
POLITECNICO DI TORINO

Master Degree Thesis

A framework for system
requirements verification in
Industrial Network Systems

Supervisors

prof. Riccardo Sisto

prof. Guido Marchetto

dott. Fulvio Valenza

dott. Jaloliddin Yusupov

Candidate

Antonio Giannone

Academic Year 2018-2019

Contents

List of Figures 7

List of Tables 9

1 Introduction 10

Thesis structure . 11

2 Industrial Control System 12

2.1 Network Environment Overview . 13

2.1.1 Industrial Infrastructure . 13

2.1.2 Field Device . 14

2.1.3 Connectivity Requirements 15

2.1.4 Fieldbus Protocols . 16

2.2 Innovative Features . 17

2.2.1 Industry 4.0 . 17

2.2.2 NFV and SDN Overview . 18

2.2.3 ETSI NFV Management and Orchestration 19

2.2.4 Leveraging NFV and SDN in ICSs 21

3 Real-Time Industrial Systems 23

3.1 Overview . 23

3.2 Related Works . 24

3.2.1 Latency Aware VNF Placement 24

3.2.2 Time-Sensitive SDN . 26

3

3.3 Interesting Exploited Technologies 29

3.3.1 Precision Time Protocol . 29

3.3.2 Intel Data Plane Development Kit 31

4 Thesis Objective 33

4.1 Open Issues . 33

4.2 Expected Results . 36

5 VerINS Design 37

5.1 High-Level Framework Overview . 37

5.2 Tools Used . 38

5.2.1 Microsoft Z3 Solver . 38

5.2.2 Neo4J Graph Database . 40

5.2.3 Java Jersey RESTful Web Services Framework 41

5.3 Service Graph Management . 42

5.4 Flow Design . 44

5.5 Timeslots Allocation . 46

6 VerINS Implementation 48

6.1 Framework Tasks Relationships . 48

6.2 XML Input Format . 49

6.3 Z3 formulas . 51

6.3.1 Mathematical Notations . 51

6.3.2 Placement Constraints . 52

6.3.3 Flow Scheduling Constraints 54

Virtual Path Computation 54

Flow Mapping Constraints 55

Flow Order Constraints . 59

Flow Element Overlapping Constraints 60

Total Timeslot Number Variable Constraints 62

Maximum Acceptable Latency Constraints 64

6.3.4 Objective Functions . 65

6.4 Result Reporting . 65

4

7 Test and Validation 67

7.1 Real Architecture Deployment . 67

7.1.1 OVS with DPDK . 68

7.1.2 Middlebox architecture . 69

7.1.3 PTP Deployment . 70

7.1.4 Endpoint architecture . 70

7.1.5 Physical Architecture Environment 71

7.2 Test and Validation . 71

7.3 Service Graph . 74

7.3.1 First Scenario . 74

7.3.2 Second Scenario . 75

7.3.3 Third Scenario . 76

7.3.4 Fourth Scenario . 76

7.3.5 Fifth Scenario . 77

7.4 Performance Summary . 78

8 Conclusion and Future Works 80

A RestAPI Developer’s Guide 83

A.1 New XML Features . 83

A.2 Resource Description . 84

A.3 Physical and Virtual Topology Management 86

A.4 Web Service Configuration and Packages 89

A.5 Resource Mapping Operations . 90

A.6 API Interaction Example . 91

Bibliography 94

5

Listings

5.1 z3 Problem Formulation Example 39

6.1 Placement Result XML Example 66

6.2 Flow Scheduling Result XML Example 66

A.1 Flow Element XML schema . 83

A.2 Main resouce XML schema example 84

A.3 Flow Element XML schema example 85

A.4 Property XML schema example . 86

A.5 Host XML schema example . 86

A.6 Connection XML schema example 87

A.7 Graph XML schema example . 87

A.8 Post request body example . 91

A.9 Get request to main resource body example 91

6

List of Figures

2.1 Modern industrial network architecture model 14

2.2 Industrial Network Hierarchy [4] . 15

2.3 High-level NFV Framework . 20

2.4 Example of and end to end network service with VNFs and nested
forwarding graphs . 21

2.5 NFV/SDN enabled DDoS mitigation scheme for ICS against DDoS
attacks scenario [13] . 22

3.1 Time Triggered Ethernet: layer 2 frame 26

3.2 TSSDN Benchmark topology [15] 28

3.3 TSSDN Simple Test Case[15] . 28

3.4 TSSDN Timeslots Partitioning [15] 29

3.5 PTP original purpose . 29

3.6 Conveyor Belt Example . 30

3.7 Typical Packet Capture Architecture 31

3.8 Linux Kernel With DPDK . 32

4.1 Simple network topology with two time-sensitive flows 34

5.1 Framework Design Overview . 37

5.2 Interaction through Java RESTful API 41

5.3 Service Graph Example . 42

5.4 Physical Topology Example . 43

5.5 Deployment Example . 43

5.6 Virtual Flows Definition Example 44

5.7 Physical Flow Mapping Example 45

6.1 Framework Tasks Relationships . 49

6.2 XSD Schema Tree Overview . 50

7

6.3 Virtual Flow Example . 54

6.4 Physical Topology Example . 55

6.5 H1 Deployment Scenario . 56

6.6 Firewall on H1 and Proxy on H2 deployment scenario 56

6.7 Firewall on H2 and Proxy on H1 deployment scenario 57

6.8 H2 Deployment Scenario . 57

6.9 Time Sensitive Flow Elements . 59

6.10 Non overlapping flows example . 60

6.11 Overlapping Flows Example . 61

6.12 Flow Element Relationships Example 62

6.13 Schedulation Example . 63

6.14 Max Latency Computation . 64

7.1 Open Flow Architectural Design . 68

7.2 OVS with DPDK technology . 69

7.3 OVS and DPDK architecture with VNFs 70

7.4 Physical Architecture Example . 71

7.5 Physical Topology Test Environment 73

7.6 Virtual Topology Test Environment 73

7.7 All Test Scenarios . 74

7.8 First Scenario Flow Scheduling Results 75

7.9 Second Scenario Flow Scheduling Results 75

7.10 Third Scenario Flow Scheduling Results 76

7.11 Fourth Scenario Flow Scheduling Results 77

7.12 Fifth Scenario Flow Scheduling Results 78

7.13 Performance Results . 79

A.1 Virtual and physical graphs mapping 88

8

List of Tables

4.1 Scheduling Example . 35

5.1 De Morgan Truth Table . 39

5.2 Timeslot Allocation Example . 46

6.1 Summary of Mathematical Key Notations 51

7.1 First Scenario Placement Results 74

7.2 First Scenario Flow Scheduling Results 74

7.3 Second Scenario Placement Results 75

7.4 Second Scenario Flow Scheduling Results 75

7.5 Third Scenario Placement Results 76

7.6 Third Scenario Flow Scheduling Results 76

7.7 Fourth Scenario Placement Results 77

7.8 Fourth Scenario Flow Scheduling Results 77

7.9 Fifth Scenario Placement Results 78

7.10 Fifth Scenario Flow Scheduling Results 78

A.1 Resources mapping for VerIns module 85

A.2 Resources mapping operations . 90

9

Chapter 1

Introduction

Industrial Control Systems (ICS) are undergoing a deep transformation of their
communication infrastructures towards increased connectivity of devices and ex-
treme flexibility of industrial plants. This is seen within the Industry 4.0 and
Factory of the Future (FoF) frameworks.
Innovative industrial applications exploit benefits from Software Defined Network
(SDN) and Network Function Virtualization (NFV) approaches; they can bring
several advantages, such as a detachment from the traditional Industrial Network
design and the power to administer the entire network environment from a central-
ized point.
As the higher flexibility of these systems will require frequent network reconfigu-
rations, an enhanced level of automation in the management of cybersecurity will
be necessary. The number of cyberattacks driven through the industrial network
infrastructure is increasing; they can exploit both inadequate segregation between
different network environments. Additionally, cyberattacks are increasing when
the corporate network is not properly segregated from the industrial one, as well as
exposed industrial systems that are potentially vulnerable. However, maintaining
industrial network systems is very challenging due to their safety-critical mission
inside the manufacturing process.
The following thesis provides high assurance levels, as required by the safety-critical
nature of these systems, by leveraging formal models and verification. Cyberattacks
may have different purposes and they can cause industrial process disruption, leak-
age of secrets or even stealing of money. In order to face these threats, a more
complex infrastructure must be deployed. On the other hand, innovative industrial
applications have strict requirements on end-to-end latency during critical events.
In ICS, systems involved within the network infrastructure should regularly make
a decision, report data to a centralized collector, and execute a remote command
with a deterministic end-to-end delay. If the operation is not completed in a spe-
cific timeslot, all the entire process may be invalidated. The consequence could vary
depending on the industrial environment type. In some environments, it can cause
production line breaks and only human assistance can restore the proper system

10

Introduction

functioning. There are also safety-critical systems where issues in industrial sys-
tems communication could cause ecological disaster or incidents that result in loss
of life. Bringing innovation inside these particular systems is very hard to achieve.
It is imperative to meet several requirements before deploying solutions inside real
ICS.
A solution has been designed and developed to assure formal industrial require-
ments verification with a particular focus on real-time control systems. This is
done by exploiting the innovative approach led by SDN and NFV technologies.

Thesis structure

The objective of the thesis is to define and implement a framework that allows the
verification on network requirements (e.g. network reachability, real-time commu-
nication, loop-free) in Industrial Network Systems. The topic is addressed with the
following partitioning in chapters:

1. Industrial Control System: a brief introduction on ICS infrastructure and
its changes through fourth industrial revolution. It contains also a clarifica-
tion of salient features of SDN and NFV solution deployed in an industrial
environment, with particular emphasis on the innovative infrastructure design
respect the traditional one.

2. Related Works: a summary of tools and already existing solutions exploited
that made feasible the presented solution implementation.

3. Thesis Objective: a brief overview of industrial security and reachability
issues with thesis work contextualization.

4. VerINS design: an overview of core module architecture design, showing
how service graphs and physical graphs are handling inside VerINS engine
and how to interact with core module.

5. VerINS implementation: explanation of module functioning presented as
a MAX-SMT problem solution. A particular attention have been given to
objective functions declaration and constraints attachment on Z3 formulation.

6. Test and validation: a brief test case presentation that validate the work
and give some performance results.

7. Conclusion and future works: analysis of developed module, with its
strengths and weaknesses, pointing out difficulties encountered during module
implementation and focusing in what could be improved in future module
development.

An appendix has been added to the thesis work to explain the interaction with
the developed module. The ”RestAPI developer’s guide” shows to the readers how
interaction with module has been standardised through a RestAPI available that
allows you a great interaction experience with the developed module.

11

Chapter 2

Industrial Control System

With Industrial Control System (ICS), we refer to a particular slice of a company
network environment. Inside this chapter will be analysed the most important fea-
tures of industrial networking. In particular, the focus will be on the main difference
with the standard network environment, in production in a typical general-purpose
company.
Firstly, an overview of the network model design will be given to the reader. Dif-
ferent types of industrial control systems will be shown and analysed, with their
application contexts. Segregation from the standard corporate network, industrial
middle-box, protocols, and requirements in terms of both end-to-end connectivity
and threats defence will be examined.
Then, the focus will be moved on innovative features on ICS, through the fourth
industrial revolution. SDN and NFV deployment in the industrial network will be
introduced to the reader with a general overview of the main features that distin-
guish this new way of viewing the networking world. There will also be a brief
introduction to innovative applications in the industrial environment, such as IIoT
applications and 5G integration in already existing network environments.
Devices and protocols used in an ICS are used in every industrial sector and crit-
ical infrastructure such as the manufacturing, transportation, energy, and water
treatment industries [1]. On the one hand, new applications deployment enabled
a meaningful evolution in the ICS environment. But on the other hand, they lead
to the birth of new requirements that have to be met to ensure proper functioning
of the entire system. Innovation is the keyword of the general networking environ-
ment, but it must be contextualized. An unbridled change may hurt a safety-critical
environment like the industrial one.

12

Industrial Control System

2.1 Network Environment Overview

2.1.1 Industrial Infrastructure

There are many types of ICSs environment, regarding their purpose and function-
ing. The most common are Supervisory Control and Data Acquisition (SCADA)
systems and Distributed Control Systems (DCS).
Now we will analyse main differences between these industrial system types. First
of all, DCS are process-oriented platforms that rely on a network of interconnected
sensors, controllers, terminals and actuators. A DCS allows you to control and
monitor a process. It works on a closed-loop control platform, and it is ideal for
one facility control. SCADA systems do not allow you to have a full control of
industrial processes. SCADA systems are data-oriented, and they are capable of
concentrating data acquisition without geographical restrictions from a single fac-
tory or a dozen. In general, they are more scalable and flexible. This is why they
are adopted when there is the need to deploy remote monitoring platform.
Both SCADA and DCS are essential for a comprehensive automation platform
to take advantage of the latest innovations in Industry 4.0 technology. Nowa-
days, many DCS solutions integrate SCADA systems into their operations. While
SCADA and DCS platforms started to develop with different purpose, attributes
from both architecture are often incorporated into a hybrid system the includes
both two architecture design. They’re now merging to create a unique supervisory
system for all facility’s needs [2].
Field Devices control local operations. They are responsible for a geographical
or contextual limited area, receiving and executing supervisory commands from
remote stations. They are also used to report data to a centralised monitoring sys-
tem to analyse general phenomenon behaviour. For instance, sensor networks are
exploited to explain the behaviour of a very different phenomenon, from the simple
ones like traffic congestion in an urban area to the most safety-critical ones, like
analysis of an alarming situation in a particular area. Over the decades, network
connectivity of these singular devices changes a lot. The standard architecture con-
sists of a mainframe computer located in a control room which coordinates all Field
Device through a point to point connection. Limits imposed by the standard model
are many. Wiring complexity, high risk related to having a single point of failure
often without any recovery plan, because of its high cost, are limits all associated
with the use of standard architecture design [3].
Many industries started to move to distribute Field Devices control to remote col-
lectors, that report data towards a centralised system. So network starts to become
more complex, obtaining architecture like the following one:

13

Industrial Control System

Figure 2.1. Modern industrial network architecture model

As shown in the figure 2.1, modern network infrastructure involves many dif-
ferent types of devices. The network which connects field devices operates with
so-called Fieldbus protocol. Both device types and Fieldbus protocols will be anal-
ysed in next paragraphs.
Actually, during last year, overall network industrial architecture is changing a lot.
This is due to the need to reach higher flexibility respect the one obtained through
the traditional approach guaranteeing at the same time security and reachability
requirements.

2.1.2 Field Device

Different special-purpose devices are involved in an ICS environment. An ICS could
choose to use a subset of them accordingly to its purpose. Besides, many of them
could be deployed in both two network architecture model analysed before (DCS
and SDADA systems). Deployment way of these devices changes accordingly to
network architecture model, but their function remains almost the same.
The most used ones in common industrial networks are:

� Programmable Logic Controller (PLC): this is a type of industrial de-
vice that is deployed in both DCS and SCADA systems. It provides local
processes management processing signals coming from sensors and actuators,
implementing functions more or less complicated.

� Master Terminal Unit (MTU): it communicates with RTUs in the same
industrial field, providing commands to be executed and collecting related
information.

� Remote Terminal Unit (RTU): it is a microprocessor-controlled field de-
vice. It receives commands from MTU, executes them a provides results to
the MTU responsible of the industrial field in which it is located.

� Human Machine Interface (HMI): a graphical user interface (GUI) appli-
cation that allows interaction between the human operator and the controlled
hardware.

14

Industrial Control System

� Intelligent Electronic Device (IED): a smart device capable of acquiring
data, communicating with other devices, and performing local processing and
control.

� Data Historian: it is a centralised database. It is used to log process data
coming from other field devices in an ICS environment. Obviously, data that
are collected by this kind of software are used by the company to analyse
process and improve quality.

� Control Server: it hosts the DCS or PLC supervisory control software
issuing commands to other industrial devices under control.

These devices operate a safety-critical mission inside overall network environ-
ment communication. They interact directly with machines issuing them com-
mands. Environment conditions establish what command must be sent. A fault in
end-to-end communication between these devices or decision process may be fatal
for the entire industrial process.

2.1.3 Connectivity Requirements

From what discussed at the end of the previous paragraph, Industrial Network
Systems (INS) demand that different type of requirements must have met during
their design operations. Engineering a reliable industrial network is challenging.
There are too many variables to be taken into account. INS features also depend
on surrounding conditions of the place of installation. In adverse weather condi-
tions, device materials have to be chosen carefully. Or if devices involved in the
industrial process are far apart, end-to-end latency must be validated. In general,
requirements that an industrial application has to meet are the following:

� High security: securing network infrastructure is a very critical process
during the last years. Cyber threats over the network are increasing day by
day. Industrial devices often are the main target of a cyber attack because
they have a straightforward software. In many cases, it allows them only
to perform their function in a very simple way. Interesting in Cyber Secu-
rity is increasing a lot. Many and many INS model architectures have been
proposed to fight cybersecurity threats. Among the ones, the following fig-
ure 2.2 shows how an elementary industrial infrastructure could be designed
providing segregation from other network environment delimiting access from
outside network.

Figure 2.2. Industrial Network Hierarchy [4]

15

Industrial Control System

In this example, industrial environment is reachable by a limited set of devices
in the upper layer of the network. It is clear from the figure 2.2 the network
layering. At the higher level, there are devices used by an ordinary employee in
a corporate network environment. Since they have no safety-critical mission,
they are located at the forefront of network infrastructure. As moving towards
lower network levels, security increase thanks to firewall policy deployment,
that give access to the deepest network layer only to authorised personnel.
Segregating industrial systems from the corporate one is a first example of
leveraging security in INS [5].
Many different strategies to fight cybersecurity threats have been adopted,
also exploiting advantages coming from Software Defined Network (SDN)
and Network Function Virtualization (NFV) frameworks. They allow being
more flexible against cybersecurity threats since they are often conducted
with many different strategies. In the next section will be investigated how
INS environment is changing concerning the deployment of these innovative
frameworks.

� Very low end-to-end latency and packet loss: field devices during an
industrial process exchange multiple messages over the network. Message
integrity is critical. Adopting a reliable network protocol that gives itself
this kind of feature could be a solution. But end-to-end latency between
field devices must be considered. In particular industrial environment, real-
time applications need that message must be delivered to the destination
in a within a specific time. Message validity may depend on time. If the
message would be provided after a particular instant, it will not be valid for
the destination. In this way industrial process could enter in an unpredictable
condition and consequences may hurt entire industrial infrastructure.

2.1.4 Fieldbus Protocols

Fieldbus protocols are the one used in field device communication. The word Field-
bus come from a combination of term ”Field” and ”Bus”. The word ”Fields” rep-
resent devices involved in industrial process. The term ”Bus” stands for a line
that electrically connects various units to allow data transfer and in this context
represents point to point communication between devices involved in industrial
transmission. There is a large variety of Fieldbus Protocols used in production
INS. The most interesting ones for the thesis purpose are:

� Modbus: it is a layer 7 communication protocol. It builds a client/server
communication model between connected field devices [6]. Through its flexi-
bility, it can operate over many different types of network.
The Modbus protocol defines a simple Protocol Data Unit (PDU). Inside the
PDU, function code has been set to deliver commands during client-server
communication.
An interesting Modbus architecture is the one that allows interaction with
the TCP/IP world. Today TCP/IP protocol stack is widespread and widely
implemented in production devices. Moving toward TCP/IP protocol stack

16

Industrial Control System

could be an advantage in terms of interoperability between different devices
type. Besides, it allows that field devices could be reachable through the
Internet network. Despite these could be a problem in terms of security is-
sues, on the other hand, it allows the birth of a more flexible industrial world
against the past one.

