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Abstract
The publication and sharing of new research results is one of the main goal
of an academic institution. In recent years, many efforts have been made to
collect and organize the scientific knowledge through new, comprehensive
data repositories. To achieve such goal new tools that are able not only
to store data, but also to describe them are needed.

Knowledge graphs are a particular class of graphs that are used to
semantically describe the human knowledge in a specific domain by linking
entities through labeled and directed edges.

In this work is presented a novel semantic graph built on top of the
scholarly data produced by the Politecnico di Torino (Polito), and how
state-of-the-art machine learning techniques have been used for the predic-
tion of new links in this graph. Such graph, built by leveraging Semantic
Web technologies, links together publications, researchers, fields of study
and scientific journals in order to build a knowledge base that describes
the Politecnico di Torino scientific community. This new academic graph
has been called the Polito Knowledge Graph.

The prediction of non-existent links between graph nodes is one of the
most challenging tasks in the field of statistical relational learning for
graph data, mainly because, in order to obtain meaningful predictions,
the vector representations of the entities must embed their semantic char-
acteristics. To accomplish such goal, a deep neural network derived from
the image recognition field and specifically adapted to the task of rep-
resentation learning for graph data have been used. Such architecture
allowed to obtain representations that have been directly learnt from the
graph structure itself, without requiring any prior knowledge or feature
engineering. Such representations allowed to obtain meaningful predic-
tions that have been used to empower a recommendation system for the
suggestion of useful insights.
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Chapter 1

Introduction

1.1 Motivation
Graphs are used to empower some of the most complex IT services avail-
able today, an example among all is the Google search engine1. Graphs
can be used to represent almost any kind of information, and they are
particularly capable of representing the structure of complex systems and
describe the relationships between their elements.

Over the last decade, much effort has been put in trying to leverage
the power of graphs to represent human knowledge and to build search
tools capable of querying and understanding the semantic relations within
them. RDF2 graphs are a particular class of graphs that can be used
to build knowledge bases. Ontologies are used to shape such knowledge
repositories, in order to have a semantically coherent representation of the
domain knowledge. Given a domain and an ontology, RDF graphs allows
to build a structured representation of the knowledge in such domain.

Modern machine learning techniques can be used to mine latent infor-
mation from such graphs. One of the main challenges in this field is how
to learn meaningful representations of entities and relations that embed
the underlying knowledge. Such representations can then be used to eval-
uate new links within the graph or to classify unseen nodes. Deep learning

1https://blog.google/products/search/introducing-knowledge-graph-
things-not/

2The Resource Description Framework will be introduced in section 2.1.2
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1 – Introduction

techniques have proved to be first class citizens when dealing with repre-
sentation learning tasks, being able to learn latent representations without
any prior knowledge other than the graph structure.

1.2 Goal and Contribution
Knowledge sharing is one of the main goals of research organizations. In
particular, universities are among the most interested in making publicly
available their research results. Today most universities have embraced
the Open Science movement, making their scientific publications publicly
available through web portals.

An example of such tools is the Institutional Research Information
System (IRIS)3, an institutional publication repository developed by the
Cineca Consortium and used by the Politecnico di Torino to store and
share all the scientific papers published by its researchers.

IRIS allows to explore the published papers by searching for a field of
study, matching it with the keywords inserted by the authors of the publi-
cations. The current implementation has some limitations: being inserted
by the authors, the keywords can be acronyms, can contain abbreviations,
initials written without capital letters, or misspelled words. In addition,
they do not represent unique and field-wide semantic concepts, but they
are simple character strings. The consequence is that the search engine
of IRIS is unable to correctly retrieve all the publications about a spe-
cific research topic, because the system cannot match the searched field
of study with an unambiguous semantic entity, but only with character
strings that are not uniquely identified or semantically linked each other,
and also prone to lexical errors.

The goal of this work is to overcome such limitations and enabling new
possibilities for exploring and obtaining insights about the scientific com-
munity of the Politecnico di Torino. A new semantic-empowered search
engine can be one of the possible solutions to obtain this results, allowing
for coherent and precise results to be retrieved. At the foundations of
this new semantic search engine there must be a data structure capable of
representing semantic relations and concepts. Once such knowledge base
of the scholarly data is obtained, it can be enhanced and completed by

3https://iris.polito.it/
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1.2 – Goal and Contribution

automatically extracting latent information through the use of advanced
machine learning algorithms.

In the next chapters is presented a newly built structured and seman-
tically coherent representation of the scholarly data produced by the Po-
litecnico di Torino, and how implicit facts can be automatically extracted
from such knowledge repository by leveraging knowledge base completion
techniques, implemented by means of an advanced link prediction algo-
rithm.

13



14



Chapter 2

Background

2.1 Semantic Web

2.1.1 From a Web of Contents to a Web of Data
The World Wide Web has been developed as a tool to easily access docu-
ments and to navigate through them by following hyperlinks. This simple
description already resembles the structure of a graph: documents can be
thought of as nodes and hyperlinks as edges. The unstoppable growth of
the Web graph led to the raise of new tools to explore such complexity.
Search engines have been developed to easily navigate such a giant graph.
First approaches were based on analytics evaluations, such as the number
of times a document has been linked, as in the case of the PageRank [3]
algorithm developed by Google.

The Web rapidly became one of the most innovative technology ever
built, allowing to retrive information quickly and easily as never before.
The next evolutionary step has been to think about a Web not only ex-
ploitable by human beings but also by machines. In order to build such
a comprehensive system, where information can be not only machine-
readable, but machine-understandable, the World Wide Web had to move
from a web of content, to a web of data.

The World Wide Web Consortium (W3C) introduced the Semantic Web
as an extention to the prior standard of the WWW. Its primary goal has
been to define a framework to describe and query semantic information
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contained in the documents available on the Web, so as to allow machines
to understand the semantic information contained in web pages. In the
vision of Tim Berners-Lee, the father of WWW, this would bring to the
transition from a World Wide Web to a Giant Global Graph1, where a web
page contains metadata that provides to a machine the needed information
to understand the concepts and meanings expressed in it.

2.1.2 The Semantic Web Building Blocks
The three key components of the Semantic Web standard are:
1. OWL: the Web Ontology Language [4]
2. RDF: the Resource Description Framework [5]
3. SPARQL: The SPARQL Protocol and RDF Query Language [6]

OWL is a language used to define ontologies. In this context, an ontol-
ogy is defined as a collection of concepts, relations and constraints between
these concepts that describes an area of interest or a domain. OWL allows
to classify things in terms of their meaning by describing their belonging
to classes and subclasses defined by the ontology: if a thing is defined as
member of a class, this means that it shares the same semantic meaning
as all the other members of such class. The result of such classification is
a taxonomy that defines a hierarchy of how things are semantically inter-
related in the domain under analysis. The instances of OWL classes are
called individuals, and can be related with other individuals or classes by
means of properties. Each individual can be characterized with additional
information using literals, that represent data values like strings, dates or
integers.

The Resource Description Framework defines a standard model for the
description, modelling and interchange of resources on the Web.

The first component of the framework is the RDF Model and Syntax,
which defines a data model that describes how the RDF resources should
be represented. The basic model consist of only three object types: re-
source, property, and statement. A resource is uniquely identified by an

1https://web.archive.org/web/20160713021037/http://dig.csail.mit.edu/
breadcrumbs/node/215
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Uniform Resource Identifier (URI). A property can be both a resource at-
tribute or a relation between resources. A statement describes a resource
property, and is defined as a triple between a subject (the resource), a
predicate (the property) and an object (a literal or another resource).

The second component of the framework is the RDF Schema (RDFS),
that defines a basic vocabulary for describing RDF resources and the rela-
tionships between them. Many of the vocabularies and ontologies available
today are built on top of RDFS, such as the Friend of a Friend (FOAF)
ontology [7], for describing social networks, or the one maintained by the
Dublin Core Metadata Initiative [8], that defines common terms and re-
lations used in the definition of metadata for digital resources.

Figure 2.1: An example of ontology defined using OWL and RDF Schema.

SPARQL is a query language for triplestores, a class of Database Man-
agement Systems (DBMS) specialized in storing RDF databases. Such
DBMS often expose endpoints that can be used to query the database
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and obtain results. Given the complexity of the stored data, the query
language has been designed to be as simple as possible, for instance by
allowing the use of variables, whose definition is preceded by a question
mark.

The syntax of SPARQL is heavily derived from SQL, with some minor
adaptations to be more suited for querying graph data. The following is an
example of query which selects all the labels (human-readable description
of a resource) of all the entities that match the given resource type.

PREXIF plants:<http://example.org/plants/>

SELECT ?name
WHERE {

?subject rdf:type plants:flowers .
?subject rdfs:label ?name .

}

2.1.3 Knowledge Bases as Knowledge Repositories
Even though the raise of the Semantic Web has suffered a slowdown in
its growth due to the complexity of its vision, many new projects were
born from its enabling technologies. Efforts have been put by profit and
non-profit organizations in trying to build complex knowledge repositories
starting from the knowledge already available in the Web. An example
among all is the DBpedia2 project, which developed a structured knowl-
edge base from the semi-structured data available on Wikipedia. Another
example is the Google Knowledge Graph3, which is used to enhance the
Google search engine and virtual assistant capabilities, allowing to re-
trieve punctual information about everything that has been classified in
its ontology and described in its knowledge base, or the Open Academic
Graph4, a Scientific Knowledge Graph that collects more then three hun-
dred million academic papers. A comparison between some of the biggest

2https://wiki.dbpedia.org/
3https://blog.google/products/search/introducing-knowledge-graph-

things-not/
4https://www.openacademic.ai/oag/
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Table 2.1: Comparison of some of the biggest industry-scale knowledge
graphs developed to this date. Table adapted from [1].

