
POLITECNICO DI TORINO

DEPARTMENT OF Software Engineering

College of Computer Engineering, Cinema and Mechatronics

Master's Degree in
COMPUTER ENGINEERING (SOFTWARE ENGINEERING)

Master’s Degree Thesis

BIG DATA AND CLUSTER QUALITY
INDEX COMPUTATION

Supervisor Candidate

Prof. Garza Paolo Aynadis Temesgen Gebru

Prof. Cerquitelli Tania

DECEMBER 2019

https://didattica.polito.it/laurea_magistrale/ingegneria_informatica/it/

 2

Abstract
Clustering analysis is an unsupervised machine learning technique that partitions a dataset into

multiple groups or clusters so that instances in the same cluster have high similarity but not

with instances of other clusters. The quality of the results generated by a clustering method is

measured in cluster evaluation phase using Cluster quality indices. Some clustering methods

demand the number of clusters into which data is going to be partitioned. Cluster quality indices

can also be used to determine the number of clusters to be provided as an input to the clustering

methods. The traditional clustering metrics are not applicable for Big Data due to a size limi-

tation and run time cost. This work introduces a method for evaluating huge size dataset.

This document presents a technique that assists the evaluation process of large amount of data.

It proposes a sampling approach using Big Data analysis to reduce the size of the dataset so

that the traditional clustering validity indices can process it. Silhouette validity index is selected

and adopted to test the sampling result. The sampling technique positions instances in the space

which is divided into cells of same size. It iterates through each cell to verify the cell meets a

criterion. The reduction is carried out only on those cells containing instances from the same

cluster and it provides a weight associated to each newly generated instances of the cells.

The evaluation of the implementation is made on both manually and automatically clustered

datasets. In the manually clustered dataset, three datasets containing 18000, 6500 and 3000

instances with 5, 8 and 31 number of clusters respectively were used. Single dataset is used in

the auto-clustered dataset with 8000 instances. To observe the performance, a comparison be-

tween the original datasets and the average of three different percentage of random sample are

done. Generally, silhouette index on smart sampled and original dataset, on all the datasets, are

very similar, with slightly higher index of the original dataset. This indicates the smart sam-

pling can be considered as a solution for the cluster evaluation of huge size dataset. The per-

formance of the average random sample shows an equal or slightly higher index than both the

smart the sampled and original dataset. However, it is important to consider that finding the

average silhouette index on random sample requires multiple executions for a single dataset

and results vary on each run while the smart sampling is executed once per dataset which is a

good point for the smart sampling.

Keywords: Big data, Cluster Evaluation, Cluster Quality Index, Sampling based cluster eval-

uation, Clustering Big data, Silhouette index

 3

Acknowledgments
I would like to thank my advisor, Professor Paolo Garza and my co-advisor professor Tania

Cerquitelli, for their support, assistance, understanding and motivation throughout this thesis

work. My deepest gratitude goes also to my family, specially my bother Befkadu Temesgen

and my husband Ivan Akono, for their help with all they can from the very beginning of my

journey to this master. The last but not the least is my daughter Makeba and my mom Abeba

for the pure unconditional love which gives me strength to continue when I feel like giving up.

 4

Table of Figures
Figure 2.1 The five V's of big data ... 15
Figure 2.2 High level architecture of Apache Hadoop .. 19
Figure 2.3 Apache Spark Architecture ... 20
Figure 2.4 Apache spark Ecosystem... 24
Figure 2.5 Catagories of Clustering Algorithms ... 27
Figure 3.1 General architecture of sample-based Big Data cluster evaluation 38
Figure 3.2 The workflow of Smart Sampling using Spark .. 40
Figure 3.3 An example x-y cluster graph with 36 instances of two clusters....................................... 43

 5

Index of Tables
Table 2.1 Comparison between RDD, DataFrame and DataSet .. 23
Table 3.1 Smart sampled dataset from a dataset in Figure 3.3(with cell size s = 1)............................ 44
Table 4.1 Experiment using random sampling on DS750 ... 47
Table 4.2 Experiment using the random sampling on DS2310 .. 48
Table 4.3 Experiment using random and smart sample on three manually clustered dataset 50
Table 4.4 Experiment using random and smart sample on auto-clustered dataset 51

 6

Contents
Abstract .. 2

Acknowledgments ... 3

Table of Figures ... 4

Index of Tables .. 5

1 Introduction .. 8

1.1 Background .. 8

1.2 Motivation ... 9

1.3 Statement of the problem .. 11

1.4 Objective.. 11

1.4.1 General objective ... 11

1.4.2 Specific objective .. 11

1.5 Scope and limitation of the study ... 12

1.6 Methodology ... 12

1.6.1 Literature review .. 12

1.6.2 Data collection ... 12

1.6.3 Prototype development.. 12

1.6.4 Evaluation .. 13

1.7 Application of result ... 13

1.8 Organization of the thesis .. 13

2 Literature Review .. 14

2.1 Introduction to Big Data ... 14

2.2 Advantage of Big Data .. 16

2.3 Big data analysis technologies .. 17

2.3.1 Apache Hadoop .. 17

2.3.2 Apache Spark.. 19

2.4 Clustering Analysis ... 25

2.4.1 Application of cluster analysis ... 26

2.4.2 Cluster analysis algorithm ... 27

2.4.3 Partitioning algorithms ... 27

2.4.4 Hierarchical algorithms ... 29

2.4.5 Density-based ... 30

2.4.6 Grid-based .. 31

2.4.7 Model-based .. 31

2.4.8 Constraint-based Method ... 31

2.5 Cluster Quality Index .. 32

2.5.1 Internal clustering validation measures .. 33

 7

2.5.2 External clustering validation measures .. 35

2.6 Cluster evaluation on Big Data.. 35

3 Big Data and Cluster Quality Index Computation .. 37

3.1 Fundamental concepts ... 37

3.2 Smart sampling using Spark .. 39

3.3 Silhouette index for Big Data cluster ... 45

4 Experimental Results ... 46

4.1 Experiment on random sample .. 46

4.2 Experiment on manually clustered dataset ... 48

5 Conclusion and Feature work ... 52

5.1 Conclusion ... 52

5.2 Future work ... 53

6 .. 56

7 Appendices .. 56

 8

 Chapter One

1 Introduction

1.1 Background
Nowadays, the data is growing at a rapid pace because of an increasing number of people,

organizations and machines producing data and sharing information in different ways such as

online web applications of organizations, entertainment images and video, security devices,

files created on personal computers, log files and metadata, internet of things. This data is

generated in high velocity, large volume, and a wide variety and it becomes an issue for data

storage and analysis [1]. This is mainly because the data is so huge to be stored in a single

machine and complex to be processed in the traditional data-processing application software

[2]. Cluster analysis and cluster evaluation are examples for challenge in Big Data analysis.

The objective of cluster analysis is to divide data into meaningful and/or useful groups (clus-

ters) in such a way that instances within the cluster are similar to one another with respect to

considered variables whereas instances of two different clusters are dissimilar. Therefore, Clus-

ters should exhibit high internal homogeneity and high external heterogeneity. It can be a

standalone tool to get insight to the data distribution or used as a preprocessing to other data

analysis algorithms such as data summarization. Business, medicine, climate, bioinformatics,

information retrieval and education are some of the fields that cluster analysis applied in [3, 4].

It is an unsupervised learning which has dataset as an input, no predefined classes and the

composition of the group is determined in the process. The task of cluster analysis can be

achieved using various algorithms including partitioning methods, hierarchical clustering, den-

sity-based clustering and model-based clustering. Evaluating clustering result is one of the

challenges mentioned related to clustering analysis [5]. Visual inspection can be taken as an

evaluation method, but it is impractical as real dataset are high dimensional and bigger in size.

Cluster Quality Index (CQI), which is considered as one of the success of clustering applica-

tions, is a common approach used for evaluation [5, 6].

Cluster Quality indices is crucial to determine the number of clusters in a dataset and measure

the clustering quality. In addition to that, CQI can be used to compare how well different clus-

tering algorithms perform on a set of data [7]. Cluster quality indices can be categorized into

https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Application_software

 9

three classes; external, internal and relative clustering validation. External clustering validation

requires external information or ground-truth information of data which is not a part of the

data. Whereas, the internal CQIs performs the evaluation without any external information [8].

Nowadays, there are an increasing number of distributed systems and Big Data frameworks on

the market that can be used to store and process Big Data in real-time or nearly real-time.

Apache Hadoop is among these frameworks [9]. It is a framework that allows storing Big Data

in a distributed environment in order to process it in parallel. There are basically two compo-

nents in Hadoop: Hadoop Distributed File System (HDFS) and Hadoop MapReduce. HDFS is

used as a primary data storage and MapReduce is used to perform all the necessary computa-

tions and data processing across the Hadoop cluster [10]. In addition, Apache Spark is one of

the most widely used open-source cluster computing frameworks [9, 11]. Apache Spark is a

framework for real time data analytics in a distributed computing environment. It has built-in

modules for streaming, machine learning, graph processing and SQL support. It provides near

real-time, in-memory Big Data processing. Resilient Distributed Dataset (RDD) is a funda-

mental data structure which is an immutable distributed collection of objects designed for par-

allel computing and in memory processing of large amounts of data [9, 12]. Spark is 100 times

faster than MapReduce [13]. This is mainly because it stores intermediate data in faster logical

RAM memory and reduces the number of read/write cycles to disk by executes computations

in-memory [13]. Due to it is processing speed, Fraud detection, log processing, and trading

data becomes easier with Apache Spark.

The purpose of this paper is to fill the gaps of traditional cluster evaluation indices in the pro-

cess of evaluating a large size dataset by presenting a smart sampling approach which works

with an adopted traditional index to support the sampled dataset. The proposed approach is

implemented using Apache Spark framework and an adopted silhouette cluster validity index

to support the sample generated using spark. The k-means method was selected for testing the

performance. A comparison with the randomly generated samples also performed.

1.2 Motivation
Big data is a term that is used to describe data that is big in size: high volume, created in a very

fast rate: high velocity and different types of data: high Variety. This is known as three V’s of

big data. Big Data is not defined with the three V’s, However, it also described with additional

two V’s: Veracity: trustworthiness of the data and Value: the worth of the data. Terabytes of

 10

data was considered big years back, which is not the case anymore and what is considered big

now may not be so big in the near future. This massive volume of data address problems that

were difficult to tackle before in analytics, business intelligence, data mining, machine learn-

ing, and pattern recognition. Big Data can be analyzed to extract information for insights that

lead to better decisions and important business moves. Speaking of big data, Data storage is

not the only challenge but also designing tools to perform operations (like analytical, process

and retrieval operations) in order to interpret and get value from such a massive amount data

[1]. To get the best out of big data, there should be a technology and infrastructure to store

manage and analysis it.

