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Chapter 1

Introduction

Nowadays, Interactive Visualization has acquired growing importance, particularly
in web-oriented environments. Modern web application struggles to provide as
intuitive as possible interfaces, to guaranty fast and accessible data visualization.

In this context, a web platform for cancer genomic data management as the
LAS (Laboratory Assistant Suite), which supports the research activities at Cancer
Institute IRCCS Candiolo, has to deal with user interaction and Interactive Data
Visualization.

Currently, this platform provides a query module allowing users to query dif-
ferent distributed databases from a single easy-to-use interface. The module, in
fact, gives the possibility to build a graphical representation of the query, also to
users without any knowledge of underlying databases’ structures and technology
(such as query language).

The current query builder allows users to manually interconnect nodes to create
a query; this approach requires multiple consistency checks on the defined graph
and may lead to a confuse, untidy representation. For this reasons, a new approach
is needed, where the graph construction is guided by the application, allowing
only correct predefined paths and defining a ordered tree giving a comprehensible,
hierarchical visualization of the query.

The deprecation of some libraries used, in addition to the needs of a new visual
and behavioural approach, has brought the necessity of restructuring the LAS
query module.

Thus, the aim of this thesis is to renovate the query module interface, in order
to provide a responsive tool, compliant to modern standards, that reduces the
effort required to the users by implementing a supervised procedure for the query
graph creation. To accomplish this goal, it has been developed a JavaScript library
for drawing interactive tidy trees, that suites the LAS query module needs.
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1 – Introduction

In the next Chapter (2) it will be briefly described the structure of the Labo-
ratory Assistant Suite, focusing in particular on the LAS query module. In Chap-
ter 3, it can be found the analysis of the current state of art in tidy-tree visual-
ization algorithm in order to choose the one most suited by our library needs. In
Chapter 4, instead, it will be presented D3.js, the JavaScript Framework on top
of which we developed our library. Chapter 5 will be devoted to the high level
description of the structure and the main methods concerning the implemented
library. Finally, in Chapter 6 we will present some use-case scenarios to illustrates
how the query module interface, interacting with the library, provides the desired
results. The last Chapter (7) conveys some final considerations about the library
and its possible future development.
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Chapter 2

Laboratory Assistant Suite

The introduction of high-throughput technologies and automation techniques in
laboratory environments has raised multiple issues related to the amount and het-
erogeneity of the data produced. This made necessary the adoption of computer-
based systems able to assist researchers in their daily laboratory practice.

Laboratory Information Management Systems (LIMS) are commonly used for
this purpose, allowing to ensure quality control among the laboratory activities,
to efficiently handle large amount of data and to keep track of information related
to biological experiments.

Although there are many commercial solutions providing a large set of features,
often they tend not to fit highly specialized laboratory activities, such as the moni-
toring of xenopatients life cycle (i.e. biological models based on the transplantation
of human tumors in mice), fundamental in cancer research.

For this reason, the Candiolo Cancer Institute in 2011 has invested in a LIMS
project named LAS [2; 7; 8; 9] (Laboratory Assistant Suite) based on web-oriented
software technologies.

The LAS attempts at covering a wide range of different laboratory procedures
and, thanks to its modular and general-purpose structure, it can be extended to
support new functionalities with a limited effort.

Among all supported features, it provides some graphical tools to facilitate
decision-making tasks and all kind of tasks involving the analyses on integrated
data.

In particular, in order to provide a way to retrieve information from multiple
databases exploiting different technologies, it was developed the Multi-Dimensional
Data Manager (MDDM) [9]. This module allows researchers to execute complex
queries without any knowledge of the technologies involved in the databases in-
terrogation. By means of intuitive interfaces and the MDDM, the LAS platform
has improved data insertion and retrieval tasks, giving a wider perspective on the
data interconnections.
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2 – Laboratory Assistant Suite

2.1 LAS Query Module
Two aspects are fundamental in order to support researchers to discover new knowl-
edge related to tumors: first, it is necessary to track experimental procedures and
record data related to biological entities; then, it is needed an easy and structured
way for retrieving the information tracked by the platform.

In order to lighten the development and maintenance processes, each LAS
module operates on a separate database instance, partially replicating some infor-
mation.

Thus, for extracting useful knowledge, the Multi-Dimensional Data Manger
module has to address the issues of retrieving and integrating heterogeneous in-
formation, merging data from the different LAS databases. Furthermore, it has to
provide methods for giving access to this actionable knowledge.

Im
ag

e
so

ur
ce

:[
9]

Figure 2.1. MDMM architecture.

Specifically, it provides a set of web APIs exploitable by other LAS modules, to
retrieve data of interest. In addition, users are provided with a graphical interface
for building customized queries, which gives them, in an intuitive fashion, a unified
view on the entire collection of databases.

The main purposed addressed by our thesis, is the restructuring of this graph-
ical tool, by means of the design and development of a interactive graph visualiza-
tion library to enhance and update the current interface.

In Figure 2.1, it is possible to see how the MDDM has a distributed architec-
ture. It is composed by a Data Integrator module (DI), providing a logical view
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2.1 – LAS Query Module

on databases belonging to other modules, and a Data Provider module (DP), pro-
viding an interface for collecting the schema information (e.g. database entities,
entity attributes and relationships among entities) from each LAS database, for
running SQL queries on the LAS modules’ local databases and returning data to
the DI module.

2.1.1 Current Interface
The MDDM query generator interface is the one of interest for the purpose of this
thesis.

The tool exploits an intuitive graphical representation based on cascaded nodes,
each representing one entity or an operator. In addition, it defines the kind of
object returned as the nodes’s output. Entities are defined as classes of objects or
concepts that are relevant in the given context, similarly to entities in the Entity-
Relationship database model. In this way, even an inexperienced user should be
able to easily perfom complex queries.

Im
ag

e
so

ur
ce

:[
9]

Figure 2.2. Query Generator Interface.

On the left section (identified by A, in Figure 2.2) of the editor, they can be
found all available blocks, categorized accordingly to the Data Provider Module
to which they belong (e.g. the mouse icon represents xenopatient data).

The blocks can be dragged and dropped into the workflow editor (identified by
B, in Figure 2.2). In the example shown, that is taken from article [9], the blocks
selected are PDX models (patient-derived xenograft, also known as xenopatients)
and Explants, belonging to the Xenopatient DP, Aliquots from the Biobank DP
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2 – Laboratory Assistant Suite

and Containers from the Storage DP. The goal of the query in the Figure is to
retrieve all the containers (e.g. tubes) carrying aliquots explanted from PDX
models.

For each block it is possible to specify some filtering conditions clicking the
wrench-shaped icon. Instead, on the right section (identified by C, in figure 2.2)
of the editor, they can be taken set operators (Union, Intersection and Difference)
and special operators (Group-count, Extend and Template blocks).

To build a query workflow, blocks must be connected with arcs, that can be
drawn between a block’s output terminal and another block’s input terminal, again
by means of mouse press and drag.

The MDDM administrators are in charge of instructing the system on the
possible ways to match entities. In order to allow the submission only of consistent
and meaningful query, they defines query paths. This abstraction generalize the
relational notion of a foreign key, stating how two different Entities A and B should
be related to each other. In the graphical representation the interface has to check
if a query path exists, before allowing an user to connect two blocks.

More specifically, query paths are defined as the set of DP tables that must be
joined, through their foreign keys, in order to link A’s base table to B’s base table.
Taken an instance of A, the maximum number of instances of B that correspond
to it can be equal to one (if the foreign key chain includes only many-to-one or
one-to-one relationships) or larger than one (if it includes at least one one-to-many
relationship).

At this point, the user may give a title and a description to the query defined
(section D, in Figure 2.2) and submit it; or, it may save it as a template, in order
to run it later.

In addition, there is the option of saving the query as a Translator, which is
a special type of template that may be optionally run for every row appearing in
the result set of a query, to enrich it with additional, related information.

Eventually, the query generator interface allows an user to build any kind of
query, not having any knowledge of the databases’ structures, of the query language
and on the low-level procedures that connects data among different databases.

2.1.2 Query Execution
An example of query completely defined is provided in figure 2.2, in section B; it is
possible to notice how the query flow is visualized as a sequence of interconnected
blocks, starting from a start block and ending to an end block.

On the other end, internally the query is represented as a completely different
graph: a tree with the end terminal as root and the start terminals of each initial
block as leaves. Hence, queries are executed performing a postorder traversal of
the internal query tree.

6



2.1 – LAS Query Module

This tree is then translated into a relational query structure. For each query
block visited during the traversal, an access to the DI database is done to identify
the underlying DP tables. At this point, the required DP tables are instantiated,
the appropriate join conditions are set, the query block parameters are applied as
filtering conditions and, eventually, aggregation operations (if present) are added.

At the same time, the query path connecting the current block to the next one
is loaded, while any other required DP tables are instantiated. In the end, the
query is sent to the DP by means of the APIs.

At this point, the DP checks if both the current block and its successor belongs
to the same DP. If this is the case, the DP APIs, instead of issuing a real query to
the underlying DBMS, will just create a logical view that wraps it. Differently, if
the successor block resides in a different DP, it will issue a query, thus resulting rows
are returned to the MDDM. When, during the traversal, is taken into consideration
the next block, the results are sent to the DP together with the new query and
inserted in an indexed temporary table that is joined with the rest of the query
schema, in order to improve the performance of cross-DP queries.

Template queries, instead, are managed by storing the tree structure of the
corresponding query in the MDDM database. Hence, whenever a Template is
executed the tree can be reloaded and its parameters populated. Then, the tree is
traversed as previously described.

2.1.3 Considerations
The query generator interface provided by the LAS query module is indeed easy-
to-use, but it is possible to imagine ways to lighten even more the effort requested
to the users.

In the current situation, an erratic connection between two nodes is notified
by an alert, but other kind of errors does not generate any notification until the
"submit", "save as Template" or "save as Translator" buttons are pressed (see D
section, in Figure 2.2). The main consistency checks on the resulting graph are,
in fact, invoked by these triggers. For example, to procedure which checks that all
blocks in the workflow are connected to an input and an output or the one which
checks that the graph is not cyclic.

In order to reduce the number of notifications that a inexperienced user may
receive and to avoid the time loss due to a misconfiguration alerted only when the
user is ready to submit or save the query, the graph construction should be made
more constrained.

How is it possible to add more constraint on the user choices, reducing at the
same time the alerts? A way, that allows also to build a nicer and clearer graphs, is
provided in Chapter 6. The left and right section in figure 2.2 will be lost, in favour
of a menu dynamically instantiated whenever a user wants to add a new block in

7
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the workspace. In this way, the application guaranties a-priory the consistency
of query representation with the underlying system. Basically, it automatically
supervises the user action improving the ease of use and handiness of the entire
interface.
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Chapter 3

Tidy Tree Algorithms

3.1 Introduction
This chapter presents an overview of different published algorithms for drawing
tidy rooted trees and compares their performance, in order to justify the choice
made in implementing the ggen library.

Firstly, it is useful to explain what is intended with drawing a tree. Basically the
process of drawing a tree consists in two stages: the first task is the assignment
of positional, x and y, coordinates to each node of the tree; the second is the
rendering of a graphical representation of nodes and edges, generating the actual
drawing based on the previously defined coordinates. It is easy to notice that the
main operation to be performed is the coordinates assignment.

The next sections present the state of the art works in determining the nodes’
positions, while the algorithms focused on the graphical representation will be
discussed in the next chapters.

At this point, it should be clear the meaning of drawing a tree, but is still to be
defined what a tidy tree is. We know is a type of tree but, which does tidy means
exactly? This question cannot be answered objectively: it is just possible to give
a general definition and, then, rely on the slightly different definitions provided by
each author.

Basically, they are considered tidy tree all drawings of a tree that are aestheti-
cally pleasing and use minimum drawing space. As many definitions involving the
human perception, it is not easy to give a universally accepted definition.

In order to provide a more rigorous description of tree pleasantness, in 1979,
Wetherell and Shannon [14] introduced three aesthetic constraints, that may be
called, for simplicity, Aesthetics.

In addition, they stated that a pleasant drawing should aim at maximizing the
tree compactness, to achieve better readability. Thus, presenting their linear time

9



3 – Tidy Tree Algorithms

algorithm for drawing binary tidy trees, they provided the following rules to define
them:

Definition 3.1.1. Aesthetic 1. Nodes belonging to the same tree level should
lie along a straight line and the straight lines which defines the levels should be
parallel. This is necessary to require that the relative order of nodes across any
level be the same as in the level order traversal of the tree. This can be shown to
guarantee that edges in the tree do not intersect except at nodes.

Definition 3.1.2. Aesthetic 2. A left son should be positioned to the left of its
father and a right son to the right.

Definition 3.1.3. Aesthetic 3. A father should be centered over its sons.

In 1981, Reingold and Tilford [13] added a fourth constraint in order to over-
come some deficiencies of the Wetherell and Shannon algorithm:

Definition 3.1.4. Aesthetic 4. A tree and its mirror image should produce draw-
ings that are reflections of one another; moreover, a subtree should be drawn the
same way regardless of where it occurs in the tree.

The Reingold and Tilford algorithm generates symmetrical drawing in linear
time. The width of the drawings is not always minimized, but in general it remains
sufficiently close to the minimum.

The Reingold and Tilford algorithm is then extended by Walker [10] in 1990 to
draw rooted ordered tree of unbounded degree. The algorithm is no more limited
in drawing binary trees but does not work in linear time. Thus, in 2002 Buchheim,
Jünger and Leipert [5] present a linear improvement of Walker’s algorithm.

A limitation of all the aforementioned algorithms is that they are able to draw
only layered trees and are designed for supporting nodes of the same size. This
is adequate for many applications, but a more general solution is preferable. In a
paper from 2014, Van Der Ploeg [11] enhanced the algorithm to allow variable-sized
nodes, while keeping its linear time nature.

In the next sections the algorithms will be presented in details. For sake of
brevity, each algorithm will be referred to as an acronym composed by the first let-
ter in the names of its authors. For example the Wetherell and Shannon algorithm
will be referred as WS algorithm, the Reingold and Tilford as RT etc...

3.1.1 Definitions
As a preliminary step some definitions are provided. The definitions follow the
ones proposed by Buchheim’s paper [5].

10



3.1 – Introduction

Definition 3.1.5. A rooted tree is a direct acyclic graph with a single source,
called root, such that there is a unique direct path from the root to any other
node.

Definition 3.1.6. The level, or depth, of a node is the length of its path.

Definition 3.1.7. For each edge (v, w), v is called the parent of w, and w the
child of v.