� Profinet: Profinet is an industrial protocol that is used to provide some
real-time requirements to critical applications that require them. These re-
quirements are satisfied, providing a direct interface with Ethernet layer [7].
During years, a large number of Profinet implementation models has been
proposed, with particular attention on real-time industrial applications that
have a low latency requirement to be met. Among the most popular ones,
the Isochronous Real-Time (IRT) Profinet implementation is the most inter-
esting. It guarantees low end-to-end latency between industrial devices. In
the next section will be analysed how this requirement has been reached.

They are interesting for this thesis purpose because the first one shows how it is
possible, through its variant, building communication over the IP network between
industrial field devices. The second one is an example of PTP (Precision Time
Protocol) deployment to guarantee low end-to-end latency communication. PTP
protocol will be exploited to make a real implementation of the solution proposed
with another Intel technology (DPDK, Data Plane Development Kit).

2.2 Innovative Features

2.2.1 Industry 4.0

Industry is changing a lot. The fourth industrial follows the third industrial revolu-
tion, which started in the early 1970s. It was based on electronics and information
technologies. The primary purpose was the achievement of an high level of au-
tomation in manufacturing [8]. Many market leaders are used to refer to this new
industrial revolution with term ”Industrial Internet” (GE, General Electric) or ”In-
ternet of Everything” (Cisco) or other variants [9].
The fourth industrial revolution changes radically:

� technological paradigm: digitalisation brought to many changes through-
out the value chain. The business world starts to consider new challenges
in term of efforts needed to face them and risks that an enterprise is willing
to take. Challenge regards many industrial infrastructure fields[10]. Among
them:

– intellectual property protection;

– personal data and privacy;

– design and operability of systems;

– environmental protection and health and safety.

17

Industrial Control System

� social paradigm: public must develop a new awareness and acceptance of
internet-based product and service. While the ”smart” objects market grows,
new skills probably are required to interact efficiently with this modern soci-
ety. Industry 4.0 could have a positive or negative impact on everyday people
habits. Many sociological studies have been conducted to analyse industrial-
isation effects on the population. An uncontrolled massive commercialisation
of ”smart” objects that distinguish the fourth industrial revolution could have
an unwanted impact on society and relationships in between private and pub-
lic sectors.

� business paradigm: industry sustainability can change if we take into ac-
count the entire industrial scenario affected by this revolution. One of the
most revolutionised fields is the manufacturing one. Now, small and medium
enterprise starts to collaborate in the entire supply chain and a new business
model is being developed. There is more flexibility than the previous model.
It allows to minor company to enter in the global trade.
On the other hand, for the first time, we are experiencing a lack of standardi-
sation. This could be a problem in the case that two or more different devices
have to talk each other. Open standards will be crucial in environments 4.0.
One of the most critical factor is maintaining all industry production features,
despite this new revolution. Without a standardisation process, benefits that
could come from Industry 4.0 may be limited to local production.

Industry 4.0 changes also the production processes organization. Now it is based
on technology and devices that autonomously communicating with each other, ex-
changing different kinds of information. A model of the ‘smart’ Factory of the
Future (FoF) where computer-driven systems monitor physical processes has been
developed. Internet of Things (IoT) connects devices, objects and people in real-
time. It creates a virtual copy of the physical world and makes decentralised de-
cisions based on self-organisation mechanisms. Integration of these technologies
brought to the birth of a Cyber-Physical System (CPS). It is intended as a smart
system that can organise a network of billion physical and computation compo-
nents. CPSs are the heart of the fourth industrial revolution, and much research
are done of their capabilities.

2.2.2 NFV and SDN Overview

Concurrently with the fourth industrial revolution, a network infrastructure reor-
ganisation is taking place. Innovations in networking are the key enabling of the
fourth industrial revolution. Network Function Virtualization (NFV) and Software
Defined Networking (SDN) give the power to introduce many innovative features
in a general network environment [11].

� Network Function Virtualization: it introduces a substantial paradigm
shift breaking the traditional link between hardware and software. Today’s
network equipment is often designed to implement a particular network func-
tion. Network devices like firewalls or DPI (deep packet inspector) for in-
stance, are designed to implement security network functions. Or routers

18

Industrial Control System

are designed to route traffic between the entire network environment. Now,
with NFV, network functions are virtualised. Network operator can deploy a
specific network function on a traditional server COTS (Commercial Off-The-
Shelf) without the need to buy a specific device for that network function. It
becomes virtualised (VNF, Virtualised Network Function). In general, NFV
virtualises network services and abstracts them from dedicated hardware.

� Software Defined Networking: it is a complementary technology to NFV.
Although it addresses a different area, it has a similar intent of exemplifying
the network environment. It promotes the decoupling between the forwarding
function and the control function, which is seen at a higher level of abstrac-
tion. Until now the two functions of forwarding and the one of control have
collaborated in extreme synergy. Tendentially, the control function consisted
of routing or switching protocols (depending on the network configuration,
whether at level 2 or level 3) which defined how the packet had to be for-
warded on the device’s ports. Now the landscape is changing. The control
function is assigned to a top layer with which the user can interact. The
user can, therefore, create service chains that are independent of the rout-
ing/switching protocols implemented within that network. For example, you
can force a package that has specific characteristics to follow a particular path
rather than another.

Both NFV and SDN are technologies that if used together can undoubtedly bring
significant benefits in the general network architecture, as well as extreme flexibility
to the operator who finds himself configuring increasingly large and sophisticated
networks, also due to the new minimum security requirements that must be met if
you do not want to incur administrative penalties.
In the following sections, the proposed architectures are analyzed concerning the
introduction of these two new technologies in the world network landscape. Even
in this case, having a standard to refer to is extremely important. Ensuring inter-
operability between the various network environments is essential. On the other
hand, we are avoiding a closed standardization of the architectures that have been
proposed within the two technologies just examined. In addition to being a long
process of standardization, it is also a process that makes the introduction of new
elements extremely complicated. It is not possible to dampen the development of
these new technologies now also given the potential and benefits that they promise
to bring into production even in the most complex network environments. So it
was decided to work on open standards. More and more companies interested in
these technologies are starting to invest in their development and then use them in
their environments. We are facing a very different panorama from the one that has
dominated the field of computer networks so far.

2.2.3 ETSI NFV Management and Orchestration

ETSI (Industry Specification Group) NFV (Network Functions Virtualization) with
a two-year duration and the objective of defining use case, requirement and a ref-
erence architecture was created from this initiative. [12]

19

Industrial Control System

Virtualised Network Functions (VNFs)

NFV Infrastructure (NFVI)
N

FV
 M

an
agem

en
t an

d
 O

rch
estratio

n

VNF VNF VNF VNF

Virtual
Compute

Virtual
Storage

Virtual
Network

Virtualisation Layer

Hardware resources

Compute Storage Network

Figure 2.3. High-level NFV Framework

This architecture introduces the different domains into which an NFV network
is divided:

� NFV Infrastructure, which includes the physical and virtual resources
made available by the virtualization layer;

� Virtual Network Functions, which includes the set of virtual machines
that perform the network function or the virtualized service;

� Management and Orchestration (MANO), which includes the tools
needed to manage other domains.

The virtualization infrastructure domain, called NFVI (NFV Infrastructure), is
the environment in which VNFs are deployed, managed and executed. It consists
of generic hardware components whose task is basically to provide a pool of physi-
cal computing, storage and connectivity resources. An intermediate virtualization
layer then abstracts these resources. Through this layer, the VNFs are decou-
pled from the hardware on which they are executed. The functions exposed by
the virtualization layer are therefore the abstractions of the underlying computing,
storage and network. Finally, the MANO domain is the management and orches-
tration environment of infrastructure resources and virtualized functions with the
ultimate goal of allowing the management of network services on the virtualized
infrastructure.

20

Industrial Control System

End Point End Point
VNF 1 VNF 2 VNF 3

Host 1

Host 2

Host 3

Virtualisation Layer

End to end service function chain

Hardware Resources
in Physical Locations

Figure 2.4. Example of and end to end network service with VNFs and
nested forwarding graphs

The figure 2.4 clearly shows the decoupling of physical resources on the one hand
and virtualized network functions on the other. The various virtual services that
network packet must pass through for its correct processing are implemented on
the physical resources available in that particular network environment. There does
not necessarily have to be a 1 to 1 mapping, in the sense that multiple virtualized
network functions can be implemented on the same physical resource.

2.2.4 Leveraging NFV and SDN in ICSs

This innovation in the field of networks has been exploited enormously in the indus-
trial network infrastructure. Applications, on the one hand, become increasingly
flexible and dynamic, but at the same time require certain guarantees to function
correctly. The fourth industrial revolution, as seen in the previous section, has
significantly changed the technological, social and business paradigms. It brought
”smart objects” to the foreground, offering a point of contact between the virtual
world and that of physical resources. In an industrial scenario, however, require-
ments concerning low latency reachability and security must be guaranteed first.
Migrating to a virtualized world has made it possible to achieve much higher levels
of flexibility. For example, if you are the victim of a cyber attack, I may want
to reconfigure the network in such a way as to allow the correct performance of
safety-critical functions in my infrastructure [13].

21

Industrial Control System

Figure 2.5. NFV/SDN enabled DDoS mitigation scheme for ICS against
DDoS attacks scenario [13]

Operating this reconfiguration in a virtualized world is much simpler. In the
industrial field it has many possible uses, also considering the critical nature of the
systems that are often involved in networks of this kind.
Furthermore, suppose that I have implemented some application that at a particular
moment requires to reach a node on the network while maintaining very low latency.
I can reconfigure the network to give higher priority to this application and pay
attention to the positioning of the virtualized network functions so that these they
are positioned to give priority to the incriminated flow. There are many examples
of integrations of these new technologies in the industrial field, and it is precisely
in this field that the thesis work is placed.

22

Chapter 3

Real-Time Industrial Systems

In this chapter, the focus is on real-time industrial systems. As analyzed in the
previous chapter, thanks to the rise of new network virtualization technologies
(NFV and SDN), a very high degree of flexibility has been achieved. This revolution
has led to the rise of applications with very high potential. But they require certain
guarantees in order to function correctly and carry out their safety-critical mission
in an area such as the industrial one.
This chapter starts with a quick overview of the main features of some real-time
applications, increasingly widespread in the industrial field. Two solutions are
therefore presented, developed to guarantee the correct functioning of these new
industrial applications. There is also a high-level description of technologies that
have been used concerning these two solutions. These technologies are then reused
to make possible the thesis work implementation that is extensively analysed in the
next chapters.

3.1 Overview

A real-time control system is a system in which the various elements that compose
it must have the ability to communicate with very low latency, as close as possible
to zero. Often they are closed-chain systems that serve to monitor a particular
process. Depending on the conditions detected, the system must be able to make
a decision as quickly as possible, without introducing a considerable latency that
could make the decision no longer valid. Since applications of real-time industrial
control systems are multiple, consequences that the introduction of a delay in the
chain of operations may have is different depending on the criticality of the system.
In general, real-time control systems are divided into two large categories: hard
real-time systems and soft real-time systems. The first ones are control systems
where real-time communication constraint must necessarily be met. A failure to
meet this minimum requirement can lead to fatal situations. They are, therefore,
systems that have an extremely critical nature. Soft real-time systems are systems
that have much more flexibility. A failure of these systems generally does not lead to
critical consequences. So constraints imposed by the fact of being real-time control
systems can be relaxed in some situations. Today we have real-time control systems
almost everywhere. Examples of soft real-time systems are telephone switching,

23

Real-Time Industrial Systems

image processing. In these systems, the accuracy of result decreases after the
real-time requirement is not met, but there are no catastrophic situation linked
to it. Examples of hard real time systems are autopilot system in plane, nuclear
plant control system, anti-lock brakes, and pacemakers. A failure in these systems
obviously brought to unwanted situation because they are safety-critical system.
Depending on the system treated, different precautions can be taken. When dealing
with real-time control systems of the hard type, in the context of a network design
operation, extreme attention must be put to the devices involved in low-latency
flows. Failures may occur at any time, with a higher or less probability depending
on the conditions of the infrastructure installation location and other boundary
conditions.

3.2 Related Works

Over the years, different solutions have been proposed to face emerging problems
in the industry 4.0 environment. In particular, two solutions have been taken as
a reference. They exploit the advantages coming from the use of new technologies
such as SDN and NFV in a critical area such as the industrial one. The main
objective, common to both solutions, is to provide guarantees regarding the re-
ciprocal reachability of devices that require very low latency times. The study of
these two solutions is very interesting because it allows the analysis of some un-
covered features on which the solution proposed in the next chapters is focused.
The framework developed, whose name is VerINS, will integrate the approach fol-
lowed by these two solutions, trying to solve open issue that come from approaches
adopted.

3.2.1 Latency Aware VNF Placement

This first solution examines the problem of positioning virtualized network func-
tions on the available physical infrastructure [14]. Particular reference is made to
the IIoT environment, which has evolved enormously in recent years. The IIoT
paradigm finds application in many different domains, such as Industry 4.0, smart
grids, smart production, and smart logistics. The introduction of new technologies,
such as 5G mobile networking, has allowed the creation of reliable point-to-point
connections with low latency, thanks to the URLLC (Ultra Reliable Low Latency
Communication) service provided by 5G itself. By studying the problem of Vir-
tual Network Embedded (VNE) regarding VNF positioning, a formal verification
is required regarding:

� the correct configuration of the VNFs involved within the network flows taken
into consideration;

� the low latency requirements are met for the network flows considered.

By introducing network device configuration errors involved in a service chain,
you can have more or less significant problems depending on the nature of the en-
vironment you are working on. Misconfiguration of the security parameters can

24

Real-Time Industrial Systems

allow malicious access by third parties. Or it can block flows that should be al-
lowed to guarantee the correct execution of all the features deployed in the network
under consideration. Configuration errors can, therefore, compromise the mutual
reachability of the nodes. So it is essential implementing within the framework
an automatic function to verify the minimum requirements that the network must
satisfy. Automating these verification operations is essential. Operator actions
in a dynamic environment like the industrial one are entirely useless. Virtualized
network technologies such as NFV and SDN also allow the network to be automat-
ically reconfigured according to certain boundary conditions. For example, as seen
in the previous chapter, to mitigate a DDoS-type attack, I can set the automatic
network reconfiguration to divert malicious traffic and allow authorized traffic only.
Here we need to design a framework that can automatically perform these formal
verification operations.
The problem of VNF placement (alse known as Virtual Network Embedded prob-
lem) is formalized using the MAX-SAT approach. A maximum satisfiability prob-
lem (MAX-SAT) is a problem of determining the maximum number of clauses that
can be made true by an assignment of truth values to the variables of the formula.
In this first solution, the target is the search of an optimal positioning of VNFs
minimizing the end-to-end latency between the various nodes involved in commu-
nications. This approach is the only existing one for IIoT systems that solves both
problems of placement and constraints verification in single instance by merging
these two concepts together. Problem is solved through z3 optimizer, a tool devel-
oped by Microsoft (in the next chapter it is analysed with all its peculiar features
since it is also used in thesis work development). There are three input parameters:

� VNFs model that shows their forwarding behaviour and their configuration
parameters. This corresponds to the virtualization layer definition of the
ETSI NFV Framework.

� Physical substrate model: There is the definition of each physical resource
in the studied infrastructure in term of computational power and storage
available.

� Constraints that must be satisfied in term of security and end-to-end reach-
ability. Since this is a MAX-SMT problem, there is the possibility of introduc-
ing hard and soft clause. Hard constraints are those that must necessarily be
satisfied for the formulation of a valid solution to solve the problem. Soft ones,
instead, can be falsified. To each soft constraints there is the possibility to
attach a weight, in order to find a truth assignment to the propositional vari-
ables that maximizes the total weight of satisfied clauses. In this particular
case, hard constraints concern the consumption of physical device resources
available in the network. These constraints must necessarily be respected;
otherwise, failures may occur since a device may not be able to support too
many VNFs. Soft constraints, therefore, concern the placement of VNFs on
a specific host. Each constraint is associated with a negative weight. It cor-
responds to the average latency associated with that VNF if it is deployed
on that particular host. Subsequently, optimal VNFs placement is chosen to
maximize the negative weight associated with all the VNFs crossed by the flow

25

Real-Time Industrial Systems

taken under examination; therefore, global network behaviour is optimized,
minimizing the latency.

The validation of the module thus developed was addressed on a Smart Grids
network. The Smart Grids network topology is an exhaustive example of all the
innovations introduced by the industrial 4.0 within the IIoT. Smart Grid means
the combination of an information network and an electricity distribution network.
We try to manage the electricity grid in an ”intelligent” way under various aspects
or functionalities through the use of data collected from billions of sensors. From
the results of this first validation, for small topologies, the framework can provide
a solution to the problem within acceptable times. However, for increasingly larger
topologies, the time of the verification phase begins to grow exponentially due
to the considerable number of constraints that must be validated. However, it
is an excellent starting point for the development of the thesis project since it
represents the first example of how verification and VNF placement optimization
work together.

3.2.2 Time-Sensitive SDN

This solution instead provide guarantees regarding low latency communication be-
tween two or more devices in an industrial network [15]. These guarantees in today’s
industrial networks are achieved using some proprietary protocols, the Fieldbus
protocols, which however require specialized hardware to be correctly used, as ex-
plained in the previous chapter concerning use of Profinet in industrial network.
Fieldbus protocols dramatically limit the interoperability between different systems.
Meeting end-to-end low latency requirements was also the main focus for two large
organizations in the world of networking: IETF DetNets Working Group and the
IEEE 802.1 Time-Sensitive Networking (TSN) Task Group (TG). Solutions that
they have been proposed over the years have not been easy to deploy in a produc-
tion environment. There were some non-trivial implementation difficulties. Most
of these solutions require the use of some particular strategies on a physical level.
Sometimes an ad-hoc built infrastructure and devices capable of interacting through
the use of these protocols are also required. They require the modification of the
ISO / OSI protocol stack in the lower layers. It is often necessary to have a par-
ticular level two packet to be able to provide guarantees regarding the end-to-end
low latency reachability. For instance, in TTEthernet (Time Triggered Ethernet),
in addition to specific switch, ethernet frame have been modified compared to the
tradition one.

Figure 3.1. Time Triggered Ethernet: layer 2 frame

26

Real-Time Industrial Systems

In place of the MAC destination field is a 4 byte CTMarker and a 2 byte CTID.
The CT Marker is a static identifier used to distinguish time-triggered frames from
other Ethernet traffic. The CTID is used by the switches to route time-triggered
frames through the network [16].

