
8 port( RESET_n: in std_logic;
9 IDLE: in std_logic;
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10 FIND: in std_logic;
11 DEC0: in std_logic;
12 DEC1: in std_logic;
13 DEC2: in std_logic;
14 LATCH0_OUT: in std_logic;
15 LATCH1_OUT: in std_logic;
16 LATCH2_OUT: in std_logic;
17 AAout0: buffer std_logic;
18 AAout1: buffer std_logic;
19 AAout2: buffer std_logic;
20 AAoutOR: out std_logic);
21 end entity And_array;
22

23 architecture Behaviour of And_array is
24 signal OR0, OR1, OR2: std_logic;
25 begin
26 OR0 <= (not RESET_n) or IDLE or DEC0 or FIND;
27 AAout0 <= OR0 and (not LATCH0_OUT);
28

29 OR1 <= (not RESET_n) or IDLE or DEC1 or FIND;
30 AAout1 <= OR1 and (not LATCH1_OUT);
31

32 OR2 <= (not RESET_n) or IDLE or DEC2 or FIND;
33 AAout2 <= OR2 and (not LATCH2_OUT);
34

35 AAoutOR <= AAout0 or AAout1 or AAout2;
36 end architecture Behaviour;

D.2.5. FSM-Array adapter

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity FSM_Array_adapter is
8 port( AAout0: in std_logic;
9 AAout1: in std_logic;

10 AAout2: in std_logic;
11 ---
12 CTRL_Vbl: in std_logic;
13 CTRL_Vbl_0: out std_logic;
14 CTRL_Vbl_1: out std_logic;
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15 CTRL_Vbl_2: out std_logic;
16 ---
17 CTRL_MTJW: in std_logic;
18 SHIFT_WORD_OUT_0: in std_logic;
19 SHIFT_WORD_OUT_1: in std_logic;
20 SHIFT_WORD_OUT_2: in std_logic;
21 CTRL_MTJW_0: out std_logic;
22 CTRL_MTJW_1: out std_logic;
23 CTRL_MTJW_2: out std_logic;
24 ---
25 CTRL_in_EN_0: in std_logic;
26 CTRL_in_EN_1: in std_logic;
27 CTRL_in_EN_2: in std_logic;
28 CTRL_in_EN_00: out std_logic;
29 CTRL_in_EN_01: out std_logic;
30 CTRL_in_EN_02: out std_logic;
31 CTRL_in_EN_10: out std_logic;
32 CTRL_in_EN_11: out std_logic;
33 CTRL_in_EN_12: out std_logic;
34 CTRL_in_EN_20: out std_logic;
35 CTRL_in_EN_21: out std_logic;
36 CTRL_in_EN_22: out std_logic;
37 ---
38 CTRL_Vop: in std_logic;
39 CTRL_Vop_0: out std_logic;
40 CTRL_Vop_1: out std_logic;
41 CTRL_Vop_2: out std_logic;
42 ---
43 CTRL_MTJ_CELL: in std_logic;
44 SHIFT_MASK: in std_logic_vector(2 downto 0);
45 CTRL_MTJ_CELL_00: out std_logic;
46 CTRL_MTJ_CELL_01: out std_logic;
47 CTRL_MTJ_CELL_02: out std_logic;
48 CTRL_MTJ_CELL_10: out std_logic;
49 CTRL_MTJ_CELL_11: out std_logic;
50 CTRL_MTJ_CELL_12: out std_logic;
51 CTRL_MTJ_CELL_20: out std_logic;
52 CTRL_MTJ_CELL_21: out std_logic;
53 CTRL_MTJ_CELL_22: out std_logic;
54 ---
55 CTRL_Vtr_0: in std_logic;
56 CTRL_Vtr_1: in std_logic;
57 CTRL_Vtr_2: in std_logic;
58 CTRL_Vtr_00: out std_logic;
59 CTRL_Vtr_01: out std_logic;
60 CTRL_Vtr_02: out std_logic;
61 CTRL_Vtr_10: out std_logic;
62 CTRL_Vtr_11: out std_logic;
63 CTRL_Vtr_12: out std_logic;
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64 CTRL_Vtr_20: out std_logic;
65 CTRL_Vtr_21: out std_logic;
66 CTRL_Vtr_22: out std_logic;
67 ---
68 CTRL_RST_L_MTJRR: in std_logic;
69 CTRL_RST_L_MTJRR_0: out std_logic;
70 CTRL_RST_L_MTJRR_1: out std_logic;
71 CTRL_RST_L_MTJRR_2: out std_logic;
72 ---
73 CTRL_RST_L_MTJR: in std_logic;
74 CTRL_RST_L_MTJR_0: out std_logic;
75 CTRL_RST_L_MTJR_1: out std_logic;
76 CTRL_RST_L_MTJR_2: out std_logic);
77 end entity FSM_Array_adapter;
78

79 architecture Behaviour of FSM_Array_adapter is
80 begin
81 CTRL_Vbl_0 <= AAout0 and CTRL_Vbl;
82 CTRL_MTJW_0 <= AAout0 and CTRL_MTJW and SHIFT_WORD_OUT_0;
83 CTRL_in_EN_00 <= AAout0 and CTRL_in_EN_0;
84 CTRL_in_EN_01 <= AAout0 and CTRL_in_EN_1;
85 CTRL_in_EN_02 <= AAout0 and CTRL_in_EN_2;
86 CTRL_Vop_0 <= AAout0 and CTRL_Vop;
87 CTRL_MTJ_CELL_00 <= AAout0 and CTRL_MTJ_CELL and SHIFT_MASK(0);
88 CTRL_MTJ_CELL_01 <= AAout0 and CTRL_MTJ_CELL and SHIFT_MASK(1);
89 CTRL_MTJ_CELL_02 <= AAout0 and CTRL_MTJ_CELL and SHIFT_MASK(2);
90 CTRL_Vtr_00 <= AAout0 and CTRL_Vtr_0;
91 CTRL_Vtr_01 <= AAout0 and CTRL_Vtr_1;
92 CTRL_Vtr_02 <= AAout0 and CTRL_Vtr_2;
93 CTRL_RST_L_MTJRR_0 <= AAout0 and CTRL_RST_L_MTJRR;
94 CTRL_RST_L_MTJR_0 <= AAout0 and CTRL_RST_L_MTJR;
95

96 CTRL_Vbl_1 <= AAout1 and CTRL_Vbl;
97 CTRL_MTJW_1 <= AAout1 and CTRL_MTJW and SHIFT_WORD_OUT_1;
98 CTRL_in_EN_10 <= AAout1 and CTRL_in_EN_0;
99 CTRL_in_EN_11 <= AAout1 and CTRL_in_EN_1;

100 CTRL_in_EN_12 <= AAout1 and CTRL_in_EN_2;
101 CTRL_Vop_1 <= AAout1 and CTRL_Vop;
102 CTRL_MTJ_CELL_10 <= AAout1 and CTRL_MTJ_CELL and SHIFT_MASK(0);
103 CTRL_MTJ_CELL_11 <= AAout1 and CTRL_MTJ_CELL and SHIFT_MASK(1);
104 CTRL_MTJ_CELL_12 <= AAout1 and CTRL_MTJ_CELL and SHIFT_MASK(2);
105 CTRL_Vtr_10 <= AAout1 and CTRL_Vtr_0;
106 CTRL_Vtr_11 <= AAout1 and CTRL_Vtr_1;
107 CTRL_Vtr_12 <= AAout1 and CTRL_Vtr_2;
108 CTRL_RST_L_MTJRR_1 <= AAout1 and CTRL_RST_L_MTJRR;
109 CTRL_RST_L_MTJR_1 <= AAout1 and CTRL_RST_L_MTJR;
110

111 CTRL_Vbl_2 <= AAout2 and CTRL_Vbl;
112 CTRL_MTJW_2 <= AAout2 and CTRL_MTJW and SHIFT_WORD_OUT_2;
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113 CTRL_in_EN_20 <= AAout2 and CTRL_in_EN_0;
114 CTRL_in_EN_21 <= AAout2 and CTRL_in_EN_1;
115 CTRL_in_EN_22 <= AAout2 and CTRL_in_EN_2;
116 CTRL_Vop_2 <= AAout2 and CTRL_Vop;
117 CTRL_MTJ_CELL_20 <= AAout2 and CTRL_MTJ_CELL and SHIFT_MASK(0);
118 CTRL_MTJ_CELL_21 <= AAout2 and CTRL_MTJ_CELL and SHIFT_MASK(1);
119 CTRL_MTJ_CELL_22 <= AAout2 and CTRL_MTJ_CELL and SHIFT_MASK(2);
120 CTRL_Vtr_20 <= AAout2 and CTRL_Vtr_0;
121 CTRL_Vtr_21 <= AAout2 and CTRL_Vtr_1;
122 CTRL_Vtr_22 <= AAout2 and CTRL_Vtr_2;
123 CTRL_RST_L_MTJRR_2 <= AAout2 and CTRL_RST_L_MTJRR;
124 CTRL_RST_L_MTJR_2 <= AAout2 and CTRL_RST_L_MTJR;
125