Definition 3.1.8. If w1 and w2 are two different children of v, w1 and w2 are
siblings.

Definition 3.1.9. Each node w on the path from the root to a node v is called
an ancestor of v, while v is called a descendant of w.

Definition 3.1.10. A leaf of the tree is a sink of the graph: a node without
children.

Definition 3.1.11. Each node v of a rooted tree T induces a unique subtree of T
with root v.

Definition 3.1.12. In a binary tree each node has at most two children.

Definition 3.1.13. In an ordered tree, a certain order of the children of each node
is fixed. The first child according to this order is called the leftmost child, the last
is called the rightmost child.

Definition 3.1.14. The left sibling of a node v is its predecessor, the right sibling
is its successor in the list of children of the parent of v.

Definition 3.1.15. The leftmost descendant of v on level l is the leftmost node
on level l belonging to the subtree induced by v; the rightmost descendant of v on
level l is the rightmost node of that subtree.

Definition 3.1.16. Given that v1 is the left sibling of v2, w1 the rightmost de-
scendant of v1 on some level l, and w2 is the leftmost descendant of v2 on the same
level l, we can call w1 the left neighbor ofw2 and w2 the right neighbor of w1.

Definition 3.1.17. The reflection of a tree is the tree with reversed order of
children for each parent node.

Definition 3.1.18. The left contour of a subtree is defined as the sequence of
leftmost nodes in each level, traversed from the root to the deepest level. The
right contour is the the sequence of rightmost nodes.

11



3 – Tidy Tree Algorithms

3.2 Tidier Drawings of Trees
Reingold and Tilford present, in the paper entitled "Tidier Drawings of Trees" [13],
a definition of tidy binary trees and proposes an algorithm for drawing tidy trees
compliant with that definition.

The authors based their article on the analysis and improvement of the Wetherell
and Shannon algorithm [14]. The WS is able to draw tidy trees respecting the first
three aesthetic rules, but Reingold and Tilford show how this algorithm may lead
to aesthetically unpleasing or wider than necessary drawings.

3.2.1 WS algorithm
As a preliminary step, the WS algorithm requires that each node keeps the infor-
mation relative to its level within the tree; the level of a node within the tree is
defined as the number of hops needed to reach it, starting from the root. Moreover
it is required to know the maximum depth of the tree, in other word, the number
of its levels.

The complete algorithm, which is provided in the paper [14] written in an
extended version of Pascal, can be found in a JavaScript version in the repository
github [6], together with the other source code of this thesis. Here, in algorithm 1,
we propose an high level description.

The algorithm is based on two different loops. The decision of implementing
the algorithm in a iterative way instead of using a recursive one, was made by
Wetherell and Shannon to make the algorithm translatable also to languages not
supporting recursion, but, as we will see, the most recent, and also much more
readable, algorithms make use of recursion.

During the first loop, it is performed a postorder walk that assigns a preliminary
x coordinate to each node. The preliminary x is given following this rule: a leaf
node will take the next available x position considering its level; in case it has only
a left son, it will be positioned one unit to the right of it; if it has only a right son,
it will be positioned one unit to the left of it; while, if the node has two sons, it
will take the average of their positions.

In addition, for each level is kept a next_pos and a modifier value. The
next_pos keeps track of the next available position in that level. If the pre-
liminary position is lower than the next available one on the considered level, the
node takes the next available position, and in the modifier variable is recorded the
shift that has to be applied to its subtrees, to move them accordingly.

During the second loop, instead, it is performed a preorder walk, in which to
each node is given a final x coordinate, obtained by summing its preliminary x
coordinate and the modifier of all the ancestors of the node. The modifier’s are
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3.2 – Tidier Drawings of Trees

cumulated, during this walk, in a modifier_sum variable and applied to every
node.

Unfortunately, the algorithm does not work well in every possible situation, as
can be seen in Figure 3.1, where the drawing is not sufficiently pleasing, neither
compact. The third and fourth node of the fifth level are too far apart.

Figure 3.1. Final positioning example of tree as drawn by WS Algorithm.

To overcome this issues, Wetherell and Shannon presented a modified algorithm
that guarantees minimum width drawings but that does not consider anymore
Aesthetic 3 (Definition 3.1.3). Reingold and Tilford, on the other hand, proposed
a new definition of tidy tree, obtained by adding a new aesthetic constraint, and
an algorithm able to draw tidy ordered binary trees without getting rid of any
Aesthetics.

They noticed that the main issues in the WS algorithm are caused by the
influence that nodes outside a subtree may have on the shape of that subtree.
As a consequence, trees that should be symmetric may be drawn asymmetrically:
hence, a tree and its reflection will not always produce mirror image drawings;
moreover, the same subtree may appear differently depending on its location inside
the bigger tree. The tree in Figure 3.1, for example, should be symmetric while

13
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Algorithm 1: Wetherell and Shannon Algorithm 3 - A tidy Tree Drawer
Data: Root node of the tree. Each node is assumed to have its height

assigned.
Result: A tree positioned to satisfy Aesthetics 1, 2 and 3.
Variables:
modifier: array of Integer [0 − max_heigh] initialized to 0
next_pos: array of Integer [0 − max_heigh] initialized to 1
root: root node of the tree
max_height: number of levels, Integer
modifier_sum: Integer initilized to 0
begin

current = root
current.status = FIRST_V ISIT

/* Postorder Walk */
while current != null do

switch current.status do
case FIRST_VISIT do

if current has not a left son:
current.status = LEFT_V ISIT

otherwise: current.status = FIRST_V ISIT and
current = left_son

case LEFT_VISIT do
if current has not a right son:
current.status = RIGHT_V ISIT

otherwise: current.status = FIRST_V ISIT and
current = right_son

case RIGHT_VISIT do
if current has no children (leaf):
place = next_pos[current.height]

if has only right child: place = current.right_son.x − 1
if has only left child: place = current.left_son.x + 1
if has both:
place = (current.left_son.x + current.right_son)/2

modifier[h] = max(modifier[h], next_pos[h] − place)
/* where h is current.height */

if is leaf: current.x = place
otherwise: current.x = place + modifier[current.height]
next_pos[current.height = current.x + 2
current.modifier = modifier[current.height]
current = current.parent
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begin
/* Preorder Walk */

current = root
current.status = FIRST_V ISIT
while current != null do

switch current.status do
case FIRST_VISIT do

current.x = current.x + modifier_sum
modifier_sum = modifier_sum + current.modifier
current.y = 2 ∗ current.height + 1
if has left son: current = current.left_son and
current.status = FIRST_V ISIT

otherwise: current.status = LEFT_V ISIT

case LEFT_VISIT do
if has a right son: current = current.right_son and
current.status = FIRST_V ISIT

otherwise: current.status = RIGHT_V ISIT

case RIGHT_VISIT do
modifier_sum = modifier_sum − current.modifier
current = current.parent
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it is drawn asymmetrically; an even more clear example is provided in Figure 3.2
, where it is easy to see how two specular trees drawn by WS algorithm are not
mirror images.

Let’s analyse Figure 3.1. The WS algorithm works in a left-to-right fashion,
so, when the left branch is completely formed it considers the right branch and
everything is normal until the fifth level. Here it comes the issue: to the leaf
node D, is assigned the next available position, accordingly to next_pos array (so
Y.x = 6); then it is considered the right branch, rooted at E (with E.x = 12); so,
it is assigned to the root of D and E the average of their positions (C.x = 9) and
the same to A, the root of B and C (A.x = 8). At this point, A preliminary x is
8 but, next available position at its level is 10, because the position 8 is occupied
by node X, so the A and its subtree is shifted to the right. The result is much
wider than necessary, specifically the empty space in the middle of the tree causes
D to be placed far to the left, when it should have been placed at the minimum
distance from E.

Figure 3.2. Mirror image of a tree positioned by WS Algorithm.

In order to prevent this issue a new constraint is defined: Aesthetic 4 (Defi-
nition 3.1.4). The introduction of this new Aesthetic has a cost in terms of tree
width, but Reingold and Tilford consider the cost worth to be paid, because at
the time none of the published tree printing algorithm produces a minimum width
placements and, in their opinion, the newly introduced Aesthetic is more important
than reaching a minimum width, for the pleasantness of the drawing.

Reingold and Tilford says that:
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"satisfying Aesthetic 4 requires an algorithm in which nodes outside a
subtree do not interfere with the relative positioning of nodes in the
subtree, so that the inherent asymmetry of the postorder traversal will
not be manifested in the drawing."

In order to achieve that, they proposed algorithm TR, based on the assumption
that two subtrees of a node should be formed independently, and then placed as
close together as possible, thus requiring that the subtrees be rigid at the time
they are put together. Basically, in this way the algorithm positions subtrees (as
static groups of nodes) rather than nodes themselves.

3.2.2 RT algorithm
As said, the RT algorithm aims at satisfying all the four Aesthetics. For achieving
this objective it needs to be able somehow to form the left and right subtree of
each node independently, in a way that nodes outside a subtree does not influence
the relative positioning of nodes inside it.

The idea is basically to imagine that, initially, the two subtrees we want to
rigidly move apart are superimpose: exactly as if they are drawn on two different
pieces of paper put one over the other. In this trivial example the action of moving
them apart is easy: it is sufficient, in fact, to take the piece of paper above and
move it to the right until it does not cover up the other.

Coming back to the algorithm, in order to place as close together as possible
two rigid subtrees, the algorithm should compare, at each level, the positions of
the node inside the right contour of the left subtree with the position of node
belonging to the left contour of the right subtree. To see what is intended with
contour see the Definition 3.1.18, in the introduction of this chapter, and take
a look at Figure 3.3: the node highlighted with diagonal stripes represent the
right contour of the left subtree with respect to the root, while, the dotted nodes
represent the left contour belonging to the right subtree.

The algorithm was implemented using, as starting point, the WS algorithm.
In fact, it has a similar structure, although it uses recursive procedures instead of
iterative ones.

The two procedures are the following:

• The first, called SETUP, is a recursive postorder traversal, which compare
the two subtrees of a node (using the method of the contours) and moves
them apart (algorithm 5).

• The second, called PETRIFY, is a preorder traversal which simply converts
the relative preliminary positions into absolute coordinates (algorithm 2).

17
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Figure 3.3. Example of Contours and Threads.

As can we seen in the pseudocode provided at the end of this section (algo-
rithm 5), the SETUP procedure performs at each node three tasks.

Firstly, in the while loop, it determines how close together the two subtree can
be placed, by scanning down the right contour belonging to the left subtree and
the left contour belonging to the right subtree. This is the most tricky part of the
algorithm: comparing the contours can take a considerable amount of time, due to
the traversal of almost all nodes of the tree. Luckily, Reingold and Tilford showed
a clever technique to save up time, avoiding to traverse nodes not belonging to
a contour. To accomplish it, without traversing also nodes not belonging to the
contours, they adopted this rule: if the node is not a leaf, the next element of
the left contour is its child placed the most to the left, and the next element of
the right contour is its child placed the most to the right; if a node is a leaf,
instead, the two variable dedicated to point to its children, that are empty, will be
exploited, if needed, to keep the next element of the left and right contour. When
they are not pointing actual children, but are used for storing next nodes in the
contours, they call them threads. In order to state their difference from normal
pointers, a boolean field is introduced in each node to explicitly track if they are
to be considered threaded or not.

As second task, the algorithm keeps track of the leftmost and rightmost nodes

18



3.2 – Tidier Drawings of Trees

on the closest-to-the-root level of the subtree, because those are nodes that may
need to be threaded later; specifically a new thread must be added, whenever two
non-empty subtrees with different heights have to be combined.

Finally, the third task is indeed inserting a thread when needed. In Figure 3.3
it is shown an example: the three threads, represented by the dashed arrows, are
created at different points in time, when the left subtree of a node is taller with
respect to the right one: thus a thread must be inserted in the lowest node of the
shorter subtree, pointing to the lowest node of the taller subtree. Specifically, the
arrow labeled with a x allows to scan the entire striped contour.

Figure 3.4. Example tree as drawn by RT Algorithm.

This idea on which RT is base allows to overcome the bad positioning of nodes
produced by WS, for example node D and E in the situation depicted in Figure 3.1;
it can be seen in Figure 3.4, how RT generates much nicer results: here the same
tree appears symmetric and clear.

It is interesting to analyse more in details the time complexity of RT algorithm.
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Firstly, it is possible to notice that the time required is completely determined by
the while loop, because the SETUP procedure is executed precisely once per node
of the tree. Moreover, it can be noticed that the while loop is executed only as
long as both L and R are not-null, hence only until the depth of the shorter tree is
reached. Another consideration important to underline is that the authors consider
the height of a tree as the number of levels composing that tree, differently from
Wetherell and Shannon. In their definition, e.g, the tree in figure 3.2 has height 6.

Keeping in mind those premises, to proceed demonstrating the linearity of the
algorithm, we have to compute the number of times the loop body is executed:
F (T ) for a tree rooted at T.

The loop is executed a number of times equal to the sum of the number of
executions done in each subtree, plus one iteration at each level in the shorter of
its subtrees, hence:

F (T ) = F (T1) + F (T2) + min(height(T1), height(T2))

The authors demonstrate by induction on the number of nodes composing the
tree, that the loop body is run F (T ) = N(T )−height(T ); where N(T ) is the
number of nodes belonging to the tree. It is easy to see how this claim is true in
the degenerate cases in which N(T ) = 0 (empty tree) and N(T ) = 1 (the root is
a leaf itself, thus the loop is not executed).

At this point, the inductive hypothesis is to suppose the claim is true for tree
with less than N nodes. Thus, for k < N :

F (T ) = [k − height(T1)] + [N − k − 1 − height(T2)] + min(height(T1), height(T2))

= N − 1 − height(T1) − height(T2) + min(height(T1), height(T2))
= N − [max(height(T1), height(T2)) + 1]

The expression between square brackets is exactly height(T ), hence this demon-
strates that the claim is valid for trees with any number of nodes N.

In the worst case, for a complete binary tree, the loop is executed about N(T )−
log(N(T )) times: consequently the algorithm is linear.
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Algorithm 2: Reingold and Tilford Algorithm - second walk
/* PETRIFY - Preorder Walk */

Data:
T: current node
xpos: x coordinate
converts the relative offsets to absolute coordinates
begin

if T != null then
T.x = xpos
if T.data.thread then

T.data.thread = false
T.children = []

PETRIFY (T.childrenleft, xpos − T.data.offset)
PETRIFY (T.childrenright, xpos + T.data.offset)

Algorithm 3: Reingold and Tilford Algorithm - first walk
/* SETUP - Postorder Walk - 1/3 */

Data:
T: root node of the tree
LEVEL: current level
RMOST, LMOST extremes nodes
An extreme node is an object containing 3 fields:

.addr: points to the corresponding extreme node

.off: the offset from the root of the subtree

.lev: tree level of the extreme node
MINSEP: parameter giving minimum separation betweeen two nodes on the
same level
Result: A tree positioned to satisfy Aesthetics 1, 2, 3 and 4.
Variables:
L, R: left child and right child of node T
LR, LL: left rightmost and left leftmost node
RR, RL: right rightmost and right leftmost node
CURSEP: separation at current level
ROOTSEP: accumulated separation for the children of current node
LOFFSUM, ROFFSUM: accumulated offset of the current L and R
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/* SETUP - Postorder Walk - 2/3 */
begin

if T ! = null then
T.y = level; Assign to L T’s left child and to R the T’s right child
SETUP(L, level+1, lr, ll)
SETUP(R, level+1, rr, rl)
if L == null and R == null then

We are in a leaf: this node is both rightmost and leftmost
RMOST.addr = LMOST.addr = T
RMOST.lev = LMOST.lev = level
RMOST.off = LMOST.off = 0; T.data.offset = 0;

else
T is not a leaf: set up for subtree pushing.
CURSEP = ROOTSEP = MINSEP
LOFFSUM = ROFFSUM = 0
Now consider each level in turn until one subtree is exhausted,
pushing the subtrees apart when necessary

while L!= null and R!= null do
if CURSEP < MINSEP then

ROOTSEP = ROOTSEP + (MINSEP − CURSEP )
CURSEP = MINSEP

if L has a right child then
LOFFSUM = LOFFSUM + L.data.offset
CURSEP = CURSEP − L.data.offset
L = L.children[1]

else
LOFFSUM = LOFFSUM − L.data.offset
CURSEP = CURSEP + L.data.offset
L = L.children[0]

if R has a left child then
ROFFSUM = ROFFSUM − R.data.offset
CURSEP = CURSEP − R.data.offset
R = R.children[0]

else
ROFFSUM = ROFFSUM + R.data.offset
CURSEP = CURSEP + R.data.offset
R = R.children[1]

Continue next page...
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/* SETUP - Postorder Walk - 3/3 */

...continue from previous page.
Update extreme descendant Information RMOST, LMOST
if rl.lev > ll.lev or T has no left child then

LMOST = rl
LMOST.off = LMOST.off + T.data.offset

else
LMOST = ll
LMOST.off = LMOST.off − T.data.offset

if lr.lev > rr.lev or T has no right child then
RMOST = lr
RMOST.off = RMOST.off − T.data.offset

else
RMOST = rr
RMOST.off = RMOST.off + T.data.offset

If subtree are of uneven height, check if threading is necessary
if L is not left child of T then

rr.addr.data.thread = true
rr.addr.data.offset =
Math.abs((rr.off − T.data.offset) − loffsum)

if loffsum − T.data.offset <= rr.off then
rr.addr.children[0] = L

else
rr.addr.children[1] = L

else if R is not right child of T then
ll.addr.data.thread = true
ll.addr.data.offset =
Math.abs((ll.off − T.data.offset) − roffsum)

if roffsum + T.data.offset >= ll.off then
ll.addr.children[1] = R

else
ll.addr.children[0] = R
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3.3 Algorithm for General Trees
In a very popular paper[10] published in 1990, John Q. Walker II proposes an
algorithm to determine the position of nodes for an arbitrary general tree; but
what is intended as general tree? As described in the paper, a general tree is
defined as a rooted (Definition 3.1.5), directed tree and of unbounded degree. The
degree of a tree is just the number of children that each node can have.

Whereas no node may have more than one parent, in a general tree there is
no limit on the number of offspring per node; Differently from binary and ternary
trees, for example, which are trees with a limit of 2 and 3 children per node.

The aforementioned algorithms are only able to compute the nodes’ positions
for binary trees; for this reason, Walker’s paper represent an important improve-
ment in the search for a tree-drawing algorithm which aims at being as general as
possible.

Unfortunately, the W algorithm can be proved to be quadratic. This is, in fact,
what the second paper[5] authors focus on; Buchheim, Junger and Leipert not only
point out the non-linearities of W algorithm, but also, present some improvements
that guaranty to obtain the same results in linear time.

In the next sections will be described the W algorithm and its enhancement.

3.3.1 W algorithm
While Reingold and Tilford with their work have expanded the Aesthetics proposed
by Wetherell and Shannon, Walker reduces them collapsing Aesthetic 1 and 2
together (Definition 3.1.1 and 3.1.2). In particular, considering the fact that left
son and right son distinction does not apply any more in a general tree, if a
node has a single child, it should be placed directly below its parent. Thus, the
Aesthetic 3 (Definition 3.1.3) is removed and Aesthetic 2 is replaced with:

Definition 3.3.1. Aesthetic 2. A parent should be centered over its children.

The RT algorithm itself can be easily extended for drawing general trees: all
the children of a node can be traversed from left to right to assign the x coordinate
and apply the shift to each corresponding subtrees, one after another. However,
this RT extension breaks the symmetry rule stated by the fourth Aesthetic, as
show in Figure 3.5.

The W algorithm, instead, respects all the remaining Aesthetics (1, 2 and 4,
Definition 3.1.1, 3.3.1, 3.1.4), minimizing the width of the tree, with only two
different walks, as the previously seen algorithms. It also has the advantage of
being able to handle alternate orientations of the tree and variable node sizes.
The main problem of this algorithm is that, differently from what it is claimed in
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the author’s article [10], the time complexity is higher than O(N), where N is the
number of nodes.

This algorithm is strongly based on ideas derived from the aforementioned
positioning algorithms. In particular, the following three concepts:

1. Subtrees are built as rigid units. When a node is moved, all of its descen-
dants, if it has any, are also moved accordingly.

2. A general tree is positioned by building it up recursively from its leaves
toward its root. Also in this case the first walk is a postorder traversal.

3. Two fields are used for the positioning of each node. These two fields are:
a preliminary x coordinate, and a modifier field (which in RT was called
OFFSET).

A first postorder traversal assigns the preliminary x coordinate and the mod-
ifier value to each node. It works, as in RT, positioning the smallest subtrees
first,starting from the leaves, and recursively proceeding from left to right, to de-
fine the position of subtrees, that are larger at any step. Adjacent nodes are kept
separated one another by at least a predefined minimal distance, the one called
MINSEP in RT, just called separation in W; at the same time, adjacent subtrees
are separated by at least the same predefined separation.

However, in the first walk procedure, they can be highlighted some differences
with respect to the RT first walk. Subtrees of a node are built up independently and
they are placed as close as possible keeping in consideration a minimum separation
value, exactly as in RT, but when it is to be moved a large subtree to the right,
the distance it is moved is also distributed to smaller, interior subtrees. More
specifically, the moving of these subtrees is accomplished, in a procedure called
Apportion, by adding the proportional values to the preliminary x coordinate and
modifier fields of the roots of the small interior subtrees.

The algorithm proceeds as follows.
Firstly, if the current node is a leaf there may happen two different situation:

in case it has no left sibling its preliminary x is set to 0; in case it has a left sibling,
instead, its preliminary x is set following this rule:

node.x = leftsibling.x + separation + mean(leftsibling.size, node.size)

Otherwise, if the current node is not a leaf, the first walk procedure is called
recursively for each child, similarly to RT. Then, if the current node has no left
sibling, its preliminary x is given by:

node.x = node.x − (leftmost.x + rightmost.x)/2
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Figure 3.5. Example tree as drawn by Extended RT Algorithm.

If it has left sibling its preliminary x position is set following the rule:

node.x = leftsibling.x + separation + mean(leftsibling.size, node.size)

And its modifier is set to:

node.modifier = node.x − (leftmost.x + rightmost.x)/2

Then, the APPORTION function is applied on the node. This function is the
main idea behind Walker’s algorithm. He noticed, in fact, that pushing a new
large subtree farther to the right, a gap may open between the new subtree and
smaller subtrees that had been previously positioned correctly: after the push, in
fact, they may tend to appear to be bunched on the left, leaving an empty area to
their right. It is possible to see this issue in Figure 3.5.

What this function do is adjusting the positioning of small adjacent subtrees,
in order to fix the issue stated above: when moving the new, large subtree to the
right, the distance it is moved is also apportioned to smaller, interior subtrees,
which means that the distance is distributed proportionally among them.

For example, if three small subtrees are bunched to the left because a new large
subtree has been positioned to their right, the first small subtree will be shifted
right by 1/4 of the gap, the second small subtree is shifted right by 1/2 of the gap,
and the third small subtree is shifted right by 3/4 of the gap.

In the end, a preorder traversal is devoted to compute the final x coordinate
of each node by summing the node’s preliminary horizontal coordinate with the
modifier fields of all of its ancestors, starting from the root. In addition, it also
adds a value that guarantees centering of the drawings with respect to the position
of the root node.

The result obtained with this technique is a pleasing aesthetic placement of
nodes, look at the example in Figure 3.6 with respect to Figure 3.5: the problem
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Figure 3.6. Example tree as drawn by W Algorithm.

of small subtrees clustered on the left is solved and the internal subtrees are evenly
spaced.

The pseudocode provided by Walker in its paper [10] is not included in this
thesis, in the next section an improved version from the article [5] written by
Buchheim, Junger and Leipert will be analysed. In their article, in fact, they
provided an enhanced implementation of W algorithm that is linear and satisfy
Aesthetics 1, 2 and 4 (Definitions 3.1.1, 3.3.1, 3.1.4).

3.3.2 W Enhanced Algorithm
As it has been said in the previous section, the W algorithm is a nice solution, which
generates pleasant-to-see tidy trees, but has an inconvenience: it is Ω(n2).The
purpose of this section is to present the paper [5] by Buchheim, Junger and Leiport,
which improves W algorithm by making it run in linear time.

First of all, three part of W algorithm present linearity issues:

• The function used to traverse the right contour (GETLEFTMOST).

• The function used to find the greatest uncommon ancestors.

• The function counting and shifting smaller subtrees (APPORTION).

GETLEFTMOST is a recursive function, used to find the leftmost descendant
of a given node v at a given level l. It is a postorder traversal of the subtree
rooted at node v. If the level of the current node (that corresponds to the leftmost
descendant found) is equal to l that node is returned; otherwise the function is
applied recursively to all children of the current node, from left to right.

To prove that the GETLEFTMOST run time is not linear in general, Buch-
heim, Junger and Leiport build a series of trees Tk, defined as follows:
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"Beginning at the root, there is a chain of 2k nodes, each of the last
2k − 1 being the right or only child of its predecessor. For i = 1, ..., k,
the i-th node in this chain has another child to the left; this child is
the first node of a chain of 2(k − i) + 1 nodes."

In in Figure 3.7 it can be seen an example for k = 3.
The number of nodes in Tk is:

nodes(k) = 2k +
k∑

i=1
[2(k − 1) + 1] = 2k + k(k − 1) + k

Thus the number of nodes nodes(k) is Θ(k2).
At this point, for each i = 0, ..., k − 1, when visiting the node on the right

contour of Tk on level i, two subtrees have to be combined. By construction of Tk

the highest level which is common to the subtrees is 2k−i−1 and GETLEFTMOST
is always to be applied to every node of the right subtree up to its level. The
number of these nodes is:

k − i +
k−i−1∑

j=0
(2j) = (k − i) + (k − i)(k − i − 1) = (k − i)2

Thus, for all combination, the total number of calls to GETLEFTMOST is
given by:

calls(k) =
k−1∑
i=0

(k − i)2 =
k∑

i=1
i2 = k(k + 1)(2k + 1)/6

Thus, calls(k) is Θ(k3).
Now, given that nodes(k) is Θ(k3), so k is Θ(n1/2), the total runtime of

GETLEFTMOST is proven to be non linear: GETLEFTMOST is executed calls(k)
times, that is Ω(k3) = Ω(n3/2).

In regard to the second non linearity present in W algorithm, the authors
highlighted as the function to find the uncommon ancestor is clearly quadratic.
In fact, the greatest uncommon ancestor of the possibly conflicting neighbors are
detected for each level by traversing the graph up to the current root; since the
distance of the levels grows linearly, the total number of steps is Ω(n2).

Finally, the last but not least non-linearity of W algorithm is related to the
APPORTION function, which, when moving a large subtree to the right because
in conflict with a subtree to the left, immediately, it shifts also all smaller subtree
in between; moreover, to do that it has to compute the number of subtrees in
between counting them one by one.

The authors show with an example that APPORTION total runtime is Ω(n3/2).
Let the T k tree (which can be seen in Figure 3.8) be constructed as follow:
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Figure 3.7. Example of T3 tree.

"Add k children to the root. The i-th child, counted i = 1, .., k from
left to right, is root of a chain of i nodes. Between each pair of these
children, add k children being leaves. The leftmost child of the root
has 2k + 5 children, and up to level k − 1, every rightmost child of the
2k + 5 children has again 2k + 5 children."
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Figure 3.8. Example of T 3 tree.

Hence, the number of nodes of T k is:

nodes(k) = 1 +
k∑

i=1
i + (k − 1)k + (k − 1)(2k + 5)

Which means that nodes(k) is Θ(k2).
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Finally, by construction of the left subtree, adding the i-th subtree chain for
i = 2, ..., k results in a conflict on level i. Thus, all (i − 1)(k + 1) − 1 smaller
subtrees in between needs to be counted and shifted; the total number of counting
and shifting is:

count_and_shift(k) =
k∑

i=2
[(i − 1)(k + 1) − 1] = (k + 1)k(k − 1)/2 − k + 1

As in the first non-linearity considered, we can derive that, since nodes(k) is
Θ(k2), so k is Θ(n1/2), and the number of times count_and_shift(k) is executed
is Θ(k3), therefore count_and_shift needs Ω(n3/2) in total.

At this point, it is time to describe the enhancement apported to W algorithm.
Firstly, it can be noticed how the contour traversal (that in W is done by using

the non-linear GETLEFTMOST function) can be performed in the same way as
it is performed in RT algorithm, by using threads. The fact that subtrees are not
binary trees does not create any additional difficulty.

The problem of finding the greatest uncommon ancestors, instead, is more
tricky. First of all, it is useful to notice a few things.

The first thing to pay attention to is the moment in which we need to compute
the ancestors: we need to compute it when we are in the situation in which we
are placing a new subtree on the right and we need to know, for each node in the
right contour of the subtree already placed, which is its greatest ancestor that is
not ancestor of the new subtree.

