
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Thesis

A semi-automatic multi agent
intelligent system for production

processes

Supervisors Candidate

Fulvio Corno Nunzio Turco
Luigi De Russis

Company Tutor

Rosaria Rossini

December, 2019

Contents

1 Introduction 1
1.1 Objective . 1

2 Background 3
2.1 Multi-Agent System . 3

2.1.1 FIPA . 5
2.2 Recurrent Neural Network . 5

2.2.1 LSTM network . 6

3 Related Works 8
3.1 Current MAS frameworks . 8
3.2 ”Composition” MAS . 10

4 NT-MAS 12
4.1 Objective . 12
4.2 Architecture and list of technologies 13

4.2.1 Agent Management System 15
4.2.2 White Pages . 15
4.2.3 Common Agents . 16
4.2.4 Server and Dashboard . 18

4.3 System Behaviour . 19
4.3.1 Registration to AMS . 20
4.3.2 Exchange of a message . 21
4.3.3 Alarm and faulty machine evaluation 22
4.3.4 Action choice and machine learning 22
4.3.5 Interaction with the user . 23

5 Evaluation 26
5.1 Injection molding . 26
5.2 Use case description . 26
5.3 Database description . 28

5.3.1 Injection molding data . 28
5.3.2 Quality check data . 30
5.3.3 Error simulation . 30

5.4 Network training . 34
5.5 System behaviour . 37

5.5.1 1 Inspector - 1 Producer . 38
5.5.2 1 Inspector - 3 Producers . 41

5.6 Results . 43

I

CONTENTS

6 Conclusions and Future Work 44

II

CONTENTS

III

Chapter 1

Introduction

The rise of Industry 4.0 has led factories to focus on connectivity and interactions

among machines and people. This new technology enables faster, more flexible

and more efficient processes to produce higher-quality goods at reduced costs. In

this context, the multi agent system ability to communicate finds a relevant

role. Nowadays, Multi agent systems are used in a wide range of applications,

such as in industry optimization, game playing, market simulation, especially in

case of complex scenario, where a distributed approach can help to simplify the

problem. But in most of these applications, their intelligence is limited only on the

communication ability, this is especially true in case of industrial scenario, where

due to the low risk policy, a complete automation of the process is venturesome and

risky.

1.1 Objective

The objective of the thesis is to design, develop and test a multi-agent intelligent

framework in the context of industry 4.0, aiming at improving different aspects of

the production process, such as anomaly detection and classification, advise actions

and facilitate monitoring of the machines in order to improve operator’s work as

well as reducing waste.

The developed framework is named NTMAS, it incorporates a real-time data ana-

lytics capacity, exploiting machine learning and provides a web based dashboard for

data visualization. Nowadays there exists a variety of multi-agent framework, some

of them are flexible and powerful, but usually they lack of the intelligent part, the

proposed platform instead already integrates a machine learning algorithm that can

be used by the agents to take actions based on the data they are perceiving. The

NTMAS provide a partial automation of the process exploiting a Human-in-the-loop

model, in this way the operator has a complete control on what is happening on

the plant. Each agent’s action must be validated by the supervisor before it takes

1

1.1. OBJECTIVE

effect and it is also a way to improve agent’s decision. The NTMAS was tested in

a partially simulated environment with an unsupervised dataset, so as to be able

to perturb the data and analyse the consequent agent behaviour. The goal of these

tests is to control and monitor the ability of the agents to adapt to the context

in which they are deployed. Furthermore, NTMAS comes with a visualization tool

that eases the control and the monitoring of the process, the resources and the agent

behaviour through a specific dashboard. Lastly, an evaluation of the possible impact

of this platform on the production process is done.

2

Chapter 2

Background

This chapter contains an introduction of what a multi agent intelligent system is, by

explaining its property, its advantages and how it has gained importance in recent

years with the growing of the Industry 4.0.

2.1 Multi-Agent System

The multi agent intelligent system is an enhanced version of a multi agent sys-

tem (MAS). It represents a powerful model to solve distributed computation tasks,

where a single agent fails to complete or requires a lot of complexity. In this orga-

nization of agents, entities can have different sub-goals, but they all cooperate to

achieve a common one. But what is an agent? There is no universally accepted

definition of this term, indeed more than one description exists today. As reported

in [6] there are many definitions in the literature, they are:

• A software agent is an autonomous software entity that must be able to per-

ceive its environment through sensors and act upon it with effectors.[2]

• “Agent is a piece of software which performs a given task using information

gleaned from its environment to act in a suitable manner so as to complete the

task successfully. The software should be able to adapt itself based on changes

occurring in its environment, so that a change on circumstances will still yield

the intended result.” [3]

• “An autonomous agent is a system situated within and part of an environment

that senses that environment and acts on it, over time, in pursuit of its own

agenda and so as to affect what it senses in the future.” [1]

• “It is a hardware or (more usually) software-based computer system that en-

joys the following properties: - autonomy: agents operate without the direct

3

2.1. MULTI-AGENT SYSTEM

intervention of humans or others, and have some kind of control over their

actions and internal state; - social ability: agents interact with other agents

(and possibly humans) via some kind of agent-communication language; - re-

activity: agents perceive their environment, (which may be the physical world,

a user via a graphical user interface, a collection of other agents, the Internet,

or perhaps all of these combined), and respond in a timely fashion to changes

that occur in it; - pro-activeness: agents do not simply act in response to their

environment, they are able to exhibit goal-directed behaviour by taking the

initiative.” [9]

The last definition has been widely accepted since it is the most complete one. MAS

Figure 2.1: Agent cycle

can be view as a collection of distributed autonomous agents, capable of accomplish-

ing complex tasks. Usually, MAS does not incorporate intelligence by default, what

gives intelligence is the ability of these agents to interact with each other, in a co-

operative way or non-cooperative one and the ability of autonomous decision they

have. But these decisions are not always moved by a machine learning method,

instead they could be just a simple IF-THEN expression.