However, these modifications clash with the flexibility required by new industrial
applications. More and more times, it is necessary to introduce new devices within
the network for various reasons. Due to the increase in the number of cyberattacks
targeting safety-critical infrastructures like the industrial one, the introduction of
some security middle-boxes is fundamental today. Firewalls, DPI, IDS / IPS are
very used in the world of networking, whose use then becomes mandatory in the
case of mixed infrastructure. In some corporate infrastructure, there is often a
network part exposed to the public Internet and which requires communication
with some devices of the industrial network. The segregation of the two networks
is fundamental. Introducing devices that are built ad hoc to interact according to a
non-standard ISO / OSI protocol stack is challenging in terms of implementation as
well as extremely expensive. In the world of industry 4.0, it is no longer acceptable.
We are trying to migrate to the most widespread protocol on the network today:
IP (Internet Protocol). IP allows extreme flexibility and interoperability between
the various systems in the network but, since it has a best-effort nature, it does not
provide any guarantees regarding the processing of data on the network, nor is it
able to privilege a network flow rather than another.

In this second proposed solution, we try to exploit the potential of new tech-
nology, the SDN, to guarantee a deterministic delay in the communication between
the devices on the network. The concept of time-triggered networks is resumed
where, using appropriate protocols, transmission scheduling of the packet is pos-
sible, making sure that the end-to-end delay is constant. We are now trying to
schedule packet transmission in the IP world. It is possible thanks to the use of
the Precision Time Protocol (PTP), whose details and uses are analysed in the
next section. In general, it allows a precise synchronization of the clocks of the
devices in the network. In particular, in the context of this solution, it is used to
schedule packet transmission over the network keeping all synchronized. The main
idea of the SDN technology is to have a device that can provide a global view of
the network. Through this device, you can manage the control plan of the switches
from above to influence their forwarding behaviour. This solution proposes algo-
rithms that assign timeslots to the time-triggered flows and route them such that
in-network queuing is avoided (constraint) while maximizing the number of such
flows in the network (optimization objective). In this way, it is possible to calculate
the end-to-end latency in a deterministic manner. This is the benchmark topology
taken as a reference:

27

Real-Time Industrial Systems

Figure 3.2. TSSDN Benchmark topology [15]

There are five time sensitive flows (Fi : Ai → Bi; i ∈ [1...5]) that have to be
schedule through the entire network environment. According to the logic of the
proposed solution, each flow has a reserved timeslot to pass through the network.
In this way, overlapping between different flows in the network and the creation
of queues through shared network devices are avoided. Below is an example of a
network architecture that contains all the key elements of this proposed solution:

Figure 3.3. TSSDN Simple Test Case[15]

The scheduler manages the network control plan. It has a high-level view of the
network and plays the role of a standard SDN architecture controller. In the TSSDN
architecture, it has the task of coordinating the actions of the devices involved in the
network forwarding operations handling various flows avoiding queues and overlaps.
In the example above, two are the flows declared as Time-Sensitive: F1, from H1
to H9, and F2, from H3 to H7. According to the TSSDN, the two flows must be
managed in two disjoint timeslots (T1 and T2). This means that all the devices on
the network are synchronized and enabled to perform forwarding actions for both
flows in the defined transmission timeslots.

28

Real-Time Industrial Systems

Figure 3.4. TSSDN Timeslots Partitioning [15]

3.3 Interesting Exploited Technologies

In this section, we examine in detail some technologies used in the context of
the solutions just presented. Both the PTP (Precision Time Protocol) and the
proprietary Intel DPDK (Data Plane Development Kit) technology are essentials
in the real implementation of the framework illustrated in the following chapters.

3.3.1 Precision Time Protocol

The Precision Time Protocol is documented within the IEEE 1588 standard. Dur-
ing the development of computer networks, it played different roles. The initial
purpose of the PTP was to provide as accurate as possible synchronization be-
tween various devices clocks on the network. The clock is dictated by a device
that, within the network environment , is elected to master role. The other de-
vices, slaves, synchronize their clock to that of the master, achieving precision in
the order of microseconds.

M S M S

M

M

M

S

S

S

M: master clock
S: slave clock

Figure 3.5. PTP original purpose

Initially this protocol was used in the industrial automation field to synchronize
actions of various devices in the network. It, therefore, had a role very similar to

29

Real-Time Industrial Systems

the one currently performed by the NTP (Network Time Protocol) in corporate
networks. Since the PTP allow to achieve much higher accuracies, it was chosen
to be used within critical environments such as the industrial one. In fact, as
in automated production chains, some operations must necessarily be carried out
before others. Suppose we have a conveyor belt like the following:

T1 T4T3T2

A B C D

Figure 3.6. Conveyor Belt Example

In the example of the conveyor belt shown in the figure 3.6, four are the actions
that must be coordinated [17]. In particular:

� A must be performed at time T1;

� B must be performed at time T2;

� C must be performed at time T3;

� D must be performed at time T4.

To guarantee that the actions are performed at the fixed time, various devices
involved in the execution of the actions could be configured to be synchronized each
other through the PTP protocol. Therefore, the execution of a given action can be
scheduled at a particular time.

For years, PTP has also been exploited as part of the Filedbus protocols. As
anticipated in the previous chapter, Profinet, one of the most widespread proto-
cols in the industrial field, has used PTP in its internal implementation for the
safety-critical real-time flows management. Profinet is a protocol that is built on
Ethernet. By definition, Ethernet provides a shared medium where everyone can
transmit in any instant. This makes Ethernet a probabilistic shared medium ac-
cess. Mechanisms have been introduced to allow deterministic access to this shared
medium. The CSMA-CD (Carrier Sense Multiple Access - Collision Detection)
allows multiple access nodes to the shared medium. They transmit at any time.
Network nodes themselves are responsible for the transmission they are conduct-
ing and, if they detect collisions with some other node in the network, retransmit
the data again. In today’s Ethernet networks this phenomenon has been overcome
thanks to the introduction of network switches, which separate the collision domain.
PROFINET Conformance Class A and B devices leverage standard Ethernet in-
frastructure to achieve cycle times as short as 1 millisecond and jitter of about
10-100 microseconds. This is the standard “Real-Time” (RT) PROFINET commu-
nications channel [18]. However, some applications require deterministic network
behavior and should never be vulnerable to collisions or jitter. In fact, Profinet has

30

Real-Time Industrial Systems

designed an Ethernet extension at the MAC level. It allows each network-enabled
switch to provide time slots in which the flow associated with these safety-critical
applications can be managed in a deterministic manner. In those defined time
slots, access to the network is therefore of the TDMA (Time Division Multiple
Access) type. PROFINET extends PTP in a wrapper protocol called the Precision
Transparent Clock Protocol (PTCP) used to measure end-to-end latency consider-
ing devices and physical link involved in the network infrastructure, in addition to
the capability of sharing a common clock between enabled devices.

PTP can also be used in the virtualization world [19]. Virtualized network
functions are performed within a server just as if they were virtual machines. On
each of these a PTP daemon is run and therefore it is possible to schedule with
extreme precision the action of a virtualized network function on a given flow.
Many works show how PTP is actually used in URLLC environment dealing with
synchronization problem [20].

3.3.2 Intel Data Plane Development Kit

Intel DPDK technology has been defined as the key enabling technology for the
virtualization world in the networking field. It is playing a fundamental role in
the world virtualized network services orchestration. It provides a set of libraries
that allow the programmer to get a standard interface to the underlying specific
hardware by creating an EAL (Environment Abstraction Layer). We are leaving the
idea of a network device designed on a hardware level to cover a specific function.
Network functions are now virtualized and can be performed by any general-purpose
processor. Most Unix-like systems currently allow the processing of network packets
at the application level, exploiting a capture system such as the one shown below:

Figure 3.7. Typical Packet Capture Architecture

31

Real-Time Industrial Systems

Today it is widely used for the implementation of numerous network functions
that require the capture of packets in transit (Firewall, IDP / IPS, DPI ...). At the
base of this architecture is the concept of virtual CPU (vCPU). It is nothing more
than a straightforward piece of code that runs at the kernel level. Generally, they
are filtering operations that are performed just at the moment of packet capture.
The packet, therefore, passes through the kernel and is then delivered at user level,
where more complex applications can process it depending on the function that
the device is called to perform. Various optimizations have been introduced over
the years to this basic architecture. Going all over the stack for some applications
can be too expensive in terms of the processing time invested. Intel DPDK allows
to bypass the kernel completely, and therefore user-level applications can interface
directly with the network card driver. You can achieve very high performance while
maintaining another level of flexibility at the same time (since writing code at the
user level is much simpler than injecting code at the kernel level).

USERSPACE LAND USERSPACE LAND

APPLICATIONS

DPDK LIBRARIES

APPLICATIONS

KERNEL

NETWORK DRIVER

KERNEL

NETWORK
DRIVER

HARDWARE

NETWORK
CONTROLLER

HARDWARE

NETWORK
CONTROLLER

WITH INTEL DPDK

Figure 3.8. Linux Kernel With DPDK

Since Intel DPDK 2.2 release, support for PTP has been introduced. User-level
applications can now take advantage of a PTP daemon that provides a synchroniza-
tion layer between all the applications that implement it on the network. Thanks to
strict cooperation between DPDK and PTP, it was possible the design of a network
environment ready to host solution presented in the following chapters.

32

Chapter 4

Thesis Objective

Within this chapter, weaknesses of the previously examined solutions are analysed.
We want to provide a contextualization and justification of the thesis work done.
A section is dedicated to the exposition of the difficulties to address in the hard
real-time flows management in industrial network environments. So a short section
is dedicated to the presentation of what is expected of the framework being studied.
Finally, a high-level presentation of the developed module is provided to introduce
it to lectors.

4.1 Open Issues

The solutions presented in the previous chapter tried to propose a formal method-
ology for hard real-time flows management in a safety-critical network such as the
industrial one. The common goal of both solutions was to provide guarantees re-
garding end-to-end latency. In fact, the limits of both have been analysed, and a
solution has been sought that can address them. This is the backdrop for the entire
thesis work.

The framework proposed by the first solution, VerifOO (Verification and Op-
timization Orchestrator), addresses the virtualized network functions placement
problem, providing an optimal solution that minimize end-to-end latency between
the various hosts on the network. However, it does not provide an upper bound
on the end-to-end latency. It proposes only an intelligent positioning of the VNFs
within a physical substrate, taking into account the delays that are introduced
when flows pass through a VNF. In particular, the delay can be divided as follows:

� Time to reach the host on which the virtualized network function is deployed.
The transmission speed of physical links strongly conditions this first step;

� Queuing time on the various hosts crossed. Generally, more flows pass through
a host on the network, and the creation of queues is very common, introducing
a delay. The packet must wait for all network packets already in the queue
to be processed by the disputed host and then processed as well;

33

Thesis Objective

� Network packet processing time on the host on which the virtualized network
function is deployed;

� Time to reach the destination host. Again the transmission speed of physical
links strongly conditions this step.

There is, therefore, no upper bound guarantee on the end-to-end delay between
two or more hosts. There is great variability depending on the network conditions
instant by instant. The devices and physical links involved in the various forwarding
operations can be more or less discharged depending on the network flows. This is
not taken into account by the framework which therefore operates with a best-effort
logic. This approach is valid for the management of less critical industrial flows,
supposing to design the network by oversizing it. In this way, you can avoid to
have a network that works at the limit of the conditions for which it was designed.
However, some critical applications need real guarantees regarding the end-to-end
of the hosts. These guarantees can be achieved by changing the underlying logic.
In addition to an optimal virtualized network functions placement on the available
physical substrate, also scheduling of the network flows can be proposed. It can
avoid the formation of queues and the overlapping of two or multiple flows that
can lead to overloading the devices and links involved. However, the study of
this first solution was very interesting. In literature, it is one of the few solutions
that face together the problem of VNF placement and formal verification of the
configuration of the devices crossed by the various network flows, to avoid problems
during automatic network reconfigurations.

The TSSDN (Time Sensitive SDN) solution has proposed a real optimal schedul-
ing of network flows, taking up the scheme proposed by the various examples of
TTEthernet (Time-Triggered Ethernet). In this way, real guarantees are provided
regarding the end-to-end latency between two or more devices on the network.
A deterministic end-to-end delay is achieved with a very low and bounded jitter.
However, the detail with which the network flow scheduling problem is analyzed
is at the end-to-end flow granularity. Tendentially, for every network flow, there
is a timeslot allocated for the management of that single flow. If two flows inter-
sect, even if only for a while, these must be managed on two separate timeslots.
Considering the topology below:

SW1 SW2

SW4SW3

A

C

B

D

Controller

Figure 4.1. Simple network topology with two time-sensitive flows

34

Thesis Objective

Suppose that the two flows, the red one and the blue one, are time-sensitive flows
and therefore related to applications that need to obtain a guarantee regarding end-
to-end latency. According to the formulation proposed in the TSSDN context, since
the two flows overlap themselves, it is necessary to allocate them on two different
timeslots. Furthermore, the timeslot must last long enough to guarantee the correct
end-to-end communication. Sizing the timeslot in a more complex topology could be
very complicated and limiting in terms of reachable performances. In the topology
of the figure 4.1, assuming that the maximum length of the network can be managed
in a time equal to 4 milliseconds, the duration of the timeslot must be at least 4
milliseconds. Since the two flows intersect, two timeslots are needed to manage
them and therefore, a time equal to 8 milliseconds is needed. In our solution, the
end-to-end flow is broken down into its minimum units (in the case of the example in
the figure 4.1 the minimum unit corresponds to the crossing of a physical link in the
given topology). The transit of the packet along each minimum unit is scheduled.
In this way, it is possible to obtain better scheduling since not overlapping parts of
the two flows can be scheduled to be managed in parallel. Returning to the figure
4.1, time-sensitive flows can be scheduled as follows:

Table 4.1: Scheduling Example

Timeslot ID Flow Element (AD) Flow Element (CB)
T1 from A to SW1 from C to SW3
T2 from SW1 to SW2 from SW3 to SW4
T3 from SW2 to SW3 -
T4 - from SW3 to SW2
T5 from SW3 to D from SW2 to B

In addition, VNFs placement problem is not managed by the TSSDN solu-
tion. The VNFs management involved handling the mapping of virtual topology in
the physical one, which does not always coincide. Addressing the problem of VNF
placement becomes of fundamental importance, especially when dealing with an ex-
tended network. In small industrial networks, the network operator can manually
determine which host has to deploy on its a particular VNF. In these cases sim-
ple network flows scheduling can be sufficient to handle end-to-end communication
guaranteeing a maximum delay, using an approach similar to the one introduced
with the TSSDN. The size of industrial networks is gradually becoming important
due to a large number of devices involved. And the architecture of a typical in-
dustrial network is also significantly evolving to include middlebox devices. These
devices can have different functions. The most important is undoubtedly the one
related to security. In particular, middleboxes often have functions of:

� logging and monitoring. For example, they can track intercepted traffic;

� inspection with consequent blocking of malicious traffic or that does not meet
certain rules (IDS / IPS function and firewalling).

One of the most famous industrial network architectures is the smart grids one.
The smart grids network architecture involves a number of devices destined to

35

Thesis Objective

grow more and more in the future. Controlling their functioning becomes more
and more complicated for a network operator, as the resolution of the problem
of VNF positioning is no longer obvious. We need a framework that can handle
everything as transparently as possible to the end-user. The VNFs placement
management was, therefore included within the solution proposed in this thesis
work as a fundamental problem to be solved in parallel with the scheduling of
network flows. Details of the implemented solution are discussed in the chapter 5.

4.2 Expected Results

The idea of VerINS is developed, starting from the analysis of the weaknesses of
one and the other solution. We want to develop a framework capable to:

� provide an optimal VNFs placement minimizing the end-to-end delay between
various hosts involved in the various network flows;

� elaborate a formal verification of the configuration of the devices involved in
the various network flows;

� schedule the network flows to obtain guarantees regarding the end-to-end de-
lay and avoid queuing in the various hosts involved in the network forwarding
actions and overlap between the various flows

The VerINS framework could, therefore, be used in harmony with VNFs man-
agement and orchestration software, playing a fundamental role during network
reconfiguration operations in safety-critical environments.

Finally, chapter 7 is dedicated to the validation and analysis of module perfor-
mance. Various test cases have been implemented which have allowed us to validate
the actual achievement of the objectives set and the performance achieved in terms
of required processing time.

36

Chapter 5

VerINS Design

Within this chapter, a first section is dedicated to a high-level overview of the
framework developed, which is then further investigated in the next chapter in
terms of implementation details. Subsequently, we move to the description of the
main features of the tools used in the framework implementation phase. These
tools have allowed us to better focus on the problem formalization. They have been
used with different purpose, but with the same aim to simplify module development
since already implemented materials have been used. So the standard of interaction
with what has been developed is also presented. Finally, the chapter ends with a
logic description of network flows modelling. Also, the mapping between service
graphs and the available physical infrastructure is presented, since it is considered
undoubtedly one of the most salient aspects of the VerINS framework.

5.1 High-Level Framework Overview

XML INPUT
DOCUMENT

OPTIMAL PLACEMENT PLAN AND
FLOW ELEMENT SCHEDULING

Z3 Solver

NEO4J
FRAMEWORKJava Jersey

RESTful Web
Services

Framework

WEB SERVICE

VERINS MODULE

Figure 5.1. Framework Design Overview

The figure above highlights the main elements that were involved during the im-
plementation of the VerINS framework. The module was developed in Java. A

37

VerINS Design

document in XML format (eXtensible Markup Language) is required as input. The
produced output contains information regarding the execution of the developed
framework. In particular, it tells us if a solution has been found or not by the
VerINS module. In the positive case, it also provides us with an indication of the
optimal positioning of the VNFs on the available physical substrate and optimal
scheduling of the time-sensitive flows in the network. The goal is to find an optimal
solution for VNFs placement on the physical substrate that uses the least possible
number of timeslots to manage all the time-sensitive flows declared by the user
during the module interaction phase.

The VerINS module interact a series of already available and tested frameworks.
Among these ones:

1. Microsoft Z3 Solver, a theorem prover provided by Microsoft Research;

2. Neo4J Graph Database, a database to store graph information;

3. Java Jersey RESTful Web Services Framework, a framework which
provide libraries to develop easily a Web Service.

Interaction between VerINS module and these tools is handled through a main
Java class that acts like a proxy, dispatching operation through other Java class
developed.

In the next section, tools are presented in detail to the lector. In particular,
their role inside the developed module is investigated to justify the need to include
them inside the developed module.

5.2 Tools Used

5.2.1 Microsoft Z3 Solver

Z3 is a tool that allows you to verify the satisfiability of a series of logical formu-
las regarding a given theory [21]. Z3 is a low-level tool. The optimization and
search algorithms developed by Microsoft are accessible through a high-level in-
terface, convenient to use by a programmer. Different programming languages are
supported by the tool. The most common and updated ones supported are C ++,
Python and Java. Classes that support certain types of operations are displayed,
depending on the needs of the programmer. Z3, therefore, allows us to verify if a
series of logical and mathematical conditions are respected.

For example, suppose we want to verify De Morgan’s theorem. It means that,
given two logical variables A and B, we must verify the below conjecture:

¬(A ∧B) ≡ ¬(A) ∨ ¬(B) (5.1)

Accordingly to De Morgan conjecture, expression above is verified for each A
and B boolean value.