Furthermore, it is possible to observe that, at that moment, the right uncom-
mon ancestor is known: it is the root of the subtree being added.

Another thing to take into consideration is that the left greatest uncommon
ancestor depends only on the nodes in the right contour of the already placed
subtree, not on the nodes in the newly added subtree.

In order to keep track of the greatest uncommon ancestor, for each node it
is kept a pointer called ancestor and, in a general pointer, it is kept one called
defaultAncestor.

Now, it is better to explain the method with a practical example: suppose
we are placing the subtrees rooted at r, and that we want to keep up to date
the ancestor and defaultAncestor pointers; as in Figure 3.9, we call w− the left
greatest ancestor, w+ the right one; at the same time, v− are called the nodes
belonging to the right contour (circled in red) of the left subtree, v+ the nodes
belonging to the left contour (in green) of the subtree we are placing.

In order to have the pointers always correctly up to date, we want that the
following property holds:

"For all nodes v− on the right contour of the left subforest after each
subtree addition: If ancestor(v−) is up to date, e.g., is a child of the
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3.3 – Algorithm for General Trees

root r, then it points to the correct ancestor w− of v−; otherwise the
correct ancestor is defaultAncestor".

Initially, the first subtree, rooted at w, is placed; it does not need any ances-
tor computation, and defaultAncestor is set to w; we can see how the property
holds since all ancestor(v−) points either to w or to higher level nodes. See again
Figure 3.9, where the ancestor pointers are represented with a solid arrow if up to
date, with a dashed arrow if expired: in this latter case the black node represent
the one pointed by defaultAncestor.

After that, we place the subtree rooted at w′, another child of root r. When
the new subtree is shorter than the left subtree, as in this case, depicted in the
second drawing in Figure 3.9, we can update ancestor pointer of nodes belonging
to its right contour setting them to point to w′. When the the subtree added is
taller, instead, to avoid runtime overhead, we update only defaultAncestor; it is
the case of the third drawing, where defaultAncestor is set to point to w′′. Again,
since all pointer of the subtree induced by w′′ either points to w′′ or to a node of
a higher level, the property holds.
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Figure 3.9. Example of updating ancestor pointers when adding new subtrees.

In order to solve the last issue, Buchheim, Junger and Leiport address the
problem in two ways.

The first way is related to computing the number of smaller subtree to be
shifted. They linearize the process by performing a preprocessing step in which
each child of a node is numbered consecutively; then, computing the number of
smaller subtrees between two greatest uncommon ancestor w− and w+ is reduced
to a simple difference: number(w+) − number(w−) − 1.

The second way is related to the actual shifting of smaller subtrees: to obtain
a linear runtime all subtrees, except the currently added, are shifted at most once:
this is done in constant time by updating x preliminary coordinates and modifier
of the root of the subtree.

31
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To memorize the shifting in the moment they arise, in order to perform them
in one only traversal, for each node we record a shift and change value, both
initialized to zero. Now, let’s see a practical example: suppose that the algorithm
is currently placing the subtree rooted at w+ and that a conflict with the subtree
rooted at w− arises: the algorithm is forced to push the current subtree to the
right by an amount of shift; assume that n_subtrees is the number of subtrees
among them.

According to Walker’s idea, the i-th of these subtrees has to be moved by
i ∗ shift/n_subtrees. In order to do that in one traversal, we increase w+.shift
by shift, decrease w+.change by shift/n_subtrees and increase w−.change by
shift/n_subtrees. That can be interpreted as follows: nodes to the left of w+
are shifted by an amount initialized to shift, but this amount start decreasing
by shift/n_subtrees per subtree at node w+ and ends decreasing at w−, where
this division is zero. Finally, we can execute all the shift traversing the children,
starting from the right and proceeding to the left: when visiting child v, we move
it to the right by shift (increasing both its preliminary x and modifier values by
shift), then we increase change by v.change and shift by v.shift and change;
then we procede going on the left sibling v.

The algorithm presented in this Section produces a proportional spacing dis-
tributed among subtrees, preserving the linear runtime. This algorithm is suf-
ficiently general and can be used in many different application, it can be also
improved to support node of different shapes. Although, in the next section will
be described an algorithm even more general, which supports by design both nodes
of different shapes and non-layered trees of unbounded degrees.

3.4 Non-Layered Tidy Trees
In 2014, A. J. Van Der Ploeg proposes an algorithm [11] that extends RT to make
it work also for non-layered trees.

The main advantage of a non-layered tidy tree drawing algorithm is its flexi-
bility.

Firstly, considering tree containing node of different sizes, it allows to generate
more pleasant drawings: when node have varying height, in fact, layered draw-
ings may use more vertical space than necessary; differently, non-layered drawings
place children at a fixed distance from the parents, thus the result is indeed more
vertically compact; see Figure 3.10 for a comparison.

Moreover, non-layered drawings can be used to draw trees where it is possible
to decide a priori the vertical position of each node: this can be obtained for
example adding dummy hidden nodes.

Then, both of the advantages stated above can be used in case we want to
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3.4 – Non-Layered Tidy Trees

show some information inside each node of the tree, or even within the dimensions
and/or sizes of each node; for examples in software engineering class diagram or
in formal languages parse trees.
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Figure 3.10. A layered and a non-layered representation of a tidy tree.

With the aim of extending the techniques seen in the previously Sections, the
author reformulate the entire tidy tree drawing problem, in order to include non-
layered drawings. In the new formulation it is not considered anymore the spacing
between nodes, the spacing is then included within the nodes themselves, by adding
a gap to their widths and heights, a sort of invisible margin. This abstraction helps
to simplify the process.

The author identifies two possible situations:

• A layered one, in which all the nodes at the same level ca be considered to be
ad the same vertical coordinate. In this case the resulting tree is a rooted,
ordered tree, whose nodes have a specific width, and whose levels have a
specific height.

• A non-layered, more general, one. In this case the tree produces is a rooted,
ordered tree with a width and height linked to each node. Actually, the
vertical top position of a node is the bottom coordinate of its parent, which
in turn is its top coordinate plus its height. Obviously, the case in which all
the nodes at the same level are assigned with the same height, a non-layered
drawing does not differ from a layered one.

The Aesthetics, to be adequate to this new kind of problem, can be reformulated
as follows:

Definition 3.4.1. Nodes do not overlap.
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Definition 3.4.2. Children are positioned horizontally in the order given in the
tree.

Definition 3.4.3. Parents are centered above their children.

Definition 3.4.4. The drawing of a subtree does not depend on its position in
the tree, which means that identical subtrees are drawn identically.

Definition 3.4.5. The drawing of the reflection of a tree, is the mirror image of
the drawing of the original tree.

3.4.1 Complexity Proof
Since the VDP algorithm is based on the RT algorithm extended for the non-
layered case, it is correct to introduce it by describing the proof of its linearity,
provided by Van Der Ploeg [11]. He considered necessary to provide an alternative
complexity proof, because the original one was based on an assumption that does
not hold anymore. Specifically, the original proof depend on the total number of
contour pairs considered to move all subtrees: which is equal to the number of
times the while body is executed. We have seen in section 3.2.2 as Reingold and
Tilford exploits techniques as threads and extreme nodes, to make the algorithm
work in linear time. However, the assumption on which the analysis was done is
that the number of nodes in the left and right contour is equal to the depth of the
tree: the length of the longest path from root to leaves. In the non-layered case
this is not always true.

Figure 3.11. Example of Layered Tree.
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Firstly, we consider the layered case. The new complexity proof is based on
a different, kind of assumption: after that a node in the left contour of a subtree
has been processed to push right that subtree, than it cannot be part of the left
contour of another subtree. Consider Figure 3.11 as an example: the left contour
of the right child consists of node D, E, F, while the left contour considered when
moving the right child are D and E which in fact cannot reoccur in another left
contour. That is because the contour is composed by all the nodes exposed from
the left; hence, in a situation in which the current subtree has been already moved,
all the left contour nodes that were processed would have a left adjacent node; in
the case in Figure 3.11 the left adjacent nodes are A and C. In practice, the nodes
belonging to left contour of the current subtree, that has been already processed,
cannot be part of the merged contour: they are hidden from the left by adjacent
nodes. Of course, an analogous assumption holds for the right contour.

Let consider that the input tree consists of "n" nodes v1, ..., vn and suppose that
fl(vi) is the set of nodes belonging to the left contour processed to push right the
subtree rooted at vi. We know, thanks to the assumption, that if vi belongs to the
set fl(vj), it cannot belong to any other set fl(vz), with z /= j. Thus, the total
number of nodes belonging to the left contour processed to build the the entire
tree layout is certainly less than or equal to n.

n∑
i=1

|fl(vi)| ≤ n

Where |f(.)| represent the number of elements in the set f. Obviously the same
consideration can be done for the set of right contour nodes that were processed
to move the subtree rooted at vi: fr(vi).

Now, the proof for the layered case is trivial. Consider that f(vi) is the total
set of contours pairs processed to move the subtree rooted at vi; since in this case
node are aligned vertically:

|fl(vi)| = |fr(vi)| = |f(vi)| ≤ n

In the non-layered case, nodes are not necessarily vertically aligned. Thus, to
consider the worst case we take the one in which nodes belonging to right and left
contours are never aligned. The amount of nodes pairs to be confronted in order
to move a child is no longer the same as the number of left (or right) contour
nodes processed. In this case, after processing a pair, for considering the next we
can advance either along the left or the right contour or along both. Thus, we can
define an upper bound on the number of contour pairs processed:

|f(vi)| ≤ |fl(vi)| + |fr(vi)|
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In this case a node in the left contour processed to move the subtree can
be included in another left contour; the same for right contour nodes. Consider
Figure 3.12 as an example: node 4 is in the right contour when moving the subtree
rooted at 7, but it is also in the right contour of the merged tree. However, this
can only happen to a node that is the last right contour node; because the top part
of the last node considered is hidden by nodes to the right while other nodes that
were considered must be totally occluded by nodes to the right. In the merged
contour node 4 is, in fact, partially hidden by two nodes (7 and 8), while the other
nodes considered, belonging to the right contour (3 and 6), are totally occluded
by nodes to their right (again 7 and 8). The same holds for the last left contour
node.
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Figure 3.12. Example of Contour Pairs in a non-layered tree.

Thus, assume fp
l (vi) = fl(vi) − ll(vi) is the set of nodes belonging to the left

contour processed to move the subtree rooted at vi, with the exception the last
left contour node that was processed, that is represented by ll(vi).

Since only last elements of a contour set can appear again in another one:
n∑

i=1
|fp

l (vi)| ≤ n

Since we know that there are n subtrees and that, whenever moving one of
them, there remains only a last node belonging to the left contour to be considered:

n∑
i=1

|fl(vi)| =
n∑

i=1
[|fp

l (vi)| + |ll(vi)|] =
n∑

i=1
|fp

l (vi)| + n ≤ 2n

Due to the fact that the same can be stated for right contour, we have that:
n∑

i=1
|f(vi)| ≤

n∑
i=1

|fl(vi)| +
n∑

i=1
|fr(vi)| ≤ 4n = O(n)
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This proves, generally, the linearity of RT algorithm extended for non-layered
trees.

3.4.2 Improving Layout Techniques
The main problem in the RT algorithm extended to non-layered tree is that, while
it satisfies the former four Aesthetics provided in this section, it is not able to
satisfy Aesthetic 5 (Definition 3.4.5): the reflection of a tree is not represented as
the mirror image of the original tree.

Also Walker [10] noticed this issue, that is caused by the fact that when subtrees
are enclosed in between larger siblings they will be piled to the left; which also is
not very aesthetically pleasing, to be honest.

Walker propose a method to distribute the extra space by moving proportion-
ally the small subtrees in between the larger ones; then, Buchheim, Junger and
Leiport [5] proposed an alternative method to employ Walker’s idea in a linear
way, by making use of shift and change field. This technique is applicable with-
out difficulties in the non-layered case.

The method that, instead, is not applicable to non-layered tree is the one
related to the function used to find the greatest uncommon ancestors. Basically,
the function, given a node in the right contour, gets the index of the sibling subtree
containing that node.

The BJL solution requires to update all the nodes ancestor pointer in the
right contour of a subtree, after moving that subtree, but only if the subtree is
less tall than its left sibling, because in this case all its left contour nodes are
considered to move that subtree. Thanks to the fact that, in the layered case, the
left and right contours which are compared must have exactly the same number
of elements, the number of right contour nodes of a subtree that is shorter than
its left sibling subtree is equal to the number of contours pair considered to move
that tree. Therefore, updating the right contour of a subtree shorter than its left
sibling does not modify the linear runtime.

Differently, in the non-layered case this technique causes an O(n) runtime,
because left and right contours are not constrained to have the same number of
elements. To prove this point Van Der Ploeg [11] provides an example of a tree T ′

k

constructed in the following way:

"The root node has width and height 2k and has three children: A child
consisting of a single node of width 1

42k and height 5
42k. A child subtree

constructed in the same way with k = k − 1". A child consisting of a
single node of width 1

42k and height 1
42k."

When k = 1, the tree is formed with the same method, with the exception
of the middle child that is a leaf with width 1 and height 1. Notice that, for
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Figure 3.13. Example of T ′
k tree.

every value of k, the middle child is shorter than its left sibling, as can be seen in
Figure 3.13. Hence, the nodes in the right contour of the middle child must always
be updated whenever it is pushed to the right. Considering that the particular
tree built in this example has 3k + 1 nodes, the middle child right contour consists
of all nodes in its subtree: 3(k − 1) + 1. Hence the number of updates that must
be done is:

k−1∑
i=1

(3i + 1) = 3
k−1∑
i=1

i + k − 1 = 3
2k(k + 1) + k − 1 = O(k2)

The result is obtained applying the Gauss formula for computing the first k

natural number:
k∑

i=1
i = k(k + 1)/2; since there is a linear relation between n and

k, the algorithm runs in O(n2).
Thus, in order to find the lowest uncommon ancestor, VDP algorithm adopted

a much simpler technique. It maintains a linked list of the siblings that currently
have a node in the right contour; this list contains both the index of the cor-
responding sibling and its lowest vertical coordinates; moreover, it is sorted in
descending order per index. Figure 3.14 provides an example. Whenever pushing
a child subtree to the right, if the current node belonging to the right contour has
a vertical coordinate lower with respect to the head of the list, the list is advanced.
This operation only costs O(1) for each contour pair.

In order to update the list, after each call of the first walk function, the elements
at the head of the list having a highest lowest coordinate than the new pair are
removed. These removed nodes are still in the right contour, but they are occluded
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Figure 3.14. Example of Sibling Lookup Linked List.

by the current subtree. Then, we prepend the new pair to the list, so that the list
always corresponds to the siblings that currently have a node in the right contour.

The number of operation needed for the list update is at most 2m(vi), where
m(vi) is the number of children of node vi. The reason is that the list is updated
once after moving each child; when it is updated a certain number of elements can
be removed and, of course, at most can be removed all elements, but we added
m(vi) elements to the list, hence in the worst case we have m(vi) removals. m(vi)
removals multiplied for m(vi) children gives the total number of operations, which,
summed for the whole tree, is:

n∑
i=1

2m(vi) = 2
n∑

i=1
m(vi) = 2(n − 1) = O(n)

Because every node is child of exactly one other node, except for the root which
has no parent, therefore the sum of the number of children of all nodes

n∑
i=1

m(vi)

is equal to n − 1. Since the list advancement costs O(1) per contour pair, this will
add an extra O(n). The runtime is, thus, linear with respect to the number of
nodes in the tree.

3.5 Considerations
The history of tidy trees algorithm is quite long, since Wetherell and Shannon [14]
advanced the first O(n) algorithm that produces tree drawings satisfying some
aesthetics rules. The algorithms discussed in the previous sections represent the
state of art in literature and provides a sufficiently wide overlook of the problems
involved in the tidy tree drawing task and the techniques used to overcome them.

The following table summarizes the analysed algorithms main characteristics.
For the purpose of our work, the development of a JavaScript library for inter-

active hierarchy visualization, the VDP algorithm was chosen. It combines all the
positive aspects of older algorithm, representing the most flexible one.
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Table 3.1. Algorithms Comparison

Algorithm Year Only Binary /=Node Size Only Layered Linear
WS 1979 yes no yes yes
RT 1981 yes no yes yes
W 1990 no yes yes no

BJL 2002 no yes yes yes
VDP 2014 no yes no yes

Another point in favour of the choice of VDP is that D3.js, the library on which
the ggen JavaScript library relies on, implements already the enhanced Walker’s
algorithm (BJL), but how it will be explained in Chapter 5, D3.js implementation
alone is not enough for reaching the expected results.

For these reasons, it has been chosen to translate the VDP Java implementa-
tion, which Van Der Ploeg provided in [11], and integrate it in the ggen library.
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Chapter 4

D3 Framework Overview

The purpose of this chapter is to present an overview of D3, a popular JavaScript
visualization framework, on top of which we designed the graph-generator library
(ggen) described in Chapter 5.

When building visualisation for the web, designer usually employ different tool
simultaneously, in order to combine the various technologies involved in the cre-
ation of a web page. The following is a list of technologies that will be considered
in this chapter: HTML, CSS, SVG, DOM, W3C DOM, JavaScript, jQuery. Some
of them are strictly related to the D3.js framework. In Appendix B, it can be
found the complete list of acronyms and definitions.
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Figure 4.1. D3 Logo.

Among of the technologies used in web development, the DOM is probably
one of the most important. It enables a common, standard representation of the
content of a web page, which it describes in its hierarchical structure. It allows
reference and manipulation of elements within the page.

In addition, through the DOM, modern browsers provide efficient ways for
displaying the element tree, the inherited style values and allowing interactive
debug.

As discussed in [4], many visualization toolkit and low-level graphical libraries,
such as Processing and Raphaël, exist for helping web designers. But, while they
provide a substantial gain in efficiency, reducing developers effort in specifying a
visualization, they have some disadvantages.
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Firstly, they produces a lost in interoperability, due to the encapsulation of the
DOM in more specialized form: basically each toolkit provides its intermediate
representation between the DOM and the user. Then, they reduce expressiveness,
the possibility of representing different visualizations, and introduce a runtime
overhead.

Furthermore, many graphics libraries do not provide a scenegraph inspector,
which is an useful tool for debugging, often provided natively by browsers (exam-
ple in Figure 4.2). Nevertheless, even when provided, toolkit-specific scenegraph
abstractions may reduce compatibility and expressiveness: for example when ele-
ments cannot be styled using external stylesheets, or when some graphical effects
are not available, even if they are provided natively.

Figure 4.2. Mozilla Firefox Scenegraph Inspector.

Moreover, toolkit-specific graphical abstractions may vary among different toolk-
its and standards adding a hurdle to new users. In [4], it is brought as an example
the case of drawing a wheel: in processing it has to be used an operator ellipse
taking 4 arguments; in Raphaël a circle operator that takes three arguments. Both
slightly different from the standard SVG circle.

For those many reasons, M. Bostock, V. Ogievetcky and J. Heer, in an article [4]
published in 2011, provide the description of a new approach to visualization for
the web. On this representation-transparent, standard-focused kind of approach
the D3.js framework is based.

In this chapter we will provide a brief explanation of how D3 is designed, we
will describe its base structure and provide some example of usage that may be
helpful to understand the ggen implementation.
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4.1 – Data-driven DOM Manipulation

4.1 Data-driven DOM Manipulation
D3.js (D3 stays for Data-Driven Documents) is a JavaScript library used to create
dynamic and interactive visualization, starting from structured data.

It has been designed as a collection of modules that can be used independently.
In particular, for the development of ggen library, they were used Selections, Paths
and Transitions modules. See the API [3] for the complete reference to D3.js .

The main characteristic of D3 is that, being based on the most used web
standards, as HTML5, SVG, and CSS, it is able to exploit the full potential of
modern browsers, without getting rid of expressiveness and compatibility.

Moreover, it provides a declarative web-specific language for visual design
aimed at mapping data to visual elements. While it does not strictly impose
a toolkit-specific lexicon, it allows to overcome the verbosity of browser built-in
API for manipulating DOM, by directly mapping data attributes to elements in
the Document Object Model.

Some other interesting D3 features that will be detailed in this sections are:

• query-driven selection.

• data binding to scenegraph elements.

• document transformation as an atomic operation.

• immediate property evaluation semantics.

With regard to selection, there are many JavaScript libraries designed to over-
come the verbosity and imperative approach to the DOM provided by JavaScript.
This approach is not convenient and often requires manual iteration throughout
array of objects, as can be seen in the code example below, where it is applied a
document transformation that colors all paragraphs white.

1 /* Coloring the paragraph text white with pure JavaScript .*/
2 var paragraphs = document . getElementsByTagName ("p");
3 for (var i = 0; i < paragraphs . length ; i++){
4 var paragraph = paragraphs .item(i);
5 paragraph .style. setProperty ("color", "white", null);
6 }

The same task can be accomplished in a more straightforward way using a CSS
stylesheet.

1 /* Coloring the paragraph text white with CSS.*/
2 p {
3 color:white;
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4 };

There exist many popular JavaScript libraries that enable more convenient
DOM manipulation. Of these, jQuery is probably the most successful one. Here
it is an example of the paragraph coloring task performed with jQuery.

1 /* Coloring the paragraph text white with jQuery .*/
2 $("p").css("color","white");

D3 share with jQuery the concept of selection: which means identifying a set of
elements using simple predicates, similar to CSS selectors. Then, the operations, as
the transformation that changes the color, can be done on the selected elements: in
the example above style changes the css aesthetic rule relative to the html element
identified by tag p.

In any case, all the methods above are not suitable for dynamic data visualisa-
tion, because for this kind of task the document transformations must handle the
creation and deletion of elements, not just the styling of existing ones. This is, of
course, impossible with CSS, tedious with pure JavaScript and, also, not so easy
with jQuery, as it lacks a mechanism for adding and removing elements to match
a dataset; with jQuery data can be bound to node individually in case of need.

Let’s take a closer look to D3 selection. D3 adopts the W3C Selector API, which
is a standard mini-language used to identify elements for selection. This language
is able to filter elements composing a page by html tag (e.g "p"), class (e.g ".class"),
unique identifier (e.g. "#id"), attribute(e.g. "[name=value]"), containment (e.g.
"parent~child"), adjacency (e.g. "before after") and various other predicates. In
addiction, predicates can be intersected (e.g. ".classA.classB") or unioned (e.g
".classA, .classB"). Thanks to all the combination of the seen rules, this simple
language guaranties an adequate number of selection possibilities.

In D3 the keyword d3 is used to access all the methods and objects exposed in
D3 namespace. The two methods used for selection are select, for selecting the first
element matching the predicate, and selectAll, returning all matching elements in
document traversal order. The following code shows how the paragraph coloring
task can be done with D3.

1 /* Coloring the paragraph text white with D3.*/
2 d3. selectAll ("p").style("color","white");

Selection methods can be chained to generate subselection or elements group-
ing. For example, in the following code, the first line return the first bold element
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(identified by tag b) in every paragraph; the second line return all the bold ele-
ments within paragraphs, grouped by paragraph.

1 d3. selectAll ("p"). select ("b");
2 d3. selectAll ("p"). selectAll ("b");

Then, on any element selection there may be applied a wide range of operators,
compliant with the W3C DOM API, such as: attr, style, property, html, text and
many others. The elements in a selection can be also looped over with the each
operator, or accessed directly as in an array(e.g [0]). Again, method chaining is
allowed, to apply multiple operators.

Another winnig feature of D3 is that, differently from other DOM-manipulation
frameworks as jQuery, often values passed to operators can be specified as functions
of data, not just as simple constants. These functions can be surprisingly useful.
The following is a trivial example coloring of different shade of gray odd and even
paragraphs: data is passed to functional operators as the first argument d, while
the second argument i is the index of the datum inside the selection.

1 d3. selectAll ("p").style("color", function (d, i) {
2 return i % 2 ? "#fff" : "#eee";
3 });

Now, it has been explained that selection is an atomic operand returning a
filtered set of elements queried from the current document, and that operators
can be applied on selections to modify the content, also in a dynamic way, by
specifying parameters as function of the data. What remains to know is how this
data can be linked to DOM elements.

In order to bind some generic input data to elements D3 introduces an abstrac-
tion, mutuated from relational algebra, called data joins.

First, the data operator is used to bind the data, expressed as an array of
arbitrary values (e.g. numbers, strings or objects) to a selection, that may also be
an empty one. Once the data has been bound to the document, it is possible to
omit the data operator: D3 will retrieve autonomously the previously-bound data.

By default, data is joined to elements by index but, in certain cases, it can be
useful to bind each datum to a specific data element. For example, this can be
particularly useful in transition when is needed for the user to be able to follow a
node and its corresponding datum into an animation: we want that at the end of
the animation the datum belong to the same element as at the beginning.

In order to achieve that, it is sufficient to pass a key function as second pa-
rameter to data operator: this function takes a data point as input and returns
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Figure 4.3. D3 Data Joins.

a corresponding unique identifier, a key, which guaranties the matching datum-
element and preserves the object constancy.

After a data binding, each datum and each element belong to one of three
possible states. Data points joined to existing elements belong to the update se-
lection. Leftover unbound data belong to the enter selection, representing missing
elements. Likewise, any remaining unbound elements produce the exit selection,
which represents elements to be removed.

This three states are also called data joins, because, as showed in Figure 4.3,
they resembles relational algebra joins: the update selection corresponds to the
inner join between dataset and element set, the enter to the left join and the exit
to the right join.

In this way, exiting nodes, having no corresponding data, can be easily removed
and a specific animation can be associated to them. Specific operators can be ap-
plied to nodes belonging to the enter and update selection as well, producing a
dynamic visualisation driven by data. For example, properties that should be con-
stant for the life of an element can be set once on enter, while dynamic properties
can be recomputed on update.

In Figure 4.4 it is shown an example of join selections: in this picture data are
represented as array of letter; when new data, in blue, are joined with old nodes,
in orange, theu are shown the three resulting subselections.

The append and insert operators add a new element for each element in the
current selection returning the added node; thus, they can be used either for
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Figure 4.4. Enter, Update and Exit subselections.

creating nested structure, or for instantiate new node based on entering data.
Other two convenient operators are sort, for reordering nodes, and filter,

which returns a subselection based on a filter function.
Moreover, D3 on operator exposes the support to event listener, which receive

user input targetted at a specific DOM element. Consistently with other operators,
on callback receives the data and the index associated with the target element (the
element itself can be retrieved using the keyword this, while the current event using
d3.event) allowing data-driven user interaction.

Finally, through the transition operator, it is possible to create animated tran-
sition derived by selection. After a transition has been applied on a selection, op-
erators applied next, as style and attr, are going to behave differently: basically
they will interpolate from the current state to the newly specified state gradually
over time. Both delay and duration of a transition can be specified as function of
data.

D3 automatically manages transition scheduling guaranteeing efficient and con-
sistent timing through a unified timer queue; this mechanism scale easily to thou-
sands of concurrent timers.

To sum up, transition enables dynamic visualizations through explicit control
over which elements are mutated, added or removed, and how. In addition, they
helps keeping separate the manipulation from the generation of the DOM, by being
able to manipulate already existing document. Hence, there is the possibility to
build the initial state of the visualization on server-side, and then apply dynamic
behaviours on client-side.

One last thing has to be said to complete this rapid overview on D3 scope and
functionalities. Whether some application act by deferring evaluation of property
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functions to the final rendering phase, to allow implicit reevaluation of properties,
D3 applied operators immediately: this reduce control flow internal to the library
moving it up to the user code. While the former approach can be convinient in
term of runtime, the one used by D3 simplifies the internal structure of the library
and gives more control to the users.

4.2 Considerations
As described in the previous section, D3 represents a flexible and standard-transparent
solution to dynamic data visualization for the web.

Its transformation module makes dynamic visualization easier to implement on
top of element selection, which eliminates redundant computation: transformation
involved only the elements and attributes that need updating or that have been
selected, rather than the entire scenegraph.

By adopting immediate evaluation of operators and the browser’s native rep-
resentation, D3 improves compatibility and debugging. The native representation
also provides CSS support for sharing simple properties definition and has many
advantages, as previously discussed, including interoperability, the presence of a
large documentation and expressiveness.

In addition, combining transformation and immediate evaluation D3 is able
to reduce overhead: the DOM is modified directly, avoiding the indirection of an
intermediate scenegraph. This design choices improve performance with respect
to higher-level existing framework, as discussed in Bostock’s article[4].

D3 has become highly popular among web developers and, as said by its cre-
ators [4], "keeps pace with the evolving technological ecosystem of the web im-
proving expressiveness and accessibility".

Whether D3 is highly customizable, it also provide a vast selection of optional
modules, based on strong reliable and reusable solutions to common problem. This
kind of approach can be efficiently summed up by the Tuftes’s principle [4]: "Don’t
get it original, get it right".

Which means that is better not to loose time on problems already solved by
others. It is actually, following this principle that it has been decided to use
the VDP algorithm to empower the ggen library, and to make it rely on D3.js
well-proved methods for animation and data visualization.
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Chapter 5

GGen Library Implementation

In this Chapter we will provide a description of the methods and techniques used
for implementing the graph-generator (ggen) JavaScript library. Although the
library name derives from its specific purpose in the LAS environment, which is
supporting the creation and drawing of an acyclic direct graph representing the
data flow of a query, the library is agnostic to this scope: it can potentially be
used in other contexts, for example to present and interact with hierarchical data.

How it will be shown in the next Sections, the library is based on D3.js, the
well-known JavaScript framework for data visualization described in Chapter 4.
D3 will be exploited by ggen, in particular as far as concerns selections, paths
and transitions modules, but also for the library structure and the programming
pattern concerning data joins.

The following is a list of some technologies and techniques that may be useful to
understand the rest of the Chapter: UMD, CommonJS, AMD, ES6, IIFE, Bézier
Curve. Their definition can be found in Appendix B.

5.1 Requirements
In order to achieve the goal of this thesis, the new LAS query module interface
should respect the requirements listed in this Section. Firstly, the new features
that need to be implemented are the following:

Requirement 5.1.1. Responsivity. The application should be accessible from
different devices and has to scale with the size of the viewport.

Requirement 5.1.2. Predefined Path. User should be led through a predefined
path in the building of the query tree. This is required to reduce user errors,
reduce user effort and increase usability. In addition this will reduce the number
of client-side integrity checks to be performed.
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Requirement 5.1.3. Hierarchy. The data flow visualization needs to be ordered
and hierarchically structured. This increase usability and reduce overhead, because
the application has no more to keep track of the x and y coordinates of each node,
the coordinates should be automatically defined by the position of the node in the
hierarchy.

Requirement 5.1.4. Draggability. In order to increase user experience, the user
should be able to move rigidly the query tree by drag and drop. Optionally the
tree could be made zoomable.

The old requirements that have to be supported also in the enhanced imple-
mentation, instead, are:

Requirement 5.1.5. Start node is unique, cannot have any entering arc, but can
have any number of children.

Requirement 5.1.6. End node is unique, can have just one arc entering and
cannot have children.

Requirement 5.1.7. Nodes different from start and end are divided in two types:
entity node, with one input, and operator node, with two inputs. There is also an
exceptional entity node with 4 inputs.

Requirement 5.1.8. Nodes different from start and end must have at most one
output.

Requirement 5.1.9. Nodes different from start and end must be named, must
be configurable through a menu and must be removable.

Requirement 5.1.10. When a node is deleted, also the arcs entering in it must
be deleted. The entire subtree induced by the node must be deleted as well.

5.2 Methods and Techniques

5.2.1 Module Loader
For designing the library, we adopted the Universal Module Definition, a standard
way to guaranty the library to be supported by different module loaders, such as
CommonJS or Asynchronous Module Definition. We could have been chosen the
ES6 standard module export, but UMD has a better compatibility, also, with older
browsers. Thus, coherently with D3, it has been chosen.

As shown in the following code snippet, UMD is just a series of if-than-else
statements to identify the module-loading style that the current environment sup-
ports.
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1 ( function (global , factory ){
2
3 if ( typeof define === ’function ’ && define .amd) {
4 define ([’exports ’,’d3’], factory );
5 } else if ( typeof exports === ’object ’) {
6 factory (exports , require (’d3’));
7 } else {
8 ( factory (( global .ggen = global .ggen || {}) , global .d3));
9 }

10
11 }( this , ( function (exports , d3){ ’use strict ’; })));

UMD pattern is composed in two parts. First, an Immediately Invoked Func-
tion Expression that checks which the module loader is being implemented by the
user. This will take two arguments: global is a reference to the global scope (that
we pass to the IIFE through this); factory is the function where we declare our
module. Then, the anonymous function in which we define our module. This is
passed as the second argument to the IIFE.

In the example above the code checks first if the environment uses AMD, then
if it uses CommonJS. If neither of those loaders are in use we make the module
and its dependencies available globally.

In case of AMD, it is defined an array of dependencies (in our case containing
just the our exposed variables and methods, exports and d3) and a callback func-
tion, factory, which is only executed when the dependencies are available. In case
of CommonJS, the require function is called to check the dependency (d3).

Thus, the use of this JavaScript Module Pattern, allows to enforce some funda-
mental properties needed by a library, such as "code reusability" (the library must
work on its own independently by the environment) and "dependency resolution"
(the user should not be in charge of taking care of the dependencies order).

When a module loader is used, it also allows to avoid the so called "pollution
of global namespace": avoiding to have all the functions and variables reside in
global scope. When a module loader is not used, we can still reduce global scope
pollution; in fact, thanks to module object and IIFE, we expose to global scope
only one single object, containing all the methods and values we need (in our case
it is called ggen).

Basically, this is based on the fact that in JavaScript, every function, when
invoked, creates a new execution context. Because variables and functions defined
within a function may only be accessed inside that context. It is possible to say
that all of the code that runs inside the function lives in a closure, thus providing
privacy.

The round brackets around the anonymous function are required for the parser
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to be able to understand that that is a function expression and not a function
declaration.

Finally, the ‘use strict’ enables the strict mode, which does not allow to delete
functions objects and variables, does not allow to reference not defined objects or
variables and it does not allows to use keyword as variable names. Thus, it helps
producing a much more secure and clean JavaScript code.

5.2.2 Versioning
Also in defining the versioning method for our graph-generator library, we chose
to emulate D3. Thus, the current version is exposed in ggen.version, exactly as
in D3 is in d3.version.

We decided to use semantic versioning [12]. That, basically, means that the
version is a number, composed by three part: MAJOR.MINOR.PATCH.

• The MAJOR number is incremented when an incompatible API changes is
made.

• The MINOR number when a new functionality is added, in a way that is is
backwards compatible.

• The PATCH number is incremented when a simple backwards compatible
bug fixes is made.

5.2.3 SVG
As said in Chapter 4, D3 uses the Scalable Vector Graphic standard. As regards
our library, we use four standard SVG abstraction: groups, paths, shapes and
texts.

The first, SVG Group, is the most important because it enables to apply trans-
formations and transition on multiple different elements at the same time. It is
defined by a tag < g >< /g >. Every SVG element inside that tag are considered
part of the group; any transformation applied to the SVG Group is applied to all
of the child elements contained inside.

There are six types of transformations available, that may be concatenated in
the transform attribute of tag < g >:

• matrix(<a> <b> <c> <d> <e> <f>). This transform specifies a trans-
formation in the form of a transformation matrix of six values.

• matrix(a,b,c,d,e,f). It is equivalent to applying the transformation matrix [a
b c d e f ]
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• translate(<x> [<y>]). This transform specifies a translation by x and y. If
y is not provided, it is assumed to be zero.

• scale(<x> [<y>]) This transform specifies a scale operation by x and y. If
y is not provided, it is assumed to be equal to x.

• skewX(<a>) This transform definition specifies a skew transformation along
the X axis by a degrees.

• skewY(<a>) This transform definition specifies a skew transformation along
the Y axis by a degrees.

In our graph-generator library we used only the translate transition for posi-
tioning the nodes.

Regarding SVG Paths, they represent the outline of a shape that can be stroked,
filled or used as a connection link. Theoretically, one can use an SVG Path to
make any type of SVG shape. The shape of an SVG Path element is defined
by one attribute: d, which contains a series of commands and parameters in the
SVG Path mini-language. These commands and parameters are a sequential and
case-sensitive set of instructions.

• moveto. It sets a new current point.

• lineto. It draw a straight line.

• curveto. it draws a curve using a cubic Bézier.

• arc. It draws an elliptical or circular arc.

• closepath. It closes the current shape by drawing a line to the last moveto.

Drawing complex graphs with just these instructions can be unconfortable,
hence D3 includes a set of helper classes for generating them automatically: func-
tions that convert our data into the SVG Path mini-language.

Among these helpers, to draw the arc connecting nodes, we used some path
generators for cubic béziers, such as: linkHorizontal, linkVertical and linkRadial.

1 arcs.attr(’d’, d3. linkVertical ()
2 . source ( function (a) { return [a.src.x, a.src.y]})
3 . target ( function (a) { return [a.dst.x, a.dst.y]});
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In the example above, considering that arcs is a D3 selection, d3.linkV ertical
will draw a cubic Bézier from the (x, y) coordinates returned in the source callback
function, to the (x, y) coordinates returned by the target callback function, for each
arc in the selection. It is possible to notice how the values of x and y returned
are taken directly from the data associated to the arcs, specifically the source
coordinates from the object src, the destination coordinates from dst.

SVG Texts and Shapes are similarly positioned using D3. In the example below
it is possible to see how one SVG Text element, corresponding to tag < text >, is
inserted for each element in groups_selection.

1 groups_selection
2 . append (’text ’)
3 .attr("class", "node -title")
4 .attr("x", function (d){ return (d.size.width /2) ;})
5 .attr("y", function (d){ return (d.size. height /2) ;})
6 .attr("font - family ","sans -serif")
7 .attr("font -size","0px")
8 .attr("fill"," steelblue ")
9 .attr("text - anchor ", " middle ")

10 .attr("dominant - baseline "," central ");

To each text element it is given the same color and font style, while the posi-
tional coordinates are given based on data. In this example, the data corresponding
to a group in groups_selection contains a size object defining width and height;
the callbacks return respectively x and y in order to center the text over the group.

Notice the text-anchor attribute and the dominant-baseline attribute. The
former define which point in the text has to be considered for anchoring it to its
x and y coordinates: if start (x, y) will correspond to the left edge of the text,
if middle to the center, if end to the right edge. The latter define the baseline,
which is the line where text naturally sits.

In order to insert in a group a shape the procedure adopted is quite similar:
see the example below, in which a circle is added to the selection.

1 groups_selection
2 . append (" circle ")
3 .attr("r", 1e -6)
4 .attr("cx", function (d){ return (d.size.width /2) ;})
5 .attr("cy", function (d){ return (d.size. height /2) ;});

D3 also provides helpers for drawing tidy trees in hierarchies module but,
unfortunately, they are not suited for our purposes, because they do not support
nodes of different shapes and size, neither they support nodes with more parents
(Requirement 5.1.7).

54



5.3 – Implementation

5.3 Implementation

In this section we will provide an high level description of the structure of ggen
and its main methods. The library, which has been designed to draw layered tree
of unbounded degree, can be used in the LAS Query Module interface as well as
in the context of other web applications.

In this section, following the names given to them in the library, we refer to
the tree nodes as blocks, with the exception of starting and ending node (that are
called start and end respectively), and to arcs connecting the node as edges.

Figure 5.1. General Code Flow.
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5.3.1 Configurability
The ggen library has been designed to be as configurable as possible. The con-
figuration parameters are kept in three objects: state keeping the current state of
the graph (e.g. current selected node and counter of node id), settings, containing
properties that depends on the environment, as starting location of the nodes, and
constants, containing all the other configurable properties that must be constant
during the graph construction. The user can for example decide if the graph should
be draggable or both draggable and zoomable and the library keeps track of this
decision in constants. The modification of constants during the construction of the
graph is not strictly forbidden, but can lead to undetermined results.

The following functions are the one available for changing the configuration.

• setBinary(binary). If binary is true, it forces the tree to be binary.

• setLinearEdges(linear). If linear is true, it sets linear edges, otherwise the
graph has by default curve edges (enforced by using SVG path, as seen in
section 5.2.3).

• setCircleBlocks(circle). Set the block shape; by default are rectangles.

• setDragAndZoom(draggable, zoomable). If draggable is set to true the graph
will be movable at mouse drag: when the mouse is pressed on the canvas,
the graph will rigidly follow the position of the cursor. If zoomable is true it
will be possible to enlarge and scale down the graph using the mouse wheel.

5.3.2 Init and Update
The entire library is build on two main functions: initCanvas, updateGraph.

The first has to be invoked, after having eventually called the configuration
function, and it is necessary to set up the SVG canvas and the settings. It is
possible to pass to it a W3C selector (see section 4.1) defining the HTML element
that is going to host the graph, it is recommended to use a < div >, a < section >
or an < article > with a fixed width and height, to avoid unpleasant results.

The second is the fundamental function exploiting the D3 update pattern; it
is never used by the user, it is called by the library whenever a change is made on
the graph in order to visualize the change inside the canvas. This function firstly
compute the position of each node by using the VDP algorithm (Chapter 3.4 and
Appendix A for reference) invoking VDPtreeLayout; then it performs the D3 data
join, as illustrated in section 4.1 and in the following code snippet.

1 // node update selection : existing nodes
2 var el_up = blocks . selectAll ("g."+ constants . nodeClass )
3 .data(nodes , function (d){ return d.id; });
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4 // node enter selection : new nodes
5 var el_en = el_up.enter (). append ("g")
6 . classed ( constants .nodeClass , true);
7
8 // Transition update selection : update nodes to their new position .
9 el_up. transition ()

10 . duration ( constants . duration )
11 .attr(" transform ", function (d) {
12 // translate to current position x, y
13 return " translate (" + d.x + "," + d.y + ")";
14 });

Basically, for each selection returned by the D3 data join, enter, update and
exit, it perform different actions. The data to be associated with blocks and edges
are contained in two array of objects, called respectively nodes and paths.

At line 2 of this example, the function selects all blocks element and computes
the data join using a key function to bind permanently the SVG group composing
the node to the corresponding data point (as key it is used an unique id). Then, it
computes the enter selection, corresponding to new nodes, not yet in the canvas,
and for each of them it inserts a new group (corresponding to a block), giving to
it the class constants.nodeClass. Notice that it is preferable to use .classed(...,
true) instead of .attr("class",...), because the .attr method overwrites the entire
class list. Finally, at line 8, it is provided an example of transition moving the
nodes to the new x and y coordinates, applied on the update selection. Obviously,
the same pattern is applied also on edges. At the end of the function exiting nodes
and edges are removed, as follows.

1 // remove eliminated /old paths
2 path_up .exit (). remove ()
3
4 // remove old/ eliminated nodes
5 el_up.exit (). remove ();

5.3.3 Nodes and Arcs
Other two fundamental functions belonging to the library are the two devoted to
add nodes and arcs:

• addNode(type, title, parent, nodeclass, numInputs, x0, y0)

• addArc(source,destination)
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addNode accepts many parameters; the most important are type, title and
parent. Type is a string denoting the type of node, currently the library supports
only four values: "start", "end", "block" and "operator", which is a special block,
as explained in section 5.3.5. Title is a string containing the name of the block
that will be displayed in the drawing. Parent, instead, must contain the data
object associated with the parent node; it must be an object currently contained
in nodes array, otherwise the library throws an error. The other parameters are
optional: nodeclass is used to give a specific CSS class to the node; numInputs
to specify the number of parent the node may have (currently this features is not
fully supported); x0 and y0 are used to specify the starting position.

addNode, after having created the new data objects, pushes it into nodes array
and invokes addArc, passing to it the parent as source and the new node as destina-
tion. addArc, after a some integrity checks and a precomputation phase, executed
only in case of "operator" nodes (it will be explained later in section 5.3.5), creates
a new arc object and pushes it into edges array; finally it calls the updateGraph
functions to propagate the changes to the canvas.

Two other useful functions involving arcs and nodes are:

• removeNode(t)

• connectNodeToEnd(t)

The first is needed for removing nodes (Requirement 5.1.10). When a node is
removed, also its references within the other nodes must be removed. Each node
maintain s a parent and a children queue, containing respectively the references
to parents ad children of that node. In order to do so we implemented a recursive
solution: the function visits recursively all children of the node to be deleted setting
their id to −1, and then filtering them out from the arrays referencing them. At
the end of this recursion, the function filters out also from nodes the nodes with
id == −1 and from edges the arcs with as source or destination a node with
id == −1.

The second function need to be used to connect a node to the end node; it has
been implemented to consider the case in which more nodes have to be connected
to a common end: this is not the case of LAS query module, but we tried to made
the library as general as possible. In addition, this function returns false in case a
node is already connected to end, allowing the application to handle this situation
properly.

5.3.4 Customizable Functions
The feature of customizable functions is born with the aim of being compliant to
Requirement 5.1.9 and to maintain the configurability property. The idea is to
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allow the user to set the functions triggered by all the buttons belonging to the
nodes; specifically the start and end block can trigger one function each, while
block and operator node can trigger up to three functions: one by default deletes
the node, another it is used to configure the node, the last one trigger the function
to add a child node (see Figure 5.2).

Figure 5.2. Block functions triggers.

• setCustomFunction(f, type, i)

The user can define its own functions and pass it, through parameter f , to the
setCustomFunction; in order to identify which node type and which button has
to trigger the function parameters type and i are provided; i for end and start
node is 1 in any case, while for the other nodes it can be 1, 2 or 3.

5.3.5 Multiple-input Nodes
In the LAS query module, a part for the start node, which may have any number
of children, any other nodes should have just one child. This Requirement (5.1.8),
that is a relaxation of VDP constraints, is easily absolved by the ggen library.

Although VDP algorithm has been designed to support tree with any number
of children nodes, it does not support graphs with any number of parents. This
arises an issue, because another LAS query module Requirement (5.1.7) asks that
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Figure 5.3. Operator node example.

some nodes can have two inputs. This eventuality is not considered by VDP and
requires an algorithm extension specifically designed for that purpose. Moreover,
there is an exception in which a LAS node may have four inputs. In this section
we will explain how these two cases have been handled.

The function addArc, whenever the destination node is of type "operator" and
is already connected to an input, does some operations. Firstly, it checks if the
operator is positioned under the rightmost parent: if it is it swaps the parents,
so it will be under the leftmost. Secondly, it searches the lowest node with more
than one child and moves all nodes in between the children that are ancestors of
the "operator"; in this way the two elements attached to "operator" are closer to
each other. This is an heuristic way of producing a pleasant drawing, avoiding
overlapping arcs. In LAS query module, in which only the start node can have
many children, the goal is reached in the vast majority of cases; in other kind of
applications this mechanism could have been improved.

The exception case in which a node of type "block" has four inputs is such rare
that the library accepts arcs overlapping.

In order to position correctly in a nice way nodes with more than one inputs,
it had to be introduced a correction to VDP algorithm. Thus, in updateGraph
after VDP has already computed nodes’ positions, it is invoked another recur-
sive function that adjusts "operator" (and "block" with four inputs) positions and
propagates the changes to their subtrees.
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Figure 5.4. Exceptional 4-input node example.

• moveNodesRecursive(node, offset)

This function performs a traversal of the tree, changing the x coordinate of
nodes with more than one input connected, placing them centered of two parents;
as regards the y coordinates, it positions these node one layer below their deepest
parent.

5.3.6 Load and Store JSON
Although not used in the LAS environment, these two utility functions can be
useful whenever one wants to store a graph that has been build and later wants
to be able to reload it. As noted in section 5.4 they may be used in some future
improvement of the library.

• storeGraphJSON()

• loadGraphJSON()

The first one, decycles nodes and edges arrays of objects in order to stringify
them in two JSON string. Then, it downloads a file named "gen-graph.json" con-
taining them.

In order to reload the graph is sufficient to call loadGraphJSON and select
a json file with a compatible structure. The function parses it and rebuilds the
nodes and edges arrays, then it calls updateGraph to draw the graph inside the
canvas.
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5.3.7 Alternative Algorithms
One feature that has been implemented for testing some of the algorithms described
in Chapter 3 is the possibility to select a different algorithms to compute nodes’
coordinates, with respect to the default one (VDP).

• setAlternativeAlgorithm(alg)

• triggerAlternativeAlgorithm()

Calling the setAlternativeAlgorithm function we can decide which algorithm
we want to use; at the moment the two supported are algorithm WS and RT. For
both, the function configure the library in order to draw only binary trees with
nodes of circular shape and linear arcs

The triggerAlternativeAlgorithm introduce some attributes in the nodes’ data
object needed by the alternative algorithm chosen and invokes updateGraph.

Figure 5.5. Example of VDP algorithm drawings with curve edges and
rectangular nodes

5.4 Considerations
In this Chapter we gave an overview on how ggen is implemented. As it has been
described, whether this library has been developed specifically for the LAS query
module purposes, following the Requirements listed in section 5.1, it has been
developed in a way that keeps open also other possibilities.

We think that the library may be improved to be used in other fields of applica-
tion. Drawing trees is, in fact, a useful task in many fields of Software Engineering,
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Figure 5.6. Example of RT algorithm drawing with linear edges and
circular nodes.

such as Formal Languages (e.g parse trees), Relational Databases (e.g. query op-
timization trees) or Operative Systems (e.g. process tree diagrams).

In the next Chapter (6), we will provide some example of usage of the library in
the LAS context, showing also how the query module interface has been developed
in order to employ it.
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Chapter 6

GGEN - Use Cases

The purpose of this Chapter is to present the modification applied on the LAS
query module interface and how the new implemented library (ggen) has been in-
tegrated into the module. The main features introduced will be illustrated through
some real use-case scenarios. Specifically, the following examples are provided:

• The procedure to draw and submit a query.

• The procedure to save a Template.

• The procedure to save a Translator.

• The procedure to reload of the last query submitted.

The application uses Bootstrap toolkit (in particular for Modal dialogs, Tab
and Navbar menus) to be as responsive as possible (Requirement 5.1.1). Make
reference to Appendix B for acronyms and definitions used in the rest of the
Chapter (e.g. Bootstrap or JSON).

6.1 Background
The LAS query module interface relies on local data to make consistency checks
on the graph drawn by the user. The query defined by the graph is, thus, sent to
the module backend only when it has been assured to be consistent with the Data
Integrator (DI) database (see Chapter 2).

The data used for performing all this kind of checks it is also used for building
the menus, containing all the block that can be inserted into the workspace (section
A and C in Figure 2.2). This data is contained in three JSON objects loaded
together with the page: qent, the list of queryable entities, ops, the list of operators,
and templates, the list of templates.
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Figure 6.1. Query Module Starting Situation.

These objects are managed and maintained updated by the DI: they store
information about each available Entity, Operator or Template and theirs available
filters and configurations. The new interface heavily relies on them to provide the
predefined path property (Requirement 5.1.2).

In Figure 6.1, it is shown the interface as it appears to an user, when he or she
opens the Query Module. It is possible to notice how all the user possible actions
has been grouped in a menu on the left-side of the page.

For example, here it is possible to open the help dialog (whose button was
originally positioned in the top-left portion of the interface), clear the workspace
or setting a query title and/or a description (that once were inside the D section,
as shown in Figure 2.2). The other four buttons belonging to this menu triggers
the use-case scenarios described in the following sections.

6.2 Create and Submit a Query
The creation and submission of a query is the most important task performed by
the LAS Query Module, and it is also the one that is changed the most in the new
interface.

The major change is in the way a user can insert a node in the workspace. As it
can be seen in Figure 6.1, in fact, there are no more lists of entities and operators
among which to choose the one to insert. Whenever an user wants to add a new
node, he or she should always decide first to which node it would be connected; at
the beginning the only node available is the start node.

In Figure 6.2 it is shown the dialog menu (Bootstrap Modal), opened by clicking
on the start node. The same menu is opened by triggering function 3, clicking
on the black output connector of a block (see Figure 5.2). Inside the menu each
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Figure 6.2. Select Entity/Operator Modal Menu (Biobank tab).

Figure 6.3. Select Entity/Operator Modal Menu (Operator tab).
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tab (Bootstrap Tab) represent a list of entity belonging to a different LAS Module
database; the last tab contains the Operators, the Template and the button to
connect the current node to the end node.

In the example in Figure 6.2 the tab relative to a module called Biobank is
active, while in Figure 6.2 the Operator tab is active. It is interesting to notice
that in this particular case (remember that we opened the menu clicking on the
start node) the only possible selection is Template. This is because the only
node belonging to this category (containing, as said, Operators, Template and
the connect-to-end option) that can be added to start is that one. Whenever
opening the same dialog from a different node the menu content will be dynamically
inserted, based on the available options that can be chosen from the current node
we are considering.

Figure 6.4. Query Graph Example.

The function that dynamically populates the menu with the current options
works as follows. For the entities modules (Biobank, Cellline, Storage and Xenografts)
tabs, if the current node is start, it inserts all entities listed in qent; if the current
node is an Entity, it inserts only the queryable entities belonging to its query path
(that is defined by the Administrator, as described in Section 2.1.1); instead, if
the current node is an Operator (not a Template), it inserts only entities in the
query path of its first parent node. In the case of last tab (containing Operators,
Template and connect-to-node options) for the start only the Template option is
available; in all the other cases the Operators contained in ops are inserted; more-
over, the application checks if there are available operator missing an input, if so
and if their parent is compatible with the current node, the options to connect
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current node to them are inserted; the connect-to-end is inserted only for nodes
with the canBeLast flag set to true.

At this point, suppose we want to add two "Transformation events" entities:
we select the first option in Figure 6.2 and click "Confirm". Then, we press again
on the start and repeat the actions done so far. The result is shown in Figure 6.4.

Figure 6.5. Entity Configuration Example.

Figure 6.6. Entity Configuration Example.

Now, we may want to set two different filtering for one node and for the other,
in order to apply a "AND" operator next, to see which records resulted from the two
differently-filtered queries are in common. It is obviously just a trivial example:
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the same results can be obtained by applying the two filters on the same entity
node; of course, they can be done much more complex queries.

The click on the top-left icon within a block will trigger the opening of another
dialog, dynamically populated based on the current node, where it is possible to
choose some filtering options. In this example, in the first node we select only the
"Transformations events" terminated with success (see Figure 6.5), while in the
second only the ones actually executed (see Figure 6.6).

Figure 6.7. Query Graph Example.

Next, to add the operator we open the "Select Entity/Operator" dialog from
the second node by clicking on the black terminal at the bottom of the node (the
one devoted to trigger Function 3, see Figure 5.2), go to the last tab, select the
"AND" and press "Confirm". The current situation is shown in Figure 6.7. At this
point, we want to connect the other node to the operator; although we cannot
manually draw an arc as in the previous interface, the operation is as simple as
that: we open the "Select Entity/Operator" dialog and go to the last tab. What
we will see it is in Figure 6.8: what happened is that, when populating the menu
options, the application notice the presence of an Operator missing an input and,
due to the fact that it is connectable to the current node, it shows the option.
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Pressing "Confirm", what the application does is adding an arc between the
current Entity node and the already present Operator node. The ggen library,
then, manages the positions of the nodes, as described in Section 5.3.5, in a way
that avoids interleaving arcs and centers the Operator with respect to its parents.
In order to obtain the final query graph (in Figure 6.9) is sufficient to add the
end node (selecting the "Connect Node to END" option that is possible to see in
Figure 6.8).

Figure 6.8. Select Entity/Operator Modal Menu (Operator tab).

In the end, we may decide to submit immediately the query by clicking the
"Submit" in the left-side menu, or we may decide to save it as a Template or as a
Translator. Submitting the query will produce the results in Figure 6.10.

Before submitting it, it is also possible to choose an already saved translator
for the current query; to do that, it is sufficient to click on the end node: a menu
dialog will be displayed with all the available options. In this particular case
there is only one option entitled "Mother Aliquots" which will provide the result
in Figure 6.11: as showed, each record can be expanded to display the information
added by means of the Translator.
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Figure 6.9. Query Graph Example.

6.3 Save a Template
Templates are predefined queries whose structures are stored in the MDDM database;
a user may want to store the query he or she has build, aiming at running it later
or making it available to other users.

The query must respect some constraints, such as: all nodes outputs has to
be connected to another node, all paths have to converge to the end node. Those
checks are performed when "Save as Template" button is clicked. Immediately
after, the dialog in Figure 6.12 shows up. For each node the user can define some
parameters, a name and a description.

When the user is done, he/she clicks "Confirm". Given that a title is required
to identify the template, if the user has not previously defined the "Insert Title
and Description" dialog (Figure 6.13) appears; once added a title it is enough to
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Figure 6.10. Table of Result Example.

Figure 6.11. Table of Result Example (with Translator).

press again the "Confirm" button to send the query to the Query Module backend.
Finally, the MDDM backend is in charge of storing the query tree in its database

and changing the templates object accordingly. In this way all users, after loading
the JSON object, are able to see the new Template and eventually add it to their
queries.

6.4 Save a Translator
The Translator is a particular type of Template that can be optionally run for each
row in a query result, to enrich it with additional information. In order to save
the current query as a Translator is sufficient to click on the "Save As Translator"
button". Also in this case a title is required; hence, if not present, the dialog in
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Figure 6.12. Template Definition Dialog.

Figure 6.13 it is shown and, after the title insertion, the "Save As Translator" has
to be clicked again. Finally, as in the previous case, the query is sent to the Query
Module backend, which stores it and propagates the changes to the templates
object.