Data model Graph size Development
stage

Microsoft Entities, relations and at-
tributes defined in an on-
tology.

2 billion entities and 55 bil-
lion facts.

Actively used
in products.

Google Strongly typed entities, re-
lations with domain and
range inference.

1 billion entities, 70 billion
assertions.

Actively used
in products.

Facebook All of the attributes and
relations are structured
and strongly typed.

50 million primary entities,
500 million assertions.

Actively used
in products.

eBay Entities and relation, well-
structured and strongly
typed.

100 million products, more
than 1 billion triples.

Early stages
of develop-
ment.

IBM Entities and relations with
evidence information asso-
ciated with them.

Various sizes. Proven
on scales documents >100
million, relationships >5
billion, entities >100 mil-
lion.

Actively
used in prod-
ucts and by
clients.

knowledge graphs developed to this date is available in Table 2.1.
From an implementation perspective, knowledge bases can be created

by defining an ontology and a vocabulary for a specific domain of knowl-
edge using OWL and RDF Schema, and then by describing the concepts
of such domain using the RDF Model and Syntax. The RDF document
obtained can then be stored in a triplestore and queryed using SPARQL.
The main effort in building knowledge bases is to have a correct under-
standing and prior knowledge of the domain of interest, to avoid the risk
of mischaracterize or misrepresent concepts.

If all the requirements and precautions are met, a well formed knowl-
edge base may prove to be a critical resource for an organization. It
permits to build new services upon it, and also to improve the existing
knowledge inside the organization by performing reasoning upon the avail-
able knowledge, in order to derive implicit facts starting from the existing
entities and relationships. Another field of applications is the development
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Figure 2.2: An extract of the Polito Knowledge Graph whose details will
be described in section 5.1.

of Expert Systems5, AI software that emulates the behavior of a human
decision-making process by navigating the knowledge base and taking de-
cisions like in a rule-based system.

Today’s knowledge bases are commonly composed of tens of thousands
nodes and by hundreds of thousands of edges. Considering such dimen-
sions, storing and querying giant graphs requires the adoption of special-
ized DBMS that are capable of efficiently store and query the RDF input
representation. Moreover, performing analysis and gathering statistics
from such giant graphs requires the adoption of highly efficient algorithms
in order to retrieve the desired output in an acceptable time.

The availability of such a complex and informative data structure leads
to the opening of interesting scenarios, especially when thinking about the
latent information that can be extracted from it. In fact, a knowledge base
is a structured representation of the human knowledge in a specific field,
thus its comprehensiveness is restricted by the human understanding.

5https://en.wikipedia.org/wiki/Expert_system
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2.2 Learning on Graphs

2.2.1 Representation Learning
Machine learning (ML) algorithms are used to learn models from the avail-
able data, with the final goal to obtain a set of parameters that are fine-
tuned to identify seen characteristics in the data used for training. The
trained models can be used to recognize unseen inputs by leveraging the
knowledge embedded in such parameters. An important task in the ML
field is the learning of machine-understandable representations of the in-
put data, task known as representation learning.

Natural Language Processing is one of the research branches that in the
past years has made a great use of machine learning algorithms both for
language recognition and for embedding words meaning into words vectors.
One of the most successful algorithms when dealing with representation
learning of words is Word2Vec [9], where the model obtained is trained to
learn a vector representation for each word in a vocabulary. In Word2Vec,
the concept of meaning of a word is related to the context in which such
word is frequently used, so two words are recognized as similar if they are
used in similar contexts. In the vector space of the learnt representations,
words that have similar meaning have an higher cosine similarity6 with
respect to the dissimilar ones. For instance, the cosine similarity between
the word vectors of the words "Man" and "King" is roughly the same
as the one between the words "Woman" and "Queen", since such words
are used in similar contexts. This has open up new scenarios for language
processing, since it allowed to perform vector operations on words vectors,
which brought interesting results. An example can be seen in Figure 2.3.

This idea of words characterized by the context in which they’re used
can be generalized and applied to other fields of research, such as the field
of representation learning on graphs.

Graphs are composed of nodes and edges, and are used to describe
complex systems, such as social networks or the interactions in a molec-
ular biology system. To apply machine learning algorithms to such data

6 Cosine similarity is a heuristic method to measure the similarity between two vectors
by computing the cosine of the angle between them: similarity(A,B) = cos(θ) = A·B

ëAëëBë
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Figure 2.3: Word vectors allows to perform vector operations, the results
obtained reflect the fact that Word2Vec is capable of embed the meaning
of such words.

structures vector representations of nodes and edges are needed in order
to be able to learn from the available data and predict new facts. Such
vector representations are often referred to as embeddings because they
should embed the characteristics of the graph nodes, so that similar nodes
have similar embeddings. For instance, in a scholarly knowledge base
publications with same authors and similar subjects should have similar
embeddings.

Early approaches required these representations to be learned from fea-
ture vectors that where handcrafted, task that required not only a relevant
amount of effort, but also a deep understanding of the domain of interest.
This has long been one of the main obstacles when dealing with repre-
sentation learning tasks, since who has knowledge of the domain and who
has to engineer the features were unlikely the same individual.

22
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2.2.2 Deep Learning on Graphs
In the latest years a big shift towards deep architectures has been made
in machine learning, mainly thanks to the development of highly paral-
lelized architectures that are able to efficiently compute at the hardware
level vector and matrix multiplications, operations that are at the basis
of any machine learning task. Deep learning algorithms are able to ex-
tract relevant features from raw data by applying simple mathematical
operations, such as convolution, to the input data. An example of one
of the most successful applications of deep neural networks is in image
recognition, where matrix representations of images are convolved with
self-trained filters that are able to extract the relevant features needed to
recognize patterns present in the input images.

Deep learning techniques have proven to perform well also in the field
of representation learning for graph data. As can be seen in figure 2.4, a
digital image is composed of pixels which can be thought of as nodes in a
graph, where each pixel is connected by an edge to its immediate neigh-
bors. This suggests that the techniques used when dealing with images
can be adapted, with some major changes, to the field of representation
learning on graphs, but also in other fields of research, such as learning
on manifolds.

Figure 2.4: A digital image can be thought of as a graph.

One of the issues when working with graph data is that commonly
graphs are built to describe complex systems, such as the knowledge of a
domain or field for knowledge graphs, and thus are composed of a fairly
high amount of nodes and edges. The matrices used to store the graph
structure can thus explode in dimensionality, becoming impractical as
input data. Moreover, graphs are not regular structures with a given
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shape and size, such a matrix of pixels for images, but they live in an
irregular domain which led to highly irregular structures. The first issue
can be solved by randomly sampling the graph at each training epoch,
the immediate drawback being that more than one epoch is required to
train over all graph nodes. The second issue can instead be solved by
adapting already existing algorithms to work on irregular domains. One
of the possible approaches, which has proven to work well, is the one based
on convolutions.

Graph Convolutional Networks (GCNs) [10] are a class of semi-supervised
deep learning algorithms for graphs which are based on the same convo-
lution and backpropagation operations as the well known Convolutional
Neural Networks [11] (CNNs) used for feature learning on images. The
main difference between CNNs and GCNs is in how the convolution is
performed, instead the backpropagation phase is the same as the one used
to update the parameters of CNNs, with a task-specific loss function. In
a CNN the input matrix of each network layer, which is the pixel matrix
of the input image for the first layer, is convolved with some layer-specific
convolutional filters, whose parameters are then updated during the back-
propagation phase.

GCNs works similarly by convolving at the l-th layer of the network
the feature vector of each node with the feature vectors of its l-nearest
neighbors by means of a convolutional filter. This operation is done by
applying the following transformation:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l)) (2.1)

Where H(l) ∈ RN×d(l) is the nodes hidden representation matrix, which
is the output of the previous layer, with N being the number of nodes
in the graph and d(l) being the dimensionality of the current layer. For
the first layer, H0 is equal to the input feature matrix X, where each
row can be initialized with the respective node feature or with a one-hot
encoded vector. For the last layer, H(l+1) is the embeddings matrix. Ã is
an adjacency matrix of the graph that includes self loops. D̃ is the node
degree matrix of Ã and is used to normalize it. W l ∈ Rd(l)×d(l+1) is the
convolutional filter that is shared among all nodes and is unique for each
layer. The shape of this filter will directly impact the dimensionality of
the embeddings obtained, in fact H l+1 is shaped as a N × d(l+1) matrix.
Finally, σ is a non linear activation function, for instance ReLU .
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2.2 – Learning on Graphs

Looking at the update rule of a single node embedding will make more
clear how the convolution is actually performed. The forward rule to
update the embedding of a single node at the l-th layer of the network is
the following:

h
(l+1)
i = σ(

Ø
j∈ηi

1
ci,j

h
(l)
j W

(l)) (2.2)

Where ηi is the set of neighbors of node i, which contains the node itself
because of the added self loop, and cij is a normalization constant obtained
from the multiplication between the adjancency and degree matrices. The
updated feature vector h(l+1)

i of the node i is obtained by performing the
following operations:

1. The feature vectors h(l)
j of its neighbors are transformed by the matrix

multiplication with the layer filter W (l).
2. The resulting 1 × d(l+1) shaped features vectors are multiplied with

the respective normalization constants and summed together.
3. The non-linear function is applied to the result of the summation,

obtaining the updated feature vector of the node i.

Applying such transformations to all nodes, at the k-th layer a node is
represented by its transformed feature vector, which embeds the structural
information within the node’s k-hop neighborhood. As a consequence
of this, the amount of layers of the network is an hyperparameter that
controls how much information from furthest nodes has to be collected
in each node embedding. This represents a fundamental architectural
difference between CNNs and GCNs: while the former are commonly built
by stacking a lot of layers, the latter relies on architectures that are more
wider, due to the dimensionality of the graphs involved, and that consist
of a fairly low amount of layers, in order to characterize the nodes only
through their immediate surroundings.