38

VerINS Design

Table 5.1: De Morgan Truth Table

A B ¬(A) ¬(B) A ∧B ¬(A ∧B) ¬(A) ∨ ¬(B)
false false true true false true true
false true true false false true true
true false false true false true true
true true false false true false false

As shown in the truth table, equality always remains valid for any value of the
Boolean variables A and B. This can be verified by z3. We need the declaration
of the two Boolean constants A and B and of the boolean function that must be
checked (the logical formulation of De Morgan’s law). In the following examples,
we will use a standard language, the SMT-LIB Language [22]. This language is
strictly referred to the world of SMT solvers. The goal was to have a common
language with which the various SMT solver available in the academic field could
be tested, validating their functioning. From our point of view, SMT-LIB language
is particularly explanatory. It can, therefore, be used to provide a general overview
of the main features of the z3 module and its potential. Therefore it is necessary
to declare the constraint that states that De Morgan’s law must be verified.

1 (declare-const a Bool)

2 (declare-const b Bool)

3 (define-fun demorgan () Bool

4 (= (and a b) (not (or (not a) (not b)))))

5 (assert demorgan)

Listing 5.1. z3 Problem Formulation Example

In particular, Z3 searches for possible Boolean values A and B that satisfy the
declared formulation. If it is able to find two logical values for the declared Boolean
variables that satisfy the constraint declared on the De Morgan function, z3 gives
SAT (satisfiable) result. The problem, in this case, can be solved, and z3 gives us a
possible Boolean value of the variables A and B that satisfy what is declared. If the
declared function is satisfied for any value of A and B, z3 does not give indications
about possible values A and B which satisfy what declared but gives only SAT as
a result. Z3 can also be used to solve mathematical problems.

Another crucial aspect of the z3 optimizer is that it allows the addition of two
different types of constraints. As previously analyzed, concerning the first solu-
tion proposed to address the problem of VNF placement in time-sensitive network
flows management, we can declare hard and soft constraints, which are generally
associated with a weight. Soft constraints must not necessarily be verified. The
problem then turns into a MAX-SMT problem, whose main purpose is to satisfy
as many logical propositions as possible. For our thesis work, the problem of VNFs
placement and time-sensitive flows scheduling has been formalized just like a MAX-
SMT type problem. We try to find the best solution in terms of VNFs positioning
and allocation of available timeslots to the various network streams to minimize
end-to-end latency between the multiple devices involved in time-sensitive commu-
nications. So the goal is to solve a problem of research and optimization. Objective
functions and constraints that are injected into the environment managed by z3 are
analyzed in details in the respective sections of the next chapter.

39

VerINS Design

5.2.2 Neo4J Graph Database

Neo4j is an open source graph database software [23]. It is developed entirely in
Java. This type of software is currently used when the relationships that exist
between the data are as meaningful as the data itself. The contexts in which the
graph databases can be useful are different. They are not only used in the context
of social networks, where their structure is perfectly suited to the representation of
the data. For example, Facebook, Google, Twitter and similar systems certainly
use graph databases, even to keep trivially track of the relationships between users.
Graph databases are also used for instance in:

� Business Process: they allow to perform real time operation in real time,
making decisions faster and in more reliable way, handling more accurate data.
For instance, in the real time recommendations system graph databases play
a very important role. To have a high-quality recommendation you have put
together data coming from different source. Graph databases are designed to
do this kind of operations.

� Fraud Detection: the increasing number of online threats has led to the for-
mulation of new techniques to prevent them. Since graph databases enhance
the relationship between the data in the same way as the data itself, detect-
ing a fraud with a database so structured becomes extremely easy. Analyzing
millions and millions of transactions and finding relationships between them
is now much easier. And it is precisely in this sense that these new graph
databases have being used.

� Master Data Management: it allows you to have a centralized view of
the entire company data but also external data. Since these data are full
of reference, graph databases are suited to handle them. The aim is to bet-
ter understand relationships between these kind of data. They can include
employees data, customers data, product, orders.

As concerning our thesis work, Neo4j was used to handle the network environ-
ment in which the VerINS framework works. In particular, Neo4j allowed a simple
schematization of the mapping between the physical substrate and the virtual ser-
vice graphs. Interaction with Neo4j can occur in two ways:

� Cypher Query Language: it is a graph query language that has been built
to interact with the graph database in a very efficient way. It is a SQL inspired
language and allows to do CRUD operations on graph databases. It is suited
to handle with nodes and relationship with straightforward instructions.

� Neo4j RestAPI: it makes available a simple Web Service with which you can
interact to operate with a graph database hosted in a machine. This is the
solution chosen concerning development of VerINS graph database. Many
functions have been developed to interact with the database through Rest
calls. They are investigated in details in the appendix of this work. Mainly it
is introduced in the VerINS framework to handle paths in physical and virtual
topology exploiting algorithm already implemented in Neo4j framework, such
as minimum path research.

40

VerINS Design

5.2.3 Java Jersey RESTful Web Services Framework

Jersey is a REST framework. It provides a JAX-RS, Java API for RESTful Web
Services implementation [24]. Within the VerINS project, this tool is used for the
implementation of a web service through which interaction with the developed tool
was possible. A rest web service has been developed because of its great flexibility
and interoperability. It allows resource organization. They can be managed through
unique identifiers (URI, unique resource identifier) and many operations could be
make available on each resource, since methods available inside HTTP protocol
are used to distinguish operations. For instance, often HTTP GET operation is
used to retrieve information on the resource requested or HTTP POST and HTTP
PUT operations are instead used to update a resource on the VerINS organization.
Through the web service developed, it is possible the interaction through the VerINS
module.

WEB
SERVICE

H1

H3

H2

VNF 1
VNF 2

GET

POST

DELETE

PUT

VERINS MODULE

Figure 5.2. Interaction through Java RESTful API

The details of the interaction are analyzed in the appendix available at the end
of the paper. An example that shows how it is possible to load a network topology
on the VerINS environment and obtain placement and scheduling results via HTTP
requests is also available.

41

VerINS Design

5.3 Service Graph Management

The core of the VerINS module turns around the Service Graph concept. It repre-
sents a virtual network topology that is defined on a physical substrate that consists
of general-purpose servers capable of hosting VNFs declared on the Service Graph.
We are increasingly leaving the idea of network devices seen as devices built to
perform a specific function. Thanks to the virtualization layer provided by the
ETSI framework for the NFV environment, it is possible to define a series of func-
tions that can then be deployed on one device rather than another in a completely
transparent way. Various network reconfigurations, also depending on the general
environment state, are managed by an orchestrator software.

The entities involved in the virtual and physical graphs are different. In general,
within the virtual graph is the configuration of the network devices that act as mid-
dlebox. Middleboxes are devices that perform an active function when forwarding
packets within the network infrastructure. Examples of middlebox are firewalls,
proxies, DPIs, NATs. The task of the operator is to specify the configuration of
these devices and then define the role they must play within the infrastructure in
question. For example, an operator may want to define the firewall configuration,
defining access lists that allow the transit of only one type of traffic. Or NAT
configuration in the network peripheral areas may also be handled for publications
and traffic management to the external network.

ENDHOST C

ENDHOST D

ENDHOST A

ENDHOST B

VNF 1

VNF 2

VNF 4

VNF 3

VNF 5

Figure 5.3. Service Graph Example

The network operator defines the role that VNFs play within the virtual topol-
ogy represented in the figure 5.3. For example, concerning the figure 5.3, END-
HOST A and ENDHOST B can be two client devices in an industrial network that
need to exchange information with ENDHOST C and ENDHOST D, which instead
act as servers. VNF1, VNF2, VNF4 and VNF5 can play the role of a firewall,
filtering out not allowed traffic while VNF3 can be a DPI, analyzing the traffic to
prevent possible attacks

Instead, the entities that are involved in the physical infrastructure are very
simple general-purpose servers. The user defines the characteristics in terms of
available resources and therefore quantity of RAM, CPU power, storage and con-
nections with other hosts. It should be noted that both the processing operations

42

VerINS Design

of the packet on each host and each physical connection between the various hosts
influence the forwarding of the network packet, introducing a latency that is not
always acceptable.

H1

H2 H3

ENDHOST C

ENDHOST D

ENDHOST A

ENDHOST B

Figure 5.4. Physical Topology Example

In the figure 5.4 there is an example of a physical topology that can be exploited
as a substrate for the virtual topology represented in the figure 5.3. When defining
physical topology, it is important specifying the physical resources available for each
physical host. These parameters are then taken into account during the placement
operations of the VNFs. Physical resources must not saturate to ensure the correct
functioning of the network and therefore, the correct management of the flows.
There are several possibilities for deploying VNFs on the physical substrate. All
the various possibilities are taken into account to then be chosen the best VNF
positioning that can ensure the correct management of time-sensitive flows declared
by the user in the shortest possible time.

H1

H2 H3

ENDHOST C

ENDHOST D

ENDHOST A

ENDHOST B

VNF 1 VNF 2

VNF 5
VNF 4

VNF
3

Physical Link

Is Deployed On

Figure 5.5. Deployment Example

In figure 5.5 is shown a possible deployment example of VNFs declared in virtual
topology in figure 5.3 in the physical substrate 5.4, accordingly to physical resource

43

VerINS Design

required by VNFs to operate and physical resource available on the substrate graph.
We are assuming that ENDHOSTS entities are allocated on fixed endpoint. This
is why there is an exact mapping between virtual and physical graph.

5.4 Flow Design

Network flows are declared using the virtual topology as a reference. The network
operator, for example, may want to put two machines in communication but the flow
must be processed through particular network functions. It could be wanted to keep
track of the flow or verify that legal operations are performed during data exchange
between the devices involved in that flow. In an environment like the industrial
one, it is essential because of the criticality of the devices involved. Having a virtual
abstraction of what happens inside the network can be of great help for the network
operator itself.

Concerning the example illustrated in figure 5.3, suppose we declare two time-
sensitive flows, so with the need to be handled providing them guarantees about
end-to-end latency communication.

ENDHOST C

ENDHOST D

ENDHOST A

ENDHOST B

VNF 1

VNF 2

VNF 4

VNF 3

VNF 5

FLOW AC FLOW BD

Figure 5.6. Virtual Flows Definition Example

One of the most challenging actions that have been addressed during the devel-
opment of the VerINS framework is the mapping of the flows that are declared in
the virtual network topology in the corresponding flows in physical topology. At
this moment, to schematically show the design of the framework developed, we are
taking for granted the fact of having a deployment example of virtualized network
functions on the physical substrate. In reality, this is part of the result provided by
the VerINS module since its goal is to find an optimal positioning of the virtual-
ized network functions that can satisfy the user-defined requirements on the virtual
topology, scheduling transmission over time.

According to the deployment scheme shown in figure 5.5, the flows can be
mapped as follows:

44

VerINS Design

H1

H2 H3

ENDHOST C

ENDHOST D

ENDHOST A

ENDHOST B

VNF 1 VNF 2

VNF 5
VNF 4

VNF
3

Physical Link

Is Deployed On FLOW AC FLOW BD

Figure 5.7. Physical Flow Mapping Example

As can be seen in the example just illustrated, many overlaps between the flows
must be managed to avoid the creation of queues in the network.

The network flow elements that must are handled by VerINS module are:

� VNF execution: the execution of a VNF on a given network flow takes
some time. Assuming that queuing and overloads cannot occur since the
objective is to schedule packet transmission to avoid these phenomena, it is
possible to calculate the delay introduced by a VNF for a given flow in a
deterministic manner. Instant by instant, all the resources are allocated to
the VNF that must be executed. Using the DPDK technology, it is possi-
ble to bypass the kernel, as analyzed previously, and therefore work closely
with the hardware. It is, therefore, possible to perform tests that provide
us in a deterministic way the time needed to perform the processing of an
MTU sized packet through the VNF, also considering the configuration of the
device. Some firewall implementations, for example, have a processing time
that depends on the number of access lists declared in their configuration. It
is, therefore, necessary to have this information to calculate the introduced
delay in a deterministic manner.

� Physical Link Crossing: crossing a physical link introduces a delay pro-
portional to the characteristics of the medium crossed. It is advisable to use
reliable transmission media in critical communications, possibly redundant to
tolerate any faults.

In general, it is important to have an idea about the delay introduced by every
single element so far analyzed. Scheduling operations require the knowledge of
these details to be able to schedule operations correctly within the network.

45

VerINS Design

5.5 Timeslots Allocation

Resuming the solution previously illustrated concerning the TSSDN, at this point, it
is necessary to define some configuration parameters to proceed with the scheduling
of transmissions in the network. In particular:

� Single timeslot length: this can be intended as the shortest time scheduling
unit. It must be long enough to handle the flow element that takes the most
time to run inside the network. In this way VerINS module can schedule
every VNF or physical link crossing in one timeslot.

� Base period length: this is determined by the number of timeslots needed
to manage the flows within the network.

As previously shown in figure 3.4 transmission timeslots are allocated inside
a base period that is repeated over time. Since these two parameters have been
defined, it is possible to start estimating the maximum and average latency for
each time-sensitive network flow verifying that all constraints defined by a network
operator are satisfied. Concerning example shown in the figure 5.7, supposing that
timeslots have been size to host the VNF or physical link that take the most time in
the declared network environment, a possible schedule that minimises the number
of used timeslots maximising the number of time-sensitive flows handled could be
the following one:

Table 5.2: Timeslot Allocation Example

Timeslot FLOW AC FLOW BD
T1 AH1 BH1
T2 VNF1 -
T3 H1H2 VNF2
T4 VNF3 H1H2
T5 - VNF3
T6 VNF4 H2H3
T7 H2C VNF5
T8 - H3D

The table shows how the AC flow is started to be managed at the T1 timeslot
of each base period and ends at the T7 timeslot, while the BD flow management,
even when it starts at the same time as the AC flow, ends at T8 timeslot. Note
that if an AC flow packet is ready to be sent to the T2 timeslot, it will have to wait
for the T1 timeslot of the next base period to be managed by the network, to then
be delivered to the T7 timeslot. The same applies to the BD flow, but in return,
there is the guarantee of having a deterministic network behaviour. This could be
generalized in the following manner. Called:

� tslen: timeslot length defined by network operator accordingly to the VNF
properties declared in the network environment and to the physical link type

46

VerINS Design

used in the physical topology;

� nts: number of timeslot proposed by VerINS module to optimize management
of flow declared;

� tsstarti : timeslot where starts handling of i-th flow declared in network envi-
ronment;

� tsendi : timeslot where ends handling of i-th flow declared in network environ-
ment.

maximum end-to-end delay for i-th flow could be computed as following:

deei = tslen × (nts + tsendi − tsstarti) (5.2)

This formula is then pushed in our z3 problem formulation to find optimum
VNF placement solution and flow element scheduling that minimized end-to-end
delay for each time-sensitive flow declared. Formula and constraints pushed in
z3 formulation are presented in the next chapter where implementation part is
investigated.

47

Chapter 6

VerINS Implementation

In this chapter, an analysis is carried out regarding the implementation details of
the VerINS module. Guidelines that were followed during the development phases of
the module are presented to the reader. In the first section are illustrated functions
that have been implemented inside the developed module and their relationships.
Subsequently, the format of the XML document with which it is possible to interact
with the VerINS module is deepened. Then the correct way to declare the elements
characterizing the virtual topology, the physical topology and the declaration of
time-sensitive flows by the network operator is illustrated. So we pass through
the analysis of the constraints generation for the VNF placement part and flow
scheduling part and with objective functions analysis that later are pushed inside
the z3 solver. Finally, the way to present the results to the user is investigated,
again through an XML document.

6.1 Framework Tasks Relationships

The functions whose coordination was managed within the VerINS module are
multiple. They have different purposes and can be summarized as follows:

� XML Input File Parser: given a XML well-formed file, it provides to VerINS
core module following data:

– Physical Topology;

– Virtual Topologies;

– Time Sensitive Flows Properties.

Explanation of XML structure is shown in the next section.

� VNF placement constraints generation module;

� Flow scheduling constraints generation module;

� z3 Solver.

48

VerINS Implementation

In the following schema there is a simple representation of interactions between
results coming from XML reading and two core functions of constraints generations
regarding developed module:

VerINS Module

XML INPUT

PHYSICAL
TOPOLOGY

VIRTUAL
TOPOLOGY

TIME
SENSITIVE

FLOWS

SCHEDULING
CONSTRAINTS
GENERATION

PUSH OPTIMIZATION
FORMULAS AND

CONSTRAINTS IN Z3
SOLVER

OPTIMAL VNF PLACEMENT
AND FLOW SCHEDULING

SOLUTION PROPOSAL

VNF PLACEMENT
CONSTRAINTS
GENERATION

Figure 6.1. Framework Tasks Relationships

As shown in figure 6.1, physical and virtual topology data are needed for both
placement and flow scheduling constraints generation modules. Besides, scheduling
module needs knowledge of time-sensitive flows declaration. Otherwise, no flow
scheduling constraints are generated since the module see all flows as normal flows
that could be handled in a best-effort manner, without providing them specific
guarantees.

6.2 XML Input Format

The XML files that are injected towards the VerINS module are validated against
an SML schema (XSD, XML Schema Definition) verifying their syntactic structure
correctness. The XSD is organised to represent main elements with which the
developed module operates. In particular, the XML file must contain the:

� physical topology definition;

� service graphs defined on the physical structure;

� properties that must be verified by the module.

These resources are organized inside a wrapper structure, NFV. It sums up the
environment with which the module has to interact. It handles elements definition
and relationships, providing also a check on constraints such as the uniqueness one
or referential one.

49

VerINS Implementation

Following a graphic representation of NFV element through a tree diagram:

PHYSICAL
TOPOLOGY

SERVICE
GRAPH

HOST LINK

NODE

NFV

* 1

*
From

To

PROPERTY

*

REACH
ABILITY

ISOLATI
ON

REAL
TIME

*

1 1

**

1

1

1

*

*

FLOW
SCHEDULING

RESULTS

1

1

1

1

FLOW
ELEMENTS

*

1

Figure 6.2. XSD Schema Tree Overview

To be noticed that lines represent relationships between two element with related
multiplicity. Arrow instead indicates a specialization of the parent element.

Both VNFs placement and flow scheduling module reference Service Graph re-
source and Physical Topology resource. Each service graph is composed of nodes
that are uniquely identified by a string. They can be used in different service graph
declared on the same physical topology. The physical topology is composed of host
and physical connection, link, between declared host. They are again uniquely
identified inside the whole environment.

Real-time properties instead are used by the network operator to declare real-
time flow that must be handled by flow-scheduling module. In particular, they are
composed of:

� service graph in which property must be verified. The network operator could
declare different real-time properties to be verified by VerINS module in the
different Service Graph defined on the same physical topology;

� source node of the service graph from which time-sensitive flow starts. It
must be referenced by its unique identifier;

� destination node of service graph to which time-sensitive flow ends. It must
be referenced by its unique identifier;

� maximum acceptable latency for the declared flow. It must be indicated in
timeslot unit accordingly to the formula 5.2 illustrated in the previous chapter.

50

VerINS Implementation

6.3 Z3 formulas

The VerINS module core is composed of the solver z3, to which constraints that
must be verified during the search for the optimal solution are pushed. This sec-
tion describes formulas that define constraints and objective functions that are
taken into account during the engine optimisation phase with a high-level notation.
Formulas are split in three subsection:

� the ones related to the VNF placement problem. They are expressed through
hard constraints, and so they must be necessarily verified by z3 engine;

� the ones related to the flow scheduling problem. They are again hard con-
straints that must be verified by z3 engine;

� the ones that must be optimised by z3 engine, minimising their associated
weights.

