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Abstract

The automotive industry is currently facing a very dynamic decade in which new
technologies, innovations and the progressive automation in the field of mobility are
revolutionizing the way we drive cars. Concerning electric vehicles, their gradual spread
and deployment in the transport sector, suggests that electrified powertrains will play an
important role in near future global mobility and urban transport: the transition from
conventional internal combustion engines (ICE) to electric one is finally at hand.

For this reason, many companies are engaged in the production or design of electric cars,
but nowadays, the expensive costs of the electric car batteries and the high number of
cells to be used to have autonomy comparable to those of internal combustion vehicles
as well as the long battery charging times, hinder motorists from buying these types of
cars. It is precisely from these last considerations that the idea of recharging the batteries
of electric cars in a quick and practical way, exchanging them at a service station was
born.

The thesis will discuss the efficiency of the battery swap system through the design and
implementation of a simulation model of an innovative batteries management station for
electric cars (EVs!) capable of replacing an exhausted battery with a fully charged one,
eliminating waiting times for customers.

The sizing and operation of this station, called Battery Swap Station?, will be investigated
in this work through a configurable simulation model able to generate different scenarios
taking as a case study the city of Turin.

The simulation model has been implemented in FlexSim, a 3D simulation modeling and
analysis software. A series of experiments are then designed and simulated in order to
show which factors could affect the performance of the station. Afterwards, several useful
performance measures will be tracked and analyzed. Finally, through a multiple-criteria
decision analysis (MCDA) approach, the most suitable solution is provided to the case
study.

! From now on throughout the thesis, all vehicles for which an electric motor is the basis of the propulsion,
thus including battery electric vehicles (BEV), are referred simply as EVs (Electric Vehicles).
2 From now on, the term "battery swap station" is referred to as BSS
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Introduction

The thesis focuses on the smart management of the batteries of electric cars arriving at

the Battery Swap Station (BSS). A simulation-based approach has been used to better

evaluate the performance measures of the system involved and to have suitable and more

realistic criteria to encourage the automotive industry and private companies to invest

in this field. The simulation model includes from when the discharged battery arrives at

the station to when the charged battery comes out.

The thesis is composed of six chapters and it is structured as follows:

>

Chapter 1: introduces the concept and gives a brief description of the battery swap
method, its major providers, its benefits as well as its difficulties, and defines the
rationale behind choosing this innovative batteries management and utilization

system

Chapter 2: points out the current situation regarding battery swapping technologies,
implementations and techniques available today, taking into account the relevant
studies and research in scientific literature

Chapter 3: contains the description of the scenario considered in this work to design
and simulate an automated station for EVs battery swap. Moreover some assumptions
have been formulated for model building

Chapter 4: provides a comprehensive explanation of the model built in FlexSim
simulation software, as well as the proposed plan of experiments and the performance
measures observed

Chapter 5: highlights the results obtained by the simulations with regard to the
benchmarks, feasibility and performance of the proposed model, finding also the best
solution between different alternatives. At the end a further improvement to the
model is provided

Chapter 6: draws the conclusions, makes it clear what are the thesis findings and
addresses proposals for future related developments and work ideas



1.1 The Electric Vehicle Market

The current transport system has a significant negative impact on the environment and
on human health because it depends mainly on high oil consumption (with the resulting
emission of greenhouse gases and particulates into the atmosphere). Given the positive
contribution of the development of electric mobility to environmental sustainability and
to changes in driving habits, especially on short journeys, data on the modern situation
of EVs are briefly reviewed.

EVs or BEVs are all those vehicles equipped with an electric motor powered by
electricity, which is supplied by a pack of rechargeable lithium batteries usually located
at the bottom of the vehicle (Figure 1.1).

A recent research carried out by Boston Consulting Group® found that the future of
mobility will depend on three main factors: autonomous driving, electric and shared
vehicles and furthermore by 2030, electric vehicles will account for about a quarter of all
cars and trucks on the road and 50-60% of sales of new cars [1]. In addition, since the
rapid technological progress in energy density is leading to a reduction in battery costs,
BCG estimates that by 2028, the total five-year cost of ownership for an electric vehicle
battery in the United States will be lower than for an internal combustion engine vehicle
[2].

Right now, we are really going in that direction: many nations and governments are
actively working to promote the reduction of air pollution, fossil fuel use and CO, and
greenhouse gas emissions. As a result, EVs have gained significant market share over the
last decade worldwide, especially in China with more than 1 million electric cars sold in
2018, followed by Europe and the United States with approximately 400 thousand and
350 thousand electric cars sold respectively from the previous year as confirmed by data
taken from the Global EV Outlook 2019 (Figure 1.2).

* BCG is a U.S. multinational strategic consulting firm
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Figure 1.2 Global clectric car sales and market share in the world and part of Europe, 2013-18 [4]

The major factors driving the growth of this market and so the roll-out of EVs include
adoption of policies to promote the purchase of electric vehicles like financial incentives,
battery rental options, subsidies, economic benefits such as tax reductions, reduced
parking and toll rates, free movement on highway networks, removing access restrictions

! Source: IEA analysis based on country submissions, complemented by ACEA (2019); EAFO (2019); EV
Volumes (2019); Marklines (2019); OICA (2019). Other countries includes Australia, Brazil, Chile, India,
Japan, Korea, Malaysia, Mexico, New Zealand, South Africa and Thailand
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to limited traffic zones in certain urban areas, etc. Policies have a major influence on
electric mobility as EVs purchase prices are higher than for ICE vehicles.