As a result of the propagation step each node embedding will be char-
acterized by its context, just like it happens in Word2Vec, but in a non-
euclidean domain. So for example, in a social graph where each person is
characterized by its friends, hobbies, places visited and so on, two people
will have similar embeddings if they are both linked to the same nodes,
and so they share the same interests and social connections.
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Figure 2.5: Representation of a GCN updating the feature vector of the
node 0 by summing the convolved features of its adjacent nodes.

The node embeddings obtained by applying a GCN or one of its vari-
ants can then be used to perform some learning tasks on the graph, two
examples are the classification of unseen nodes or the link prediction of
non-existent edges. The latter is one of the most interesting tasks, since it
allows to complete the information contained in the graph by predicting
unseen facts.

2.2.3 Link Prediction on Knowledge Graphs

Predicting new facts is one of the most common task in the field of knowl-
edge graph completion. The goal of such task is to predict new, unseen
triples that correspond to missing facts in the knowledge base, and that
can be later added to the graph. Deep learning techniques for link predic-
tion are based on the following two main steps:

1. Train an encoder model that is able to embed the node features and
produce meaningful embeddings.

2. Apply a factorization model that act as a decoder, which is used to
score the unseen triples under evaluation.
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Deep learning techniques such as GCN can be exploited to obtain mean-
ingful node embeddings, but fall short when dealing with graphs where
nodes are connected by different relations (multi-relational graphs). In
fact, if a single layer GCN had been used to obtain the embeddings of two
nodes that share the same neighborhood, but are connected to the neigh-
bors via different relations, the resulting embeddings would have been very
similar, even if it is clear that they do not share the same characteristics.
For example in a producer-consumer framework one node could be the
producer while the other the consumer, having both a common neighbor-
hood of nodes which are produced by the former and consumed by the
latter. If a GCN is used, the embeddings obtained would be very similar,
even if the two nodes clearly do not have the same role and do not belong
to the same class.

To overcome this limitation, changes to the basic GCN architecture
have been proposed, so to obtain models that works well when applied to
multi-relational graphs.

The Relational Graph Convolutional Network [2] (R-GCN) is an ex-
tension of GCNs which is focused on modeling multi-relational graphs
composed by labeled and directed edges, and thus is particularly capable
of embedding both nodes and relations of a knowledge graph. R-GCN can
be used for both link prediction and node classification tasks.

At an high level the R-GCN architecture can be seen as a special case
of the message passing framework [12], which groups together under a
common scheme most of the existing neural models for graph data. The
framework defines two major phases: a per-edge message computation
and a per-node message reduction. In the first phase a function or linear
transformation is applied to each edge to obtain an edge-specific message.
Then, in the reduce phase, the embedding of each node is updated by
aggregating together all the messages of the incoming edges.

This two phases can be grouped together through the following equa-
tion:

h
(l+1)
i = σ

 Ø
m∈Mi

gm(h(l)
i , h

(l)
j )

 (2.3)

WhereMi is the set of incoming messages for node i and gm is a mes-
sage specific transformation.
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The idea behind the R-GCN is to have different set of parameters for
different relations. At each step inside the network, the feature vector
of a node is updated by convolving its first neighbors features with a
convolutional filter that is different based on the kind of relation that
connects the nodes. The forward rule to update the embedding of a node
at the l-th layer is the following:
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Where h(l)
i is the embedding (or, for the first layer, the input feature

vector) of the node i, W (l)
0 is the learnt kernel for the self loop relation,

N r
i is the set of indices of the neighbors of node i under the relation

r ∈ R, with R being the set of all the relations present in the graph.
W (l)
r ∈ Rd(l+1)×d(l) is the learnt filter for the relation r. As for the GCN

architecture, σ is a non linear activation function and ci,r is a normalization
constant, commonly initialized to |N r

i |.
From a message passing framework perspective, the message function

(per-edge transformation) is equal to the linear transformation Wrhj, and
the reduce function (per-node transformation) is just the sum of all the
messages computed for the edges connected to each node.

As can be seen the update rule looks similar to the one for GCNs (2.2),
with the major difference that in the case of a R-GCN the filters used to
convolve the feature vectors of neighboring nodes are relation-specific, so
the number of filters at each layer will be equal to the number of relations
inside the graph. As a consequence, the kind of relation that connect the
node to its neighbors has an important role in determining the transformed
node embedding.

Some form of regularization is required in order to avoid overfitting on
rare relations, thus to obtain a more generalized model, and also to avoid
the rapid growth in the number of parameters of the network for highly
multi-relational graphs.
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2.2 – Learning on Graphs

Figure 2.6: R-GCN encoder visualization. Image taken from [2].

One of the solutions proposed by the original paper [2] is to decompose
each relation filter Wr using basis decomposition:

W (l)
r =

BØ
b=1

a
(l)
r,bV

(l)
b (2.5)

This allows to store only the relation-specific coefficients and the basis,
which will be shared by all the relations.

The model obtained by training a R-GCN can then be used to build an
encoder that given as input a graph, gives as output the embeddings of
all nodes and the relations parameters. Then a factorization method can
be used to evaluate unseen facts inside the graph, exploiting the resulting
embeddings. Such methods are used as scoring functions in order to ob-
tain, starting from the entities embeddings, a real value that can be used
to score the unseen triples under evaluation.
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DistMult [13] is one of the most common and simple factorization meth-
ods used to score unseen triples. Given a triple (s, p, o), where s is the
source node, o is the destination node, and r is the relation of the edge
that links the source to the destination, DistMult allows to compute an
associated real valued score as follows:

score(s,r,o) = f(s, r, o) = eTsRreo (2.6)

Where es and eo are the embeddings of the source and the destination
node, obtained by means of an encoder model like R-GCN, and Rr ∈ Rd×d

is obtained by transforming the embedding of the relation r into a diagonal
matrix. Such relation embedding is not learnt by the R-GCN encoder, but
is a randomly initialized vector that represent the relation.

The score obtained by applying the factorization method above can
then be used to evaluate wether the triple (s, r, o) is a good candidate
to be added to the graph: an high score has to be interpreted as a high
confidence of the model in the fact that the triple should belong to the
knowledge base.
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Chapter 3

Approach and
Methodology
This chapter introduces the architecture developed to build, enhance and
visualize the Polito Knowledge Graph (PKG), an academic RDF graph
built to organize in a structured and semantically coherent way the pub-
lications produced by the researchers of the Politecnico di Torino. The
graph also includes publication-related entities, such as authors, journals,
and fields of study.

The architecture is composed of three main modules, that at an high
level can be seen as part of a producers-consumers architecture, where the
former produces the graph data, and the latter consumes it.

The architecture, which is shown in Figure 3.1, is structured as a
pipeline composed of the following three modules:

1. The Builder, which creates a first version of the RDF graph.
2. The Enhancer, which implements ML techniques to predict unseen

facts. Such facts can then be added to the graph in order to complete
the knowledge base.

3. The Viewer, a web application that allows to query and visualize the
graph data.

The Builder act as producer taking as input the IRIS data and produc-
ing a set of RDF statements that together composes the Polito Knowledge
Graph. The Enhancer act as both a producer and a consumer, given that
it takes as input the PKG and use it to predict unseen facts that can be
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later added as new RDF statements. The Viewer consumes the graph by
storing it a triplestore and exposing a public web interface for querying
and visualizing the data.

Figure 3.1: Schema of the pipelined software architecture developed to
build, enhance and visualize the Polito Knowledge Graph. The legend is
showed in the bottom left corner of the Figure. The circled numbers are
used to identify the steps in the pipeline.
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3.1 – Builder Module

3.1 Builder Module

The Builder input is a dump of the IRIS1 database, which is the platform
used by the Politecnico di Torino to store and share all the scientific papers
written by its researchers. The dump is a JSON file that contains all the
information available for the scientific paper published in a period of five
years that goes from 2013 to 2017.

The Builder goal is to translate all the information contained in the
dump in a set of semantically coherent RDF triples. To do so, an ontology
that describes the domain of the IRIS scholarly data has been defined.

The builder uses as reference the defined ontology to analyze each record
in the JSON dump, and builds facts as RDF triples by matching the infor-
mation contained in the record with the concepts defined by the ontology.
For example, given that a publication may have more then one contributor,
the defined ontology differentiates the principal author from the contrib-
utors by using two different statements to tie the corresponding entities
to the publication.

One of the goal of this work is to link each publication to its research
fields through unique and field-wide semantic concepts. To do so, the
publication abstract has been used as input text for TellMeFirst (TMF)
[14], a tool for the automatic extraction of semantic keywords from texts.
Such semantic keywords, to which from now will be referred to as topics,
are retrieved from the DBpedia taxonomy and are uniquely identified by
their corresponding URI. The use of TMF allowed to automatically tie
each publication to its relevant topics, by adding the corresponding RDF
statements to the graph. Being the topics added as graph entities which
are uniquely identified, all the publications that share a topic are linked
to the same semantic entity.

The result of this process is a set of RDF statements that constitutes
the first version of the Polito Knowledge graph, a semantically coherent
description of the publications produced by the Polito researchers, where
each publication is uniquely identified and linked by means of semantic
relations to the entities representing its authors, contributors and research
topics.

1https://iris.polito.it/
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3.2 Enhancer Module
Once the first version of the RDF graph has been built, it could be used as
input for the Enhancer Module, whose main goal is to infer unseen facts
to complete and enhance the information available inside the knowledge
graph.