Clustering analysis, main task of exploratory data mining and a common technique for statis-

tical data analysis, can be used as a standalone tool to get insight into the data distribution or

as a pre-processing step for other algorithms. There are two types of Big Data clustering tech-

niques, single machine and multiple machine clustering [14, 15]. Single machine clustering is

performed on one node using data mining algorithms or dimension reduction. Techniques from

data mining are well-known knowledge discovery tools to analyze and reveal valuable

knowledge that is hidden within the data. Data mining clustering algorithms are considered

essential for Big Data analysis [14, 15, 16]. On the other hand, multiple machine clustering can

be performed by partitions in a distributed environment which speeds up the calculation and

increases scalability. Parallel clustering and MapReduce-based clustering is mentioned as mul-

tiple machine clustering in [14, 15]. When these Clustering methods are applied on a dataset,

the generated clustering result needs to be evaluated for several reasons [3]. One of reasons is

measuring clustering quality, accessing the quality of the cluster generated by the clustering

methods. Determining the number of clusters in a dataset can also be mentioned as other reason

why cluster evaluation is performed on a clustering result [3].

Given tremendous amount of clustered data, efficient and effective evaluation tools need to be

present. Data provided by the Big Data is beyond the capacity of the traditional cluster quality

indices. The question that arises is how to deal with this problem and evaluate results produced

from clustering techniques. Taking this issue in to consideration, it is necessary to propose a

solution which provide methods for evaluating Big Data clusters.

https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_analysis

 11

1.3 Statement of the problem
When a Big Data is clustered, the instances are dispersed over different nodes in the network.

The clustering result cannot be gathered in a single machine for evaluation due to its size. In

addition to that, the traditional evaluation algorithms, which are centralized and has capacity

limitation, are unable to be applied directly on Big Datasets [14, 15]. Therefore, it is important

to design solution to evaluate the clustering result applied on Big Data cluster.

This work tried to answer the following questions;

• Can sampling be an option for Big Data cluster analysis?

• Will increasing or decreasing of percentage of the sample have a relation with perfor-

mance?

• Can the proposed sampling method be used as Big Data cluster evaluation?

• Which one of this method performs better and in which conditions?

• Which one of the methods be recommended for Big Data cluster evaluation?

• How is the performance of both sampling methods on manually and automatically clus-

tered dataset?

1.4 Objective

1.4.1 General objective
The general objective of this thesis is to design and develop a cluster evaluation system for a

Big Data by reducing the original large size dataset into a smaller one in order to perform the

evaluation on traditional cluster quality indices.

1.4.2 Specific objective
The specific objectives of this project are to:

• review literatures on Big Data analysis, clustering analysis, cluster evaluation and other

related researches conducted on Big Data clustering analysis and clustering quality in-

dex;

 12

• develop an algorithm for proposed approach used to perform Big Data cluster evalua-

tion;

• implement the algorithm; and

• evaluate the system using collected test sets

1.5 Scope and limitation of the study
This study only covers automatic Big Data cluster evaluation. For comparison purpose, auto-

matically clustered datasets are also used during the experiment in addition to the manually

clustered datasets. This work tried to include dataset cleaning and preprocessing before use.

The scope of this study is limited to evaluating an already clustered big dataset.

1.6 Methodology

1.6.1 Literature review
Related works will be reviewed to get a deeper understanding about clustering analysis, cluster

evaluation, Big Data analysis and fundamental concepts related to this work. A review on dif-

ferent approaches of cluster evaluation will also be made to identify and understand the concept

related and their advantages and disadvantages.

1.6.2 Data collection
The test dataset will be selected to evaluate the proposed solution. The collected dataset con-

tains both clustered and un-clustered dataset. The selected un-clustered dataset will be auto-

matically clustered during the experiment.

1.6.3 Prototype development
To implement the proposed solution, clustering analysis tool or clustered dataset is required to

facilitate the experiments. The implementation of Big Data clustering evaluation will be done

using Apache spark (version 2.2.0) for the data analysis and Apache Hadoop (version 2.7) for

HDFS data storage. Spark jobs will be written in Java (version 1.8). The silhouette implemen-

tation will also be written in Java.

 13

1.6.4 Evaluation
After implementing the proposed algorithm, the prototype developed will be tested using the

test set prepared for this purpose. The performance of the proposed solution is determined by

comparing the silhouette index of the proposed sampling method with the random sample da-

taset and the original dataset.

1.7 Application of result
As this work mainly concerned with evaluating results for cluster analysis for large size dataset,

it can be applied wherever clustering analysis is applied in order to enhance the performance

of clustering.

1.8 Organization of the thesis
This section describes the organization of the rest of the thesis. Chapter two discuses funda-

mental concepts, different approaches and techniques related to clustering analysis, cluster

evaluation, Big Data and its technologies. It also presents related works to this study. Chapter

three describes the approach used in this research in detail. The experiment and results are

discussed in chapter four. The last chapter, chapter five, presents the conclusion and recom-

mendation based on the experiment and results.

 14

 Chapter Two

2 Literature Review

2.1 Introduction to Big Data
Data has been slowly growing over the last few centuries, however in the course of the past

decade, Big Data has quickly evolved to become as massive as it is today. Big Data is not only

about gathering and storing massive amounts of information but, more importantly, applying

that information to resolve issues in business or society [1, 17]. Big Data appears to develop at

the same time with advancement in technology. Therefore, as the technology advance, Big

Data keep on growing in volume and as a field.

Big Data is often described as tremendously large datasets that cannot be stored in single ma-

chine and are beyond the ability to be managed and analyzed with traditional data processing

tools. The challenges of big data management result from the enlargement of all three proper-

ties, rather than just the volume alone. Generally, the term “Big Data” refers to three V’s: vol-

ume, velocity and Varity. Figure 2.1 shows the classic characterization of big data which in-

cludes another two important V’s: Veracity and Value.

Volume

The amount of data is one of defining properties of big data. A massive amount of data is

created each second by number of means such as searches on search engines, videos, photo and

texts on social media, structured records of companies' databases and the like. Other than hu-

man generated data, machine logs and sensor data are another source of data. 90 percent of the

data today is generated over the past couple of years. The volume of Big Data depends on a

particular business requirement. For one company or system, 100TB may be considered as Big

Data and it may be 10PB for another.

Variety

Variety refers to types of data available. Traditional data types (number, text, time, date...) were

structured that fit a rational database whereas now it doesn't easily fit into fields on database

https://searchdatamanagement.techtarget.com/definition/big-data-management

 15

applications. The data types that should be handled are not only structured but also semi struc-

tured or/and unstructured (social media feeds, audio, video, images, web pages...) which need

additional effort to give meaning to it.

Figure 2.1 The five V's of big data

In general, Big Data can be found in three forms; unstructured, structured and semi structured.

Structured data refers to data stored in an ordered manner and designed according to a pre-

defined data model. This type of data is relatively straightforward to enter, store, query, and

analyze. Structured data corresponds to a tabular format with relationship between the different

rows and columns. Some of the examples of the structured data includes relational databases

and excel files. All of these have structured rows and columns that can be grouped. On the

other hand, unstructured data is information that either does not conform neatly into a prede-

fined data model or is not arranged in a pre-defined manner. It is not a good fit for relational

databases. It basically contains text-heavy which creates irregularities and ambiguities that

make it challenging to understand, analyze and drive value out of it compared to data stored in

structured databases. Common examples of unstructured data include Word, PDF, Text, Media

logs, audio, video files or No-SQL databases. Semi-structured data is a form of structured data

that does not designed with the formal structure of data models related to data tables, but some

organizational properties that make it easier to analyze. It contains tags or other markers to

 16

separate semantic elements and implement hierarchies of records and fields within the data.

Common examples of semi-structured data include JSON and XML are forms of semi-struc-

tured data.

Velocity

Velocity refers to the speed of creation, collection and processing of data. Considering Face-

book as an example, massive amount of data images and videos are being uploaded, processed,

stored and retrieved in seconds. Some activities are time sensitive and requires real time data

processing. For instance, to protect an organization from fraud detection, the flow must be

processed as it’s streamed to increase the data protection.

Value

Value refers to the worth of the data being extracted. It is nothing to have huge amount of data

if it cannot be turned into value which is the ability to transform a highly growing data into

business. While there is a clear relationship between data and observations, this does not always

mean Big Data has a value. The most important issue is to recognize the costs and benefits of

gathering and processing the data to guarantee that the collected data can be monetized in the

end.

Veracity

This refers to the trustworthiness and accuracy of the data. The higher the volume of the data

and data source, the more it becomes uncertain. This leads to serious of data quality which

causes inaccurate data analysis and wrong decisions. It can be difficult to trust the accuracy of

rapid analysis and change of the information with data of high volumes, from various sources

and such high speeds. Traditional Data management techniques provide a consistent and usu-

ally accurate solution by means of a structured databases and data warehouses. Nowadays, as

the data can be real time, it can be difficult to find a clear, verified and formatted data. Big Data

involves working with all degrees of quality data, reliable source and robust algorithms.

2.2 Advantage of Big Data
Organizations have a long practice of capturing and storing transactional data. In addition to

that, organizations currently are capturing other data at an increasingly fast speed from opera-

tional environment such as web data(page views, searches, purchasing, etc.), text data (email,

 17

news, social media feeds, etc.), time and location data (GPS, mobile phone and Wi-Fi connec-

tion) and sensor data(cars, oil pipes, windmill turbines).

Ability to capture and process Big Data brings in number of advantages. Using web data, Or-

ganizations can increase performance in areas such as next best offer, targeted advertisement,

churn modeling and customer segmentation. Customer service can be improved using Big Data

and natural language processing technologies by utilizing to read and evaluate consumer re-

sponses from customer feedback systems which are designed with Big Data technologies now

a days. Businesses can utilize external intelligence during decision making by getting access

to web and social data. Many organizations are realizing the power of knowing where custom-

ers are at a particular period, but this is privacy-sensitive types of Big Data and should be

treated with great attention. Moreover, Key facts can be extracted from the text data and then

used as inputs to other analytic process (for example, fraud detection in insurance claims) [1].