126 end architecture Behaviour;

D.2.6. Decoder

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use ieee.numeric_std.all;
4 use work.globals.all;
5

6 entity Decoder is
7 generic (N: integer := 3);
8 port( ENABLE: in std_logic;
9 ADDRESS: in std_logic_vector(N-1 downto 0);

10 WLINES: out std_logic_vector(2**N-1 downto 0) );
11 end entity Decoder;
12

13 architecture Behaviour of Decoder is
14 begin
15 process(ENABLE, ADDRESS)
16 begin
17 if (ENABLE = '1') then
18 WLINES <= (others => '0');
19 WLINES(to_integer(unsigned(ADDRESS))) <= '1';
20 else
21 WLINES <= (others => 'Z');
22 end if;
23 end process;
24 end architecture Behaviour;
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D.2.7. Latches inside the memory array

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity memarray_latches is
8 port( MTJ_R00_out, MTJ_R01_out, MTJ_R02_out: in std_logic;
9 MTJ_R10_out, MTJ_R11_out, MTJ_R12_out: in std_logic;

10 MTJ_R20_out, MTJ_R21_out, MTJ_R22_out: in std_logic;
11 EN_READ: in std_logic;
12 CTRL_RST_L_MTJR_0: in std_logic;
13 CTRL_RST_L_MTJR_1: in std_logic;
14 CTRL_RST_L_MTJR_2: in std_logic;
15 L_MTJ_R_out_00, L_MTJ_R_out_01, L_MTJ_R_out_02: out std_logic;
16 L_MTJ_R_out_10, L_MTJ_R_out_11, L_MTJ_R_out_12: out std_logic;
17 L_MTJ_R_out_20, L_MTJ_R_out_21, L_MTJ_R_out_22: out std_logic;
18 ---
19 MTJ_RR0_out: in std_logic;
20 MTJ_RR1_out: in std_logic;
21 MTJ_RR2_out: in std_logic;
22 CTRL_RST_L_MTJRR_0: in std_logic;
23 CTRL_RST_L_MTJRR_1: in std_logic;
24 CTRL_RST_L_MTJRR_2: in std_logic;
25 L_MTJ_RR_out_0: out std_logic;
26 L_MTJ_RR_out_1: out std_logic;
27 L_MTJ_RR_out_2: out std_logic);
28 end entity memarray_latches;
29

30 architecture Behaviour of memarray_latches is
31 component SRlatch is
32 port( SET: in std_logic;
33 RST: in std_logic;
34 Q: out std_logic);
35 end component SRlatch;
36

37 signal SET00, SET01, SET02, SET10, SET11, SET12, SET20, SET21, SET22:
std_logic;↪→

38 begin
39 SET00 <= MTJ_R00_out and EN_READ;
40 SET01 <= MTJ_R01_out and EN_READ;
41 SET02 <= MTJ_R02_out and EN_READ;
42 SET10 <= MTJ_R10_out and EN_READ;
43 SET11 <= MTJ_R11_out and EN_READ;
44 SET12 <= MTJ_R12_out and EN_READ;
45 SET20 <= MTJ_R20_out and EN_READ;
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46 SET21 <= MTJ_R21_out and EN_READ;
47 SET22 <= MTJ_R22_out and EN_READ;
48

49 SR_R00: SRlatch port map (SET => SET00, RST => CTRL_RST_L_MTJR_0, Q =>
L_MTJ_R_out_00);↪→

50 SR_R01: SRlatch port map (SET => SET01, RST => CTRL_RST_L_MTJR_0, Q =>
L_MTJ_R_out_01);↪→

51 SR_R02: SRlatch port map (SET => SET02, RST => CTRL_RST_L_MTJR_0, Q =>
L_MTJ_R_out_02);↪→

52 SR_R10: SRlatch port map (SET => SET10, RST => CTRL_RST_L_MTJR_1, Q =>
L_MTJ_R_out_10);↪→

53 SR_R11: SRlatch port map (SET => SET11, RST => CTRL_RST_L_MTJR_1, Q =>
L_MTJ_R_out_11);↪→

54 SR_R12: SRlatch port map (SET => SET12, RST => CTRL_RST_L_MTJR_1, Q =>
L_MTJ_R_out_12);↪→

55 SR_R20: SRlatch port map (SET => SET20, RST => CTRL_RST_L_MTJR_2, Q =>
L_MTJ_R_out_20);↪→

56 SR_R21: SRlatch port map (SET => SET21, RST => CTRL_RST_L_MTJR_2, Q =>
L_MTJ_R_out_21);↪→

57 SR_R22: SRlatch port map (SET => SET22, RST => CTRL_RST_L_MTJR_2, Q =>
L_MTJ_R_out_22);↪→

58

59 SR_RR0: SRlatch port map (SET => MTJ_RR0_out, RST => CTRL_RST_L_MTJRR_0, Q =>
L_MTJ_RR_out_0);↪→

60 SR_RR1: SRlatch port map (SET => MTJ_RR1_out, RST => CTRL_RST_L_MTJRR_1, Q =>
L_MTJ_RR_out_1);↪→

61 SR_RR2: SRlatch port map (SET => MTJ_RR2_out, RST => CTRL_RST_L_MTJRR_2, Q =>
L_MTJ_RR_out_2);↪→

62 end architecture Behaviour;

D.2.8. Output multiplexer and register

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity readout is
8 port( L_MTJ_R_out_00, L_MTJ_R_out_01, L_MTJ_R_out_02: in std_logic;
9 L_MTJ_R_out_10, L_MTJ_R_out_11, L_MTJ_R_out_12: in std_logic;

10 L_MTJ_R_out_20, L_MTJ_R_out_21, L_MTJ_R_out_22: in std_logic;
11 AAout0: in std_logic;
12 AAout1: in std_logic;
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13 AAout2: in std_logic;
14 CLK: in std_logic;
15 CTRL_READWORD_RST: in std_logic;
16 CTRL_READWORD_EN: in std_logic;
17 READWORD_OUT: out std_logic_vector (2 downto 0) );
18 end entity readout;
19

20 architecture Behaviour of readout is
21 component Reg is
22 generic (N: integer:= 3);
23 port( CLK: in std_logic;
24 RST: in std_logic;
25 STORE: in std_logic;
26 DATA_IN: in std_logic_vector (N-1 downto 0);
27 DATA_OUT: buffer std_logic_vector (N-1 downto 0) );
28 end component Reg;
29

30 signal SEL: std_logic_vector(2 downto 0);
31 signal IN0, IN1, IN2, MUX_OUT: std_logic_vector(2 downto 0);
32 begin
33 SEL <= AAout2 & AAout1 & AAout0;
34 IN0 <= L_MTJ_R_out_02 & L_MTJ_R_out_01 & L_MTJ_R_out_00;
35 IN1 <= L_MTJ_R_out_12 & L_MTJ_R_out_11 & L_MTJ_R_out_10;
36 IN2 <= L_MTJ_R_out_22 & L_MTJ_R_out_21 & L_MTJ_R_out_20;
37

38 with SEL select
39 MUX_OUT <= IN0 when "001",
40 IN1 when "010",
41 IN2 when "100",
42 (others => 'Z') when others;
43

44 READ_WORD_REG: Reg generic map (N=>3) port map (CLK => CLK, RST =>
CTRL_READWORD_RST, STORE => CTRL_READWORD_EN, DATA_IN => MUX_OUT, DATA_OUT
=> READWORD_OUT);

↪→

↪→

45 end architecture Behaviour;

D.3. Basic components
D.3.1. Globals

477



D – Logic in memory VHDL code - architecture 2

1 package GLOBALS is
2 type coordinates_xy is array (0 to 1) of real;
3 type parameters_array is array(0 to 9) of coordinates_xy;
4 type bool_array is array(integer range <>) of boolean;
5 type real_array is array(integer range <>) of real;
6

7 constant HORIZONTAL_SPEED : real := 150.0; --m/s
8 constant VERTICAL_SPEED : real := 40.0; --m/s
9 constant DEPINNING_CURRENT : real := 260.0; --nA

