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Chapter 1

Introduction

This thesis starts from a project of COMAU S.p.a., whose goal is the realization of a
differential drive wheeled mobile robot for industrial application. The robot purpose
is the material handling in industrial environments and warehouses and it is able
to move around on its own without the need of onboard operator or driver. These
robots are called Automated Guided Vehicles and are becoming very popular in the
branch of collaborative robots. Indeed, they can work autonomously with human
operators since they are aware of the surrounding environment. They are able to
detect obstacles and to avoid collisions, using systems like laser scanners. These
robots allow also to improve the modularity of industrial productions. Indeed, they
can move products from one working station to another one to perform subsequent
processing. In this way, the same station can be used for different products and
the production lines can be changed just changing the robot paths. The name of
the new wheeled mobile robot of COMAU S.p.a is Agilino and in this thesis its
dynamic model is developed. Dynamic models are fundamental in all the robot
design phases. Both mechanical and control software design phases need a model
to proceed. Of course different design goals need different models to be used. The
last statement lays on the awareness that a general model including all the robot
dynamical aspects can be difficult to realize and also useless with respect to the
effort needed to find it. Of course, more general the model is, better it is but
also more complex. Therefore, some dynamical aspects are usually simplified or
neglected depending on the model purpose.
In this thesis three models for three different purposes are investigated:

1. The first model goal is to be as general as possible in order to be used instead
of the real wheeled mobile robot until the first prototype is built. To take
into account many dynamical aspects in an easy and intuitive way, the multi
body programme Adams was chosen to develop this model. The following
two mathematical models will be refined using this first one as the reference.

2. The second model is less general than the previous one, because it is built
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Introduction

computing the robot dynamic equations. It is needed to translate into mathe-
matical equations the first model results in order to get a better understanding
of the robot. It will be used in the motors choice and to plan safe trajectories
for the robot. Safe trajectories stand for trajectories where the non-sliding
and non-slipping constraints are respected at the robot driving wheels.

3. The third and last model is a mathematical model as the second one but
simpler, since its purpose is to be used as the basis for the design of a con-
trol algorithm to drive the motors. All the dynamical aspects that will be
neglected will be considered as disturbances and the control algorithm should
be robust enough to deal with them.

Therefore, the final thesis purpose is to control the robot motion so that it follows
the desired trajectories. The control of the robot motion can be divided into two
actions. The first action follows the common sense rule that prevention is better
than cure. Indeed, it consists in finding the velocity and acceleration limits of the
trajectories to avoid both the longitudinal slip and the lateral slide. This action is
performed offline, so that the controller will never provide a trajectory that for sure
cannot be travelled by the robot. These limits can be be found both when the robot
is travelling on its own and when it is pulling a library. The second action is the
online control of the robot driving motors. The robot trajectory is described by the
time evolution of the motor shafts angular velocities. The controller compares the
ideal angular velocities with the ones measured by the encoders at the motors shaft
and tries to let the error between them converge to zero as quick as possible. The
controller action is fundamental to make the robot follow the desired trajectory,
taking care also of the unexpected situations, as the possible reduction of the friction
coefficient at the wheel-ground contact point. In these cases, the controller recovers
the longitudinal slip or lateral slide that occur due to events that are not predictable
a priori.

This thesis starts with the introduction of the Automated Guided Vehicle world
in Chapter 2. The main AGV categories used at this moment are described and
examples of existing robots are given. The Agilino robot is introduced and the
category it belongs to, which is the one of differential drive robots, is compared
to the other categories with respect to its working goals. Chapter 2 ends with the
description of differential drive robot kinematic model. Then, in Chapter 3, the
first robot model on the multi body programme Adams is built. In Chapter 4, the
relevant dynamic aspects of the robot are analysed and the robot mathematical
model for safe trajectories computation is developed. The robot task is to pull
tracks, therefore also a track model is developed. In this way, safe trajectories with
the maximum payloads can be investigated. In Chapter 5, the Adams model and
the mathematical model are simulated together to make a comparison that allows
to tune the mathematical model parameters. In Chapter 6, the mathematical model
results are compared with the measures taken on the real prototype. In Chapter
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7, the third and last model is developed. It is a simpler mathematical model
whose purpose is the design of the control algorithm that drives the two motors. A
decentralized control strategy is implemented and tested with the Adams model.
In Chapter 8, future works that will evolve from this thesis are presented.
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Chapter 2

State of the art

A general definition for the Automated Guided Vehicles is the following:
An Automated Guided Vehicle is a wheeled mobile robot able to move materials in
a facility without the need of an onboard operator or driver. This general definition
allows to categorize the AGVs from two different points of view. The first one is
the wheel configuration, while the second one refers to the technological solutions
used by the robot to move autonomously.

2.1 Wheels’ types

Before analysing the wheel configurations, different types of wheels have to be
presented. There are two main wheels’ groups, the first one including omni-wheels
and mecanum wheels and the second one including the conventional wheels. An
omni wheel (Figure 2.1a) has small rollers on its circumference whose axes are
perpendicular to the wheel plane. Also a mecanum wheel (Figure 2.1b) has small
rollers around its circumference, but the rollers axes form an angle of 45◦ with
respect to the wheel plane. Conventional wheels can be divided into fixed wheels
and orientable wheels. A fixed wheel can rotate only around its main axis that is
perpendicular to the wheel plane and passes through the wheel centre. Instead, an
orientable wheel can rotate around both the main axis and a secondary axis that
is perpendicular to the main one. In centred orientable wheel the secondary axis
passes through the wheel centre, while in off-centred orientable wheel does not.
The off-centred wheels with the secondary axis on the wheel plane are called castor
wheels (Figure 2.1c). They can be actuated or not since they are self-aligning due
to the distance between the secondary axis and the wheel centre. Instead centred
wheels are always actuated. In order to reduce the friction torque opposition to their
orientation, centred wheels can be substituted with wheels having the secondary
axis not in the wheel plane.
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(a) Omni wheel [1] (b) Mecanum wheel [2]

(c) Castor wheel [3]

Figure 2.1: Wheels’ types

2.2 Kinematic parameters

As described in paper [4], depending on the number and types of wheels used in the
configuration, the motion capabilities of a wheeled mobile robot change and can be
described by three parameters called degree of mobility δm, degree of steer-ability
δS and degree of manoeuvrability δM [1].

The three parameters are analysed assuming that the robot motion is planar and
that the wheels are rigid. Due to these assumptions, the wheel plane is always per-
pendicular to the ground, having the main axis horizontal and the secondary axis,
if present, vertical. In addition the contact between each wheel and the ground
reduces to a point. In a planar motion, the robot posture is described by three
Cartesian coordinates ξ = [x, y, θ], where x and y describe the position of the robot
local frame origin in the inertial frame and θ the robot orientation with respect to
the inertial frame z axis.

Depending on the wheel configuration, the three posture coordinates can be
varied independently one with respect to the others or not. The posture variation
from a fixed initial state is described by the posture velocity ξ̇ = [ẋ, ẏ, ω]. Most
robots are not capable of controlling these three posture coordinates independently
due to the presence of non-holonomic constraints at the wheels contact points.
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Conventional wheels are subject to the kinematic constraints that impose null
velocity with respect to the ground to each wheel contact point. Contact point
velocity can be decomposed into two components called lateral and longitudinal
velocities. Lateral velocity is perpendicular to the wheel plane while the longitu-
dinal one is parallel. Zero lateral velocity guarantees no wheel lateral slide, while
zero longitudinal velocity no longitudinal slip. Omni wheels and mecanum wheels
have only one component of the contact point velocity that must be zero and it is
the one on the direction parallel to the axis of the roller that is in contact with the
ground.

Due to the planar motion assumption, the robot motion can be described at
each instant as a rotation around an instantaneous centre of rotation (ICR). If the
ICR goes to infinity, it means that the robot is just translating without rotating.
Not to violate the lateral slide constraint of a fixed or centred orientable wheel,
the ICR has to belong to the primary axis of that wheel. Castor wheels are not
mentioned since they are self-aligning, orienting themselves with their axes passing
through the ICR defined by the other wheels. So at each instant, the axes of the
fixed and centred wheels have to intersect in the same point that is the ICR, as
shown in Figure 2.2.

Figure 2.2: Image from [5]

The degree of mobility δm corresponds to the degree of the plane subspace plus
one, where it is possible to move the ICR instantaneously without steering the
centred wheels. Practically, it corresponds to the number of wheels whose angular
velocities can be set independently.

� When δm = 1, the ICR position cannot be changed instantaneously.
� When δm = 2, the ICR can be moved instantaneously along an axis.
� When δm = 3, the ICR can be placed instantaneously wherever in the plane.

This means that neither fixed nor centred wheels are present in the wheel
configuration.

9



State of the art

The degree of steer-ability δS corresponds to the number of centred wheels whose
orientations can be changed independently from one another to fix the position of
the ICR in the plane. If more centred wheels than δS are present, their main axes
have to pass at each instant through the ICR.

� When δS = 0, no centred wheels are present in the wheel configuration.
� When δS = 1, one centred wheel can be independently orientated.
� When δS = 2, two centred wheels can be independently orientated.

At the end, the degree of manoeuvrability δM = δm + δS is a synthesis between
the previous two parameters. It corresponds to the total number of degrees of
freedom (DOFs) that can be controlled independently in the robot.

� When δM = 2, the robot has two independent degrees of freedom.
� When δM = 3, the robot has three independent degrees of freedom therefore

the ICR can be placed wherever in the plane.

2.3 AGV kinematic analysis

Based on this three parameters that come out from a kinematic discussion, the
main groups of AGVs are listed in the following.

1. Omni-directional robots,

(a) with omni or mecanum wheels, or
(b) with active steerable wheels,

2. Synchronous drive robots,
3. Differential drive robots,
4. Car-like robots.

All the omnidirectional robots are characterized by δM = 3 since at each instant
they can move the ICR wherever in the plane. These robots can change the three
posture coordinates ξ = [x, y, θ] independently from one another.

The first omni-directional robots analysed are equipped with omni wheels or
mecanum wheels. The wheels displacement depend on the wheel type used.
With omni-wheels, two main configurations are used. The first one in Figure 2.3a
has three wheels while the second one in Figure 2.3b has four. In both cases, each
omni-wheel is mounted with its main axis passing through the robot centre and at
the same distance from the robot centre. The wheels are shifted with an angular
displacement of 120◦ in the three wheels robot and 90◦ in the four wheels one. With
mecanum wheels, again two four wheel configurations are used. In both cases, the
wheels are displaced at the vertices of a rectangle and have parallel planes. The two
configurations are defined X and O, depending on the direction of the wheels rollers
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in contact with the ground. The X one can be seen in Figure 2.4. The maximum
manoeuvrability δM = 3 is obtained with δm = 3 and δS = 0. This means that
at each instant the ICR can be placed instantaneously wherever in the plane by
acting on the wheels angular velocities.

(a) Three omni wheels robot from [6] (b) Four omni wheels robot from [7]

Figure 2.3: Omni wheels robots

Figure 2.4: Mecanum wheels robot from [8]

The second omnidirectional robots analysed are equipped with active steerable
wheels. These robots have no fixed wheels and at least two active orientable wheels.
If more than two orientable wheels are present, two are oriented independently to fix
ICR position wherever in the plane, while the other ones have to be oriented so that
the main axes passes through the fixed ICR. The maximum manoeuvrability δM = 3
is obtained with δm = 1 and δS = 2. Therefore, the ICR can be placed wherever in
the plane but not instantaneously since re-orientation of orientable wheels has to be
performed. The three independent controllable DOFs are the orientation angles of
two orientable wheels and the angular velocity of one of them. The most common
configurations are two. The first one has two front active orientable centred wheels
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and one rear self-aligning castor wheel. The second one has four active orientable
centred wheels, two independent and two dependent displaced in rectangular form.

Differential drive robots, synchronous drive robots and car-like robots are char-
acterized by δM = 2 since only two posture coordinates can be controlled indepen-
dently at each instant.

Differential drive robots have a wheel configuration made of at least two fixed
wheels having the same main axis and no centred wheels. The most used configu-
rations are two. The first one has two front fixed wheels and one rear castor wheel,
while the second one two rear fixed wheels and one front castor wheel. The ma-
noeuvrability δM = 2 is obtained with δm = 2 and δS = 0. The ICR position can be
changed instantaneously on the main axis of the fixed wheels. The two independent
controllable DOFs are the angular velocities of two fixed wheels. If a configuration
with more than two fixed wheels is needed, the additional fixed wheels must have
the same main axis of the first two and their angular velocities depend on the ICR
position. δm = 2 results from the fact that the robot velocity component on the
wheels main axis is always zero, therefore the lateral movement is not possible.

Car-like robots have a wheel configuration made of one or more fixed wheels
having the same main axis and at least one centred wheel not belonging to the
main axis of the fixed wheels. The simplest configuration is the one with two
rear fixed wheels and one front centred wheel, while the most used has two front
orientable wheels instead of one. The manoeuvrability δM = 2 is obtained with
δm = 1 and δS = 1. The ICR position can be changed on the main axis of fixed
wheels varying the orientation of the centred wheels. They have the same manoeu-
vrability of differential drive robots but the ICR is not changed instantaneously
because re-orientation of orientable wheels must be performed. The two indepen-
dent controllable DOFs are the orientation angle of one orientable wheel and the
angular velocity of one wheel. The angular velocities of the other wheels depend
on the ICR position. With two or more orientable wheels, one fixes the position of
the ICR while the others must be oriented so that their axes passes though the ICR.

Synchronous drive robots have a wheel configuration made of only orientable
wheels. The most common configuration is the one with three orientable wheels
placed at the vertices of an equilateral triangle. The manoeuvrability δM = 2 is
obtained with δm = 1 and δS = 1 as for car-like robots. One wheel is oriented in-
dependently (δS = 1 ), while the others are oriented so that their axes are parallel
to the independent wheel axis. In this way the ICR goes to infinity and the robot
can only translate in the direction of the wheels. Even though the same parameters
characterize car-like and synchronous robots, a huge difference is present. In car-
like robots the null velocity component of the robot is the one along the direction
between the robot centre and the ICR. In synchronous robots, the null velocity
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component of the robot is its angular velocity, since the robot orientation cannot
be changed.

2.4 AGV purpose analysis

This comparison between the different groups of wheeled mobile robots is made
only from a kinematic point of view and returns the mobility capabilities of the
robots. Dynamical aspects concerning masses, inertias, forces and torques must be
taken into account in order to choose the best robot configuration for the desired
purposes. The AGV needed must be able to pull trucks and libraries and it has
to be as compact as possible. Therefore, the robot should have a low number of
motors for a compact form, good traction capabilities to pull tracks and libraries,
systems that guarantee always the contact between the traction wheels and the
ground, the maximum degree of manoeuvrability that the previous points allow.
Good traction capabilities means that the wheel configuration must have as much as
traction motors inside its wheel configuration. Motors can be divided depending on
their use into traction motors in charge of traction wheels rotation and orientation
motors that change the orientation angles of orientable wheels. It would be better
to have a configuration with maximum three traction wheels, indeed if more than
three actuated wheels have to be in contact with the ground, technological solutions
such as shock absorbers or more deformable wheels have to be considered. This
would oppose the simplicity and compact structure goals. The absence of these
solutions limits the robot work in flat ground. This is acceptable since these robots
are going to work in factories or warehouses.
Now a brief analysis of the wheel configuration previously mentioned is carried out.

1. Three omni-wheel robot.
The three posture coordinates ξ = [x, y, θ] can be varied independently by
acting on the three controllable DOFs [φ̇1, φ̇2, φ̇3] representing the wheels’
angular velocities. This robot is not redundant, needs three traction motors
and has good traction capabilities. Two considerations have to be done:

� The omni wheel structure allows to fully exploit the motor torque applied
to the wheel, indeed the omni wheel rollers axes are perpendicular to the
wheel main axis and lay in the wheel plane. An actuated omni wheel
can exert its traction force only along the direction of the rollers’ axes.
Therefore, since the applied torque is perpendicular to the rollers’ axes, it
is completely translated into the traction force at the wheel-ground con-
tact point. For this reason, omni wheels behave as conventional wheels
from this point of view.

� Despite the good traction capabilities, a part of the traction force is
wasted in robot translation. The three traction forces are shifted of
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120/60◦ therefore the force components perpendicular to the translation
direction cancel each other out.

Three wheels allow in first approximation not to use shock absorbers on a flat
ground since three points define precisely a plane.

2. Four omni-wheel robot.
The three posture coordinates ξ = [x, y, θ] can be varied independently by
acting on the four controllable DOFs [φ̇1, φ̇2, φ̇3, φ̇4] representing the wheels’
angular velocities. This robot is redundant, needs four traction motors for
the four wheels and has good traction capabilities. Again the omni wheel
structure allows to fully exploit the torque applied to each wheel but an
improvement is present with respect to the previous case. Indeed, the robot
does not waste part of the total traction force during neither translation nor
rotation. Due to the wheels’ angular shift of 90◦, the opposite wheels have
the same main axis and therefore parallel traction forces. Therefore, the two
couples of opposite wheels have perpendicular traction directions that allow
to built easily the total traction force that must be applied to the robot. If
a pure translation is required without changing the robot orientation, each
wheel of one couple provides half of the corresponding force component. Shock
absorbers could be needed to assure the contact of all four wheels with the
ground even though it is flat.

3. Four mecanum-wheel robot.
The three posture coordinates ξ = [x, y, θ] can be varied independently by
acting on the four controllable DOFs [φ̇1, φ̇2, φ̇3, φ̇4] representing the wheels’
angular velocities. As the previous one, also this robot is redundant and needs
four traction motors for the four wheels. It has good traction capabilities but
two negative aspects have to be considered:

� First, the mecanum wheel structure does not allow to fully exploit the
torque applied to each wheel. Indeed, mecanum wheel rollers have the
axes tangent to the wheel circumference but at 45◦ with respect to the
wheel main axis. For this reason, since only the torque component per-
pendicular to the rollers axes is translated into traction force, the torque
component parallel to the rollers axes results into the rollers rotation.
Therefore, not all the wheel torque is exploited to move the robot and
the wheel rollers always rotate.

� A part of the traction force of each wheel is wasted in both translation
and rotation. Considering for example the longitudinal translation, the
traction forces components perpendicular to the desired robot motion
direction cancel each other out.

Shock absorbers are needed to assure that all the four actuated wheels are in
contact with the flat floor.

4. Four active orientable wheels.
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The three posture coordinates ξ = [x, y, θ] can be varied independently by
acting on the eight controllable DOFs that are the four angular velocities
[φ̇1, φ̇2, φ̇3, φ̇4] and the four orientation angles [ψ1, ψ2, ψ3, ψ4]. Only two orien-
tation angles and one angular velocity are independently tunable and there-
fore the robot is redundant. It uses an orientation motor and a traction motor
for each wheel therefore eight total motors are needed. It has great traction
capabilities due to the presence of four traction motors and due to the use of
conventional wheels that allow to fully exploit the applied torques and that
have a larger contact area than omni and mecanum wheels. Also in this case,
shock absorbers are needed.

5. Car-like robot with two front orientable wheels and two rear fixed wheels.
It has two independent DOFs therefore the three posture coordinates ξ =
[x, y, θ] cannot be varied independently. The controllable DOFs are the two
orientation angles [ψ1, ψ2] and the four angular velocities [φ̇1, φ̇2, φ̇3, φ̇4]. Only
one orientation angle and one angular velocity are independently tunable.
In this robot, an orientation motor and a traction motor are present for
each orientable wheel. The two rear fixed wheels just provide the vehicle
weight stabilization. It has good traction capabilities and shock absorbers
are needed.

6. Three wheels synchronous drive robot.
It has two independent DOFs but six controllable DOFs that are the three
orientation angles [ψ1, ψ2, ψ2] and three angular velocities [φ̇1, φ̇2, φ̇3]. As for
car-like robots only one orientation angle and one angular velocity are inde-
pendently tunable. The orientation angles have to be fixed so that the three
wheels have parallel directions. It has one traction motor for each wheel and
usually only one orientation motor that drives all the three orientation angles
with a mechanical transmission. It has good traction capabilities and shock
absorbers are not needed in first approximation on a flat ground.

7. Differential drive robot with two fixed wheels and one castor wheel.
It has two independent DOFs and two controllable DOFs that are the two
fixed wheels’ angular velocities [φ̇1, φ̇2]. It is a not redundant configuration
and requires only two traction motors to move. It has good traction capabili-
ties and shock absorbers can be avoided in first approximation for flat ground
work.

2.5 AGV comparison

The groups characterized by only two DOFs are differential drive robots, syn-
chronous drive robots and car like robots. The simplest and potentially most com-
pact configuration among them is the differential drive one, indeed it requires only
two traction motors and does not need shock absorbers to work on flat ground.
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The other two configurations requires four motors and the synchronous one must
be provided with a mechanical transmission to orientate the three orientable wheels
with just one motor.

Comparing the differential drive robot with the omni-directional robots having
omni or mecanum wheels, from the traction capabilities point of view the conven-
tional wheels are more performant than the omni and mecanum ones, due to the
wider area of contact. As explained before, in three omni wheels robots and four
mecanum wheels robots, part of the traction force is wasted, while in differential
drive and four omni wheels ones it is fully exploited. Four omni wheel robot has
four traction motors while the differential drive one has only two and does not need
shock absorbers. Again the differential drive robot can be potentially the most
compact and exploits the whole driving torques and traction forces even though it
has one DOF less.

Considering the four steerable wheels robot, it is less compact than the differen-
tial drive one since it requires eight motors. With four traction motors it has great
traction capabilities but requires shock absorbers. If the robot has to pull heavy
trucks, it must be able to exert high traction forces. To apply a high traction force
at each wheel-ground contact point without running into the slipping phenomena,
the maximum static friction force between the wheel and the ground must be high
enough. Therefore, the normal reaction force at the wheel contact point must be
high. But in four orientable wheels robots, the traction wheels are also steering
wheels, therefore a high normal force results into a higher vertical friction torque
that opposes the wheel re-orientation. It follows that a stronger orientation mo-
tor must be used. It’s clear that the orientation task would prefer a not too high
weight on the wheel, while the traction task the opposite. A compromise has to be
researched.

2.6 Agilino robot

Agilino is a differential drive robot. It has two central driving wheels and four
castor wheels, two castor wheels in the front and two in the back. In this way,
Agilino is a mix of the front castor wheel configuration with the rear castor wheel
one. Agilino tries to cancel the two following configurations’ problems.

1. In front castor wheel configuration, during longitudinal acceleration phases
the contact normal force of the ground on the castor wheel reduces for two
main reasons. The first one is due to the motors reaction torques on the
robot base that try to make the robot base rotate in the opposite direction
of the wheels. The second reason is due to the position of the robot mass
centre that is situated at a vertical distance from the ground greater than the
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driving wheels axis one. Indeed, this fact results into a moment of the inertial
force that lights the front castor wheel. Not to loose the front castor wheel
contact with the ground, in the mechanical design phases two precautions
can be taken. First, the castor wheel can be placed not too close to the main
axis of the two driving wheels. Second, the mass centre of the robot can be
placed closer to the castor wheel. In this way, the longitudinal distance of the
mass centre from the main axis is the arm of the weight force momentum that
opposes the lightening of the front castor. If the castor wheel looses contact
with the ground, the robot can capsize. Even though the previous case does
not occur, when the acceleration phase finishes, the castor wheel impacts the
ground causing undesirable motions.

2. In rear castor wheel configuration, the same problem occurs but during the
deceleration phase. This configuration is better than the previous one since
the castor wheel is pulled instead of being pushed.

3. The fact that the robot mass centre cannot be placed on the driving wheels
but has to be moved toward the front or rear castor wheel has two bad
consequences.

(a) The first is that more far is the mass centre from the main axis, lower is
the weight force on the driving wheels and therefore lower is the maxi-
mum traction force that each wheel can exert before slippage occurs.

(b) The traction forces have to participate actively to oppose the non null
momentum of the centrifugal force. Instead, if the mass centre is placed
on the driving axis, that momentum is null.

Agilino mechanical design wants to maximize the traction forces that can be
exerted before slippage occurs by placing the robot mass centre ideally on the
driving axis, practically close to it. To do this, at least two castor wheels have to
be used one in the front and one in the back. In this way, during the acceleration
phases the motors reaction torques are opposed by the rear wheel, while during
deceleration phases by the front one. Three contact points with the ground are
always guaranteed. Agilino uses four castor wheels just because on the longitudinal
axis where they should have been placed, the laser scanner are mounted.

2.7 Differential drive robot kinematic model

The first model studied is the kinematic one, that is the easiest since it neglects
the mass and inertia properties of the robot and the forces that cause the move-
ment. This model requires the assumption of planar motion of the robot that can
be described by the posture coordinates (q1, q2, q3), where q1 and q2 describe the
position of the robot in the plane while q3 its orientation. The model requires the
definition of two reference frames that are listed in the following.
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� The inertial reference frame R0, that is fixed in the plane where the robot
moves.

� The robot reference frame R1, that has the origin in the midpoint of the seg-
ment connecting the two wheels centres, the x axis on the robot longitudinal
axis, the y axis on the driving wheels main axis and the z axis perpendicular
with respect to the ground.

The position vector t01 and the orientation matrix R0
1 of the reference system R1

with respect to R0 are listed in (2.1).

t01 =

q1q2
0

 R0
1 =

cos(q3) − sin(q3) 0
sin(q3) cos(q3) 0

0 0 1

 (2.1)

The velocities of interest that the kinematic model links exploiting the non
holonomic constraints equations are listed below.

� vR is the translational longitudinal velocity of the right wheel.
� vL is the translational longitudinal velocity of the left wheel.
� φ̇R is the angular velocity of the right wheel.
� φ̇L is the angular velocity of the left wheel.
� v is the translational longitudinal velocity of the whole robot.
� ω = q̇3 is the robot orientation rate of change around the inertial frame z

axis.

{
v = vR+vL

2

ω = vR−vL
2L

(2.2)

{
vR = r · φ̇R
vS = r · φ̇S

(2.3)


q̇1 · cos(q3) + q̇2 · sin(q3) + q̇3 · L = φ̇R · r
q̇1 · cos(q3) + q̇2 · sin(q3)− q̇3 · L = φ̇L · r
q̇2 · cos(q3)− q̇1 · sin(q3) = 0

(2.4)

The equations (2.2) come out from trivial geometric considerations due to the
existence of the instantaneous centre of rotation as it can be seen in Figure 2.5. The
value L is the distance between the two wheels centres. Then, from the longitudinal
non slip constraint, relations (2.3) between the wheels angular velocities and the
wheels longitudinal velocities is found, where r is the wheel radius. The two non-
holonomic constraints related to the longitudinal and the lateral slip for each wheel
are listed in (2.4). The lateral constraints of the wheels are of course equal since
the two wheels have the same main axis.
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Figure 2.5: Differential drive robots instantaneous centre of rotation from [9]

The pure kinematic model is not sufficient when the robot can be subject to
mass variations. For example when the robot is carrying a load both the inertia
moments and the centre of mass position change. These variations can affect the
traction properties causing the slippage of the wheels.
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Chapter 3

Adams modelling

The first part of the work consists in looking for a computer programme that allows
to create in an easy and intuitive way a general model, containing almost all the
robot dynamical aspects, simplifying or neglecting as less as possible. This first
model has to be as general as possible, because it will be used as a replica of the
real robot until the first prototype is realized. It will be the reference for the next
mathematical models that will be developed.

The chosen programme is Adams from MSC Software Corporation. It provides
an intuitive graphic interface that allows the graphic construction of the robot
model. The basic solid shapes are provided and the CAD files of the robot parts
can be imported with their masses and inertias descriptions. Adams is chosen for
two main reasons.

1. The first one is the mathematical model that allows to schematize the contact
between bodies. This contact model returns the forces and torques exchanged
and it is needed to describe the wheel-ground interaction.

2. The second reason is the friction mathematical model at the revolute joints.

To gain a deeper understanding of the programme, the theoretical study of the
mathematical contact model and of the revolute joint friction model is performed.
Then, some simulations with simpler systems than the whole robot are performed
to understand how the models’ parameters can be tuned.

3.1 Adams contact model

As explained in the Adams materials [10], the contact force is divided into two
main components:

1. The normal reaction force Fn that is the force component perpendicular to
the contact surface between the two bodies.
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2. The friction force Fa that is the force component that lays on the contact
surface.

The mathematical models that return the two contact force components are ex-
plained in the following once at a time.

3.1.1 Normal contact force

The function that describes the normal reaction force Fn is the impact function,
based on the Contact Hertzian Theory. The normal force Fn is equivalent to the
one returned by a non linear spring-damper system. The function has four tunable
parameters that are the spring stiffness k, the non linear spring exponent e, the
maximum damping coefficient cmax and the damping ramp-up distance d. Being q
the distance between the two bodies, q̇ the relative velocity between the two bodies
and q0 the minimum distance at which the interaction starts, the impact function
(3.1) is reported below.

Fn =

{
k · (q0 − q)e − cmax · q̇ ∗ STEP (q, q0 − d,1, q0,0) se q ≤ q0

0 se q > q0
(3.1)

The spring is non-linear due to the presence of the exponent e and its force
contribution is reported in (3.2).

Fspring = k · (q0 − q)e = keq · (q0 − q) (3.2)

Using an exponent value higher that 1, the spring equivalent stiffness keq increases
exponentially with the penetration depth p = (q0− q). Instead, the force contribu-
tion coming from the damper is reported in (3.3).

Fdamper = −cmax · q̇ · STEP (q, q0 − d,1, q0,0) (3.3)

The usual damper force is Fdamper = −cmax · q̇ while the STEP function is intro-
duced not to have an instantaneous variation of the normal force when the impact
occurs. Indeed the STEP function changes smoothly between zero and one when
the penetration depth p = (q0 − q) changes from zero to d, as shown in Figure 3.1.

Even though k, e and cmax depend on materials properties and contact geom-
etry, the correlation with them is not straightforward, therefore a trial and error
procedure is preferred to choose them. The damping ramp-up distance d is not a
physical parameter. It is a mathematical trick not to have step variations of the
normal force when an impact occurs. Before starting with the robot modelling,
simulations of easier subsystems are performed in order to get familiar with these
parameters that do not have precise physical meaning, since they summarize many
aspects of the phenomena. The general guidelines for their tuning suggested by
Adams [10] are listed below.
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Figure 3.1: Image from [10]

� The spring stiffness k has to be high enough to prevent large penetration but
not too high otherwise numerical problems can occur.

� The spring exponent e can be chosen equal to 1.1 for soft material as rubber.
� The maximum damping coefficient cmax should be set almost equal to one

percent of the spring stiffness value.
� The damping ramp-up distance d must be chosen smaller than the desired

penetration so that the damping coefficient can reach its maximum value cmax.

3.1.2 Contact friction force

The contact friction force uses the Coulomb approximation. The user has to fix
the friction static coefficient, the friction dynamic coefficient, the stiction transition
velocity and the friction transition velocity. The stiction transition velocity is the
relative velocity between the two bodies that are in contact at which the friction
coefficient is maximum and equal to the static one. Instead, the friction transition
velocity is the relative velocity at which the friction becomes constant and equal to
the dynamic one. Since the wheeled mobile robot usually works on industrial floors
and their wheels have an external layer of polyurethane, the static coefficient is
chosen equal to 0.6. The dynamic one is set equal to 0.01. The friction coefficient
Coulomb approximation with respect to the relative velocity is shown in Figure
3.2b.

3.2 Adams joint friction model

Agilino has only revolute joints, one for each fixed wheel and two for each castor
wheel. Adams allows to insert the friction effect at each revolute joint.
The formula used to compute the revolute joint friction torque Tfriction is the fol-
lowing:

Tfriction =µ · [Rarm · Faxialreaction +Rpin · Frotationalreaction+

+ (Rpin/Rbending) · Tbending + (1/µs) · Tpreload]
(3.4)
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(a) Friction parameters graphic inter-
face

(b) Coulomb friction curve

Figure 3.2: Friction parameters. Images from [10].

The input forces that can be selected to compute the friction torque are the joint
reaction forces that include the axial reaction force Faxialreaction and the rotational
reaction force Frotationalreaction, then the bending moment Tbending and the torque
preload Tpreload. The torque preload allows to take into account the mechanical
interference in the assembly of the joint. For Agilino model, only the joint reaction
forces will be considered, therefore the interesting parameters are the friction arm
Rarm and the pin radius Rpin. Adams allows also to set the maximum friction torque
at the joint. Then, all the parameters needed by Adams to compute the effective
friction coefficient µ have to be set. First, the user has to choose one of the three
possible friction models. The first model includes both stiction and sliding effects
while the other two only stiction effect or sliding effect. The parameters that must
be set are listed in Table 3.1. The maximum stiction deformation is the maximum

Table 3.1: Revolute joint friction parameters

Parameters Symbol Unit measure

Static friction coefficient µs -
Dynamic friction coefficient µd -
Stiction transition velocity vs cm/s
Transition velocity coefficient m -
Maximum stiction deformation ∆max deg

angular displacement that can occur in a joint once the friction force enters the
stiction regime.

23



Adams modelling

3.3 Test simulations

As said before, some tests with simple subsystems are performed to check how
parameters affect the different models analysed before. The goal is to check the
contact forces exchanged between a wheel and a plane. This is the most important
aspect, since it is the origin of the robot motion. In the student version of Adams it
is possible to represent all the components as rigid bodies. The feature that allows
to model them as flexible bodies is available but it was not used to model Agilino
wheels, since in the list of materials the polyurethane was not present. Therefore,
the wheel will be schematized with a cylinder having the radius equal to the real
wheel radius. Since the robot motion can be approximated with a planar motion,
the most relevant friction components exchanged between each wheel and the floor
are the longitudinal friction force, the transversal friction force and the vertical
friction torque. The longitudinal friction force is parallel to the wheel plane while
the transversal friction force is perpendicular. The specific goal of the following tests
is to check the dependency of each friction component on the contact parameters
and on the wheel cylinder length. The parameters that will not change in the
following preparatory tests are the ones related to the wheel physical description
that are listed in Table 3.2. Approximating the wheel as a cylinder, moments of

Table 3.2: Wheel physical description values

Parameters Symbol Unit measure Value

mass M Kg 10
radius R m 0.1
average width h m 0.04
axial inertia moment Ia Kg ·m2 0.05
radial inertia moment Ir Kg ·m2 0.026

inertia can be computed with (3.5) and (3.6), where the width average value h is
equal to the cylinder length.

Ir =
M · (3R2 + h2)

12
(3.5)

Ia =
M ·R2

2
(3.6)

Vertical friction torque

The vertical friction torque exerted on the wheel is the first friction component to be
investigated. The system is made of a wheel and a plane and it is shown in Figure
3.3. A cylindrical joint is used to limit the wheel motion allowing only rotation
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and translation along the vertical axis. The vertical translation must be free so
that the wheel can penetrate the plane surface moving down under its weight. The
penetration activates the spring-damper contact system that generates the normal
reaction force. If it were zero also the contact friction force would be zero. The
vertical rotation must be free because it is the movement that triggers the vertical
friction torque. The other motions are constrained so that the wheel does not risk
falling laterally while rotating. The wheel is schematized with a cylinder that has
a rod coming out of it radially in the vertical direction. The rod is inserted just to
apply the cylindrical joint. Indeed, the mass and inertia description of the wheel is
not influenced by its presence. The wheel mass centre is still placed in the cylinder
centre and the mass and moments of inertia are equal to the wheel’s ones. The
contact friction parameters are set equal to static friction µs = 0.7, dynamic friction
µd = 0.3, stiction transition velocity vs = 0.1 m/s and friction transition velocity
vd = 0.01 m/s. The test consists in simulating the wheel behaviour when an initial

Figure 3.3: Test system

vertical angular velocity is applied. In each simulation, the vertical friction torque,
the vertical angular velocity and the wheel-plane penetration length are measured.
The expected behaviour is the reduction of the angular velocity down to zero due
to the friction effect. It is important to choose an initial vertical angular velocity
high enough, so that the vertical friction torque is initially in the dynamic range
and then move to the static one due to the angular velocity reduction.

Test one In the first test, an arbitrary cylinder length is chosen as L = 1 cm
and the friction torque dependency on the four contact parameters is studied. The
exponent e and the damping ramp-up distance d are kept constant at e = 1.1 and
d = 0.01 cm respectively. The maximum damping coefficient cmax and the stiffness
values k can be varied independently. Three simulations are performed keeping
constant the maximum damping coefficient at cmax = 10 N/(cm/s) and assigning
the stiffness k the following three values:
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- Simulation 1: k1 = 1 ∗ 103 N/cme

- Simulation 2: k2 = 5 ∗ 102 N/cme

- Simulation 3: k3 = 1 ∗ 102 N/cme

All the three simulations start with an initial vertical angular velocity of θ0 = 2000
deg/s and last ttot = 5s. The time step used in the solver is ∆T = 0.001s. The
measures of interest that will be extracted from Figures 3.4 are the dynamic vertical
friction torque Td, the static vertical friction torque Ts, the time at which the
transition between dynamic and static friction torque occurs t1, the time at which
the maximum static friction torque is present t2, the vertical angular velocity at t1
that is indicated with wv1, the vertical angular velocity at t2 that is wv2 and the
penetration between the two bodies p. To give a rule for the choice of t1, it is the
time at which the vertical friction torque is 5% greater than the dynamic friction
torque. All these quantities are listed in Table 3.3. Using an infinite stiffness value,

Table 3.3: Measured values in Test 1

Quantity Unit measure Simulation 1 Simulation 2 Simulation 3

Td N · cm -19.5 -22.8 -32.5
t1 s 2.280 2.256 1.980
wv1 deg/s 1161.3 882.7 330.7
Ts N · cm -45.5 -53.2 -75.9
t2 s 3.596 3.219 2.453
wv2 deg/s 116.1 98.8 69.1
DD cm 9.88 9.77 9.02

the distance DD between the wheel centre and the ground is equal to the wheel
radius R = 10 cm. Decreasing the stiffness value, the distance DD decreases, since
bodies penetration occurs as it can be seen in Figure 3.4c. The higher penetration
results into a higher vertical friction torque as reported in Figure 3.4b and therefore
in a higher deceleration. The angular velocity in simulation 3 decreases faster than
in simulation 1, as visible in Figure 3.4a.

Test two In the second test, four contact parameters are chosen and the friction
torque dependency on the cylinder length is studied.
The four contact parameters are fixed equal to exponent e = 1.1, damping ramp-up
distance d = 0.01 cm, stiffness k = 500 N/cme and maximum damping coefficient
cmax = 10 N/(cm/s). Two simulations will be performed assigning to the cylinder
length L two values:
- Simulation 1: L1 = 1 cm
- Simulation 2: L2 = 8 cm
As in test 1, the two simulations start with an initial vertical angular velocity of
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(a) Angular velocity

(b) Vertical friction torque

(c) DD distance

Figure 3.4: Measures Test 1

θ0 = 2000 deg/s, last ttot = 5s and the time step used in the solver is ∆T = 0.001s.
The same measures done in test 1 are performed also in test 2 and are listed in
Table 3.4. The distance DD does not change from simulation 1 to simulation
2 as expected, since it depends only on the four contact parameters that are not
changed (Figure 3.5c). Greater is the cylinder length, greater is the vertical friction
torque (Figure 3.5b) and therefore the deceleration. In simulation 2 the vertical
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Table 3.4: Measured values in Test 2

Quantity Unit measure Simulation 1 Simulation 2

Td N ∗ cm -22.8 -64.5
t1 s 2.256 1.209
wv1 deg/s 882.7 312.3
Ts N ∗ cm -53.2 -150.4
t2 s 3.219 1.329
wv2 deg/s -98.8 35.6
DD cm 9.77 9.77

angular velocity goes to zero much faster than in simulation 1 (Figure 3.5a).

Conclusions The final result is that both decreasing the spring stiffness and/or
increasing the cylinder length, the vertical friction torque increases. Agilino wheels
are quite rigid and therefore the wheel contact area on the ground is small. This
results into a small vertical friction torque. For this reason, the Agilino wheels will
be schematized with a cylinder having the same wheel radius but a different length
in order to represent the small contact area. About the contact stiffness and the
maximum damping coefficient, they must be tuned firstly to have a smooth normal
contact reaction force. Smooth means with peaks whose amplitude is negligible with
respect to the expected normal force. It must be remembered that the peaks are
normal in a spring-damper system that continuously has to reach a new equilibrium
depending on the robot whole motion. Therefore, the stiffness is reduced to reach
a smooth contact normal reaction force, while the cylinder length is reduced as
well to limit the vertical friction torque. The tuning of these two parameters will
be performed later on when the final Agilino model will be built. Of course the
tuning will be based on the trial and error procedure up to when the desired vertical
friction torque is obtained. The specific values tried in the previous tests will be
meaningless in the different Agilino model. The little oscillations that can be seen
at the first instants on the vertical friction torque are due to the adjustment time
needed by the the spring-damper system to reach equilibrium.

Longitudinal friction force

The longitudinal friction force exerted on the wheel is the second friction component
to be investigated. Again the system is made of a wheel and a plane, but a planar
joint is used in order to limit the wheel motion allowing only the vertical and
longitudinal translations and the rotation around its main axis. An initial angular
velocity along the main axis is imposed to the wheel and the longitudinal friction
force is measured. The initial angular velocity has to be high enough, so that the
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(a) Angular velocity

(b) Vertical friction torque

(c) DD distance

Figure 3.5: Measures Test 2

friction force starts in the dynamic range.

First test In this test, the cylinder length is L = 1 cm, the exponent e = 1.1
and the damping ramp-up distance d = 0.01 cm. Two simulations are performed
to study the longitudinal friction force dependency on the stiffness k and on the
maximum damping coefficient cmax.
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- Simulation 1: cmax = 50 Ns/cm and k = 5000 N/cme.
- Simulation 2: cmax = 15 Ns/cm and k = 500 N/cme.
Both the parameters are changed to guarantee a fast stabilization of the spring-
damper contact with small oscillations. The initial angular velocity is fixed at
ω0 = −500 deg/s. In this test, the dynamic friction coefficient was reduced at the
value of µd = 0.1, while the static one at µs = 0.3. This change results into a longer
time needed by the wheel to transit from the initial slipping motion to the pure
rolling motion. In this way, the transition occurs when the spring-damper system is
adjusted and it is possible to appreciate it without the influence of eventual oscilla-
tions of the normal reaction force. The longitudinal friction force pushes the wheel
forward increasing the translational velocity while reducing the angular velocity
until the rolling motion is reached. The wheel reaches a potentially endless rolling
motion, because neither the rolling friction nor the air viscous friction are modelled.
The impossibility of modelling these two aspects is not a problem. Indeed, Agilino
low speeds make the viscous friction negligible while its quite rigid wheels allow
to not consider the rolling friction. Better always be aware of the simplifications
performed even though they look right. The two simulations have almost the same
longitudinal friction forces (Figure 3.6b) and translational velocities (Figure 3.6a).
The steady state normal reaction forces are equal, while the transitions are different
due to the change of the spring-damper parameters. Of course, the simulation with
the smaller stiffness is characterized by a deeper penetration. In both simulations,
the dynamic friction force and the maximum static friction force are equal to their
expected values.

Fmax
s = µs · Fn = 29.43N

Fd = µd · Fn = 9.81N

The contact parameters does not affect the longitudinal friction force.

Second test Changing the wheel length form L = 1 cm to L = 10 cm, nothing
changes in both the simulations performed in the previous paragraph.

Conclusions Neither the contact parameters nor the cylinder length directly
affect the longitudinal friction force. The contact parameters can affect it indirectly
through the normal reaction force. Indeed they affect the transients of the normal
force, allowing a variation more or less quick and with or without oscillations.

Tangential friction force

The transversal friction force exerted on the wheel is the third and last friction com-
ponent investigated. Again the system is made of a wheel and a plane. Two trans-
lational joints are used in couple in order to allow only the vertical and transversal
translations. An initial translational velocity along the main axis is imposed to the

30



Adams modelling

(a) Longitudinal translational velocity

(b) Longitudinal friction force

(c) DD distance

(d) Normal reaction force

Figure 3.6: Measures Test 2.1
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wheel and the transversal friction force is measured. The initial transversal velocity
has to be high enough so that the sliding motion is appreciable. The friction force
decelerates the wheel translation until the wheel stops. As for the longitudinal fric-
tion forces, neither the contact parameters nor the cylinder length affect directly
the transversal friction force and the contact parameters can affect it indirectly
through the normal reaction force. In Figure 3.7 the transversal force and velocity
are shown.

Figure 3.7: Test system

Final conclusions

It is possible to conclude that the choice of the contact parameters is important to
fix the transients of the normal force variations. Their choice would be performed
with trial and error procedure in Agilino model in order to have fast and smooth
variations without oscillations. An example of normal force variation is when the
robot enters a turn. Indeed, the inner wheel normal force decreases while the outer
wheel one increases. Instead the cylinder length will be chosen to obtain the real
vertical friction torques at the wheels. Longitudinal and lateral friction forces are
not directly influenced by these parameters. They only depend on the four friction
parameters.

3.4 Agilino model

Three models have been developed, increasing every time the model complexity.
The last one will be used for the mathematical model refinement. For the Agilino
models, the robot is divided into three main layers. These are the wheels’ layer,
the base layer and the upper volume layer.

The wheels layer is equal in all the three models. As said before, the Agilino
robot has two fixed wheels and four castors, two in the front and two in the back.
Both front and rear castors are symmetrical with respect to the robot longitudinal
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axis. For this reason, each couple is substituted in the model with just one castor
placed on the longitudinal axis and at the same distance from the robot logic
centre. It is an acceptable approximation. The two castor wheels are slightly
shifted above vertically with respect to their real positions to guarantee that during
simulations only one at a time is in contact with the ground. The wheels are
modelled with cylinder solid shape available in Adams. Each cylinder will match
the corresponding wheel characteristics that are its radius, centre of mass, mass
and inertia matrix. As said before, the cylinder length must be tuned according to
the vertical friction torque that is desired at each wheel contact point. It could be
said that the cylinder length represents somehow the wheel footprint on the ground.
Therefore, the driving wheel cylinder will be thicker than the castor one. Indeed,
the mechanical design puts most of the weight on driving wheels. In Table 3.5 the
mechanical parameters of the driving wheels are listed. In Table 3.6 the castor
ones can be found. The mass centre of each wheel is placed in the wheel centre.
For the castors, this is an approximation due the presence of the arm containing
the vertical joint. The inertia moments of each wheel are computed with respect
to the reference frame having its origin in the mass centre, z and x axes in radial
directions and y axis on the wheel main axis. In the planar motion approximation,
the z axis is the vertical one. For castor wheels, the chosen reference frame is not
the principal one, nevertheless the inertia matrix is considered diagonal to simplify
its computation. Both the castor wheel approximations are acceptable since its
contribution to the robot total mass and inertia is negligible. The wheels inertia
moments are computed exploiting the cylinder formulas. The longitudinal axis
inertia moment Ia and the radial inertia moment Ir are reported in the following.{

Ia = mr2

2

Ir = mr2

4
+ mh2

12

where m is the cylinder mass, r the cylinder radius and h the cylinder length. In
the castor wheels the radial inertia moment with respect to the vertical axis z is
increased of 10%, to take into account the presence of the castor wheel arm.

Table 3.5: Driving wheels description

Quantity Symbol Unit measure Value

mass mw Kg 0.8
radius rw cm 10.0
width hw cm 5.0
cylinder length sw cm 5.0
main axis inertia moment Jwy Kg · cm2 40.0
radial inertia moments Jwx, Jwz Kg · cm2 21.67
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Table 3.6: Castor wheels description

Quantity Symbol Unit measure Value

mass mc Kg 0.2
radius rc cm 1.75
width hc cm 2.7
approximating cylinder length sc cm 1.0
arm bc cm 1.5
main axis inertia moment Jcy Kg · cm2 0.31
horizontal radial axis inertia moment Jcx Kg · cm2 0.27
vertical radial axis inertia moment Jcz Kg · cm2 0.3

The base layer includes only the robot base. It is the platform where all the
components are directly or indirectly connected to. In the first two models, the
robot base has the shape of a thin cylinder. The relevant part is not the shape but
its mechanical description. Therefore, the mass centre position, the mass value and
the inertia matrix components. The mechanical description is found importing the
base CAD geometry into Adams. Indeed, the user just has to select the desired
component material and Adams will compute autonomously everything. The base
material is aluminium. The base description can be found in Table 3.7.

Table 3.7: Robot base description

Quantity Symbol Unit measure Value

mass mb Kg 5.7
vertical inertia moment Jbz Kg · cm2 3382
longitudinal inertia moment Jbx Kg · cm2 1480
transversal inertia moment Jby Kg · cm2 1902

The upper volume layer contains all the components needed by the robot to
move autonomously. The upper volume total mass is equal to the sum of all the
components masses, while its centre of mass position and its inertia matrix can be
found knowing the spatial distribution of the components. In the first model, the
upper volume was schematized with a unique body visually described by a cube
solid shape. In Adams, the approximation of the upper volume with a unique body
makes the model less versatile. Indeed, if the components position is changed, the
mass centre location and the inertia matrix have to be computed again to provide
Adams cube the new proper description. Instead, it would be better to exploit
more Adams that autonomously take care of the different components positions. It
is done in the second model whose picture can be seen in Figures 3.8a, 3.8b, 3.8c,
3.8d where the components having the biggest masses are considered autonomously
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and schematized with point masses. All the other components are incorporated into
the robot bearing structure, that is modelled with an hollow cylinder shape.

(a) (b)

(c) (d)

Figure 3.8: Agilino model in Adams second version

The allow cylinder solid shape is chosen for two reasons. The first one is the
axial symmetry with respect to its longitudinal axis while the second one is that
it is empty inside. These two characteristics make it similar to the real bearing
structure, that is a shell that supports all the robot components and that is almost
symmetrical with respect to the z axis of the logic centre reference frame Ra. The
allow cylinder longitudinal axis coincides with the z axis of Ra. The allow cylinder
geometry is described by a medium radius r and a length L whose values are chosen
to resemble the real bearing structure geometry. The mass m is extracted from the
CAD files imported in Adams. The allow cylinder formulas are used to compute the
bearing structure inertia moments with respect to its mass centre. The longitudinal

35



Adams modelling

inertia moment Ia and the radial inertia moment Ir formulas with respect to the
allow cylinder centre are reported in the following.{

Ia = mr2

Ir = mr2

2
+ mh2

12

The allow cylinder parameter are listed in Table 3.8.

Table 3.8: Allow cylinder description of the bearing structure

Quantity Symbol Unit measure Value

mass mBS Kg 23
medium radius RBS cm 33
length LBS cm 37.2
longitudinal inertia moment IBSz Kg ·m2 2.5
radial inertia moment IBSx, IBSy Kg ·m2 1.5

Therefore, the chosen modelling procedure for the main components of the upper
volume is the following.

1. Select the components of the upper volume that have the biggest masses.
These are the two laser scanners, the two motors, the two reducers, the PLC,
the battery and the charge base plate.

2. Look for the previous components’ masses on their data sheets. The masses
values are listed in Table 3.9.

3. Locate approximately the mass centre on each component.
4. Find each mass centre position (COM) in the robot using the robot CAD

assembly file. Each vector position is described with respect to the reference
frame that has the origin in the robot logic centre, the x axis on the robot
longitudinal axis and the y axis on the robot transversal axis. This reference
frame from now on will be called the logic centre reference frame. The vectors
are listed in Table 3.9.

5. Built the Adams model of the upper volume, approximating each main com-
ponent with a small sphere located at the component mass centre position.
Its mass is equal to the component’s mass while the inertia moments are set so
small to be negligible. In this way each component is effectively approximated
as a point mass.

As said before, Adams takes care autonomously of the components positions
but it does not return the centre mass position, the total mass and the inertia
moments of the upper volume. The user has to compute them on its own. These
three information are needed later for the mathematical model, therefore they will

36



Adams modelling

Table 3.9: Upper volume components masses and mass centres positions

Quantity Symbol Unit measure Value

motor mass mM Kg 5.1
laser scanner mass mLS Kg 1.45
battery mass mB Kg 8.0
reducers mass mR Kg 5.3
PLC mass mPLC Kg 1
charge plate mass mCP Kg 2.2
bearing structure (BS) mass mBS Kg 23.0
motors COM rM cm [18.5; 0.0; 17.5]
first laser scanner COM rLS1 cm [30.0; 0.0; 7.0]
second laser scanner COM rLS2 cm [-30.0; 0.0; 7.0]
battery COM rB cm [-16.0; 0.0; 13.0]
first reducer COM rR1 cm [1.0; 11.0; 0.0]
second reducer COM rR2 cm [1.0; -11.0; 0.0]
PLC COM rPLC cm [0.0; 31.5; 22.5]
charge plate COM rCP cm [0.0; -33.5; 0.0]
bearing structure COM rBS cm [0.0; 0.0; 16.8]

be computed now exploiting the modelling approximations done here. The upper
volume total mass Mm is computed summing all the components’ masses in (3.7).
The upper volume mass centre position rm0 is computed in (3.8) with respect to the
logic centre reference frame Ra. The upper volume inertia moment Imzz with respect
to a vertical axis passing through its mass centre is computed in (3.9). The inertia
moment of each point mass is equal to the mass value m multiplied for the square
of its distance d from the axis. Instead, the inertia moment of the bearing structure
is computed exploiting the parallel axis theorem. It is equal to IBSz + mBS ∗ d2BS,
where IBSz is the inertia moment with respect to the vertical axis passing through
the bearing structure mass centre and d2BS is the distance between the previous axis
and the vertical axis passing through the upper volume mass centre. The values
can be found in Table 3.10. It can be seen that the mass centre is placed in the
front from the longitudinal point of view, xm0 = 1.23 cm and shifted a little to the
right from the transversal point of view, ym0 = −0.73 cm.

Mm = mM + 2 ·mLS +mB + 2 ·mR +mPLC +mCP +mBS (3.7)

rm0 = (mM · rM +mLS · rLS1 +mLS · rLS2 +mB · rB +mR · rR1+

+mR · rR2 +mPLC · rPLC +mCP · rCP +mBS · rBS)/Mm (3.8)
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Table 3.10: Upper volume relevant parameters

Quantity Symbol Unit measure Value

upper volume mass Mm Kg 57.9
upper volume COM rm0 cm [1.23; -0.73; 12.29]
vertical inertia moment Imzz Kg ·m2 3.78

Imzz = mM · d2M +mLS · d2LS1 +mLS · d2LS2 +mB · d2B +mR · d2R1+

+mR · d2R2 +mPLC · d2PLC +mCP · d2CP +mBS · d2BS + IBSz (3.9)

In the third and last model in Adams (Figures 3.9a, 3.9b, 3.9c, 3.9d), the bearing
structure is not schematized with an allow cylinder but it is realized importing the
real CAD geometries and assigning to them the aluminium material. The main
robot components supported by the bearing structure are still described as point
masses since this methodology makes the model update very quick. Indeed, if
a component position is changed, just the vector position of the corresponding
sphere must be changed. Or if a component is added, a new sphere is introduce
in the position of the component mass centre. The simulations result will be less
precise but it is acceptable. Of course approximations are acceptable only when
the modelling engineer is aware of them.

Performing simulations and using the trial and error procedure, the contact
and friction parameters of the wheel-ground interaction are set and the values are
reported in Table 3.11.
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(a) (b)

(c) (d)

Figure 3.9: Agilino model in Adams third and final version.
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Table 3.11: Contact and friction parameters

Quantity Symbol Unit measure Value

driving wheel spring stiffness k N/cme 104

driving wheel spring exponent e − 1.1
driving wheel maximum damping coefficient cmax N/(cm/s) 102

driving wheel damping ramp-up distance d cm 0.01
driving wheel static friction coefficient µs − 0.6
driving wheel dynamic friction coefficient µd − 0.1
driving wheel stiction transition velocity vs cm/s 1.0
driving wheel friction transition velocity vd cm/s 10.0
castor wheel spring stiffness k N/cme 900
castor wheel spring exponent e − 1.1
castor wheel maximum damping coefficient cmax N/(cm/s) 10
castor wheel damping ramp-up distance d cm 0.01
castor wheel static friction coefficient µs − 0.2
castor wheel dynamic friction coefficient µd − 0.1
castor wheel stiction transition velocity vs cm/s 1.0
castor wheel friction transition velocity vd cm/s 10.0
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Chapter 4

Robot dynamic model

After having created the Adams model, the robot mathematical equations must
be found. The two modelling techniques available are the Lagrange approach and
the Euler-Newton approach. The literature on modelling differential drive robots is
not poor, therefore many scientific papers that are present in the bibliography have
supported this work. The goal is to find in literature an existing model that can
work for this thesis purposes or extend an existing model with new information.

In [11] the most used dynamic model for the description of differential dynamic
robots was introduced. Its simplicity makes it suitable for control purposes when
motors control algorithms have to be developed. The goal of the thesis is to develop
a little more complex and general dynamic model for both the safe trajectories
planning and the mechanical components choice. On safe trajectories the robot
does not slip longitudinally or slide laterally ever.

For the following considerations, the robot structure is considered as a unique
body characterized by a mass m and an inertia matrix J . The model in [11]
approximates the robot motion with a planar one described by the three posture
parameters ξ = [xa, ya, θz] with respect to the absolute inertial frame that has
the x and y axes on the plane and the z axis perpendicular to it. Therefore, the
mathematical model equations derive only from the forces’ and torques’ balances
related to the three posture parameters. The forces’ balances on the x and y
directions and the moments’ balance on the z direction:

Fx = mẍ

Fy = mÿ

Mz = Jz θ̈z

(4.1)

Instead, the new model considers all the six forces’ and torques’ balances. There-
fore, the robot motion should be described by six variables ξ = [xa, ya, za, θx, θy, θz].
The two rotation angles [θx, θy] around the x and y axes of the inertial frame can
be replaced with the roll and pitch angles [θr, θp] of the robot about its longitudinal
and transversal axes respectively, keeping the posture description valid. Since it’s
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easier to deal with a planar motion, the three variables [za, θr, θb] are supposed to
be constant and their velocities and accelerations are set to zero in the equations.
These approximations assume that the robot base is always parallel to the plane
thanks to the presence of the rear and front castor wheels. This approximation al-
lows also to easily solve the inverse dynamic problem, where the posture variables
and their first and second derivatives are the inputs while the forces the outputs.
It is straightforward to assign the time evolution to the three parameters [xa, ya, θz]
according to the desired planar trajectory. Instead, the other three possible param-
eters [za, θr, θb] cannot be assigned as inputs since their time evolution depends on
the dynamic evolution of the whole system. They should have been considered out-
puts as the forces. So it is better to suppose them constant for simplicity. Therefore,
the new model mathematical equations come from the six balance equations.

Fx = mẍ

Fy = mÿ

Fz = mz̈ = 0

Mr = Jrθ̈r = 0

Mb = Jbθ̈b = 0

Mz = Jz θ̈z

(4.2)

where r and b are the rolling and pitch robot directions. Summarizing, the previous
model approximates the robot as if it is a paper sheet without thickness moving
on a plane. Instead, the new model starts considering the robot in all its three
dimensions, adding the one perpendicular to the ground plane.

4.1 Features of the developed dynamic model

The dynamical aspects that have been taken into account in the robot modelling
are listed in the following.

1. This mathematical model equations are exploited for the solution of the in-
verse dynamic problem. The goal is to solve the inverse dynamic problem
obtaining the contact forces exerted on each driving wheel by the ground.
Each driving wheel-ground interaction is described by three forces that are
the normal reaction force fcz1, fcz2, the longitudinal traction force fcx1, fcx2
and the lateral force fcy1, fcy2, where the subfix 1 refers to the left wheel and
the subfix 2 to the right one.

� The reaction normal forces at the wheels’ contact points fcz1 and fcz2
appear in the model and allow to know how the robot weight is split
among the wheels contact points during motion. For example, in a turn
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the robot weight moves partially from the inner driving wheel to the
outer one. During acceleration, the weight moves partially to the rear
castor wheel lightening the driving ones. The knowledge of the reaction
normal forces at the contact points is the key information that allows to
discover if lateral slide and/or longitudinal slip constrains are violated
or not at the driving wheels.

� The longitudinal forces fcx1 and fcx2 are the active traction forces that
must be exerted to follow the desired trajectory.

� The lateral forces fcy1 and fcy2 are the passive forces that points to
the instantaneous centre of rotation ICR when the robot is performing
a curve in its trajectory. It opposes the centrifugal force avoiding the
robot lateral slide.

The longitudinal and lateral forces values returned by the inverse dynamic
problem are the ones that ideally allow the robot to follow the desired trajec-
tory given in input. But only a wheel-ground interaction model will tell the
user if the desired trajectory is safe or not.

(a) The simplest model of wheel-ground interaction is the one where the
contact occurs in a point. The total friction force fc exerted by the
ground on each wheel must be lower or equal to the maximum static
friction force fmax

s present every instant at that wheel, in order to avoid
slip or slide effects. The total friction force at each wheel fc is equal to
the module of the vectorial sum of fcx and fcy. Since the two components
are perpendicular, the Pythagorean theorem can be used. The maximum
static friction force fmax

s is equal to the normal force fcz multiplied for
the static friction coefficient µs that depends on the wheel and ground
materials. The ground is an industrial floor, while the driving wheels
external layers are made of polyurethane, so the static friction coefficient
chosen is equal to µs = 0.6. The contact normal force fcz at each wheel
changes during motion. 

fc =
√
f 2
cx + f 2

cy

fmax
s = µs · fcz
fc ≤ fmax

s

(4.3)

(b) More complex models can be used where the deformation of the wheels
are taken into account. For example, it is possible to compute the wheel
deformation under the known weight force fcz and the wheel contact
area with the ground. From these information, the maximum friction
force the ground can exert on the wheel before slip/slide occurs can be
determined. If it is lower than the one required by the model to follow a
desired trajectory, slip occurs. Of course these models are too complex
for this thesis purposes. Further detail can be found in [12].
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As it can be seen, the robot model and the wheel-ground interaction model
are supposed to be independent. Of course it is an approximation that seems
to be valid at the wheeled mobile robot velocities and accelerations. Indeed,
the contact forces at the driving wheels are computed from the robot model
and then the contact forces are analysed with the interaction model. This is
an advantage, because it is not necessary to decide an a-priori model of the
wheel-ground interaction, since the three forces come out of the robot model
independently. The introduction of the vertical dynamics also helps in the
choice of the motors and reducers, which need to have a maximum radial
weight they can withstand higher than the one relative to the worst case of
repartition of the robot weight among the wheels.

2. The castor wheels, that were not considered in the model of paper [11], enters
the new one. Their presence allows the robot weight balance, indeed only
two wheels do not allow the static positioning of the robot on a plane. Their
interaction with the ground is not considered in the model. This means that
the influence of the castor friction force on the robot motion is neglected. As
already said, Agilino has four castor wheels, two in the front and two in the
rear part of the robot. They are placed in a symmetrical way with respect to
both the longitudinal and transversal axes. In order to simplify the equations,
the two front wheels have been merged in one wheel and the same have been
done for the rear wheels. The same simplification characterizes the Adams
model. Since the castor wheels are usually quite rigid, it is supposed that only
one is in contact with the ground at each instant. In this way the system is
not hyper static, because the robot has three contact points at a time and
three points define a plane that is the ground. The model is made of two sub-
models, one with the castor wheel in the front and the other with the castor
wheel in the back. Since the two castors have the same distance from the robot
logic centre, when the castor normal force of one model is positive the one of
the other model is equal in module but opposite in sign. The normal reaction
force fc3z at the castor wheel contact point is an output of the inverse dynamic
problem of each sub-model, therefore it can be monitored continuously. The
inverse dynamic problems of both the sub-models are solved simultaneously
and at each instant the total model solution coincides with the one of the
sub model whose castor is in contact with the ground, therefore that has fc3z
greater than zero.

3. In the model of paper [11], the centre of mass belongs to the longitudinal axis
of the robot base and the only meaningful information is its distance from the
robot logic centre. The logic centre is the middle point of the driving wheels’
axis. In the developed model, two new features are introduced.

� The centre of mass of the upper volume can be placed everywhere on the
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robot base, therefore the robot can be also longitudinally not symmet-
rical. This aspect is important because makes the robot more general.
A symmetrical robot needs the same torques τ1 and τ2 applied to the
driving wheels to go straight during an acceleration phase, while a robot
that is not symmetrical no. If the centre of mass does not lay on the
longitudinal axis, the normal reaction force of one of the two wheels will
be higher than the other one.

� The vertical distance of the upper volume centre of mass from the robot
base zm influences deeply the robot dynamics. Greater is the distance
from the robot base, greater is the moment of the inertial force during
the acceleration phases and greater is the moment of the centrifugal force
during the turns. This results in normal forces changes at the driving
wheels contact points.

4. In the previous model every part is considered rigid, while in the new one the
upper body is connected to the robot base through three springs [kx, ky, kz].
In this way the rigidity of the structure above the base of the robot can be
tuned. Its modelling is interesting, because during acceleration and decelera-
tion phases the position of the centre of mass of the upper volume can slightly
change, changing the repartition of the total weight on the contact points.

5. In the previous model the friction at the bearings of the driving wheels was
not modelled. In the new one it is. It allows the inverse dynamic problem
to return more realistic values of the torques τ1 and τ2 that the motors have
to deliver in order to follow the desired trajectory. More realistic torques
values allow to perform a good and precise choice of the motors and reducers
without overestimating them too much to play safe. The bearing friction
torque is modelled similarly to the one in Adams. The friction arm is set
equal to Rarm = 4.8 cm that is the radius at which the balls centres of the
reducers bearings are placed, while the pin radius is set equal to Rpin = 1.25
cm, that is the radius of the reducer shaft.

Tfriction = µ · [Rarm · Faxialreaction +Rpin · Frotationalreaction] (4.4)

The friction coefficient µ is related to the robot wheel angular speed θ̇ through
the Coulomb approximation. Therefore both the stiction and sliding effects
are considered. The mathematical formulas used to link µ with θ̇ are the
following. First, the dynamic friction coefficient µd = µ̂1 = 0.1 and the static
friction coefficient µs = µ̂2 = 0.2 are set. The two angular velocities vt and vsp
are tuned to fix the desired stiction transition velocity equal to 0.001 rad/s
and the friction transition velocity equal to 0.0035 rad/s. They have been
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set equal to vt = 0.001 rad/s and vsp = 0.001 rad/s.

µc1 = µ̂1 · tanh(θ̇/vt)

µ̂3 = µ̂2 − µ̂1 · tanh(vsp/vt)

g = (θ̇/vsp) · exp
(
−
(

θ̇
vsp·
√
2

)2
+1

2

)
µc2 = µ̂3 · g
µ = µc1 + µc2

(4.5)

6. The previous model is constrained on an horizontal planar motion. Instead
the new one can be generalized to a generic inclined plane motion just chang-
ing the components of the gravity acceleration vector g. This is very im-
portant because on an inclined plane the total robot weight is split into two
components, one perpendicular and one parallel to the plane. Therefore, the
normal reaction forces at the driving wheels fcz1 and fcz2 reduce limiting more
the robot motions in order to avoid lateral slide or longitudinal slip.

7. In the new model, the point where a truck or a library is connected can
be placed wherever on the robot base, fixing also its vertical distance from
the robot base [xL, yL, zL]. Greater is the vertical distance zL, greater is the
moment of the reaction forces (ftLx, ftLy)] exerted on the robot by the truck
it is pulling. The risk is that a high acceleration together with a long arm zL
can lighten the driving wheels normal forces fcz1 and fcz2 moving the weight
to the rear castor wheel and resulting into wheels slippage.

8. In this new model it is possible to know when a driving wheel is no more in
contact with the ground just looking at the sign of the normal reaction force
fcz1 and fcz2. If it becomes negative, the robot has fallen apart.

4.2 Equations development

The equations of the mathematical model have been found using the Newton-Euler
approach. The equations are written with respect to the robot longitudinal v and
angular ω velocities and not with respect to the posture coordinates values and
derivatives. The posture coordinates time evolution will be computed from the two
significant velocities v and ω, supposing an initial position [q10; q20] and orientation
q30. The robot is ideally divided into four parts that are the robot base, the two
driving wheels and the robot upper volume. Each part motion can be divided
into two rotations that occur simultaneously. The first rotation considers all the
robot masses concentrated in the robot logic centre and occurs around the vertical
axis passing through the instantaneous centre of rotation. The second rotation
considers the different parts mass centres placed in the real positions and occurs
around the vertical axis passing through the logic centre. The two rotations are
characterized by the same angular velocity ω and acceleration ω̇. Indeed, they are
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two sides of the same coin and occur simultaneously. The first rotation describes
the logic centre motion, while the second one the fact that at each instant the robot
longitudinal axis has to be tangent to the trajectory described by the first rotation.
The equations development is performed into non-inertial reference frames since the
dependency on the posture coordinates is not relevant. The apparent forces related
to the two rotations will be computed independently and then summed up. For each
rotation, two apparent forces must be considered that are the centrifugal force Fcf

and the inertial force Fi. The centrifugal force is present since a circular trajectory
is performed. Instead, the inertial force is taken into account since the tangential
acceleration is non null being the circular motion accelerated. The equations of the
two forces are: {

Fcf = m · (ω × (ω × r′))
Fi = m · (ω̇ × r′)

(4.6)

Considering the first rotation, the chosen non-inertial reference frame RICR has
the origin in the instantaneous centre of rotation and is integral with the logic
centre, where all the masses are supposed to be concentrated. Since RICR is integral
with the logic centre, its angular velocity with respect to the inertial reference frame,
that has the same origin, is equal to the logic centre angular velocity ω = [0; 0;ω]
around the ICR. The logic centre is located at rRICR = [0;−r; 0] with respect to
the RICR reference frame, where r is the turn radius. Using (4.6), the inertial
acceleration a0 and the centripetal acceleration aC are computed and listed below:

a0 =

r · ω̇0
0

 =

v̇0
0

 aC =

 0
r · ω2

0

 =

 0
v · ω

0

 (4.7)

They are expressed in the RICR reference frame and written in function of the
robot longitudinal and angular velocities and accelerations v, v̇, ω, ω̇, since these
are the variables that will be used to set the robot trajectories. The tangential
acceleration coincides with the robot longitudinal acceleration v̇.

For the second rotation, the chosen non-inertial reference frameRa has the origin
in the robot logic centre, the x axis on the robot longitudinal axis and the y axis
on the wheels’ main axis. It is integral with the robot and rotates of ω = [0; 0;ω]
with respect to an inertial reference frame having the same origin. Now, the parts
mass centres are considered in their real positions, expressed in (4.8) with respect
to Ra. Vector rb refers to the robot base mass centre position in Ra, rrw to the right
wheel, rrf to the left wheel and ruv to the upper volume. The geometric parameters
values that define the parts positions are listed in Appendix and shown in Figures
4.1a and 4.1b where stylized drawings of the robot are given.
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rb =

d0
0

 rrw =

 0
−b1

0

 rfw =

 0
b1
0

 ruv =

d+ xm
ym
zm

 (4.8)

(a) Robot view from above

(b) Robot lateral view

Figure 4.1: Robot views
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Therefore, the centripetal and inertial accelerations of each part can be com-
puted and expressed in the Ra reference frame as follows:

aCb =

−d · ω2

0
0

 a0b =

 0
d · ω̇

0

 (4.9)

aCuv =

−(d+ xm) · ω2

−ym · ω2

0

 a0uv =

 −ym · ω̇
(d+ xm) · ω̇

0

 (4.10)

aCrw =

 0
b · ω2

0

 a0rw =

 0
b · ω̇

0

 (4.11)

aCfw =

 0
−b · ω2

0

 a0fw =

 0
−b · ω̇

0

 (4.12)

Reference frames R1 and R2 are parallel since the two rotations occur simulta-
neously with the same angular velocity ω, therefore the total acceleration acting
on each part is computed by summing the two contributions coming from the first
rotation with the two contributions of the second rotation. Then, multiplying the
total acceleration for the corresponding mass the apparent forces are found.

ab =

 v̇ − d · ω2

ω · v + d · ω̇
0

 auv =

 v̇ − (d+ xm) · ω2 − ym · ω̇
ω · v − ym · ω2 + (d+ xm) · ω̇

0

 (4.13)

afw =

 v̇ − b · ω̇
ω · v − b · ω2

0

 arw =

 v̇ + b · ω̇
ω · v + b · ω2

0

 (4.14)

The reference frame chosen to compute the moments balance equations of each
part is integral with the considered part and centred in its mass centre. In this way,
the inertial forces have null arm and do not appear in the equations. All the vectors
referring to the torques, forces, forces’ arms and the part angular velocity have to be
expressed into the chosen reference frame. Of course, also the inertia matrix refers
to the chosen reference frame and for this reason the principal reference frame is
the best choice to have a diagonal inertia matrix.
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4.3 Mechanical transmission line

Between each driving motor and the corresponding wheel an angular gearbox is
present. The transmission line is characterized by a total inertia moment (Jtot)
that includes the rotor inertia of the motor (Jmot), the gearbox inertia (Jrid) and
the inertia of the wheel (Jw). Both the motor and the gearbox can be modelled
as concentrated elements. This technique allows to distinguish the three aspects
that mainly characterize each of them. The first aspect is the ideal behaviour, the
second one is the inertia description, while the third one refers to the inner friction.
The gearbox model has the friction (τag) and inertia (Jrid) elements connected
to the input shaft of the ideal gearbox element. Therefore, friction and inertia
values refer to the input shaft side. The inertia value at its input shaft is equal
to Jrid = 1.387 · 10-4 Kg ·m2. The motor model has the motor friction (τam) and
inertia (Jmot) elements connected to the output shaft of the ideal motor element.
The inertia moment at its output shaft is equal to Jmot = 1.890 · 10-4 Kg ·m2.

The wheel inertia element is connect to the output shaft of the ideal gearbox
and is equal to Jw = 40 · 10-4 Kg ·m2. The model of the whole transmission line
system is shown in Figure 4.2, where τm is the torque provided by the ideal motor.
The value of the torque τm is equal to the product of the motor stator current and
the motor torque constant.

Figure 4.2: Transmission line

In order to compute the total inertia, the three inertia elements have to be
placed at the same side of the ideal gearbox element. The goal is to move all the
friction and inertia blocks to the ideal gearbox output shaft, therefore their values
must be corrected taking into account the gearbox ratio n. The transmission line
with all the elements moved at the gearbox output shaft is shown in Figure 4.3.

In order to perform this translation, a brief description of an ideal gearbox
is required. An ideal gearbox has unitary efficiency and no backlash. Unitary
efficiency means that no losses occur inside the reducer and therefore that the
input mechanical power (Pin) is equal to the output one Pout, where Tin and Tout
are the torques respectively at the input and output shafts. The gearbox input
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Figure 4.3: Transmission line

shaft angular speed φ̇in is equal to the motor shaft angular speed θ̇m, while the one
of the output shaft is equal to the corresponding wheel angular speed θ̇.

Pin = Tin · φ̇in = Tout · φ̇out = Pout (4.15)

If no backlash is present, the tangential velocities of the two gearbox wheels can
be considered always equal vin = vout = vt. Rin, where Rout are, respectively, the
input wheel radius and the output wheel radius.

vt = φ̇in ·Rin = φ̇out ·Rout (4.16)

Under these assumptions, the equations in (4.17) represent the relation between
the input and output physical quantities, where Jin is the value of a generic inertia
at the gearbox input shaft and Jout the value of the same inertia moved to the
output shaft. {

n = Rin

Rout
= φin

φout
= Tout

Tin

Jout = Jin · n2
(4.17)

At this point, the total inertia moment Jtot and the total friction torque τa of
the transmission line can be computed as (4.18), thus obtaining the final model in
Figure 4.4. {

Jtot = Jw + n2 · Jmot + n2 · Jrid
τa = n · τam + n · τar

(4.18)

From Figure 4.4, the equation of the transmission line can be easily written
(4.19). Since the wheel is in contact with the ground, the moment of the traction
force (fcx) must be considered, since it opposes the wheel rotation. The traction
force is the force exerted on the wheel at the wheel-ground contact point along the
wheel longitudinal direction. The traction force arm is the wheel radius R.

Jtot · θ̈ = n · τm − τa −R · fcx (4.19)

Substituting the motor torque at the wheel side, n · τm, with the value −τty, the
equation (4.20) is found and shown in Figure 4.5.
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Figure 4.4: Transmission line

Figure 4.5: Transmission line

Jtot ∗ θ̈ = −τty − τa −R ∗ fcx (4.20)

Finally substituting the expression of Jtot given in (4.18), the final equation
(4.21) is found.

{Jw + n2 · Jmot + n2 · Jrid} · θ̈ = −τty − τa −R · fcx (4.21)

The equations in (4.22) can be seen as the wheels moments balance equations,
where the motors and gearboxes inertias have been added to the wheel inertias.
Therefore, they will be inserted in the wheels equations.{

{Jw + n2 · Jmot + n2 · Jrid} · θ̈1 = −τty1 − τa1 −R · fcx1
{Jw + n2 · Jmot + n2 · Jrid} · θ̈2 = −τty2 − τa2 −R · fcx2

(4.22)

Since the transmission line is in contact with the robot base, a reaction torque
on the base τreac must be considered. It can be considered equal to the torque of
the traction force.

τreac = −R ∗ ffcx (4.23)

4.4 Inverse dynamic problem solution

During simulations, at each time step, the inverse dynamic problem of the robot
equations is solved. The equations can be found in Appendix A (A.3), together
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with the reference frames used to describe the whole system (A.1), the homoge-
neous matrices linking the different reference frames (A.4), the forces exchanged
between the different robot parts and the external forces (A.2). All the reference
frames have the z axis perpendicular to the ground plane thanks to the planar
motion approximation, and can be seen intuitively in Figures 4.1a and 4.1b.

The kinematic inputs of the inverse dynamic problem are v, v̇, ω, ω̇ that com-
pletely describe the desired robot trajectory. The forces inputs are the bearings fric-
tion torques (τa1y, τa2y), the vertical contact friction torques (τc1z, τc2z) and the forces
and torques exchanged with the eventual library the robot is pulling (ftLx, ftLy, τtLz).

The driving wheels bearings friction torques (τa1y, τa2y) and the vertical contact
friction torques (τc1z, τc2z) are computed using the same Adams model described
in Chapter 3. Therefore, each driving wheel contact friction torque computation
requires the knowledge of the vertical reaction force (fc1z; fc2z) at the wheel contact
point, while each bearing friction torque computation requires the knowledge of the
corresponding axial force (ft1y, ft2y) and of the radial forces (ft1x, ft1z, ft2x, ft2z) at
the revolute joint. The problem is that these forces are outputs of the system. To
solve this problem, at each time step, the friction torques are computed using the
forces obtained in the previous time step. In this way, a delay is introduced but
the results are acceptable.

The forces and torques exchanged with an eventual library pulled by the robot
come out from the solution of the library inverse dynamic problem. Simple equa-
tions of a library will be found in the next section.

Instead the output force and torques are listed in (4.24).

x =
[
fc1x, fc1y, fc1z, fc2x, fc2y, fc2z, ft1x, ft1y, ft1z,

τt1x, τt1y, τt1z, ft2x, ft2y, ft2z, τt2x, τt2y, τt2z,

ft3z, ftmx, ftmy, ftmz, τtmz

]T
(4.24)

Relevant unknowns are for sure the driving torques that have to be applied
to the wheels τ1 = −τt1y and τ2 = −τt2y. These two torques (τ1, τ2) are the
ones required at the output shafts of the reducers. The friction torques at the
reducers bearings are already taken into account into the equations. Therefore,
dividing the obtained torques for the reducers ratio n, the torques τm1 = τ1/n
and τm2 = τ2/n that the motors have to provide at their output shafts are found.
The other important unknowns are the contact forces at the wheels contact points
(fc1x, fc1y, fc1z, fc2x, fc2y, fc2z) that are necessary to check if the robot is sliding or
not along the desired trajectory.

The equations (A.3) refer to a differential drive robot having only one castor
wheel. If L1 = 22.75 cm, the robot has the castor wheel in the back while if L1 =
−22.75 cm, the castor is in the front. The two models are simulated simultaneously
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and both return the unknown variables. The correct unknown variables are the ones
coming from the model that has its castor wheel in contact with the ground. The
unknown variable ft3z is the normal reaction force at the castor wheel contact point
and allows to know if the castor is or not in contact with the ground. If the force
ft3z is positive, the castor is in contact with the ground, otherwise the force is
negative. When the force coming from one model is positive, the one from the
other model is negative. Checking with a proper function in Simulink, at each
time step, the values of f front

t3z and f rear
t3z , the model returning the correct unknown

variables is found.

The key aspect of this model is its modularity in order to simulate systems made
of a wheeled mobile robot and a library it is pulling. Now that the robot equations
have been found, the equations of the library it has to pull are needed. The first
step consists in solving the inverse dynamic model of the library to find the forces
and torques needed to pull it along the desired trajectory. In the second step, the
previous forces are given to the inverse dynamic model of the robot that is solved.
In the third step, from the driving wheels contact forces it can be checked if the
robot is slipping/sliding or not along the desired trajectory.

4.5 Library models

In a wheeled mobile robot, castor wheels are usually used when additional contact
points with the ground are needed to split the upper weight. In these cases, castor
wheels are not actuated. Due to the distance between the vertical secondary axis
and the wheel centre, they are self aligning. From a kinematic point of view, the
alignment is instantaneous therefore it does not affect the robot motion. From a
dynamic point of view, the alignment perturbs the robot motion due to the forces
and torques exchanged with the robot base.

In Agilino it is supposed that only one castor is in contact with the ground
at each instant. The contact normal forces at the two castors change during mo-
tion and the transition from a pure rolling motion to a sliding motion can occur.
When the robot accelerates longitudinally, the front castor normal force reduces.
Supposing it does not become zero, the front castor remains in contact with the
ground, but the maximum static friction force that the ground can exert on the
wheel reduces. This can cause the transition to sliding motion and disturb the
robot motion. Since Agilino mechanical design tries to place the upper volume
mass centre exactly on the vertical axis passing through the logic centre, the cas-
tors normal forces are quite small. Indeed, most of the robot weight is sustained by
the driving wheels. For this reason the castors are neglected in the mathematical
model.

Instead, in differential drive robots that just have the rear or the front castor
wheel, the castor equations have to be inserted. Indeed, the castor have to be always
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in contact with the ground and it must never transit from pure rolling motion
to sliding motion. Trajectories that guarantee to the castor wheel a pure rolling
motion must be selected and the robot model is fundamental for this selection.
The castor equations allow also to understand where it is better to place the wheel
on the robot base to reduce the perturbation due to its alignment. For example,
increasing the castor distance form the driving axis, the alignment angular velocity
increases steeper and consequently the magnitude of the forces needed to bring it
into alignment.

As in differential drive robots with just one castor, also in the library model
the castor wheels should not be omitted since they must never slide. Using a very
simple description, a library is made of a rectangular base on four castor wheels.
Since the initial positions of the library castors are not known, a model that takes
them into account could help in the choice of an initial trajectory that brings them
slowly into alignment, supposing, for example, the worst castor initial orientation
that is the one opposite to the motion direction. When neither lateral slide nor
longitudinal slip occur, the castor wheel motion can be approximated with two
rotations, one around its main axis and the other one around the vertical axis
passing through its contact point with the ground.

In this chapter, a very simple model of a library is developed. As said before,
its goal is to find the forces that Agilino has to transmit to the library to move it
along the desired trajectory. Therefore, the inverse dynamic problem of the library
equations has to be solved. To move the library, Agilino goes under its base and
extracts a vertical rod that connects to the library base. The connection can be
imagined like a rod/hole one. The analysis of the connection mechanical design is
out of the purposes of this thesis. The only relevant thing is the number of degrees
of freedom that this connection constrains.

The simplest connection is a vertical revolute joint that allows the rotation of the
robot cylindrical rod into the library hole. Therefore, only the planar translation
is transmitted, while the orientation of the library is decoupled from the one of the
robot. Leaving the orientation of the library free to evolve does not seem a good
idea. Nevertheless, a library with an axial symmetrical section should be used in
this case, so that the library orientation is irrelevant with respect to the occupied
size around the robot. For example, a circular or a quadratic section concentric to
the robot rod axis can be adopted.

A connection that tries to transmit also the rotation would be better such as
a rod with a squared section. This connection results in heavy torsional stresses
on the robot rod that must be designed properly. The library model will return
the vertical torque transmitted and therefore will help the mechanical engineer to
choose the rod material and the dimension of the rod section to make it survive for
many fatigue cycles. This connection requires a huge and not practical section for
the robot rod, therefore other solution can be studied.

A first solution not to have a torsional stress on the robot rod is to use two
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cylindrical rods that connect to two library base holes through vertical revolute
joints. The first rode transmits the forces that make the library translate, while
the two rods together apply the vertical moment that fixes the library orientation
with respect to the robot one. In this way, only the bending stress on the two rods
is present. The connection complexity reduces but one more motor and one more
rack are needed to extract the second rod vertically.

After this simple discussion about the robot-library connection, it is possible to
conclude that the study of other solutions can start from the forces and torques,
provided by the solution of the library inverse dynamic problem, that must be
applied to the library to make it move along the desired trajectory.

Since the library has its own wheels, its weight does not increase the normal
reaction forces at the robot driving wheels, while the friction forces at their contact
points increase. Therefore, the risk of having the driving wheels slipping or sliding
increases. Hence, thanks to a simple library model, it is possible to find the max-
imum mass that can be transported on the library and the safe trajectories that
the robot can follow.

Two library models will be found. In the first model, the planar motion approx-
imation is considered and the vertical dynamic is neglected. In this way, the library
is considered a bidimensional object without the vertical dimension, therefore its
equations include only the two forces balances on the plane axes and the moment
balance around the axis perpendicular to the plane. This first model is the simplest
one but maybe the most effective. It considers the system made of the library and
its payload described by one mass mL, one vertical inertia moment ILzz and one
mass centre position rRL

mL = (xmL, ymL), expressed in reference frame RL. Reference
frame RL has the origin in the point where the robot rod is in contact with the
library, its x axis is parallel to the robot longitudinal axis while its y axis to the
driving wheels main axis. It is listed among the robot reference frames (A.1).

The library castor wheels are supposed to be instantaneously self aligning, there-
fore the only forces acting on the mass are the ones exchanged with the robot. The
equations are given in (4.25) and are written in the reference frame RmL, whose
origin is in the library mass centre as shown in Figure 4.6a. Applying the desired
trajectory and solving the inverse dynamic problem, the values of the forces that
the robot applies to the library (fLx, fLy, τLz) are found. To find the forces that the
library applies to the robot (ftLx, ftLy, τtLz), equations (4.26) are used.

The apparent forces acting on the library are found easily since it can be con-
sidered integral to the robot due to the squared rod connection. Therefore, the
library motion can be split in two simultaneous vertical rotations. The first one
occurs around the instantaneous centre of rotation and approximates the library
mass in the robot logic centre. The second one occurs around the robot logic centre
and considers the library mass in its real position rRa

mL = (xL + xmL, ymL, yL + ymL)
with respect to the logic reference frame Ra. The coordinates (xL, yL) refers to the
position of the rod axis with respect to Ra.
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
mL · {v̇ − (yL + ymL) · ω̇ − (xL + xmL) · ω2} = fLx + g1 ·mL

mL · {v · ω − (yL + ymL) · ω2 + (xL + xmL) · ω̇} = fLy + g2 ·mL

ILzz · ω̇ = τLz − xmL · fLy + ymL · fLx
(4.25)


ftLx = −fLx
ftLy = −fLy
τtLz = −τLz

(4.26)

(a) Library top view with reference frames.

(b) Library top view with the forces applied by the
robot rod.

Figure 4.6: Library top view.

If the robot rod axis is coincident with the vertical axis passing through the
robot logic centre (xL, yL) = (0,0) and the library mass centre is close to the
connection point (xmL, ymL) = (0,0), the transversal component of the force ftLy is
not actively provided by the robot, indeed the driving wheels oppose naturally the
lateral movement of the robot and therefore of the library. Instead, the vertical
torque τtLz and the longitudinal component of the force ftLx are related to the
traction forces (fc1x, fc2x) at the driving wheels, therefore actively provided.

The second model is more complex since it is realized on Adams to be simulated
with the Adams model of the robot in the future works after this thesis. The Adams
library model is shown in Figures 4.7a and 4.7b.
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(a) (b)

Figure 4.7: Adams library model
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Chapter 5

Comparison with the Adams
model

In this chapter, simulations of the models will be performed for some trajectories
considered of interest. These trajectories are selected according to the simulations’
purposes. The goal is the validation of the mathematical model with respect to
the Adams one that is considered the most reliable. The refinement goes on up to
when the mathematical model behaviour is with good approximation close to the
Adams model one. From that moment on, since the two models act the same, only
the mathematical one can be used.

As said in the introduction, the differential mobile robot has a degree of ma-
noeuvrability equal to δM = 2, a degree of mobility equal to δm = 2 and of course a
null degree of steer ability due to the absence of actuated orientable wheels. There-
fore, only the time evolution of two velocities must be set to fix a trajectory. These
two velocities could be the angular velocities of the two wheels [θ̇1, θ̇2] or the tan-
gential v and the angular velocities ω of the robot logic centre LC with respect to
the instantaneous centre of rotations ICR. The latter solution is chosen since it is
straightforward.

5.1 Mathematical model refinement

The mathematical model and the Adams model are simulated together in the
Simulink platform. Adams allows to export the model into the Simulink envi-
ronment. As it can be seen in Figure 5.1, the Simulink file is characterized by three
main subsystems: the trajectories generator, the mathematical inverse dynamic
model and the Adams direct dynamic model.

In the trajectories generator subsystem, the trajectory is fixed by setting the
time evolution of the variables v and ω. The kinematic model of the differential drive
robot is exploited to compute the wheels angular velocities [θ̇1, θ̇2] and accelerations
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Figure 5.1: Simulink structure for simulations.

[θ̈1, θ̈2] as: {
θ̇1 = v−b1·w

R

θ̇2 = v+b2·w
R

(5.1)

The kinetic variables v, v̇, ω, ω̇, θ̇1, θ̇2, θ̈1, θ̈2 are needed to solve the inverse dy-
namic problem, therefore they are passed to the mathematical model subsystem.

The robot posture velocities [q̇1(t), q̇2(t), q̇3(t)] are needed to find the evolution
of the robot position [q1(t), q2(t)] and orientation q3(t) in the plane, starting from
an initial posture that is for simplicity chosen as [0; 0; 0]. The robot orientation
rate of change q̇3(t) is equal to the robot angular velocity ω.

q̇1(t) = v · cos(q3(t))

q̇2(t) = v · sin(q3(t))

q̇3(t) = ω

(5.2)

The solution of the inverse dynamic problem returns the torques that must
be applied to the driving wheels to follow the ideal desired trajectory. The other
important outputs of the mathematical model are the forces exchanged between
each wheel and the ground in order to check if the wheels are slipping/sliding or
not. Then, the computed torques are given as inputs to the Adams direct dynamic
model that returns the position and orientation time evolutions of the robot logic
centre during motion. In this way the real motion is compared with the ideal one.
If they are different, it means that the mathematical model is not coherent with the
Adams one. Indeed, the torques that the mathematical model provides to make
the robot follow the ideal path would result into a different path. A refinement
work has to be performed looking at the possible differences from the mechanical
description point of view (masses and inertia moment), from the friction modelling
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point of view and of course thinking about the dynamical aspects that could have
been neglected in the mathematical model.

In the following, the tests are reported in the order they have been performed.
The order is important because it allows to discover what has to be refined step by
step.

Test 1 The first test is without motion. In this way the position of the upper
volume mass centre in the mathematical model is refined by comparing the normal
forces at the wheels contact points. Since the mass centre is in the front part of the
robot, the front castor wheel is the one in contact with the ground. In the Adams
model, the three normal forces are fc1z = 296.72 N , fc2z = 313.29 N , fc3z = 33.5 N ,
where 1 refers to the left wheel, 2 to the right wheel and 3 to the castor in contact
with the ground at a certain instant. The total weight force is 643.51 N that
corresponds to a total mass of 65.6 Kg. The ratios between the normal forces and
the total weight are r1 = 46.1%, r2 = 48.7% and r3 = 5.2%. In the mathematical
model, the three normal forces are fc1z = 296.3 N , fc2z = 312.8 N , fc3z = 30.75
N . The total weight force is 639.85 N so the total mass is 65.2 Kg. The 0.4 Kg
lag between the Adams model and the mathematical one is due to the absence of
the two castor wheels weight in the mathematical one. Indeed, each castor weight
is 0.2 Kg. The ratios are r1 = 46.3%, r2 = 48.9% and r3 = 4.8%. Comparing
the ratios, it can be seen that the longitudinal distance of the mathematical model
mass centre from the logic centre is lower than the one of the Adams model. Of
course, the difference is acceptable.

Test 2 and 3 The second and the third tests check the straight motion. The
robot angular velocity ωnom is always zero while the longitudinal velocity vnom has a
trapezoidal shape. The trapezoidal shape of the velocity results into a discontinuous
longitudinal acceleration v̇nom that is characterized by step variations. It is not a
real profile that the controller will try to follow but it can be tuned easily and in
a fast way. A 2-1-2 profile for the velocity would be more realistic but its tuning
is slower, since also the jerk must be set and the conditions not to have a bang
bang trajectory in the accelerations must be considered. This profile will not be
used even though the acceleration is continuous having a trapezoidal shape. In test
2, vnom changes from 0 m/s to 0.1 m/s with an acceleration of v̇nom = 0.25 m/s2,
stays at 0.1 m/s for a predefined period of time ∆t = 6s and then goes back to
zero with a deceleration of v̇nom = −0.25 m/s2. In test 3, the only difference is that
the longitudinal velocity vnom that the robot has to reach changes from 0.1 m/s to
1.0 m/s.

As it can be seen in Figures 5.2a and 5.2b, the Adams model motion is not
perfectly straight but the error is negligible. Indeed, in test 2 the final posture of
the robot is (q1, q2) = (1.8,−12 · 10-4)m, while in test 3 is (q1, q2) = (18,−0.05)m.
In both tests, the final posture coordinate q2 is negligible with respect to q1. Some
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(a) Test 2: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(b) Test 3: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

Figure 5.2: Test 2 and 3

considerations will be done referring to the results of test 3 simulations, but the
same assertions are valid for test 2 as well. The longitudinal velocity measured
in Adams vmis and the ideal profile generated in Simulink vnom are compared in
Figure 5.3a. These two tests confirm again that the upper volume mass centre is
well placed in the mathematical model. Indeed, to drive the robot straight, the
right torque τ2 must be greater than the left one τ1, as shown in Figure 5.3c, in
order to compensate during the acceleration phase the negative vertical moment
created by the arm ym = −7.3 mm with the inertial force Mm · v̇. As can be seen
in Figure 5.3d, the traction forces are zero in the constant phase since the driving
torques just have to compensate the bearings friction torques without accelerating
the robot. As can be seen in Figure 5.3b, the driving wheels normal forces increase
in the acceleration phase while the normal force on the front castor reduces. The
weight moves to the back during the acceleration phase but the front castor remains
in contact with the ground even if lightened.

Test 4 In the fourth test, the dynamic behaviour in a turn is investigated. The
trajectory used in this test is made of nine subsequent phases. Both the longitudinal
velocity vnom and the angular velocity ωnom have a trapezoidal shape.

1. No motion phase: both v and ω are zero.
2. Longitudinal acceleration phase: vpx increases linearly from zero to vmax = 1.0
m/s with a longitudinal acceleration of v̇ = 0.25 m/s2, while ω is zero.

3. First constant longitudinal velocity phase: v is constant at vmax while ω is
still zero.

4. Angular acceleration phase: v is constant at vmax while ω linearly increases
from zero to ωmax = 0.35 rad/s with a constant acceleration equal to ω̇ = 0.35
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(a) Test 3: longitudinal velocity v expressed
in m/s. The blue line is the nominal longi-
tudinal velocity vnom while the magenta line
is the measured one vmis.

(b) Test 3: normal forces at the driving
wheels computed by the mathematical model
and expressed in N . The black line refers to
the right wheel normal force fc2x, while the
red one to the left wheel normal force fc1x.

(c) Test 3: driving torques at the wheel side
computed by the mathematical model and ex-
pressed in N ∗ m. The black line refers to
the right wheel torque τ2, while the red one
to the left wheel torque τ1.

(d) Test 3: traction forces computed by the
mathematical model and expressed in N .
The black line refers to the right wheel trac-
tion force fc2x, while the red one to the left
wheel traction force fc1x.

Figure 5.3: Test 3

rad/s2.
5. Constant velocities phase: v and ω are both constant at vmax and wmax re-

spectively. The turn radius is constant at the value rturn = vmax/wmax.
6. Angular deceleration phase: v is constant at vmax and ω linearly decreases to

zero with a constant deceleration equal to ω̇ = −0.35 rad/s2.
7. Second constant longitudinal velocity phase: v is constant at vmax and ω is

zero.
8. Longitudinal deceleration phase: v decreases linearly to zero with a constant

deceleration of v̇ = −0.25 m/s2 while ω is zero.
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9. Again a no motion phase.

Table 5.1: Test 4 velocities profile parameters

Quantity Symbol Unit measure Value

maximum longitudinal velocity vmax m/s 1.0
longitudinal acceleration/deceleration v̇ m/s2 0.25
maximum angular velocity ωmax rad/s 0.35
angular acceleration/deceleration ω̇ rad/s2 0.35

In these trajectories the acceleration and deceleration phases of the longitudinal
velocity v and of the angular velocity ω are kept separated. This is important in
order to be able to understand in which phase the mathematical model behaviour
differs from the Adams one. Indeed, many dynamical aspects that are hidden
during the straight motion are triggered during a robot turn, such as the vertical
friction torque at the wheels. Figure 5.4a shows that the torques computed by the
mathematical model do not allow the Adams model to follow the desired trajectory.

(a) Test 4: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(b) Test 4: posture orientation q3 expressed
in rad. The blue line is the nominal orien-
tation q3nom while the magenta line is the
measured one on the Adams model q3mis.

Figure 5.4: Test 4

To understand when the real trajectory starts moving away from the real one,
Figures 5.5b and 5.5a, where the longitudinal and angular velocities nominal profile
are compared with the measured ones, are analysed.

The measured angular acceleration ω̇mis is smaller than the desired one ω̇nom,
therefore at the end of the angular acceleration phase the angular velocity ωmis is
0.24 rad/s instead of 0.35 rad/s. In addition, during the constant velocities phase,
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(a) Test 3: longitudinal velocity v expressed
in m/s. The blue line is the nominal longi-
tudinal velocity vnom while the magenta line
is the measured one vmis.

(b) Test 3: angular velocity ω expressed in
m/s. The blue line is the nominal angular
velocity ωnom while the magenta line is the
measured one ωmis.

Figure 5.5: Test 4

the angular velocity ωmis does not remain constant at the reached value but de-
creases and settles at the value of 0.055 rad/s. Always in the constant velocities
phase, the longitudinal velocity vmis increases instead of remaining constant. There-
fore, the turn radius that should remain constant in the constant velocities phase
increases and the motion transits toward a straight motion. The angular velocity
reduction and longitudinal velocity increase occur at the same time. And, when the
angular velocity settles to the value, the longitudinal velocity keeps increasing. The
robot behaves as if it is constrained into a rail. Therefore, the torques applied result
into a longitudinal acceleration since the possibility to turn is violated. Something
has been not considered in the mathematical model. The mass centre of the upper
volume is well placed as it is known from the previous tests, therefore it is not a
problem of centrifugal force moment that opposes the robot turn. Probably the
vertical friction torques at the driving wheels contact points must be introduced.
Up to this test, the friction coefficient was set to zero. The torques and traction
forces of Test 4 are shown respectively in Figures 5.6a and 5.6b. The vertical torque
friction coefficient µv must depend on the robot angular velocity ω that is the rel-
ative angular velocity of each wheel with respect to the ground around the vertical
axis passing though the wheel centre.

Test 5a The first relation exploited in the mathematical model between ω and
µv is the Coulomb one as suggested by the tests performed in Adams Chapter
7. Since the transition from static to dynamic friction occurs at very low ω, the
friction coefficient µv is practically always equal to the dynamic one µd = 0.1.
Therefore, this relation results into a constant µv = µd that does not depend on
ω. Performing a simulation, the mismatch of this friction model with respect to
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(a) Test 4: driving torques at the wheel side
computed by the mathematical model and ex-
pressed in N ∗ m. The black line refers to
the right wheel torque τ2, while the red one
to the left wheel torque τ1.

(b) Test 4: traction forces computed by the
mathematical model and expressed in N .
The black line refers to the right wheel trac-
tion force fc2x, while the red one to the left
wheel traction force fc1x.

Figure 5.6: Test 4

the Adams one is found. The comparison between the measured angular velocity
ωmis and the nominal one ωnom is shown in Figure 5.7b. At the beginning of the
angular acceleration phase, the measured angular velocity ωmis grows steeper than
the nominal one ωnom. This is probably because the vertical friction torques in the
mathematical model are greater than the Adams ones at that low angular veloc-
ities. This results into higher driving torques and therefore into a higher angular
acceleration of the Adams model. This is observable also in Figure 5.7a, where the
Adams model turn has a lower radius at that low angular velocities. Then, the
measured angular acceleration decreases during all the angular acceleration phase,
probably because the Adams vertical friction torque increases becoming closer to
the one present in the mathematical model. From this simulation, the fact that the
Adams vertical friction coefficient increases with the velocity is discovered. In the
next paragraph, the simplest proportional relation is exploited, that is the linear
one. As in the previous test, the measured angular velocity ωmis decreases during
the constant velocities phase and settles to a value almost equal to 0.31 rad/s. The
vertical friction torques at the wheels-ground contact points are shown in Figure
5.8a.

Test 5b The second relation exploited between ω and µv is the linear one. The
slope c of the dependency µv = c · ω has been tuned with trial and error procedure
finding c = 0.009m. The parameter c can be modelled as the product c = µ·Rcontact,
where Rcontact = 0.02 m is the radius of each wheel contact surface that is supposed
to be circular, while µ = 0.45 is the constant friction coefficient that must be
tuned. As can be seen in Figure 5.9d, the measured ωmis coincides with the ideal
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(a) Test 5a: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(b) Test 5a: angular velocity ω expressed in
m/s. The blue line is the nominal angular
velocity ωnom while the magenta line is the
measured one ωmis.

Figure 5.7: Test 5a

(a) Test 5a: vertical friction torques at the
wheels-ground contact points computed by
the mathematical model and expressed in
N ∗ m. The black line refers to the right
wheel vertical friction torque τc2z while the
red one to the left wheel vertical friction
torque τc1z.

(b) Test 5a: normal forces at the driving
wheels computed by the mathematical model
and expressed in N . The black line refers to
the right wheel normal force fc2z, while the
red one to the left wheel normal force fc1z.

Figure 5.8: Test 5a

one in the angular acceleration phase. The desired velocity ωmax is reached and
kept almost constant during the constant velocities phase. In Figure 5.9c, the
longitudinal velocity v stays more or less constant in the constant velocities phase
at a value just a little lower than the desired one vmax. In Figure 5.9a, the nominal
and real trajectories are close to each other. The vertical friction torques are shown
in Figure 5.10c.
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Comparison with the Adams model

(a) Test 5b: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(b) Test 5b: posture orientation q3 expressed
in rad. The blue line is the nominal orien-
tation q3nom while the magenta line is the
measured one on the Adams model q3mis.

(c) Test 5b: longitudinal velocity v expressed
in m/s. The blue line is the nominal longi-
tudinal velocity vnom while the magenta line
is the measured one vmis.

(d) Test 5b: angular velocity ω expressed in
m/s. The blue line is the nominal angular
velocity ωnom while the magenta line is the
measured one ωmis.

Figure 5.9: Test 5b

Now that the friction model seems to behave similarly to the Adams one, its
generality must be tested. Therefore new velocities profile are used in the simula-
tions. The profile are always characterized by the subsequent nine phases described
above, but the maximum velocities vmax and wmax and the accelerations v̇max and
ẇmax are changed.

Conclusions about test 5a and 5b From the two tests 5a and 5b, it be-
comes clear that the vertical torque friction coefficient at the wheels contact points
has a linear dependency on the angular velocity ω because the stiction transition
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Comparison with the Adams model

(a) Test 5b: driving torques at the wheel side
computed by the mathematical model and ex-
pressed in N ∗ m. The black line refers to
the right wheel torque τ2, while the red one
to the left wheel torque τ1.

(b) Test 5b: traction forces computed by
the mathematical model and expressed in N .
The black line refers to the right wheel trac-
tion force fc2x, while the red one to the left
wheel traction force fc1x.

(c) Test 5b: vertical friction torques at the
wheels-ground contact points computed by
the mathematical model and expressed in
N ∗ m. The black line refers to the right
wheel vertical friction torque τc2z while the
red one to the left wheel vertical friction
torque τc1z.

(d) Test 5a: normal forces at the driving
wheels computed by the mathematical model
and expressed in N . The black line refers to
the right wheel normal force fc2z, while the
red one to the left wheel normal force fc1z.

Figure 5.10: Test 5b

velocity set in Adams in the Coulomb friction approximation is too high. There-
fore, the transition to the dynamic friction coefficient never occurs. Maybe, it has
to be reduced but when the prototype robot will be ready, the friction parameters
will be chosen thanks to measures on the real components.

Test 6a In test 6a (Figure 5.11a), the maximum angular velocity ωmax is changed
from 0.35 rad/s to 0.05 rad/s, while the other three parameters vmax, v̇ and ω̇ are
equal to test 4.
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Comparison with the Adams model

Test 6b In test 6b (Figure 5.11b), the maximum longitudinal velocity vmax is
changed from 1.0 m/s to 0.5 rad/s, while the other three parameters ωmax, v̇ and
ω̇ are equal to test 4.

Test 6c In test 6c (Figure 5.11c), the longitudinal acceleration v̇ is greatly in-
creased from 0.25 m/s2 to 2 m/s2, while the other three parameters are fixed equal
to test 4.

Test 6d In test 6d (Figure 5.11d), the angular acceleration ω̇ is greatly increased
from 0.35 rad/s2 to 1.4 rad/s2, while the other three parameters are fixed equal to
the ones in test 4.

Test 7 One particular test is added to check the robot dynamic during a turn on
itself. Indeed, in test 7, a trajectory that has the ICR in the robot logic centre is
used so that the robot rotates on itself without translating.Therefore, the longitu-
dinal velocity v is always equal to zero while the angular velocity has a trapezoidal
shape described by a maximum velocity ωmax = 0.35 rad/s and a angular acceler-
ation/deceleration ω̇ = 0.35 rad/s2. The robot orientation q3 is shown in Figure
5.12.

Conclusions about tests 6a, 6b, 6c, 6d and 7 In all these tests, the results
are acceptable, therefore the vertical friction torque modelling in the mathematical
model, matches the one in Adams.

Up to now, the friction interaction forces between the castors and the ground
were set to zero in the Adams model. This was done to check the behaviour
of the mathematical model that does not have the castors equations. Castors
are considered only to provide the mathematical model the third contact point in
addition to the two driving wheels ones. But the longitudinal and lateral forces
exerted by the ground on the wheel are not considered. They will be introduce in
the Adams model exploited to test the motors control algorithm.
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Comparison with the Adams model

(a) Test 6a: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(b) Test 6b: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(c) Test 6c: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

(d) Test 6d: the red line is the nominal tra-
jectory while the blue one the real trajectory
that the Adams model makes.

Figure 5.11: Tests 6

Figure 5.12: Test 7: posture orientation q3 expressed in rad. The blue line is the
nominal orientation q3nom while the magenta line is the measured one on the Adams
model q3mis.
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Chapter 6

Comparison with prototype
measures

In the previous Chapter, the refinement of the mathematical model with respect to
the Adams model was performed. In this Chapter, a step forward is done since the
robot prototype is ready. The robot is moved on a fixed path shown in Figure 6.1
at different velocities. To have a complete view of the robot dynamics, the chosen
path is made of straight lines and turns.

Figure 6.1: Path followed by the robot

While the robot moves along this path, the motors shafts angular velocities
(θ̇mis

m1 , θ̇
mis
m2 ) and the motors armature currents (Im1, Im2) are measured. From these

currents, the motors torques (τmis
m1 , τ

mis
m2 ) are computed with the formulas of the

brushless DC motor (6.1), where Km is the torque constant that the data sheet
provides equal to Km = 0.1156 (N ·m)/A.{

τmis
m1 = Km · Im1

τmis
m2 = Km · Im2

(6.1)
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Comparison with prototype measures

In order to check if the mathematical model matches the real robot dynamics,
the inverse dynamic problem is solved. As inputs, it receives the trajectories ex-
pressed with respect to the wheels angular velocities (θ̇1, θ̇2) and with respect to the
robot longitudinal v and angular ω velocities. As outputs, it returns the driving
torques (τ comp

1 , τ comp
2 ) at the reducers output shafts.

As it can be understood, the measures are related to the motor side while the
equations variables belongs to the wheel side. In order to make them comparable,
the formulas and equations that relate the wheel side variables to the motor side
variables are exploited.

The total friction torques both in gear and rotor (τam, τag) are expressed at the
motor side due to the way measures have been taken. The measures set up and the
data processing will be detailed in the following section.

Therefore, the torques returned by the mathematical model (τ comp
1 , τ comp

2 ) are
moved from the gearbox output shaft to the input shaft just dividing them by the
gearbox ratio n. In this way they can be compared with the measured torques
(τmis

m1 , τ
mis
m2 ). {

τ comp
m1 =

τcomp
1

n

τ comp
m2 =

τcomp
2

n

(6.2)

Since the robot equations depend on the robot longitudinal (v) and angular
(ω) velocities and on the wheels angular speeds (θ̇1, θ̇2), the following formulas
are needed to compute them from the measured angular speeds (θ̇mis

m1 , θ̇
mis
m2 ) of the

motors shafts. 
θ̇1 =

θ̇mis
m1

n

θ̇2 =
θ̇mis
m2

n

v = R·(θ̇1+θ̇2)
2

=
R·(θ̇mis

m1 +θ̇mis
m2 )

2·n

ω = R·(θ̇2−θ̇1)
2·b1 =

R·(θ̇mis
m2 −θ̇mis

m1 )

2·n·b1

(6.3)

6.1 Motors and reducers friction modelling

In the first part of the thesis, the total friction torque of the transmission line was
modelled with the Coulomb approximation both in the Adams model and in the
mathematical equations. To refine the friction model, measures have been taken on
the prototype robot. For these measures, the robot was lifted so that the driving
wheels were not in contact with the ground. In this way, when the motor shaft is
rotating at constant angular speed, the motor torque τm coincides with the total
friction torque at the motor side given by the sum of the motor friction torque τam
with the gearbox one τag. Indeed, when the angular acceleration is zero, the inertia
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Comparison with prototype measures

torques are silent and since the wheels are lifted also the torque due to the traction
force fcx is null.

Therefore, the motors shafts angular velocities are brought to a desired value
θ̇max
m and kept constant at that value for a significant period of time, while measuring

the motors currents. From the motors currents, the motors torques are computed
τm = τ tota = τam + τag. The same test was performed with four different values
of θ̇max

m , since the goal was to find the dependency of the total friction torque τ tota

on the motor angular speed θm. The motor angular speeds and the corresponding
currents and friction torques are listed in Table 6.1 for the left motor and Table
6.2 for the right one. The graphs shown in Figures 6.3a and 6.3b were created with
θm on the x axis and τ tota on the y axis. Both show an almost linear dependency
at the velocities of interest. The friction torque τ tota is expected to settle at a
constant value from a certain velocity on, but this behaviour can be neglected at
the velocities the measures were performed. Therefore, the linear regression method
was used to find the line that better approximates the four points of each graph.
The regression lines of the left friction torque τ tota1 and of the right friction torque
τ tota2 are listed below. The friction torques (τ tota1 , τ

tot
a2 ) are expressed in N ·m and the

motor angular velocities (φ̇m1, φ̇m2) in rad/s. It is important to underline that the
model validity range spans from −166.4 rad/s to 166.4 rad/s.

{
τ tota1 = 0.0043 · φ̇m1 + 0.2065

τ tota2 = 0.0041 · φ̇m2 + 0.2082
(6.4)

Since the two lines are very similar, an average line is going to be used for both
the friction torques.

τ tota = 0.0042 · φ̇m + 0.207 (6.5)

Therefore, the friction model looks very similar to the one that combines the
Coulomb friction with the viscous friction shown in Figure 6.2a. The step transition
at null angular velocity will be substituted with a line having a high angular coef-
ficient not to have a discontinuous model as the one in Figure 6.2b. The transition
velocity θ̇t at which the friction torque is equal to the stiction torque τstic = 0.207
Nm is fixed equal to θ̇t = 0.01 rad/s = 0.57 deg/s. Then the high angular coeffi-
cient mstic is computed as the ratio of mstic = τstic/θ̇t = 20.7 Nm/(rad/s).

τ tota =


mas · φ̇m if − φ̇t < φ̇m < φ̇t

0.0042 · (φ̇m − φ̇t) + 0.207 if φ̇m > φ̇t

0.0042 · (φ̇m + φ̇t)− 0.207 if φ̇m < −φ̇t
(6.6)
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(a) Discontinuous friction modelling (b) Continuous friction modelling

Figure 6.2: Friction modelling

Table 6.1: Left friction torque τ tota1 at the motor side

θ̇m1(rad/s) Im1(A) τ tota1 (N ·m)

160.3 7.65 0.884
99.6 5.68 0.657
33.2 3.12 0.361
16.8 2.25 0.260

6.2 Mass and inertia computations

Mass and inertia values computed in Chapter 3 are not equal to the one of the pro-
totype. The previous computation have been performed using the Agilino CAD files
referring to the last mechanical design that is slightly different from the prototype
one.

The main difference regards the bearing structure that in the prototype robot
is bigger and is made of MDF (Medium Density Fibreboard) instead of aluminium.
The MDF volume density is equal to ρMDF = 680 Kg/m3 while the aluminium one
is ρAL = 2.7 g/cm3, therefore the MDF bearing structure will be lighter. Another
important difference is that the battery is not the right one though it cannot be
inserted inside the bearing structure as the mechanical design envisages. For this
reason, it is placed on top of the bearing structure, thus moving up the mass centre
of the whole robot. Less relevant differences are the charging plates absence on the
prototype and the presence of the motor drives that have negligible masses with
respect to the whole one Mm. Another important difference regards the motors and
gearboxes displacements. Indeed, the ones related to the left wheel and the ones
related to the right wheel are symmetrical with respect to the vertical axis passing
through the robot logic centre. The battery, motors and gearboxes new positions
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Table 6.2: Right friction torque τ tota2 at the motor side

θ̇m2(rad/s) Im2(A) τ tota2 (N ·m)

166.4 7.48 0.866
99.8 5.81 0.672
33.3 3.08 0.357
17.0 2.13 0.246

(a) Left friction torque τ tota1 (N · m) VS left motor angular speed
θ̇m1(rad/s)

(b) Right friction torque τ tota2 (N ·m) VS right motor angular speed
θ̇m2(rad/s)

Figure 6.3: Friction torques dependency on the motor angular velocities
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allow to have the upper volume mass centre closer to the vertical line passing
through the robot logic centre Indeed, its position with respect to the robot base
mass centre moves to [xm, ym, zm] = [−4.3, 5.1, 332.8]mm.

First, thanks to Adams, the mass mBS and the vertical inertia moment IzBS of
the prototype bearing structure are found and listed below.{

mBS = 7.52Kg

IzBS = 4894.5Kg · cm2
(6.7)

Then, the vertical inertia moment of the battery IzB is computed easily from
(6.8) since it has a parallelepiped shape with dimensions (LxHxP) = (540x260x250)mm
and mass equal to MB = 27 Kg.

IzB = MB ·
L2 + P 2

12
= 0.8Kg ·m2 (6.8)

The final parameters that describe the robot upper volume are listed in Table
6.3.

Table 6.3: Mechanical parameters of the prototype upper volume

Quantity Symbol Unit measure Value

upper volume mass Mm Kg 62.22
upper volume vertical inertia moment Izm Kg ·m2 2.4
upper volume COM rm mm [-4.3, 5.1, 332.8]

6.3 Simulations

In this section, the simulation plots with some comments will be reported. The
robot is moved along the path shown in Figure 6.1. The trajectory is character-
ized by a longitudinal velocity equal to v = 0.3 m/s on the two straights and the
robot longitudinal and angular velocities are plotted in Figures 6.4a. The compar-
isons between the torques computed from the measured armature currents and the
torques resulting from the inverse dynamic solution of the mathematical model are
performed. The torques comparisons allow the friction model refinement (6.9) and
are shown in Figures 6.5a and 6.5b.{

τ tota1 = 0.0029 · φ̇m1 + 0.207

τ tota2 = 0.0032 · φ̇m2 + 0.207
(6.9)

It’s clear that for each simulation, the measured and computed torques evolve
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(a) Robot longitudinal velocity v expressed
in m/s.

(b) Robot angular velocity ω expressed in
rad/s.

Figure 6.4: Robot velocities profiles

(a) Left wheel torque in N ·m. The blue line
refers to the measured torque, while the red
line refers to the mathematical model torque.

(b) Right wheel torque in N · m. The blue
line refers to the measured torque, while the
red line refers to the mathematical model
torque.

Figure 6.5: Torques comparison

similarly during the whole lap except for the first longitudinal acceleration. Indeed,
during the first longitudinal acceleration the measured torques are a little bit greater
than the ones expected by the mathematical model. Such a difference could be due
to some non linearities in the transmission line not included in the model.

An important aspect that can be extracted from these simulations is the esti-
mate of transmission line efficiency. It can be described as the percentage of the
total motor torque that results into the traction force at the wheel-ground contact
point. Indeed, the total motor torque can be divided into three components. The
first one is wasted in the transmission line friction torques and is always present
when the robot is moving. The second one provides the inertial torque needed to
change the angular velocity of the total inertia moment of the transmission line.
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The third one is the torque that results into the traction force at the wheel-ground
contact point. The last two components are present only when the robot changes
its motion state, therefore when the motor angular speed θ̇m has non null rate of
change θ̈m. A simple estimate of this efficiency can be extracted comparing the
motors torques with the friction torques shown in Figures 6.6a and 6.6b. Most of
the motor torque is wasted due to friction effects.

(a) Friction torque of the left transmission
line expressed in N ·m.

(b) Friction torque of the right transmission
line expressed in N ·m.

Figure 6.6: Friction torques

Figure 6.7: Motors shafts angular speeds expressed in rad/s. The green line refers
to the left motor one while the black line to the right one.
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Chapter 7

Control strategies

In this chapter, control strategies will be developed in order to drive the two brush-
less motors. The autonomous guided vehicles have two control layers in cascade.
The high layer takes care of the robot position in space and returns as output the
trajectory the robot has to follow. The trajectory is described through the motors
angular velocities that act as the references of the low control layer. Though, the
low control layer pilots the driving motors so that their speeds follow the references.

The higher layer control strategy takes into account the robot position in space,
the position of the target the robot has to reach and the positions of the obstacles
that laser scanners continuously detect. This whole information allows the high
control layer to plan and continuously update the trajectories the robot has to
follow to reach the target.

The low layer controller compares the reference speeds with the ones measured
by the encoders at the motors shafts and returns the proper motors armature
voltages. In this Chapter, this second control layer is developed.

From the control point of view, the AGV can be compared with the industrial
manipulators since the high layer performs something similar to a task space control
while the low one to a joint space control. Therefore, in this Chapter a joint space
control will be developed. The possible joint space control architectures are two
[13]:

� Decentralized control or independent joint control: Each joint motor has a
local controller that takes into account only local variables. Therefore, the
controller design is relative simple, since it is a SISO type but it considers only
an approximated model of the joint. It is based on the equivalent model of an
electrical motor and between the motor and the joint requires the presence
of a gearbox. The gearbox presence reduces the effects of non linearities and
coupling effects making the strategy of local controllers more effective.

� Centralized control: Only one MIMO controller is present. It receives all the
joints variables and elaborates the control signals for all the motors. Its design
is based on the robot complete model and it is used when no gearboxes are
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present or when the disturbance torques are significant in the robot dynamics.
The centralized control tries to cancel these disturbance torques with non
linear compensation terms. The main architecture is the inverse dynamics
one.

7.1 Robot model for control purposes

The first step, before choosing which is the best control strategy, is to find a simple
robot model. In this model, the vertical dynamics is no more considered. In-
deed, velocities and acceleration limits that keep the robot on safe trajectories have
already been found offline thanks to the previous analysis. Then, instead of con-
sidering the robot base, the two driving wheels and the upper volume as different
parts, in this model the robot is approximated with just one block characterized
by a mass M = 57.9 Kg and a vertical moment of inertia J = 3.78 Kg ·m2. This
simplification is suggested in [11]. The general mass centre position with respect to
the logic centre reference frame Ra is located at rm = (xm, ym). Finally, the friction
forces at the bearings are not considered. Due to the previous assumptions, the
model includes only three equations written in (7.1): the two forces balances on
the plane and the torques balance on the direction perpendicular to the plane. The
first equation is the balance on the robot longitudinal direction, while the second
one on the robot transversal direction.

M · (v̇ − xm · ω2 − ym · ω̇) = Fc1x + Fc2x

M · (ω · v − ym · ω2 + xm · ω̇) = Fc1y + Fc2y

J · ω̇ = −xm · (Fc1y + Fc2y)− b1 · (Fc1x − Fc2x) + ym · (Fc1x + Fc2x)

(7.1)

Now, substituting in the third equation Fc1x + Fc2x from the first equation and
Fc1y + Fc2y from the second equation, the following equation (7.2) is obtained.

(J +M · (x2m + y2m)) · ω̇ + xm · (Mωv)− ym · (Mv̇) = b1 · (Fc2x − Fc1x) (7.2)

Combining (7.2) with the first one of (7.1), the system without the transversal
contact forces Fc1y and Fc2y is obtained.

M · (v̇ − xm · ω2 − ym · ω̇) = Fc1x + Fc2x

(J +M · (x2m + y2m)) · ω̇ + xm · (Mωv)− ym · (Mv̇) =

= b1 · (Fc2x − Fc1x)

(7.3)

Since friction torques at the bearings are not considered and the wheel inertia
around its main axis is neglected, the following equations (7.4) link the torques
applied to the wheels (τL, τR) with the traction forces (Fc1x, Fc2x), where R = 0.1
m is the wheels radius. {

Fc1x = τL
R

Fc2x = τR
R

(7.4)
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Substituting (7.4) into (7.3), the following equations are obtained:
M · (v̇ − xm · ω2 − ym · ω̇) = τL+τR

R

(J +M · (x2m + y2m)) · ω̇ + xm · (Mωv)− ym · (Mv̇) =

= b1·(τR−τL)
R

(7.5)

Now, the system (7.5) is translated from the longitudinal velocity v and angular
speed ω variables to the wheels angular velocities φ̇L and φ̇R, exploiting the formulas
of the differential drive robot kinematic model.

{M ·R
2
− M ·R·ym

2·b1 } · φ̈R + {M ·R
2

+ M ·R·ym
2·b1 } · φ̈L − {

M ·R2·xm
4·b21

} · φ̇2
R+

−{M ·R2·xm
4·b21

} · φ̇2
L + {M ·R2·xm

2·b21
} · φ̇L · φ̇R = τL+τR

R

{R·[J+M ·(x
2
m+y2m)]

2·b21
} · φ̈R − {R·[J+M ·(x

2
m+y2m)]

2·b21
} · φ̈L + {M ·R2·xm

4·b21
} · φ̇2

R

−{M ·R2·xm
4·b21

} · φ̇2
L − {

M ·R·ym
2·b1 } · (φ̇R + φ̇L) = τR−τL

R

(7.6)

Finally summing and subtracting the two equations of (7.6), it is possible to get
the following equations referring respectively to the left and right joints.

{M ·R2

4
+ M ·R2·ym

4·b1 + R2·[J+M ·(x2m+y2m)]

4·b21
} · φ̈L+

+{M ·R2

4
− M ·R2·ym

4·b1 − R2·[J+M ·(x2m+y2m)]

4·b21
} · φ̈R − {M ·R

3·xm
4·b21

} · φ̇2
R+

+{M ·R3·xm
4·b21

} · φ̇L · φ̇R + {M ·R2·ym
4·b1 } · (φ̇R + φ̇L) = τL

{M ·R2

4
− M ·R2·ym

4·b1 + R2·[J+M ·(x2m+y2m)]

4·b21
} · φ̈R+

+{M ·R2

4
+ M ·R2·ym

4·b1 − R2·[J+M ·(x2m+y2m)]

4·b21
} · φ̈L − {M ·R

3·xm
4·b21

} · φ̇2
L+

+{M ·R3·xm
4·b21

} · φ̇L · φ̇R − {M ·R
2·ym

4·b1 } · (φ̇R + φ̇L) = τR

(7.7)

Writing (7.7) in matrix form as in (7.8) makes the equations more readable. The
diagonal matrix Jb contains the joints main moments of inertia, while the vector
τd includes all the non linear τn and coupling τc effects, where non linear effects
refer to Coriolis and centrifugal torques. As it can be seen, the non linear effects
τn are present only when the robot mass centre is not on the vertical axis passing
through the robot logic centre, though when xm and ym are not zero. This result
is meaningful and it was anticipated in the state of the art. Indeed, if the robot
mass centre is on the logic centre, the centrifugal force during a turn has null arm,
therefore it causes a null moment. In this way, the controller does not have to
balance the centrifugal force moment to keep the robot in the turn.[

JbL 0
0 JbR

]
·
[
φ̈L
φ̈R

]
+

[
0 JcLR

JcRL 0

]
·
[
φ̈L
φ̈R

]
+

[
τnL
τnR

]
=

[
τL
τR

]
(7.8)

Jb · φ̈+ Jc · φ̈+ τn = τ (7.9)

Jb · φ̈+ τd = τ (7.10)
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7.2 Control strategy

Agilino mechanical design tries to place the mass centre exactly on the vertical
axis passing through the logic centre, therefore xm and ym are close to zero. With
xm = ym = 0, the disturbance torques have a small influence on the robot behaviour
because the non linear effects disappear while the coupling effects are negligible.
Thanks to these considerations, it is possible to choose the decentralized control
as the best architecture to drive the motors when Agilino moves on its own. As
explained before, the robot task is to pull libraries and tracks. In these working
conditions, the mass centre of the whole system including both the robot and the
library could be no more on the robot logic centre. Therefore, the non linear effects
could become relevant and the decentralized control ineffective. The non linear ef-
fects enhancement could require a more effective centralized control strategy. This
thesis looks for a control strategy focused on the robot moving on its own. There-
fore, the decentralized control is the best one. The assumption xm = ym = 0 is close
to the real mechanical design. Even though they are not precisely equal to zero,
this is not a problem because one of the controller goals is to be robust enough to
deal also with the mechanical approximations. The updated equations (7.12) with
null xm and ym are listed below.[

JbL 0
0 JbR

]
·
[
φ̈L
φ̈R

]
+

[
0 JcLR

JcRL 0

]
·
[
φ̈L
φ̈R

]
=

[
τL
τR

]
(7.11)

{
{M ·R2

4
+ R2·J

4·b21
} · φ̈L + {M ·R2

4
− R2·J

4·b21
} · φ̈R = τL

{M ·R2

4
+ R2·J

4·b21
} · φ̈R + {M ·R2

4
− R2·J

4·b21
} · φ̈L = τR

(7.12)

In this case, the main inertia moments, computed with (7.13), are equal to JbL =
JbR = 0.3 Kg ·m2. Instead, the coupling inertia moments, computed with (7.14),
are equal to JcLR = JcRL = −6.45 · 10-3 Kg · m2. Therefore, the coupling inertia
moments are negligible with respect to the main ones.

JbL = JbR =
M ·R2

4
+
R2 · J
4 · b21

=
R2

4
·
(
M +

J

4 · b21

)
(7.13)

JcLR = JcRL =
M ·R2

4
− R2 · J

4 · b21
=
R2

4
·
(
M − J

4 · b21

)
(7.14)

At this point, to bring the main inertia moments from the wheel side (JbL, JbR)
to the motor side (J ′bL, J

′
bR), they are divided by the square of the gearbox ratio

n = 25. The computation returns J ′bL = J ′bR = 4.8 · 10-4 Kg ·m2.{
J ′bL = JbL

n2

J ′bR = JbR
n2

(7.15)
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To find the total inertia moment at the motor side (JtL, JtR), both the inertia
moments of the gearbox JGB = 1.387 ·10-4 Kg ·m2 and of the motor JM = 1.89 ·10-4

Kg · m2 have to be added to the robot main inertia moments (J ′bL, J
′
bR). The

computation returns JtL = JtR = 8.077 · 10-4 Kg ·m2.{
JtL = J ′bL + JGB + JM

JtR = J ′bR + JGB + JM
(7.16)

Since the total moments of inertia are equal and also the two motors, the two local
controller will be the same. Therefore, only one will be developed in the following.

As said at the beginning of this Chapter about the decentralized control, it con-
siders only an approximated model of the joint. This model includes the mechanical
equation of the joint at the motor side and the electrical equations describing the
behaviour of the equivalent electric circuit of a brushless DC motor that is shown
in Figure 7.1. The mechanical and electrical equations are listed in (7.17). The

Figure 7.1: Equivalent electric circuit of a brushless DC motor [14].

first equation is the joint mechanical one at the motor side. As it can be seen,
the disturbance torque τd appears at the motor side divided by the gearbox ratio
n. This shows the gearbox positive effect of reducing the impact of non linear and
coupling terms on the robot behaviour. The second equation relates proportionally
the motor torque τm to the armature current Ia. The third equation shows the
proportional dependency between the back electromotive force E and the motor
angular speed φ̇. The fourth and last equation is the electrical armature one. The
total friction coefficient at the motor side βt is null since the friction was not con-
sidered.The required motor parameters values are extracted from its data sheet and
are listed in Table 7.1. 

Jt · φ̈′ + βt · φ̇′ + τd
n

= τm

τm = Km · Ia
E = Kw · φ̇
Va −Ra · Ia − La · dIadt − E

(7.17)
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Table 7.1: Motors parameters

Parameters Symbol Unit measure Value

equivalent terminal resistance Ra Ω 0.055
equivalent terminal inductance La mH 0.150
torque constant Km (N ·m)/A 0.1156
speed constant Kw V/(rad/s) 0.095

Moving from the time domain to the Laplace domain, the transfer function
(7.18) that links the motor shaft angular velocity φ̇ to the motor armature voltage
Va can be found, where τarm is the armature time constant and τmec is the mechanical
time constant. The two time constants are computed as in (7.19) and are equal to
τmec = 4ms and τarm = 2.73ms.

Figure 7.2: DC motor diagram in open loop [15].

φ̇

Va
=

1
Kw

1 + τmec · s+ τmec · τarm · s2
(7.18)

{
τmec = Jt·Ra

Kw·Km

τarm = La

Ra

(7.19)

The decentralized control architecture of the industrial manipulators is usually a
nested control loop. The most general configuration shown in Figure 7.3 includes
one loop for the position, one loop for the velocity and the last loop for the torque.
The torque loop has to be much faster than the other two and it is used to cancel
the mechanical pole of the motor transfer function in order to increase the motor
bandwidth and to control the motor directly with the current. The use of the
torque loop requires a current sensor that allows to know the motor torque τm
just multiplying the measured current for the torque constant Km. Position and
velocity loops require an encoder on the motor shaft to measure the motor shaft
position and velocity. For an industrial manipulator the position loop can be very
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Figure 7.3: General control scheme with nested loops.

important at each joint, since the position accuracy at each joint results into a
better accuracy of the end effector position. In Agilino robot, the position loop is
useless since motors just have to rotate the robot driving wheels. About the torque
loop, it is not necessary since the output of the velocity loop controller can be the
armature voltage Va. If the centralized control architecture would have been used,
the current loop should have been introduced since the output of the controller is
a torque. Therefore, the torque loop is needed to translate the control torque into
the motor armature voltage Va. Finally, only the velocity loop will be used. The
velocity loop controller receives the error between the reference angular speed and
the measured one and returns the armature voltage to drive the motor. In order
to develop this controller, the loop shaping design technique is used and studied
in [16]. This technique allows to work directly on the loop transfer function L(s),
instead of dealing with the complete transfer function W (s).

7.3 Control requirements

The controller design considers both the steady state and transients requirements,
assuring the system stability. Starting with the steady state requirements:

� The steady state error of a step reference must be zero.
� The steady state error of a ramp reference r(t) = R0 · t, having the constant

acceleration equal to R0 = −250 rad/s2, has to be lower than ē = 1 rad/s.
Ramp references occur every time the robot trajectory changes, therefore the
error must be small since the trajectory variation can be related to emergency
situations. The chosen acceleration/deceleration correspond to a quite fast
brake. Supposing that the robot is moving straight, the two motors angular
speeds are equal φ̇mR = φ̇mL = φ̇m. If the robot has to brake with a deceler-
ation of v̇ = −1m/s, this results into a motor shaft angular deceleration of
φ̈m = −250 rad/s2.

v =
vR + vL

2
=
R · (φ̇R + φ̇L)

2
=
R · (φ̇mR + φ̇mL)

2 · n
=
R · φ̇m

n
(7.20)
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φ̇m =
v · n
R

⇒ φ̈m =
v̇ · n
R

=
−1(m/s2) · 25

0.1(m)
= −250

rad

s2
(7.21)

The step reference requirement allows to fix the system type, that is the number of
poles the loop function L(s) has in the origin. It is equal to ν + p, where ν is the
number of poles the controller has in the origin while p the one of the plant. The
ramp reference requirement allows to fix the controller steady state gain Kcw. To
respect the step reference requirement, the system type has to be equal to ν+p = 1.
Since the motor transfer function has p = 0, the controller transfer function must
have ν = 1. To respect the ramp reference requirement, the controller steady state
gain has to be greater than the value below, where the plant steady state gain is
equal to Kpw = 1/Kw.

ē ≤ R0

Kpw ·Kcw

→ Kcw ≥
R0

ē ·Kpw

=
R0 ·Kw

ē
=

250 · 0.095

1
= 23.75 (7.22)

Moving to transients requirements, they are expressed in time domain. The maxi-
mum overshoot is fixed small and equal to ŝ = 1%, so that the motor shaft angular
speed never exceeds the reference value. Indeed, it is better to have a slower but
safer controller with no overshoot. Then, the maximum rise time tr and settling
time ts2% must be chosen taking into account the following two parameters.

� The sampling period Ts, that mostly depends on the hardware limitations, is
fixed equal to Ts = 50 ms. Therefore, the corresponding sampling frequency
is ωs = 2π/Ts = 125.7 rad/s.

� A suitable number of samples N for the description of the transient phase,
whose duration is the settling time. It is fixed equal to N = 10.

Therefore, the settling time is chosen equal to ts2% = Ts ·N = 500 ms and the rise
time to tr = 0.2s. 

ŝ ≤ 1%

tr ≤ 0.2s

ts2% ≤ 0.5s

(7.23)

Supposing that the complementary sensitivity function T (s) = L(s)/(1 + L(s)) is
a second order prototype transfer function as in (7.24), the transient requirements
can be translated from time domain to frequency domain with the relations (7.25).

T (s) =
1

1 + 2·ζ
ωn
· s+ s2

ω2
n

(7.24)



ζ ≥ |ln(ŝ)|√
π2+ln2(ŝ)

ωnr ≥ π−arccos(ζ)
tr·
√

1−ζ2

ωns ≥ − ln(α)
ts·ζ

ωn ≥ max(ωnr, ωns)

⇒


ζ ≥ 0.82

ωnr ≥ 22.56rad/s

ωns ≥ 9.47rad/s

ωn ≥ 22.56rad/s

(7.25)
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Then, the requirements are related to the resonance peaks of the sensitivity function
Sp and of the complementary sensitivity function Tp and to the crossover frequency
ωc of the loop function L(s), using relations (7.26). The values of the resonance
peaks Tp and Sp can be used to draw on the Nichols plane the corresponding
constant magnitude loci that act as constraints that the frequency response of the
loop function L(s) must not violate to assure robust stability.

Tp ≤ 1

2·ζ·
√

1−ζ2

Sp ≤
2·ζ·

√
2+4·ζ2+2·

√
1+8·ζ2√

1+8·ζ2+4·ζ2−1

ωc ≥ ωn ·
√√

1 + 4 · ζ4 − 2 · ζ2

⇒


Tp ≤ 1.074 = 0.62dB

Sp ≤ 1.2117 = 1.668dB

ωc ≥ 12.9rad/s

(7.26)

The final passage in order to design the controller with the loop shaping design is
to translate the requirements of Sp and Tp into the ones of phase (PM) and gain
(GM) margins, using the following formulas.

GMS ≥ Sp

Sp−1

PMS ≥ 2 · arcsin
(

1
2·Sp

)
GMT ≥ 1 + 1

Tp

PMT ≥ 2 · arcsin
(

1
2·Tp

) ⇒


GMS ≥ 5.72 = 15.15dB

PMS ≥ 48.74◦

GMT ≥ 1.93 = 5.72dB

PMT ≥ 55.49◦

(7.27)

{
GM ≥ max(GMS, GMT )

PM ≥ max(PMS, PMT )
⇒


GM ≥ 5.72 = 15.15dB

PM ≥ 55.49◦

ωc ≥ 12.9rad/s

(7.28)

The sampling frequency ωs = 125.7 rad/s is greater than twice the required
crossover frequency ωc = 12.9 rad/s, therefore the Shannon sampling theorem
is respected and the rise time requirements is acceptable.

7.4 Control development

The loop function L(s) is plotted on the Nyquist graph with the Tp and Sp constant
magnitude loci in order to check in first approximation the transients requirements
fulfilment. The loop function L(s) is the product of the controller transfer function
Gcw with the motor transfer function Gw. In the next steps, the evolution of the
controller design is analysed. The controllers are checked in the situation the robot
starts moving straight with a constant longitudinal acceleration of v̇ = 1 m/s2 that
results into a linear increase of the longitudinal velocity v starting from zero. When
v reaches the value of 0.5 m/s, the acceleration goes to zero and the robot keeps
moving at constant longitudinal velocity. This longitudinal velocity ramp results
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into a ramp of each motor shaft angular speed with constant angular acceleration
equal to φ̈m = 250 rad/s2, that is exactly the one considered in the steady state
requirements definition. The simulations are performed exploiting three programs:

� Adams allows to build a robot model that takes care of the robot mechanical
description. It can be exported in Simulink.

� Simscape allows to realize intuitively the equivalent electric circuits of the
two brushless DC motors.

� Simulink allows to build the controller feedback structure and to implement
the controller algorithms.

The Agilino Adams model takes care of the robot mechanical description, where
also the rotational inertia moments of the motors and gearboxes around their axes
are included. Their values are moved from the motor side to the wheel side and
assigned to Adams parts. The rotational inertia moment of each couple made of one
motor and one gearbox is approximated with a cylinder block that is integral to the
corresponding wheel and has its longitudinal axis coincident with the wheel main
axis. This cylinder mass is fixed almost null, since the motor and gearbox masses
have already been considered with the point mass approximation. The Adams
model, exported in Simulink, receives the torques that result from the difference
brought at the wheel side (multiplied by the gearbox ratio n) between the total
motors torques proportional to the armature currents and the friction torques. The
friction torque is modelled in Simulink while the total torque is obtained multiplying
the motor speed constant for the current measured in the Simscape motor equivalent
electric circuit. The electric circuit was built exploiting four Simscape blocks:

� One resistor,
� One inductor, and
� Two driven voltage sources. The first one refers to the armature voltage and

is driven by the armature voltage value Va coming out of the controller. The
second one refers to the back electromotive force and is driven by the back
EMF value E computed multiplying the motor speed constant for the motor
shaft angular speed. The latter is computed dividing the wheel angular speed
measured in the Adams model by the gearbox ratio n.

Steps of the controller design:

1. The controller transfer function that comes out of the steady state require-
ments is Gcw1, that has one pole in the origin and the steady state gain at
least equal to Kcw = 23.75. The system is too fast as it can be seen in Figure
7.4b, where the system response to a unitary step is investigated. The sys-
tem must be slow down due to the hardware limitations and the overshoot
requirement. The crossover frequency is equal to ωc = 181 rad/s, while the
hardware limitations require a value around ωc = 12.9 rad/s. The overshoot
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requirement requires an almost null value, while this controller limits it at
ŝ = 51.7%. Moreover, the loop function frequency response violates the rela-
tive margin constraints, as shown in the Nichols plot of Figure 7.4a. To solve
these problems, lag compensation terms must be introduced.

Gcw1 =
Kcw

s
=

23.75

s
(7.29)

Table 7.2: First controller results

Parameters Symbol Values

overshoot ŝ 51.7%
rise time tr 0.009 s
settling time ts2% 0.122 s
sensitivity function resonance peak Sp 8.54 dB
complementary function resonance peak Tp 6.86 dB
crossover frequency ωc 181 rad/s
gain margin GM 7.8 dB
phase margin PM 27.5 deg

(a) Nichols plot of the loop function. (b) System response to a step reference.
The blue line is the angular speed reference
and the red one the measured motor angular
speed, both expressed in rad/s.

Figure 7.4: First controller attempt

2. To slow down the system, two lag functions Ra1 and Ra2 are added to the
previous controller. The crossover frequency reduces to ωc = 15.6 rad/s (Fig-
ure 7.5b), that is coherent with the hardware limitations and results into a
negligible overshoot of ŝ = 0.02% (Figure 7.6a). On the other hand, the
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lower crossover frequency makes the system slow in recovering the error when
a ramp reference is applied (Figure 7.7a), even though the controller steady
state gain is set high enough to get a small ramp error. The loop function
frequency response respects the relative stability constrains fixed by the res-
onance peaks of the sensitivity and complementary functions (Figure 7.5a).
The step and ramp tests are performed simulating the controller with the
simplified mathematical model described previously. Therefore, the controller
validation with the Adams model must be done (Figures 7.8a, 7.8b and 7.8c).

Gcw2 =
Kcw

s
·Ra1 ·Ra2 =

23.75

s
·

1 + s
0.004

1 + s
0.001

·
1 + s

0.0004

1 + s
0.0001

(7.30)

Table 7.3: Second controller results

Parameters Symbol Values

overshoot ŝ 0.02%
rise time tr 0.511 s
settling time ts2% 0.237 s
sensitivity function resonance peak Sp 0.71 dB
complementary function resonance peak Tp 0.0018 dB
crossover frequency ωc 15.6 rad/s
gain margin GM 31.9 dB
phase margin PM 83.9 deg

(a) Nichols plot of the loop function. (b) Bode plots of the loop function.

Figure 7.5: Second controller loop function frequency analysis.
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(a) System step response. Blue refer-
ence speed and red measured motor an-
gular speed expressed in rad/s.

(b) Error between reference and mea-
sured speeds in rad/s.

Figure 7.6: Second controller step analysis.

(a) System ramp response. Blue reference
speed and red measured motor angular speed
expressed in rad/s.

(b) Error between reference and measured
speeds in rad/s.

Figure 7.7: Second controller ramp analysis.
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(a) Trajectories comparison. The blue line
refers to the reference trajectory and the red
one to the real trajectory. The axes unit
measure is meter m.

(b) System response with the Adams model.
Blue reference speed and red measured motor
angular speed expressed in rad/s.

(c) Error between reference and measured
speeds in rad/s.

Figure 7.8: Second controller tested with the Adams model exported in Simulink.
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Chapter 8

Conclusions and Future works

8.1 Conclusions

This thesis work investigates the instruments for wheeled mobile robot simulations
and control. In particular, it focuses on the differential drive robots category. The
first researched instrument is a multi body programme that allows to build easily
a robot model exploiting the CAD files coming from the mechanical design. The
chosen programme is Adams. The second instrument refers to the dynamic mod-
elling techniques that can be used in order to write the equations that describe
the robot behaviour. The chosen technique is the Newton-Euler approach. Two
mathematical models have been found: the first one for simulation purposes, while
the second one for control strategies development. The first mathematical model
is validated with respect to the Adams model, while the second model results from
the first one by striking dynamical aspects that have been considered negligible for
control purposes. Therefore, the Adams model was fundamental to provide a first
validation of the mathematical model when the robot prototype was still not ready.
While, the second mathematical model allowed to investigate the control strategies
that could be used in order to control the robot motors.

The first mathematical model and the developed control strategy are the instru-
ments that allow the control engineer to guarantee the safe autonomous motion of
the robot.

1. First, thanks to the mathematical model, the engineer can compute offline safe
trajectories of the robot in different motion situations. Indeed, the robot can
move on its own or with a loaded truck both on a horizontal or inclined plane.
From the safe trajectories study, the engineer can find the robot longitudinal
and angular velocities and accelerations limits in order to keep the robot on
safe trajectories. In this way, the high level controller, that elaborates the
robot trajectories, will never provide to the low level ones, that pilot the
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motors, trajectories out of these bounds.
2. Second, thanks to the developed control algorithm, the control engineer as-

sures that the motors will follow the desired trajectories and will be able to
deal with unpredictable situations, such as a sudden reduction of the friction
coefficient at the wheels-ground contact points.

The first mathematical model can support also the design work of the mechan-
ical engineer.

1. First, the mathematical model can help the mechanical engineer choosing
the robot mass centre position and its mass value. Indeed, these two choices
cannot be done without considering the possible trajectories the robot will
follow, the possible loads it will pull and the possible inclined planes it will
move on. Indeed, in order to guarantee the robot safe motion, two main
aspects have to be considered.

(a) The normal force at each driving wheel contact point must be greater
than a minimum value to assure that neither longitudinal slip nor lateral
slide occur during the robot normal working conditions.

(b) The wheels supposed to be in contact with the ground must always be
in contact with the ground. This is an issue of three wheels differential
drive robots that have two driving wheels and only one castor wheel
either in the front or in the back.

Knowing in first approximation where the robot mass centre should be and
the value the robot mass should have, the mechanical engineer decides the
displacement of the robot parts and the eventual addition of concentrated
masses whose unique goal is to increase the robot mass and move the mass
centre taking up a small volume.

2. Second, the mathematical model provides to the mechanical engineer the
torques values that motors should deliver in desired working conditions. There-
fore, this helps the engineer during the choice of motors and eventually of
gearboxes.

3. Third, the mathematical model provides to the mechanical engineer the force
and torque values that the robot exchanges with the truck it is pulling. This
information can be helpful for the choice of the docking structure between
them. For example, a squared rod that from the robot goes up and enters
the corresponding squared hole in the truck can be inappropriate to transmit
the torque, since it could require a huge section not to brake after few fatigue
cycles.

4. Fourth, the mathematical model helps the mechanical engineer choosing the
distance that castor wheels should have from the driving wheels axis. Indeed,
the goal of a compact robot requires a reduced distance, while the robot task
of pulling heavy trucks requires the opposite. A trade off must be reached.
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The distance reduction increases the weight transfer from the driving wheels
to the rear castor wheel during the acceleration phases. The same occurs
during the deceleration phases, but with the weight transfer to the front
castor wheel. In both cases, the normal reaction forces at the driving wheels
reduces, limiting the available traction force before slip occurs.

5. The robot model together with the truck model helps the mechanical engineer
during the truck mechanical design. Indeed, the truck dimensions define
where the load it carries can be placed, therefore the possible distance of the
loaded truck mass centre from the robot logic centre. This distance deeply
influence the trajectories the robot with the truck will be able to follow safely.
In particular, the distance component on the robot longitudinal axis is the
arm of the loaded library centrifugal force that appears when the system is
performing a turn. The resulting moment deeply influences the robot motion.

Summarizing, the mathematical model can be used in two of the three steps of
the robot design procedure.

1. First step. Engineers must define the robot working conditions including
the possible trajectories the robot will follow, the possible loads it will pull
and the possible inclined planes it will move on. Therefore, an estimate of
the robot maximum velocities, accelerations, loads and inclined plane angles
must be done.

2. Second step. Mechanical engineers design the robot starting from the limits
defined in step one. As explained before, they can exploit the mathematical
model to discover in first approximation both the mass centre position, the
total mass value and the wheels displacement.

3. Third step. Control engineers upload the mathematical model, studying the
mechanical design and computing the mass and inertia values required by
the model. From the uploaded model, the real and final limits of velocities,
accelerations, loads and inclined plane angles can be found. They should be
similar to the first estimations but some differences can be present due to
the mechanical design. When the limits have been defined, control engineers
develop a controller to pilot the motors and deal with unpredictable working
situations.

This thesis work can be set in the third step, since the robot mechanical design was
ready and the goal of simulating and controlling the robot motion was required.

The idea of using the normal forces at the driving wheels to study the robot
safe trajectories limits come from the automotive world. Of course, the robot
velocities and accelerations are much smaller than the ones characterizing a car
motion. Indeed, here is the difference. The need of studying robot safe trajectories
does not come from its velocities and accelerations but from the fact that it will
pull trucks whose weight can be five-six times the robot weight.
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8.2 Future works

Future works are related to the part of the thesis on the motor controller. Indeed,
two main simplifications have been done in the controller design:

1. The first one is related to the system whose motion is controlled by the
motors control algorithms. In this thesis, the robot moving on its own is
considered. In future works, the robot that is pulling a loaded truck could be
investigated. The track is integral to the robot due to the docking structures
exploited. Therefore, the dynamic model of the robot with the library and
of the robot on its own are equal from a mathematical point of view since
both systems can be schematized with just one body moving on a plane.
The planar motion assumption allows to reduce the body description to three
parameters that are the body mass, the vertical inertia and the mass centre
position. Of course, these three parameters values change from one system to
the other. It’s straightforward that both the total mass and vertical inertia
of the robot with a loaded truck are greater than the ones of the robot on
its own. From a control point of view, the most important aspect is the
mass centre position with respect to the line perpendicular to the ground
and passing through the robot logic centre. Indeed, as it can be seen in
the mathematical model equations, the non linear effects due to Coriolis and
Centrifugal forces are linearly proportional to xm and ym, that are its distance
components on the robot longitudinal axis and on the robot transversal axis,
respectively. In addition, also the coupling effects expressed by the non-
diagonal elements of the inertia matrix are proportional to this distance. In
order to reduce these disturbance torques, the mass centre should be placed
ideally on the vertical logic centre line. The robot on its own has the mass
centre close to the line, since this was the mechanical design goal to have
the highest normal forces at the wheel-ground contact points. The reduction
of non linear and coupling effects due to the mass centre position and due
to the gearbox presence between each motor and the corresponding wheel
allows to choose a decentralized control strategy that is the one implemented
in this thesis. When the robot is moving a loaded track that is four times its
weight and that has its mass centre outside the robot footprint depending on
the truck length, the total mass centre moves to the back of the logic centre
vertical line. This enhances the non linear and coupling effects that could
become relevant, with the gearbox no more able to make them negligible. The
control strategy developed in this thesis could be checked with this system
to understand its limits. Starting from this limits, new control strategies
could be investigated in the centralized architecture group. Indeed, if non
linear effects become no more negligible also with the gearbox presence, the
attempt of cancelling them with compensation terms could be taken into
account. Of course this strategy introduces complexity since the controller
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must receive at least two pieces of information. The first one is relative to
the connection or not of the truck to the robot. The second one refers to
the weight of the truck load. This would require a scale on the truck base
where materials are placed and continuously weighted. This solution seams
to be not economically convenient, therefore other control strategy could be
investigated. They should be robust enough to deal with non linear and
coupling effects treated as non modelled disturbances. Another way to limit
these disturbances keeping using the decentralized control strategy could be
implemented by placing the truck above the robot so that its mass centre is
on the robot vertical logic centre line.

2. The second simplification refers to the motors angular references that have
been used to design the controller. The steady state requirements have been
chosen considering step and ramp references. The system type is fixed equal
to one to have zero steady state error when the angular speed reference is
constant. Instead, the steady state gain of the controller is chosen so that the
steady state error is lower than a fixed value when ramp references are used.
Therefore, this thesis work assumes that ramp references are used to drive
electric motors even though they are not. Indeed, a ramp reference stresses a
lot the motors that must provide a constant acceleration for the whole ramp
duration. To change the angular speed, profiles with greater degrees are used.
A common one is the third degree shown in Figure 8.1a. The corresponding
acceleration and jerk profiles are shown respectively in Figure 8.1b and Figure
8.1c. The velocity profile shows the transition from a lower velocity value to a
higher one. The corresponding acceleration is zero both at the beginning and
at the end of the transition, passing through a maximum value. This profile
is one of the real profiles used since it is less stressful for the motors. For
such a profile, maybe a different controller could be used. Of course, before
improving the controller, the thesis controller could be checked with the order
3 velocity profile.

3. Another future work could be the development of the high level controller
that plans and continuously updates the trajectories the robot has to follow
to reach the target. For the trajectory planning, it takes into account the
robot position in space, the position of the target the robot has to reach, the
positions of the obstacles that laser scanners continuously detect and the safe
trajectories boundaries that have been computed offline.
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Conclusions and Future works

(a) Velocity profile.

(b) Acceleration profile.

(c) Jerk profile.

Figure 8.1: Third degree velocity profile and its derivatives
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Appendix A

Table A.1: Robot reference frames list

R0 Absolute reference frame on the ground.
Ra Reference frame with the origin in the robot logic centre, the x axis

on the robot longitudinal direction and the y axis on the driving
wheels main axis.

Rb Reference frame with the origin in the centre of mass of the robot
base and the axes parallel to the ones of Ra.

Rm Reference frame with the origin in the centre of mass of the upper
volume and the axes parallel to Ra.

R1 Reference frame with the origin in the left wheel centre and axes
parallel to Ra.

R2 Reference frame with the origin in the right wheel centre and axes
parallel to Ra.

R3 Reference frame with the origin in the point where the castor wheel
connects to the robot base and axes parallel to Ra.

RL Reference frame with the origin in the point where the robot is in
contact with the eventual library or truck it is pulling. It is the tip
of the robot rod in charge of connecting it to the library or truck.
The axes are parallel to Ra.

100



Table A.2: Forces exchanged among the robot parts and external forces acting on
the robot

fRa
tm = [ftmx, ftmy, ftmz] is the force applied by the upper volume to the

robot base.
τRa
tm = [0,0, τtmz] is the torque applied by the upper volume to the robot

base.
fRa
t1 = [ft1x, ft1y, ft1z] is the force applied by the left wheel to the robot

base.
τRa
t1 = [τt1x, τt1y, τt1z] is the torque applied by the left wheel to the robot

base.
fRa
c1 = [fc1x, fc1y, fc1z] is the force applied to the left wheel from the

ground at the contact point.
τRa
c1 = [0,0, τc1z] is the torque applied to the left wheel from the ground.

τc1z is the vertical friction torque at the contact point.
τRa
b1y = [0, τb1y,0] is the friction torque at the left wheel horizontal bear-

ings.
fRa
t2 = [ft2x, ft2y, ft2z] is the force applied by the right wheel to the robot

base.
τRa
t2 = [τt2x, τt2y, τt2z] is the torque applied by the right wheel to the

robot base.
fRa
c2 = [fc2x, fc2y, fc2z] is the force applied to the right wheel from the

ground at the contact point.
τRa
c2 = [0,0, τc2z] is the torque applied to the right wheel from the

ground. τc2z is the vertical friction torque at the contact point.
τRa
b2y = [0, τb2y,0] is the friction torque at the right wheel horizontal

bearings.
fRa
tL = [ftLx, ftLy,0] is the force applied by a library or a truck the robot

is pulling to the robot base.
τRa
tL = [0,0, τtLz] is the torque applied by a library or a truck to the

robot base.
fRa
t3 = [0,0, ft3z] is the force applied by the castor wheel to the robot

base.
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Table A.3: Robot equations



mb ∗ (v̇ − d ∗ ω2) = ft1x + ft2x + ftLx + ftmx + g1 ∗mb

mb ∗ (v ∗ ω + d ∗ ω̇) = ft1y + ft2y + ftLy + ftmy + g2 ∗mb

ft1z + ft2z + ft3z + ftmz + g3 ∗mb = 0

τt1x + τt2x + b1 ∗ ft1z − b1 ∗ ft2z − hb ∗ ft1y − hb ∗ ft2y + ym ∗ ftmz+

−zL ∗ ftLy − zm ∗ ftmy = 0

−R ∗ fc1x −R ∗ fc2x + L1 ∗ ft3z + d ∗ ft1z + d ∗ ft2z + hb ∗ ft1x + hb ∗ ft2x+
−xm ∗ ftmz + zL ∗ ftLx + zm ∗ ftmx = 0

Ibzz ∗ ẇ = τt1z + τt2z + τtLz + τtmz − b1 ∗ ft1x + b1 ∗ ft2x − d ∗ ft1y+
−d ∗ ft2y + xL ∗ ftLy + xm ∗ ftmy − yL ∗ ftLx − ym ∗ ftmx

mw ∗ (v̇ − b1 ∗ ω̇) = fc1x − ft1x + g1 ∗mw

mw ∗ (v ∗ ω − b1 ∗ ω2) = fc1y − ft1y + g2 ∗mw

fc1z − ft1z + g3 ∗mw = 0

−Iwyy ∗ ω ∗ θ̇1 = R ∗ fc1y − τt1x
{(Jmot + Jrid) ∗ n2 + Iwyy} ∗ θ̈1 = −τa1y − τt1y −R ∗ fc1x
Iwxx ∗ ω̇ = −τc1z − τt1z
mw ∗ (v̇ + b1 ∗ ω̇) = fc2x − ft2x + g1 ∗mw

mw ∗ (v ∗ ω + b1 ∗ ω2) = fc2y − ft2y + g2 ∗mw

fc2z − ft2z + g3 ∗mw = 0

−Iwyy ∗ ω ∗ θ̇2 = R ∗ fc2y − τt2x
{(Jmot + Jrid) ∗ n2 + Iwyy} ∗ θ̈2 = −τa2y − τt2y −R ∗ fc2x
Iwxx ∗ ω̇ = −τc2z − τt2z
Mm ∗ (v̇ − ym ∗ ẇ − d ∗ ω2 − xm ∗ ω2) = Mm ∗ g1 − ftmx

Mm ∗ (v ∗ ω − ym ∗ ω2 + d ∗ ω̇ + xm ∗ ẇ) = Mm ∗ g2 − ftmy

Mm ∗ g3 − ftmz = 0

Imzz ∗ ω̇ = −τtmz

fc1y − fc2y = 0
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Table A.4: Transformation matrix

R0
a =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (A.1)

tab =

 d
0
−hb

 tbm =

xmym
zm

 tbL =

xLyL
zL

 (A.2)

ta1 =

0
b
0

 ta2 =

 0
−b
0

 tb3 =

L0
h3

 (A.3)

Ra
b = Rb

m = Rb
L = Ra

1 = Ra
2 = Rb

3 =

1 0 0
0 1 0
0 0 1

 (A.4)

Table A.5: Masses and inertia moments values used in the equations

Quantity Symbol Unit measure Value

upper volume mass Mm Kg 57.9
upper volume vertical inertia moment Imzz Kg ∗m2 3.78
robot base mass mb Kg 5.72
robot base vertical inertia moment Ibzz Kg ∗m2 0.338
wheel mass mw Kg 0.8
wheel radial inertia moment Iwxx Kg ∗m2 0.004
wheel axial inertia moment Iwyy Kg ∗m2 0.0022

Table A.6: Robot geometric parameters values

Symbol Unit measure Value

d m 0.0
b1 m 0.25
L1 m 0.2275
xm m 0.012
ym m -0.007
zm m 0.123
ha = R m 0.1
hb m 0.053
zL m 0.4
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