Sensor data can be used to diagnose problems on engines and machinery more easily for faster

development of mitigation procedures. Big Data technologies can be used for early identifica-

tion of risk to the product by creating a landing zone for new data before identifying what data

should be moved to the data warehouse. Furthermore, organizations can offload infrequently

accessed data by integrating of Big Data technologies and data warehouse.

2.3 Big data analysis technologies

2.3.1 Apache Hadoop
Apache Hadoop is a framework used for distributed storage and distributed processing of very

large datasets distributed across clusters of commodity computers. It is an open-source soft-

ware written in Java. Hadoop follows a master slave architecture design. The main components

of Hadoop are Hadoop Distributed File System (HDFS) and Hadoop MapReduce for distrib-

uted data storage and distributed data processing respectively [11, 13] .

HDFS gives access to files and directories to the user application. The files and directories are

stored over different machines on the network. In HDFS, the actual data and metadata are kept

separately on dedicated servers. HDFS has two important components: NameNode and

DataNode. NameNode is a single master server in the cluster and it stores the metadata which

is the directory tree of all files in the file system to track the files across the cluster. All metadata

 18

operations on the file system such as creating, opening, closing or renaming files and directo-

ries are served by the NameNode. A file is split into same size data blocks and data blocks are

stored DataNodes and a list of blocks and their location are stored in NameNode. Therefore,

DataNode, which is also known as slave, stores the actual data. HDFS cluster contains one or

more DataNodes and it replicates the file content on these DataNodes for fault tolerance. All

decisions regarding replication are left for the NameNode. It periodically receives information

from each of the DataNodes in the cluster. This insures the proper function of the DataNode

[11].

The core architectural goal of HDFS is detection of hardware failure, which assumed as a com-

mon failure, and fast recovery from it without any interaction by the user. It’s easily portability

property across heterogeneous hardware and software platforms assists its adoption as a plat-

form of choice for a large set of applications [11].

MapReduce is a program model within the Hadoop framework for accessing and processing a

huge data stored in the Hadoop File System (HDFS). MapReduce programs can be written in

various languages such as Java, Ruby, Python, and C++. MapReduce performs analysis by

splitting huge size of data into smaller chunks on a huge dataset and process the chunks in-

parallel using multiple machine in the cluster in a reliable, fault-tolerant manner. The MapRe-

duce algorithm contains two important tasks or functions, namely Map and Reduce. Map takes

a set of data as a key/value pair, performs processing and produces another intermediate set of

data as a key/value pair. Initially, the input data is divided into fixed-size smaller blocks and

each block is assigned to a mapper for processing. When all the mappers finish processing, the

reducers receive shuffled and sorted results. Shuffling consolidates the relevant records from

mapping output. Reducer combines a set of intermediate values, which have the same a key to

a smaller set of aggregated values. All the map output values that have the same key are as-

signed to a single reducer. The Reducer result will be stored in the HDFS. The mapper task is

always performed before the reducer i.e. a reducer cannot start while a mapper is still in pro-

gress. Figure 2.1 shows the architecture of Hadoop.

 19

Figure 2.2 High level architecture of Apache Hadoop

2.3.2 Apache Spark
Apache Spark is a general-purpose cluster computing system for real-time distributed data pro-

cessing. Its in-memory computations feature implies an increase in application processing

speed and making it desirable for everyone interested in Big Data analytics. It supports Pro-

gramming languages such as Java, Scala, Python, and R. It has libraries for SQL (structures

data processing), machine learning, graph processing, and stream processing. Spark can work

standalone or run on an existing cluster manager.

2.3.2.1 Apache Spark Architecture

Driver program is in the master node and drives the application. The code that the user writes

or interactive shell that user use behaves as a driver program. When a client submits spark user

application code, the driver implicitly converts user code into a logically directed acyclic graph

called DAG. Then, the driver converts DAG into physical execution plan with many stages.

After conversion, Tasks which are physical execution units are created under each stage. The

tasks are collected and transmitted to the cluster. The driver communicates and negotiates with

the cluster manager about the resources. Cluster manager sets up executors in worker nodes on

behalf of the driver. At this point, the driver sends the tasks to the executors. The executors

register with drivers during the beginning of the execution in order the driver to have a com-

plete view of executors that are executing the task. Driver program monitors the set of execu-

tors that runs, and schedules future tasks based on data placement. Figure 2.3 show the archi-

tecture of spark which shows the relation between different components.

http://data-flair.training/blogs/why-you-should-learn-scala-introductory-tutorial/
http://data-flair.training/blogs/apache-spark-cluster-managers-tutorial/

 20

The very first task performed in the driver program is creating a Spark Context. The Spark

context is a gateway to all the Spark functionalities. It is similar to your database connection.

Spark context and cluster manager work together to manage number of jobs. The driver pro-

gram & Spark context manages the job execution within the cluster. A job is divided into mul-

tiple tasks and distributed over the worker node. The Tasks are executed by the worker nodes,

which are slave nodes. The tasks work on the partitioned RDD and perform operations. Then,

results are collected and returned back to the spark context.

Figure 2.3 Apache Spark Architecture

2.3.2.2 Apache Spark API’s

There are three main APIs in spark: RDD, Data Frame and Dataset. Each one of these APIs

discussed as follows:

RDD (Resilient Distributed Dataset)

RDD (Resilient Distributed Dataset) is the fundamental data structure of Apache Spark to rep-

resent data in the Spark memory. “Resilient”, from the name, describes its fault-tolerant be-

havior. If there is a node failure, the missing or damaged partitions can be recomputed with

help of RDD lineage graph. “Distributed” implies resides on multiple nodes in a cluster. “Da-

taset” is a collection of partitioned data with primitive values or values of values, e.g. tuples or

other objects. The Objects are collection of statically typed immutable objects which computes

on different nodes of the cluster. Immutable means its state cannot be modified after it is cre-

ated, but it can be transformed to another RDD. RDD is designed to address issues in a distrib-

uted environment like expensive remote data access, high chance of failure, expensive wasting

 21

computing power and difficulty tracking runtime errors. An RDD can be created by paralleliz-

ing an existing collection in your driver program, or referencing a dataset in an external storage

system, such as a shared file system, HDFS or any data source offering a Hadoop Input Format.

A faster data sharing across parallel jobs is required by both Iterative and Interactive applica-

tions. Due to replication, serialization, and disk IO, MapReduce data sharing is slow. Perform-

ing HDFS read-write operations takes more than ninety percent of the total time in most of the

Hadoop applications. The concept of RDD in Spark is used to achieve faster and efficient

MapReduce operations. Intermediate results in iterative operation of spark are stored in a dis-

tributed memory instead of Disk storage which makes the system faster. If there is more than

one query run on the same set of data repeatedly (interactive operations on Spark RDD), this

particular data can be kept in memory for better execution times.

There are two main operation performed on RDDs: Transformation and action. Spark Trans-

formation is an operation that produces new RDD from the existing RDDs. It takes the input

RDD data and transforms it to one or more output RDD of another form. Transformation is a

lazy operation because it will not perform the operation immediately. It keeps on constructing

DAG (Directed Acyclic Graphs using the source RDD and function used for transformation.,

all the transformation that form the RDD, in which the action is applied on, are executed based

on DAG when an action operation is performed. Actions, unlike transformation, do not form

RDDs. Instead works on the actual dataset to generate non RDD value which will be stored in

a driver or to the external storage system. When an action is takes place, data is sent from

Executer to the driver. Executors are agents that are responsible for executing a task and the

driver is a JVM process that coordinates workers and execution of the task. Example transfor-

mations include map, filter, distinct, and groupBykey. Example actions include count, top, re-

duce, fold or writing data out to file systems [11, 13].

The distribution of data within the cluster is performed using Java serialization by default. This

requires sending both data and structure between nodes. The drawback of RDDs is an overhead

in serializing Java and Scala objects and on garbage collection that results from creating and

destroying individual objects [11, 13] .

DataFrame

Unlike RDD, Data is organized as a distributed collection of data into named columns called

DataFrame. Fundamentally, it is conceptually similar a table in a relational database or data

frame in R/Python. It does not run directly on spark context but on the SQL context. A wide

 22

array of sources (which include structured data files, tables in Hive, external databases) can be

used to construct DataFrame. It allows spark to manage the schema in order to pass the data

between nodes efficiently than Java serialization [11, 13] .

The lack of type safety is an in issue in DataFrames. The schema that represents the data holds

the column names but not the column types. As the code refers to the name of data attributes,

it is impossible for the compiler to detect errors. The users are expected to cast the values to

the expected type. For incorrect attribute names, the error will only be detected at runtime [11,

13] .

Dataset

A Dataset is a strongly typed collection of domain-specific objects. The objects can be trans-

formed in parallel using functional or relational operations. Dataset fills the gaps of DataFrame

by adding type safety to it. It runs on the SQL context and provides a similar syntax as that of

RDD (including Operations like transformations and actions) with lambda expressions. Like

RDD, Transformations produce new Datasets, and actions trigger computation and return re-

sults [11, 13]. Table 2.1 compares the three spark APIs (RDD, DataFrame and DataSet) based

on various features such as Data Representation, Immutability, and Interoperability etc.

 23

Feature RDD DataFrame DataSet

Included since Spark

Release

Version 1.0 Version 1.3 Version 1.6

Data Representation distributed collection

of data in the cluster

distributed collec-

tion of data orga-

nized into named

columns

extension of DataFrame

API with type-safe func-

tionality

Data format Structured and un-

structured but NO

Schema

structured and

semi-structured

data

structured and unstruc-

tured data

Data Sources API

Any e.g. text file, a

database via JDBC

etc

Different formats

e.g. AVRO, CSV,

JSON, and HDFS

Different formats e.g.

AVRO, CSV, JSON, and

HDFS, MySQL

Optimization

No inbuilt optimiza-

tion engine

Uses catalyst opti-

mizer

Includes the concept of

Dataframe Catalyst opti-

mizer for optimizing

query plan

Seri1alization

use Java serialization Uses off heap

memory for serial-

ization

performing the operation

on serialized data

Table 2.1 Comparison between RDD, DataFrame and DataSet

2.3.2.3 Apache Spark Ecosystem

Apache Spark Ecosystem consists of six basic components which are Apache Spark Core,

Spark SQL, Spark Streaming, Spark MLlib, Spark GraphX, and SparkR (see Figure 2.4).