10 constant NOTCH_DEPINNING_CURRENT : real := 3200.0; --nA
11 constant HORIZONTAL_SPEED_HIGH : real := 484.0; --m/2
12 constant SKYRMION_DIAMETER : real := 18.0; --nm
13 constant SKYRMION_MIN_DISTANCE : real := 22.0; --nm
14 constant CURRENT_LOW : real := 800.0; --nA
15 constant CURRENT_HIGH : real := 3200.0; --nA
16 constant CLOCK_LOW : time := 5.35 ns;
17 constant CLOCK_HIGH : time := 150 ps;
18 constant CLOCK_PERIOD : time := 5.5 ns;
19 constant INPUTS_HIGH : time := 500 ps;
20

21 end package GLOBALS;

D.3.2. Two-way 1 bit multiplexer

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity mux2_1b is
8 port( IN0: in std_logic;
9 IN1: in std_logic;

10 SEL: in std_logic;
11 OUTM: out std_logic
12 );
13 end entity mux2_1b;
14

15 architecture Behaviour of mux2_1b is
16 begin
17 with SEL select
18 OUTM <= IN0 when '0',
19 IN1 when '1',
20 '0' when others;
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21 end architecture Behaviour;

D.3.3. Register

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Reg is
8 generic (N: integer:= 3);
9 port( CLK: in std_logic;

10 RST: in std_logic;
11 STORE: in std_logic;
12 DATA_IN: in std_logic_vector (N-1 downto 0);
13 DATA_OUT: buffer std_logic_vector (N-1 downto 0) );
14 end entity Reg;
15

16 architecture Behaviour of Reg is
17 begin
18 process (CLK, RST)
19 begin
20 if (RST='1') then
21 DATA_OUT <= (others => '0');
22 elsif(CLK'event and CLK='1') then
23 if (STORE='1') then
24 DATA_OUT <= DATA_IN;
25 end if;
26 end if;
27 end process;
28

29 end architecture Behaviour;

D.3.4. Shift register

1 library IEEE;
2 use IEEE.std_logic_1164.all;

479



D – Logic in memory VHDL code - architecture 2

3 use ieee.numeric_std.all;
4 use work.globals.all;
5

6 entity Shift_reg is
7 generic (N: integer:= 3);
8 port( CLK: in std_logic;
9 RST: in std_logic;

10 SHIFT: in std_logic;
11 STORE: in std_logic;
12 RIGHT_LEFT_n: in std_logic;
13 DATA_IN: in std_logic_vector (N-1 downto 0);
14 DATA_OUT: buffer std_logic_vector (N-1 downto 0) );
15 end entity Shift_reg;
16

17 architecture Behaviour of Shift_reg is
18 begin
19 latch: process (CLK, RST)
20 variable number: std_logic_vector(N-1 downto 0);
21 begin
22 if (RST='1') then
23 DATA_OUT <= (others => '0');
24 elsif(CLK'event and CLK='1') then
25 if (STORE='1') then
26 DATA_OUT <= DATA_IN;
27 elsif (SHIFT = '1') then
28 if (RIGHT_LEFT_n='1') then
29 number := '0'& DATA_OUT(N-1 downto 1);
30 else
31 number := DATA_OUT(N-2 downto 0) & '0';
32 end if;
33 DATA_OUT <= number;
34 end if;
35 end if;
36 end process latch;
37

38 end architecture Behaviour;

D.3.5. SR latch

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
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6

7 entity SRlatch is
8 port( SET: in std_logic;
9 RST: in std_logic;

10 Q: out std_logic);
11 end entity SRlatch;
12

13 architecture Behaviour of SRlatch is
14

15 begin
16 latch: process (SET, RST)
17 begin
18 if (RST='1') then
19 Q <= '0';
20 elsif(SET'event and SET='1') then
21 Q <= '1';
22 end if;
23 end process latch;
24

25 end architecture Behaviour;

D.4. FSM

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use WORK.all;
6 use work.globals.all;
7

8

9 entity FSM is
10 port( CLK: in std_logic;
11 RESET_n: in std_logic;
12 START_FIND: in std_logic;
13 READ_WRITE_n: in std_logic;
14 AAoutOR: in std_logic;
15 ---
16 CTRL_Vbl: out std_logic;
17 CTRL_MTJW: out std_logic;
18 CTRL_in_EN_0: out std_logic;
19 CTRL_in_EN_1: out std_logic;
20 CTRL_in_EN_2: out std_logic;
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21 CTRL_Vop: out std_logic;
22 CTRL_MTJ_CELL: out std_logic;
23 CTRL_Vtr_0: out std_logic;
24 CTRL_Vtr_1: out std_logic;
25 CTRL_Vtr_2: out std_logic;
26 CTRL_WORD_SHIFT: out std_logic;
27 CTRL_WORD_RST: out std_logic;
28 CTRL_RST_L_MTJRR: out std_logic;
29 CTRL_RST_L_MTJR: out std_logic;
30 CTRL_MASK_STORE: out std_logic;
31 CTRL_MASK_SHIFT: out std_logic;
32 CTRL_MASK_RST: out std_logic;
33 FIND: out std_logic;
34 IDLE: out std_logic;
35 EN_READ: out std_logic;
36 CTRL_READWORD_EN: out std_logic;
37 CTRL_READWORD_RST: out std_logic;
38 CTRL_LATCH_RST: out std_logic;
39 CTRL_ENCODER_EN: out std_logic;
40 CTRL_ADDREG_RST: out std_logic;
41 CTRL_ADDREG_STORE: out std_logic);
42 end entity FSM;
43

44 architecture Behaviour of FSM is
45

46 type state_type is (
47 reset, S0, S1, S2, S3, S4, S6, S7, S8, S9
48 );
49

50 signal pstate, nstate: state_type;
51

52 begin
53

54 state_register: process (CLK)
55 begin
56 if (CLK'event and CLK='1') then
57 if (RESET_n = '0') then
58 pstate <= reset;
59 else
60 pstate <= nstate;
61 end if;
62 end if;
63 end process state_register;
64

65 state_transition: process (pstate, CLK)
66 begin
67 case pstate is
68 when reset => nstate <= S0;
69 when S0 => if (START_FIND='1') then nstate <= S1; elsif

(READ_WRITE_n='1') then nstate <= S6; elsif(AAoutOR='1') then nstate
<= S7; else nstate <= S0; end if;

↪→

↪→
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70 when S1 => nstate <= S2;
71 when S2 => nstate <= S3;
72 when S3 => nstate <= S4;
73 when S4 => nstate <= S0;
74 when S6 => nstate <= S0;
75 when S7 => nstate <= S8;
76 when S8 => nstate <= S9;
77 when S9 => nstate <= S0;
78 when others => nstate <= S0;
79 end case;
80 end process state_transition;
81

82 output: process (pstate)
83 begin
84 CTRL_Vbl <= '0';
85 CTRL_MTJW <= '0';
86 CTRL_in_EN_0 <= '1';
87 CTRL_in_EN_1 <= '1';
88 CTRL_in_EN_2 <= '1';
89 CTRL_Vop <= '0';
90 CTRL_MTJ_CELL <= '0';
91 CTRL_Vtr_0 <= '0';
92 CTRL_Vtr_1 <= '0';
93 CTRL_Vtr_2 <= '0';
94 CTRL_WORD_SHIFT <= '0';
95 CTRL_WORD_RST <= '0';
96 CTRL_RST_L_MTJRR <= '0';
97 CTRL_RST_L_MTJR <= '0';
98 CTRL_MASK_STORE <= '0';
99 CTRL_MASK_SHIFT <= '0';

100 CTRL_MASK_RST <= '0';
101 FIND <= '0';
102 IDLE <= '0';
103 EN_READ <= '0';
104 CTRL_READWORD_EN <= '0';
105 CTRL_READWORD_RST <= '0';
106 CTRL_LATCH_RST <= '0';
107 CTRL_ENCODER_EN <= '0';
108 CTRL_ADDREG_RST <= '0';
109 CTRL_ADDREG_STORE <= '0';
110

111 case pstate is
112 when S0 => CTRL_RST_L_MTJRR <= '1';
113 CTRL_RST_L_MTJR <= '1';
114 CTRL_MASK_STORE <= '0';
115 IDLE <= '0';
116 CTRL_LATCH_RST <= '1';
117

118 when S1 => FIND <= '1';
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119 CTRL_MTJ_CELL <= '1';
120 CTRL_Vop <= '1';
121 CTRL_MASK_SHIFT <= '1';
122 CTRL_Vbl <= '0', '1' after CLOCK_HIGH, '0' after 2*CLOCK_HIGH;
123