The Enhancer is composed of three main components:

1. The Dataset Builder.
2. The Model Trainer.
3. The Link Evaluator.

The Dataset Builder is in charge of translating the RDF graph into a
usable dataset for the Model Trainer, this because the RDF statements
cannot be used as input data for the link prediction algorithm. The dataset
will then be splitted into three disjoint2 sets.

The Model Trainer uses this three sets to train, validate and test the
link prediction model. The training set is used to train the model at each
epoch, while the validation set is used to evaluate which model parame-
ters to keep, identifying the best epoch. The test set is used to evaluate
the accuracy of the model, loaded with the best epoch parameters, upon
unseen triples. Once the model has been trained, it can be used to predict
unseen facts.

The Link Evaluator loads the best model found during the training
phase and uses it to evaluate unseen triples. To do so, the Evaluator
creates a set of unseen RDF triples and produces a score for each of them.
Only the triples that obtain an high score (and so have an high probability
to be true facts) and are correct in domain and range with respect to the
ontology are kept. The predicted triples are then saved as RDF statements
and could be added to the RDF graph, obtaining the enhanced version of
the Polito Knowledge Graph. This new version will contain not only the
information available on IRIS, but also the latent information inferred by
the learnt model, like missing topics, similar authors or proposed journals,
which can be used to empower a recommendation system for the Polito
researchers.

2Two sets are said to be disjoint if they have no elements in common.
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3.3 Viewer Module
The last module of the architecture is the Viewer, which is composed of a
triplestore, an API layer, and a front end web interface.

The triplestore is a specialized DBMS for storing and retrieving RDF
statements. It stores an online copy of the Polito Knowledge Graph and
expose a SPARQL endpoint that allows to query the graph itself.

The API layer exposes a REST API that allows to retrieve the informa-
tion contained in the graph without the need of using SPARQL queries.
It accepts HTTP requests with URL-encoded parameters and proceeds
to query the SPARQL endpoint of the triplestore by matching the pa-
rameters upon some predefined queries. Then, it translates the response
obtained from the triplestore in a JSON file, which is sended back to the
requesting client, which is typically the front end.

The front end is a responsive web application that act as the entry point
for the user, mimicking the functionalities of a modern search engine. It
allows to query and visualize the data contained in the graph through the
use of a simple and friendly User Interface.

For example the user, who should typically be a researcher of the Po-
litecnico di Torino, can search for a topic of interest and obtain as result
the list of all the publications, authors and journals that are linked to
such topic. The predictions are used to add suggestions to the results,
for example, if searching for an author, in the results obtained are shown
not only its actual research interestes, but also other topics in which he
may interested in, or researchers with similar profiles but with which he
never published a research together, thus obtaining useful insights about
its scientific community.
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Chapter 4

Related Work
Today there is a growing interest in scientific knowledge graphs, both from
academic institutions and private organizations. An example is the Open
Academic Graph1 (OAC), an academic knowledge graph that has been
built by merging together two of the largest scientific KG available, the
Microsoft Academic Graph2 and AMiner3. The OAC has been publicly
released to allow the study of citation networks, papers content and more.
The first version of the graph, released in 2017, has been built by merging
together the aforementioned graphs and by linking the matching publi-
cations, obtaining a graph that is composed of more then three hundred
million publications. In the first version of the graph the only kind of
entity present was the publication: authors, journals, and all the other
publications metadata were added as attributes, and not as entities.

In January 2019 the second version of the Open Academic Graph has
been released, adding even more publications to the graph. However, the
biggest change of this new version was the addition of authors and venues
as graph entities, instead of being simple publications attributes.

However, the OAC does not contain the publications topics as graph
entities, but as author keywords, thus being prone to the same limitations
of IRIS: the keywords are the ones chosen by the authors and are not
referencing to semantic concepts, being simple character strings.

1https://www.openacademic.ai/oag/
2https://academic.microsoft.com/
3https://www.aminer.cn/
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Regarding the development of tools similar to the Polito Knowledge
Graph by other academic institutions, an example of employment of knowl-
edge graphs and natural language processing techniques to build new aca-
demic search engines is Wiser [15], an expertise search tool developed by
the University of Pisa and publicly released at the beginning of 2019. The
knowledge graph of Wiser is composed of approximately 1,500 authors,
65,000 publications and 35,000 topics4. The system has proven to be par-
ticularly effective, representing a strategic tool and being actively used by
the university Technological Transfer Office to easily find expertise profiles
in a given research field.

As saw in the previous Chapter, one of the main components of the
PKG pipeline is TellMeFirst, tool used to automatically extract the topics
of interest from the publications abstracts. By automatically extracting
the topics, TMF allows to add them as entities in the Polito Knowledge
Graph, so that each publication is directly linked to its main topics, and
each topic is linked to all the publications of which it is a subject (reverse
relation).

Other tools that are able to extract the subjects of a publication exists,
an example is the CSO Classifier [16]. This tool is able to automatically
classify a research paper according to the Computer Science Ontology5

(CSO), an automatically generated ontology of research topics in computer
science. The fact that the CSO Classifier relies on a predefined ontology
has some disadvantages with respect to TellMeFirst, the biggest being the
fact that the Computer Science Ontology is restricted to the computer
science field only, while TMF, using DBpedia as its source of knowledge,
is able to extract topics (and so to classify a research paper) regarding
every field of research. However, the approach of CSO Classifier has also
its advantages: being the ontology more restricted, the classification could
be more accurate, and the structure of the ontology itself may be tailorized
for such classification task.

Regarding the learning task on graph data, many architectures that
implements the Message Passing Framework [12] and that are derived from

4Details about the Polito Knowledge Graph dimensionality and scale will be presented
in the following chapter.

5https://cso.kmi.open.ac.uk/home
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the classical Convolutional Neural Network are available, some example
being [17] and [18]. However, the R-GCN architecture is employed for
the learning task of this work, being specifically designed to work with
relational graph data. Moreover, due to the different approach followed by
the authors of R-GCN, which relyies on the convolutional architecture only
as an encoder, different factorization methods could be tried in future work
while keeping the same encoder architecture based on the R-GCN. Some
possible factorization methods that could be implemented as decoders
are [19] and [20].
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Chapter 5

Development and
Implementation
In the first part of this chapter is described the development and the
implementation of the Polito Knowledge Graph, particularly focusing on
the components in charge of the graph creation and enhancement, whose
architecture has been introduced in Chapter 3.

Firstly, a detailed description of the input data used to create the graph
is introduced, together with a description of the ontology used to shape
the knowledge of the scholarly domain, and the graph schema obtained by
structuring the information made available by IRIS with such ontology.
Then, the implementation of the Builder Module is discussed. This mod-
ule is responsible for the actual creation of the Polito Knowledge Graph
starting from the IRIS publications metadata.

In the second part of the chapter the implementation of the link predic-
tor module, which is used to predict new facts inside the knowledge base,
is presented. Then is described how, starting from the Polito Knowledge
Graph, a usable dataset for the training of an encoder model has been ob-
tained, which architecture and hyperparameters are used, how the model
has been trained and how it has been validated during the training phase
in order to choose the best parameters. It will also be discussed how the
model has been tested, and which metrics have been used to evaluate the
accuracy of the predictions on the test set.

Finally, is presented how the trained model have been employed for the
prediction of new facts, and how the predictions obtained can be used to
build a recommendation system for the Polito Knowledge Graph.
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5.1 Building the Polito Knowledge Graph
As already mentioned when introducing the pipeline in Chapter 3, the
input data used to build the PKG is a dump of the IRIS database, which
contains the information about the scientific papers published by the re-
searchers of the Politecnico di Torino in a five-year period. The dump is a
JSON file composed of 23,268 records, and each record contains the meta-
data of a single scientific publication. Many of the available metadata are
generated by the IRIS platform, in order to manage its internal processes
of publications management. Such information have been discarder, since
they are not significant for the publication characterization.

The following metadata have been selected as the ones that truly char-
acterize a scientific paper:

1. The publication identifier.
2. The title.
3. The abstract.
4. The author name, surname and identifier.
5. The contributors and coauthors names, surnames, and identifiers (if

present).
6. The date of publication.
7. The journal title and ISSN (if present).
8. The keywords entered by the authors to tag the publication.

The publication identifier is a unique numeric code associated by IRIS
to each scientific paper. Also the authors, contributors and coauthors
should be uniquely identified by an alphanumeric identifier, however, only
the researchers of the Politecnico di Torino have such identifier. External
researchers that may be contributors or coauthors of the publication are
present with only their name and surname. The author is instead always
a Polito researcher.

If the scientific paper has been published in a journal, the journal ISSN
is used as identifier, if present. If the paper is available in a conference
proceeding, no information about the conference is present other than the
title, thus it is not possible to uniquely identify it, at least not in this
first version of the Graph Builder. The publication title, the abstract, the
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names, surnames and the keywords and the date of publication are simple
character strings.

As already discussed in previous Chapters, the keywords entered by
the authors cannot be treated as semantic concepts. To solve this issue
TellMeFirst (TMF), a tool previously developed at the Nexa Center for
Internet & Society, has been used. TMF allows the automatic extraction
of semantic keywords from an input text, relying on the DBpedia ontology
and knowledge graph as its source of knowledge. Using TMF it has been
possible to extract the relevant topics from the publications abstracts,
allowing to link the papers to the same unique and unambiguous semantic
entities.

In the following sections is described how the Graph Builder has been
developed, and how, leveraging TellMeFirst, the relevant topics of a publi-
cation have been extracted from the publications abstracts, in order to add
such topics as uniquely identified graph entities in the Polito Knowledge
Graph.