 24

Apache Spark Core

All the functionalities being provided by Apache Spark are built on the top of Spark Core. It

delivers speed by providing in-memory computation capability. It provides distributed task dis-

patching, scheduling, and basic I/O functionalities. This is possible through an application pro-

gramming interface (for Java, Python, Scala, and R). Thus, Spark Core is the foundation of

parallel and distributed processing of huge dataset.

Figure 2.4 Apache spark Ecosystem

Spark SQL

Spark SQL is a module in Spark for working with the structured data. It integrates relational

data processing with Spark’s functional programming API. Using standard interface, it’s pos-

sible to query structured data inside the spark program. It provides a uniform way to access a

variety of data sources and perform join between the data sources such as Hive, JSON and

JDBC. It also integrates with the rest of the Spark ecosystem such as machine learning.

Spark Streaming

An early addition to Apache Spark, Spark Streaming makes it easy to build scalable fault-

tolerant streaming applications. It enables data engineers and data scientists to process both

real-time and historical data from wide variety of popular data sources including Kafka, Flume,

and Amazon Kinesis. Spark Streaming is an extension of concept of Apache Spark batch pro-

cessing into streaming by dividing a stream of data into small series of batches. Spark Stream-

ing is different from other traditional streaming systems. Some of the major benefits over tra-

ditional streaming systems are rapid recovery from failures, better resource usage, and integra-

tion of streaming data with static datasets and advanced processing libraries including SQL,

machine learning, graph processing.

http://data-flair.training/blogs/apache-spark-in-memory-computing/
https://en.wikipedia.org/wiki/I/O_interface
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://www.instaclustr.com/apache-spark-streaming-and-cassandra/

 25

MLlib

MLlib is Apache Spark’s scalable machine learning library. It is designed for simplicity, scala-

bility, and easy integration with other tools. It provides a framework for creating machine

learning pipelines, allowing for easy implementation of feature extraction, selections, and

transformations on any structured dataset. Spark MLlib smoothly integrates with other Spark

components such as Spark SQL, Spark Streaming. It includes the common algorithms such as

classification, clustering, regression, dimensionality reduction.

GraphX

GraphX is Apache Spark’s API for graphs and graph-parallel execution. It provides simplified

graph analytic using growing collection of distributed algorithms for processing graph struc-

tures. It is network graph analytics engine and data store. GraphX provides an optimized way

to represent vertex and edges as primitive data types. It supports fundamental operators (like

subgraph, join Vertices, and aggregate Messages) to support graph computation.

SparkR

It is an R package to use Apache Spark from R. It provides a distributed data frame implemen-

tation. It provides a light-weight frontend that supports operations like selection, filtering, ag-

gregation but on large datasets. SparkR also supports distributed machine learning using

MLlib.

2.4 Clustering Analysis
Cluster analysis is a method which aims to partition instances/objects into groups such that

similar objects are placed in the same group and objects in different group are dissimilar as

much as possible. Clustering analysis can be a standalone tool as a data mining function. When

it is used as a standalone tool, it helps to gain insight into the distribution of data, to observe

the characteristics of each cluster, and to focus on a particular set of clusters for further analysis.

In addition, it may assist other algorithms as preprocessing step. Characterization, attribute

subset selection, and classification can be mentioned as an example for these algorithms that

works further on the detected clusters of the clustering analysis [18, 19].

 26

2.4.1 Application of cluster analysis
Cluster analysis is one of highly active topics in data mining research. It contributes to the areas

of research include data mining, statistics, machine learning, spatial database technology, in-

formation retrieval, Web search, biology, marketing, and many other application areas. The

following are some examples based on the area of application:

Medicine: Different subcategories of medical condition, such as different types of depression,

can be identified by cluster analysis. It can be used to differentiate between different types of

tissues and blood in Medical imaging. It is also used in the analysis of antimicrobial activity

to identify the patterns of antibiotic resistance.

Biology: Clustering techniques are used for extracting/analyzing the biological structures such

as categorizing gene with their functionality, detecting different gene expression.

Information retrieval: clustering analysis is applied in search engines for higher efficiency

and faster search. A key word in a search may return a very large number of pages relevant to

the search. Clustering can be used to group these thousands of pages returned as search results

into a small number of clusters, each of which captures a particular aspect of the query.

Business intelligence: clustering can be used to organize many clients into cluster, where cli-

ents within a cluster share strong similar behavior. As all clients has not equal profit to an

organization, clustering analysis together with customer lifetime value can be used to catego-

rize customers in order to set marketing strategies. It can also be used to group items on the

web into a set of products. In retail businesses, data clustering helps with customer shopping

behavior, sales campaigns and customer retention. In the insurance industry, clustering is reg-

ularly employed in fraud detection, risk factor identification and customer retention efforts.

Customer segmentation, credit scoring and analyzing customer profitability are also some of

the areas in banking that clustering can be applied in.

Social science: By identifying areas where greater frequency of specific types of crime over a

specified time slot occur, it is possible to come through law enforcement resources more effec-

tively. In crime analysis, Cluster analysis can be used to identify these areas.

 27

2.4.2 Cluster analysis algorithm
It is difficult to clearly categorize each clustering methods as a method may contain major

clustering approaches characteristic from various categories [18]. However, providing a rela-

tively organized picture of clustering methods is important. Categories of clustering algorithms

is shown in Figure 2.5.

Figure 2.5 Catagories of Clustering Algorithms

2.4.3 Partitioning algorithms
It constructs the instances of the set into various non overlapping groups or partitions.

Therefore, each instance is assigned to exactly one partition and each partition representing a

cluster. The clusters are formed to optimize an objective partitioning criterion, such as a

dissimilarity function based on distance, so that the objects within a cluster are “similar” to one

another and “dissimilar” to objects in other clusters in terms of the dataset attributes. It is the

simplest and principal version of clustering analysis. Partitioning algorithms are also badly

affected by the existence of noise and outliers in the data. Formally, given a dataset, D, of n

instances, and k, the number of clusters to form, a partitioning algorithm organizes the instances

into k partitions. k ≤ n, where each partition represents a cluster.

K means

K-means algorithm, an example of partitioning algorithms, is an efficient, effective, and simple

clustering algorithm. K- Means partitions the data into K clusters. Centroid is a name given to

cluster center.

Given K, provided by the user, this is how the algorithm works:

1. Creates K centroids randomly (based on the predefined value of K)

 28

2. Allocates every instance in the dataset to the closest centroid (minimum Euclidean dis-

tances between an instance and centroid), meaning if an instance is near to one cluster’s

centroid than any other centroid, then that a data instance is considered to be in a par-

ticular cluster.

3. Recalculates the centroids by taking the mean of all data instances assigned to that cen-

troid’s cluster, hence reducing the total intra-cluster variance in relation to the previous

step. The “means” in the K-means refers to averaging the data and finding the new

centroid

4. Repeats Steps 2 and 3 until some stopping criteria is met I.e. No (or minimum) changes

in centroids value or no (or minimum) re-assignments of data instances to different

clusters, the sum of distances between the data instances and their corresponding cen-

troid is minimized, a maximum number of iterations is reached.

Advantages

• Relatively simple to implement.

• Scales to large datasets.

• Guarantees convergence.

• Can warm-start the positions of centroids.

• Easily adapts to new examples.

• Generalizes to clusters of different shapes and sizes, such as elliptical clusters.

Disadvantages

• Difficult to predict and find the optimal K-Value.

• With global cluster, it didn't work well.

• Dependent on initial values, Different initial partitions can result in different final clus-

ters

• Trouble clustering data with clusters (in the original data) of Different size and Differ-

ent density

• Outliers can drag the Centroids can be dragged by outliers, or outliers might be Con-

sidered as a cluster instead of being ignored.

• Scaling with number of dimensions.

 29

K-medoids

The k-medoids algorithm is a partitional clustering algorithm associated to the k-means algo-

rithm and the medoid shift algorithm. It is also another well-known partitioning algorithm. The

K- medoids and K-means algorithms behave in a very similar way. However, K- medoids,

rather than having the centroid move using the mean distance of the instances, the centroid

takes the position of the instance that is closest to the center. While K-means attempts to min-

imize the total squared error, k-medoids minimizes the sum of dissimilarities between points

labeled to be in a cluster and a point designated as the center of that cluster. Because it mini-

mizes a sum of general pairwise dissimilarities instead of a sum of squared Euclidean distance,

k-medoids is more robust to noise and outliers as compared to k-means. Outliers are far away

from the majority of the data, and thus, when assigned to a cluster, the mean value in k-means

of the cluster can be distorted dramatically.

2.4.4 Hierarchical algorithms
Unlike partitioning algorithms, Hierarchical algorithms creates a set of nested clusters that are

organized as a tree. In the tree, the root contains all the other cluster and each cluster is the

union of its sub clusters. Hierarchical clustering is well suited to hierarchical data, such as

taxonomies. Hierarchical clustering is categorized into two types, Divisive clustering and

agglomerative clustering. Divisive clustering is also known as top-down approach. An

agglomerative, on the other hand, bottom-up approach clustering. Divisive clustering merges

all data instances in a single cluster and splits the cluster into two smaller clusters with least

similarity whereas a cluster is split up into smaller clusters. Clustering starts with every data

instance as a cluster itself and merges the objects or groups that are close to one another. CURE

(Clustering Using REpresentatives), BIRCH (Balanced Iterative Reducing and Clustering

using Hierarchies) and Rock (robust clustering algorithm for categorical attributes) are some

of the examples of hierarchical clustering algorithm.

BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is an integrated

agglomerative hierarchical clustering method and designed for clustering large amount of

metric data. It attempts to minimize the memory requirements of large datasets; therefore, it is

mainly suitable when there is limited amount of main memory. The cluster representation in

BIRCH is summarized using two concepts, clustering feature (CF) and clustering feature tree

http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/K-means
http://en.wikipedia.org/wiki/Mean_square_error
http://en.wikipedia.org/wiki/K-means
http://www.saedsayad.com/clustering_hierarchical.htm

 30

(CF tree). A CF tree is a height-balanced tree that stores the clustering features for a hierarchical

clustering. The algorithm pass through four phases:

Phase 1: Load data into memory: The algorithm starts with an initial threshold value, scans

the data, and inserts points into the tree. If it gets out of memory before it finishes scanning the

data, it increases the threshold value, and rebuilds a new, smaller CF-tree, Scan DB

Phase 2: Condense data(optional): Given that certain clustering algorithms perform best

when the number of objects is within a certain range, it is possible to group crowded sub

clusters into larger ones resulting in an overall smaller CF-tree. Data reduction is done by

building a smaller CF tree. Most of the data removed are outliers.