124 when S2 => CTRL_RST_L_MTJRR <= '1', '0' after CLOCK_HIGH;
125 FIND <= '1';
126 CTRL_MTJ_CELL <= '1';
127 CTRL_Vop <= '1';
128 CTRL_MASK_SHIFT <= '1';
129 CTRL_Vbl <= '0', '1' after CLOCK_HIGH, '0' after 2*CLOCK_HIGH;
130

131 when S3 => CTRL_RST_L_MTJRR <= '1', '0' after CLOCK_HIGH;
132 FIND <= '1';
133 CTRL_MTJ_CELL <= '1';
134 CTRL_Vop <= '1';
135 CTRL_MASK_RST <= '1';
136 CTRL_Vbl <= '0', '1' after CLOCK_HIGH, '0' after 2*CLOCK_HIGH;
137

138 when S4 => CTRL_RST_L_MTJRR <= '1', '0' after CLOCK_HIGH;
139 CTRL_ADDREG_STORE <= '1';
140 CTRL_ENCODER_EN <= '1';
141 FIND <= '1';
142

143 when S6 => CTRL_READWORD_EN <= '1';
144 CTRL_Vop <= '1';
145 EN_READ <= '1';
146

147 when S7 => CTRL_MTJW <= '1', '0' after CLOCK_HIGH;
148 CTRL_Vbl <= '0', '1' after CLOCK_PERIOD/11, '0' after

2*CLOCK_PERIOD/11, '1' after 3*CLOCK_PERIOD/11, '0' after
4*CLOCK_PERIOD/11, '1' after 5*CLOCK_PERIOD/11, '0' after
6*CLOCK_PERIOD/11, '1' after 7*CLOCK_PERIOD/11, '0' after
8*CLOCK_PERIOD/11, '1' after 9*CLOCK_PERIOD/11, '0' after
10*CLOCK_PERIOD/11;

↪→

↪→

↪→

↪→

↪→

149 CTRL_WORD_SHIFT <= '1';
150

151 when S8 => CTRL_in_EN_2 <= '0';
152 CTRL_MTJW <= '1', '0' after CLOCK_HIGH;
153 CTRL_Vbl <= '0', '1' after CLOCK_PERIOD/7, '0' after

2*CLOCK_PERIOD/7, '1' after 3*CLOCK_PERIOD/7, '0' after
4*CLOCK_PERIOD/7, '1' after 5*CLOCK_PERIOD/7, '0' after
6*CLOCK_PERIOD/7;

↪→

↪→

↪→

154 CTRL_WORD_SHIFT <= '1';
155

156 when S9 => CTRL_in_EN_2 <= '0';
157 CTRL_in_EN_1 <= '0';
158 CTRL_MTJW <= '1', '0' after CLOCK_HIGH;
159 CTRL_Vbl <= '0', '1' after CLOCK_PERIOD/3, '0' after

2*CLOCK_PERIOD/3;↪→
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160 CTRL_WORD_SHIFT <= '1';
161

162 when others => CTRL_Vbl <= '0';
163 CTRL_MTJW <= '0';
164 CTRL_in_EN_0 <= '1';
165 CTRL_in_EN_1 <= '1';
166 CTRL_in_EN_2 <= '1';
167 CTRL_Vop <= '0';
168 CTRL_MTJ_CELL <= '0';
169 CTRL_Vtr_0 <= '0';
170 CTRL_Vtr_1 <= '0';
171 CTRL_Vtr_2 <= '0';
172 CTRL_WORD_SHIFT <= '0';
173 CTRL_WORD_RST <= '1';
174 CTRL_RST_L_MTJRR <= '1';
175 CTRL_RST_L_MTJR <= '1';
176 CTRL_MASK_STORE <= '0';
177 CTRL_MASK_SHIFT <= '0';
178 CTRL_MASK_RST <= '1';
179 FIND <= '0';
180 IDLE <= '0';
181 EN_READ <= '0';
182 CTRL_READWORD_EN <= '0';
183 CTRL_READWORD_RST <= '1';
184 CTRL_LATCH_RST <= '1';
185 CTRL_ENCODER_EN <= '0';
186 CTRL_ADDREG_RST <= '1';
187 CTRL_ADDREG_STORE <= '0';
188 end case;
189 end process output;
190 end Behaviour;

D.5. Memory architecture

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
6

7 entity Memory is
8 port( CLK: in std_logic;
9 RESET_n: in std_logic;
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10 CTRL_DEC_en: in std_logic;
11 ADDRESS: in std_logic_vector (1 downto 0);
12 START_FIND: in std_logic;
13 READ_WRITE_n: in std_logic;
14 MAX_min_n: in std_logic;
15 CTRL_WORD0_STORE: in std_logic;
16 CTRL_WORD1_STORE: in std_logic;
17 CTRL_WORD2_STORE: in std_logic;
18 WORD0: in std_logic_vector(2 downto 0);
19 WORD1: in std_logic_vector(2 downto 0);
20 WORD2: in std_logic_vector(2 downto 0);
21 ADDRESS_FOUND_REGout: out std_logic_vector(1 downto 0));
22 end entity Memory;
23

24 architecture Behaviour of Memory is
25

26 component FSM is
27 port( CLK: in std_logic;
28 RESET_n: in std_logic;
29 START_FIND: in std_logic;
30 READ_WRITE_n: in std_logic;
31 AAoutOR: in std_logic;
32 ---
33 CTRL_Vbl: out std_logic;
34 CTRL_MTJW: out std_logic;
35 CTRL_in_EN_0: out std_logic;
36 CTRL_in_EN_1: out std_logic;
37 CTRL_in_EN_2: out std_logic;
38 CTRL_Vop: out std_logic;
39 CTRL_MTJ_CELL: out std_logic;
40 CTRL_Vtr_0: out std_logic;
41 CTRL_Vtr_1: out std_logic;
42 CTRL_Vtr_2: out std_logic;
43 CTRL_WORD_SHIFT: out std_logic;
44 CTRL_WORD_RST: out std_logic;
45 CTRL_RST_L_MTJRR: out std_logic;
46 CTRL_RST_L_MTJR: out std_logic;
47 CTRL_MASK_STORE: out std_logic;
48 CTRL_MASK_SHIFT: out std_logic;
49 CTRL_MASK_RST: out std_logic;
50 FIND: out std_logic;
51 IDLE: out std_logic;
52 EN_READ: out std_logic;
53 CTRL_READWORD_EN: out std_logic;
54 CTRL_READWORD_RST: out std_logic;
55 CTRL_LATCH_RST: out std_logic;
56 CTRL_ENCODER_EN: out std_logic;
57 CTRL_ADDREG_RST: out std_logic;
58 CTRL_ADDREG_STORE: out std_logic);
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59 end component FSM;
60

61 component MemArray is
62 port( CTRL_Vbl_0: in std_logic;
63 CTRL_Vop_0: in std_logic;
64 CTRL_Vtr_00: in std_logic;
65 CTRL_Vtr_01: in std_logic;
66 CTRL_Vtr_02: in std_logic;
67 CTRL_MTJW_0: in std_logic;
68 CTRL_in_EN_00: in std_logic;
69 CTRL_in_EN_01: in std_logic;
70 CTRL_in_EN_02: in std_logic;
71 CTRL_MTJ_cell_00: in std_logic;
72 CTRL_MTJ_cell_01: in std_logic;
73 CTRL_MTJ_cell_02: in std_logic;
74 MTJ_RR0_out: out std_logic;
75 MTJ_R00_out: out std_logic;
76 MTJ_R01_out: out std_logic;
77 MTJ_R02_out: out std_logic;
78 ---
79 CTRL_Vbl_1: in std_logic;
80 CTRL_Vop_1: in std_logic;
81 CTRL_Vtr_10: in std_logic;
82 CTRL_Vtr_11: in std_logic;
83 CTRL_Vtr_12: in std_logic;
84 CTRL_MTJW_1: in std_logic;
85 CTRL_in_EN_10: in std_logic;
86 CTRL_in_EN_11: in std_logic;
87 CTRL_in_EN_12: in std_logic;
88 CTRL_MTJ_cell_10: in std_logic;
89 CTRL_MTJ_cell_11: in std_logic;
90 CTRL_MTJ_cell_12: in std_logic;
91 MTJ_RR1_out: out std_logic;
92 MTJ_R10_out: out std_logic;
93 MTJ_R11_out: out std_logic;
94 MTJ_R12_out: out std_logic;
95 ---
96 CTRL_Vbl_2: in std_logic;
97 CTRL_Vop_2: in std_logic;
98 CTRL_Vtr_20: in std_logic;
99 CTRL_Vtr_21: in std_logic;