5.1.1 PKG Ontology and Schema
Starting from the metadata discussed above, the PKG ontology has been
defined as composed of the following five different classes:

1. The Publication.
2. The Author.
3. The Journal.
4. The AuthorKeyword.
5. The TMFResource.

In order to build a knowledge graph, the instances of such classes must
be linked together by means of semantic relations, called predicates. To
do so, some predicates already defined by the FOAF [7] and the DCMI
[8] ontologies have been used, together with some terms defined by the
RDFS [5] standard. The graph structure obtained is represented by the
schema in Figure 5.1, where are shown the classes, the attributes of such
classes and the predicates that links them together.

As can be saw from the schema shown in Figure 5.1, the Publication
class is linked to the Author class by means of two relations both defined
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Figure 5.1: Schema of the Polito Knowledge Graph. The ontologies used
to define the structure are shown in the prefixes table.

by the DCMI ontology: dc:creator1and dc:contributor1.
Only the first author (creator) is differentiated from the others (contrib-

utors) due to the inability to discriminate, based on the metadata made
available by IRIS, which are the co-authors and which are the collabora-
tors.

The AuthorKeyword class represents the keywords added by the au-
thors to tag the publication. Even if such keywords do not represent any
semantic information, they are still added to the knowledge base for the
sake of completeness with respect to the metadata available.

Instead, the TMFResource class is used to categorize the entities corre-
sponding to the DBpedia resources extracted by TMF starting from the
publications abstracts. Being uniquely identified by their DBpedia URI,
the publications that shares a topic will be linked, through the dc:subject

1The dc keyword is used as prefix for the Dublin Core Metadata Initiative (DCMI)
namespace: http://purl.org/dc/terms/
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relation, to the same instance of the TMFResource class that represents
such topic. An example is shown in Figure 5.2, where are depicted all the
publications that are linked to the entity instantiated for the Knowledge
Base topic.

Figure 5.2: Visualization of the results obtained from the PKG when run-
ning a SPARQL query that returns all the publications that have Knowl-
edge Base as topic. An excerpt of the RDF representation of this example
will be listed in the following section.

5.1.2 The Graph Builder
The Graph Builder is implemented as a Python command-line script that
uses the rdflib2 library to create and manage an in-memory RDF represen-
tation of the graph. Such representation can be then serialized and saved
as an XML file. The script takes as arguments the path to the JSON
dump of IRIS, together with some options that allows to trigger specific
functionalities of the script, such as:

2https://github.com/RDFLib/rdflib
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1. The update of an already existing RDF graph with new statements,
used for example to add the predicted triples.

2. The number of topics that must be extracted from each abstract by
TMF, the default value is seven.

3. The addition of the URLs of the topics pictures, which are scraped
from Wikimedia Commons3 through its publicly available SPARQL
endpoint and added to the corresponding TMFResource instances.

The Graph Builder firstly declares the namespaces and the ontology
used to define the RDF representation of the entities and the relation
inside the graph as written in the previous section, then parses the argu-
ments and options received and execute the corresponding activities.

If the creation of a new graph is requested, the script reads the JSON
dump in a Python list and instantiates a ThreadPoolExecutor, a Python
abstraction that allows to execute a function asynchronously by spawning
a predefined number of threads. Each thread asynchronously executes a
function that process a single record of the dump. The concurrent access
to the records list is not a problem, being the Python lists implemented
as thread safe containers. Each record is processed by:

1. Matching the record metadata with the ontology classes and creating
the corresponding entities.

2. Requesting to TMF, via its API, the extraction of the topics from the
publication abstract.

In the first step, when a field that matches a class is found, a corre-
sponding RDF triple that creates a new entity is added to the graph. If
the entity is already present, an RDF triple that connects the publication
to the already existing entity is added.

The topic extraction is performed by TMF by sending an HTTP POST
request containing the publication abstract and the requested number of
topics to be extracted. The response contains the list of the DBpedia
resources that TMF extracted as main topics for the publication. Such
topics are added to the graph as TMFResource entities, and are linked to
the publication by means of the dc:subject relation.

3https://commons.wikimedia.org/
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Even if the Python interpreter implementation poses some limitations
in the actual advantage of executing multithreaded code in CPU bound
scenarios, in this case the use of multiple threads improved the time re-
quired to build the graph, being the implementation I/O bound by the
communication with the REST API of TMF.

The two steps described above allows to generate the RDF description
of a publication starting from its metadata, which is then enriched by the
topics extracted by TMF.

Listing 5.1: Example RDF output of the Graph Builder.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF
3 xmlns:dc="http://purl.org/dc/terms/"
4 xmlns:foaf="http://xmlns.com/foaf/0.1/"
5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
7 xmlns:pkg="http://pkg.polito.it/"
8 xmlns:dbpr="http://dbpedia.org/resource/"
9 xmlns:xmls="http://www.w3.org/2001/XMLSchema#">
10
11 <rdf:Description rdf:about="pkg:publications/2679709">
12 <rdf:type rdf:resource="pkg:ontology/Publication"/>
13 <dc:identifier>2679709</ns1:identifier>
14 <rdfs:label>Title</rdfs:label>
15 <dc:abstract>Abstract of the publication</ns1:abstract>
16 <dc:subject rdf:resource="dbpr:Knowledge_Base"/>
17 <dc:creator rdf:resource="pkg:authors/rp00000"/>
18 <dc:dateSubmitted rdf:datatype="xmls:date">
19 2017-01-01
20 </dc:dateSubmitted>
21 </rdf:Description>
22 <rdf:Description rdf:about="dbpr:Knowledge_Base">
23 <rdf:type rdf:resource="pkg:ontology/TMFResource"/>
24 <rdfs:label>Knowledge Base</rdfs:label>
25 </rdf:Description>
26 <rdf:Description rdf:about="pkg:authors/rp00000">
27 <rdf:type rdf:resource="pkg:ontology/Author"/>
28 <foaf:name>Surname, Name</foaf:name>
29 <dc:identifier>rp00000</dc:identifier>
30 <rdfs:label>Surname, Name</rdfs:label>
31 </rdf:Description>
32 </rdf:RDF>
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Table 5.1: Number of entities and edges in the Polito Knowledge Graph.

Polito Knowledge Graph

Number of entities per-class
Publication Author Journal TMFResource AuthorKeyword

23,268 34,886 3,211 16,988 41,807

Number of edges per-relation
Creator Contributor Publisher Subject

(TMF)
Subject

(Keywords)
23,268 80,819 11,243 107,093 77,492

For instance, the Listing 5.1 contains an example RDF description gen-
erated by the Graph Builder. As can be saw, not only a new publication
entity is created, but also the author and the extracted topic are added
to the graph and linked to the publication.

By translating every record of the IRIS database dump into a set of
RDF statements, an RDF graph composed of entities that are uniquely
identified and linked together by meaningful relations is created. The
resulting graph is thus a comprehensive representation of the Politecnico di
Torino academic community. The Polito Knowledge Graph links together
researchers, their fields of interest, the scientific papers produced by them
and the journals in which such papers have been published.

In Table 5.1 are summarized some statistics about the size of the PKG,
showing the number of entities categorized under each class, and the num-
ber of edges for each relation type.

After all the publications have been processed by the Graph Builder,
the internal representation of rdflib can be serialized and exported as an
XML file that contains the definition of all the RDF triples that forms the
Polito Knowledge Graph. Such RDF representation can be then used as
input for the Enhancer Module or loaded into a triplestore (for example
Blazegraph4) in order to be queried by the viewer component.

4https://blazegraph.com/
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5.2 Enhancing the Polito Knowledge Graph
Once the first version of the Polito Knowledge Graph has been built, the
Enhancer Module can be used toe inference new facts. In this Chapter
is presented how, starting from the RDF graph, a usable dataset for the
learning task is created, how the employment of a R-GCN architecture
allowed to encode the entity characteristics into meaningful embeddings
and how the predicted triples have been obtained and evaluated.

5.2.1 The Dataset Builder
The Model Trainer can not learn the nodes embeddings by directly taking
as input the RDF representation of the graph. To solve this issue, another
component, the Dataset Builder, is in charge of creating a useful dataset
for the learning task.

As discussed in the previous Chapter, some of the metadata available
in the IRIS publications records are not uniquely identified, however, they
have been still added them to the graph for the sake of completeness. As
a consequence of this, the corresponding entities do not represent unham-
biguous semantic information, the effect being that such entities may only
add noise to the dataset, thus leading to incorrect predictions.

To avoid this issue, only the entities which are unique and unhambigu-
ous in the whole graph are included into the dataset:

1. The publications, identified by their IRIS ID.
2. The authors, identified by their Politecnico di Torino internal ID.
3. The journals, identified by their ISSN.
4. The topics extracted by TMF, identified by their DBpedia URI.

With respect to the full set of entities of the Polito Knowledge Graph,
all the external contributors and co-authors have been discarded, for which
the only information available are their names and surnames, and also all
the authors keywords. The dataset is thus built from a reduced version of
the initial graph.

In the following, is explained how a usable dataset for the learning task
have been built starting from such reduced version of the graph.
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Like the Graph Builder, also the Dataset Builder is implemented as a
Python command-line script that process the RDF graph triples with rd-
flib, which offers a practical interface to work with RDF data. The Dataset
Builder has to convert the RDF representation of the graph into an integer
representation, where each class, entity and relation has a corresponding
integer index assigned.

The following input data are needed by the Model Trainer to train the
encoder:

1. The number of nodes, equal to the number of RDF entities in the
graph.

2. The number of different relations that links together the graph entities.
3. The number of nodes labels, where each label is referred to a class of

the PKG ontology.
4. A list of edges, where each edge is a Python tuple composed of three

elements: the node index of the subject and the object, and the index
of the predicate. How such indexes are generated is explained in the
following.