Phase 3: Global clustering: Use existing clustering algorithm (like KMEANS but almost all

algorithms can be adopted) on CF entries to categorize Clustering Features instead of data

points. For example, KMEANS can be applied to categorize a data and BIRCH for minimizing

I/O operations.

Phase 4: Cluster refining (optional and offline): corrects the problem with CF by providing

additional passes over the data to fix inaccuracies caused by the fact that the clustering

algorithm is applied to a coarse summary of the data.

2.4.5 Density-based
As most partitioning methods cluster instances based on the distance between instances, only

spherical-shaped clusters are identified by those methods. The methods work well in compact,

well separated clusters and dataset with less outliers and noise. Unfortunately, real life data can

contain clusters of arbitrary shape such as oval, linear and “S” shape clusters, and many outliers

and noise. Density based clustering fills this gap by discovering clusters of arbitrary shapes

from a dataset containing noises and outliers. Clusters in density-based clustering are dense

regions in the data space, separated by regions of the lower density of instances. Instances that

are not part of a cluster are labeled as noise. To find clusters in dataset, three different clustering

methods are used in this Clustering. The first one is Defined distance (DBSCAN which uses a

specified distance to separate dense clusters from sparser noise. However, it is suitable only if

there is a very clear Search Distance to use. This requires that all meaningful clusters have

similar densities. The DBSCAN algorithm is the fastest compared to the other clustering meth-

ods. The second is Self-adjusting (HDBSCAN). It uses a range of distances to separate clusters

of varying densities from sparser noise. This method is the most data-driven of the clustering

 31

methods, therefore, it requires the least user input. Multi-scale (OPTICS) is the last one which

uses the distance between neighboring features to create a reachability plot which is then used

to separate clusters of varying densities from noise. The OPTICS algorithm offers the most

flexibility in fine-tuning the clusters that are detected, though it is computationally intensive,

particularly with a large Search Distance.

2.4.6 Grid-based
It is based on a multiple-level granularity structure. It explores multi resolution grid data struc-

ture in clustering. It partitions the data structure into a finite number of cells to form a grid

structure and assign objects to the appropriate grid cell. From the cell in the grid structure,

computes the density of each cell and Forms clusters from contiguous (adjacent) groups of

dense cells by eliminating cells, with density is below a certain threshold. Clustering in grid

based is fast because clustering is performed on summaries but not on individual objects, and

it doesn’t compute distance.

2.4.7 Model-based
Model-based clustering considers the data as coming from a distribution that is mixture of two

or more clusters. Unlike hierarchical clustering algorithms, Partitioning algorithms and others,

Model-based is based on formal models. A model is hypothesized for each of the clusters and

the idea is to find the best fit of that model to each other. Clustering is also performed by having

several units competing for the current object. The unit whose weight vector is closest to the

current object wins. The winner and its neighbors learn by having their weights adjusted

Model-based clustering is useful for visualizing high-dimensional data in two- or three-dimen-

sional space.

2.4.8 Constraint-based Method
Constrained clustering is a class of semi-supervised learning algorithms. Semi-supervised clus-

tering algorithms allow the user to incorporate a limited amount of supervision into the clus-

tering procedure. Typically, constrained clustering incorporates either a set of must-link con-

straints, cannot-link constraints, or both, with a Data clustering algorithm. Both a must-link

and a cannot-link constraint define a relationship between two data instances. Must-link (ML)

constraints indicate that two instances should be in the same cluster, cannot-link (CL) con-

straints that they should be in different clusters. These sets of constraints act as a guide for

https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Data_clustering

 32

which a constrained clustering algorithm will attempt to find clusters in a dataset which satisfy

the specified must-link and cannot-link constraints.

2.5 Cluster Quality Index
In application of clustering techniques, the evaluation of quality of clustering is an important

issue. When clustering method is applied on a dataset, there should be some way to determine

whether the result is good or bad. The process of evaluating the results of a clustering algorithm

is known as cluster evaluation [8]. Clustering quality index is a tool to assess the quality of the

clustering result [7, 8]

Cluster evaluation is performed for a number of reasons. Measuring clustering quality is pri-

mary reason. Clustering techniques are applied on a dataset and the goodness of generated

result required to be assessed. Several measures can be exploited. Some methods measure how

well the clusters match with the ground truth, if the truth is available, while others measure

how well the clusters fit the dataset. There are also measures that score clustering and thus can

compare two sets of clustering results on the same dataset [18].

Clustering indices can also be used to determine the number of clusters in a dataset. Some

algorithms require the number of clusters in a dataset as input. Furthermore, the number of

clusters can be regarded as an interesting and crucial summary statistic of a dataset. Therefore,

it is desirable to estimate this number even before a clustering algorithm is used to derive de-

tailed clusters [18].

Clustering analysis on a dataset is purposeful only when there is a nonrandom structure in the

data. Simply application of clustering method on a dataset returns clusters; but the clusters

mined may be misleading. To assess the existence of this nonrandom structure can be identified

through cluster evaluation [18]. It is also be used to compare clustering algorithms and two or

sets of clusters.

There are three approaches of Clustering validation: External, internal validation and relative

criteria. In External validation, external information is used to perform the validation i.e. it

validates if the cluster labels match externally supplied classes. Entropy is an example of ex-

ternal validation which evaluates the clusters based on given class labels. Internal validation,

on the other hand, uses only the information on the data without any external information. The

third approach of clustering validity is based on relative criteria, which consists of evaluating

the results by comparing them with other clustering schemes [6, 19].

 33

2.5.1 Internal clustering validation measures
This section introduces basic concepts of internal validation approaches. Generally, compact-

ness a separation are two criteria that internal validation measures are based on. Compactness

or Cohesion measures how closely related objects in the clusters are. Variance is a common

measure of compactness. Lower variance indicates better compactness. Distance is used in nu-

merous measures to estimate the cluster compactness. It can be maximum or average pairwise

distance, and maximum or average center-based distance. Separation measures how distinct or

well separated a cluster is from other clusters. It measures the distance between two different

clusters. For example, the pairwise distances between cluster centers or the pairwise minimum

distances between objects in different clusters are widely used as measures of separation. Also,

measures based on density are used in some indices. Both compactness and separation are con-

sidered by most of the cluster indices in the way of ratio or summarization. Some indices con-

sider only one [6, 19].

2.5.1.1 Silhouette index

The silhouette value is a measure of how close an object is to objects in its own cluster com-

pared to objects in other clusters. The measure ranges between -1 and 1. When the measuring

result is higher (result closer to 1), it shows the object is far away from the objects in neighbor-

ing clusters. When the value is negative, it indicates the object might be assigned in a wrong

cluster. The object might be in the boundary if it the measuring result is 0. Any distance metric,

such as the Euclidean distance or the Manhattan distance can be used to calculate the silhouette.

Assume any clustering technique is used to cluster the data and i is an object in cluster Ci. The

Silhouette coefficient (s (i)) can be calculated as follows for |ci|>1,

a(i) is the average dissimilarity between object i and all the other objects within the same cluster

ci. Therefore, the smallest value of a (i) indicates that i is well matched D (i,j) is the distance

between i and j. As the distance between object with itself (i.e. i=j), is not considered, the

average is calculated |ci| -1.

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑏(𝑖), 𝑎(𝑖))

(2.1)

https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Manhattan_distance

 34

B (i) is the minimum average dissimilarity between object i and objects in clusters other than

ci. A large bi means object i is poorly matched with the neighboring. The cluster with minimum

average is the next best fit cluster for object i. It is said to be the neighboring cluster.

Equation 2.2 can also be rewritten as:

From the definition above, the value of s (i) lies between -1 and 1.

−1 ⩽ 𝑠(𝑖) ⩽ 1

To measure of how appropriately the data have been clustered or how all points are tightly

grouped the average s (i) over all point of cluster can be used.

2.5.1.2 Calinski-Harabasz index

Calinski index based on the two measures separation and compactness. It is computed by

Where N and K are the total number of objects and number of clusters respectively. BSSk is

between cluster sum of square which indicates the separation measure, whereas compactness

is computed by WSSk (with in cluster sum of square). The purpose of the index is to find k

which maxmizes Calinski index.

𝑎(𝑖) =
1

|𝐶𝑖| − 1
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝑖,𝑖≠𝑗

 (2.2)

𝑏(𝑖) = 𝑚𝑖𝑛
𝑖≠𝑗

1

|𝐶𝑗|
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝑗

, 𝐶𝑖 ≠ 0 (2.2)

{

1 − 𝑎 (𝑖) 𝑏⁄ (𝑖), 𝑖𝑓𝑎(𝑖) < 𝑏(𝑖)
0, 𝑖𝑓𝑎(𝑖) = 𝑏(𝑖)

𝑏 (𝑖) 𝑎⁄ (𝑖) − 1, 𝑖𝑓𝑎(𝑖) > 𝑏(𝑖)

(2.3)

𝐶𝐻 =
𝐵𝑆𝑆𝐾 − (𝐾 − 1)

𝑊𝑆𝑆𝐾 − (𝑁 − 𝐾)

(2.4)

 35

2.5.1.3 C index

The c index is calculated based on three quantities. The first quantity is the sum of distances

over all pair of objects from the same cluster (dw). The second is the sum of the smallest dis-

tances between all the pairs of objects in the entire dataset min(dw). Max (dw) is the sum of the

largest distances between all the pairs of objects in the entire dataset. Using these three quan-

tities, the c index is defined as follows:

The result lays between 0 and 1.

2.5.1.4 Davies-Bouldin index

Davies-Boludin index is well known for its better partition capability [20]. The Davies-Bouldin

index is defined as follows:

Where DB is Davies-Bouldin index calculated by averaging each pair of clusters as shown in

the equation 2.7. K is the total number of clusters, di and dj are the average distance of all object

in each cluster. Ci and Cj are the center of cluster i and j.

2.5.2 External clustering validation measures
As stated in the introduction of this section, external indices perform validation using some

predefined knowledge like class label or number of clusters. In this case, a cluster structure is

considered as good cluster structure if it’s same as predefined class structure in the dataset.