100 CTRL_Vtr_22: in std_logic;
101 CTRL_MTJW_2: in std_logic;
102 CTRL_in_EN_20: in std_logic;
103 CTRL_in_EN_21: in std_logic;
104 CTRL_in_EN_22: in std_logic;
105 CTRL_MTJ_cell_20: in std_logic;
106 CTRL_MTJ_cell_21: in std_logic;
107 CTRL_MTJ_cell_22: in std_logic;
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108 MTJ_RR2_out: out std_logic;
109 MTJ_R20_out: out std_logic;
110 MTJ_R21_out: out std_logic;
111 MTJ_R22_out: out std_logic);
112 end component MemArray;
113

114 component Detector is
115 port( L_MTJ_RR_out_0: in std_logic;
116 L_MTJ_RR_out_1: in std_logic;
117 L_MTJ_RR_out_2: in std_logic;
118 LATCH0_OUT: in std_logic;
119 LATCH1_OUT: in std_logic;
120 LATCH2_OUT: in std_logic;
121 ENABLE_Rowdis: out std_logic);
122 end component Detector;
123

124 component Row_disabler is
125 port( L_MTJ_RR_out_0: in std_logic;
126 L_MTJ_RR_out_1: in std_logic;
127 L_MTJ_RR_out_2: in std_logic;
128 MAX_min_n: in std_logic;
129 ENABLE_Rowdis: in std_logic;
130 FIND: in std_logic;
131 CTRL_LATCH_RST: in std_logic;
132 LATCH0_OUT: out std_logic;
133 LATCH1_OUT: out std_logic;
134 LATCH2_OUT: out std_logic);
135 end component Row_disabler;
136

137 component And_array is
138 port( RESET_n: in std_logic;
139 IDLE: in std_logic;
140 FIND: in std_logic;
141 DEC0: in std_logic;
142 DEC1: in std_logic;
143 DEC2: in std_logic;
144 LATCH0_OUT: in std_logic;
145 LATCH1_OUT: in std_logic;
146 LATCH2_OUT: in std_logic;
147 AAout0: buffer std_logic;
148 AAout1: buffer std_logic;
149 AAout2: buffer std_logic;
150 AAoutOR: out std_logic);
151 end component And_array;
152

153 component Decoder is
154 generic (N: integer := 3);
155 port( ENABLE: in std_logic;
156 ADDRESS: in std_logic_vector(N-1 downto 0);
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157 WLINES: out std_logic_vector(2**N-1 downto 0) );
158 end component Decoder;
159

160 component Encoder is
161 port( CTRL_ENCODER_EN: in std_logic;
162 LATCH0_OUT: in std_logic;
163 LATCH1_OUT: in std_logic;
164 LATCH2_OUT: in std_logic;
165 CLK: in std_logic;
166 CTRL_ADDREG_RST: in std_logic;
167 CTRL_ADDREG_STORE: in std_logic;
168 ADDRESS_FOUND_REGout: out std_logic_vector(1 downto 0) );
169 end component Encoder;
170

171 component Shift_reg is
172 generic (N: integer:= 3);
173 port( CLK: in std_logic;
174 RST: in std_logic;
175 SHIFT: in std_logic;
176 STORE: in std_logic;
177 RIGHT_LEFT_n: in std_logic;
178 DATA_IN: in std_logic_vector (N-1 downto 0);
179 DATA_OUT: buffer std_logic_vector (N-1 downto 0) );
180 end component Shift_reg;
181

182 component memarray_latches is
183 port( MTJ_R00_out, MTJ_R01_out, MTJ_R02_out: in std_logic;
184 MTJ_R10_out, MTJ_R11_out, MTJ_R12_out: in std_logic;
185 MTJ_R20_out, MTJ_R21_out, MTJ_R22_out: in std_logic;
186 EN_READ: in std_logic;
187 CTRL_RST_L_MTJR_0: in std_logic;
188 CTRL_RST_L_MTJR_1: in std_logic;
189 CTRL_RST_L_MTJR_2: in std_logic;
190 L_MTJ_R_out_00, L_MTJ_R_out_01, L_MTJ_R_out_02: out std_logic;
191 L_MTJ_R_out_10, L_MTJ_R_out_11, L_MTJ_R_out_12: out std_logic;
192 L_MTJ_R_out_20, L_MTJ_R_out_21, L_MTJ_R_out_22: out std_logic;
193 ---
194 MTJ_RR0_out: in std_logic;
195 MTJ_RR1_out: in std_logic;
196 MTJ_RR2_out: in std_logic;
197 CTRL_RST_L_MTJRR_0: in std_logic;
198 CTRL_RST_L_MTJRR_1: in std_logic;
199 CTRL_RST_L_MTJRR_2: in std_logic;
200 L_MTJ_RR_out_0: out std_logic;
201 L_MTJ_RR_out_1: out std_logic;
202 L_MTJ_RR_out_2: out std_logic);
203 end component memarray_latches;
204

205 component readout is
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206 port( L_MTJ_R_out_00, L_MTJ_R_out_01, L_MTJ_R_out_02: in std_logic;
207 L_MTJ_R_out_10, L_MTJ_R_out_11, L_MTJ_R_out_12: in std_logic;
208 L_MTJ_R_out_20, L_MTJ_R_out_21, L_MTJ_R_out_22: in std_logic;
209 AAout0: in std_logic;
210 AAout1: in std_logic;
211 AAout2: in std_logic;
212 CLK: in std_logic;
213 CTRL_READWORD_RST: in std_logic;
214 CTRL_READWORD_EN: in std_logic;
215 READWORD_OUT: out std_logic_vector (2 downto 0) );
216 end component readout;
217

218 component FSM_Array_adapter is
219 port( AAout0: in std_logic;
220 AAout1: in std_logic;
221 AAout2: in std_logic;
222 ---
223 CTRL_Vbl: in std_logic;
224 CTRL_Vbl_0: out std_logic;
225 CTRL_Vbl_1: out std_logic;
226 CTRL_Vbl_2: out std_logic;
227 ---
228 CTRL_MTJW: in std_logic;
229 SHIFT_WORD_OUT_0: in std_logic;
230 SHIFT_WORD_OUT_1: in std_logic;
231 SHIFT_WORD_OUT_2: in std_logic;
232 CTRL_MTJW_0: out std_logic;
233 CTRL_MTJW_1: out std_logic;
234 CTRL_MTJW_2: out std_logic;
235 ---
236 CTRL_in_EN_0: in std_logic;
237 CTRL_in_EN_1: in std_logic;
238 CTRL_in_EN_2: in std_logic;
239 CTRL_in_EN_00: out std_logic;
240 CTRL_in_EN_01: out std_logic;
241 CTRL_in_EN_02: out std_logic;
242 CTRL_in_EN_10: out std_logic;
243 CTRL_in_EN_11: out std_logic;
244 CTRL_in_EN_12: out std_logic;
245 CTRL_in_EN_20: out std_logic;
246 CTRL_in_EN_21: out std_logic;
247 CTRL_in_EN_22: out std_logic;
248 ---
249 CTRL_Vop: in std_logic;
250 CTRL_Vop_0: out std_logic;
251 CTRL_Vop_1: out std_logic;
252 CTRL_Vop_2: out std_logic;
253 ---
254 CTRL_MTJ_CELL: in std_logic;
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255 SHIFT_MASK: in std_logic_vector(2 downto 0);
256 CTRL_MTJ_CELL_00: out std_logic;
257 CTRL_MTJ_CELL_01: out std_logic;
258 CTRL_MTJ_CELL_02: out std_logic;
259 CTRL_MTJ_CELL_10: out std_logic;
260 CTRL_MTJ_CELL_11: out std_logic;
261 CTRL_MTJ_CELL_12: out std_logic;
262 CTRL_MTJ_CELL_20: out std_logic;
263 CTRL_MTJ_CELL_21: out std_logic;
264 CTRL_MTJ_CELL_22: out std_logic;
265 ---
266 CTRL_Vtr_0: in std_logic;
267 CTRL_Vtr_1: in std_logic;
268 CTRL_Vtr_2: in std_logic;
269 CTRL_Vtr_00: out std_logic;
270 CTRL_Vtr_01: out std_logic;
271 CTRL_Vtr_02: out std_logic;
272 CTRL_Vtr_10: out std_logic;
273 CTRL_Vtr_11: out std_logic;
274 CTRL_Vtr_12: out std_logic;
275 CTRL_Vtr_20: out std_logic;
276 CTRL_Vtr_21: out std_logic;
277 CTRL_Vtr_22: out std_logic;
278 ---
279 CTRL_RST_L_MTJRR: in std_logic;
280 CTRL_RST_L_MTJRR_0: out std_logic;
281 CTRL_RST_L_MTJRR_1: out std_logic;
282 CTRL_RST_L_MTJRR_2: out std_logic;
283 ---
284 CTRL_RST_L_MTJR: in std_logic;
285 CTRL_RST_L_MTJR_0: out std_logic;
286 CTRL_RST_L_MTJR_1: out std_logic;
287 CTRL_RST_L_MTJR_2: out std_logic);
288 end component FSM_Array_adapter;
289