5. A list of node-specific normalization constants.

To build such data structures starting from the RDF graph, the Dataset
Builder leverages some look-up hash tables (implemented as Python dic-
tionaries) that are created starting from the RDF statements and the
PKG ontology. Such tables are accessed by URI, and allow to retrieve the
corresponding entity or relation integer index.

1. The nodes table is populated by assigning to each entity a unique,
increasing integer index. Such index will identify the entity when
building the list of edges. Only the entities that are instances of the
classes that have been selected as part of the dataset are added to the
table.

2. The relations table is built starting from the PKG ontology, assigning
to each relation inside the graph a corresponding integer identifier.

When building such tables, the Dataset Builder also keeps track of the
total number of nodes and relations, and builds a labels list that stores in
the i-th element the class (label) of the i-th node.
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Once the look-up tables and the other data structures are built, the
Dataset Builder starts to process the RDF statements that composes the
graph by looping through them.

Figure 5.3: Process of translation from RDF statement composed of URIs
to edge tuple composed of integer indexes.

For each statement, The Dataset Builder firstly checks wether the sub-
ject and object of the statement are present in the nodes table, if so, it
builds the corresponding edge tuple by retrieving the indexes of the enti-
ties and relation through the look-up table. An example of this process is
shown in Figure 5.3.

The obtained list of edges is then splitted into three separate and dis-
joint sets that will be used to train, evaluate and test the encoder model,
making sure to have in the training set, for each node, at least one edge
for every kind of relation present in its directly connected edges. This
is mandatory to obtain meaningful embeddings, because as already ex-
plained in section 2.2.3, the R-GCN model learns the vector represen-
tations of the nodes by embeddings the nodes neighbors features. As a
consequence of it, is crucial to have a neighborhood structure in the train-
ing graph which is similar to the one in the full graph. Once such initial
sampling has been done, the remaining training edges are randomly taken.

The percentage of tuples used to create the three sets is an hyperpa-
rameter that can be choosen in advance. However, some tests showed that
picking less then 70% of nodes for training does not allowed to maintain
a representative neighborhood for each node, resulting in an inaccurate
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Table 5.2: Statistics of the dataset produced by the Dataset Builder.

Dataset

Number of nodes Number of
classes/labels

Number of
relations

Total number of
edges

47,996 4 4 170,593

Number of train, evaluation and test samples
Train edges Evaluation edges Test edges
153,531 8,528 8,534

link prediction model. To solve this issue, the edges list is splitted in ap-
proximately 90% of the tuples for train, 5% for the validation and 5% for
testing.

Once the dataset have been created and the list of edges splitted into the
three sets, it is serialized and saved, so that for future run of the Model
Trainer is not required to create the dataset from scratch. Moreover,
since a part of the edges are randomly picked, this allowed to evaluate the
different hyperparameters values upon the same set of triples.

Table 5.2 summarizes the characteristics of the dataset obtained by the
Dataset Builder. The size of the dataset, in particular the number of nodes
and edges, can be compared to the size of the initial RDF graph, whose
statistics are available in Table 5.1. As can be saw, more then half the
nodes, the ones referred to the author keywords and the external authors,
have been removed.

5.2.2 The Model Trainer
Modern machine learning algorithms are implemented as deep networks
composed by many layers and parameters. Building such architectures
from the ground-up would be almost unfeasible, especially when dealing
with challenging kinds of data structures, such as multi-relational graphs.
Many frameworks and libraries that allow the implementation of complex
architectures without the need of coding them from scratch. Moreover,
one of the key aspects when coding machine learning models is to build
highly efficient implementations, especially when working with giant data
structures, as in the case of knowledge graphs, thus leveraging highly
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optimized and tested software is crucial.
One of the most common used frameworks that allows to build and

train ML models is PyTorch [21]. The goal of PyTorch is to provide some
simple yet expressively powerful components that could be used to imple-
ment any sort of neural network, simplifing some of the most challenging
aspects, like the implementation of the backpropagation phase. The two
major abstractions introduced in the framework are the tensor and the
autograd. Tensors are the basic data structure in PyTorch, they support
both CPU and GPU execution and all the major operations for multidi-
mensional matrices. The autograd package is the key novelty of PyTorch,
allowing to perform automatic differentiation of all the operations per-
formed on tensors by leveraging an internal representation in the form of
a computational graph. However, even if PyTorch provides all the build-
ing blocks for developing complex neural networks, it is not suitable when
dealing with graph data due to the lack of support for the message pass-
ing paradigm (which has been introduced in Chapter 2.2) by the tensor
interface.

Deep Graph Library [22] (DGL) provides a more comprehensive solu-
tion specifically designed to work with graph data. DGL is built on top
of existing ML frameworks (e.g. PyTorch, MXNet), and offers a simple
interface that facilitate the implementation of the message passing frame-
work. Supporting such framework, with DGL is possible to implement
every deep learning algorithm whose forward pass can be divided into a
per-edge message computation and a per-node message aggregation. Some
of the architectures that can be implemented are depicted in [12], with R-
GCN being one of them.

With DGL, a graph can be created by instantiating an object of the
DGLGraph class, which offers a dictionary-like interface for adding to the
graph both nodes and edges, together with their features or any other
relevant data for the training, for instance the normalization constants.
The message passing paradigm is implemented by means of the send and
recv functions, which allows to define the two basic operations for the
per-edge messages construction and the per-node aggregation.

As already mentioned before, the R-GCN architecture has been chosen
to build an encoder model which is capable to produce the nodes embed-
dings starting from the graph structure. Later in this Chapter is discussed
how the encoder model has been trained, how it has been implemented
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with DGL, which learning problem the model had to solve and how it has
been evaluated, so to chose the best parameters for the learning task.

To train and test the model a workstation whose hardware and software
specifications are summarized in Table 5.3. The same worskation have
been used to execute both the Model Trainer and the Link Evaluator
components. As discussed later, the training and evaluation speed have
been bottlenecked by the available single core performance of the CPU
and by the amount of GPU memory.

Table 5.3: Hardware and software specifications of the workstation used
to run the Model Trainer and the Link Evaluator.

Workstation hardware and software specifications

CPU x86-based with 4 cores and 8 threads clocked at 3.9GHz.
System memory 32GB of DDR3 1600MHz RAM.
GPU 8GB of VRAM and 2304 cores.
Boot drive 512GB SATA-III solid state drive.
Swap memory A dedicated 64GB partition on the boot drive.
OS Ubuntu Server 18.04 LTS with Linux Kernel 4.15.
SW packages CUDA toolkit 10.1, Python 3.7.4, PyTorch 1.2 and DGL 0.3.

As saw in the previous section, the input dataset for the Model Trainer
is composed by a list of edges, where 90% of them are used for the training,
and the remaining are splitted in half and used for the validation and
testing of the model. The training edges are used to build a training
graph, which is the one that will be used to learn the node embeddings.
Regarding the node features, a featureless approach has been followed,
leveraging only the graph structure to learn the embeddings. Following
this approach, the input features used are one-hot encoded vectors, thus
obtaining an N × N feature matrix, where N is the number of nodes in
the training graph.

Regarding the architecture, an R-GCN composed of two hidden layers
has been employed, with the first layer convolutional filters being 500×N ,
and the second layer filters being 500 × 500. With such architecture the
embeddings obtained as output of the forward pass are shaped as 1× 500
row vectors. For the input layer, the one-hot encoded feature vectors
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simply act as a mask for the selection of the corresponding column in the
per-relation convolutional filters. Regarding the per-node normalization
constants, they are initialized to the inverse of the nodes indegree.

Because of the size of the graph, and of the system memory available,
the training is performed in batches. To do so, at each training epoch
the Model Trainer randomly samples a subset of the training edges. As a
consequence of this, more then one epoch is required to train over all the
nodes in the training graph.

After the edges have been sampled, a predefined number of corrupted
edges are generated starting from the the sampled ones. This is done be-
cause the learning problem that has to be solved is a classification problem:
the model has to be able to give an high score to the true edges, and a low
score to the corrupted ones. This will allow to obtain a model that is able
to recognize true facts, and thus can be used to predict the probability
with which an unseen triple may belong to the Polito Knowledge Graph.

The negative samples are obtained by corrupting the subject and the
object of the sampled training triples with a random integer. Such random
integer must never assume a value equal to the index of a node. This is
mandatory to avoid that within the negative samples there are triples that
could be correct with respect to the ontology, and thus could be predicted
by the Link Evaluator as new facts. Moreover, if the above condition is
not met, some of the corrupted negative samples could be refering to facts
that are actually true, thus interfering with the learning process.

The positive samples (the true facts) are associated to the label 1,
while the negative samples are associated to the label 0. A 1-to-10 ratio
has been chosen for the negative samples, having ten corrupted edges
generated starting from each true fact, as it is done for most models found
in literature that leverages negative sampling.

The embeddings of the relations are randomly initialized and not learnt
by the model, as already mentioned when introducing the DistMult fac-
torization method in section 2.2.3.

At each epoch the model is trained by performing the following steps:

1. The forward pass of the R-GCN is executed, taking as input the
DGLGraph generated starting from the positive samples (the sam-
pled training edges), which contains both the nodes features and the
per-edge normalization constants. The neural network gives as output
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the embeddings of the graph nodes.
2. Such embeddings are used to calculate the DistMult scores of both the

positive and the negative samples. The sigmoid5 function is used to
cap the scores between zero and one. Such capped scores represents
the probabilities with which the model considers the corresponding
edges as true facts.

3. The batch loss is calculated and the filters parameters are updated
through backpropagation using the Adam [23] optimizer.