2.6 Cluster evaluation on Big Data
As the traditional indices require high computational cost and inability to be parallelized, BD-

CVIs [9]. approximates the traditional indices. Two traditional indices, Silhouette and Dunn

𝐶𝑖𝑛𝑑𝑒𝑥 =
𝑑𝑤 −𝑚𝑖𝑛(𝑑𝑤)

𝑚𝑎𝑥(𝑑𝑤) − 𝑚𝑖𝑛(𝑑𝑤)

(2.5)

𝐷𝐵 =
1

𝐾
∑ 𝑚𝑎𝑥(

𝑑𝑖 + 𝑑𝑗
𝑑(𝑐𝑖, 𝑐𝑗)

)

𝐾

𝑖=1,𝑖≠𝑗

(2.6)

 36

(with two highest ranking based on statistical analysis performed to check a significant differ-

ence exist among the effectiveness of multiple CQI), are selected. BD-Silhouette is defined as

the ratio between the difference of the inter-cluster and intra-cluster, and the maximum of the

two. The average distance between global centroid and the centroid of each cluster is consid-

ered for calculation of inter-cluster. Whereas for the intra-cluster is the average of the distances

between each point to the centroid of the cluster to which it belongs. The difference between

the traditional Silhouette and BD- Silhouette lies in the intra-cluster in such a way that the

traditional consider the average distance between the points that belong to the same cluster.

Like the traditional Silhouette, the result of BD-Silhouette lies between -1 and 1. The return

value is – 1, if there is only one cluster for the whole dataset. The larger number of clusters the

return value holds 1. The first maximum is considered as the optimal number of clusters.

The traditional Dunn works on the minimum distance between the centroids and the maximum

distance between all the points that belong to the same cluster. BD-Dunn facilitates the original

Dunn index computation in such a way that it could be easier in Big Data. BD-Dunn is the ratio

between the minimum of the distances from the centroids to the global center and the maximum

of the distances from each point in the set to its centroid. As it does not have to calculate in

the denominator the distance between each pair of points of the dataset, it simplifies the com-

putations.

 37

 Chapter Three

3 Big Data and Cluster Quality Index
Computation

This chapter briefly discusses the proposed approach that have been used to evaluate Big Data

clusters. As a big size clustered dataset cannot be directly analyzed using the traditional cluster

quality indices, we introduce an approach to reduce the size of the dataset to the size that can

be processed through traditional clustering quality indices in a main memory. The sampling is

performed by dividing the clustered dataset into small equal size cells and applying specific

criteria on each cell to generate a new instance out of the instance in the cell. The sampled

dataset is described with all the features inherited from the original dataset and additional

weight feature which describe the value of the instances in the original dataset. The sampling

method introduced is named as “smart sampling”.

3.1 Fundamental concepts
Generally, for a dataset to be evaluated using any sampling method, it may go through four

steps. Figure 3.1 shows the general workflow of the Big Data clustering evaluation process

considering sampling method that has been performed in this work.

The preprocessing step involves transforming the input dataset into a useful and efficient for-

mat. A dataset may contain errors, duplication within data and outliers. A Clean dataset is

produced by Ignoring or removing missing and duplicated records, correcting erroneous rec-

ords. For simpler and feasible analysis processes, all datasets are transformed to a similar for-

mat corresponding to the format used in clustering and evaluation implementation.

Using a clean structured dataset as an input, clustering analysis is performed in order to be

applied in the clustering evaluation process. In this work, the k-mean is selected as clustering

tool. Clustering analysis is not in the scope of this work. However, some of the datasets avail-

able are not clustered and it is important to perform cluster analysis to generate a clustered

dataset to be used as an input to the sampling process.

 38

Figure 3.1 General architecture of sample-based Big Data cluster evaluation

The sampling process is a process of reducing the size of Big Data clustered dataset in such a

way that the traditional cluster quality index algorithms be able to execute it. Fundamentally,

two sampling methods are used in this work. The first one is random sampling that selects a

given percentage of the instances from each cluster arbitrarily and forms smaller size dataset.

The other is the smart sampling method which places instances in the cell, verifies each in-

stance in a cell are from a same cluster and considers the center of a cell as a representative of

all the other instances instead of considering all. The cell containing instances from different

cluster passed to the sample dataset with all instances. Section 3.2 describes the smart sampling

in detail with examples.

The last part of the process is cluster evaluation. This evaluates the sampled cluster dataset

using the traditional cluster quality indices. During the random sampling, the features of the

original dataset is not modified, or no additional feature is included on the sampled dataset.

Therefore, it is possible to evaluate the random sampled dataset using traditional clustering

indices directly. On the other hand, an adopted silhouette cluster quality index is required in

order to support the newly generated sample using smart sampling. The adopted silhouette

considers the weight feature in the distance measurement. The brief explanation of the adopted

silhouette index is included in Section 3.3.

 39

3.2 Smart sampling using Spark
Smart sampling is a systematic transformation of a large clustered dataset into a new smaller

dataset in order to process the smaller size dataset into an adopted centralized silhouette meas-

ure. It partitions the cluster space into cells and visits each instance in each cell to check if it

meets a merging criterion. The merging criteria expects all instances within the cell to be from

the same cluster. Instances that meets the merging criteria grouped together and passed to sam-

pled dataset with information such as cluster id, weight and modified feature values. The mod-

ified value holds common value to all the instances in the cell i.e. the center of the cell.

Cells are squares formed using vertical and horizontal line across the cluster space. Different

cell size may produce different sample size. The total number of instances produced depends

on the cell size and the cluster distribution. An increasing or decreasing cell size has no relation

with the increase and decrease of sample size. A very large cell size may produce same number

of instances as the original dataset as all the cells may contain mixed cluster instances. A very

small cell size may as well give the same result as each cell may contain a single instance. The

optimal cell size for a given dataset lies between 0 and the maximum value of features to get

the required sampled size. The input of the sampling process is the cell size and the clustered

dataset to be sampled. Each instance of the sampled dataset has a weight feature in addition to

cluster id and features in the original dataset. The sampling process iterates through each cell

to assess the instances inside and terminates after a visit of the last cell in the space. The work-

flow of the smart sampling technique shown in Figure 3.2 are the following:

STAGE 1 — Define cell identifier — each cell should be uniquely identified. This helps to

recognize the cell in which an instance belongs. For simplicity, the cells are assigned a value

holding the center of the cell. Central value of the cell is determined by the cell size and the

value of the edges of the cells.

STAGE 2 — Assign cell identifier to instances — based on the feature values of an instance,

it is possible to determine to which cell identifier the instance fits. This stage discovers the

instance’s cell and assign cell identifier to the instances in order to recognize its’ container cell.

After this stage, each instance has a temporary feature: cell identifier.

STAGE 3 — Initialize instance weight — this stage initializes each instance an initial weight

value. The modified silhouette requires weight to find a distance between two instances. There-

fore, it is important to assign every instance an initial weight which possibly be modified in the

next stages of sampling process. All instance has weight value one in the beginning (right after

 40

this STAGE). At this point an instance is defined with its initial weight in addition to its cell

identifier, cluster identifier and feature values.

STAGE 4 — Place instance in cell— the instances are compared using cell identifiers and

instances of the same cell identifier grouped together. In this stage, the dataset is represented

with cell identifier and group of instances within the cell (each instance with all the content

defined in stage three) as a key and value respectively.

Figure 3.2 The workflow of Smart Sampling using Spark

 41

STAGE 5 — Inspect cell — this stage checks if a cell contains more than one instance. If it has

only one instance, the instance is stored to the sampled dataset with no change. For those cells

that contain more than one instance, the merging criteria is checked. The merging criteria con-

trols homogeneity and heterogeneity of a cell. A cell is homogeneous if all the instances are

from the same cluster, heterogeneous otherwise. If the cell fulfills the criteria, merge instances

stage receives all the instances in the cell to follow the merging procedure. Instances of heter-

ogeneous cells are passed to the sampled dataset with the initial weight assigned at STAGE

3(no modification is done on the fields of the instances).

STAGE 6 — Merge cell — only homogeneous cells are passed to this stage. A new instance

is created with updated information to replace all the instances in the cell. The weights of the

instances in the cell is summed up to generate a weight for the newly generated instance. The

feature values of the new instance are the value which represents the center of the cell and the

cluster id is the cluster id of the instance which is commonly shared by all the instances.

STAGE 7 — Store Result — discard the cell identifier attached to the instances as group and

store the instances information into the sampled dataset. It iterates through instances in the cell

that need to be stored and store all instances one by one.

To make sampling process clear, Figure 3.3 reports an example. The dataset used in the exam-

ple has 36 instances of two clusters; cluster1 and cluster2 are represented in the Figure 3.3

using nineteen white and seventeen black points respectively. Initially each instance is de-

scribed through its feature values and cluster identifier. An instance i = [x, y, Crid] belongs to

cluster Crid with features values x and y.

A cell is identified by its identifier. For instance, a cell surrounded by lines of edges (0, 0), (0,

1), (1, 0) and (1, 1) has an identifier as (0.5, 0.5). Cell identifier is given to the cells in the first

stage of the sampling process (see Figure 3.2). Then, every instance is linked to its’ cell iden-

tifier, i.e. cell center Clid is added as additional field of the instance; i = [x, y, Crid ,Clid] for cell

size of s. In the Figure 3.3, there are sixteen with cells of size s = 1 with four columns and four

rows. Only seven of these cells contain instances and the rest are empty cells. Cells with in-

stances are one in the first and fourth row, two in the second row and three third row.

In stage three, the content of the instances includes the weight field w; i = [x, y, Crid ,Clid, w].

All instances are initialized with weight w = 1 in this stage. When instances are placed in the

cell (stage four), instances with the same cell identifier grouped together. As a result, a unique

list of cell identifier with the corresponding instances is generated.

 42

 D = {{c1, [i1, i2, i3...]}, {c2, [i4, i7, i8...]}, {c3, [i9, i7, i8....]} ... {cn, [i3, i7, i8...im]}}

where D is the temporary dataset generated, c1, c2 and cn are n cell identifiers, i1,i2,i3...im are m

instances of the original dataset dispersed inside the cells, m is not equal to the total number of

instances in the original dataset as instances on the border of the cell are not a part of the cell.

During the inspection of the instances (see Figure 3.2), the cluster identifiers of instances in a

cell are compared and similar instances be merged. Suppose Dmr is the dataset after the merge

is applied, c1 and c3 are the cell with instances from the same cluster, imr1 and imr2 are the newly

generated instances after a merge is applied on c1 and c3 respectively:

 Dmr1 = {{c1, imr1}, {c2, [i4, i7, i8...]}, {c3, imr2} ... {cn, [i3, i7, i8...im]},

 imr = [x, y, Crid ,Clid , w],

Where x and y are the value of Clid, Crid is the cluster id of the merged instances in the cell, w

is the sum of the weights of all instances in the cell.