All of these constraints are analysed within this section, with a particular focus
on flow scheduling constraints, that is the VerINS core. To be noticed concern-
ing constraints related to VNFs placement problem that some of them have been
already defined in the VerifOO module. Now we proposed these constraints in a
revised way, adapting them to our VerINS module. VerifOO was developed con-
cerning the first solution proposal presented in chapter 3 to solve the problem of
latency aware VNFs placement. With regard to the VerINS module development,
constraints regarding maximum theoretical latency computation have been ignored
since VerINS purpose is to schedule flow in the network, giving them guarantees
about end-to-end reachability that must always be lower than a specific threshold.

6.3.1 Mathematical Notations

For clarification purpose, since in the next subsections a special notation is used,
here is reported a simple table that sums up all used mathematical symbols:

Table 6.1: Summary of Mathematical Key Notations

Symbols Notations
V s, Ls Set of physical hosts/endpoints and connections
As

V , A
s
L Set of physical hosts/endpoints and connections attributes

Gs = (V s, Ls, As
V , A

s
L) Substrate Network

V v, Lv Set of virtual nodes/endpoints and connections
Av

V Set of virtual nodes/endpoints attributes
Gv = (V v, Lv, Av

V) Service Graph
F ins Set of Time Sensitive Flows
Cins Set of User-Defined Time Sensitive Flow Constraints

Both the physical and the virtual environment with which the VerINS module
interacts are modelled as unidirectional graphs. The sum of vertices in physical

51

VerINS Implementation

topology is composed of hosts capable of hosting VNFs or fixed endpoints. In the
viral topology, the set of vertices is instead represented by VNFs. Attribute sets
contain additional information about the elements defined in the physical or virtual
topology. For example, in the case of physical hosts, two attributes of fundamental
importance are the storage and CPU power that are taken into account during the
operations of positioning the VNFs. Or, as far as physical connection, an important
parameter defined inside the link attributes set that plays a very important role
during flow scheduling operation is the latency. The Time-Sensitive F network
flows set is built based on network operator requests during real-time properties
formulation. Each is associated with a constraint in terms of maximum acceptable
latency for end-to-end flow management, which instead belongs to the set denoted
by FC.

6.3.2 Placement Constraints

The mapping function of VNFs in hosts that can host them within the physical
substrate can be denoted as follows:

Mvv
v = vs (6.1)

This means that a vertex of Service Graph should be mapped on a vertex of sub-
strate topology available. Since there are two type of vertex in the virtual topology,
concerning node mapping function we refer to the following notation:

Mnn
v = hs (6.2)

This mapping function must satisfy a series of requirements. VNFs deployed on
one single host are executed, in fact, sharing the same physical resource as far
RAM capabilities. Since in every instant, all physical resources are allocated to the
management of one single flow element, CPU consumption by other VNFs executed
on the same physical host is not taken into account. However, it is important
guaranteeing that there is enough CPU power to meet single VNF requirements.
Given:

� |N |, |H| as N/H set cardinality;

� memory(i), a function that compute VNF memory for element i;

� core(i), a function that compute CPU core for element i;

� supported vnf type(i), a function that returns set of supported VNF types;

� max vnf(i), a function that return the maximum number of VNF that could
be deployed on i-th host;

� nihj, a boolean variable that means that i-th VNF is deployed on j-th;

� hi, a boolean variable that shows the i-th physical host is used or not;

� int(x), where x is a boolean variable, is a function that transforms true/false
boolean statement in 0/1 arithmetical number;

52

VerINS Implementation

constraints to be added to the z3 environment regarding physical host resources
type and consumption are:

� RAM usage; each VNF requires a certain amount of available RAM to be
executed properly, namely required VNFs memory of nodes deployed on a
physical host must be lower that RAM host capability:

∀j ∈ H,
∑
i∈N

(memory(i)× int(nihj)) ≤ (memory(j))× hj (6.3)

� CPU power consumption; each VNF requires a certain CPU power to
be executed properly, namely, since CPU could be measured in core number
dedicated to VNF execution:

∀i ∈ N,∀j ∈ H, (core(i)× int(nihj)) ≤ (core(j))× hj (6.4)

� maximum VNFs capability, since number of VNFs deployed on a physical
host must be lower than a specific threshold, namely:

∀i ∈ H,
∑
j∈N

int(njhi) ≤ max vnf(i)× hi (6.5)

� supported VNF functional type, since a physical host could hosts only
VNF of the supported type, namely:

∀i ∈ N,∀j ∈ H,nihj ⇒ functional type(i) ∈ supported vnf type(j) (6.6)

While, concerning fixed endpoint mapping function we refer to following notation:

Mee
v = es (6.7)

A virtual endpoint has a reserved host in the substrate graph, so mapping function
is very simple since it is fixed.

Furthermore, the following statement must be verified to do a reliable placement
module:

� single VNF deployment: a VNF must be deployed on one single host
exactly. Namely:

∀i ∈ N,
∑
j∈H

nihj = 1 (6.8)

Following this pattern, all VNFs are guaranteed to be deployed on available
physical hosts at least once; however, multiple deployment of VNF on physical
substrate are not to be considered.

� VNF deployment implication on physical host state: if a VNF is
deployed on a physical host, this host must be put on active state. Namely:

∀j ∈ H, hj ⇒
∨
i∈N

nihj (6.9)

53

VerINS Implementation

Assertion 6.3, 6.4, 6.5, 6.6, 6.8, 6.9 must be added into z3 placement engine. In
the following section, flow scheduling constraints are analysed and pushed again in
z3 general model. In this way, overall z3 execution takes into account placement
and flow scheduling constraints. This is the novelty of VerINS project since in only
one execution all constraints type are considered and a solution that satisfies all
them is searched for.

6.3.3 Flow Scheduling Constraints

These constraints are responsible for the temporal scheduling of time-sensitive net-
work flows. The first operation to be managed by the module is to find all the
possible flows in the physical topology in which the virtual flow that is declared
by the user when defining the properties to be satisfied by the developed module
can be mapped. The network operator defines the flow by specifying the source,
the destination, the reference service graph and a number of timeslots. This repre-
sents the maximum latency that the network operator is willing to accept for the
management of that flow. Therefore constraints will be explained in the following
paragraphs.

Virtual Path Computation

virtual path between source node and destination node is computed in virtual
topology. This path is computed taking into account VNFs involved configuration.
For instance, suppose having the following case:

Firewall

Proxy

10.0.0.1 10.0.1.1

. . .
Deny src 10.0.0.0/24 dst any

Figure 6.3. Virtual Flow Example

A firewall rule denies flow that starts from host 10.0.0.1 and ends to host
10.0.1.1. However host 10.0.1.1 is reachable through a proxy device. So mod-
ule computes path between 10.0.0.1 and 10.0.1.1 as the best one in term of VNFs
crossed (for instance, if another path between 10.0.0.1 and 10.0.1.1 is available but
it includes more VNFs in its path, the smallest one is considered). Consequently a
virtual flow is generated.

54

VerINS Implementation

Algorithm 1 Virtual Flow Generation

1: procedure VirtualFlowGeneration(source, destination)
2: COMPUTE all possible flows between source and destination
3: for flow in just computed flows do
4: if reachability betweeen source and destination is guaranteed then
5: STORE flow in the nominated flows
6: SELECT the shortest flow between the nominated ones
7: return

Selecting the best existing path between source and destination is a heuristic
that has been introduced. If you want to obtain the best solution, all possible
flows between source and destination should be discussed, if existing flows are more
than one. Therefore, you can avoid overlapping flows that in the scheduling phase
must be managed with particular attention. In fact, you must avoid allocating two
elements whose processing requires the use of the same physical resources on the
same timeslots.

Flow Mapping Constraints

Then module takes into account all possible virtual flow mappings in the physical
topology. For each possible mapping, module generates automatically condition
that must be satisfied. This is one of the most significant parts of the developed
project. It is the moment in which we pass from virtual topology to physical
topology. The actual network topology may not be known to the network operator
that interacts with the VerINS module. Its interaction is limited exclusively to the
virtual topology, which, based on the needs of the network operator, is deployed on
the physical one. There is, therefore, a virtualization layer that separates the user
from the physical topology, simplifying the interaction and maximizing its efficiency
at the same time. This allows a very high degree of flexibility to be achieved. For
example, it is possible to trigger automatic network reconfigurations because of the
occurrence of a specific event, without a network operator action.

For instance, taking as a reference the virtual topology depicted in figure 6.3,
giving the following physical topology:

H1

H2

10.0.0.1 10.0.1.1

Figure 6.4. Physical Topology Example

55

VerINS Implementation

it is clear that there are four deployment possibilities:

1. both VNFs deployed on host H1;

H1

H2

10.0.0.1 10.0.1.1

Firewall Proxy

Figure 6.5. H1 Deployment Scenario

in this case flow element to be scheduled are:

(a) 10.0.0.1 → H1, that is a physical link crossing;

(b) Proxy action, that is a VNF execution;

(c) H1 → 10.0.1.1, that ia a physical link crossing.

2. firewall deployed on host H1 and proxy deployed on host H2;

H1

H2

10.0.0.1 10.0.1.1

Firewall

Proxy

Figure 6.6. Firewall on H1 and Proxy on H2 deployment scenario

56

VerINS Implementation

in this case flow element to be scheduled are:

(a) 10.0.0.1 → H1, that is a physical link crossing;

(b) Proxy action, that is a VNF execution;

(c) H1 → 10.0.1.1, that ia a physical link crossing.

3. firewall deployed on host H2 and proxy deployed on host H1;

H1

H2

10.0.0.1 10.0.1.1

Firewall

Proxy

Figure 6.7. Firewall on H2 and Proxy on H1 deployment scenario

in this case flow element to be scheduled are:

(a) 10.0.0.1 → H2, that is a physical link crossing;

(b) Proxy action, that is a VNF execution;

(c) H2 → 10.0.1.1, that ia a physical link crossing.

4. both VNFs deployed on host H2;

H1

H2

10.0.0.1 10.0.1.1

Firewall Proxy

Figure 6.8. H2 Deployment Scenario

57

VerINS Implementation

in this case flow element to be scheduled are:

(a) 10.0.0.1 → H2, that is a physical link crossing;

(b) Proxy action, that is a VNF execution;

(c) H2 → 10.0.1.1, that is a physical link crossing.

For each placement configuration and for each flow element there is a constraint
that must be pushed inside the z3 model.

For instance, considering the H1 deployment scenario, calling Firewall VNF as
n1 and Proxy VNF as n2, flow from 10.0.0.1 to 10.0.1.1 as f1 and given a set of flow
element Eins which includes all the physical link defined in the physical topology,
following constraints must be added in the z3 model:

n1h1 ∧ n2h1 ⇒ f11 ≡ 10.0.0.1→ H1

n1h1 ∧ n2h1 ⇒ f12 ≡ Proxy Execution

n1h1 ∧ n2h1 ⇒ f13 ≡ H1→ 10.0.1.1

Obviously, all possible deployment scenarios must be contemplated for each
flow. Therefore, gathering all passages, following pseudocode could be taken as a
reference:

Algorithm 2 Flow Mapping Constraints Generation Procedure

1: procedure Constraints generation(...)
2: for TS-Flow declared as i do
3: FIND all possible physical flow mapping
4: for physical flow mapping as j do
5: COMPUTE needed placement condition as cond
6: for TS-Flow element as k do
7: GENERATE constraint cond⇒ k ≡ j(n) . n is an index
8: PUSH generated constraint

We could sum up this procedure in formulas. Given:

� a TS-Flow f ∈ F ins, where notation fi denotes the i-th TS-flow element;

� a set P where each element p ∈ P represent a possible physical flow map of
the declared one;

� a function cond(x) where x is a physical flow correspondent to the declared
time sensitive one, returning placement condition that must be satisfied to
have the x mapping;

� a function length(x) where x is a flow, returning flow length in terms of flow
element number:

∀p ∈ P, ∀i ≥ 0 ∧ i < length(p), cond(p)⇒ fi ≡ pi (6.10)

These constraints in formula 6.10 are hard constraints that must be satisfied by
VerINS module.

58

VerINS Implementation

Flow Order Constraints

To be sure of the fact that the flow scheduling operations do not alter the flow order
thus calculated, it is necessary to add another constraint regarding the beginning
and the end of a single flow element. Two functions have been introduced to handle
flow scheduling operations. Both operate on a flow element. Given a TS-Flow
f ∈ F ins, where notation fi denotes the i-th TS-Flow element:

� start(fi), which returns the first timeslots from which the flow element fi
starts to be processed;

� end(fi), which returns the last timeslots from which the flow element fi ends
to be processed.

� duration(fi), which returns the timeslots number required from the flow ele-
ment fi to be processed.

Suppose having a Time Sensitive Flow as the one depicted in the following
figure, where each block represents a single flow element:

F1 F2 F3 F4

Figure 6.9. Time Sensitive Flow Elements

Scheduling order must be verified by module. Namely:

� F1 must be handled before F2, F3 and F4 processing;

� F2 must be handled after F1 execution, but before F3 and F4 processing;

� F3 must be handled after F1 and F2 execution, but before F4 processing;

� F4 must be handled after F1, F2 and F3 execution.

Following pseudocode could be taken as a reference:

Algorithm 3 Order Constraints Generation Procedure

1: procedure OrderConstraintsGeneration(flow)
2: for i← 0 to length(flow) do
3: for j ← 0 to length(flow) do
4: if fi precedes fj then
5: start(fi) + duration(fi) ≤ start(fj)

We could sum up this procedure in formulas:

∀f ∈ F ins,∀i ≥ 0 ∧ i < length(f),∀j ≥ 0 ∧ j < length(f),

∀i < j, start(fi) + duration(fi) ≤ start(fj)
(6.11)

59

VerINS Implementation

These constraints in formuala 6.11 are hard constraints that must be satisfied
by VerINS module.

Flow Element Overlapping Constraints

A particular type of constraint that must be taken into account concerns the flow
element scheduling that requires the same physical resources to be processed. The
primary objective of the module is to avoid the formation of queues in network
devices to provide guarantees regarding the maximum end-to-end delay between
two or more hosts on the network. Therefore the same physical resource cannot
handle multiple flow elements simultaneously. For instance, considering only flow
already mapped in the physical topology, can occur the following case:

H1

H3

H2

ENDHOST A

ENDHOST D

ENDHOST B

ENDHOST C

VNF 1

VNF 3VNF 2 VNF 4

FLOW AB

FLOW CD

Is deployed on

Figure 6.10. Non overlapping flows example

In the case considered in figure 6.10, the two flows in question can be scheduled
simultaneously since the physical resources involved, physical links and hosts on
which the VNFs are deployed, are different. Therefore, it is possible to save con-
siderably on the number of timeslots globally used for the management of declared
flows. However, this is not always feasible. It depends on source and destination
host location and on middle devices configuration. In addition, heuristic introduced
during virtual flow generation does not allow to search for possible virtual path that
have no overlap in the physical topology. This could be an improvement that could
be done as future work and extension of this framework.

60

VerINS Implementation

However, suppose we have a case similar to the following:

H1

H3

H2

ENDHOST A

ENDHOST D

ENDHOST B

ENDHOST C

VNF 1

VNF 3VNF 2 VNF 4

FLOW AB

FLOW CD

Is deployed on

Figure 6.11. Overlapping Flows Example

In this case, VNF2 and VNF3 execution cannot be scheduled in the same times-
lot since they require the same physical resource to be executed. It must be that:

start(V NF2) ≥ end(V NF3) ∨ end(V NF2) ≤ start(V NF3)

Obviously this statement must be verified for each flow element couple that
share the same physical resource within studied network environment. Generaliz-
ing, following procedure has been implemented to generate constraints concerning
overlapping problem:

Algorithm 4 Overlapping Constraints Generation Procedure

procedure OverlappingConstratinsGeneration(flows)
for each flow fi in flows data structure do

for each flow fj in flows data structure, different from fi do
for each fim flow element do

for each fjn flow element do
if fim and fjn are deployed on the same resource then

GENERATE constraint
PUSH constraint on z3 model

61

VerINS Implementation

Constraints generated take into account relative timeslot allocation of different
flow element. For instance, suppose having 2 different flow elements A and B be-
longing to two different flow deployed on the same physical resource. Only allowed
relative allocation of this flow elements are:

A

B

A

B
start(A) end(A) start(B) end(B) start(B) end(B) start(A) end(A)

Figure 6.12. Flow Element Relationships Example

Namely, only allowed relative allocation could be expressed also with the fol-
lowing notation:

end(A) ≤ start(B) ∨ start(A) ≥ end(B)

To explain these procedure in formulas we have to introduce a new function.
Given a flow element x, deployedOn(x) returns the physical resource where the flow
element x is mapped on. So:

∀x ∈ F ins, ∀y ∈ F ins, x /= y,

∀m ≥ 0 ∧m < length(x),∀n ≥ 0 ∧ n < length(y),

deployedOn(xm) == deployedOn(yn)⇒ start(xm) ≥ end(yn)∨
end(xm) ≤ start(yn)

(6.12)

These constraints in formula 6.12 are again hard constraints that must be pushed
in z3 model. They must be verified to have a reliable solution.

Total Timeslot Number Variable Constraints

A variable takes into account the total number of timeslots defined within that net-
work environment for the management of all declared flows. The use of a variable
has been made necessary because it is not possible to know in advance how many
timeslots are necessary for the management of flows declared to be of time-sensitive
type. By introducing a variable within our model, constraints must also be intro-
duced to manage it correctly. First of all, this variable must be limited between

62

VerINS Implementation

zero and maximum number of timeslots needed to handle all time-sensitive flows
declared in our network environment. This number can be computed in the worst
case as the algebraic sum of single flow length. Suppose having following function:

� map(x), where x is a flow in virtual topology. It returns a set of flow in
physical topology in which virtual flow could be mapped;

� max(x), where x is a set of flow. It return the longest path between flows in
set x.

Therefore, referencing total timeslot number variable with name ”makespan”:

makespan ≥ 0 ∧makespan ≤
∑

f∈F ins

max(map(f)) (6.13)

This constraint imposes a limit on possible value for ”makespan” variable.

Then, two constraints must be added to so formulated z3 model. Defining
following functions:

� last(x), where x is a flow. It returns last flow element of flow x;

� bool to int(x), where x is a boolean variable. It returns an int correspondent
to the boolean variable x. For instance, if x is true, function returns 1,
otherwise it returns 0.

these constraints could be expressed as:∑
bool to int(

∨
f∈F ins

(makespan, end(last(x)))) ≡ 1 (6.14)

∀f ∈ F ins,makespan ≥ end(last(f)) (6.15)

The 6.14 states that variable ”makespan” must be equal at least to the end of one
flow in the physical topology, while 6.15 states that variable ”makespan” must be
greater or equal then the end timeslot of last flow element for each flow.