290 signal AAout0, AAout1, AAout2, AAoutOR, L_AAoutOR, L_AAoutOR0, L_AAoutOR1,
L_AAoutOR2: std_logic;↪→

291 signal CTRL_Vbl, CTRL_Vbl_0, CTRL_Vbl_1, CTRL_Vbl_2: std_logic;
292 signal CTRL_MTJW, CTRL_MTJW_0, CTRL_MTJW_1, CTRL_MTJW_2: std_logic;
293 signal CTRL_in_EN_0, CTRL_in_EN_1, CTRL_in_EN_2, CTRL_in_EN_00, CTRL_in_EN_01,

CTRL_in_EN_02, CTRL_in_EN_10, CTRL_in_EN_11, CTRL_in_EN_12, CTRL_in_EN_20,
CTRL_in_EN_21, CTRL_in_EN_22: std_logic;

↪→

↪→

294 signal CTRL_Vop, CTRL_Vop_0, CTRL_Vop_1, CTRL_Vop_2: std_logic;
295 signal CTRL_MTJ_CELL, CTRL_MTJ_CELL_00, CTRL_MTJ_CELL_01, CTRL_MTJ_CELL_02,

CTRL_MTJ_CELL_10, CTRL_MTJ_CELL_11, CTRL_MTJ_CELL_12, CTRL_MTJ_CELL_20,
CTRL_MTJ_CELL_21, CTRL_MTJ_CELL_22: std_logic;

↪→

↪→

296 signal CTRL_Vtr_0, CTRL_Vtr_1, CTRL_Vtr_2, CTRL_Vtr_00, CTRL_Vtr_01,
CTRL_Vtr_02, CTRL_Vtr_10, CTRL_Vtr_11, CTRL_Vtr_12, CTRL_Vtr_20,
CTRL_Vtr_21, CTRL_Vtr_22: std_logic;

↪→

↪→
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297 signal CTRL_WORD_SHIFT, CTRL_WORD0_SHIFT, CTRL_WORD1_SHIFT, CTRL_WORD2_SHIFT:
std_logic;↪→

298 signal CTRL_RST_L_MTJRR, CTRL_RST_L_MTJRR_0, CTRL_RST_L_MTJRR_1,
CTRL_RST_L_MTJRR_2: std_logic;↪→

299 signal CTRL_RST_L_MTJR, CTRL_RST_L_MTJR_0, CTRL_RST_L_MTJR_1,
CTRL_RST_L_MTJR_2: std_logic;↪→

300

301 signal L_MTJ_RR_out_0, L_MTJ_RR_out_1, L_MTJ_RR_out_2, L_MTJ_R_out_00,
L_MTJ_R_out_01, L_MTJ_R_out_02, L_MTJ_R_out_10, L_MTJ_R_out_11,
L_MTJ_R_out_12, L_MTJ_R_out_20, L_MTJ_R_out_21, L_MTJ_R_out_22,
LATCH0_OUT, LATCH1_OUT, LATCH2_OUT, ENABLE_Rowdis, DEC0, DEC1, DEC2:
std_logic;

↪→

↪→

↪→

↪→

302 signal MTJ_RR0_out, MTJ_R00_out, MTJ_R01_out, MTJ_R02_out, MTJ_RR1_out,
MTJ_R10_out, MTJ_R11_out, MTJ_R12_out, MTJ_RR2_out, MTJ_R20_out,
MTJ_R21_out, MTJ_R22_out: std_logic;

↪→

↪→

303 signal FIND, IDLE, EN_READ, CTRL_READWORD_EN, CTRL_READWORD_RST,
CTRL_LATCH_RST, CTRL_ENCODER_EN: std_logic;↪→

304 signal CTRL_ADDREG_RST, CTRL_ADDREG_STORE: std_logic;
305

306 signal CTRL_MASK_RST, CTRL_MASK_SHIFT, CTRL_MASK_STORE: std_logic;
307 signal CTRL_WORD_RST: std_logic;
308 signal WLINES, ENC_INPUTS: std_logic_vector(3 downto 0);
309 signal MASK_OUT, WORD0_OUT, WORD1_OUT, WORD2_OUT: std_logic_vector(2 downto

0);↪→

310 signal ADDRESS_FOUND: std_logic_vector(1 downto 0);
311 signal READWORD_OUT: std_logic_vector(2 downto 0);
312 begin
313

314 FSM_mem: FSM port map (
315 CLK => CLK,
316 RESET_n => RESET_n,
317 START_FIND => START_FIND,
318 READ_WRITE_n => READ_WRITE_n,
319 AAoutOR => AAoutOR,
320 ---
321 CTRL_Vbl => CTRL_Vbl,
322 CTRL_MTJW => CTRL_MTJW,
323 CTRL_in_EN_0 => CTRL_in_EN_0,
324 CTRL_in_EN_1 => CTRL_in_EN_1,
325 CTRL_in_EN_2 => CTRL_in_EN_2,
326 CTRL_Vop => CTRL_Vop,
327 CTRL_MTJ_CELL => CTRL_MTJ_CELL,
328 CTRL_Vtr_0 => CTRL_Vtr_0,
329 CTRL_Vtr_1 => CTRL_Vtr_1,
330 CTRL_Vtr_2 => CTRL_Vtr_2,
331 CTRL_WORD_SHIFT => CTRL_WORD_SHIFT,
332 CTRL_WORD_RST => CTRL_WORD_RST,
333 CTRL_RST_L_MTJRR => CTRL_RST_L_MTJRR,
334 CTRL_RST_L_MTJR => CTRL_RST_L_MTJR,
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335 CTRL_MASK_STORE => CTRL_MASK_STORE,
336 CTRL_MASK_SHIFT => CTRL_MASK_SHIFT,
337 CTRL_MASK_RST => CTRL_MASK_RST,
338 FIND => FIND,
339 IDLE => IDLE,
340 EN_READ => EN_READ,
341 CTRL_READWORD_EN => CTRL_READWORD_EN,
342 CTRL_READWORD_RST => CTRL_READWORD_RST,
343 CTRL_LATCH_RST => CTRL_LATCH_RST,
344 CTRL_ENCODER_EN => CTRL_ENCODER_EN,
345 CTRL_ADDREG_RST => CTRL_ADDREG_RST,
346 CTRL_ADDREG_STORE => CTRL_ADDREG_STORE);
347

348 MEM: MemArray port map (
349 CTRL_Vbl_0 => CTRL_Vbl_0,
350 CTRL_Vop_0 => CTRL_Vop_0,
351 CTRL_Vtr_00 => CTRL_Vtr_00,
352 CTRL_Vtr_01 => CTRL_Vtr_01,
353 CTRL_Vtr_02 => CTRL_Vtr_02,
354 CTRL_MTJW_0 => CTRL_MTJW_0,
355 CTRL_in_EN_00 => CTRL_in_EN_00,
356 CTRL_in_EN_01 => CTRL_in_EN_01,
357 CTRL_in_EN_02 => CTRL_in_EN_02,
358 CTRL_MTJ_cell_00 => CTRL_MTJ_cell_00,
359 CTRL_MTJ_cell_01 => CTRL_MTJ_cell_01,
360 CTRL_MTJ_cell_02 => CTRL_MTJ_cell_02,
361 MTJ_RR0_out => MTJ_RR0_out,
362 MTJ_R00_out => MTJ_R00_out,
363 MTJ_R01_out => MTJ_R01_out,
364 MTJ_R02_out => MTJ_R02_out,
365 ---
366 CTRL_Vbl_1 => CTRL_Vbl_1,
367 CTRL_Vop_1 => CTRL_Vop_1,
368 CTRL_Vtr_10 => CTRL_Vtr_10,
369 CTRL_Vtr_11 => CTRL_Vtr_11,
370 CTRL_Vtr_12 => CTRL_Vtr_12,
371 CTRL_MTJW_1 => CTRL_MTJW_1,
372 CTRL_in_EN_10 => CTRL_in_EN_10,
373 CTRL_in_EN_11 => CTRL_in_EN_11,
374 CTRL_in_EN_12 => CTRL_in_EN_12,
375 CTRL_MTJ_cell_10 => CTRL_MTJ_cell_10,
376 CTRL_MTJ_cell_11 => CTRL_MTJ_cell_11,
377 CTRL_MTJ_cell_12 => CTRL_MTJ_cell_12,
378 MTJ_RR1_out => MTJ_RR1_out,
379 MTJ_R10_out => MTJ_R10_out,
380 MTJ_R11_out => MTJ_R11_out,
381 MTJ_R12_out => MTJ_R12_out,
382 ---
383 CTRL_Vbl_2 => CTRL_Vbl_2,
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384 CTRL_Vop_2 => CTRL_Vop_2,
385 CTRL_Vtr_20 => CTRL_Vtr_20,
386 CTRL_Vtr_21 => CTRL_Vtr_21,
387 CTRL_Vtr_22 => CTRL_Vtr_22,
388 CTRL_MTJW_2 => CTRL_MTJW_2,
389 CTRL_in_EN_20 => CTRL_in_EN_20,
390 CTRL_in_EN_21 => CTRL_in_EN_21,
391 CTRL_in_EN_22 => CTRL_in_EN_22,
392 CTRL_MTJ_cell_20 => CTRL_MTJ_cell_20,
393 CTRL_MTJ_cell_21 => CTRL_MTJ_cell_21,
394 CTRL_MTJ_cell_22 => CTRL_MTJ_cell_22,
395 MTJ_RR2_out => MTJ_RR2_out,
396 MTJ_R20_out => MTJ_R20_out,
397 MTJ_R21_out => MTJ_R21_out,
398 MTJ_R22_out => MTJ_R22_out);
399