Instances are extracted from the group and represented in the weight-based format before stor-

ing both merged and un-merged instances into the sampled dataset. Fundamentally, it takes a

form of [x, y, Crid , w].

 43

Figure 3.3 An example x-y cluster graph with 36 instances of two clusters

Table 3.4 shows 14 instances of sampled dataset generated from 36 instances shown in Figure

3.3. In the table reported in Table 3.1, number 6 – 11 show the instances placed in cell centered

in (1.5, 1.5) are heterogeneous cell i.e. contains a mixed instance of three and two instances

from cluster1 and cluster2 respectively. Therefore, each instance of this cell is transformed

with its original feature values and cluster identifier and the initialized weight value w = 1 as

weight is required for measurement of the distance of the adopted version of silhouette index.

In addition, the cell contains one instance (number 14) and those instances that are on the border

of the cell (number 12 and 13) are passed as it is.

Other cells, except the empty cells, have points from the same cluster so all passed through

merge stage (Stage six, see Figure 3.2). Basically, a new instance is generated for cells centered

in (0.5, 2.5), (1.5, 2.5), (2.5, 1.5), (2.5, 0.5) and (1.5, 3.5). The new instance has a format [x, y,

Crid , w]. x and y are replaced cluster identifier Clid; point (0.5, 2.5), (1.5, 2.5), (2.5, 1.5), (2.5,

0.5) and (1.5, 3.5) are present values of x and y for the five cells centered accordingly. The

0

1

2

3

4

0 1 2 3 4

Y

X

♦ Cluster1 ◊ Cluster2

 44

weight w of the cells centered in (0.5, 2.5), (1.5, 2.5), (2.5, 1.5), (2.5, 0.5) and (1.5, 3.5) are 4,

3 , 2 , 14 and 4 respectively, which are the total number of instances in each cell.

NO Cluster id (Crid) X value Y value Weight (w)

1 1 1.5 3.5 4

2 1 1.5 2.5 3

3 1 0.5 2.5 4

4 2 2.5 1.5 2

5 2 2.5 0.5 14

6 1 1.3 1.9 1

7 1 1.4 1.6 1

8 1 1.6 1.8 1

9 1 1.2 1.9 1

10 2 1.9 1.1 1

11 2 1.9 1.5 1

12 2 2.5 1.0 1

13 1 1.0 2.2 1

14 1 0.9 1.9 1

Table 3.1 Smart sampled dataset from a dataset in Figure 3.3(with cell size s = 1)

As traditional centralized version of CQIs are not capable of analyzing large datasets, in this

manner, a “smaller” size sample dataset is generated from a large size dataset. The transformed

dataset is an input to the compute silhouette measure. The silhouette coefficient is calculated

using the newly generated compact representation of the original dataset considering the weight

feature. Section 3.3 discusses the adopted version of the silhouette measure, which considers

also the weight feature.

 45

3.3 Silhouette index for Big Data cluster
Based on the sample generated using smart sampling (see Section 3.2), the equation for the

traditional silhouette index is adapted in a way that it includes the weights attached to each

instance during the sample generation. Basically, when the Euclidian distance between two

instances is calculated the weight of the instances are multiplied on the result.

The Euclidean distance between instances are calculated as square root of the sum of the

squares of the differences between i and j in each dimension.

Considering two dimensional instances,

Where instance i = {i1, i2} and j= {j1, j2}

The distance between two instances with the corresponding weight assigned during sample

generation is the weight of the instances multiplied with the sum of the squares of the differ-

ences between i and j. The weighted distance alters both the average dissimilarity between

object i and all the other objects with in the same cluster (inter-cluster) and the minimum av-

erage dissimilarity between object i and objects in clusters other(intra-cluster) i.e. the a(i) and

b(i) in the silhouette equation (see Eq 2.1). The modified version of the Euclidean distance

equation stated in (Eq. 3.1):

Where wi and wj are weight associated to instance i and j respectively.

𝑑(𝑖, 𝑗) = √(𝑗1 − 𝑖1)2 + (𝑗2 − 𝑖2)2 (3.1)

𝑑(𝑖, 𝑗) = √𝒘𝒊. 𝒘𝒋[(𝑗1 − 𝑖1)2 + (𝑗2 − 𝑖2)2]
(3.2)

 46

 Chapter Four

4 Experimental Results
This chapter gives a brief explanation of the experiments performed during this work in three

different section. The first section of this chapter discusses the experiments on two small size

datasets on a random sample and the second and the third section compare silhouette index of

the proposed sampling approach (smart sampling) , the random sampling and original dataset

with manually clustered and automatically clustered larger(compared to the dataset used on

first section, see Section 4.1) dataset.

4.1 Experiment on random sample
This part of the experiment discusses a comparison silhouette index result on a dataset and

random samples taken from it. The experiment is mainly conducted to examine the perfor-

mance of the random sampling using three different percentage of the original dataset (10%,

30%, and 50%) on four different number of cluster (2,3,4 and 5) as compared to the original

dataset.

Random Cluster sampling extracts a given percentage of instances from each cluster and gen-

erates new sample dataset by combining the samples of each cluster. For instance, considering

clustered dataset of two clusters and 50% sample generation, 50% of cluster1 and 50% of clus-

ter2 are generated to be merged to form the final randomly sampled dataset. As a result of

random sample varies on each execution, it is important to perform number of executions on

each percentage of a sample.

The first dataset considered in this experiment, named as DS750, has 750 instances with 90

features each. The original dataset (DS750) is clustered using k-mean and the generated clus-

tered dataset is evaluated using the silhouette index. An average of five different runs is gen-

erated on each percentage of the sample. The obtained result is shown in Table 4.1. According

to the result on DS750, it is possible to tell that four is the possible number of clusters for this

dataset (the higher the silhouette indexes the better the clustering result). On the other hand, all

the three samples indicate the better number of clusters as three. The results show no correlation

between the increase or decrease of percentage of the sample and the performance of sampling

procedure.

 47

Number of

clusters

Silhouette value

Original dataset 50% Sampled da-

taset(average)

30% Sampled

dataset(average)

10% Sampled

dataset(average)

2 0.28349128 0.276251187 0.29251904 0.254819397

3 0.40959278 0.344200123 0.355857657 0.33142755

4 0.42755792 0.33129269 0.335203993 0.304830573

5 0.29263905 0.27820566 0.28275602 0.270626493

Table 4.1 Experiment using random sampling on DS750

As the dataset used on first experiment shown on Table 4.1 is quite small, second experiment

on a larger dataset (DS2310, see Appendices for detail) with 19 features and 2310 instances

have done. Also, in second experiment, 50%, 30% and 10% of the dataset are extracted for 2,

3, 4 and 5 number of clusters. Each result of the sample is an average of five different execution

as random sample generate different result on each run. The computed silhouette result by

using all instances of the dataset and three different sample (10%, 30%, and 50%) is shown

Table 4.2.

Based on the result, all the three samples show the higher silhouette index when cluster number

is three which indicate the same possible number of cluster (i.e. 3) as of the original dataset.

The second possible number of clusters, according to the original dataset is two, which is also

true for all the three different percentage of samples. Similar to the result shown in DS750, an

increase or decrease of the size of the sample and the performance show no significant relation

for second experiment as well.

 48

Number of

clusters

Silhouette value

Original dataset 50% Sampled da-

taset(average)

30% Sampled

dataset(average)

10% Sampled

dataset(average)

2 0.47094202 0.470076787 0.46387185 0.45136499

3 0.5375713 0.477187833 0.48219241 0.48486719

4 0.45918366 0.429315367 0.44714727 0.40220799

5 0.4053393 0.3938975 0.41212885 0.41400546

Table 4.2 Experiment using the random sampling on DS2310

4.2 Experiment on manually clustered dataset
This part of the experiment illustrates results on three manually clustered datasets named

DS18000, DS6500 and DS3000 containing 18000, 6500 and 3000 instances respectively (see

appendix for detail). Two different Sampling method are performed on the original datasets.

The first one is the random sampling which selects specific percentage of the original dataset

randomly. The second sampling method experimented on this section of the experiment is the

smart sampling which is the approach implemented in this work using spark. It allows a com-

parison between the smart sampled dataset with the random sampled and original dataset based

on silhouette index.

As reported in Table 4.3, DS6500 and DS3000 show appropriately clustered datasets with sil-

houette index closer to one on both the original and the random samples. In DS18000, the

silhouette index indicates more than average on distribution of instances for a specified number

of clusters (i.e. 5) on the sampled datasets. Due to its size, experiment performed on DS18000

is only on the sampled datasets: random and smart sampled. The silhouette index on the smart

sampled dataset and original dataset is quite similar in dataset DS6500; original dataset is

slightly better. However, the number of instances of the sampled cluster (with the cell size s =

5) is less than a one-half of the original dataset. The same holds true for the dataset DS3100.

Generally, silhouette index of smart sampled and original dataset on, all the three datasets, are

similar which indicates the smart sampling can be considered as a solution for the cluster eval-

uation of huge size dataset.

 49

The random sample is generated by computing the average of multiple results. As it is ran-

domly selected, a single execution may show a better or less performance than the original

dataset and/or the smart sampled dataset. From those average results of three different percent-

age(10%, 30% and 50%), the one that is closer to the smart sample dataset (based on the size

of the sample) is selected. The random sampled dataset results show somewhat better silhouette

index than both the original and smart sampled dataset. However, except for dataset DS18000,

the number of instances of the spark sampled datasets are fewer in number than the random

sampled dataset. It is also important to consider that finding the average silhouette index on

random sample requires many executions for a single dataset as results vary on each run. On

the other hand, the smart sampling is executed one time if the generated sample size is small

enough to be executed in a centralized manner. This is a good point for the smart sampling.