F1E1 F1E2 F1E3 F1E4

F2E1 F2E2 F3E3 F4E4

0 T1 T2 T3 T4 T5 T6 = makespan

Figure 6.13. Schedulation Example

63

VerINS Implementation

In addition, constraints that limit value field function start(x) and end(x),
where x is a flow element must be pushed in z3 model. In particular must be that:

∀f ∈ F ins,∀i ≥ 0 ∧ i < length(f),

start(fi) ≥ 0 ∧ start(fi) ≤ makespan,

end(fi) ≥ 0 ∧ end(fi) ≤ makespan,

start(fi) < end(fi)

(6.16)

Constraints in formulas 6.13, 6.14, 6.15 and 6.16 are of hard type and so must be
verified by z3 engine.

Maximum Acceptable Latency Constraints

A constraint must also be pushed in z3 model regarding the maximum latency
that the network operator is willing to have for the management of that specific
time-sensitive flow. When declaring the time-sensitive flow, the operator can define
this parameter, taking into account the duration of timeslot that has been defined
within that particular network environment. Maximum end-to-end delay could be
computed with formula 5.2. In fact, in the worst case:

F1E1 F1E2 F1E3 F1E4

F2E1 F2E2 F3E3 F4E4

0 T1 T2 T3 T4 T5 T6 = makespan

F3E1 F3E2

New packet is ready to be

transmitted over the

network

Time to wait until packet
transmission starts

Flow length

Figure 6.14. Max Latency Computation

64

VerINS Implementation

As depicted in figure 6.14 above, in the worst case, a new packet transmission
request arrives a few moments later the beginning of first flow element handling.
So, packet has to wait a number of timeslot equal to ”makespan” until it starts
to be handled. Then packet will be delivered to destination when flow handling
finishes.

Given a set of time-sensitive flow F ins, a set of user-defined constraints Cins,
a function find constraint(f) returning declared constraint c ∈ Cins in terms of
maximum number of timeslot acceptable concerning flow f ∈ F ins , following con-
straint must be added:

∀f ∈ F ins,makespan + end(f)− start(f) ≤ find constraint(f) (6.17)

These constraint in formule 6.17 are again hard constraint that must be satisfied
by VerINS engine, during flow scheduling and placement operations.

6.3.4 Objective Functions

In z3, the declaration of objective functions is essential to address the search field
of the solution by the module z3. The optimizer, while searching for the solution,
tries to minimize the weight associated with the declaration of these functions.
The objective of the VerINS module is to find an optimal VNF placement and flow
scheduling solution able to minimize the end-to-end latency of the managed flows.
For this reason, it was decided to include as an objective function the calculation of
the maximum end-to-end latency in the worst case for each flow. Z3 optimizer have
available an API that allow the declaration of a function that must be minimized.
In this context, function that have been pushed in z3 model is:

∀f ∈ F ins,makespan + end(f)− start(f) (6.18)

Besides the assurance that flow will be managed in time accordingly to user-defined
constraints, VerINS module tries to minimize end-to-end as much as possible. It
proposes the best solution that minimizes end-to-end latency for each time-sensitive
flow. If a solution is not found, the module will return UNSAT as result, since it is
not possible to find a VNF placement and flow scheduling solution that addresses
all constraints seen in the previous sections.

6.4 Result Reporting

If the z3 module finds a solution, a SAT result is given. In addition, two types of
results must be reported to the user:

� the VNFs placement proposed on the given physical substrate; a nodeRef
element has been added to each host definition. It references node hosted.

� the proposed flow scheduling. A flowElement sequence has been added to
NFV schema that contains a sequence of all scheduled flow element with
timeslots allocation information.

65

VerINS Implementation

For instance, following XML is an extracted result from a VerINS execution
result concerning the VNFs placement part:

1 <Host name="host1" cpu="1" cores="4" diskStorage="50" memory="16"

maxVNF="4" type="MIDDLEBOX" active="true">

2 <SupportedVNF functional_type="FIREWALL"/>

3 <SupportedVNF functional_type="CACHE"/>

4 <SupportedVNF functional_type="FIELDMODIFIER"/>

5 <NodeRef node="node1"/>

6 </Host>

7

8 <Host name="host2" cpu="1" cores="4" diskStorage="50" memory="16"

maxVNF="4" type="MIDDLEBOX" active="true">

9 <SupportedVNF functional_type="FIREWALL"/>

10 <SupportedVNF functional_type="CACHE"/>

11 <SupportedVNF functional_type="FIELDMODIFIER"/>

12 <NodeRef node="node2"/>

13 </Host>

Listing 6.1. Placement Result XML Example

As can be easily seen, node1 and node2 are deployed respectively on host1 and
host2. And this is an XML extracted again from a VerINS execution result con-
cerning the flow scheduling part:

1 <FlowElements>

2

3 <FlowElement graph="0" flow="from_nodeB_to_nodeD" type="connection"

description="from hostB to host2" startOnTimeslot="0"/>

4 <FlowElement graph="0" flow="from_nodeB_to_nodeD" type="vnfExecution"

description="node2" startOnTimeslot="1"/>

5 <FlowElement graph="0" flow="from_nodeB_to_nodeD" type="connection"

description="from host2 to hostD" startOnTimeslot="2"/>

6

7

8 <FlowElement graph="0" flow="from_nodeA_to_nodeC" type="connection"

description="from hostA to host1" startOnTimeslot="0"/>

9 <FlowElement graph="0" flow="from_nodeA_to_nodeC" type="vnfExecution"

description="node1" startOnTimeslot="1"/>

10 <FlowElement graph="0" flow="from_nodeA_to_nodeC" type="connection"

description="from host1 to hostC" startOnTimeslot="2"/>

11

12 </FlowElements>

Listing 6.2. Flow Scheduling Result XML Example

It contains a list of flow elements and for each one is indicated the timeslot number
from which its management starts.

66

Chapter 7

Test and Validation

This chapter is dedicated to the presentation of a potential architecture design
able to implement in reality what has been theorized in the previous chapters.
So a first section is dedicated to an illustration of the key concepts that guide
the architectural design phase. In particular, focus is on technologies needed to
assure a proper functioning of the network environment. Finally, some test cases
are presented. They have been used only to show how VNF placements and flow
scheduling illustrated previously work. So a performance evaluation have been
conducted to show module weakness.

7.1 Real Architecture Deployment

Bringing as reference the work done in [15], a very similar scenario could be used
to deploy our solution in a real environment. Technologies exploited are the ones
introduced in the chapter 3, concerning the section 3.3:

� PTP, Precision Time Protocol, which provides a clock synchronization envi-
ronment between devices involved in the network considered;

� Intel DPDK, a technology able to provide a direct mapping between a network
interface and a process in the userspace.

In next subsections, cooperation between these two technologies is investigated
in-depth, showing an innovative architectural design that could be drawn up to
host solution previously presented. Obviously, they are integrated in an NFV/SDN
ready network environment. It means :

� that devices involved have the capability to interact with a centralized network
controller, where the control plane is executed, including all algorithms seen
in the previous chapter, through a special dedicated protocol. It allows to
make this control information exchange easier;

� the centralized controller must be able to orchestrate and deploy VNFs among
different devices accordingly to the principles of NFVi (Network Function
Virtualization Infrastructure).

67

Test and Validation

7.1.1 OVS with DPDK

The OpenFlow standard is managed by the Open Networking Foundation (ONF).
It has been introduced to propose a real implementation of an SDN network archi-
tecture. It allows the network controller to administer the forwarding behaviour of
controlled devices through a control plane declared on it. It is a real implementa-
tion of the subdivision between the control plane and data plane. Control plane
is executed on the centralized host while data plane is executed on the peripheral
controlled devices.

OpenFlow Protocol

OpenFlow Protocol

OpenFlow Protocol

CONTROL PLANE

FORWARDING PLANE

Flow Table 1
...
...

Flow Table N

Flow Table 1
...
...

Flow Table N

Flow Table 1
...
...

Flow Table N

Figure 7.1. Open Flow Architectural Design

In figure 7.1 above is clear the decoupling between control place and forwarding
plane. Each controlled device can interact with the centralized controller through
the OpenFlow protocol. Controller makes decisions and push on controlled devices
different Flow Table, which gathers the forwarding behaviour against each differ-
ent type of flows seen in the studied topology. Controlled devices, besides, can
report network status information to the centralized controller which, whenever
is needed, push new Flow Table on the controlled devices to face, for instance, a
failure occurred in the network.

Devices controlled are usually physical switches with have the capability to in-
teract with the OpenFlow controller, in addition to standard forwarding capability
already implemented in standard physical switches. In a virtualized environment,
instead of physical switches, virtual switches are used to interconnect VNFs de-
ployed on each host. Thanks to Intel DPDK technology, it is possible to built an
OVS in the userspace of the operating system host.

68

Test and Validation

USER SPACE

KERNEL SPACE

ovs-vswitchd

OVS Kernel Space
Forwarding Plane

NIC NICNIC

USER SPACE

KERNEL SPACE

DPDK Libraries

NIC NICNIC

USER SPACE

KERNEL SPACE

DPDK Libraries

ovs-vswitchd

OVS User Space
Forwarding Plane

PHYSICAL NIC

DATA PATH

CONTROL PATH

Figure 7.2. OVS with DPDK technology

In this way virtual switch is able to interact with the network controller follow-
ing the rule dictated by OpenFlow protocol. At the same time, virtual switch is
able to interact with VNFs deployed on the host considered. As a matter of fact,
this is one of the most important reason that bring to the use of virtual switching
in the networking world. More VNFs could be deployed on the same physical host.
Instead of mapping each VNF on a physical host interface, a virtual switch could be
use. In this way, you are able to bypass limits imposed by the number of physical
interfaces installed on the physical host.

7.1.2 Middlebox architecture

In the general middlebox architecture, we also have to consider VNFs deployment.
VNFs share data path with the Open Virtual Switch process through DPDK li-
braries. Packet forwarding through VNFs deployed on middlebox studied is man-
aged by the Open Virtual Switch forwarding plane, in its turn controlled by central
network controller shared through different network devices. Physical middlebox
interface is mapped to Open Virtual Switch process trough DPDK libraries.
So, following architecture could be considered as the possible one capable to host
previously defined environment, as middleboxes configuration:

69

Test and Validation

Open Flow Controller

USER SPACE

VNF User Space
Environment

KERNEL SPACE

DPDK Libraries

PHYSICAL NIC

VNF
1

VNF
2

VNF
3

. . .

Middlebox

ovs-vswitchd

OVS User Space
Forwarding

Plane

CONTROL PATH

Figure 7.3. OVS and DPDK architecture with VNFs

7.1.3 PTP Deployment

One of the most challenging issue to be faced in the architectural design phase also
highlighted in the previously shown work [15], is the PTP (Precision Time Proto-
col) synchronization daemon implementation. Deploying this synchronization layer
is very important in our designed network environment. Algorithms previously de-
scribed concerning flow-scheduling engine work correctly thanks to the fact that
all devices clocks within the network are synchronized. If some devices have clock
not synchronized with general master clock defined in the studied network environ-
ment, not managed situation could be raised, and the system goes into an unstable
state. A dedicated physical network interface is needed because of accuracy re-
quired by PTP. As a matter of fact, network traffic handled with high-priority
could negatively impact the PTP latency measurement.

7.1.4 Endpoint architecture

The endpoint architecture is very similar to the middlebox architecture. Endpoints
must know in which instant they are allowed to start the packet transmission. So a
data exchange with general network controller is needed to retrieve these kinds of
information. Besides, it is mandatory that again the device clock is synchronised to
a master clock; otherwise, algorithm previously described might not work properly.

70

Test and Validation

7.1.5 Physical Architecture Environment

Here is illustrated a potential physical architecture environment. To be noticed
that all devices involved in the network must have clock synchronized with a master
clock to meet VerINS minimum requirements. Algorithms described in the previous
chapter are run into the general network controller.

MIDDLEBOX

MIDDLEBOXMIDDLEBOX

Network
Controller PTP Master Clock

ENDHOST

ENDHOST

PHYSICAL SMART SWITCH

PTP Data Exchange

Physical Link

Control Protocol

Figure 7.4. Physical Architecture Example

7.2 Test and Validation

The functioning of the VerINS module thus developed has been validated through
some simple scenarios which are summarized here. First, the physical topology
referred to during the test phase is presented. So a virtual topology is defined. It
is the one that the network operator wants to deploy on the given physical sub-
strate. Then five different scenarios are proposed, changing the number of declared
time-sensitive flows and relative flows position in the virtual topology. In this way,
it is possible to prove the correct functioning of the module developed. Solutions
of VNFs placement and flow-scheduling directly suggested as output by the mod-
ule itself is then presented. To be noticed that tests have as the only objective of
demonstrating the module algorithm functioning and performance.
The studied physical topology includes six endpoints that are used during end-
to-end communication in a network environment. Each endpoint appears both in
virtual and physical topology since its placement is fixed. Instead, for simplicity,

71

Test and Validation

only three physical middleboxes are defined. They can host VNFs defined in the vir-
tual topology. Physical middleboxes resources have been defined through an XML
file injected in the VerINS module. The XML file contains for each middleboxes, its
available resource and capability concerning the VNFs placement. Among these:

� RAM capability;

� CPU power;

� max VNFs number that the middlebox is able to support;

� list of VNFs functional type able to support concerning software installed on
the middlebox.

These features are taken into account during placement operations by VerINS mod-
ule, generating proper constraints, as shown in the previous chapter.
In addition, we suppose that each endpoint is connected to each middlebox defined
in the physical environment for high availability purpose. If a failure occurs in one
physical link that connects the endpoint to the middlebox, a network reconfigu-
ration is triggered on the network controller. It happens since some VNFs could
not be reachable after the failure. Reconfiguration requires obviously the rerunning
of all algorithms defined. So a new potential VNFs placement scheme and flow
scheduling table is proposed. This operation takes times since all controlled hosts
must be reconfigured to deploy the new configuration. The reconfiguration phase
could be optimized introduction a smart logic that considers the entity of failures
and triggers a reconfiguration only when there is a real reachability problem be-
tween the declared flows.
Concerning virtual topology, VNFs involved in the network environment are rep-
resented in a more abstract way, showing relationships between communication
endpoints and other VNFs in the studied environment.
In the presented flow scheduling result, we assume that timeslots duration is equiv-
alent to the longest flow element execution in the defined environment. In addition,
we assume that all flow element require exactly one timeslot to be completely exe-
cuted. This limitation can be overcome by setting a flow element duration different
to the standard length (one timeslot). Results are presented, giving to the reader:

� placements result in tabular form;

� flow elements timeslots allocation in tabular form;

� graphical representation of time sensitive flow scheduling.

72

Test and Validation

H1

H2 H3

A

B

D

C

E

F

Figure 7.5. Physical Topology Test Environment

VNF
1

VNF
2

VNF
3

VNF
4

VNF
5

VNF
6

B

D

C

E

A

F

Figure 7.6. Virtual Topology Test Environment

73

Test and Validation

7.3 Service Graph

VNF
1

VNF
2

VNF
3

VNF
4

VNF
5

VNF
6

B

D

C

E

A

F

VNF
1

VNF
2

VNF
3

VNF
4

VNF
5

VNF
6

B

D

C

E

A

F

VNF
1

VNF
2

VNF
3

VNF
4

VNF
5

VNF
6

B

D

C

E

A

F

VNF
1

VNF
2

VNF
3

VNF
4

VNF
5

VNF
6

B

D

C

E

A

F

VNF
1

VNF
2

VNF
3

VNF
4

VNF
5

VNF
6

B

D

C

E

A

F

Figure 7.7. All Test Scenarios

7.3.1 First Scenario

In this first studied scenario, a single flow is considered. Each flow element is
allocated to an available timeslot. Total number of timeslots needed to address
this topology is equivalent to the number of flow elements in which the declared
time-sensitive flow is composed.

Table 7.1: First Scenario Placement Results

Physical Host VNFs Deployed
H1 VNF1, VNF2, VNF3, VNF4, VNF5
H2 -
H3 VNF6

Table 7.2: First Scenario Flow Scheduling Results

Timeslots Flow AD
T0 A to H1
T1 VNF1
T2 VNF2
T3 VNF4
T4 H1 to D

74

Test and Validation

A to H1 VNF1 VNF2 VNF4

T0 T1 T2 T3

FLOW AD H1 to D

T4

Figure 7.8. First Scenario Flow Scheduling Results

7.3.2 Second Scenario

In this second scenario, two time-sensitive flows are declared to be handled guar-
anteeing them a maximum end-to-end latency between host involved in communi-
cation. To be noticed that declared time-sensitive flows have no overlap in their
path. This is why they have been scheduled to be handled in parallel. In fact,
VNFs involved in their path, are deployed on different hosts. In this way, there are
no flow elements of first time-sensitive flow that have intersections with some flow
elements of second time-sensitive flow. As can be seen clearly from the tabular flow
scheduling representation, no more timeslots than the previous scenario are needed
to address this case.

Table 7.3: Second Scenario Placement Results

Physical Host VNFs Deployed
H1 -
H2 VNF3, VNF5, VNF6
H3 VNF1, VNF2, VNF4

Table 7.4: Second Scenario Flow Scheduling Results

Timeslots Flow AD Flow CF
T0 A to H3 C to H2
T1 VNF1 VNF3
T2 VNF2 VNF5
T3 VNF4 VNF6
T4 H3 to D H2 to F

A to H1 VNF1 VNF2 VNF4

T0 T1 T2 T3

FLOW AD H1 to D

T4

C to H2 VNF3 VNF5 VNF6FLOW CF H2 to F

Figure 7.9. Second Scenario Flow Scheduling Results

75

Test and Validation

7.3.3 Third Scenario

In this third scenario, a flow that in the virtual topology have intersections with
the already declared ones have been introduced. The module gives a new place-
ment solution. It allows flows to be handled in parallel, although their mapping in
physical topology is not the optimal one. However, only one more timeslot than
the previous scenarios is needed to address all time-sensitive flows in this topology.

Table 7.5: Third Scenario Placement Results

Physical Host VNFs Deployed
H1 VNF2, VNF4
H2 VNF1
H3 VNF3, VNF5, VNF6

Table 7.6: Third Scenario Flow Scheduling Results

Timeslots Flow AD Flow CF Flow BE
T0 A to H2 C to H3 B to H1
T1 VNF1 VNF3 VNF2
T2 H2 to H1 VNF5 VNF4
T3 VNF2 VNF6 H1 to H3
T4 VNF4 H3 to F VNF5
T5 H1 to D - H3 to E

A to H2 VNF1 H2 to H1 VNF2

T0 T1 T2 T3

FLOW AD VNF4

T4

C to H3 VNF3 VNF5 VNF6FLOW CF H3 to F

B to H1 VNF2 VNF4 H1 to H3 VNF5FLOW BE

T5

H1 to D

H3 to E

Figure 7.10. Third Scenario Flow Scheduling Results

7.3.4 Fourth Scenario

In this scenario, DE time-sensitive flow has been added to the already declared
ones. To be noticed that, accordingly to VNFs configuration, two possible paths
with the same cost are available for already declared flow BE:

� the one used which involves VNF2, VNF4, and VNF5. This path avoids a
possible overlap with flow CF, since VNF3 is not crossed;

76

Test and Validation

� the one used in the current solution, which involves the use of VNF3, gener-
ating an additional overlap to be handled with flow CF.

Solutions may be different accordingly to the path chosen. In the solution shown
below, seven timeslots are needed to handle all declared time-sensitive flows, since
path which generate a one more intersection in the virtual topology regarding VNFs
utilization has been chosen.