400 latches: memarray_latches port map (
401 MTJ_R00_out => MTJ_R00_out,
402 MTJ_R01_out => MTJ_R01_out,
403 MTJ_R02_out => MTJ_R02_out,
404 MTJ_R10_out => MTJ_R10_out,
405 MTJ_R11_out => MTJ_R11_out,
406 MTJ_R12_out => MTJ_R12_out,
407 MTJ_R20_out => MTJ_R20_out,
408 MTJ_R21_out => MTJ_R21_out,
409 MTJ_R22_out => MTJ_R22_out,
410 EN_READ => EN_READ,
411 CTRL_RST_L_MTJR_0 => CTRL_RST_L_MTJR_0,
412 CTRL_RST_L_MTJR_1 => CTRL_RST_L_MTJR_1,
413 CTRL_RST_L_MTJR_2 => CTRL_RST_L_MTJR_2,
414 L_MTJ_R_out_00 => L_MTJ_R_out_00,
415 L_MTJ_R_out_01 => L_MTJ_R_out_01,
416 L_MTJ_R_out_02 => L_MTJ_R_out_02,
417 L_MTJ_R_out_10 => L_MTJ_R_out_10,
418 L_MTJ_R_out_11 => L_MTJ_R_out_11,
419 L_MTJ_R_out_12 => L_MTJ_R_out_12,
420 L_MTJ_R_out_20 => L_MTJ_R_out_20,
421 L_MTJ_R_out_21 => L_MTJ_R_out_21,
422 L_MTJ_R_out_22 => L_MTJ_R_out_22,
423 ---
424 MTJ_RR0_out => MTJ_RR0_out,
425 MTJ_RR1_out => MTJ_RR1_out,
426 MTJ_RR2_out => MTJ_RR2_out,
427 CTRL_RST_L_MTJRR_0 => CTRL_RST_L_MTJRR_0,
428 CTRL_RST_L_MTJRR_1 => CTRL_RST_L_MTJRR_1,
429 CTRL_RST_L_MTJRR_2 => CTRL_RST_L_MTJRR_2,
430 L_MTJ_RR_out_0 => L_MTJ_RR_out_0,
431 L_MTJ_RR_out_1 => L_MTJ_RR_out_1,
432 L_MTJ_RR_out_2 => L_MTJ_RR_out_2);
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433

434 read_out: readout port map (
435 L_MTJ_R_out_00 => L_MTJ_R_out_00,
436 L_MTJ_R_out_01 => L_MTJ_R_out_01,
437 L_MTJ_R_out_02 => L_MTJ_R_out_02,
438 L_MTJ_R_out_10 => L_MTJ_R_out_10,
439 L_MTJ_R_out_11 => L_MTJ_R_out_11,
440 L_MTJ_R_out_12 => L_MTJ_R_out_12,
441 L_MTJ_R_out_20 => L_MTJ_R_out_20,
442 L_MTJ_R_out_21 => L_MTJ_R_out_21,
443 L_MTJ_R_out_22 => L_MTJ_R_out_22,
444 AAout0 => AAout0,
445 AAout1 => AAout1,
446 AAout2 => AAout2,
447 CLK => CLK,
448 CTRL_READWORD_RST => CTRL_READWORD_RST,
449 CTRL_READWORD_EN => CTRL_READWORD_EN,
450 READWORD_OUT => READWORD_OUT);
451

452 DET: Detector port map (
453 L_MTJ_RR_out_0 => L_MTJ_RR_out_0,
454 L_MTJ_RR_out_1 => L_MTJ_RR_out_1,
455 L_MTJ_RR_out_2 => L_MTJ_RR_out_2,
456 LATCH0_OUT => LATCH0_OUT,
457 LATCH1_OUT => LATCH1_OUT,
458 LATCH2_OUT => LATCH2_OUT,
459 ENABLE_Rowdis => ENABLE_Rowdis);
460

461 DIS: Row_disabler port map (
462 L_MTJ_RR_out_0 => L_MTJ_RR_out_0,
463 L_MTJ_RR_out_1 => L_MTJ_RR_out_1,
464 L_MTJ_RR_out_2 => L_MTJ_RR_out_2,
465 MAX_min_n => MAX_min_n,
466 ENABLE_Rowdis => ENABLE_Rowdis,
467 FIND => FIND,
468 CTRL_LATCH_RST => CTRL_LATCH_RST,
469 LATCH0_OUT => LATCH0_OUT,
470 LATCH1_OUT => LATCH1_OUT,
471 LATCH2_OUT => LATCH2_OUT);
472

473 ENC: Encoder port map (
474 CTRL_ENCODER_EN => CTRL_ENCODER_EN,
475 LATCH0_OUT => LATCH0_OUT,
476 LATCH1_OUT => LATCH1_OUT,
477 LATCH2_OUT => LATCH2_OUT,
478 CLK => CLK,
479 CTRL_ADDREG_RST => CTRL_ADDREG_RST,
480 CTRL_ADDREG_STORE => CTRL_ADDREG_STORE,
481 ADDRESS_FOUND_REGout => ADDRESS_FOUND_REGout);
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482

483 DEC: Decoder generic map (N => 2) port map (
484 ENABLE => CTRL_DEC_en,
485 ADDRESS => ADDRESS,
486 WLINES => WLINES);
487

488 DEC0 <= WLINES(0);
489 DEC1 <= WLINES(1);
490 DEC2 <= WLINES(2);
491

492 ANDARR: And_array port map (
493 RESET_n => RESET_n,
494 IDLE => IDLE,
495 FIND => FIND,
496 DEC0 => DEC0,
497 DEC1 => DEC1,
498 DEC2 => DEC2,
499 LATCH0_OUT => LATCH0_OUT,
500 LATCH1_OUT => LATCH1_OUT,
501 LATCH2_OUT => LATCH2_OUT,
502 AAout0 => AAout0,
503 AAout1 => AAout1,
504 AAout2 => AAout2,
505 AAoutOR => AAoutOR);
506

507 MASK_REG: Shift_reg generic map (N => 3) port map (
508 CLK => CLK,
509 RST => CTRL_MASK_RST,
510 SHIFT => CTRL_MASK_SHIFT,
511 STORE => CTRL_MASK_STORE,
512 RIGHT_LEFT_n => '1',
513 DATA_IN => "100",
514 DATA_OUT => MASK_OUT);
515

516 WORD0_REG: Shift_reg generic map (N => 3) port map (
517 CLK => CLK,
518 RST => CTRL_WORD_RST,
519 SHIFT => CTRL_WORD0_SHIFT,
520 STORE => CTRL_WORD0_STORE,
521 RIGHT_LEFT_n => '0',
522 DATA_IN => WORD0,
523 DATA_OUT => WORD0_OUT);
524

525 WORD1_REG: Shift_reg generic map (N => 3) port map (
526 CLK => CLK,
527 RST => CTRL_WORD_RST,
528 SHIFT => CTRL_WORD1_SHIFT,
529 STORE => CTRL_WORD1_STORE,
530 RIGHT_LEFT_n => '0',
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531 DATA_IN => WORD1,
532 DATA_OUT => WORD1_OUT);
533