The loss function used is the binary cross entropy loss with mean re-
duction, which is commonly used for classification tasks with just two
classes:

L (x, y, f(x)) = − 1
E

EØ
i=1

(yi · log(f(xi)) + (1− yi) · log(1− f(xi))) (5.1)

E is the number of edges for the current batch, taking into account
both positives and negatives samples, and yi represents their associated
label.

The function f(xi) computes the predicted probability for the i-th sam-
ple to be a true fact by applying the sigmoid function to its score, which
is calculated with the DistMult factorization method:

f(xi) = f(si, ri, oi) = σ
1
eTsRreo

2
(5.2)

Where es and eo are the embeddings for the source node (subject) and
destination node (object), Rr is obtained by transforming the embedding
of the relation er into a diagonal matrix and σ is the sigmoid function.
The resulting value can be interpreted as the confidence of the model in
the fact that the corresponding edge represents a true fact.

The loss function used sets as training goal the correct classification of
negative and positive samples, so to obtain a score as low as possible for
the negative ones, while instead identify the true triples sampled from the
PKG as true facts, thus giving them an high score.

5 σ(x) = 1
1+exp−x
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As a consequence of this, the obtained model should be able to correctly
predict if an unseen triple can be considered as a good candidate for the
inclusion in the Polito Knowledge Graph.

To avoid overfitting, the following L2 regularization is added to the
training loss:

regularization = λ ·
 1
N

NØ
i=0

e2
i + 1

R

RØ
r=0

w2
r

 (5.3)

Where λ is an hyperparameter used to scale the regularization value, N
is the number of nodes, R is the number of relations, ei is the embedding of
the i-th node and wr is the already mentioned randomly initialized vector
that represents the embedding of the relation r.

In addition to the regularization, dropout with a probability of 20%
is used to randomly update only some of the network weights at each
training epoch.

The training can be performed both on CPU, which in respect to the
GPU has access to four times the memory, but has less execution units,
or on the GPU, which is memory-limited but can leverage its highly par-
allelized architecture. The usage of CPU or GPU and the number of CPU
threads to be used are hyperparameters that can be chosen in advance,
before starting the training.

The training has been performed on GPU with a sampling size of 20,000
edges, that adding the negative samples produces a per-epoch training set
composed of a total of 220,000 edges. Perform the training over more
edges was not feasible with the only 8GB of VRAM available. While
having to train over more epochs due to the video memory constraints,
in comparison to the execution on the CPU the training time has been
reduced by two order of magnitude: from approximately 30 seconds per
epoch for the forward plus backward pass, to less than 0.3.

The biggest bottleneck while training remains the sampling phase, which
is implemented as single threaded code using NumPy [24], and requires
approximately five seconds to be performed with the hardware at our dis-
posal, which has fairly limited single-threaded performances. The imple-
mentation of more efficient sampling methods is leaved for future releases.

In order to identify the best parameters, the model has been evalu-
ated on a separate validation set during training. The validation is not
performed at every epoch due to computation time constraints, and the
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frequency with which it is executed is an hyperparameter of the model.
The evaluation method and the metrics used to test the accuracy of the
trained model will be presented in the next chapter. If during the vali-
dation the model trained at the current epoch is identified as the best so
far, its parameters are serialized and locally stored. Once the training is
finished, the previously exported best epoch model is loaded from memory
and its accuracy is evaluated on the test set.

After the training, validation and test phases are completed, the ob-
tained encoder model should be able to give as output meaningful embed-
dings of the PKG nodes, which can be used to evaluate new facts using a
factorization method like DistMult as decoder.

5.2.3 The Link Evaluator
Once the model has been trained, and the testing phase showed that it
has embedded the characteristics needed to build semantically meaningful
nodes embeddings, the Link Evaluator can be used to leverage the trained
model for the prediction of new facts.

As already saw, a fact in the knowledge base is composed of a source
and a destination node, the subject and the object, and a relation, called
predicate, that connects the two nodes establishing a connection between
them.

The goal of the Link Evaluator is the prediction of facts that are not
already present in the knowledge base, and that are coherent with the
defined ontology, both in domain (for the subject) and range (for the
object).

The Link Evaluator loads in memory the model produced by the Model
Trainer and performs the following tasks:
1. It builds the graph of existing facts by merging together the train,

test, and evaluation edges.
2. Then, it gets the embeddings of the nodes of such graph by feeding it

to the trained encoder.
3. It creates the set of every possible fact and it scores the triples in such

set, only taking the ones with the highest score.
4. Finally, the obtained predicted triples are saved in a JSON file and

imported by the Graph Builder, that will add them to the Polito
Knowledge Graph as new RDF statements.
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The node embeddings are obtained by feeding the graph of existing facts
to the R-GCN encoder in evaluation mode, so to disable the gradients
tracking in the PyTorch computational graph, which greatly improves the
performances.

To create the set of new facts, the Link Evaluator firstly generates
the set of all the graph nodes, and then creates the set of possible facts
by generating, for every node, all the possible links to every other node
in the graph. This is done by taking for each source node (subject) all
the possible permutations of relations (predicates) and destination nodes
(objects).

However, the majority of such automatically generated triples will be
semantically incorrect. For example, among the permutations there will
be triples that connect together two publications using as predicate the
relation dc:subject, which is clearly meaningless, because it is saying that
the major topic of a publication is another publication. For this reason,
the triples that are not correct with respect to the PKG ontology are
immediately discarded.

Once the semantically incorrect facts are removed, the remaining edges
could be scored by applying the DistMult factorization. Then, the scored
triples are grouped by subject and relation and sorted by their score in
descending order. The number of scored triple to save for each couple
subject-relation is an hyperparameter decided in advance, with 30 being
the default value. The resulting new facts are then exported as a JSON file
that can be used by the graph builder to create the corresponding RDF
triples. Such triples can then be added the Polito Knowledge Graph,
completing its knowledge base with new facts.

Moreover, the predicted triples can be used to obtain insights and rec-
ommendations that can be shown by the Viewer module (which has been
introduced in Chapter 3) in the search results. For instance, among all
the predictions there will be triples that links researchers to publications
that have been not authored by them: such predicted authors can be
interpreted as researchers that shares the same research interests of the
publication authors. Leveraging such predictions, the recommendation
system can suggest unexplored research topics to the researchers, scien-
tific journals that have published papers related to their field of research,
or the profiles of other researchers who share the same research interest
but with whome they have never worked before.
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Chapter 6

Evaluation
In this chapter are described the methods adopted to evalute the trained
model. The evaluation phase is performed both during training and test-
ing. For the training task, the evaluation of the model is done over the
validation set, which is used to check wether the latest updated param-
eters led to a more accurate model. After the training is finished, the
evaluation is performed over a test set whose data has never been seen by
the model during training, so to test wether it is able to correctly score
unseen true facts.

The model has been evaluated using the entity ranking approach, which
is commonly used for the evaluation of knowledge base completion models.
Such approach evaluates the ability of a model to identify the triples that
belongs to the knowledge base with respect to the set of all possible facts.

To do so, it is firstly required to generate two sets of perturbed facts
for each triple inside the knowledge base. This is actually performed by
perturbing the source and destination node of every edge in the evaluation
set with all the possible entities that compose the graph.

Doing so, starting from the i-th evaluation edge (si, pi, oi) two sets of
perturbed edges (a, pi, oi) and (si, pi, b) are obtained, with a, b ∈ [0, N ],
where N is the number of nodes in the graph.

Then, for every triple in the evaluation set, the triple itself and its cor-
responding perturbed ones are scored using the same factorization method
used for the training, in this case DistMult. The triples are then sorted
in descending score, and the position of the evaluation triples inside such
sorted list represent their rank.

Ideally, the best possible model should be able to always rank all the
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triples in the evaluation set on first position, thus giving them the highest
rank, which is equal to 1. Such model would be always able to identify
the correct facts, and therefore one could be confident in the truthfulness
of its predictions. However, obtaining such model is unfeasible.

To obtain a measure of the accuracy with which the trained model is
able to identify the correct triples, the following metrics have been used:

1. The Reciprocal Rank (RR), which can be computed for a single eva-
luted edge (si, pi, oi) as 1/rank(si,pi,oi), where the rank is obtained as
explained above.

2. The Mean Reciprocal Rank (MRR), which is the average of the RR of
all the evaluation edges. The value obtained is representative of the
accuracy of the entire model.

3. The Hits-at-N (HITS@N), which is the number of triples for whom
the computed rank is between 0 and N .

So for example, a triple ranked in the tenth position of the sorted list
of scores will have a RR of 0.1. If the triples in the evaluation set are 100,
with half of them ranked in first position and the other half in the tenth,
the obtained MRR will be 1

100
q100
i=1

1
rank(si,ri,oi)

= 0.55, while the HITS@1
will be equal to 50, and the HITS@10 wil be equal to 100.

The evaluation has been performed on the same workstation used for
the training, whose specifications can be found in Table 5.3. However, in
contrast to the training, which is peformed on GPU to leverage its paral-
lelized architecture, the evaluation had to be made on CPU due to memory
constraints. This because, as a consequence of the dimensionality of the
graph, and therefore that of the set of perturbed edges, the matrices used
to perform the evaluation cannot be stored in the GPU memory. More-
over, also the system memory available was not sufficient to perform such
task in parallel for all the edges, thus requiring the evaluation to be per-
fomed in batches. With the system memory available in the workstation,
it has been possible to perfom the evaluation in batches of 80 triples.

Because of the above limitations, the evaluation proved to be the slowest
task of the whole pipeline, taking approximately twenty minutes per run.
This is the main reason why it has been not possible to perform the
evaluation of the model at every training epoch. However, evaluating the
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Table 6.1: Evaluation of different combinations of learning rate and regu-
larization parameters using as benchmark the MRR value. The first table
shows the MRR of the best model found during the training phase. The
second table shows the MRR obtained by the best model over the test set.