6.5 Reload last-submitted Query
One interesting feature provided by the LAS Query Module interface is the possi-
bility to reload the last query submitted. From the user perspective it is sufficient
to click on the "Reload Query" in the left-side menu; a pop up it is shown in case
the current query has more than two nodes to let the user know that, if he/she
confirms, the current query will be lost.
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Figure 6.13. Insert Title and Description Dialog.

Next, basically, what the application does is reloading the page, inserting in
the URL parameter of the query string an identifier of the last submitted query.
The list of nodes of the query is retrieved from the backend and the graph is
reconstructed from the root to the leaves.

To rebuild the graph, the application calls a recursive function for each child
of the start node. The function works as follows: if the current node is end it calls
connectNodeToEnd() (see Section 5.3.3), if it is an operator with one input or
an entity, it calls addNode() (Section 5.3.3); if, instead, is an operator with more
inputs or the special block with four inputs, it checks if that operator is already
been inserted into the canvas, in this case it connect an arc to it with addArc()
(Section 5.3.3), otherwise it calls addNode() as well. The function then calls itself
over the children of the current node, until the end is reached (if child has already
been processed by the function, of course, it will not be considered any more).
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Chapter 7

Conclusion

As it had already been pointed out during this dissertation, the goal of this thesis
was the design and development of a graph visualization library, able to build
hierarchical tidy trees in web environments. In particular, the library needed to
be suitable to be used in the LAS Query Module interface.

The LAS (Laboratory Assistant Suite) is a web platform for cancer genomic
data management developed in-house at Cancer Intitute IRCCS Candiolo. Its
Query Module interface provides a easy-to-use tool for structuring, in a graphical
form, queries to be submitted to the LAS distributed databases.

This thesis addressed some issues arisen during the every-day use of the mod-
ule. Specifically, the interface needed some improvements in term of usability and
responsivity, in addition to an update related to the libraries used. In order to
accomplish these goals, the ggen library had been implemented; in the LAS envi-
ronment, it is able to support the creation and drawing of an acyclic direct graph
representing the data flow of a query, but it can potentially be used in any other
web context as a graph visualizer. The development of this thesis can be, ideally,
divided into three phases.

The first preliminary phase was devoted to the choice of the best algorithm
for computing the nodes’ positions, producing a tree that should be compact and
pleasant-to-see: a so called tidy tree. Thus, they have been analysed some algo-
rithms for drawing tidy trees, in order to compare them and make an informed
choice. In particular, they were analysed two algorithms for drawing binary trees,
Whetherell and Shannon’s [14] and Reingold and Tilford’s [13], and two algorithms
for drawing general trees of unbounded degree, Walker’s [10] (with its enhance-
ment [5]) and Van Der Ploeg’s [11]. At the end of this preliminary phase, the VDP
algorithm had been chosen, as it is the most recent and most general algorithm
suitable for our needs.

During the second phase, the ggen library had been designed and implemented,
with an as general and standard as possible approach. It had been built on top
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of D3.js framework, using the VDP algorithm. In order to respect the query
representation requirements, the algorithm had been extended for being able to
draw ordered hierarchical trees containing also nodes with more than one input.
The code related to the library and to the algorithm analysis can be found in a
github repository [6].

The last phase consisted in the restructuration of the LAS Query Module in-
terface, supported by the integration of the ggen library. The final results are a
library that dynamically recomputes node positions, producing a nice and com-
pact tree-shaped representation of a query, and a new supervized interface that
provides a wizard to the users guiding them, step by step, in the creation of a
consistent query tree.

7.1 Future Works
As it had been said, the library was built to be agnostic with respect to the LAS
Query Module interface.

Although the library already provides some methods allowing applications to
set some configuration parameters, such as node shapes and vertical and horizontal
offsets between nodes, in term of configuration it can be furthermore improved.
Specifically, the currently available shapes are only circle and rectangle, while the
arcs can be only linear or curve; surely can be interesting to add new shapes, such
as rombs or parallelograms, and new type of edges, as dashed arrows or dotted
lines.

Moreover, another characteristic that can be interesting in other fields of appli-
cation, could be the possibility to create cyclicity in the representation, for example
given the possibility to connect a node to a previous one with a sort of backward
arc.

Actually, in the purposes of LAS Query Module interface, the VDP algorithm
had not been exploited at full potential; for example, it may eventually be used to
build both unlayered and non-vertical trees.

From a graphical point of view the range of possible improvements is huge, and,
of course, it should be made a choice based on the needs of the target application.

Therefore, potentially the ggen library can be improved to be suitable for many
other kind of applications. One, again related to the LAS, is the representation of
a operational flow, such as visualizing the dependencies among processes managed
by a scheduler.

Nowadays, dynamic Data Visualization is a task of growing importance in many
fields. In particular, in web-oriented contexts, where users expect to interact
with fast and intuitive interfaces allowing them to extract useful knowledge in
structured, organized way. We think that ggen may represent a nice and interesting
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tool for supporting this kind of tasks, respecting modern standards.
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Appendix A

VDP Algorithm Implementation

1
2 /* --- js implementation of A. J. van der Ploeg algorithm --- */
3 function VDPtreeLayout (t){
4 VDPfirstWalk (t);
5 VDPsecondWalk (t ,0);
6 }
7
8 function VDPfirstWalk (t){
9 t. subtree .mod =0;

10 t. subtree . prelim =0;
11 if(t. children == null || t. children . length ==0 ){ // leaf
12 VDPsetExtremes (t);
13 return ;
14 }
15 VDPfirstWalk (t. children [0]);
16 // create sibling in contour minimal vertical coordinate and

index list
17 var ih = VDPupdateIYL ( VDPbottom (t. children [0]. subtree .el), 0,

null);
18 for(var i=1; i< t. children . length ; i++){
19 VDPfirstWalk (t. children [i]);
20 // stores lowest vertical coordinate while extreme nodes

still point in current subtree
21 var minY = VDPbottom (t. children [i]. subtree .er);
22 VDPseparate (t, i, ih);
23 ih = VDPupdateIYL (minY , i, ih);
24 }
25 VDPpositionRoot (t);
26 VDPsetExtremes (t);
27 }
28
29 function VDPsetExtremes (t){
30 if(t. children == null || t. children . length == 0){
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31 t. subtree .el = t;
32 t. subtree .er = t;
33 t. subtree .msel = t. subtree .mser = 0;
34 }else{
35 t. subtree .el = t. children [0]. subtree .el;
36 t. subtree .msel = t. children [0]. subtree .msel;
37 t. subtree .er = t. children [t. children .length -1]. subtree .er;
38 t. subtree .mser = t. children [t. children .length -1]. subtree .

mser;
39 }
40 }
41
42 function VDPseparate (t, i, ih){
43 // right contour node of left sibling and its sum of modifier .
44 var sr = t. children [i -1];
45 var mssr = sr. subtree .mod;
46 // left contour node of current subtree and its modifier .
47 var cl = t. children [i];
48 var mscl = cl. subtree .mod;
49 while (sr!= null && cl!= null){
50 if( VDPbottom (sr) > ih.lowY )
51 ih = ih.nxt;
52 // how far to the left of the right side of r is the left

side of cl?
53 var dist = (mssr + sr. subtree . prelim + sr. subtree .w) -(mscl

+cl. subtree . prelim );
54 if(dist > 0){
55 mscl += dist;
56 if(ih== null)
57 console .log("VDP ERR");
58 else
59 VDPmoveSubtree (t, i, ih.index , dist);
60 }
61 var sy = VDPbottom (sr), cy = VDPbottom (cl);
62 // advance highest nodes and sums of modifiers (coord syst

increases downward )
63 if(sy <= cy){
64 sr = VDPnextRightContour (sr);
65 if(sr!= null) mssr += sr. subtree .mod;
66 }
67 if(sy >= cy){
68 cl = VDPnextLeftContour (cl);
69 if(cl!= null) mscl += cl. subtree .mod;
70 }
71 }
72 // set threads and update extreme nodes
73 //in the first case the current subtree must be taller than

the left siblings
74 if(sr== null && cl!= null) VDPsetLeftThread (t,i,cl ,mscl);
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75 //in the second the left siblings must be taller than the
current subtree .

76 else if(sr!= null && cl== null) VDPsetRightThread (t,i,sr ,mssr);
77 }
78
79 function VDPmoveSubtree (t, i, si , dist){
80 // Move subtree by changing mod.
81 t. children [i]. subtree .mod += dist;
82 t. children [i]. subtree .msel += dist;
83 t. children [i]. subtree .mser += dist;
84 // console .log (" movesubtree mod " + dist);
85 VDPdistributeExtra (t,i,si ,dist);
86 }
87
88 function VDPnextLeftContour (t){
89 return t. children . length == 0 ? t. subtree .tl : t. children [0];
90 }
91
92 function VDPnextRightContour (t){
93 return t. children . length == 0 ? t. subtree .tr : t. children [t.

children .length -1];
94 }
95
96 function VDPbottom (t){
97 // console .log (" vdp bottom "+(t.y+t.size. height ));
98 return t.y + t.size. height ;
99 }

100
101 function VDPsetLeftThread (t, i, cl , modsumcl ){
102 var li = t. children [0]. subtree .el;
103 li. subtree .tl = cl;
104 // console .log (" thread left ");
105 // console .log(li. subtree .tl);
106 // change mod so that the sum of modifier after following

thread is correct
107 var diff = ( modsumcl - cl. subtree .mod)-t. children [0]. subtree .

msel;
108 li. subtree .mod += diff;
109 // change preliminary x coordinate so that the node does not

move
110 li. subtree . prelim -= diff;
111 // update extreme node and its sum of modifiers
112 t. children [0]. subtree .el = t. children [i]. subtree .el;
113 t. children [0]. subtree .msel = t. children [i]. subtree .msel;
114 }
115
116 function VDPsetRightThread (t, i, sr , modsumsr ){
117 var ri = t. children [i]. subtree .er;
118 ri. subtree .tr = sr;
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119 var diff = ( modsumsr - sr. subtree .mod)-t. children [i]. subtree .
mser;

120 ri. subtree .mod += diff;
121 ri. subtree . prelim -= diff;
122 t. children [i]. subtree .er = t. children [i -1]. subtree .er;
123 t. children [i]. subtree .mser = t. children [i -1]. subtree .mser;
124 }
125
126 function VDPpositionRoot (t){
127 // position root between children , taking into account their

mod
128 t. subtree . prelim = (t. children [0]. subtree . prelim +
129 t. children [0]. subtree .mod +
130 t. children [t. children .length -1]. subtree .

mod +
131 t. children [t. children .length -1]. subtree .

prelim +
132 t. children [t. children .length -1]. subtree .w
133 )/2 - t. subtree .w/2;
134 // console .log (" positionROOT : "+t. subtree . prelim );
135 // console .log (" width "+t. subtree .w);
136 }
137
138 function VDPsecondWalk (t, modsum ){
139 modsum += t. subtree .mod; //+ centermod
140 // set absolute (non - relative ) horizontal coordinate
141 t.x = t. subtree . prelim + modsum + t.size. marginl ;
142 VDPaddChildSpacing (t);
143 for(var i=0; i<t. children . length ; i++)
144 VDPsecondWalk (t. children [i], modsum );
145 }
146
147
148 function VDPdistributeExtra (t, i, si , dist){
149 // are there intermediate children ?
150 // distribute distances to children to be good looking
151 if( si!= i-1 ){
152 var nr = i - si;
153 t. children [si +1]. subtree .shift += dist/nr;
154 t. children [i]. subtree .shift -= dist/nr;
155 t. children [i]. subtree .change -= dist - dist/nr;
156 }
157 }
158
159 function VDPaddChildSpacing (t){
160 // process change and shift to add intermediate spacing to mod
161 var d = 0, modsumdelta = 0;
162 for(var i=0; i<t. children . length ; i++){
163 d += t. children [i]. subtree .shift;
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164 modsumdelta += d + t. children [i]. subtree . change ;
165 t. children [i]. subtree .mod += modsumdelta ;
166 }
167
168 }
169
170 class IYL{
171 constructor (lowY , index , nxt){
172 this.lowY = lowY;
173 this.index = index;
174 this.nxt = nxt;
175 }
176 }
177
178 function VDPupdateIYL (minY , i, ih){
179 // remove siblings that are hidden by the new subtree
180 while (ih != null && minY >= ih.lowY)
181 ih = ih.nxt;
182 // prepend the new subtree
183 return new IYL(minY , i, ih);
184 }
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Appendix B

Acronyms and Definitions

Definition B.0.1. HTML (HyperText Markup Language) is the standard markup
language used to describe the content of Web pages.

Definition B.0.2. CSS (Cascading Style Sheets) is the most used language for
describing the style of an HTML document.

Definition B.0.3. SVG (Scalable Vector Graphics) is a technology able to vi-
sualize vector graphical objects and to manage scalable images; it is a language
derived from the XML.

Definition B.0.4. DOM (Document Object Model) is an object-oriented hier-
archical representation of a web page, which can be modified with a scripting
language such as JavaScript.

Definition B.0.5. W3C DOM is a standard document object model implemented
in most modern browsers. It is maintained by the World Wide Web Consortium.

Definition B.0.6. JavaScript is a high-level, interpreted scripting language widely-
supported.

Definition B.0.7. jQuery is a JavaScript library designed to simplify the creation
of interactive web pages; it simplifies DOM hierarchy traversal and manipulation,
event handling, CSS animation etc...

Definition B.0.8. UMD (Universal Module Definition) is a pattern used to allow
a JavaScript module to be imported by a number of different module loaders, as
AMD or CommonJS.

Definition B.0.9. CommonJS is a specification for JavaScript module loaders
aimed at defining conventions on module ecosystem for JavaScript outside of the
web browser (e.g. when the language is use on serverside).
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Definition B.0.10. AMD (Asynchronous Module Definition) is a specification
for JavaScript module loaders able to load different module asynchronously. Re-
quireJS is its most popular implementation.

Definition B.0.11. ES6 (ECMAScript 2015) is the sixth edition of the standard
specification for JavaScript language.

Definition B.0.12. IIFE (Immediately Invoked Function Expression) is a JavaScript
abstraction, well-described in Ben Alman’s article [1]; it defines a function expres-
sion immediately executed.

Definition B.0.13. Bézier Curve is a parametric curve, based on Bernstein
polynomial, used in computer graphics and related fields.

Definition B.0.14. JSON (JavaScript Object Notation) is a human-readable
data-interchange format designed to be language-independent and easy for ma-
chines to parse and generate.

Definition B.0.15. Bootstrap is an open source toolkit for developing with
HTML, CSS, and JS. It provides some useful set of primitives and abstractions,
such as a responsive grid system, extensive prebuilt components and plugins.
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