534 WORD2_REG: Shift_reg generic map (N => 3) port map (
535 CLK => CLK,
536 RST => CTRL_WORD_RST,
537 SHIFT => CTRL_WORD2_SHIFT,
538 STORE => CTRL_WORD2_STORE,
539 RIGHT_LEFT_n => '0',
540 DATA_IN => WORD2,
541 DATA_OUT => WORD2_OUT);
542

543 FSM_Array_adapt: FSM_Array_adapter port map (
544 AAout0 => AAout0,
545 AAout1 => AAout1,
546 AAout2 => AAout2,
547 ---
548 CTRL_Vbl => CTRL_Vbl,
549 CTRL_Vbl_0 => CTRL_Vbl_0,
550 CTRL_Vbl_1 => CTRL_Vbl_1,
551 CTRL_Vbl_2 => CTRL_Vbl_2,
552 ---
553 CTRL_MTJW => CTRL_MTJW,
554 SHIFT_WORD_OUT_0 => WORD0_OUT(2),
555 SHIFT_WORD_OUT_1 => WORD1_OUT(2),
556 SHIFT_WORD_OUT_2 => WORD2_OUT(2),
557 CTRL_MTJW_0 => CTRL_MTJW_0,
558 CTRL_MTJW_1 => CTRL_MTJW_1,
559 CTRL_MTJW_2 => CTRL_MTJW_2,
560 ---
561 CTRL_in_EN_0 => CTRL_in_EN_0,
562 CTRL_in_EN_1 => CTRL_in_EN_1,
563 CTRL_in_EN_2 => CTRL_in_EN_2,
564 CTRL_in_EN_00 => CTRL_in_EN_00,
565 CTRL_in_EN_01 => CTRL_in_EN_01,
566 CTRL_in_EN_02 => CTRL_in_EN_02,
567 CTRL_in_EN_10 => CTRL_in_EN_10,
568 CTRL_in_EN_11 => CTRL_in_EN_11,
569 CTRL_in_EN_12 => CTRL_in_EN_12,
570 CTRL_in_EN_20 => CTRL_in_EN_20,
571 CTRL_in_EN_21 => CTRL_in_EN_21,
572 CTRL_in_EN_22 => CTRL_in_EN_22,
573 ---
574 CTRL_Vop => CTRL_Vop,
575 CTRL_Vop_0 => CTRL_Vop_0,
576 CTRL_Vop_1 => CTRL_Vop_1,
577 CTRL_Vop_2 => CTRL_Vop_2,
578 ---
579 CTRL_MTJ_CELL => CTRL_MTJ_CELL,
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580 SHIFT_MASK => MASK_OUT,
581 CTRL_MTJ_CELL_00 => CTRL_MTJ_CELL_00,
582 CTRL_MTJ_CELL_01 => CTRL_MTJ_CELL_01,
583 CTRL_MTJ_CELL_02 => CTRL_MTJ_CELL_02,
584 CTRL_MTJ_CELL_10 => CTRL_MTJ_CELL_10,
585 CTRL_MTJ_CELL_11 => CTRL_MTJ_CELL_11,
586 CTRL_MTJ_CELL_12 => CTRL_MTJ_CELL_12,
587 CTRL_MTJ_CELL_20 => CTRL_MTJ_CELL_20,
588 CTRL_MTJ_CELL_21 => CTRL_MTJ_CELL_21,
589 CTRL_MTJ_CELL_22 => CTRL_MTJ_CELL_22,
590 ---
591 CTRL_Vtr_0 => CTRL_Vtr_0,
592 CTRL_Vtr_1 => CTRL_Vtr_1,
593 CTRL_Vtr_2 => CTRL_Vtr_2,
594 CTRL_Vtr_00 => CTRL_Vtr_00,
595 CTRL_Vtr_01 => CTRL_Vtr_01,
596 CTRL_Vtr_02 => CTRL_Vtr_02,
597 CTRL_Vtr_10 => CTRL_Vtr_10,
598 CTRL_Vtr_11 => CTRL_Vtr_11,
599 CTRL_Vtr_12 => CTRL_Vtr_12,
600 CTRL_Vtr_20 => CTRL_Vtr_20,
601 CTRL_Vtr_21 => CTRL_Vtr_21,
602 CTRL_Vtr_22 => CTRL_Vtr_22,
603 ---
604 CTRL_RST_L_MTJRR => CTRL_RST_L_MTJRR,
605 CTRL_RST_L_MTJRR_0 => CTRL_RST_L_MTJRR_0,
606 CTRL_RST_L_MTJRR_1 => CTRL_RST_L_MTJRR_1,
607 CTRL_RST_L_MTJRR_2 => CTRL_RST_L_MTJRR_2,
608 ---
609 CTRL_RST_L_MTJR => CTRL_RST_L_MTJR,
610 CTRL_RST_L_MTJR_0 => CTRL_RST_L_MTJR_0,
611 CTRL_RST_L_MTJR_1 => CTRL_RST_L_MTJR_1,
612 CTRL_RST_L_MTJR_2 => CTRL_RST_L_MTJR_2);
613

614 end architecture Behaviour;

D.6. Testbench

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_arith.all;
4 use IEEE.std_logic_unsigned.all;
5 use work.globals.all;
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6

7 entity tb_mem is
8 end entity tb_mem;
9

10 architecture Behaviour of tb_mem is
11 component Memory is
12 port( CLK: in std_logic;
13 RESET_n: in std_logic;
14 CTRL_DEC_en: in std_logic;
15 ADDRESS: in std_logic_vector (1 downto 0);
16 START_FIND: in std_logic;
17 READ_WRITE_n: in std_logic;
18 MAX_min_n: in std_logic;
19 CTRL_WORD0_STORE: in std_logic;
20 CTRL_WORD1_STORE: in std_logic;
21 CTRL_WORD2_STORE: in std_logic;
22 WORD0: in std_logic_vector(2 downto 0);
23 WORD1: in std_logic_vector(2 downto 0);
24 WORD2: in std_logic_vector(2 downto 0);
25 ADDRESS_FOUND_REGout: out std_logic_vector(1 downto 0));
26 end component Memory;
27

28 signal CLK, RESET_n, CTRL_DEC_en, CTRL_WORD0_STORE, CTRL_WORD1_STORE,
CTRL_WORD2_STORE, START_FIND, READ_WRITE_n, MAX_min_n: std_logic;↪→

29 signal ADDRESS, ADDRESS_FOUND_REGout: std_logic_vector(1 downto 0);
30 signal WORD0, WORD1, WORD2: std_logic_vector(2 downto 0);
31

32 begin
33 RESET_n <= '0', '1' after 2*CLOCK_HIGH;
34 CTRL_DEC_en <= '0', '1' after 5*CLOCK_PERIOD;
35 ADDRESS <= "00", "01" after 15*CLOCK_PERIOD, "10" after 30*CLOCK_PERIOD;
36 WORD0 <= "111";
37 CTRL_WORD0_STORE <= '0', '1' after 4*CLOCK_PERIOD, '0' after 5*CLOCK_PERIOD;
38 WORD1 <= "011";
39 CTRL_WORD1_STORE <= '0', '1' after 4*CLOCK_PERIOD, '0' after 5*CLOCK_PERIOD;
40 WORD2 <= "101";
41 CTRL_WORD2_STORE <= '0', '1' after 4*CLOCK_PERIOD, '0' after 5*CLOCK_PERIOD;
42 START_FIND <= '0', '1' after 50*CLOCK_PERIOD, '0' after 51*CLOCK_PERIOD;
43 READ_WRITE_n <= '0', '1' after 60*CLOCK_PERIOD;
44 MAX_min_n <= '1';
45

46 DUT: Memory port map (
47 CLK => CLK,
48 RESET_n => RESET_n,
49 CTRL_DEC_en => CTRL_DEC_en,
50 ADDRESS => ADDRESS,
51 START_FIND => START_FIND,
52 READ_WRITE_n => READ_WRITE_n,
53 MAX_min_n => MAX_min_n,
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54 CTRL_WORD0_STORE => CTRL_WORD0_STORE,
55 CTRL_WORD1_STORE => CTRL_WORD1_STORE,
56 CTRL_WORD2_STORE => CTRL_WORD2_STORE,
57 WORD0 => WORD0,
58 WORD1 => WORD1,
59 WORD2 => WORD2,
60 ADDRESS_FOUND_REGout => ADDRESS_FOUND_REGout);
61

62 clk_gen: process
63 begin
64 CLK <= '1';
65 wait for CLOCK_HIGH;
66 CLK <= '0';
67 wait for CLOCK_LOW;
68 end process clk_gen;
69

70 end architecture Behaviour;
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