4

2.2. RECURRENT NEURAL NETWORK

2.1.1 FIPA

The Foundation for Intelligent Physical Agents (FIPA) is an organization that has

defined a set of standards for agent-base technologies as Multi Agent System. These

definitions allows the interoperability between agents and facilitate their develop-

ment. In particular the FIPA Agent Platform defines the structure of an agent

system model, it is composed of:

• Agents, the fundamental actor inside the system

• Agent Management System (AMS), has control over access to the system by

offering a white pages service to other agents

• Directory Facilitator (DF), it is an optional component, provides the yellow

pages services to other agents

• Message Transport Service (MTS), the communication method exploited by

the agents

• Agent Platform (AP), the physical infrastructure in which the agents are de-

ployed

Apart from these components, the FIPA also defines a series of Agent Communica-

tion Language, a message schema that each agent has to follow in order to let the

system to be extensible and allow the integration of other agents. But, for the scope

of the thesis only architectural specifications have been followed.

2.2 Recurrent Neural Network

A recurrent neural network, also known as RNN, is a class of artificial neural net-

work which presents a connection between output states and input states. This

allows it to exhibit temporal dynamic behaviour. Unlike feedforward neural net-

works, this network uses its internal state as a memory to process sequences of

inputs. It can remember the past and its output is influenced by what it has learnt

from the past. Basic feed forward networks can only learn during training, but

RNNs can also learn from prior inputs while generating the outputs, because they

store some information inside the neuron. Here there is a picture of an RNN:

In this diagram a series of neural network, A, takes some input xt and outputs a

value ht. A loop allows this information to be passed from one neuron to the next

one. This chain-like nature reveals that recurrent neural networks are intimately

related to sequences and lists. They’re the natural architecture of neural network to

5

2.2. RECURRENT NEURAL NETWORK

Figure 2.2: RNN-unrolled [8]

use for such data. In the last few years, there have been incredible success applying

RNNs to a variety of problems: speech recognition, language modelling, translation,

image captioning and so on. Essential to these successes is the use of “LSTMs,” a

very special kind of recurrent neural network which works, for many tasks.

2.2.1 LSTM network

Long Short-Term Memory network is a type of recurrent neural network that pro-

duces an output based on the previous and the current input. It is explicitly designed

to avoid the long-term dependency problem. It is not a variant of RNN, it introduces

changes to how the outputs and hidden states are being computed using the inputs.

They were introduced by Hochreiter & Schmidhuber (1997), and were refined and

popularized by many people in following work.

Like RNN, LSTM also have a chain structure, but instead of having a single neural

network layer, there are four:

Figure 2.3: LSTM components [8]

A common LSTM unit is composed of:

• Cell state

• Input gate

• Output gate

6

2.2. RECURRENT NEURAL NETWORK

• Forget gate

The cell remembers values over arbitrary time intervals and the three gates regulate

the flow of information into and out of the cell. LSTM networks are well-suited

to classifying, processing and making predictions based on time series data, since

there can be lags of unknown duration between important events in a time series.

These components inside the LSTM can regulate the flow of information, make it

possible to learn which date from a sequence has to be taken and which discarded

and by doing that it learns how to use relevant information to make predictions or

classifications.

7

Chapter 3

Related Works

3.1 Current MAS frameworks

Multi-agent systems have been widely studied in literature, today there exists differ-

ent framework for the implementation of a MAS. An evaluation of these framework

was needed before deciding how to implement NT-MAS. Among the many platforms

available on the internet, a list of candidates that might have a good set of features

and requirements have been selected, they are listed here.

JADE: (Java Agent DEvelopment Framework) is a software Framework fully

implemented in the Java language. It simplifies the implementation of multi-agent

systems through a middle-ware that complies with the FIPA specifications and

through a set of graphical tools that support the debugging and deployment phases.

A JADE-based system can be distributed across machines (which not even need to

share the same OS) and the configuration can be controlled via a remote GUI. The

configuration can be even changed at run-time by moving agents from one machine

to another, as and when required. JADE is completely implemented in Java lan-

guage and the minimal system requirement is the version 5 of JAVA (the run time

environment or the JDK).[4]

JIACv: (Java-based Intelligent Agent Componentware V) is a Java-based agent

architecture and framework that eases the development and the operation of large-

scale, distributed applications and services. The framework supports the design,

implementation, and deployment of software agent systems. The entire software de-

velopment process, from conception to deployment of full software systems, is sup-

ported by JIAC. It also allows for the possibility of reusing applications and services,

and even modifying them during runtime. The focal points of JIAC are distribu-

tion, scalability, adaptability and autonomy. JIAC V applications can be developed

using extensive functionality that is provided in a library. This library consists of

already-prepared services, components, and agents which can be integrated into an

8

3.1. CURRENT MAS FRAMEWORKS

application in order to perform standard tasks. The individual agents are based on a

component architecture which already provides the basic functionality for communi-

cation and process management. Application-specific functionality can be provided

by the developer and be interactively integrated.[5]

SARL: SARL is a general-purpose agent-oriented language. SARL aims at pro-

viding the fundamental abstractions for dealing with concurrency, distribution, inter-

action, decentralization, reactivity, autonomy and dynamic reconfiguration. These

high-level features are now considered as the major requirements for an easy and

practical implementation of modern complex software applications. Considering the

variety of existing approaches and meta-models in the field of agent-oriented engi-

neering and more generally multi-agent systems, this approach remains as generic

as possible and highly extensible to easily integrate new concepts and features. The

language is platform- and architecture-independent.[7]

SPADE: (Smart Python multi-Agent Development Environment) is a Multia-

gent and Organizations Platform based on the XMPP/Jabber technology and writ-

ten in the Python programming language. This technology offers by itself many

features and facilities that ease the construction of MAS, such as an existing com-

munication channel, the concepts of users (agents) and servers (platforms) and an

extensible communication protocol based on XML, just like FIPA-ACL.

Composition: A MAS implemented in a European project started at Links

Foundation. It is a fully distributed multi-agent system working in a marketplace

scenario, designed to support exchanges between involved stakeholders. It is par-

ticularly aimed at supporting automatic supply chain formation and negotiation

of goods/data. It is FIPA compliant and uses AMQP as message protocol. Even

if it is a complete system, not just a framework, its structure allows an easy re-

implementation of each agent behaviour.

A set of Feature requirements is listed here:

• Python as programming language, because of the huge support to machine

learning.

• Distributed approach, each agent has to be deployed on a different machine.

• Interactive User Interface, that allows humans to change communicate with

the agents.

• FIPA compliant is considered as a PLUS. It facilitates the scalability and

communication among agents.

Here there is a comparison table:

9

3.2. ”COMPOSITION” MAS

Framework: Language: Distributed approach: Interactive UI: Additional features:

Composition Python YES - FIPA compliant

JADE Java YES YES FIPA compliant

JIACv Java YES - -

SARL Java YES - -

SPADE Python YES - FIPA compliant

At the end it has been decided to modify and extend the COMPOSITION system

to our scope. This choice is motivated by the fact that this system is similar to

SPADE, the one that seems to offer the more complete set of features, but it is

developed inside Links Foundations and so the support to it is higher, moreover

this approach allows to face directly with some criticisms concerning MAS and also

a more complete understanding of these systems. Moreover, Composition already

implements configurations file which ease the deploy of different agents.

3.2 ”Composition” MAS

The COMPOSITION marketplace is a fully distributed multi-agent system designed

to support exchanges between involved stakeholders. It is particularly aimed at

supporting automatic supply chain formation and negotiation of goods/data. The

COMPOSITION marketplace exploits a microservice architecture (based on Docker)

and relies upon a scalable messaging infrastructure based on RabbitMQ. The System

is divided in two main categories of agents that can be defined a priori, depending

on the kind of services provided:

• Marketplace agents

• Stakeholder agents

The first ones are the agents providing the services that are crucial to the mar-

ketplace to operate, they build the infrastructure of the system. While the second

ones are the agents exploiting the infrastructure for exchanging goods, they can be

divided in other two different categories: Requested and Supplier, that from an im-

plementation point of view, they are very similar and share a large set of features,

especially the communication protocols used for the interaction with stakeholders

and other agents. It works as follows:

1. Both Requester and Suppliers subscribe to the system.

2. Requester initiate a new supply chain and waits for proposals.

10

3.2. ”COMPOSITION” MAS

3. Suppliers build an offer to the requester and wait for the confirmation.

4. Requester send to the user a list of the highest offers.

5. Requester receive the response of the user and closes the deal by sending

confirmation to the chosen supplier.

At the present Composition does not implement any kind of intelligence.

11

Chapter 4

NT-MAS

4.1 Objective

The final objective of the NT-MAS is to improve production aspects related to

industry scenario. With this in mind, a set of features and requirements were taken

into consideration during the implementation of such a system. Inside the industry

a wrong decision can be worth a lot of money, so it is important to take the right

decision and be as less risky as possible. Introducing a complete automatic system

inside a factory managed by human employer is tricky. The machine learning is

based on known data, it can take the right action in case of a known situation, but

what if the situation that it is facing is never happen before? In this case a decision

taken by an agent could be wrong. A human supervisor must always be present in

these situations, in order to take control and perform the correct move.

NT-MAS was developed to allow human supervisors to always monitor the sys-

tem and to take control of each agent action. This semi-automatic system has two

main benefits, on one hand it helps the human in monitoring the process and in the

decision making, on the other this method improves each agent decision, since it

will keep learning from each human’s validation.

To allow the user to interact with the system, a dashboard is also attached to

the NT-MAS. Inside this dashboard the relevant data of each agent are displayed

and in case actions are required a notification will appear allowing user to have the

last word on each decision.

NT-MAS was thought to be used inside a production industry line, where com-

munication and coordination between production and inspection machines are es-

sential in optimizing the process. This task is often done by the human, which

monitors both machines and acts in case of fault. But it is not so easy for a human

to maintain control if the size of the production process increases. NT-MAS is de-

signed to be scalable, in fact it automatically detects the number and the type of

12

4.2. ARCHITECTURE AND LIST OF TECHNOLOGIES

agents active inside the system. Each agent can be deployed on a single machine

and in case the number of machines varies, the system can easily adapt to it.

The developing of NT-MAS starts from ”Composition”, a Multi Agent System

presents at Links Foundations. Composition was created to be scalable and general-

izable, moreover it provides a distributive approach and it is FIPA compliant. This

system has been modified to suit the industry scenario and beside of the previous

features, some new functionalities were added to the agents, such as integration of

online machine learning, communication with a dashboard for displaying the data,

implementation of the interaction with the user and also a different storage system

based on a My-SQL database.

4.2 Architecture and list of technologies

In this section is shown the architecture of the system and the technologies used to

implement it.

Figure 4.1: NTMAS Architecture

• Agents: they are the ones that perceive the environment and act upon it.

They are deployed upon a different machine inside the production process.

They are divided in producer and inspector.

• Agent Management system (AMS): A particular type of agent, it does

not interact with any machinery, but it controls the agents inside the system,

allowing them to know each other.

13

4.2. ARCHITECTURE AND LIST OF TECHNOLOGIES

• White Pages: It is a database to store agents’ information. It is only

accessed by the AMS.

• Server: It stores the data collected by each agent and allows them to com-

municate with the dashboard and retrieve user interaction.

• Dashboard: A web interface to allow data visualization and user interaction.

Each agent is deployed inside a docker container, this allows the system to be

distributive and to maintain a clean and autonomous environment. A container is

a standard unit of software that packages up code and all its dependencies so the

application runs quickly and reliably from one computing environment to another.

The communication between these agents is done through RabbitMQ message bro-

ker, which is based on AMQP message protocol, an alternative to MQTT protocol.

AMQP stands for Advanced Message Queuing Protocol, it is a messaging proto-

col that enables conforming client applications to communicate with conforming

messaging middleware brokers. AMQP works as follows:

Figure 4.2: RabbitMQ working flow

The core idea in the messaging model in RabbitMQ is that the publisher never

sends any messages directly to a queue. Actually, quite often the publisher doesn’t

even know if a message will be delivered to any queue at all. Instead, the publisher

can only send messages to an exchange. An exchange is a very simple thing, on

one side it receives messages and the other side it pushes them to queues. Different

types of exchange exist, in this project two were used:

• Fanout: sends message to all the queue bound.

• Direct: sends message only to a specific type of queue, based on the binding

key.

The core of the system is the Agent Ecosystem, following FIPA architecture

standard, it is composed by Agent Management System (AMS), White Pages ser-

vice and common Agents. The first two components are the pillars of the ecosystem,

14

4.2. ARCHITECTURE AND LIST OF TECHNOLOGIES

in fact they keep track of any other agent alive and let the agents know each other.

Attached to the core part, there is a web user interface supported by a server, which

receives agents’ data and actions’ confirmation. While the server stores data per-

ceived by common agents, the user can monitor the production process through the

dashboard, where graphs containing machines’ data are shown together with a list

of alarms from inspection machine and confirmation of agent decision. In the next

paragraphs all the components of the system are introduced.

4.2.1 Agent Management System

The Agent Management System is the first component to be deployed. It is the

central point of the system, it manages the communication and controls the presence

of other agents. Each agent has to register to AMS in order to communicate and be

part of the system. The AMS does not rely upon AMQP, but it runs a flask server,

receiving HTTP requests. In particular the AMS provides the following methods:

• Register agent: it is used to register an agent inside the system, generating

a new “agent id” and storing these data inside the white pages.

• Get registered agents: this method returns a list of all agents currently

alive in the system.

• Deregister agent: this method removes an agent from the system and deletes

its data on the white pages.

4.2.2 White Pages

The White Pages service help the AMS in his work, it stores a database with all

the online agents information and only the AMS has access to it. This service is

based on a MySQL server and it is deployed inside a docker container. The database

contains a table called “agents table” with the following format:

Agent id Agent role
The unique identifier for the agent. It
is the primary key for the table, so it
has the constraint of being unique.

The role of the agent inside the system.

The Agent id uniquely identifies the agent inside the system, it is also useful for

implementing the communication queue with RabbitMQ.

The Agent role describes the type of agent, it can be Inspection or Producer.

15

4.2. ARCHITECTURE AND LIST OF TECHNOLOGIES

4.2.3 Common Agents

The common agents are the ones deployed upon the industrial machine. NT-MAS

has two different types of common agents: Inspector and Producer. These are

deployed upon different types of machine inside an industry. They have different

behaviour and sub-goal. They both derive from a base class called “capAgent”,

then each of them implements a different behaviour. The first thing done by both of

them is the registration at the AMS in order to receive a unique agent id. Once this

step has been successfully completed, the “activate” method is called by each agent,

which connects them to the RabbitMQ broker and they start listening to incoming

messages.

Each agent can listen to two exchange types:

• Fanout: used to communicate with all agents inside the system.

• Direct: based on agent id, used to communicate among specific agents.

Moreover, each agent comes with a flask service interface that allows program-

mers to interact with them while they are running.

Inspector Agent

The inspector agent is the one deployed on the quality inspection machine. It can

monitor the quality of the good produced, especially the number of faulty pieces and

sends alerts in case this last number goes above a given threshold. The threshold

can be set inside the configuration file loaded at the agent start-up. This class has

two main methods:

• Start reading data: the agent starts reading the data of the inspection ma-

chine and checks if the number of defects is below the given threshold.

• Send alarm: this method is invoked to send an alarm message to all the

other agents inside the system.

• On message: this method is called each time a new message arrives to In-

spector queue. It displays the message on console.

• Send data to server: this method is called at each cycle of “start reading data”.

It sends the current data to the server storage.

The alarm message is a JSON string with the following schema:

16

4.2. ARCHITECTURE AND LIST OF TECHNOLOGIES

{

"description" : "An alarm message from an inspector agent",

"type" : "object",

"properties" : {

"agent_id" : {

"description" : "The unique identifier of the agent",

"type" : "string"

},

"type" : {

"description" : "Type of the alarm",

"type" : "string"

}

}

}

Producer Agent

The producer agent is the one deployed on the production machines, the one re-

sponsible of creating or modifying the goods. This agent keeps track of the machine

variables and incorporates the intelligent part of this system. This class has the

following methods:

• Start reading data: this method is called as soon as the producer regis-

tration is completed. The agent starts reading the data from the production

machine.

• Generate error vector: this method is invoked in case an alarm from the

Inspector is received. It calculates and sends the current error vector to other

producers.

• On message: this method is called in case of a new message received. It

checks the content of the message and calls on error vector received or send message

based on the sender of the message.

• On error vector received: this method is called each time a new error vec-

tor arrives. It keeps track if all the other producers have sent their status, if so,

it checks for the highest error vector and in case calls the evaluate action ML

method.

• Evaluate action ML: this method uses the machine learning model to pre-

dict the action to undertake.

17

4.2. ARCHITECTURE AND LIST OF TECHNOLOGIES

• Send data to server: this method is called at each cycle of “start reading data”.

It sends the current data to the server storage.

The Error Vector components are defined as:

yi(t) = xi(t) −
1

J
∗

JX
j=1

xi(t− j)

Where:

• xi(t) is the current value of the i-th variable.

• xi(t− j) is the value of the i-th variable at time (t− j).

• J represents the window of values considered in the mean.

The producer will subtract from the current value of each variable the mean of the

lasts J values. It has been decided to use this simple mathematical method, because

this can evaluate how much the current behaviour of the machine has changed

compared to past values. If a fault has happened, in most cases, it will affect the

machines variables, so it is possible to detected it by looking at how much these

variables changed with respect to the past.

This operation is done each time an alert is received, next the calculated Error

Vector is sent to all the other Producer agents inside the system, exploiting the

direct exchange.

Each Producer waits until all the Error Vector of the other Producers have been

received, next the agent with the highest sum of the Error Vector components will

be elected and it will take a decision basing on a Recurrent Neural Network, called

LSTM network. This is done by calling the “evaluate action ML()” method inside

the “capProducerAgent” class. The result of this function represents the action

chosen by the algorithm.

The chosen action is sent, together with all the other possible ones, as a Json

string through HTTP POST request to the server. At this point the producer will

wait for a confirmation from the user before taking the action. The response is also

used by the agent to update the LSTM network.

4.2.4 Server and Dashboard

Inside NT-MAS, the server is used to store all the data of the production process.

In this way the agents inside the system can use less resources. A client, running the

dashboard, connects to the server and retrieves all this information to show them

to the user. An example is shown below:

18

4.3. SYSTEM BEHAVIOUR

Figure 4.3: NTMAS Dashboard

The dashboard also allows to keep track of all the faults happened inside the

production process, as can be seen from the figure below:

Figure 4.4: NTMAS Fault-list (Dashboard)

4.3 System Behaviour

In the next paragraphs there is a deeper description of the steps performed by the

NT-MAS components.

19

4.3. SYSTEM BEHAVIOUR

4.3.1 Registration to AMS

This is the first action done by a new agent. It is required to register to Agent

Management System in order to announce itself and be part of the system.

The operation is done following these steps:

• Agent creates a Json string, following his configuration parameters

• Agent sends this Json string through a POST request at “¡AMS address¿/register/agent”

• AMS receives the requests and creates a unique agent-id which is sent back to

the activating agent

• AMS also stores the new agent information inside the White Pages service,

using a MySQL connector

The schema of the JSON message sent by the agent is the following:

{

"description" : "A message used by user to register an agent",

"type" : "object",

"properties" : {

"agent_id" : {

"description" : "The unique identifier of the agent, empty",

"type" : "string"

},

"agent_role" : {

"description" : "An agent can be either requester or supplier",

"type" : "string"

}

}

}

It is important to notice that the agent id field will be empty, since the agent does

not have an identifier when the call is performed, it will be generated and filled by

the AMS and sent back to the agent.

The agent class also provides a method to de-register an agent. Similarly to what

is done with the registration, in case an agent leaves the system it has to call the

“deregister()” method. A POST request is made at “¡AMS address¿/deregister/agent”

with the following JSON schema:

{

"description" : "A message used by user to deregister an agent",

20

4.3. SYSTEM BEHAVIOUR

"type" : "object",

"properties" : {

"agent_id" : {

"description" : "The unique identifier of the agent",

"type" : "string"

}

}

}

The AMS removes from the White Pages service the entry associated with the

agent id received.

Here there is a figure showing the activation of a new agent inside the system:

Figure 4.5: NTMAS: registration example

As can be seen from the figure, the first step done after loading the configuration

file is the registration, next the agent will connect to the two AMQP exchanges in

order to send messages to other agents.

4.3.2 Exchange of a message

The agent, when initialized for the first time, will call the method “activate()”. In-

side this method, two new connections are created, one for a “directExchange”, an-

other for “fanoutExchange”. Moreover, for each connection a new thread is lunched,

it will consume incoming message from his connection.

The communication with other agents is done by means of the “start publishing(message,

exchange, queue)” method inside the base class “capAgent”. Where:

• Message: is a string representing the payload

• Exchange: is the name of the exchange to which forward the message, can

be fanout or direct

21

4.3. SYSTEM BEHAVIOUR

• Queue: is the name of queue of the receiver to which the message is delivered,

it is represented by the agent id

Each agent has a unique queue to receive messages. Once that a message is

delivered by an exchange to this queue, a new thread will handle it, by calling the

“on message()” method from the “capAgent” class. In NT-MAS both producer and

inspector agents override this method.

4.3.3 Alarm and faulty machine evaluation

In case of normal condition, no messages are exchanged between agents. While

in case of alarm producers and inspector start to communicate with the following

schema:

Figure 4.6: NTMAS: sending error vector

When an alarm is raised, the Inspector agent sends it to the producer, using

the fanout exchange. Once the alarm arrives to the producers, they will start to

calculate the current error vector and then they will send it as a message through

a direct exchange, so each agent will get the error vector of each other producer.

Next, the highest error vector is evaluated and in this way the faulty producer is

known by everyone.

4.3.4 Action choice and machine learning

The producer agent with the highest error vector will use its current data to choose

an action, in particular it will rely upon a machine learning model, called Long

Short-Term Memory network. This particular type of network allows agents to

select an action relying not only on the current input, but also on the previous ones.

It is important to notice that, other algorithms have been taken into account for

this system, such as Random Forests and Mondrian Forests. But the LSTM was the

only one able to provide an easy online learning and a high customizability.

22

4.3. SYSTEM BEHAVIOUR

This network has some requirements: it takes as input a matrix containing the

lasts N values of V variables The structure of the tree is the following:

Figure 4.7: network model

This network takes as input the last N values for each variable and gives as

output a classification of the action required for that state. Moreover, each decision

of the user will update the weights inside the network, so that the algorithm can

adapt better to the deployed scenario. It is important to point out that the model

can be directly loaded from a “.h5” file, so that one can have an already trained

model and keeps updating it with the user’s decisions.

4.3.5 Interaction with the user

In this section it is shown how the interactions with the user take place. The client

has a JavaScript code that keeps asking for the “agent action” list to the server,

initially empty. Once that the producer agent sends an action request to the server,

this will save the request content inside “agent action” list. At the next request, the

client will get a non-empty string that will trigger a “div” container in which the

23

4.3. SYSTEM BEHAVIOUR

producer’s action request is displayed.

Here an example is shown:

Figure 4.8: fault on inspection

In this example the production is having a fault because the variable monitored

by the inspector agent is above the line threshold. At this moment the producer

agents starts to find a solution to this error. An example of solution with possibility

of choice by the user can be seen here:

Figure 4.9: fault, action is possible

24

4.3. SYSTEM BEHAVIOUR

As can be seen, inside the error section there are two buttons, the green one will

confirm the action decided by the producer, while the other contains a dropdown

menu with all the other possibility for that particular agent. Once that a button is

clicked, the “agent action” list is emptied and a HTTP POST request containing a

Json response is sent to the asking producer.

25

Chapter 5

Evaluation

In this chapter is reported a demonstration of how the NTMAS behaves in a produc-

tion environment. The data analysed were provided by Links Foundation and they

come from a European project concerning an industry producing coffee’s capsules

with injection molding technique.

5.1 Injection molding

Injection molding is the most commonly used manufacturing process for the fabrica-

tion of plastic parts. This process requires the use of an injection molding machine,

raw plastic material, and a mold. The plastic is melted in the injection molding

machine and then injected into the mold, where it cools and solidifies into the final

part.

5.2 Use case description

The considered factory produces coffee’s capsules and lids. Those items are made

of PLA, a completely biodegradable and compostable plastic type.

The scenario is composed of:

• 3 Injection molding machines

• 1 Quality check machine

The first 3 injection molding machines are the one that actually produce the cap-

sules, while the quality check machine instead performs a control on each piece and

discard the defective ones.

The production machines are connected with the quality machine by means of a

series of conveyors belts. Each producer has a conveyor belt that transport the

products in another larger conveyor belt, common to everyone. In this belt all the

26

5.2. USE CASE DESCRIPTION

pieces get mixed, so it is impossible for the quality check machine to know by which

injection machine the pieces are produced, especially in case of faulty pieces. This

leads to a hard work for the human supervisor, who has to monitor every step of

the production process.

During the long-term manufacturing of the coffee capsules, parameters of the injec-

tion molding machines can slightly change due to various changes of the environment

and/or machine components (temperature and humidity in the factory, deviations

in the energy supply system, overheating, deviations in the quality of the plastic

granules, wearing of machine parts, components breakdown). These changes give

rise to production of faulty pieces. In order to counteract to this, some actions

have to be performed by the supervisor, who constantly monitors the production

line. Unfortunately, due to the distance between the machines, the process of un-

derstanding which machine needs a parameters update is slow and wearisome, as a

result a lot of faulty plastic pieces are produced, before a countermeasure is taken.

Figure 5.1: The real factory where data coming from

In this scenario a multi agent system could help to monitor the process variables,

27

5.3. DATABASE DESCRIPTION

it also could automize the entire production line by exchanging information between

intelligent agents, but a complete automatization is tricky and risky. What if some-

thing unpredictable happens? A lot of waste will be produced and time and money

will be lost. The ability of NTMAS to leave to the supervisor the last word on

each decision can help to avoid unwanted behaviour of the system. Due to the char-

acteristics of the machine involved in the considered scenario, it has been decided

to deploy the Producer agent on the injection molding machine and the Inspector

agent on the quality check machine.

In the next section is presented the data available and how the NTMAS is

adapted to this scenario. The objective is to point out the behaviour of the devel-

oped multi agent intelligent system inside a production process and the capabilities

that this system provides.

5.3 Database description

In this section is described database generated by the industry. It contains four

datasets of one working day each, one dataset for quality check machine and other

three for injection molding machines.

5.3.1 Injection molding data

Each injection machine generates a set of data in each molding cycle. Every molding

cycle lasts around 5 to 10 seconds. The complete set of data contains:

28

5.3. DATABASE DESCRIPTION

Timestamp: time of the beginning of the cycle
Mold Closing Time: time taken for the mold to close
Tonnage: clamp force, which is needed to keep the mold closed

during the injection molding cycle
Shot Size: Position of the screw at the end of the plasticisation

phase (shows the max. volume that can be injected)
Shot Length: Shot Size - Cushion (shows the volume that is really

injected)
Transition Position: screw position where the switch over takes place
Maximum Fill Pressure: Maximum pressure of the injection molding cycle,

this occurs after the plastic melt is strongly com-
pressed, while the screw stops and is moved back until
the holding pressure is reached

Hold Pressure Zone - 1: Pressure for the first plateau of the holding pressure
Hold Pressure Zone - 2: Pressure for the second plateau of the holding pres-

sure
Back Pressure: Pressure during the plasticization time
Mold Opening Time: time taken for the mold to open
Oil Temperature: temperature of the machine oil
Extruder Temperature -1: Temperature of the heating belt at extruder position

1
Extruder Temperature - 2: Temperature of the heating belt at extruder position

2
Barrel Head Temperature: Temperature at the barrel head
Cooling Time: time to cool the plastic parts (between end of the

holding pressure and the start of the mold opening
time)

Injection Hold Time: time during which the mold is closed and the plastic
is injected inside the mold

Cycle Time: time required for a complete cycle

Among these variables, only a subset of them can be tuned, while others are

read only. The modifiable variables are:

• Mold Closing Time

• Tonnage

• Mold Opening Time

• Extruder Temperature -1

• Extruder Temperature -2

• Cooling Time

29

5.3. DATABASE DESCRIPTION

5.3.2 Quality check data

The quality check machine analyses a group of capsules each 10 seconds. Every

cycle gives this information:

• Timestamp

• Number of pieces analysed

• Number of good pieces

• Number of defective pieces

For the purpose of the system, only the number of defective pieces is taken in

consideration. If this number goes above a given threshold, it is considered as a

problem in the production.

Both quality check and injection molding data are extracted from a csv file.

5.3.3 Error simulation

Before deploying the NTMAS, an analysis of the system was made. What came out

from it is that the data provided contains some anomalies that are not caused by a

problem inside the machine or inside the production, they are neither predictable.

It was found out that, every once in a while, the supervisor monitoring the sys-

tem stops the injection machine for a check. Unfortunately, it is not known which

anomalies represents a real error and which not, moreover during those checks some

parameters may be tuned and/or some components substituted, making it impossi-

ble to understand the natural behaviour of the system. An example is given by the

figure below, where the spikes represents a machine restart.

Figure 5.2: Original data

30

5.3. DATABASE DESCRIPTION

This situation requires a deeper analysis and knowledge of the process that are

beyond the scope of the thesis. So it has been decided to remove these anomalies

and simulate, starting from the real data, some errors known by the literature.

The situations that can lead to a production of a faulty piece are many. Some are

caused by a breaking of a component, others by a machine overheating, or even a

slightly change in the raw material. So, it has been decided to consider 4 types of

errors.

They are:

• Overheating of the machine, due to a raise up of environment temperature

• Loss of pressure, caused by a break of a component

• Plastic part stuck in the cavity, in case the capsule falls too slow

• Increase of melt temperature, due to a change in the raw plastic material

Each situation affects only a subset of the injection machine variables, moreover, for

each situation an action is required.

Here it is reported a table summarizing everything:

31

5.3. DATABASE DESCRIPTION

Error Involved variables Action required

Overheating Increase of Oil Temperature Increase Cooling Time

Loss of pressure drop of Max Fill Pressure Stop the machine

Plastic part stuck in
the cavity

Jump up of Shot Length,
Jump up of Shot Size

Stop the machine

Increase of melt tem-
perature

Increase of Bar-
rel Head Temperature, De-
crease of Max Fill Pressure

Reduce Ex-
truder Temperature

Starting from the original version of the injection data, a cleaning was made and

errors were inserted following the previous table. The results can be seen here:

32

5.3. DATABASE DESCRIPTION

Original Errors added

Introducing Overheating

Introducing pressure loss

Introducing plastic part stuck

Introducing increase of melt temperature

Table 5.1: Simulating errors 33

5.4. NETWORK TRAINING

It is important to notice that the error inserted are all in different location of

the dataset, for simplicity we consider that an injection machine can have only one

error at a time. Moreover, the duration of each error is 50 machine cycles, that is

around 5 minutes.

To keep track of the inserted errors, an array, called “labels” containing the position

and the type of errors was also generated.

In order to simulate the production of waste, also the data of the quality check

machine has been changed. An increasing trend has been inserted in the same

interval of previous errors. The result is shown here: In the figure the line in orange

Figure 5.3: Quality check simulation data

represents the original data, while the blue one represents the errors added. Instead,

the red line is the threshold at which an alarm should be raised.

5.4 Network training

In this section it is explained how the set-up of the LSTM network was performed.

This network exploits only the injection machine data, in particular the subset of

variables related with the simulated errors, while the quality check ones are used

only by the Inspector agent to raise an alarm.

The LSTM network exploited takes as input the values of each variable in the last

30 cycles, while gives as output an array of size equal to the number of error cases

considered, containing the probability of each error.

First of all, the numbers of inputs and outputs have been set. The number of inputs

depends on the number of variables affected by the simulated errors, they are:

34

5.4. NETWORK TRAINING

• Oil Temperature

• Max Fill Pressure

• Shot Length

• Shot Size

• Barrel Head Temperature

In order to train the model, an input matrix with dimension [N cycles, 30, 5] was

generated. Where the N cycles is the number of values that are present for each

variable, 30 is the size of the window of values at which the LSTM layer will look

at and 5 are the number of variables considered.

It is important to note that, before shaping the input matrix, each variable is nor-

malized with a Min-Max method which scales the range of the data to [0, 1], this

gives the same importance to all the features and allows to have better performance

of the model.

Instead, to model the output, a set of number has been chosen to represent each

situation in the following way:

• No error = 0

• Overheating = 1

• Pressure loss = 2

• Plastic stuck = 3

• High melt temperature = 4

These data have been derived from the “labels” array generated during the errors’

entry phase. In order to train and test the model, the input data is split into 70% of

train set and 30% of test set. Next the model was trained with a batch size = 50 and

repeated over 200 epochs, as they were found to be sufficient to learn how to classify

correctly the datapoints. The results of the training can be seen in the figures below:

35

5.4. NETWORK TRAINING

Figure 5.4: Error 3 classification

This is the prediction of the plastic stuck, the orange, which represents the clas-

sification of the model, covers almost always the blue line, which represent the true

situation. The value of these functions is the probability that a plastic stuck-error

is happening in that particular cycle. Moreover, as can be seen the model still has

some uncertainty in some cycles, for example around the 1550.

Here all the prediction on the test set are shown:

Figure 5.5: Errors classification

Again, the blue line is the correct value, while the orange one is the predicted

one, named “Y hat”. On the y axis there are the values of the output concerning

36

5.5. SYSTEM BEHAVIOUR

each situation. These two functions mostly overlap to each other, this means that

the model learned to recognize quite well all the cases.

Here is also shown the loss:

Figure 5.6: Loss

As it is possible to see the loss starts to be stationary after 150 epochs, this is

why it has been chosen to train over 200 epochs, not more, because a higher value

can be a waste of time and resources.

Next the model was saved inside a “.h5” file, this format allows to store also the

weights inside the network, in this way the agent on which the machine learning is

deployed does not have to perform expensive operations, like training a new model

from zero.

Moreover, once loaded, the states of the LSTM neurons are reset and the model

will keep learning. Indeed, when a prediction is made, it will be sent to the user

interface, in order to have a confirmation, what is returned is the correct label for

that situation. This label is used to fit again the model, this time with a batch size

of 1.

5.5 System behaviour

In order to test the behaviour of the system, the use case was first simplified at 1

Quality check device and 1 injection molding machine. Over these, one Inspector

agent and one Producer were deployed respectively. Then the system was resized to

the original composition, 1 quality check device and 3 injection molding machine,

37

5.5. SYSTEM BEHAVIOUR

and the agents were deployed accordingly. In both cases it is highlighted the com-

munication skills among them and how they help to solve the problem, together

with the limits that they have.

5.5.1 1 Inspector - 1 Producer

In this scenario there are one Inspection and one Producer. They are both loaded

with the previously simulated datasets.

Figure 5.7: 1 Producer, 1 Inspector

Thanks to the agentService class, it is possible to start the behaviour of each

agent with a unique script, since it is essential in this simulated case a correct timing

between the two agents, while it is not always a problem inside a real production

scenario.

In order to monitor both agents’ behaviour, two command line have been opened.

Inside them it is possible to see the states through which they go. Additionally, it

is also shown the user interface that displays the values read by the devices.

The first thing done by each agent when deployed is the registration to the AMS,

as explained inside the previous chapter.

Next both agents will start reading the data written, for the purpose of this simula-

tion, inside a csv file. The information gathered from the environment are directly

sent to the server through HTTP. Here the data is stored and made available for

the user-interface.

In the first phase, the production process proceeds well and no messages between

agents are exchanged.

The dashboard shows these readings:

38

5.5. SYSTEM BEHAVIOUR

Figure 5.8: No error detected

As can be seen, inside the box of the “Producer 1” there is a dropdown menu,

which allows the user to select which type of variable plot inside the graph.