(a) MRR of the best model found during training.

Learning Rate

MRR 0.05 0.01 0.005 0.001 0.0005

R
eg
ul
ar
iz
at
io
n

1.0 0.0623 0.0504 0.0823 0.0793

0.5 0.0677 0.0718 0.0924 0.0865

0.1 0.0004 0.0703 0.852 0.0764 0.0706

0.05 0.0707 0.0763 0.0673

0.01 0.062 0.0725

(b) MRR obtained when evaluating the best model over the test set.

Learning Rate

MRR 0.05 0.01 0.005 0.001 0.0005

R
eg
ul
ar
iz
at
io
n

1.0 0.0611 0.0497 0.081 0.079

0.5 0.0662 0.0723 0.0882 0.0818

0.1 0.0002 0.0693 0.0827 0.0726 0.0666

0.05 0.0687 0.0726 0.0654

0.01 0.0589 0.07

trained model every 100 epochs still allowed to obtain useful metrics for
the choice of the best hyperparameters.

In Table 6.1 are shown the results of the evaluation of the model over
some possible values of the hyperparameters, in particular, the MRR for
possible combinations of the learning rate and of the regularization pa-
rameter has been calculated. As can be saw from the table, the best
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values found are 0.001 for the learning rate and 0.5 for the regularization
parameter.

The high value of the regularization parameter, if compared to the one
used by the R-GCN authors (which is 0.01), is particularly interesting: the
motivation of this result is that the Polito Knowledge Graph, and thus
the training graph used, is composed of a very low number of different
relations, which is paricularly true if compared to other graphs, such as
the one used for benchmarking. Given how the R-GCN encoder works, less
relations means less convolutional filters, so less variety in the features that
are used to generate the embeddings. In this regard, the regularization
parameter helps the model to differentiate the embeddings obtained, even
if there are few relations, and allows to not overfit on common features.

Regarding the MRR value obtained for the best model, it can be inter-
preted as the fact that, in average, the evaluated triples are ranked in the
eleventh position. The authors of R-GCN obtained an MRR value of 0.158
over the FB15k-237 dataset (composed of 14,541 entities and 237 differ-
ent relations), which is commonly used as benchmark for the evaluation
of link prediction model. The MRR obtained by the authors correspond
to a ranking that, in average, place the evaluation triples in the sixth or
seventh position. The result obtained is thus not so distant from the one
obtained over the benchmarking dataset.

Moreover, considering the number of nodes in the PKG dataset, the
result obtained is particularly noteworthy, given that the model is able
to rank (in average) the true triple in the eleventh position when ranked
with 47,995 corrupted triples, while in FB15k-237 for each true fact only
14,951 corrupted ones are generated.

The Figure 6.1 shows how the testing triples are distributed over the
possible ranking values. As can be saw, the model is able to correctly
assign an high rank to the majority of the true facts.
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Figure 6.1: Number of triples for each ranking position obtained by evalu-
ating the best model found over the test set. The ranking positions range
from 1 to 47,995.

When looking at the statistics of the Polito Knowledge Graph, it is
possible to see how a large part of the entities are related to the research
topics, represented by the TMFResource instances, and connected to the
publications by means of the dc:subject relation. In particular, as shown
in Table 5.1, almost a third of the PKG edges link a publication to a
subject extracted by TellMeFirst.

To evaluated the impact of having a different number of TMFResource
entities in the knowledge graph three new RDF graphs have been built,
each of them with a different numbers of topics extracted by TellMeFrist
for each publication. In particular, have been extracted three, seven and
fourteen topics from each abstract. Then, the corresponding models have
been trained by giving as input the datasets created starting from such
new graphs. For the learning rate and the regularization hyperparameters,
the best values found during the previous evaluation have been used.

As can be seen from the results shown in Table 6.2, the different number
of topics present in the three graphs greatly impact in the accuracy of the
resulting link prediction models.
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Table 6.2: Impact of the number of topics present in the RDF graph on
the accuracy of the trained model.

Number of topics extracted per-abstract 3 7 14
Number of TMFResource entities in the graph 9.591 16.988 26.541
Number of dc:subject edges 45.423 107.093 212.226
MRR over test data 0.103 0.0882 0.0671
HITS@15 31.5% 27.9% 20.3%

Lowering the number of topics extracted to just three for each pub-
lication resulted in an improvement in the evaluation metrics, however,
this did not lead to a better link prediction model. In fact, the better
ranking is a consequence of the less complex graph structure: being the
graph composed of almost half of the topic entities, is more simple for the
model to rank in a higher position the evaluated triples. Moreover, there
are more publications that shares the same topics, thus leading to a model
that is very capable of predicting the triples corresponding to such topics
as true facts during the evaluation over the test set.

Instead, increasing the number of topics inside the graph led to a degra-
dation of the evaluation metrics. This can be easily be interpreted as a
consequence of the more complex graph structure obtained. Moreover, the
increase in the number of dc:subject edges may have led to a predominance
of the topics when encoding the neighborhood representations through
the R-GCN, thus bringing a bias in the nodes embeddings obtained. This
could then impact on the results of the decoder, thus bringing to more
inaccurate predictions.

As already mentioned in the previous Chapter, the predicted triples are
saved in the form of a JSON file that is then used to load the new facts
in the knowledge base. The predicted triples are the ones that received
the highest score by the DistMult decoder, thus being recognized as facts
that, with an high likelihood, should belong to the knowledge base.

A manual and sample-based validation confirmed that the model ob-
tained has been able to truly characterize the graph entities, thus predict-
ing meaningful triples. For example, the model predicted for a publication
regarding real-time tools for emergency management a new dc:subject edge
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that links such publication to a DBpedia resource1 which collects the list
of software reliability models, which looks like an appropriate suggestion.
The model also predicted a new edge that connects the above publication
to a researcher whose main field of research is in integrated circuits for
aircraft applications, which is again a good prediction being the two top-
ics fairly related. The above examples are just two among all the new,
meaningful facts that the model has been able to predict. However, it is
also true that there are predictions which are not correct, in particular the
ones regarding researchers who have a very low amount of publications,
for example students in their first years of PhD, or the ones of publica-
tions that have a very misunderstandable abstracts, thus leading to an
incorrect topic extraction by TMF. Some possible solutions to such issues
are proposed in the next Chapter, where are presented the possible future
developments in this regard.

1Entity URI: http://dbpedia.org/resource/List_of_software_reliability_models
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Chapter 7

Conclusions and Future
Work
In this work has been presented a new academic Knowledge Graph built
on top of the metadata of the Politecnico di Torino publications. Such
knowledge graph links together researchers, publications, research topics
and scientific journals through the use of semantic relations.

The software architecture developed for the creation, enhancement and
visualization of such graph has been detailed, particurlarly focusing on
the enhancing phase. In this regard, an approach based on Graph Convo-
lutional Networks has been used, so to obtain an encoder model capable
of embedding the nodes characteristics into vector representations by only
taking the graph structure as input. Such representations allowed to pre-
dict new facts, so to complete the information available in the knowledge
base. Such predicted facts have been used to empower a recommenda-
tion system whose suggestions can be used by the researchers to explore
new fields of study, to discover other researchers who share the same re-
search interests or for retrieving other useful insights about their scientific
community.

The scholarly data of any other academic institution could be used to
build a similar graph. Moreover, metadata coming from different uni-
versities can be grouped together to obtain a bigger and more complete
knowledge graph, representative of an even broader academic community.
With this regard, I look forward to obtain the metadata of other univer-
sities who employ IRIS as their publications repository.

Regarding the technological aspects, I would like in future releases to
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implement new factorization methods, testing wether or not the use of
different scoring functions can lead to even more accurate link prediction
models. Moreover, one of the main limitations of the current implemen-
tation of the Enhancer Module is that it is not able to predict new facts
regarding entities that the model has never seen during training. I would
like to investigate in this regard for new solutions based on the exten-
sion of the current encoder architecture. I would also like to test the use
of input features generated using a bag-of-words approach instead of the
simple one-hot encoded vectors used for the current model.

Another aspect that could be improved is the structure of the graph
itself. In the current implementation there are no dependencies or relations
between the research topics entities, however, this could be implemented in
future releases by linking together the topics based on how they are related
to each other. For example, Deep Learning is a sub topic of Machine
Learning, which in turn is a sub topic of Artificial Intelligence, but at
the time of writing this kind of information is not present in the Polito
Knowledge Graph. Such improvement could be achieved by leveraging the
structured information made available by the DBpedia project. Moreover,
the Dataset Builder could leverage such new information, keeping only
the specialized topics and discarding the most general ones. This could
help to obtain more characterized embeddings, as already discussed in the
previous chapter.

Moreover, an important aspect would be to collect some feedbacks from
researchers, who are the main users for whom this tool has been designed.
Such feedbacks could be used to introduce a bias during the training phase,
so to penalize possible incorrect facts that have been wrongly predicted
by the Link Evaluator.

This work has shown how is it possible to build new tools for the sharing
and dissemination of the knowledge produced by an academic institution
leveraging technologies of the Semantic Web and state-of-the-art machine
learning algorithms. The recommendation system is a first step in the
direction of offering new tools to the researchers for exploring both new
research fields and the scientific community that study such fields. Hope-
fully, this could lead to the contamination between researchers belonging
to different research areas but that are interested in the same research
topics, thus increasing the multidisciplinarity within the Politecnico di
Torino academic community.
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Moreover, the Polito Knowledge Graph and its recommendation system
can be also used by administration offices of the Polito di Torino and from
external parties – such as private organizations or government agencies –
who may be interested in finding expert profiles in a given research area,
breaking the current silos of keyword-based searches or discipline-specific
knowledge bases.
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