Table 7.7: Fourth Scenario Placement Results

Physical Host VNFs Deployed
H1 VNF1
H2 VNF2, VNF3, VNF6
H3 VNF4, VNF5

Table 7.8: Fourth Scenario Flow Scheduling Results

Timeslots Flow AD Flow CF Flow BE Flow DE
T0 - C to H2 - D to H3
T1 A to H1 VNF3 B to H2 VNF4
T2 VNF1 H2 to H3 VNF2 VNF5
T3 H1 to H2 VNF5 H2 to H3 H3 to E
T4 VNF2 H3 to H2 VNF4 -
T5 H2 to H3 VNF6 VNF5 -
T6 VNF4 H2 to F H3 to E -
T7 H3 to D - - -

A to H1 VNF1 H1 to H2

T0 T1 T2 T3

FLOW AD VNF2

T4

C to H2 VNF3 H2 to H3 VNF5FLOW CF H3 to H2

B to H2 VNF2 H2 to H3 VNF4FLOW BE

T5

H2 to H3

VNF5

T6 T5

D to H3 VNF4 VNF5 H3 to EFLOW DE

H3 to E

VNF6 H2 to F

VNF4 H3 to D

Figure 7.11. Fourth Scenario Flow Scheduling Results

7.3.5 Fifth Scenario

In this scenario, one more flow has been added. But, as can be seen clearly from
the tabular timeslots allocation representation, only six timeslots have been used.
This could be misleading since, in the previous scenario with one less flow than the
current scenario, seven timeslots were needed to handle all declared time-sensitive
flows. It happens because no constraints on virtual flow computation are put.
In fact, network operator in flow definition phase, gives source and destination of

77

Test and Validation

time-sensitive flow. Virtual path is computed automatically by module, accordingly
to VNFs configuration. Since multiple paths are available for flow BE, algorithm
choose arbitrarily between possible ones, without considering all possible solutions.
This is a heuristic introduced to prune solution tree.

Table 7.9: Fifth Scenario Placement Results

Physical Host VNFs Deployed
H1 VNF3, VNF5
H2 VNF1, VNF2
H3 VNF4, VNF6

Table 7.10: Fifth Scenario Flow Scheduling Results

Timeslots Flow AD Flow CF Flow BE Flow DE Flow FB
T0 A to H2 C to H1 - D to H3 -
T1 VNF1 VNF3 B to H2 VNF4 F to H3
T2 VNF2 VNF5 VNF2 H3 to H1 VNF6
T3 H2 to H3 H1 to H3 H2 to H1 VNF5 VNF4
T4 VNF4 VNF6 VNF3 H1 to E H3 to H2
T5 H3 to D H3 to F VNF5 - VNF2
T6 - - H1 to E - H2 to B

A to H1 VNF1 VNF2

T0 T1 T2 T3

FLOW AD H2 to H3

T4

C to H1 VNF3 VNF5 H1 to H3FLOW CF VNF6

B to H2 VNF2 H2 to H1 VNF3FLOW BE

T5

VNF4

VNF5

T6

D to H3 VNF4 H3 to H1 VNF5FLOW DE

H1 to E

H3 to F

H3 to D

FLOW FB

H1 to E

F to H3 VNF6 VNF4 H3 to H2 VNF2 H2 to B

Figure 7.12. Fifth Scenario Flow Scheduling Results

7.4 Performance Summary

Below is shown a histogram that sums up performances reached by the developed
module. Execution time has been split into two categories:

� constraint generation time; this is the time required by module to generate
placement and flow-scheduling constraints investigated in the previous chap-
ter.

78

Test and Validation

� z3 validation time; this is the time required by z3 engine looking for an optimal
solution which satisfies all constrains pushed on the z3 module.

The first one represents the time needed by module to generate constraints to be
pushed to z3 model. The second one, instead, is referred to the time required by
z3 engine to search an optimal solution that satisfy all constraints pushed in the
previous phase.

0 0.249 20.162 47.023 82.54 146.616
250.278

0

0.02 12.639 78.42
357.273

1372.782

5646.035

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

NUMBER OF TIME SENSITIVE FLOW

Scalability Test
Execution time (in sec) Constraints generation Execution time (in sec) z3 validation

Figure 7.13. Performance Results

Readers could see that execution times indicated in the figure are not acceptable
in a network environment which have a strict demand on real-time requirements.
Times grows exponentially up due to the number of constraints to be pushed to z3
engine. Most time consuming operations are:

� overlapping constraints generation;

� order constaints generaration;

� physical mapping of time-sensitive declared flow.

These are very complex operations and require too many efforts in terms of compu-
tational resources to be properly executed. Algorithmic complexity depends on the
number of hosts involved in the studied topology, number of declared time-sensitive
flows and length of each time-sensitive flow. Future work could be organized to de-
velop module in order to face these scalability issues as explained in the following
chapter.

79

Chapter 8

Conclusion and Future Works

The world of industry is facing a great revolution that is changing its unique aspects.
For many years, the industrial systems architecture and their interconnections have
evolved following guidelines that are different from those that have marked the
progress of a general-purpose interconnection system architecture. Industrial sys-
tems often play a fundamental role in critical security operations. This is why it is
often required to achieve specific requirements that can guarantee a high degree of
reliability of the systems involved and their interconnections.
Increasingly numerous are the industrial networks that involve a large number of
devices located throughout the world; it is, therefore, necessary to provide them a
high degree of flexibility and dynamism far from the canons that have character-
ized traditional industrial networks. It is, at the same time, fundamental respecting
safety and reliability requirements to guarantee their correct functioning.
The critical issues emerging in such an environment have, therefore, been analyzed
in parallel. There were two major ones: security and low latency end-to-end achieve-
ment. Both must be addressed to ensure the overall functioning of the system. The
thesis work focused on the formal verification of the real-time achievement of hosts
in the network. Making improvements in terms of security to the global network
environment implies the introduction of middlebox that can analyze traffic, keep
track of it and possibly block flows considered malicious. The logic of the blocks
can vary depending on the middlebox referred to, but they all have in common the
fact of introducing non-negligible latency. We, therefore, focused on the need to
guarantee real-time achievement requirements for networked hosts that in a critical
environment such as the industry remain of primary importance. Given the devel-
opments that have characterized the world of networking in recent years, there have
been several solutions proposed to manage the problem of real-time achievement
of hosts on the network, taking full advantage of the potential offered by the new
SDN and NFV technologies. These allowed to obtain a more abstract and global-
ized view of the controlled network environment and therefore, the development of
more flexible and efficient solutions. Two solutions were analyzed. The first pro-
posal in [14] focuses on the development of a framework able to guarantee a formal
verification of the real-time achievement of hosts in the network as a result of a
placement of smart VNFs that takes into account the latency of end-to-end flows.
The second proposal in [15] has a completely different approach to the problem.
In fact, it seeks to address the requirement of real-time achievement by proposing

80

Conclusion and Future Works

a time schedule of the flows in the network. Both solutions were taken into con-
sideration during the thesis work. The research activity started precisely from the
analysis of the limitations of the solutions held as a reference point, proposing an
extension aimed at allowing the placement of the VNFs while ensuring a limit on
the end-to-end latency of the flows declared of type time-sensitive network. The
first phase of project development was focused on the design of the problem, for-
malizing it as a research or optimization problem since we want to find a solution to
the VNF placement problem by proposing a time schedule of time-sensitive flows.
Therefore the constraints that must be taken into consideration during the place-
ment of VNFs and scheduling have been analyzed. Finally, thanks to the use of
the z3 optimizer, some simple test cases have been solved to verify their correct
functioning. Excellent results have been achieved. With the developed module we
were able to solve some simple network topologies, proposing an optimal solution in
terms of VNF positioning on the physical substrate and scheduling of network flows
in order to minimize end-to-end latency of time-flows sensitive. Therefore the first
validation phase can be considered successfully passed. However, the performances
that have been obtained do not yet allow the deployment of the module within the
common management and orchestration (MANO) software of the VNF on the net.
In fact, it is essential to keep the algorithm execution times extremely low, so as
to be as transparent as possible for network operations. Due to the very nature
of the problem, it was necessary to insert a considerable number of constraints
in the model. The generation of constraints is already a burdensome operation
in itself. Experimentally we have seen that the execution time increases linearly
with the number of time-sensitive flows declared in the network. Furthermore, the
greater the number of constraints introduced in the optimizer model, the longer
the time required for finding the optimal solution. From the performance analysis
conducted, we have seen how the execution time due to the validation by the op-
timizer used increases exponentially as the number of time-sensitive flows declared
on the network increases. Furthermore, in the current version of the module, the
user has the possibility to declare the communication endpoints. The module au-
tomatically calculates the path in the virtual topology as the shortest path existing
between those endpoints. However, this implies that the proposed placement and
the flow-scheduling solution is a suboptimal solution since it may exist some other
mapping of the flows that does not foresee the use of the shortest paths between
the declared endpoints but globally uses fewer timeslots, so it is to be considered
as a better solution.
It is, therefore, possible to intervene by making improvements regarding the gen-
eration of constraints which are then inserted into the optimizer. There are data
structures provided by the various optimizers that can already generate internally
or such constraints that some constraints are met implicitly without the need to
generate them. This could lead to general improvements in the performance of the
developed module.
Finally, we can plan to address the problem of finding the optimal solution, tak-
ing into account the various paths available for each flow on the virtual network
topology rather than considering the best one in terms of length. This could lead
to better solutions and therefore, to obtain lower latencies on the network. This
work has allowed us to demonstrate how it is possible to combine the problem of
VNF placement and network flow scheduling in a single instance. In a world where

81

Conclusion and Future Works

networking is increasingly oriented towards virtualization, adding a formal veri-
fication of achievement requirements can lead to a significant acceleration in the
implementation of these new technologies in a world that for years has advanced
much more slowly due to nature criticism of the devices involved. In the wave of the
revolution that is involving in recent years, industry requires greater flexibility and
dynamism. Integrating NFV / SDN-type technologies within this environment can
undoubtedly bring benefits, but it must never lose sight that certain requirements
must necessarily be satisfied with the design of a safe and reliable network.

82

Appendix A

RestAPI Developer’s Guide

In this chapter, an overview of API design strategy will be presented. APIs have
been developed to interact easily with VerIns module that includes both placement
and flow scheduling optimization engine, core of previous chapters. The project also
includes Swagger documentation that shows how to interact with APIs correctly.

A.1 New XML Features

New elements have been introduced to interact properly with the VerINS module:

� FlowElement: it has been added to address flow scheduling module imple-
mentation.

In particular, they are used to report results from VerINS module execution
to the end-user. Below the XML description of Flow Element is reported:

1 <xsd:element name="FlowElement">

2 <xsd:complexType>

3 <xsd:attribute name="graph" type="xsd:long" />

4 <xsd:attribute name="flow" type="xsd:string" />

5 <xsd:attribute name="type" type="xsd:string" />

6 <xsd:attribute name="description" type="xsd:string" />

7 <xsd:attribute name="startOnTimeslot" type="xsd:int" />

8 </xsd:complexType>

9 </xsd:element>

10

Listing A.1. Flow Element XML schema

A flow element could be of two types:

– Physical connection crossing: it is intended as physical link crossing
in physical topology. Connections declared in the virtual environment
are mapped in physical link between two or more hosts.

– VNF execution: it is intended as the VNF execution in the considered
environment. The VNF is deployed in a physical host. This step involves
the VNF execution. Its execution time is linked to host capabilities.

83

RestAPI Developer’s Guide

� RealTimeProperty: it has been introduced to allow end-user to declare
properties that must be satisfied during VerINS module execution. It includes:

– Source: host from which flow has to be started

– Destination: host to which flow has to be ended

– Maximum time allowed: it is expressed in number of timeslots (length
of timeslot is an environment property)

In addition, new XML schemas to address Neo4J interaction have been added.
Among them, the ones used to map HTTP requests and responses.

To help in build operation, an ANT script has been used to generate Java
classes automatically through XJC tool (XML to Java Compiler). They are used
to make module implementation easier. They are generated starting from an XML
schema.

A.2 Resource Description

The main resource handled through APIs consists in the union of elements be-
longing physical topology and definition of more virtual topologies defined on the
physical one. This is the schema that sums up the structure of the main resource.

1 <xsd:element name="NFV">

2 <xsd:complexType>

3 <xsd:sequence>

4 <xsd:element name="name" type="xsd:long" minOccurs="0" maxOccurs="1" />

5 <xsd:element ref="Graphs" minOccurs="1" maxOccurs="1" />

6 <xsd:element ref="Constraints" minOccurs="0" maxOccurs="1" />

7 <xsd:element ref="PropertyDefinition" minOccurs="1" maxOccurs="1" />

8 <xsd:element ref="Hosts" minOccurs="1" maxOccurs="1" />

9 <xsd:element ref="Connections" minOccurs="1" maxOccurs="1" />

10 <xsd:element ref="FlowElementsResult" minOccurs="0"/>

11 <xsd:element name="ResourceID" type="xsd:string" minOccurs="0"

maxOccurs="1" />

12 <xsd:element name="VerInsConstraintsGenerationTimeRequired"

type="xsd:long" minOccurs="0" maxOccurs="1" />

13 <xsd:element name="VerInsZ3TimeRequired" type="xsd:long" minOccurs="0"

maxOccurs="1" />

14 </xsd:sequence>

15 </xsd:complexType>

16

17 ...

18

19 <xsd:element name="NFV"/>

Listing A.2. Main resouce XML schema example

The developed web service interacts with NFV resource allowing the end-user
to perform various operations on it in order to facilitate his experience of use as
regards the interaction with VerIns module. Operations will be described in the next
sections. To further simplify the interaction with VerIns module, some operations
have been added, allowing CRUD operations (creation, removal, updating, deletion)

84

RestAPI Developer’s Guide

Resources Relative URLs
industrial /
— environments /environments
— — {id} /environments/{id}
— — — — result /environments/{id}/result
— — — — — — properties /environments/{id}/properties
— — — — — — — — {pid} /environments/{id}/properties/{pid}
— — — — — — connections /environments/{id}/connections
— — — — — — — — {cid} /environments/{id}/connections/{cid}
— — — — — — hosts /environments/{id}/hosts
— — — — — — — — {hid} /environments/{id}/connections/{hid}
— — — — — — graphs /environments/{id}/graphs
— — — — — — — — {gid} /environments/{id}/connections/{gid}

Table A.1. Resources mapping for VerIns module

on the elements that compose the main resource.
Mapping resources for VerIns module (note that base url ”/industrial”is omitted):

As can be seen from the table, the main resource is the network topology (un-
derstood as the physical topology and the virtual ones declared on it). Within this
resource you can find other resources that represent:

� Result: results are coming from VerIns module. They are shown to end user
in two categories: one is concerning ”placement results”, and one is concerning
”scheduling operations result”. The first one category includes the placement
of VNF is the physical topology, and in particular, they report where a VNF
is deployed. While the second category reports where each element of flow
declared through properties (managed with the next resource) is located in
terms of timeslot, avoid overlapping between different flows in the network
environment.
Scheduling result must follow this XML schema:

1

2 <xsd:element name="FlowElement">

3 <xsd:complexType>

4 <xsd:attribute name="graph" type="xsd:long" />

5 <xsd:attribute name="flow" type="xsd:string" />

6 <xsd:attribute name="type" type="xsd:string" />

7 <xsd:attribute name="description" type="xsd:string" />

8 <xsd:attribute name="startOnTimeslot" type="xsd:int" />

9 </xsd:complexType>

10 </xsd:element>

Listing A.3. Flow Element XML schema example

Verins results also include placement suggestion about VNFs orchestration
inside studied network environment. Physical host definition contains this
other part of results through node reference.

85

RestAPI Developer’s Guide

� Properties: they are used to declare property that have to be satisfied during
placement and scheduling operation done by Verins module. Properties with
”RealTimeProperty” as a name are the ones handled through VerIns engine
are. You have to specify source and destination of flow. As it is considered
as time-sensitive flow, you have to declare max number of timeslots that you
are willing to wait until communication is brought to an end.
Properties must satisfy rule imposed by this XML schema:

1 <xsd:complexType name="Property">

2 <xsd:attribute name="name" type="P-Name" use="required" />

3 <xsd:attribute name="graph" type="xsd:long" use="required" />

4 <xsd:attribute name="src" type="xsd:string" use="required" />

5 <xsd:attribute name="dst" type="xsd:string" use="required" />

6 <xsd:attribute name="maxNumTimeslots" type="xsd:long" use="optional"

/>

7 <xsd:attribute name="resourceID" type="xsd:string" use="optional" />

8 <xsd:attribute name="isSat" type="xsd:boolean" />

9 </xsd:complexType>

Listing A.4. Property XML schema example

� Connections: they represent the physical interconnections between the var-
ious hosts on the network. To each of them is associated with latency and
bandwidth, besides the source and destination of involved hosts. The XML
schema will be represented in the next section.

� Hosts: represents a host on the network, making clear the set of all the
features that distinguish it. The XML schema will be represented in the next
section.

� Graphs: represent the virtual topologies declared on a physical topology.
In particular, it contains the definition of all the virtual network functions
declared in the environment taken into consideration together with their in-
terconnections in the Service Graph. The XML schema will be represented
in the next section.

A.3 Physical and Virtual Topology Management

They represent the environment with which the VerIns module interacts. The phys-
ical topology includes the set of all hosts intended as physical machines available
and therefore also the set of all connections between them. Both physical devices
and connections are characterized by parameters that define them. These parame-
ters are taken into account by the VerIns module during the operations of placement
and flow scheduling.
Below is shown how hosts and connections are defined using an XML schema:

1 <xsd:element name="Host">

2 <xsd:complexType>

3 <xsd:sequence>

4 <xsd:element name="SupportedVNF" type="SupportedVNFType"

maxOccurs="unbounded" minOccurs="0" />

86

RestAPI Developer’s Guide

5 <xsd:element name="NodeRef" type="NodeRefType" maxOccurs="unbounded"

minOccurs="0" />

6 </xsd:sequence>

7

8 <xsd:attribute name="name" type="xsd:string" use="required" />

9 <xsd:attribute name="cpu" type="xsd:int" use="required" />

10 <xsd:attribute name="cores" type="xsd:int" use="required" />

11 <xsd:attribute name="diskStorage" type="xsd:int" use="required" />

12 <xsd:attribute name="memory" type="xsd:int" use="required" />

13 <xsd:attribute name="maxVNF" type="xsd:int" use="optional" />

14 <xsd:attribute name="type" type="TypeOfHost" use="optional" />

15 <xsd:attribute name="fixedEndpoint" type="xsd:string" use="optional" />

16 <xsd:attribute name="active" type="xsd:boolean" use="optional"

default="false" />

17 <xsd:attribute name="resourceID" type="xsd:string" use="optional" />

18 </xsd:complexType>

19 </xsd:element>

Listing A.5. Host XML schema example

1 <xsd:element name="Connection">

2 <xsd:complexType>

3 <xsd:attribute name="sourceHost" type="xsd:string" use="required" />

4 <xsd:attribute name="destHost" type="xsd:string" use="required" />

5 <xsd:attribute name="avgLatency" type="xsd:int" />

6 <xsd:attribute name="bandwidth" type="xsd:int" use="optional" />

7 <xsd:attribute name="resourceID" type="xsd:string" use="optional" />

8 </xsd:complexType>

9 </xsd:element>

Listing A.6. Connection XML schema example

Once the physical topology is defined, one or more virtual topologies can be de-
clared on this. These topologies, called Service Graphs in our context, include some
nodes. Some of these nodes represent the virtualized network functions. Others
instead represent endpoints of the communication taken into account. For instance,
in a typical industrial network, endpoints can be a slave that has collected data to
be returned to a master collector. While a virtualized network function can be a
Modbus firewall.