 50

Original

Dataset

Name

Number

of clus-

ters

Dataset Sample

size

Minimum

distance

Maximum

distance

Silhouette

index

DS6500 8 Original 6500 4.47 439294.47 0.90459067

Random sam-

ple (50%)

3250 5.0 439294.47 0.90532905

smart sam-

pled (cell

size=5)

2448 500.0 439270.12 0.89975625

DS3100

31 Original 3100 0.0022993088 33.056683 0.88470066

Random sam-

ple (50%)

1550 0.0051435432 33.056683 0.8872491

smart sam-

pled (cell

size=5)

1476 0.0022993088 69.057945 0.8671787

DS18000 5 Original 18000 - - -

Random sam-

pled (30%)

5445 1.0 1238.1163 0.66860116

smart Clus-

tered (cell

size=5)

6297 5.0 1241.8378 0.60396504

Table 4.3 Experiment using random and smart sample on three manually clustered dataset

In DS8000, the silhouette index indicates average result on distribution of instances for speci-

fied number of clusters which is closer to 0.5. The silhouette index of the smart sampled da-

taset, the random and original dataset is quite similar; random sampled dataset is slightly better.

However, the number of instances of the smart sampled cluster (with the cell size s = 5) is less

than a one-half of the original dataset. The random sample dataset shows even a better perfor-

mance than the original dataset.

 51

Original

Dataset

Name

Number

of clus-

ters

Dataset Sample

size

Minimum

distance

Maximum

distance

Silhouette

index

DS8000 5 Original 8000 0.012992859 679.15796 0.5575914

Random sam-

ple (50%)

3999 0.05771768 674.44666 0.5576016

smart sampled

(cell size=5)

3449 0.302002 682.3672 0.5476162

Table 4.4 Experiment using random and smart sample on auto-clustered dataset

 52

 Chapter Five

5 Conclusion and Feature work

5.1 Conclusion
In this thesis, a technique for evaluating clustered big datasets has been designed, developed

and tested. As traditional CQIs have processing data size limitation, the proposed technique

generates a smaller size dataset in a “smart” way that the newly generated dataset can be pro-

cessed by using traditional CQIs. It requires a clustered large size dataset as input and generates

the smaller size sampled clustered dataset with an additional weight field given to each in-

stances of the new sampled dataset. Silhouette CQI is selected and adopted to support the

weight feature that is included in the sampling process. In order to perform the testing process,

k-mean clustering method is used for the dataset that is not clustered. The implementation of

the smart sampling technique is carried out using the Spark big data framework.

The smart sampling technique accepts the clustered dataset and analyzes each instance in each

cluster by placing instances in cells (small groups). It iterates though the cells to apply a par-

ticular criterion either to create one new instance out of the instances in each cell or pass all

instances as it is to the sampled dataset. The criteria states instances in a cell can only be re-

duced if the cell contains only instances from the same cluster. Based on this important rule, a

reduction is performed on the cells. A reduced cell has single instance with new features gen-

erated from the values of initial instances of the cell. Fundamentally, the sampled dataset is

composed of features from the original dataset including cluster identifier plus the weight fea-

ture added through the sampling process. On the other hand, the features of the reduced cell

are modified considering all the instance in the cell i.e. a center of the cell. As the sampled

dataset has an additional weight feature, the designed evaluation method adopts silhouette CQI

in such a way that the weight of each instance is included in intra-cluster and inter-cluster

distance computation.

The experiment was conducted in two test cases: manually clustered and auto-clustered da-

tasets. In the manually clustered dataset, three datasets containing 18000, 6500 and 3000 in-

stances with 5, 8 and 31 number of clusters respectively are considered. A Single dataset is

used in the second test case (the auto-clustered dataset) which has 8000 instances. The second

 53

test case uses the k-mean clustering method to generate clustered dataset in order to give it as

an input to the smart sampling and the random sampling. Both cases of the experiment compare

the silhouette index of the original dataset, randomly sampled dataset and the smart sampled

dataset. Generally, silhouette index of smart sampled and original dataset on, all the three da-

tasets, are similar with a slight better index of the original dataset. This indicates the smart

sampling can be considered as a solution for the cluster evaluation of huge size datasets. The

random sample results indicate better result than both the smart sampled and the original da-

taset. However, it is also important to consider that finding the average silhouette index on

random sample requires the number executions for a single dataset as results vary on each run.

On the other hand, the smart sampling is executed one time if the generated sample size is small

enough to be executed in a centralized manner. This is a good point for the smart sampling.

5.2 Future work
This work can be extended in many ways that may increase the performance and upgrade the

cluster evaluation of big data. This may also be choosing other methods which improve the

cluster evaluation process. The following points are suggested as future work.

• In this work, the smart sampling approach is tested only for two-dimensional datasets.

The performance of this sampling technique still needs to be experimented for multi-

dimensional datasets.

• The sample generated using the smart sampling is only checked on one cluster quality

index (silhouette index). Considering the performance seen in the experiments, it is

highly recommended to run experiment with other CQIs with the same sampling

method.

 54

Bibliography

[1] M. Chen, S. A. Ludwig e K. Li, Big Data Management and Processing, K. Li, H. Jiang e

Y. Z. Albert , A cura di, 2017.

[2] S. R. Youssra Riahi, «Big Data and Big Data Analytics: Concepts, Types and

Technologies,» International Journal of Research and Engineering, vol. 5, pp. 524-528,

2018.

[3] T. Pang-Ning, S. Michael e K. Vipin, Introduction to Data Mining, (First Edition),

Boston,: Addison-Wesley Longman Publishing Co, 2005.

[4] R. Clemens, F. Peter, G. Robert e D. Rudolf, Statistical Data Analysis Explained: Applied

Environmental Statistics with R, 2008.

[5] E. Rendón, I. Abundez, A. Arizmendi e E. M. Quiroz, «Internal versus External cluster

validation,» INTERNATIONAL JOURNAL OF COMPUTERS AND

COMMUNICATIONS, vol. 5, n. 1, pp. 27 - 34, 2011.

[6] Y. Liu, Z. Li, H. Xiong, X. Gao e J. Wu, «Understanding of Internal Clustering Validation

Measures,» IEEE International Conference on Data Mining, pp. 911 - 916, 2010.

[7] J. Hämäläinen, S. Jauhiainen e T. Kärkkäinen, «Comparison of Internal Clustering

Validation Indicesfor Prototype-Based Clustering,» MDPI algorithms, 6 September

2017.

[8] L. Guerra, V.Roblesb, C.Bielza e P. L. ̃naga, «A comparison of clustering quality

indicesusing outliers and noise,» Intelligent Data Analysis, p. 703–715, 2012.

[9] J. M. Luna-Romera, J. García-Gutiérrez, M. Martínez-Ballesteros e J. C. R. Santos, «An

approach to validity indices for clustering techniques in BigData,» 2017.

[10] J. Dean e S. Ghemawat, «Mapreduce: simplified data processing on large clusters,»

Commun. ACM , pp. 107 -113, 2004.

[11] Apache, «https://spark.apache.org/,» Apache. [Online]. [Consultato il giorno 20 Aprile

2018].

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker e I. Stoica, «Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing,» in NSDI, san Jose, CA, 2012.

 55

[13] S. Hari, «https://hackr.io/,» 19 October 2019. [Online]. Available:

https://hackr.io/blog/hadoop-vs-spark. [Consultato il giorno 5 November 2019].

[14] Z. Btissam, A. Ait Lahcen e M. Salma, «Big Data Clustering: Algorithms and

Challenges,» in International Conference on Big Data, Cloud and Applications, Tetuan,

Morocco, 2015.

[15] H. S. Deshmukh e P. L. Ramteke, «COMPARING THE TECHNIQUES OF

CLUSTERANALYSIS FOR BIG DATA,» IJARCET, vol. 4, n. 12, December 2015.

[16] R. Suganya, M. Pavithra e P. Nandhini, «Algorithms and Challenges in Big Data

Clustering,» International Journal of Engineering and Techniques, vol. 4, n. 4, pp. 40 -

47, July - August 2018.

[17] H. J. Watson, «Tutorial: Big Data Analytics: Concepts,Technologies, and Applications,»

vol. 42, pp. 1247-1268, April 2014.

[18] H. Jiawei, K. Micheline e P. Jian, Data MiningConcepts and Techniques, Third a cura di,

Waltham, MA, 225 Wyman Street: Morgan Kaufmann, 2012.

[19] R. ERÉNDIRA, A. I. M., G. CITLALIH, Z. S. DÍAZ, A. ALEJANDRA, Q. E. M. and

H. E. ARZATE, "A comparison of internal and external cluster validation indexes,"

Applications of Mathematics and Computer Engineering, 2015.

[20] «CLUSTER VALIDITY MEASURES DYNAMIC CLUSTERING ALGORITHMS,»

ARPN Journal of Engineering and Applied Sciences , vol. 10 , pp. 4009 - 4012, MAY

2015.

[21] S. C. N., S. L. P. D. e P. Sudhakar, «Evaluating and Analyzing Clustersin Data

Miningusing Different Algorithms,» A Monthly Journal of Computer Science and

Information Technology, vol. 3, n. 2, p. 86–99, February 2014.

 56

6 Appendices
This is information about the dataset used in the experiment is given in the table. It includes

the source of the dataset sources and description.

Name Number of
Instances:

Number

of fea-

tures

Number of

Clusters

Cluster

type

Source Description

DS8000

8000 2 5 G. Karypis, E.H. Han, V. Kumar,

CHAMELEON: A hierarchical

765 clustering algorithm using dy-

namic modeling, IEEE Trans. on

Computers, 32 (8), 68-75, 1999.

DS6500 6500 2 5 M. Rezaei and P. Fränti, "Set-

matching measures for external

cluster validity", IEEE Trans. on

Knowledge and Data Engineering,

28 (8), 2173-2186, August 2016.

(Bibtex)

DS3100 3100 2 31 C.J. Veenman, M.J.T. Reinders,

and E. Backer, A maximum vari-

ance cluster algorithm. IEEE

Trans. Pattern Analysis and Ma-

chine Intelligence 2002. 24(9): p.

1273-1280.

DS18000

18000 2 5

DS720 720 90

DS2310 2310 19 NOT

KNOWN

 Creators:

Vision Group, University of Mas-

sachusetts

Donor:

Vision Group (Carla

Brodley, brodley '@' cs.umass.edu)

Image data

described

by high-

level nu-

meric-val-

ued attrib-

utes. The

instances

were drawn

randomly

http://cs.joensuu.fi/sipu/datasets/Unbalance_bibtex.txt

 57

Site : https://ar-

chive.ics.uci.edu/ml/datasets/Im-

age+Segmentation

from a da-

tabase of 7

outdoor im-

ages. The

images

were

handseg-

mented to

create a

classifica-

tion for

every pixel

https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation

