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Chapter 1

Introduction

In the new era introduced by artificial intelligence and automatically de-
cision making systems is always more important to understand how they
take decisions in order to trust these models and let humans understand and
interpret their decisions. In order to create models more interpretable by
humans, it is always more emerging the field of research of eXplainable Arti-
ficial Intelligence. The analysis of textual information has a prominent role
in our modern society for example by analyzing and discarding cv on job
applications, or by analyzing the sentiment for marketing purpose, or by un-
derstand query on the search engine or again by creating chatbot that make
these models in direct contact with the end user. Besides this, Natural Lan-
guage Processing has made great strides with new types of architectures and
models that understand and generate languages more and more in an human-
like manner. After a careful study of the state-of-the-art of the black-box
models explainability, it is emerged that in the natural language processing
field there is a lack of these techniques.

The objective of this thesis is to propose a methodology to explain black-
box deep neural networks in the context of natural language processing in
order to make these models more transparent and more understandable by
humans. For this purpose this work proposes EBANO Text, a novel explana-
tion framework that provides a local explanation of the model by applying a
process of perturbation over interpretable features and measuring the impact
of the influence that features have on the original prediction.

This paper is organized as follows: in the second chapter are reported all
the mainly notions studied about the state-of-the-art with a particular focus
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1 – Introduction

on Natural Language Processing and eXplainable Artificial Intelligence. In
the third chapter instead is explained the proposed methodology and the ar-
chitecture of EBANO Text in order to show how to obtain a local explanation
given an input text and a deep neural network. In the fourth chapter all the
experimented choices are motivated, some examples of input text along with
their local explanations are presented and some global results are reported
by analyzing a large corpus of local explanations. Finally, the last chapter
highlights the main conclusions of this thesis and proposes some possible
future works to improve the framework and the methodology.
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Chapter 2

State-of-the-art

In this chapter, firstly will be described the principal notions about Machine
Learning as general introduction. After is reported the current state-of-
the-art of Natural Language Processing and sequence models with a special
focus on BERT that is the current state-of-the-art for this field of machine
learning and is also the case of study of this thesis. The section on sequence
models traces the evolution process of recurrent neural networks in order
to explain and motivate the reason of the deep neural network chosen and
its innovative features. Besides this are described also the principal notions
about the theory of explainability and eXplainable Artificial Intelligence and
their current state-of-the-art. This part goes into detail on the explainability
theory presenting and motivating the reasons why it is necessary. Moreover
are showed in detail the different types of explanation that can be obtained
and some examples of well known frameworks and techniques at the state-
of-the-art.
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2 – State-of-the-art

2.1 Introduction to Machine learning
Nowadays we hear more and more about Artificial Intelligence, Machine
Learning, Deep Learning, Neural Networks and Data Science. But what
these terms really means? This first part attempts to explain and clarify
these concepts [12].

Artificial Intelligence or AI can be defined as the huge number of tools, al-
gorithms or software for making computers or machines behave intelligently.
Artificial intelligence is the larger set and contains all the other subsets.

Machine Learning or ML instead is a subset of artificial intelligence and
its first definition was given by Arthur Samuel in the 1959:

“Field of study that gives computers the ability to learn without being
explicitly programmed”[Arthur Samuel]

This implies that a machine learning algorithm is not directly programmed
by a set of rules or statements to predict the output as traditional program-
ming paradigm. The key concept of machine learning is the learning made
by a set of input training examples with both input and label that allows
the algorithm to automatically learn the rules to predict the most likely la-
bel given an input. In general the objective of machine learning is to learn
mapping between input and output, this is also called supervised learning.

What is instead a Neural Network also called Artificial Neural Network?
A Neural Network or NN is a subset of machine learning techniques and
consists of a set of neurons and weighted connections. The neural network,
looking a lot of training example, learns the function that better approximate
the mapping between input and output.

Deep Learning or DL is the subset of machine learning algorithms which
makes use of neural networks to understand the input and output mapping.
The terms deep learning and neural network are used interchangeably but
more precisely deep learning refers to neural networks that are "deep" and
then with a large number of neurons and hidden layers.

Data Science can be defined as the set of techniques and algorithms that
attempt to extract knowledge and insight from data.

12



2.1 – Introduction to Machine learning

In summary deep learning is a subset of machine learning that in turn is
a subset of artificial intelligence; data science instead is an intersection of all
the other fields as shows in figure 2.1.

Figure 2.1. Terminology hierarchy.

2.1.1 Types of learning
So far it has been said that the learning phase is the a key concept for machine
learning algorithms. There are different existing types of learning :

• Supervised Learning: the learning process is allowed by a set of input
training examples where are available both input and output labels. The
training phase consists of learn the mapping between input and output
by looking a large set of training examples. The training, for each input
example, is divided in two phases:

1. Forward Propagation: the input X is feeded into the initial layer of
the network and is propagated through the hidden layers until the
output layer that produces the output Yˆ.

2. Backward Propagation: given the expected output Y and the pre-
dicted output Yˆ, the model computes the gradient of the loss func-
tion with respect to the weights of the network. The weights are

13



2 – State-of-the-art

adjusted proportionally with the gradients calculated and this is the
training phase of the model.

Supervised learning is actually the more powerful, more valuable and
more established type of learning for neural networks.

• Unsupervised Learning: in this case, for the learning phase, are needed
only the inputs but not the output labels. The main goal is to find
something meaningful or extract new knowledge from the input data.
One example of unsupervised learning is the clustering algorithm. Some
examples of clustering algorithm are K-Means, DBScan, Hierarchical
Clustering etc.

– The K-Means is one of the most widespread and simple clustering
algorithm. Starting from some not labeled input data and from the
parameter K, that is the number of clusters that want to obtain,
the clustering algorithm divides input data in K similar groups. K-
means is an iterative process where are selected randomly K cen-
troids, and where each point is assigned to the nearest cluster based
on the minimum distance between the point and the centroid. Cen-
troids are recalculated in an iterative way as the average of the points
in the cluster. The K-Means algorithm needs to know a priori the
number of clusters K. This is the main weakness of the algorithm
because, specially with high dimensional data, is not easy to know
which is the best K. The are some techniques to choose the best
number of clusters such as the Silouhette calculation that takes into
account the cohesion inside the clusters and the division between
different clusters, allowing to run the algorithm with different values
of K, taking the one that has a better silhouette score.

• Reinforcement Learning: is a semi-supervised learning where an agent,
by interacting with the environment, receives a feedback for each action
that it takes. The feedback is called reward and can be "good" or "bad".
This implies that the goal of reinforcement learning is to maximize this
reward. The main problem of this type of learning is that requires a
huge amount of data.

• Transfer Learning: Given a task A where is available lot of data, it is
possible to train a model and gain knowledge from this task and transfer
this knowledge to a similar task B where, maybe, is available a smaller
dataset. This technique is used a lot in computer vision where, for

14



2.1 – Introduction to Machine learning

example, if training a model for a task A such recognize objects from
a big dataset of images is possible to transfer this knowledge to a task
B like recognize cats with a smaller dataset and smaller training time.
Another example is in the context of natural language processing where,
if you learn to represent language as task A, it is possible to transfer this
knowledge to a task B like recognize person names in a sentence. This
phase of transfer learning from a task A to a task B is also called fine
tuning.

2.1.2 Types of data
For the training phase of neural networks is needed lot of input data, but
which are the different types of data?

• Structured data: are classical tabular data where the columns are fixed
and each column has a domain. The pattern of this data is fixed and
then is relatively easy for a neural network to understand it.

Id City Zip Code Size (mq) Parking #Rooms
House 1 Turin 10129 60 Yes 2
House 2 Milan 20019 50 No 1
House 3 Florence 50100 65 No 2
House 4 Rome 00100 75 Yes 3

Table 2.1. Structured data.

• Unstructured data: in this case instead the pattern is not fixed. Classical
examples of unstructured data are images, texts, audios and so on. While
humans can very easily understand these types of data, for a neural
network is more difficult.

Figure 2.2. Unstructured data.
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2 – State-of-the-art

2.1.3 The exponential growth of machine learning
Machine learning is a more dated field as it is expected, but in the last decades
it is exponentially grown. The reasons why machine learning is emerging so
much in the last years are the following:

• Big Data: in the last years many companies started the digitization
phase where always more data is created, saved and then available. Data
is fundamental for neural network in particular for the training phase.

• Performance: in the last years the performances have grown exponen-
tially, specially with technologies like GPU or TPU that are very suitable
for some machine learning tasks.

• Research and state-of-the-art: neural networks are becoming more and
more powerful thanks to lot of research that now is done by universities
and companies. For this reason there are available on internet a lot of
open codes and papers.

• Programming Frameworks: in the last years have been released some
open source software libraries that allow to write neural networks easily
and with few lines of code. Using these libraries the programmer can
write only some functions to define the model and the training without
explicitly programming all the calculations that occurs in the forward
and backward propagation making very faster the coding process. Some
of the most famous libraries are Tensorflow, PyTorch, Caffe, Keras and
many others.

2.1.4 Humans and machine learning differences
One fundamental aspect is understanding the difference between the human
reasoning from the one of neural networks.

For example, if want an algorithm that given some input features like city,
zip code, parking, size, #rooms attempts to predict the price of the house.
An human will reasoning by combining some of the inputs to create interme-
diate features. For example combining city and zip code can express the life
quality of the house; combining the presence of parking, the size of the house
and the number of rooms can figure out the family friendly of the house and
so on. instead, the neural network, in each neuron feeds information from
all inputs and combining them predicts the output. The inner features have
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2.1 – Introduction to Machine learning

Figure 2.3. Human vs Machine Learning reasoning.

not human understandable meaning but are automatically discovered by the
neural network, for this reason it is said that works as a black-box and then,
given an input, it provides an output and what happens inside it is discovered
automatically by the model. The explained example is showed in figure 2.3.

The fact that neural networks work as a black-box, implies that these models
are not human understandable. This is one of the main weakness of neural
networks nowadays in that, as accuracy they can exceed the human level of
performance, but often they cannot be used because is unknown how they
take decisions and also their inner behaviour.
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2.2 Natural Language Processing
NLP stands for Natural Language Processing and is the field of study of
the computational treatment of natural language with the main purpose of
teaching computers to understand and generate human language. NLP, due
to the complex nature of human language, is considered one of the most dif-
ficult problem in computer science. It is a very multidisciplinary field which
comprises the study of linguistic, statistics and mathematics, computer sci-
ence, artificial intelligence and so on.

Some examples of typical tasks in NLP are:

• Sentiment analysis:
Consists of analyzing the input text and predicting if the underlying
sentiment is positive, negative or neutral. It is also possible to predict a
score (for example stars from 1 to 5) of the input text.

• Topic detection:
Classify the input text by assigning a topic tag or a category label that
explain the topic of the input.

• Machine translation:
Translate the input text from a language to another language.

• Named-Entity recognition:
Classify each entity of the input text to pre-defined categories of entity
such as "person name", "city", "company", "place", "date" and so on. This
entity extraction adds knowledge to the input text.

• Question Answering:
Given an input question, try to predict the most likely possible answer.

• Speech recognition:
Given an input audio, the objective is to identify words and phrases in
spoken language and convert them to a machine-readable format.

• Text summarization:
Consists of shortening long pieces of input text. The intention is to cre-
ate a coherent and fluent summary having only the main points outlined
in the document.

Two of the main subsets of NLP are:
• NLU: Stands for Natural Language Understanding and means under-

stand input text in form of human language to a machine understandable
format.

18



2.2 – Natural Language Processing

• NLG: Stands for Natural Language Generation and means generate out-
put text in form of human language from a machine representation of
the language.

Figure 2.4. NLP - NLU - NLG.

2.2.1 Word representation
One critical point of attention in NLP is how to represent words to be un-
derstandable by the machine. For example in computer vision images are
composed by pixels that are already vector of numbers. This implies that
also for texts is needed a technique to translate the input text into numerical
format that can be used as input of the neural network. In this section are
presented the main techniques to represent words into vector representation,
starting from the one-hot vector until the word embedding representation
[13].

One-Hot vector representation

It is defined a vocabulary of arbitrary dimensions containing frequent words,
this vocabulary can be learned by the training dataset or texts taken from in-
ternet looking for words occurring more frequently. Each word is represented
by a binary vector of the same dimension of the vocabulary and in which it is
placed a "1" into the component number corresponding to the word’s position
in the vocabulary and it is placed a "0" in all the other components of the
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2 – State-of-the-art

vector. All the words not present in the vocabulary are represented with an
[unknown] token. Some examples of one-hot vector are showed in figure 2.5.

The main problem of this representation is that the inner product between
any two different words is zero and then all words are seen as completely
different words. With this representation is not possible for algorithms to
understand relationship between words and consequently to generalize across
them by understanding the context. Another weakness of this representation
is that requires a long and sparse vector representation, of the same size of
the vocabulary, for all words in the input and this impacts the number of
parameters required in the neural network.

Figure 2.5. One-hot vector representation.

Word Embedding representation

Word embedding representation attempts to solve the main problems of one-
hot vector representation of not understanding analogies between words and
at the same time reducing the size of the input vector. To do this are automat-
ically learned a set of features for each word that gives a better representation
of them. This featurized representation consists of a fixed size dense vector
of continues values for each word in the vocabulary as shows in figure 2.6.
Also in this case the vocabulary can contains more frequent words learned in
different ways and unfamiliar words are represented by the [unknown] token.
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2.2 – Natural Language Processing

As explained for the hidden layers of neural networks, also each feature of
word embedding is not human interpretable with components like gender,
age and so on and than actuates as a black-box. The model automatically
discovers the features in a way that similar words have a similar representa-
tion, in this way are learned analogies and difference between different words.
The featurized representation of word embedding can captures the following
relationship by taking the embedding vector corresponding to each word:

King : Man = Queen : Woman (2.1)

Eking − Eman + Equeen = Ewoman (2.2)

Word embedding can understand that king is to man as queen is to woman for
example and then learns that king and woman differentiate only for gender.

Figure 2.6. Word Embedding representation.

Visualizing Word Embedding

Using techniques like PCA that stands for Principal Components Analysis
or t-SNE that stands for t-distributed Stochastic Neighbor Embedding it is
possible to reduce the number of components of the featurized representation
of word embedding. Reducing the embeddings to two dimensional vectors it
is possible to visualize it on a 2D plot. From the plot can be noticed that
related words tend to get grouped together and then word embedding learns
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2 – State-of-the-art

similar features, and then similar vectors, for concepts that should be related
as showed in figure 2.7.

Figure 2.7. Visualizing Word Embedding on 2D plot.

Pre-trained Word Embedding models

There are different pre-trained models available open source from internet
that allow to convert words into word embedding, the principals are:

• Word2Vec: can use two different methods to produce word embedding,
both use two-layer neural networks trained to reconstruct linguistic con-
texts of words [11]:

– CBOW : stands for Continuous Bag-Of-Words, it is the faster method
and it gives a better representations of more frequent words.

– Skip-Gram: is slower compared with the other method but gives a
better representation of rare words.

• GloVe: stands for Global Vectors for word representation [16] and it
is trained to understand meaning of words by observing word-word co-
occurrence probabilities in order to create an encoding featurized repre-
sentation for each word of the vocabulary.
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The principal limitation of these types of embedding is that features for
each word are static, this means that don’t change based on the context to
which the words are inserted to. Another limitation is that the featurized
representation is learned by models that are unidirectional and then takes
only the left-context (what there is before) or the right-context (what there
is after) of the current word. These concepts will be clarified in the next
sections.

Bias in Word Embedding

Due to the training process from large training set composed of unlabeled
text taken from the internet, word embedding can reflects some gender, age,
ethnicity, sexual orientation and others biases. This is due to the fact that
texts are written by people and then for their nature reflecting this kind of
biases. below are showed some examples of bias in word embeddings [2]:

For example if is asked to the model man is to computer programmer as
woman is to what?

computerprogrammer : man =? : woman (2.3)

It would be expected that word embeddings answers that man is to computer
programmer as woman is to computer programmer by capturing the following
relationship:

computerprogrammer : man = computerprogrammer : woman (2.4)

Because computer programmer is gender neutral, but can happen that word
embedding, after the training on text from internet, will capture the following
relationship:

computerprogrammer −man+ woman = homemaker (2.5)

Word embedding has learned that man is to computer programmer as woman
is to homemaker.

Another example is :
Doctor : He =? : She (2.6)

It would be expected that:

Doctor : He = Doctor : She (2.7)
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But some research studies have shown the the model can learn:

Doctor −He+ She = Babysitter (2.8)

These two examples are two problems of gender bias when learning the word
embedding representation. During the training process probably the input
texts have a displacement where the doctor or the computer programmer was
a man due to the fact that also humans have biases. This is one of the main
problem of word embedding representation.

Remove Bias from Word Embedding

It is important, after the training of word embedding, to verify if the model
is biased or not. There are some techniques in literature to looking for and
removing bias [2]. Mainly, the idea consists of looking for a bias direction
by taking the difference between words which differ only for this type of bias
and make sure that words that should be neutral for this bias are at the same
distance from the other ones. For example, subtracting the word embedding
representation of girl and boy, grandmother and grandfather, she and he
could found the gender bias direction because these words may differ only
for gender. Putting in the other axis all the non-bias components of word
embedding have to make sure that other words, that are gender neutral,
have the same distance between couple of words that differ only for gender
as showed in figure 2.8. In this example there is bias because babysitter,
that should be gender neutral, is nearest to words like grandmother, girl
and she that belongs to female gender, while doctor is nearest to words
like grandfather, boy and he that are male gender. To remove bias need
to reduce the distance of these neutral words from the non-bias direction
axis to make sure that the distance from gender biases words is the same.
This is an example where is taken into account one type of bias, that in
this case is the gender, at a time but in reality are taken into account more
types of bias together. Furthermore word embedding is not a 2D dimensional
representation but an high-dimensional representation and than is very more
complex process.
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Figure 2.8. Remove bias from embedding.
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2.2.2 Sequence models
Once have defined how to represent words with a machine understandable
representation, and nowadays the most widespread one is the word embed-
ding representation, now is needed to define which kind of models are more
suitable to work on natural language process tasks and input texts. Standard
feed forward fully-connected neural networks are not suitable of NLP tasks
for different reasons:

1. Inputs and outputs can have different lengths in different input examples
because input texts have not fixed lengths. One possible solution can be
to assign a fixed maximum size for both input and output and padding
each input and output until the max size but this solution not works
very well.

2. Standard neural network architectures don’t share features learned across
different positions of texts. Input text is a sequential data and when
computing one word need taking into account also words that are before
and after in order to figure out the context of that word.

3. With one-hot vectors or word embedding input representation, the neu-
ral network will require a huge number of parameters. The number of
parameters is directly proportional to the number of input words, the
number of components for each word and the number of neuron in the
hidden states of a standard fully-connected neural network.

RNN - Recurrent Neural Networks

RNN stands for Recurrent Neural Network and is a type of sequence models
that scans through the network left-to-right or right-to-left. For this reason
RNNs are unidirectional. At each time step, when attempts to predict Yt, it
uses information about the input at current time step but also information
about the activation function from the previous time step, if works left-to-
right, or the next time step if works right-to-left. The parameters and then
the weights used in each time step are shared. For this reason the number
of parameters is much less than would be needed by using a standard neural
network.

The figure 2.9 shows an example of left-to-right RNN architecture, where
Waa, Wax and Wya are the shared weights matrices parameters.
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The activation function a at each time step t is calculated as follows:

Figure 2.9. Recurrent neural network.

a<t> = g(Waaa
<t−1> +Waxx

<t> + ba) (2.9)

Then each predicted output ŷ at time step t is calculated as follows:

ŷ = g(Wyaa
<t> + by) (2.10)

Where g can be an activation function like Sigmoid in case of binary classifi-
cation, or Softmax or Relu otherwise. As the equation suggests the prediction
at time t called ŷ<t> depends on the current input x<t> and from the previous
activation function a<t-1>.

RNN architectures

There are different possible RNN architectures depending on the task and
then on the number of inputs and outputs. For example the Many to one
architecture is suitable for sentiment classification. The Many to many ar-
chitecture with Tx = Ty is suitable for named entity recognition. Different
types of RNN architectures are illustrated in figure 2.10.

RNN: Encoder - Decoder Architecture

One of the most interesting architecture is the Encoder - Decoder architec-
ture. It is a Many to many architecture where the number of inputs can be
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Figure 2.10. RNN: Different architectures.

different from the number of outputs, then Tx != Ty. This architecture is
very suitable for tasks like machine text translation where is not possible to
assume that the number of inputs is equal to the number of outputs.

The encoder maps the input X = (x1,...xn) from a sequence of symbols rep-
resentation to a continue one Z = (z1,...,zn). This continuous representation
of the input is feeded in the decoder where it generates an output sequence
of symbols Y = (y1,...,ym) one element at a time by consuming the previous
generated symbol. In other word the encoder takes the input and transforms
it into a fixed size vectorized representation of the whole sequence, this vec-
torized representation is used as the input of the decoder part. The structure
of the encoder decoder architecture is showed in figure 2.11.

Problems of standard RNNs

Standard recurrent neural networks have three main problems:

1. Unidirectional: standard RNNs take only left-to-right or right-to-left
context and then only what there is before or after the word. This is
a very big limitation because the context of words needs to be figured
out by looking both what there is before and after the word at the same
time in order to have a better representation.

2. Vanishing Gradient: RNNs suffer of vanishing gradient problem and the
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Figure 2.11. RNN: Encoder - Decoder architecture.

fixed-length vector representation of the input source made by the en-
coder is the bottleneck in that the encoder needs to compress all the
necessary information into a fixed size representation. When the size
of the input source increases then the compression is higher and conse-
quently the fixed representation is worse.

3. Not parallelizable: parallelization is not possible due to the sequentiality
of the model and this implies lower speed and performance.

BRNN - Bidirectional Recurrent Neural Networks

BRNN stands for Bidirectional Recurrent Neural Networks and, as the name
suggests, try to solve the unidirectional problem of standard RNNs. With
BRNN, when predicting the output Yt, it attempts to take information from
both what is in the "past" and what is in the "future". To do this BRNN
combines a left-to-right and a right-to-left component and then, when pre-
dicting output at Yt, takes both the backward state and the forward state.
BRNN reduces the problem of unidirectional context of standard RNN but
not solves it completely. A bidirectional recurrent neural network can be
represented as the figure 2.12.

In this case are calculated two activation functions, one taking the left-
context and one taking the right-context:

←−a <t> = g(Waaa
<t−1> +Waxx

<t> + ba) (2.11)
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Figure 2.12. BRNN: Bidirectional Recurrent Neural Network architecture.

−→a <t> = g(Waaa
<t+1> +Waxx

<t> + ba) (2.12)

This implies that the activation at time t is:

a<t> = [←−a <t>,−→a <t>] (2.13)

And the final output prediction ŷ<t> at time t is calculated as:

ŷ = g(Wyaa
<t> + by) (2.14)

Where substituting a<t> with the equation 2.13:

ŷ = g(Wya[←−a <t>,−→a <t>] + by) (2.15)

The last equation shows that, when attempts to predict ŷ<t>, the BRNN
takes information from both past and future by multiplying the two activa-
tion functions for the corresponding weights.

Solving vanishing gradient problems

To solve the problem of keep a good representation of very long sentences
have been implemented different methods:

• GRU and LSTM : one possible way is to substitute the standard rnn unit
with more complex units like GRU [3] that stands for Gated Recurrent
Unit and LSTM [6] that stands for Long Short Term Memory that make
use of concepts like memory cell and gates to keep some information
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about the input sentence. However details about GRU and LSTM are
out of the scope of this paper and for more information are reported the
references.

• Attention: using attention mechanisms in order to figure out the context
of each word. More details are provided in the following sections.

2.2.3 Attention mechanisms
Attention mechanisms [1] attempt to solve the problem of encoder - decoder
RNNs and BRNNs of memorizing the whole representation of very long sen-
tences with a vectorized fixed-length representation as output of the encoder
block. The intuition below the attention mechanisms is that when predict-
ing the output, for each word, try to figure out the context of this word and
assign weights that tells how much "attention" this current output have to
pay to each word of the input sentence.

With standard encoder - decoder RNN architectures the encoder produces
a single context vector c and the decoder predicts the next word yt given
the context c and the previously predicted words {y1,...,yt-1}. Note that the
context vector c is the same for all the predicted words yt. With attention,
instead of memorizing the whole sentence and then predicting the output, it
looks part of the sentence at a time.

An example of attention based architecture is showed in figure 2.13. The
encoder block is composed by a bidirectional recurrent neural network in or-
der to take both left and right context of the current word.

The hidden state hj is composed by the concatenation of ←−h and −→h :

hj = [←−hj ,
−→
hj ] (2.16)

Then the context vector ci for the word i-th is calculated as follows:

ci =
T xØ
j=1

αijhj (2.17)

Where the weights αij of each annotation hj is computed as:

αij = exp(eij)qTx
k=1 exp(eik)

(2.18)
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where:
eij = a(Si−1, hj) (2.19)

The calculated e is defined as the energy and is the importance of hj with
respect of the previous hidden state of the decoder Si-1 to predict yi and the
state Si. In other words the decoder can decide to which parts of the input
sentence have to pay attention. This type of attention is called Additive At-
tention.

The attention weights αij are learned and calculated by feeding in a feed-
forward neural network St-1 and hj.

Figure 2.13. Attention blocks.
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2.2.4 The Transformer architecture
The Transformer [23] was introduced with the Google’s paper "Attention is
all you need" and has drastically changed the state-of-the-art for sequence
models [22]. It attempts to solve the main problems of standard RNNs and
BRNNs like unidirectional context, parallelization and single fixed vector rep-
resentation of input together.

The Transformer follows the overall encoder-decoder architecture but without
using any kind of recurrence or convolution, in order to allow the paralleliza-
tion, but using instead stacked self-attention and point-wise, fully connected
layers for both encoder and decoder. The overall transformer architecture is
showed in figure 2.14.

Figure 2.14. The Transformer - model architecture.
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Encoder

The encoder [19] is composed by N identical layers stacked together and, in
the original paper, the number of layers N is equal to 6. Furthermore, each
layer is composed by two sub-layers:

1. The first sub-layer is a multi-head self-attention mechanism.

2. The second sub-layer is a position-wise fully connected feed-forward net-
work.

Figure 2.15. The Transformer - Encoder.
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Decoder

The decoder [18], as the encoder, is composed by N identical layers stacked
together and also in this case the number of layers N is equal to 6. In this
case each layer is composed by three sub-layers:

1. The first sub-layer is a masked multi-head attention mechanism.

2. The second sub-layer is a multi-head self-attention mechanism.

3. The third sub-layer is a position-wise fully connected feed-forward net-
work.

Figure 2.16. The Transformer - Decoder.
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Transformer attention

An attention function can be defined as a mapping between a query and a
set of key-value pairs to an output. The query, keys, values, and output are
all vectors. The output is computed as a weighted sum of the values and the
weight assigned to each value is computed by using a compatibility function
of the query with the corresponding key. The particular type of attention
implemented in the transformer is called "Scaled Dot-Product Attention".

Scaled dot-product attention

Instead of using the additive attention explained the section 2.2.3, the Trans-
former uses the multiplicative attention because, using optimized matrix mul-
tiplication code, results much faster and space-efficient.

Given the following input:

• Q: Queries of dimension dk

• K : Keys of dimension dk

• V : Values of dimension dv

The attention is computed as follows:

Attention(Q,K, V ) = softmax

A
QKT

√
dk

B
V (2.20)

In practice the attention function is computed on a set of queries at the
same time by packing them together into a matrix Q, also keys and values
are packed together into matrices K and V. The values V are weighted by a
softmax function applied on the dot product of queries Q with keys K, scaled
by a factor of

√
dk.

Multi-head attention

Instead of using a single attention, the transformer uses h different attention
calculations with different weight matrices. These different computations are
computed in parallel and the result of each of it is called head and corresponds
to a scaled dot-product attention explained before. This particular kind of
attention is called Multi-head attention and the final result is computed as
the concatenation of all heads as showed in figure 2.18.

36



2.2 – Natural Language Processing

Figure 2.17. The Transformer - scaled dot-product attention.

In mathematical terms:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2.21)

where:
headi = Attention(QWQ

i , KW
K
i ,W

Q
i , V W

V
i ) (2.22)

Using different attention head, allows the model to capture different aspects
of the input and then the model can takes information from different parts
of the input text jointly.
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Figure 2.18. The Transformer - multi-head attention.
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Feed-forward network

Each encoder and each decoder contains a fully connected feed-forward net-
work. This network applies two linear transformations and a Relu activation
in between to each position separately and identically.

The two linear transformations are the same across different positions but
they have, in each layer, different parameters. The dimensionality is dmodel
= 512 for input and output and dff = 2048 for the inner layer.

Embedding ans Softmax

The Transformer makes use of a learned embeddings to convert the input
tokens and output tokens to vector of dmodel dimension. It makes use of
a learned linear transformation and a softmax function in order to convert
decoder output to predicted next-token probabilities. The weights between
the two embedding layers and the pre-softmax are shared. The positional
encoding of the embedding is added at the beginning of the encoder and
decoder stacks.

Positional encoding

The model not uses both recurrence and convolution, this implies that is
needed a way to represent the position of each token into the sequence. To
do this it is added a positional embedding to the input embeddings at the
beginning of both encoder and decoder stacks. The positional embedding
has the same dimension of the embedding and is equal to dmodel and then
can be added to the normal token embedding.
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2.3 BERT - Bidirectional Encoder Represen-
tation from Transformers

Figure 2.19. Google BERT.

BERT [4] stands for Bidirectional Encoder Representation from Trans-
formers and is a new language model representation that has changed dras-
tically the state-of-the-art in natural language processing and was presented
with a Google’s paper in the 2018. As the name suggests the key features
of BERT are the Bidirectionality of the model obtained with the use of the
Encoder part of the Transformer architecture 2.2.4. As explained in the pre-
vious section the bidirectionality is obtained without the use of any type of
recurrence or convolution but exploiting a revolutionary type of pre-training.
The name suggests also that BERT uses only the Encoder part of the trans-
former to provide a Representation of the words. For these reasons the main
objective of BERT is to create a language representation model that can be
used for different tasks or to exploit contextualized word embeddings features
by stacking different transformer encoder layers one over the other.
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2.3.1 Input representation

Wordpieces representation

Instead of using one token for each frequent word and the [unknown] token
for out-of-vocabulary words like standards static word embedding, it uses
a particular type of word embedding representation called Wordpiece Em-
beddings. Frequent words, present in the vocabulary, are treated as normal
tokens, out-of-vocabulary words instead are divided in subwords present in
the vocabulary and are called wordpieces. For notation, each wordpiece is
preceded by the prefix ##. Also each single character is inserted in the vo-
cabulary, in this way it is possible to represent any kind of out-of-vocabulary
word into wordpieces. Using this notation for the input, the [unknown] to-
kens is not necessary.

The advantages of wordpiece tokenization are:

• It reduces the size of the vocabulary.

• It increases the amount of data available to represent features for each
word and then gives a better representation of out-of-vocabulary words.

Example: This is an example of wordpiece embeddings

[“this”,“is”,“an”,“example”,“of”,“word”,“##piece”,“em”,“##bed”,“##ding”,“##s”]

For example the word "embeddings", if is not founded in the vocabulary,
it is splitted into subwords called wordpieces that give an approximated rep-
resentation of the word. One possibility is to average the values of each
wordpiece in order to obtain a single featurized representation of the whole
word.

Sentences representation

The initial token of every sequence is a special classification token called
[CLS] that is used as aggregate representation of the whole sentence and is
useful in case of classification tasks. Sentence pair are packed together into
a single sentence and are separated with another special token called [SEP].
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Figure 2.20. BERT - input representation.

Contextualized embeddings

As explained before, BERT’s architecture is composed by many transformer
encoder layers, the transformer not has recurrence and then not read one
input word at a time but the whole input is read at once. Due to this
it needs a way to represent the position of the word in the input; for this
reason is added the positional embedding. The final embedding for each
wordpiece is calculated as the sum of Token Embedding, Segment Embedding
and Position Embedding as showed in figure 2.20.

2.3.2 Pre-Training
BERT uses two semi-supervised tasks for pre-training:

• MLM - Masked Language Model

• NSP - Next Sentence Prediction

The model was trained for this two tasks simultaneously with a dataset built
from BookCorpus (800M words) and English Wikipedia (2,500M words). The
goal of pre-training [7] is minimizing the combined loss function of these two
tasks. The combination of these two tasks allows BERT to inherit bidirec-
tionality, to be precise BERT can be defined non-directional because avoid
using unidirectional left-to-right, right-to-left or the combination of the them
like traditional RNN or BRNN language models.

MLM - Masked Language Model

The main objective of this task is to learn a featurized representation for
each wordpiece in the vocabulary. To do this are evaluated the 15% of all
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wordpieces of the input text. For each of this wordpieces selected randomly:

• With a percentage of 80% the wordpiece is replaced with the [MASK]
token.

• With a percentage of 10% it is replaced with another random token.

• With a percentage of 10% the wordpiece remain unchanged.

The 15% of wordpieces selected are not all replaced with the [MASk] token
to reduce the mismatch between pre-training and fine-tuning because this
[MASK] token does not appear in the fine-tuning phase.

The model attempts to predict the original values of the masked words by
feeding the final hidden vector of each [MASK] token into an output softmax
over the vocabulary, as showed in figure 2.21. With this prediction the model
learns a featurized representation of each wordpiece (word embedding) that
is bidirectional because the input text is readed in one shot and then for each
predicted masked token there are both left and right contexts.

Figure 2.21. BERT - Pre-training: Masked Language Model.
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NSP - Next Sentence Prediction

The main objective of this task is to learn relationship between two sentences.
This aspect is fundamental for tasks like Question Answering (QA) or Natural
Language Inference (NLI) and it is not directly captured by MLM task. To
do this, the model is pre-trained for a binarized next sentence prediction task
and for each input pre-training example are chosen sentences A and sentences
B where:

• The 50% of time the sentence B is the actual next sentence that follows
A and the label is isNext

• The 50% of time the sentence B is a random sentence from the corpus
and the label is notNext

The probability that the next sentence is the actual next sentence or a random
sentence is predicted with a classification layer and a softmax.

Pre-trained models

There are a set of pre-trained models of BERT available:

• BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters

• BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parame-
ters

• BERT-Based, Cased: 12-layer, 768-hidden, 12-heads, 110M parameters

• BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters

• BERT-Base, Multilingual Cased: 104 languages, 12-layer, 768-hidden,
12-heads, 110M parameters

• BERT-Base, Multilingual Uncased: 102 languages,12-layer, 768-hidden,
12-heads, 110M parameters

These models differ by size (Base - Large), language (English - Multilingual)
and case sensitivity (Cased - Uncased).
Exploiting transfer learning, with the fine-tuning phase, it is possible start-
ing from one of these pre-trained version, in relative small amount of time,
training a model for a specific task also with much less training data.
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2.3.3 Fine-Tuning
Exploiting the potential of transfer learning, starting from one of the pre-
trained models, the fine-tuning allows to specialize the model in the required
task. BERT can be fine-tuned for many specific tasks like sentiment anal-
ysis, question answering, sentence classification, named entity recognition
etc. Fine-tuning can be done, for example, by adding a classification layer
and with the specific labeled dataset fine-tuning all parameter end-to-end.
For the fine-tuning phase most of hyperparameters remain the same of the
pre-training; Moreover this phase is relative inexpensive compared with pre-
training.

Figure 2.22. BERT - fine tuning.

2.3.4 Contextualized features extraction
Fine-tuning BERT can create a model for a specialized task. But beyond
that, BERT can be used also to extract and create contextualized word em-
bedding. The word embedding extracted can be used in a totally different
network, due to the fact that some tasks are not easily represented by a trans-
former architecture and starting from the BERT embedding can be applied
transfer learning. Using this transfer learning can have lot of computational
benefits because pre-training a model is a very expensive task.

The output of each layer of the model can be used as possible featurized rep-
resentation. The model architecture is composed by a stack of transformer
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encoder blocks, each one takes, for each word, an input of the embedding di-
mension and creates an output of the same dimension. In this way the output
of each encoder can be used as the input of the next encoder and each one
can provide a possible featurized representation of the word as showed in
figure 2.23.

One question can be: which layer should be used in order to have the better
representation of words?

The figure 2.23 shows an example of Dev F1 score by using BERT con-
textualized embedding for a named entity recognition task. From the figure
2.24 emerges that the concatenation of the sum of the last four encoder lay-
ers gives a very accurate representation of embedding in the case of Named
Entity Recognition but these scores are similar also for other tasks.

Figure 2.23. BERT - Contextualized Embeddings.
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Figure 2.24. BERT - Contextualized Embedding: Dev F1 Score on NER.
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2.3.5 Visualizing attention
Another key aspect of BERT is that makes use only of attention mechanisms
to draw dependencies between input and output. There was lot of studies
on this aspect and are available papers [25] and tools that help to see the
attention for each word in each layer with respect of each input word as
showed in figure 2.25.

Figure 2.25. BERT - Visualizing attention.
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2.4 Explainability and xAI
Nowadays more and more decisions, often critical, are taken by decision-
making algorithms that are complex machine learning models with millions
of parameters that by their nature are intrinsically black-box. These models
are trained with enormous amount of data that people produce in every day
life like web searches, purchases, social networks, movements and so on. these
decisions affect people’s life for example for discarding cv in job applications,
for loan bank grant, autonomous driving cars and for a lot of other aspects.
In some cases these algorithms could also exceed the human level of accuracy
and performance making more accurate and precision predictions then those
of humans.

The question that arises is: Why is needed an explanation?

One possible reason is that data may inherit human biases, racism and prej-
udices that can cause unfair and wrong decisions. For example the job appli-
cation could discard some curriculum for a software developer position only
because the applicant was female, or maybe a loan grant algorithm could
reject a loan request only because is done by a person belonging to an ethnic
minority. In this case exaplaining the model can figure out why it reflects
bias.

Another possible reason is that companies that want use these models to
automate some processes have to trust these algorithms. The trustability is
a key concept for machine learning’s adoption and acceptance because people
and companies will not use models that don’t trust. Explain a model can
show if it takes good or bad decisions and then decide if use it or not.

Moreover an explanation can be required for legislative and regulatory rea-
sons. GDPR that stands for General Data Protection Regulation has im-
pacted the AI world mainly with the following articles:

• Article 5 : in summary it says that is required for organizations to mini-
mize the amount of collected data, furthermore companies may process
data in a transparent manner in relation to the data subject.

• Article 22 : in summary it says that, when companies use AI to take
important decisions about peoples, then the data subject has the right
to have human review that decision.
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Resuming the example of the loan bank grant, with these regulations, the
subject corresponds to the human that requires the loan and has the right to
understand in human terms and in a transparent manner the reason of the
decision. In addition, also the bank need to be sure and trust the decision
taken by the algorithm for not giving a loan to wrong people.

Another possible reason is the safety. Some decision models work in crit-
ical contexts where a wrong prediction can cause the death of a person. For
example if the autonomous driving car makes a wrong decision puts the life
of the driver and pedestrians at risk. Another example of critical decision is
the cancer detection algorithm. Also in this case a wrong prediction can put
a person’s life at risk, moreover the patient will want a human understand-
able description of the reasons he has or does not have cancer. Most of the
application working in the medical field can be considered critical.

In summary, explanation is mainly needed for many different reasons like
trustability, fairness, safety, verifiability and regulatory but there are also a
lot of other reasons. In this context, it is increasingly emerging the research
field of xAI that stands for eXplainable Artificial Intelligence [20].

2.4.1 Real facts examples
In this chapter are reported a set of concrete examples that can give a better
idea of how these algorithms, when make wrong prediction or when present
bias, can impact people’s life.

Examples of bias, racism and prejudice

• Google image-labeling: The image classification algorithm of google clas-
sified image of black peoples as gorillas. The algorithm had an ethnic
bias probably because it was trained with more images with white people
then black ones.

• Amazon AI recruiting tool: the recruiting tool had bias against woman
and then preferred male candidates on job applications with respect of
female ones. It could have happened because the higher percentage of
worker inside amazon was male and then the algorithm understand that
male worker are "better" for this type of job or maybe also if during the
training was taken texts from internet with this bias.
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• COMPAS risk of crime recidivism: the algorithm predicts the tendency
of a convicted criminal to reoffend. Black peoples were labeled almost
twice as higher risk but they actually not re-offend. Also in this case
the algorithm had a ethnic bias and then was racism probably for a
mismatch in the training dataset.

Examples of fatal wrong prediction

• Self-Driving Uber Car : In 2018 an Uber self-driving test vehicle killed a
woman probably because failed to recognize her as a pedestrian.

2.4.2 xAI - eXplainable Artificial Intelligence

Figure 2.26. Explainability diagram

So far it has been explained why is important to make black-box models
interpretable. This parts instead attempts to explain how to make black-box
models more interpretable [5].

Interpretability can be defined as the ability to explain or provide the mean-
ing in understandable terms to human.

A black-box model to be interpretable requires an explanation. Explana-
tions can be divided in two macro category:
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• Global explanation: consists of providing an explanation that allows to
understand the whole logic of the model and all possible outcomes of that
model. This implies that the whole model is completely interpretable.

• Local explanation: consists of providing an explanation that allows to un-
derstand only the reason for a specific decision or for a specific outcome
of the model. This implies that the single prediction is interpretable.

Given a problem that can be solved by a black-box neural network, how can
also get the transparency property?

1. Transparent box design: consists of directly providing a model that is
locally of globally interpretable instead of using a neural network or
other intrinsically black-box model. Unfortunately it is often not possi-
ble because transparent models are not as powerful as neural networks.
Transparent models are for their nature easily understandable in humans
terms, some examples of them are:

• Decision trees: are tree-like models used for classification and pre-
diction where exploiting the tree graph give a visual explanation of
the prediction. The decision tree is composed by a set of nodes that
represent the condition and the arrows that represent the outcome
of the condition, until the leaf nodes that represent the class labels.
Looking the path from the root of the tree passing over a set of
condition and output nodes it is possible to understand the reason
of the predicted class label that correspond to the leaf node of the
path. Decision trees are probably the most understandable models
for humans.

• Decision rules: are a set of if then rules that given an input predict
the output. Each if then statement is composed of a condition and
a prediction, by combining multiple statement can create more com-
plex prediction. This kind of models are very easily understandable
by humans.

2. Black-box explanation: given a neural network that works well for a
specific task, attempts to explain how this black-box models makes de-
cisions. Explanation can be divided in three different types:

• Model explanation: provides a global explanation of the black-box
model by using another model transparent by design and then inter-
pretable and transparent in humans terms, this model should mimic
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the behaviour of the black-box model that attempts to explain. In
this way the neural network it is used to takes decisions as it is more
accurate and the transparent model to approximate the decision to
in a human understandable way.

• Outcome explanation: provides a local explanation of the black-box
model by explaining the output on a given instance, in this case it
is needed to explain the reason for the specific prediction but not to
understand the whole underlying logic of the model.

• Model inspection: consists of providing a visual or textual represen-
tation for understanding and explaining some specific property of
prediction of the given black-box model. Also in this case a local
explanation is provided.

One of the problem of explanations is that require a trade-off between per-
formance and execution time in order to obtain interpretability.

2.4.3 Explanation techniques at the state-of-the-art
One of the most widespread technique to explain black-box model is LIME
[17] that stands for Local Interpretable Model-Agnostic Explanations. The
main purpose of LIME is to explain the prediction of any classifier and then
it is used in very different contexts like image or text processing. It provides
an explanation by approximating the black-box model with an interpretable
one locally.

Apart of this, in the same paper, it is presented also another method called
SP-LIME that stands for Submodular Pick - Local Interpretable Model-Agnostic
Explanations that attempts to provide a global understanding of the whole
model by analyzing a set of instances individually. The main strength of
these two methods is that they are model agnostic, and then they are a gen-
eral approach that can be applied to any kind of black-box classifier.

Another well known technique to explain black-box models is Grad-CAM
[21] that stands for Gradient-weighted Class Activation Mapping. It is based
on the Gradient-based Localization technique in order to provide a visual
explanation of deep convolutional neural networks. This technique is strictly
related to the image classification task.
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Chapter 3

Proposed Methodology

In this chapter, firstly will be presented as related work the general method-
ology and then will be introduced EBANO Text that is the specialization of
the general methodology in the context of natural language processing. This
is due to the fact that EBANO Text is part of a bigger framework, where
the starting project had the objective of providing explanation in computer
vision field and is already implemented. If the methodology in this new con-
text will works, then the process of explanation can becomes more task and
model agnostic. The main focus of this chapter is to presented the EBANO
Text architecture that is the core of this thesis and that shows the full pro-
cess in order to obtain a local explanation starting from an input text and a
fine-tuned BERT model. Moreover are provided lot of details on the multi-
layer feature extraction method that is the more complex, interesting and
innovative feature extraction method proposed.
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3.1 Related work

Figure 3.1. General Methodology

In this section will be explained the general methodology in order to pro-
vide an outcome explanation of a given black-box model. As explained in
the previous sections an outcome explanation not gives the understanding
of the whole logic of the model but explains, given an input, the reason for
the specific outcome of the model and then it is provided a Local Explanation.

The underlying idea is to provide the explanation by applying a set of Per-
turbations over a set of Interpretable Features extracted from the input and
then produce a Visual and Numerical explanation of the impact or Influence
that the features have on the original output prediction of the model given
that specific input. In the figure 3.1 are represented all steps of the General
Methodology.

The proposed methodology is called EBANO Text and it is a part of a bigger
framework called EBANO [24] where the common goal is the explanation
of black-box models. The most consolidated part is about image processing
and the explanation of some Convolutional Neural Network. EBANO Text
instead has as its main purpose the explainability in the context of Natural
Language Processing. What changes is the type of input that in this case is
text and then the techniques for features extraction, for apply perturbations
and to show the results.
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3.1.1 Input and Black-Box model
In the general approach the type of input and the type of black-box model are
strictly bounded. Input data is typically unstructured data, then the black-
box model depends on it but can works for all types of deep neural networks.
In the case of EBANO on images the black-box models explained are Con-
volutional Neural Networks as vgg_16, vgg_19, inception_res_net_v3 and
so on.

As explained in section 2.2.2 this type of neural networks are not suitable
for natural language processing tasks and then a sequence model is needed
in order to fit the methodology in that different context.

3.1.2 Interpretable Features Extraction
The interpretable features extraction is the most critical phase in that from
the input it is attempted to selected some features that are related in order
to understand which impact they have on the prediction.

The question that arise is, what are features?
Also features are closely tied on the type of input of the model:

• In case of Tabular Data, features can be a column o a set of columns

• In case of Image Data, features can be a subset of the image and then a
portion of it that can be defined as a set of pixels.

• In case of Text Data, features can be a set of characters, a group of words
or maybe also a sentence or a group of sentences.

The main problem is to define features that are related. For example in the
case of images related features are all pixels that identify a distinct object,
this is a complex process but there are in literature some techniques to do it.
In EBANO on images features are extracted with segmentation techniques
by extracting the values of some convolutional layers. In case of texts in-
stead is complicated define what are related features because is not possible
to extract distinct object but is needed to extract some concepts by group-
ing words. Some examples of related words can be: words inside the same
sentence, or words with similar meaning or again words with similar vector
representation but is more difficult to make these features very understand-
able by humans.
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While for humans is relative easy to express related concepts, for machine
is very difficult to automatically discover related concepts given some input
data, specially for unstructured data.

3.1.3 Perturbation
A perturbation can be viewed as a Noise that is inserted in the original input
in correspondence of the previous selected features. Also in this case the
type of perturbation is closely related on the type of input. A possible type
of noise can be remove the selected features and then remove the concept
from the input, or change the feature with something else. For example in
the case of images a possible perturbation technique can be to insert a blur
in correspondence of the selected feature.

In case of input textual data instead, a possible perturbation can be change
a character inside a word, or moreover removal or change entirely words or
also remove entirely sentences.

3.1.4 The estimate of influences
To estimate the influence that a feature had for the prediction of the original
input are taken two output of the model:

• Original Prediction: is composed by the original probabilities and class
label predicted by the model given the original input.

• Perturbed Prediction: is composed by the new probabilities and class
label that the model output by making again the prediction with the
new input where it is applied a perturbation over a selected feature.

The underlying idea is that a feature impacts positively the prediction of a
class label if adding a noise or a perturbation on that feature the probabil-
ity of belonging to the class of interest is weakened, while a feature impacts
negatively a prediction of a class label if after a perturbation on it the proba-
bility of belonging to the class is reinforced. The reason is that, if applying a
perturbation on the feature extracted the probability decreases, this implies
that it is decreased for the absence of the concept associated to the feature
and then is influential for the analyzed class label.
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For this purpose are defined two indices that quantify with a numerical values
the influence of the interpretable feature over the class of interest:

• nPIR normalized Perturbation Influence Relation

• nPIRP: normalized Perturbation Influence Relation Precision

These two indices are a general approach independent from the task, type of
input and type of neural network and then are taken from EBANO on image
and adapted also to the text classification task.

normalized Perturbation Influence Relation

nPIR stands for normalized Perturbation Influence Relation and represents
the impact of the interpretable feature selection for the class of interest. It
represents with a numerical value if the feature has a positive or a negative
impact for the prediction of that class. It takes into account the original pre-
dicted probabilities and the probabilities after the perturbation. If after the
perturbation the probabilities of belonging to the class c are reduced then
the feature will be positively influential for the original prediction, otherwise
it will be negatively influential.

Let formalize the problem in mathematical terms, given:

• C the set of class of interests

• ci ∈ C the class of interest

• po,ci the original probability to belong to the class ci

• F the set of features extracted

• f ∈ F the current feature

• pf,ci the probability to belong to the class ci after the perturbation f

Firstly is calculated the Delta Impact:

DIf = po,ci − pf,ci (3.1)

It is a simple difference between the original probability for the class of inter-
est ci and the probabilities of the input after the perturbation. Probabilities
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are in domain [0,1], this implies that the Delta Impact’s domain is [-1,1]. If
DIf is greater then 0, implies that original probabilities po,ci is greater then
the probabilities after the perturbation pf,ci and then the feature f positively
influence the prediction of the class label. Otherwise, if po,ci is minor then 0,
the feature f has a negative impact on the prediction of the class label. With
DIf is expressed the intensity of the influence and to calculate the influence
it is weighted by the Symmetric Ratio Impact that represent the relative
impact of the perturbed feature f.

SRIf = po,ci

pf,ci
+ pf,ci

po,ci
(3.2)

Then the PIR that stands for perturbation influence relation is calculated as
follows:

PIRf = DIf ∗ SRIf

= (po,ci − pf,ci) ∗ (po,ci

pf,ci
+ pf,ci

po,ci
)

= pf,ci ∗ (1− pf,ci

po,ci
)− po,ci ∗ (1− po,ci

pf,ci
)

(3.3)

To optain the final nPIR, it is applied normalization over the PIR value:

nPIR = softsign(PIR) (3.4)

where:
softsign = x

1 + |x| (3.5)

The nPIR domain is [-1,+1] where +1 means that the feature f has a very
high positive influence for the prediction of the class label ci, 0 means that
the feature is neutral and -1 that has a very negative impact on the predicted
class label.

normalized Perturbation Influence Relation Precision

nPIRP stands for normalized Perturbation Influence Relation Precision and
represent the precision to which the model has learned a specific feature. This
is due to the fact that a feature can impact more classes together, if a feature
impacts a large number of classes implies that the concept represented by
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the feature is general and then it is associated to different possible output
pattern. In this case the feature has a negative precision; otherwise if the
feature and its concept impact mainly the class of interest it will have a
positive precision. Here are reported the mathematical formulas without
going much in the details because for binary classification problem, that is
the case of study of this thesis, is not useful.

ξci = po,ci ∗ |nPIRci| (3.6)

ξC/ci =
C/ciØ

c
po,c ∗max(0, nPIRc) (3.7)

Then the PIRP that stands for perturbation influence relation precision is
calculated as follows:

PIRPf = DIf (ξci, ξC/ci) ∗ SRIf (ξci, ξC/ci) (3.8)

To optain the final nPIRP, it is applied normalization over the PIRP value:

nPIRP = softsign(PIRP ) (3.9)

Also in this case the domain ranges in [-1,+1] where +1 indicates that the
feature impact only the current class label ci, -1 indicates the feature impact
more the other classes with respect of the current class label and 0 indicates
that the feature impact all the classes in the same way.

3.1.5 Local explanation
The local explanation of a given input and a predicted original label consists
of a list of features selected from the input to which is applied separately a
perturbation and for each perturbation it is provided a Numerical Explana-
tion and a Visual Explanation that show which are the features belonging
to the perturbation and how much they are influential for the original class
label. For each new perturbed input are provided two type of explanation:

• Numerical Exlpanation: The numerical explanation is composed by the
two scores indices nPIR and nPIRP discussed in the previous section. It
expresses how much the feature impact the prediction of the class label,
which are the amplitude of the impact and how much is precise.

• Visual Explanation: The visual explanation attempts to show in a visual
representation which are the feature selected from the input and how
much each one is influential.
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3.2 EBANO Text Architecture

Figure 3.2. EBANO Text Architecture

In this section is punctually described the EBANO Text architecture to
explain, given a fine-tuned BERT model for sentiment classification and an
input text review to predict the output, how the black-box model made the
prediction. In other words it is the architecture to provide the outcome local
explanation of the predicted class label of a given input text, by applying
different types of perturbations over different types of interpretable features
extracted. The overall architecture and workflow is showed in figure 3.2 and
is the specialization of the General Methodology 3.1 in the context of Natural
Language Processing. The experimental choices about the task and the black-
box model used will be motivated later in the section 4.1.

3.2.1 Input feeding
The input document containing the input review is feeded into the BERT
model. The input is tokenized as wordpieces and it is representend with
token embedding, segment embedding and position embedding like standard
BERT’s representation as explained in section 2.3.1. The input text is also
pre-processed by removing html tags.
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3.2.2 Interpretable features extraction
The interpretable features extraction is the most critical phase in the work-
flow. In this work, features are extracted at tokens and sentences granularity
level while characters features extraction are not treated. All this features
extraction methods are positional this means that same word in different
positions are treated as different words. To do this each token is represented
as a tuple (id,word). With this representation is possible to exploit the po-
tential of BERT’s contextualized word embeddings 2.3.4.

Three different type of interpretable features extraction are possible in EBANO
Text, each of them gives a different meaning to what are related features:

1. Part-of-speech feature extraction

2. Cluster feature extraction

3. Multi-layer Word Embedding feature extraction

a) Part-of-speech features extraction

This type of feature extraction, selects words that are related in the sense
that belong to the same part-of-speech. The intuition below this type of fea-
tures extraction is that different parts-of-speech can have different meaning
for the prediction and the model needs to be able to capture this semantic
difference. Tokens are divided in groups like adjective, noun, verb, adverb
and so on.
After the tokenization phase, it is attached to each (id,token) tuple an ad-
ditional field containing the part-of-speech tag to which it belong to. This
implies that each word is represented as a 3-Tuple (id,token,tag).

Then it is created a list of list:

• Each element of the outer list corresponds to a different part-of-speech
tag. There is an outer list for each part-of-speech taken into account
and each of them will be a different feature selection where, by applying
a perturbation, will be created a new perturbed text.

• Each inner list contains the list of (id,token) tuple corresponding to the
current part-of-speech tag. In other words this list contains all words
and their relative position that belong to the current feature selection.
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Figure 3.3. Part-of-speech feature extraction

b) Sentence features extraction

This type of feature extraction instead, selects words that are related in the
sense that belong to the same sentence in the input text. The intuition below
this type of features extraction is instead that whole sentences can have a
complete meaning and the model need to be able to capture it. This time,
after the tokenization phase, it is attached to each (id,token) another number
that corresponds to the id of the sentence to which it belongs in relation to
the whole input text. In this case the 3-Tuple is (id,token,sentenceId).

Also in this case it is created a list of list:

• Each element of the outer list this time corresponds to a different sen-
tence in the whole text. There is an outer list for each sentence in the
input text and each of them will be considered as a different feature
selection to which apply a perturbation to create the new input texts.

• Each inner list contains the list of (id,token) tuple belonging to the
current sentence.
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Figure 3.4. Sentence feature extraction

c) Multi-layer word embedding features extraction

In this case words are grouped together by looking their featurized repre-
sentation given by the model. This implies that the meaning of related in
this case is that have similar word embedding representation. The intuition
is that words with a similar representation learned by the model probably
have similar meaning and then can be influential if grouped together. To do
this it is applied the k-means clustering algorithm over the word embedding
of each word to figure out groups of related words. In this case the list of list
is composed as follows:

• Each element of the outer list corresponds to a different cluster. There
is an outer list for each cluster that correspond to a different feature
selection and then to a new perturbed text.

• Each inner list contains the list of (id,token) tuple corresponding to
words belonging to the current cluster.
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Figure 3.5. Clustering feature extraction

Features extraction methods comparison

The part-of-speech feature extraction method tries to explore the semantic
meaning of words by looking to which different part-of-speech they belong
to. The sentence feature extraction method method instead explores more
the position meaning learned by the model for each word. Finally instead
the multi-layer word embedding feature extraction method is the only one
that look really inside the model to figure out which kind of representation
it has given to words by looking the values of the lasts transformer encoder
layers. This last feature extraction method explores the learned features of
the fine-tuned model to figure out what it has learned and also their context.
The types of feature extraction are three because, looking different aspects
of the input text, can provide different types of explanation.

Comparing instead the execution time, for the part-of-speech and sentence
feature selection is near to zero in that the tagging phase is not much time
consuming, while the feature extraction phase for the multi-layer word em-
bedding feature extraction is very more heavy.
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3.2.3 Perturbation
After selecting a set of interpretable features, as explained in the previous
part, EBANO Text applies a perturbation in correspondence of these features.
A perturbation can be viewed as a noise that is added to the input text to
create a new perturbed text without the selected concept. The input of this
phase is the list of list from the previous phase and the output is a list of
perturbation, and then a list of new perturbed texts, for each element in the
outer list in input.

Two different types of perturbation are proposed:

1. Removal perturbation

2. Substitution perturbation

a) Removal perturbation

All the selected features are removed from the input text. Multiple blank
spaces are merged into one and spaces before punctuation are removed to
produce a new text that is written like humans. One new perturbed text is
created for each of the outer list and correspond to a different perturbation.

Example of a single removal perturbation:
INPUT TEXT: This is a good example of removal perturbation
PERTURBATION: This is a good example of removal perturbation
PERTURBED TEXT: This is a good of removal

b) Substitution perturbation

For each of the selected features looking for a possible antonym of the word,
if one is founded the original word is substituted with the antonym, otherwise
it will remain unchanged. Also in this case is produced a new perturbed text
that correspond to a different perturbation for each of the outer list.

Example of a single substitution perturbation:
INPUT TEXT: Now a good example of substitution perturbation
PERTURBATION: Now a good "bad" example of substitution perturbation
PERTURBED TEXT: Now a bad example of substitution perturbation
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3.2.4 Local explanation
Feeding the Input Original Text into the model, are extracted:

• Original Predicted Label
• Original Probabilities
• Original Label

Each Perturbed Text is also feeded into the model and are extracted:

• Perturbed Predicted Label
• Perturbed Probabilities

The Original Label is extracted only if is available from the input dataset
otherwise it is labeled as [Unknown]. This label is important to understand
if, with the original text, the model takes a good or a wrong prediction.

Given the Original Predicted Label and the current Perturbed Predicted Label
it is possible to observe if the current perturbation has changed the prediction
of the class label. Furthermore comparing the Original Probabilities and the
Perturbed Probabilities it is possible to observe how much this current per-
turbation has changed the prediction (not necessarily changing the predicted
class label). Due to this purpose are calculated the two indices explained in
the section 3.1.4:

• nPIR - normalized Perturbation Influence Relation
• nPIRP - normalized Perturbation Influence Relation Precision

All this information are saved in a json file called Transparency Report that
allows the final user, with some queries, to visualize all information desired.
It is possible to filter by choosing the type of features extraction, the type of
perturbation or the value of influence indices.

Local explanation

The transparency report is the responsible for providing the Local Explanation
of the input text and the outcome of the model. In the first section are report
all the information about the original text and the original outcomes of the
model. The information reported are the following:
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• Original Input Text
• Original Label
• Original Predicted Label
• Original Predicted Probabilities

The second section is divided in different subsection for each couple of
feature extraction and perturbation type created. Each of these subsection
is composed by a list of perturbations, where each perturbation contains
the following information and provides the visual explanation 3.6 and the
numerical explanation 3.7:

• Features selected
• Text Before Perturbation with highlighted features
• Text After Perturbation
• Perturbed Predicted Label
• Perturbed Predicted Probabilities
• nPIR and nPIRP

In the following figures 3.6, 3.7 is showed an example of a single perturbation
over a single feature extracted. The full report will contains a list of them,
where each one corresponding to a different perturbation over a different
feature extraction. The objective of this figure is to show which are the
information reported in the final output.
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Figure 3.6. Local explanation: Visual explanation.

Figure 3.7. Local explanation: Numerical explanation.
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3.2.5 Parts-of-speech features extraction details
Each part-of-speech selection is a macro categories containing sub-tags. For
example the adjective part-of-speech selection is the union of standard adjec-
tives, adjectives comparative, adjectives superlative and so on. This union
is coherent with the grammar point of view. Apart from this are created
other macro categories that are not closely related to grammar as the "Oth-
ers" part-of-speech selection that contains foreign words, symbols, number
and so on. These groups have the aim of reducing the complexity of the
problem and making human understandable the features selection. Indeed
having a lot of parts-of-speech categories will create more perturbations and
more likely less influential. Another reason of this choice is that reducing the
number of macro categories is easier to create perturbation where the feature
selection is the combination of these categories.

More precisely the macro categories defined are:

• Adjectives: all type of adjectives, comparative, superlative etc.

• Nouns: all type of noun, singular, plural etc.

• Verbs: All type of verbs

• Adverbs: contains the union of all types of adverbs and modals.

• Conjunctions: union of conjunctions, prepositions and determiners

• Pronouns: union of all types or pronouns and all the WH words like
what,which etc.

• Interjection: all type of interjections

• others: contains foreign words, symbols, numbers
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3.2.6 Multi-layer word embedding features extraction
details

This features extraction method tries to find similar words by clustering
the inner representation learned by the model during pre-training and fine-
tuning. The model is composed by multiple transformer encoder [23] layers
and each of them gives a possible featurized representation of the word. In
the base version of BERT there are 12 layers each one of 768 dimensions
while in the large version there are 24 layers each one of 1024 dimensions.

In the Multi-layer Word Embedding feature extraction method are extracted
all features of the last four layers of the model, that in this case of study is the
base version, for each wordpiece. This implies that is extracted an Embedding
Tensor of shape (N°Wordpieces, N°Features = 768, N°Layers = 4) and then each
wordpiece is represented by a matrix of shape (N°Features = 768, N°Layers = 4).

The clustering algorithm is not applied directly on the tensor but firstly
are applied a set of transformations as showed in figure 3.8.

Figure 3.8. Word Embedding transformations.
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Word embedding transformations

1. SUM: Starting from the tensor read from the model each component of
each wordpiece embedding is summed over the layer axis as showed in
equation 3.10 . The wordpiece’s representations passes from the matrix
of shape (N°features,N°Layers) to a single vector of shape (N°Features).

The sum has the purpose of maintain a good representation of the word-
piece but reducing the dimensionality over one axis.
For each feature vector of each wordpiece it is applied:

F<i>
sum =

4Ø
l=1

F<i>
[l] (3.10)

Where F [l] is the feature vector for the layer l and i is the wordpiece.

This transformation reduces the size of the representation from the ten-
sor of shape (NWordpieces, NFeatures, NLayers) to an embeddin matrix of
shape (NWordpieces, NFeatures).

Figure 3.9. SUM Word Embedding transformation.
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2. AVG: features extraction it is applied at token granularity, but BERT’s
input is splitted into wordpieces and for each of them are extracted the
features. To join wordpieces corresponding to the same token it is ap-
plied the averaging of each component for each wordpiece.
For each tokens splited into wordpieces is applied:

F tk =
qnw

w=1 F
<w>
sum

nw
(3.11)

Where Ftk is the feature vector of the token tk, nw is the number of
wordpieces to which the token is splitted and Fsum

<w> is the vector rep-
resentation, summed over axis, of each wordpiece w.

This transformation reduces the size of the representation of the em-
beddin matrix from shape (NWordpieces, NFeatures) to (NTokens, NFeatures)
because is valid the following equation:

NT okens ≤ NW ordpieces (3.12)

Figure 3.10. AVG Word Embedding transformation.
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3. Before applying the clustering algorithm are applied also a set of pre-
processing techniques as showed in figure 3.11:

• a) pre-processing: it is used to standardize features by removing
the mean and scaling to unit variance or normalize samples individ-
ually to unit norm. This kind of transformation keeps unchanged
the embedding matrix representation as (NTokens, NFeatures) where
NFeatures is equal to 768.

• b) PCA: it is used to reduce features dimensionality by applying
the PCA algorithm. Clustering on high-dimensional data is known
problem in data mining. To solve this are trained two PCA models
one reducing to 30 features and the other reducing to 50 features.
The PCA models are trained by taking random contextualized word
embedding words from random input review taken from the test set
of the dataset in order to maintain the same distribution of the train-
ing dataset. This trained models are saved into local disk and are
used for reduce contextualized word embedding of new words. It is
experimented that reducing to 30 features works better.

This kind of transformation reduces the embedding matrix repre-
sentation shape from (NTokens, NFeatures) where NFeatures is equal to
768 to (NTokens, NF_Reducted) where NF_Reducted is equal to 30.

This two alternatives,3a and 3b, have the objective of improving the
performance of the cluster algorithm. Comparing the results to observe
which is better is not easy due to high-dimensional of input data but,
looking lot of example, the PCA seems to perform better as it divides
clusters into more homogeneous groups of words.
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Figure 3.11. PCA Word Embedding transformation.
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Clustering algorithm

Once extracted word embedding and have applied the set of transformation
until reaching the final embedding matrix, it is possible to clusters features
to get similar groups of tokens. The algorithm used to get clusters of similar
words by their multi-layer representation inside the model is the K-Means
algorithm 2.1.1. The hyperparameters of K-Means are selected with a large
number of tests. The final values are:

• Maximum number of iterations = 5000

• Different initial centroids = 150

• Initialization of centroids = ’random’

This choice is due to have a good tradeoff between performance and compu-
tational time. The most important parameter of the k-means algorithm is
the number of clusters K. Due to the high dimensionality of word embedding
it is difficult to have a priori understanding of the distrubution of data and
then the k-means algorithm is runned for different values of K and is chosen
the top-K that gives a better division of words as showed in figure 3.12.

Top-K evaluation

The clustering algorithm is applied for different values of K. The minimum
number of possible clusters is 2 while the maximum number of clusters cannot
be fixed but needs to be function of the size of the input text. For this reason
the Kmax is calculated as follows:

Kmax =
ñ
Nwords + 1 (3.13)

This implies that the k-means is runned with values of K that are in range
[2,Kmax ] and after are all evaluated to understand which one givea a better
division of words.

K score

To each possible K as number of clusters, it is assigned a K score.
The K score is calculated as follows:

Kscore = Kmax
c=0

A
nPIRc

len(c)

B
−

K
min
c=0

A
nPIRc

len(c)

B
(3.14)
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Figure 3.12. Clustering evaluation.

Where c is the current cluster, len(c) is the number of words inside the cur-
rent cluster and nPIRc is the nPIR value calculated with a perturbation over
the current cluster c.

Given K clusters, is calculated for each cluster c theWeighted nPIR, weighted
by the number of words belonging the cluster. This is due to reward the
smaller cluster of words that is more influential for the prediction. The be-
hind intuition is that big clusters of words are more likely to contains influ-
ential words and with this score calculation is attempted to find the smaller
cluster of words that is high influential. Finally the Kscore is simply calcu-
lated as the difference between the max and the min of the Weighted nPIR
calculated before for each cluster c.

Also other methods have been tried like the calculation of the Silhouette
as explained in 2.1.1, but the proposed method is function of the objective
of this clustering that is not to divide in the best way words, but is to di-
vide words in group that are more influential. Once founded the K with the
highest score, it is defined as top-k and their relative clusters are taken as
output of the feature extraction phase.

In the figure 3.13 is is possible to see the entirely workflow to obtain the clus-
ter feature extraction starting from the input text and all the transformation
of the embedding representation before applying the k-means algorithm.
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Figure 3.13. Multi-layer Word Embedding feature extraction full schema
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Chapter 4

Experimental Results

In this chapter will be motivated all the experimental choices in order to apply
the proposed methodology in the context of natural language processing. In
particular are motivated the choices of the dataset, the deep neural network
used and the experimented task. Moreover are showed two examples of local
explanation of input text individually highlighting the salient aspects of the
process of explanation. The first example shows a short review in order to
understand with a simple and practical example how the methodology works,
the second example instead shows how is possible to provide a meaningful
local explanation also with complex input text. A part of this are reported
some considerations and some global results that shows how it is possible
to analyze each class label globally by looking all the influential feature in a
large corpus of input texts.
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4.1 Experimental settings
In the following section are explained all the choices to apply the General
Methodology explained in the chapter 3.1 in the context of Natural Language
Processing explained instead in the section 2.2.

4.1.1 Task
The experimented task is sentiment analysis. This is because, due to the
complex nature of text and natural language tasks, is more easy to start
with a binary problem (predict if the input review is positive or negative).
The objective is to experiment the methodology, independently from the
chosen task, then staring from an easy task and after try to generalize the
methodology. Another reason for choosing this task is that is a well know
problem and there is a lot of documentation and code on the web. The
scores indices explained before (nPIR and nPIRP) is a general approach for
multi-class classification. Due to the fact that in this case it is a binary
classification problem, the precision index nPIRP is not significant but it is
left there because the approach can be extended to a very similar multi-class
task like topic detection.

4.1.2 Dataset
The chosen dataset is the IMDB reviews dataset [9]. It is composed by 50000
film’s review divided in positive and negative equally. In the filename it is
specified the id of the review and the score in the format:

• reviewId_score

Where score is a number in the range [0,10].

• 0 means that the score of the review is unknown.

• 1-5 means that the score of the review is negative.

• 6-10 means that the score of the review is positive.

Also in this case, it has been chosen because is a very well know dataset,
with a lot of documentation available on the web and moreover is also one
of the dataset contained in the TensorFlow framework.
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4.1.3 Neural Network architecture
The neural network architecture chosen is BERT [4] that, as explained in
section 2.3, is currently the state-of-the-art for many natural language pro-
cessing tasks. It is used the smaller version of the pre-trained models (BERT-
Base, Uncased) for performance and complexity reasons. The hardware used
to all experiments is a normal PC accessible to normal people with a quad
core cpu and 16gb of ram. Also in this case the scope is to experiment the
methodology and after maybe generalize with a larger version of BERT and
a more powerful hardware.

4.1.4 BERT fine-tuning
Starting from the BERT-Base and Uncased pre-trained model, it is fine-tuned
for the sentiment classification task. To do this it is added a classification
layer where, taking the representation of the whole sentence given by the
[CLS] token and feeding it into a softmax, predict if the class label is (0/1)
and then positive or negative. The model is trained with 25000 input reviews
from the IMDB dataset, 12500 positive and 12500 negative, reaching an
accuracy of 86%. The model is saved as Tensorflow estimator to be used
again. The fine-tuning phase, exploiting transfer learning, is inexpensive
compared with pre-trainig and then requires less computational power and
less training data. With actual performance it is possible to fine-tune the
model with about 14 hours in a local cpu and in a less then 1 hour in a
Google Colab TPU.
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4.2 Tools, frameworks and libraries
In this sections are reported the principal tools and libraries used and is
explained where they are mainly used in order to realize the code of EBANO
Text.

NLTK

NLTK [8] stands for Natural Language ToolKit and is a suite of libraries and
software for human natural language processing. In EBANO is used maily
for the following tasks:

• Tokenization: is used to split the input text into words and punctuation.
This type of tokenizer is different from the one of BERT explained in
section 2.3.1 because not works at wordpieces level but a tokens level.

• Parts-of-speech tagging: it is used to attach to each token the part-of-
speech tag to which it belongs for the part-of-speech features selection
3.2.2.

• Senteces tagging: similar to part-of-speech, it is used the sentences tok-
enizer to split each input into sequence in order to create the sentence
feature selection 3.2.2.

Numpy

Numpy [14] is a python library specialized in fast matrix operation or multi-
dimensional strucutres. It is used for all the computational treatment of
tensor, matrix and vectors.

Scikit-learn

Scikit-learn [15] contains a set of tools for data mining, data analysis and ma-
chine learning and it is builted on Numpy, Scipy and Matplotlib. In EBANO
it is used mainly for the multi-layer word embedding feature extraction 3.2.6:
1. Pre-processing: during word embedding transformation are applied a set

of preprocessing techniques like standard scaling and normalization.

2. PCA: always in the word embedding transformation it is used the pca
tool to reduce the features of the embedding matrix. A pca model was
trained and saved in local disk to be loaded again for new dimensionality
reduction always with the same library.
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3. K-Means Clustering: the clustering algorithm used for the multi-layer
word embedding feature extraction it is applied with the k-means tools
of scikit-learn.

Tensorflow

TensorFlow [10] is an end-to-end machine learning platform. It is open source
and has a large set of tools and libraries. Moreover there is a lot of documen-
tation and works on it available on the web. In this work tensorflow is used
to everything about the neural network model and in particular to create the
BERT model, to train it, to save the estimator of the model on local disk
and to load the estimator to make new prediction on demand.
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4.3 Examples of local explanation
In this section will be analyzed two different examples of input text in order
to show the different feature extraction methods, perturbation methods and
local explanations. The first example shows a simple review in order to make
more understandable how the theory ideas are applied to provide the local
explanation. The second one instead shows how the proposed framework
works on a real large input review. Here are presented only two examples
but the methodology was tested on a very large and various corpus of input
texts.

4.3.1 Example of short review

In this first example is analyzed a very short review. It is very human
understandable review and also simpler to predict for the model. This implies
that can be a very good example in order to illustrate how the methodology
works.

Original prediction

In the first part are reported the information about the input review, the
original label expected, the predicted label and the predicted probabilities as
showed in figure 4.1. This review is expected to be negative and the model
correctly predict the class label with high probabilities.

Figure 4.1. Example 1: Original prediction
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Part-of-speech feature extraction and removal perturbation

Firstly, over the part-of-speech feature extraction, are applied a set of removal
perturbation.

What emerges by applying this type of perturbation over this feature ex-
traction method is that adjectives are very influential for the prediction as
showed in figure 4.2, while nouns and verbs are not influential as showed in
figures 4.3 and 4.4. All the others part-of-speech are not reported but are
not influential for the prediction.

Analyzing these results emerges that part-of-speech feature extraction can
provide as explanation both the words responsable of the predicted label,
that in this case are "bad" and "awful", and the different parts-of-speech in-
fluential for the prediction, that in this case are adjectives. both this aspects
can be interesting to be analyzed in order to understand the behaviour of
the model.

In this case the behaviour of the model is how a human expects because
is easy to understand that these two words are the most important in the re-
view, but is needed to verify that the model has taken the prediction exactly
for these and not for other aspects.

This is the first part of the local explanation, each feature extraction looks
different aspects of the input and then can be used together to provide a
good explanation of the behaviour of the model.
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Figure 4.2. Example 3: Adjectives removal perturbation
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Figure 4.3. Example 3: Nouns removal perturbation
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Figure 4.4. Example 3: Verbs removal perturbation
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Part-of-speech feature extraction and substitution perturbation

Now, over the same part-of-speech feature extraction, are applied a set of
substitution perturbation where each word is substituted with its antonym if
founded. In this case, instead of analyze the absence of a concept, is analyzed
the substitution with the opposite concept in order to denote the behaviour
of the model.

Firstly, in figure 4.5, is reported the substitution over adjectives and what
emerges is that, replacing the adjectives with their antonyms, the prediction
changes. This is reasonable also for humans and the model captures it cor-
rectly.

In the figures 4.6 and 4.7 are reported the substitution over verbs and adverbs
that, like all the other parts-of-speech not reported here, are not influential
for the prediction.

One interesting point in order to obtain a local explanation can be to compare
the removal perturbation and substitution perturbation over the same words.

91



4 – Experimental Results

Figure 4.5. Example 3: Adjectives substitution perturbation
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Figure 4.6. Example 3: Verbs substitution perturbation
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Figure 4.7. Example 3: Adverbs substitution perturbation
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Sentence feature extraction and removal perturbation

Now it is applied the removal perturbation over the sentence feature extrac-
tion method.

In this simple example there are only two sentences and both are not in-
fluential for the prediction as showed in figures 4.8 and 4.9.

This behaviour of the model is how is expected because both sentences are
very negative and removing only one of them at a time cannot change the
prediction.

One aspect that emerges here is that different feature extraction methods
look for different aspects of the input text and then to provides different
explanations. This implies that all methods can be used in a complementary
manner.
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Figure 4.8. Example 3: Sentence 1 removal perturbation
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Figure 4.9. Example 3: Sentence 2 removal perturbation
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Clustering feature extraction and removal perturbation

Finally is applied the removal perturbation over the multi-layer word embed-
ding feature extraction method.

In this case the algorithm automatically discovers that the top-k is four.
Following are reported all the four clusters defined by the k-means algorithm
over the word embedding extracted from the model.

Analyzing the results emerges that the only cluster responsable for the pre-
diction is the number two as showed in figure 4.12. This cluster is composed
by the words "was", "awful", "bad" and "movie" and applying a removal per-
turbation over this feature the predicted label changes from negative to pos-
itive positive with a very high nPIR index. All the other clusters instead are
not influential for the prediction as showed in figures 4.10, 4.11 and 4.13.

This behaviour of the model with this feature selection is how it is expected
and the influential feature founded is very similar to the one founded by the
part-of-speech. Moreover the clustering is able to group also words belonging
to different sentences and to different parts-of-speech. In this case combines
to adjectives like bad and afwul and closely related words like was and film.

This is the last part of the local explanation and, combined with the other
explanations provided, can help to figures out why the model makes a par-
ticular prediction given an input review.
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Figure 4.10. Example 3: Cluster 0 removal perturbation
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Figure 4.11. Example 3: Cluster 1 removal perturbation
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Figure 4.12. Example 3: Cluster 2 removal perturbation
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Figure 4.13. Example 3: Cluster 3 removal perturbation
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4.3.2 Example of wrong prediction
In this example the model makes a wrong prediction with the original input
text. A local explanation, due to the fact that the original predicted label
was wrong, can help to figure out an answer to the question:
Why the model makes a wrong prediction for this input review?

Original prediction

Given the original input text, the model predicts that the review is negative
with a percentage of 99% but the original label of the review is positive
as showed in the figure 4.14. This implies that the model makes a wrong
prediction on the original text and then the explanation can help to figure
out why it happened.

Figure 4.14. Example 2: original prediction

Part-of-speech feature extraction and removal perturbation

Starting from the part-of-speech features extraction method it is applied a
removal perturbation over each selected words.

In this case the adjectives are influential for the prediction as showed in
figures 4.15 and 4.16. After the perturbation over the adjectives, and then
after removing each adjective, the predicted label changes. Due to the fact
that in this example the original prediction of the model was wrong, emerges
that the adjectives are one of the responsible of the wrong prediction.
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Applying instead a removal perturbation over the nouns the predicted label
not changes and this implies that nouns are not influential for the original
prediction, as showed in figures 4.17 and 4.18.

Here are reported only these two examples of perturbation, what emerges
by analyzing the full report is that only adjectives and verbs with a removal
perturbation are positively influential, while all the other are not influential.

Figure 4.15. Example 2: Adjectives removal perturbation
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Figure 4.16. Example 2: Adjectives removal perturbation scores

Figure 4.17. Example 2: Nouns removal perturbation
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Figure 4.18. Example 2: Nouns removal perturbation scores
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Part-of-speech feature extraction and substitution perturbation

This time, starting from the part-of-speech feature extraction, is applied a
substitution perturbation.

In this case adjectives are substituted with antonyms and what emerges is
that this type of perturbation not changes the predicted label. This is in-
teresting because the model predicts the same label both with original ad-
jectives and their antonyms. This behaviour is incoherent with the human
reasoning because the model originally did wrong, then the antonyms are
captured correctly and then, comparing with the removal perturbation of
the same adjectives, emerges that the original adjectives are not understood
correctly in this context while their antonyms are understood correctly. This
is because, also for humans, is reasonable that, if the original label was posi-
tive, changing the adjectives with their antonyms the label becomes negative.

The adjective feature extraction with substitution perturbation is showed in
figures 4.19 and 4.20.

Also in this case is reported only one example for simplicity but analyzing the
full report emerges that there are not part-of-speech with the substitution
perturbation that change the predicted label.
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Figure 4.19. Example 2: Adjectives substitution perturbation

Figure 4.20. Example 2: Adjectives substitution perturbation scores
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Sentence feature extraction and removal perturbation

Now are reported some examples of sentence feature extraction with a re-
moval perturbation.

The sentence showed in figures 4.21 and 4.22 is an example of perturba-
tion that changes the class label. This sentence then is one of the responsible
of the wrong prediction.

The figures 4.23 and 4.24 show an example of a non influential perturba-
tion that not changes the class label.

Also in this case are reported two examples for simplicity and what emerges
looking the full report is that only the third sentence changes the class label
while all the other are not influential and then not change the predicted label.

Figure 4.21. Example 2: Sentence 3 removal perturbation
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Figure 4.22. Example 2: Sentence 3 removal perturbation scores

Figure 4.23. Example 2: Sentence 7 removal perturbation
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Figure 4.24. Example 2: Sentence 7 removal perturbation scores
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Clustering features selection and removal perturbation

In the last part of this example is showed the multi-layer word embedding
feature extraction to which is applied a removal perturbation.

The seventh cluster founded by the algorithm is positively influential for the
prediction as showed in figures 4.25 and 4.26, while the ninth cluster is not
influential as showed in figures 4.27 and 4.28. Also in this case are reported
only two examples but in the seventh cluster is the only one responsable for
the prediction by using the clustering algorithm.

In this case the algorithm has automatically figured out that the top-k is
15. One interesting aspect captured by this example is that the multi-layer
word embedding feature extraction favors smaller groups that change more
the prediction for how it is implemented because it weights the score for
the number of words inside the feature in order to understand which is the
top-k. It can be very interesting to analyze the behaviour of the model in
this case where, in the first case are removed only two words and the pre-
diction changes, while in the second case are removed a lot of words but the
predicted class label not changes.

Figure 4.25. Example 2: Cluster 7 removal perturbation
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Figure 4.26. Example 2: Cluster 7 removal perturbation scores

Figure 4.27. Example 2: Cluster 9 removal perturbation
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Figure 4.28. Example 2: Cluster 9 removal perturbation scores
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4.4 Global results
In the previous sections are analyzed the local results of the methodology
over a single input example at a time. One further analysis can be done
globally for more input texts together. To this purpose has been create a
dataset of different transparency reports, each one with the local explanation
of a different input text. The input texts analyzed are taken from the test
set of the IMDB dataset randomly. Each of this trasparency report contains
all the perturbations for each type of features selection.

4.4.1 Global statistics
With the purpose to measure how many times EBANO Text can find a influ-
ential feature selection and also to make a comparison between the different
feature extraction techniques it is done the following analysis.

For each different feature extraction is calculated, in percentage, how many
time finds at least one influential perturbation (with nPIR ≥ 0.5). This cal-
culation it is done separately for all different feature extraction type and also
with all the three methods together. Beyond this it is also calculated the
same percentage but taking also perturbation on two-by-two combination of
the selected features. For example combining adjective and noun to create
a bigger perturbation, or combine two different senteces or again combining
two different clusters.

NB: In the following analysis are reported only the Removal Perturbations.

Feature Extraction Type No Combinations 2 Combinations
Part-of-speech 35% 78%
Sentence FE 22% 30%
Word Embedding 78% 92%
All 82% 95%

Table 4.1. Global results.

In the table 4.1 are reported the percentage of time where each feature ex-
traction method found at least one influential perturbation for each input
text with respect to the total number of input texts.
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As the table shows, the Multi-layer Word Embedding feature extraction has
about the twice of probability of found a influential removal perturbation
with respect of the other two methods if two-by-two combinations of them
are not taken into account.

The sentence feature selection, without taking into account combinations,
only in the 22% of cases finds a influential perturbation. The main prob-
lem of this feature extraction type is that when occurs in very long review
it removes a small subset and then the model can still understand the con-
text without change the prediction. With this type of feature selection the
words analyzed are not function of the size of the review but are fixed to
the sentence length. When attempt with small review sentence feature ex-
traction works quite well, with medium-large review not find often a good
feature selection, but when find it is very interesting and very understand-
able in human terms. Also the combination two-by-two of sentences do not
increases much the percentage because with large review also two sentences is
a very small subset of the entirely text and have a percentage of 30%. In the
dataset are present review with also 4000 words and then about 40 sentences.

As regard instead for part-of-speech feature selection again it has a low per-
centage of find a influential feture selection without considering combinations
that is 35%, in this case the number of words taken into account is function
of the size of the review in that larger review will have larger set of adjec-
tives,nouns,verbs and so on. In this case what emerges is that by taking into
account also the two-by-two combinations of different parts-of-speech like for
example combining adjectives and nouns or adjectives and verbs and so on
the previous percentage becomes more then twice with a value of 75%. This
is due to the fact that also for humans is very different removing only the
word "good" or only the word "film" like in a single part-of-speech feature
selection, or removing the combination of "good film".

Instead multi-layer word embedding feature selection for its nature can take
into account words that are in different sentences, but also words inside the
same sentence but belonging to different parts-of-speech and then solves the
problems of the others two cases. For this reason without the combination
of clusters the percentage is relative high with a 82% and by taking into
account also the two-by-two combination of this similar cluster of words the
percentage grown until 95%. Moreover the clustering algorithm has some
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randomness inside and by multiple running of the same algorithm this per-
centage grown again. Furthermore the accuracy of the model, and then also
its inner representation of word embedding, is under the 90% and probably
for this reason the accuracy of word embedding presents some errors.

Another quantity of error is added by the type of perturbation, indeed the
removal perturbation applied on texts is not the same to the one applied on
images. Applied a removal of a portion of image in the input leads on re-
moving a concept and in the context of object detection works very well, in
text instead words are linked and is more complicated because the underlying
sentiment can remains good. Probably the removal perturbation for another
type of task like topic detection can have also better results.

Let clarify with an example:

• Image classification: if have a image classification algorithm that detects
cats, and you remove the specific portion of the image with the cat it
is expected that the algorithm not recognize again the perturbed image
as a cat but the label not cat because the perturbation implies a full
removal of the concept.

• Text classification:

1. Sentiment classification: if have for example the sentence "this is a
good film" and removing the feature "good" the new perturbed text
becomes "this is a film". For human this sentence is neutral than it
is expected that the probability to be positive is lower but not that
is negative this cause some imprecision.

2. Topic detection: in topic detection task instead is more likely that
the removal of some words will implies to remove the concept. For
example a text that speaking about sport, if removing this words it
is expected that the prediction is not sport and the removal will be
more precise.

For this consideration it was introduced the substitution perturbation where,
instead of simple removing one concept, it is changed with a possible oppo-
site concept. Returning on the previous example, also for humans, is more
reasonable that removing "good" and substituting it with the word "bad" the
sentiment become negative and then this is the concept that is influential for
the prediction.

117



4 – Experimental Results

4.4.2 Frequent influential words
For the class label Positive and then all the input texts that are originally
predicted as positive reviews, are taken all the more influential Removal
Perturbation (with nPIR ≥ 0.9) for all the different types of Interpretable
Features. By analyzing all the words that belong this features it is created a
Word Cloud with the frequency occurrences of them as showed in figure 4.29.

From the picture emerges that in very positive features appear nouns that
are sentiment neutral like "movie", "film", "story" that are responsible of ex-
press the concept and some adjectives like "great", "good" and so on.
In the picture appears also the word "weapons", maybe the reason can be
that the model was trained with a lot of positive reviews of war films and
then the model associates the weapons to a positive sentiment.
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Figure 4.29. Wordcloud Positive class label

The same analysis is done for the class label Negative as showed in the
figure 4.30.
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Figure 4.30. Wordcloud Negative class label

And also for both Positive and Negative labels looking which are in gen-
eral the more influential words as showed in figure 4.31.
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Figure 4.31. Wordcloud most influential words
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Chapter 5

Conclusion and Future
Work

In this final chapter are presented the final conclusions of this thesis show-
ing some considerations of the different feature extraction and perturbation
methods experimented. This part attempts to highlight the more innova-
tive aspects of the proposed methodology and the results obtained. Besides
this are proposed some possible improvements and future works to make the
methodology more general, flexible and effective.
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5.1 Conclusion
As explained in the previous chapters the objective of this thesis is to propose
and experiment a methodology for the explanation of black-box models in
the context of natural language processing. The need for this work emerged
after a study of state-of-the-art explanation’s techniques that showed a lack
in the natural language processing field.

The proposed methodology, called EBANO Text, consists of provide a local
explanation with a process of perturbation over a set of extracted features in
order to measure the impact of the influence of each feature over the original
predicted output.

The different methods of feature extraction proposed analyze different as-
pects of the input text. The part-of-speech feature extraction figure out if
there is a particular part-of-speech that has influenced the prediction. It is
human understandable because provides as explanation which is the part-of-
speech influential for the prediction and the words that belong to it. This
method become very powerful by taking into account also the two-by-two
combination by reaching an high accuracy. The sentence feature extraction
method instead figure out if there is a particular sentence influential for the
prediction. This method is probably the most human understandable one be-
cause provides as explanation a whole sentence and the words the belong to
it, but unfortunately is the method that found an influential feature with the
lower frequency. Finally, the multi-layer word embedding feature extraction
method is the most interesting and innovative one because look the inter-
nal learned feature of the model, contextualized in the input text, to figure
out which are the words influential for the prediction. It provides as out-
put explanation only the words influential and their positions, instead of the
part-of-speech or the whole sentence, and reaches an high accuracy both with
or without two-by-two combinations. One of the aspects that differentiates
this approach from the state-of-the-art is that, taking into account different
feature extraction methods, it can provides different types of explanation.

Another aspect that differentiates the proposed methodology from the oth-
ers state-of-the-art techniques is that experiments more type of perturbation
because, while the removal perturbation analyze the absence of a concept,
the substitution perturbation is potentially more powerful because analyze
the replacement of a concept with its opposite.
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5.1 – Conclusion

The different feature extraction methods and the different perturbation meth-
ods are complementary, because look different aspects of the input, and
together can provide a better local explanation. The comparison between
combinations of these techniques provides different results that can be very
helpful to understand the behaviour of the model and then, consequently,
reinforcing the explanation.

Another positive aspect of the proposed approach is that the visual explana-
tion highlights the words in the input text showing the context very clearly
and combined with the numerical explanation, given by the two indexes,
measure in a simple and intuitive way how much each feature is important
for the output prediction. These aspects are important to make the local ex-
planation as human understandable as possible. The greatest complications
encountered arises from the complex nature of human language, indeed each
different combination of words provides a different possible result and this
makes the analysis of results more difficult.

The methodology has been experimented on a large corpus of input texts
and almost in all cases is founded at least once feature influential for the
original prediction. Moreover the methodology has been experimented using
BERT as deep neural network, that is a very advanced model which is very
effective in understanding the context. This implied that the main objective
has been reached providing in each case a local explanation that explain why
the model, that is one of the most sophisticated available nowadays, makes
a particular output prediction. Moreover, by analyzing a large corpus of in-
put texts, it has been created a dataset of local explanations that allows to
understand which are the most influential words for each class label. These
most influential words are the ones learned as important by the model dur-
ing the training process and this analysis allows to figure out if during the
training errors or some forms of bias have occurred.

In conclusion, although there is still a lot of work to do, the hope is that
this work can help the eXplainable Artificial Intelligence community by pro-
viding a framework to better understand the models that are used in the
natural language processing field. Machine learning will probably continue
to grow in the future and is important that also the explainable artificial in-
telligence will keep pace to provide models more trusted and understandable
by humans.
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5 – Conclusion and Future Work

5.2 Future works
In this work is experimented the binary text classification task, one possible
evolution can be to explore the multi-class text classification field for exam-
ple by fine-tuning the model for topic detection. To do this the architecture
is already compliant, what changes mainly is the BERT’s model fine-tuning.

Besides this, a possible improvement of the feature extraction methods, can
be looking the attention values of the model to figure out the context of each
word with a particular focus on the [CLS] token that is the responsable of
the classification. Attention is a key aspect of the transformer encoder ar-
chitecture of BERT and then can be very interesting analyze also this.

Other types of perturbation can be experimented, for example the inser-
tion of new words randomly in the text, and the substitution perturbation
can be improved in that the antonyms founded are not always coherent with
the context.

Moreover another interesting improvement of the methodology can be, once
founded a list of words belonging the same feature that are influential for
the prediction, analyze how much each word impact the output to figure out
which ones are the more influential. This could allows to provide a better
visual and numerical explanation by highlights with different shades inside
the different feature selection based on the numerical values.

Finally the methodology can be experimented with the larger version of
BERT and maybe also different sequence models in the context of natural
language processing. This aspect requires more computational power. While
for the training phase the computational power is not a problem because it
is done one time, for the feature extraction and the prediction phase can be
a bottleneck.

Looking instead the user friendly feature of the framework can be very use-
ful to provide an interactive front end to create and query the transparency
reports both individually, to provide the local explanation, and jointly to
provide a kind of global understanding of the model.
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