Below is shown how it is represented in our environment:

1 <xsd:element name="graph">

2 <xsd:complexType>

3 <xsd:sequence>

4 <xsd:element ref="node" maxOccurs="unbounded"></xsd:element>

5 </xsd:sequence>

6 <xsd:attribute name="id" type="xsd:long" use="optional" />

7 <xsd:attribute name="resourceId" type="xsd:string" use="optional" />

8 </xsd:complexType>

9 </xsd:element>

Listing A.7. Graph XML schema example

The VerIns module interacts with both types of topologies (physical and virtual)
through the Neo4j service. Both topologies are loaded into the Neo4j environment
to exploit algorithms made available through this service, such as the minimum

87

RestAPI Developer’s Guide

paths research given a topology.
Below is shown how both topologies are represented on the graph-oriented database
Neo4j.

0 999

Figure A.1. Virtual and physical graphs mapping

In blue, the Service Graphs (virtual topologies) while in brown, the physical
topology hosting the Service Graphs are represented. Neo4j service works separately
on these two kinds of topologies to retrieve information about the reachability of
two hosts and paths between two or more hosts. Interaction with Neo4j service
is possible through available APIs. For this purpose, a client has been developed
in a Java environment capable of interfacing with the available APIs. It produces
useful results to facilitate the implementation of VerIns module for the network
flow scheduling management. Through the client, it is, therefore, possible to load
an environment on Neo4j and customize it by creating, modifying, eliminating
physical and virtual connections. Here are reported available operations that you
could exploit through Neo4j client:

� addNFVSchema(NFV nfv, Logger logger)

� addGraph(Graph graph, Logger logger)

� findShortestPathsInNFV(Long graph, String source, String destination,
int maxlength, Neo4jNFVMappingResult mappings, Logger logger)

� findShortestPathsInPhysicalGraph(String source, String destination,
int maxlength, Neo4jNFVMappingResult mappings, Logger logger)

� findShortestPathsInGraph(String source, String destination,
int maxlength, Neo4jGraphMappingResult mappings, Logger logger)

88

RestAPI Developer’s Guide

� findAllPathsInNFV(Long graph, String source, String destination,
int maxlength, Neo4jNFVMappingResult mappings, Logger logger)

� findAllPathsInPhysicalGraph(String source, String destination,
int maxlength, Neo4jNFVMappingResult mappings, Logger logger)

� findAllPathsInGraph(String source, String destination,
int maxlength, Neo4jGraphMappingResult mappings, Logger logger)

� getGraph(Long id, Logger logger, String type)

� deleteGraph(Long graphId, Logger logger, String type)

� getGraphs(Long id, Logger logger)

� deleteNFVSchema(Long nfvId, Logger logger)

� addNodeToGraph(String nodeId, Long graphId,
Neo4jGraphMappingResult mappings, Logger logger)

� addConnection(String source, String destination,
Neo4jGraphMappingResult neo4jGraphMappingResult, Logger logger)

� addOrGetPhysicalGraph(NFV nfv, Logger logger)

Therefore it is possible to exploit the algorithms already implemented in Neo4j
for the search of minimum paths between two nodes in the network.

A.4 Web Service Configuration and Packages

In this section, the design of the web service developed to allow smooth interaction
with the VerIns module will be better understood. The main packages are:

� it.polito.verins.rest.resources: it contains the definition of all available
operation. Jersey-annotated Java Classes that provides mapping between
requested URL and method (GET, POST, DELETE, ...) on the one hand
and Java method on the other hand;

� it.polito.verins.rest.db: it includes all classes that interact with data struc-
ture needed for the web service implementation. In particular, have been
added classes to manage the main resource of web service and handle con-
current operation on data structure through ConcurrentHashMap provided
in Java language;

� it.polito.verins.rest.webservice: it contains classes that make more natu-
ral interaction between operation requested by user and data structure han-
dled inside it.polito.verins.rest.db package;

� it.polito.verin.rest.common: it contains classes that implement the core
of VerIns engine.

89

RestAPI Developer’s Guide

A.5 Resource Mapping Operations

Resource Method Status Operation

/ POST

201 Created

Upload a new environment

400 Bad Request

415 Invalid Media Type

500 Something wrong with server

503 Service temporarily unavailable

/id GET
200 OK

Get an existing environment
404 Not Found

/id PUT

200 OK

Update an existing environment

400 Bad Request

415 Invalid Media Type

500 Something wrong with server

503 Service temporarily unavailable

/id DELETE
200 OK

Delete an existing environment
404 Not Found

/id/result GET
200 OK

Get an existing environment result
404 Not Found

/id/connections GET
200 OK

Get all connections declared in the physical topology
404 Not Found

/id/connections POST

200 OK

Post a new connection in the physical topology

400 Bad Request

415 Invalid Media Type

500 Something wrong with server

503 Service temporarily unavailable

/id/connections/cid GET
200 OK

Get an existing connection declared in a given environment
404 Not Found

/id/connections/cid PUT

200 OK

Update an existing connection declared in a given environment

400 Bad Request

415 Invalid Media Type

500 Something wrong with server

503 Service temporarily unavailable

/id/connections/cid DELETE
200 OK

Delete an existing connection declared in a given environment
404 Not Found

/id/properties GET
200 OK

Get all properties declared in a given environment
404 Not Found

/id/properties POST

200 OK

Post a new property in a given enviroment

400 Bad Request

415 Invalid Media Type

500 Something wrong with server

503 Service temporarily unavailable

/id/properties/pid GET
200 OK

Get an existing property declared in a given environment
404 Not Found

/id/properties/pid PUT

200 OK

Update an existing property declared in a given environment

400 Bad Request

415 Invalid Media Type

500 Something wrong with server

503 Service temporarily unavailable

/id/properties/pid DELETE
200 OK

Delete an existing property declared in a given environment
404 Not Found

Table A.2. Resources mapping operations

To be noticed that all POST and PUT requests handle body in APPLICA-
TION/XML content type. Other body types are not supported by web service,
returning code 415 Invalid Media Type in response.

90

RestAPI Developer’s Guide

A.6 API Interaction Example

� Upload a new topology environment to web service: elaborate a post
request where in body a topology is described, like the following:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xsi:noNamespaceSchemaLocation="nfvSchema.xsd">

4 <name>999</name>

5 <graphs>

6 <graph id="0">

7

8 <node functional_type="ENDHOST" name="nodeA">

9 <neighbour name="node1" />

10 <configuration description="A simple description" name="confA">

11 <webclient nameWebServer="nodeB" />

12 </configuration>

13 </node>

14

15 <node functional_type="ENDHOST" name="nodeB">

16 <neighbour name="node1" />

17 <configuration description="A simple description" name="confB">

18

19 ...

20

21

Listing A.8. Post request body example

URL used to make this POST request is: http://localhost:8080/verifoo/rest
/industrial/environments/

� Get topology result from a declared environment: elaborate get re-
quest to main resource, obtaining result like the following one:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <NFV>

3 <Hosts>

4 <Host name="hostA" cpu="2" cores="2" diskStorage="10" memory="4"

type="CLIENT" fixedEndpoint="nodeA" active="true" resourceID="1"/>

5 <Host name="hostB" cpu="2" cores="2" diskStorage="10" memory="4"

type="CLIENT" fixedEndpoint="nodeB" active="true" resourceID="2"/>

6 <Host name="hostC" cpu="2" cores="2" diskStorage="10" memory="4"

type="CLIENT" fixedEndpoint="nodeC" active="true" resourceID="3"/>

7 <Host name="hostD" cpu="2" cores="2" diskStorage="10" memory="4"

type="CLIENT" fixedEndpoint="nodeD" active="true" resourceID="4"/>

8 <Host name="hostE" cpu="2" cores="2" diskStorage="10" memory="4"

type="CLIENT" fixedEndpoint="nodeE" active="true" resourceID="5"/>

9 <Host name="hostF" cpu="2" cores="2" diskStorage="10" memory="4"

type="CLIENT" fixedEndpoint="nodeF" active="true" resourceID="6"/>

10 <Host name="host1" cpu="1" cores="4" diskStorage="50" memory="16"

maxVNF="4" type="MIDDLEBOX" active="true" resourceID="7">

11 <SupportedVNF functional_type="FIREWALL"/>

12 <SupportedVNF functional_type="CACHE"/>

13 <SupportedVNF functional_type="FIELDMODIFIER"/>

14 <NodeRef node="node4"/>

15 <NodeRef node="node5"/>

16 <NodeRef node="node2"/>

91

RestAPI Developer’s Guide

17 <NodeRef node="node3"/>

18 <NodeRef node="node1"/>

19 </Host>

20 <Host name="host2" cpu="1" cores="4" diskStorage="50" memory="16"

maxVNF="4" type="MIDDLEBOX" active="false" resourceID="8">

21 <SupportedVNF functional_type="FIREWALL"/>

22 <SupportedVNF functional_type="CACHE"/>

23 <SupportedVNF functional_type="FIELDMODIFIER"/>

24 </Host>

25 <Host name="host3" cpu="1" cores="4" diskStorage="50" memory="16"

maxVNF="4" type="MIDDLEBOX" active="true" resourceID="9">

26 <SupportedVNF functional_type="FIREWALL"/>

27 <SupportedVNF functional_type="CACHE"/>

28 <SupportedVNF functional_type="FIELDMODIFIER"/>

29 <NodeRef node="node6"/>

30 </Host>

31 </Hosts>

32 <FlowElements>

33 <FlowElement graph="0" flow="from_nodeA_to_nodeD"

type="connection" description="from hostA to host1"

startOnTimeslot="0"/>

34 <FlowElement graph="0" flow="from_nodeA_to_nodeD"

type="vnfExecution" description="node1" startOnTimeslot="1"/>

35 <FlowElement graph="0" flow="from_nodeA_to_nodeD"

type="vnfExecution" description="node2" startOnTimeslot="2"/>

36 <FlowElement graph="0" flow="from_nodeA_to_nodeD"

type="vnfExecution" description="node4" startOnTimeslot="3"/>

37 <FlowElement graph="0" flow="from_nodeA_to_nodeD"

type="connection" description="from host1 to hostD"

startOnTimeslot="4"/>

38 </FlowElements>

39 <VerInsConstraintsGenerationTimeRequired> 249

</VerInsConstraintsGenerationTimeRequired>

40 <VerInsZ3TimeRequired>20</VerInsZ3TimeRequired>

41 </NFV>

42

Listing A.9. Get request to main resource body example

URL used to make this GET request is: http://localhost:8080/verifoo/rest/
industrial/environments/1/result Results contains both placement and flow
scheduling results coming from VerINS module.

92

Bibliography

[1] Trend Micro. Industrial Control System. Available on line. url: https://
www.trendmicro.com/vinfo/us/security/definition/industrial-

control-system.

[2] HEXA Engineers. The Differences Between DCS and SCADA. Available on
line. 2019. url: https:/ /www.hexaengineers. us/the- differences-

between-dcs-and-scada/.

[3] Lúıs Almeida. �Flexibility and Timeliness in Fieldbus-based Real-time Sys-
tems�. In: (Oct. 2019).

[4] Manuel Cheminod et al. �Leveraging SDN to improve security in industrial
networks�. In: WFCS. IEEE, 2017, pp. 1–7.

[5] Antonio López Padilla Miguel Herrero Collantes. Protocols and network se-
curity in ICS infrastructure. Spanish National Institute for Cyber-security,
2015.

[6] Bruno Dutertre. �Formal Modeling and Analysis of the Modbus Protocol�.
In: Critical Infrastructure Protection. Ed. by Eric Goetz and Sujeet Shenoi.
Boston, MA: Springer US, 2008, pp. 189–204. isbn: 978-0-387-75462-8.

[7] Peter Neumann and Axel Pöschmann. �Ethernet-based real-time communi-
cations with PROFINET IO�. In: 4 (May 2005).

[8] T. Stock and G. Seliger. �Opportunities of Sustainable Manufacturing in
Industry 4.0�. In: Procedia CIRP 40 (2016). 13th Global Conference on Sus-
tainable Manufacturing – Decoupling Growth from Resource Use, pp. 536
–541. issn: 2212-8271. doi: https://doi.org/10.1016/j.procir.2016.
01.129. url: http://www.sciencedirect.com/science/article/pii/
S221282711600144X.

[9] Alasdair Gilchrist. Industry 4.0: The Industrial Internet of Things. Apress,
2016. isbn: 978-1-4842-2046-7.

[10] C. Moeller J. Smit S. Kreutzer and M. Carlberg. Policy department A: eco-
nomic and scientific policy. Parliament’s Committee on Industry, Research
and Energy (ITRE). 2016.

[11] J. Matias et al. �Toward an SDN-enabled NFV architecture�. In: IEEE Com-
munications Magazine 53.4 (Apr. 2015), pp. 187–193. doi: 10.1109/MCOM.
2015.7081093.

[12] Architectural Framework. ETSI Network Function Virtualisation (NFV) In-
dustry Specification Group (ISG). 2013.

93

https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system
https://www.hexaengineers.us/the-differences-between-dcs-and-scada/
https://www.hexaengineers.us/the-differences-between-dcs-and-scada/
https://doi.org/https://doi.org/10.1016/j.procir.2016.01.129
https://doi.org/https://doi.org/10.1016/j.procir.2016.01.129
http://www.sciencedirect.com/science/article/pii/S221282711600144X
http://www.sciencedirect.com/science/article/pii/S221282711600144X
https://doi.org/10.1109/MCOM.2015.7081093
https://doi.org/10.1109/MCOM.2015.7081093

BIBLIOGRAPHY

[13] L. Zhou and H. Guo. �Applying NFV/SDN in mitigating DDoS attacks�.
In: TENCON 2017 - 2017 IEEE Region 10 Conference. Nov. 2017, pp. 2061–
2066. doi: 10.1109/TENCON.2017.8228200.

[14] Guido Marchetto et al. �Formally verified latency-aware VNF placement in
industrial Internet of things�. In: 14th IEEE International Workshop on Fac-
tory Communication Systems, WFCS 2018, Imperia, Italy, June 13-15, 2018.
IEEE, 2018, pp. 1–9. isbn: 978-1-5386-1066-4. doi: 10.1109/WFCS.2018.
8402355. url: https://doi.org/10.1109/WFCS.2018.8402355.

[15] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. �Time-sensitive
Software-defined Network (TSSDN) for Real-time Applications�. In: RTNS.
ACM, 2016, pp. 193–202.

[16] Andrew Loveless. �On TTEthernet for Integrated Fault-Tolerant Spacecraft
Networks�. In: Aug. 2015. doi: 10.2514/6.2015-4526.

[17] K. Harris. �An application of IEEE 1588 to Industrial Automation�. In:
2008 IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication. Sept. 2008, pp. 71–76. doi: 10.
1109/ISPCS.2008.4659216.

[18] John Swindall Hunter Harrington Mirko Torrez Contreras. Isochronous Real-
Time (IRT) Communication. url: https://profinetuniversity.com/

profinet-basics/isochronous-real-time-irt-communication/.

[19] Network Functions Virtualisation (NFV) Release 3; NFV Evolution and Ecosys-
tem; Hardware Interoperability Requirements Specification. ETSI Network Func-
tion Virtualisation (NFV) Industry Specification Group (ISG). 2017.

[20] P. Iovanna et al. �SDN-based architecture to support Synchronization in a 5G
framework�. In: 2016 IEEE International Symposium on Precision Clock Syn-
chronization for Measurement, Control, and Communication (ISPCS). Sept.
2016, pp. 1–4. doi: 10.1109/ISPCS.2016.7579504.

[21] Microsoft Research. Z3 - guide. Available on line. url: https://rise4fun.
com/z3/tutorial.

[22] David R. Cok. �The SMT-LIBv2 Language and Tools: A Tutorial�. In: 2012.

[23] Inc. Neo Technology. Neo4j Graph Platform. Available on line. url: https:
//neo4j.com.

[24] Eclipse Foundation. Jersey. url: https://eclipse- ee4j.github.io/

jersey/.

94

https://doi.org/10.1109/TENCON.2017.8228200
https://doi.org/10.1109/WFCS.2018.8402355
https://doi.org/10.1109/WFCS.2018.8402355
https://doi.org/10.1109/WFCS.2018.8402355
https://doi.org/10.2514/6.2015-4526
https://doi.org/10.1109/ISPCS.2008.4659216
https://doi.org/10.1109/ISPCS.2008.4659216
https://profinetuniversity.com/profinet-basics/isochronous-real-time-irt-communication/
https://profinetuniversity.com/profinet-basics/isochronous-real-time-irt-communication/
https://doi.org/10.1109/ISPCS.2016.7579504
https://rise4fun.com/z3/tutorial
https://rise4fun.com/z3/tutorial
https://neo4j.com
https://neo4j.com
https://eclipse-ee4j.github.io/jersey/
https://eclipse-ee4j.github.io/jersey/

	List of Figures
	List of Tables
	Introduction
	Thesis structure

	Industrial Control System
	Network Environment Overview
	Industrial Infrastructure
	Field Device
	Connectivity Requirements
	Fieldbus Protocols

	Innovative Features
	Industry 4.0
	NFV and SDN Overview
	ETSI NFV Management and Orchestration
	Leveraging NFV and SDN in ICSs

	Real-Time Industrial Systems
	Overview
	Related Works
	Latency Aware VNF Placement
	Time-Sensitive SDN

	Interesting Exploited Technologies
	Precision Time Protocol
	Intel Data Plane Development Kit

	Thesis Objective
	Open Issues
	Expected Results

	VerINS Design
	High-Level Framework Overview
	Tools Used
	Microsoft Z3 Solver
	Neo4J Graph Database
	Java Jersey RESTful Web Services Framework

	Service Graph Management
	Flow Design
	Timeslots Allocation

	VerINS Implementation
	Framework Tasks Relationships
	XML Input Format
	Z3 formulas
	Mathematical Notations
	Placement Constraints
	Flow Scheduling Constraints
	Virtual Path Computation
	Flow Mapping Constraints
	Flow Order Constraints
	Flow Element Overlapping Constraints
	Total Timeslot Number Variable Constraints
	Maximum Acceptable Latency Constraints

	Objective Functions

	Result Reporting

	Test and Validation
	Real Architecture Deployment
	OVS with DPDK
	Middlebox architecture
	PTP Deployment
	Endpoint architecture
	Physical Architecture Environment

	Test and Validation
	Service Graph
	First Scenario
	Second Scenario
	Third Scenario
	Fourth Scenario
	Fifth Scenario

	Performance Summary

	Conclusion and Future Works
	RestAPI Developer's Guide
	New XML Features
	Resource Description
	Physical and Virtual Topology Management
	Web Service Configuration and Packages
	Resource Mapping Operations
	API Interaction Example

	Bibliography