After some cycle, the number of rejected pieces by the inspector starts to increase

because of the simulated error.

As soon as the value monitored by the Inspection agent goes above the threshold,

an alarm is sent to all the Producer inside the system, in this particular case only one.

Figure 5.9: Inspector sending alert

This is a screenshot of the command prompt of the inspection at the moment in

which the alert is sent. The alarm message contains also a brief description of what

happened, in this case “Number of rejected pieces above threshold”.

Before sending the message, the inspection asks the number and the type of regis-

tered agents to the AMS, then it uses this information to publish the message inside

the queue of each Producer.

Looking at the prompt of the Producer, instead, we can see different actions:

As always, the first action is the registration to AMS, while in the last lines we

can see different operation:

39

5.5. SYSTEM BEHAVIOUR

Figure 5.10: Producer prompt

• The received alert from the inspection

• The calculation of the error vector

• The choice of the faulty machine, since in this case just one producer was

deployed, no more operations were needed

• The prediction of the LSTM network, showing the status predicted and the

corresponding action proposed

• The waiting for the user response, that can confirm or change the action

As soon as the Producer has sent the request, on the dashboard it will appear the

proposed action, together with the other possibility:

Figure 5.11: Dashboard interaction

Here, before deciding which action take, the supervisor can monitor all the vari-

ables to have a clear understanding of what it is happening inside the production

process.

40

5.5. SYSTEM BEHAVIOUR

After the right action is selected a message will arrive to the Producer agent, which

will update its LSTM model if the action is different from the expected one.

In this case, due to the size of the system, the number of messages exchanged only

between the agents is equal to 1, if only producer and inspection are considered.

Moreover, the computation of the error vector is useless, since no other producers

are involved and the faulty machine can be only one.

5.5.2 1 Inspector - 3 Producers

In order to show the ability of the agents to identify the faulty machine, a new test

was performed. In this scenario there are one Inspection and three Producers.

Figure 5.12: 3 Producers, 1 Inspector

While the Inspection agent is loaded with the same dataset of the previous

tests, the Producers are loaded with different type of dataset. One of them, the

“Producer 1” has the dataset containing the error simulated previously, the “Pro-

ducer 2” instead has the original dataset cleaned and the “Producer 3” has the same

dataset of the “Producer 2” but reversed.

When the number of rejected pieces increase the Inspector agent will send the alert,

but this time not only to a single producer, but to all of them, as can be seen in

41

5.5. SYSTEM BEHAVIOUR

this console:

Figure 5.13: Inspector sending multiple alerts

When the alert arrives to a Producer, it will ask to the AMS the total number

of Producer agent inside the system, by mean of an HTTP POST request. This

information is exploited to decide how many error vectors send and receive, before

identifying the faulty machine.

At this point each producer will generate its error vector and will send it to all the

other ones inside the system. Here is an example by the “Producer 3”:

Figure 5.14: Producer 3 prompt

Inside each agent there are two counters:

• N PRODUCER REGISTERED

• N ERROR VECTOR RECEIVED

The first one is initialized with the response received by previous call to the AMS,

while the second one is initialized to zero and increased by one each time a new error

vector arrives. As soon as these two counters are equals, the highest error vector is

evaluated and the corresponding producer appointed as faulty.

In this case the appointed agent is “Producer 1” as defined by the simulation. The

42

5.6. RESULTS

simulation than continues as in the previous test, the action is predicted by the ma-

chine learning method and then confirmed by the supervisor through the dashboard.

5.6 Results

In both cases the NTMAS correctly handled the situation and the system has

adapted correctly to the introduction of more agents. In particular two kinds of

collaboration ability arise:

• the first one between inspector and producer, for the understanding of a prob-

lem inside the production process.

• the second between multiple producers, for electing the faulty machine.

Moreover, the system proved to be capable of handling the interaction with the user

and to gain advantage from it.

43

Chapter 6

Conclusions and Future Work

This thesis proposed, in the context of Industry 4.0, a semi-automatic multi agent

intelligent for production processes. With the aim of build a MAS that incorporates

an intelligent data analytic tool, capable of classify production anomalies such as

machines errors or malfunctioning and to provide a countermeasure given a set of

possible actions. This platform also provides a dashboard that allows user to moni-

tor the production and to confirm the agent action before it takes place.

In order to evaluate the behaviour of the system, a real scenario, with partially sim-

ulated data was exploited. The system has proven to correctly classify the anomalies

introduced in the scenario and to be scalable when more agents are deployed, but

some limits are presents:

• It is not possible to add a new action without re-train the entire machine

learning model.

• The system could not handle multiple alerts at the same time: if during the

user’s decision another alert rises, the previous one is discarded.

• If an agent stops working unexpectedly, the AMS is not able to recognize it.

Besides removing these limits, future research should aim to deploy the proposed

system in a real production environment to test its effectiveness and to collect feed-

back from company employee.

44

Bibliography

[1] Stan Franklin and Art Graesser. “Is it an Agent, or just a Program?: A Taxon-

omy for Autonomous Agents”. In: International Workshop on Agent Theories,

Architectures, and Languages. Springer. 1996, pp. 21–35.

[2] Agent Working Group. “Agent Technology, Green Paper”. Version 0.91. In:

(Mar. 2000). doi: 10.13140/RG.2.2.22680.19206.

[3] Bjorn Hermans. “Intelligent Software Agents on the Internet: Chapters 6-7”.

In: First Monday 2.3 (1997).

[4] JADE. url: https://jade.tilab.com/.

[5] JIACv. url: http://www.jiac.de/agent-frameworks/jiac-v/.

[6] Ahmed Mohamed and Hosny Abbas. “Multi Agents System for Industrial Ap-

plications”. In: (Feb. 2013). doi: 10.13140/RG.2.2.22680.19206.

[7] SARL. url: http://www.sarl.io/about/.

[8] Understanding LSTM Networks. url: https://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

[9] Michael Wooldridge and Nicholas R Jennings. “Agent theories, architectures,

and languages: a survey”. In: International Workshop on Agent Theories, Ar-

chitectures, and Languages. Springer. 1994, pp. 1–39.

45