In Ttaly, sales figures for electric cars are rising steadily as the electric car market is
characterized by a growing trend in recent years and, even though the number of EVs
registered is low compared to other EU countries like Norway and Germany, the
indicators suggest an increasingly widespread propensity to buy electric cars (see Figure
1.3). Registrations of full electric cars in 2018 have more than doubled compared to the
previous year (+147.3% w.r.t. 2017), rising from just over 2000 to almost 5000 cars.
Despite the fact that private vehicles are still the preferred means of transport for daily
urban travel (more than 50%) [5], other forms of e-mobility such as electric public
transport services (electric buses and electric taxis) or electric car/scooter/bike sharing
services are taking hold and could become the most common driving modes of the next

decade.
Immatricolazioni:
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Figure 1.3 Electric vehicle registrations in Italy [6]

1.2 Charging EV's battery pack

Nowadays, three main battery charging ways for EVs, that require different types of
infrastructures and technologies, are available (as can be seen from Figure 1.4):
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1. Wired charging: this method consists in the direct physical connection between

the electric vehicle and the charging infrastructure which includes a wall outlet,

designed to dispatch AC or DC power, and a power extension cord (single-phase

or three-phase). For this process, there is a further division depending on the

powers used

2. Inductive (wireless) charging: instead of plugging the car into an electrical outlet,

this technology will charge the vehicle's battery using an electromagnetic field

generated when the vehicle is parked above a ground charger (no need for

chargepoints)

3. Battery swapping: the driver has only to park the car in the designated area of

the station and then the automated system reveals the presence of the car, aligns

it in the right directions, disconnects the discharged battery from the vehicle,

transports it to the warehouse to charge it, picks up a charged battery ready for

use and installs it on the vehicle

Energy source

GASOLINE/DIESEL

HYDROGEN

BATTERY

Fueling gasoline
or diesel at a
petrol station

Conventional
gasoline or diesel
Description refueling
Time needed’ ° ™"
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Suitable for HEV
which power- PHEV
fan » REEV (gasoline)
Example car A ivEs
Current Widely available:

availability in ~131,000 stations
Europe

1 Time need for full refueling or recharge. Fo

2 Since induction charging is still in pi

e

Fueling hydrogen

at a hydrogen
refueling station
Hydrogen
refueling (similar
to natural gas
refueling)

5 min
* FCEV

* REEV
(hydrogen)

* Hyundai ix35
(FCEV)

Very limited:

~80 stations

a

“Wired” charging
Pluggingintoa
charging station
using a cable

and plug

4-8 hrs (slow)
20-30 min (fast)

* PHEV
* BEV suitable for
plug-in charging

* Renault Zoe
(BEV)

Limited availability:
>20,000 (slow)
>1,000 (fast)

Battery

g Induction charging
Replacing a batteryBattery in the car is
for a fully charged charged by wireless
one at a special  induction charging
swapping station

5 min ~2-8 hrs?

* Special BEVs
suitable for
battery swapping

= Special BEVs
suitable for
induction charging

= Special model of * N/A (few pilot
Renault Fluence cars)

Very limited
~50 stations

Not available (few
pilots in progress)

rging of
1 duration &

Figure 1.4 Electric powertrains: charging infrastructures archetypes [7)

Internationally, the reference standard for charging stations (wired or inductive) is
defined by the International Electrotechnical Commission (IEC) and is the IEC 61851-1
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standard. This regulation specifies the general characteristics of charging systems,
including charging and connection modes and safety requirements.

In the current market, Lithium-based batteries, already extensively used in consumer
electronics devices, are often employed in EVs both for their high energy density and for
long cycle life.

The battery of an EV can be charged mainly in two ways: via alternating current (AC)
using the power distribution grid or via direct current (DC). By default, the battery pack
of an EV is always charged in DC (see Figure 1.5).

Especially in the first case (AC), which is the case of low power charging systems (up to
22 kW), there is a need for an AC/DC conversion block that converts the alternating
current into direct current. This block is essentially a rectifier and is located inside the
electric car as an on-board battery charger. In this way, the charging station acts as a
simple dispenser and so the effective charging power depends on both the power of the
system and the maximum power accepted by the on-board charger. The AC charging
can be single-phase (230V) or three-phase (400V) and since the chargers integrated in
EVs are not all the same, some accept higher powers (e.g. 22 kW - 32A 400V) and others
accept lower powers (e.g. 3.7 kW - 16A 230V).

By taking as an example an on-board battery charger that allows a maximum power of
7.4 kW and connecting the car to a 3 kW domestic electric system, the charging will be
at 3 kW because this is the maximum power available. On the other hand, if the same
car is connected to a system that delivers 7.4 kW but its on-board battery charger is 3.7
kW, the charging would still take place at 3.7 kW, which is the maximum at which the
on-board charger can work. Briefly, the on-board battery charger of the vehicle sets the
power limit.

With the other alternative (DC), typical of fast charging systems whose power exceeding
22 kW, the direct current is sent directly to the car battery without going through the
on-board charger (this happens because the rectifier is within the charging infrastructure
acting as an external charger). This charging mode is more complex and more expensive
than AC charging, but allows to exceed the limits of the charging power of the battery
charger inside the vehicle, to accommodate much higher charging currents and thus to
shorten the charging time. However, in order to avoid overstressing the battery and
increasing its internal temperature, this type of charging is limited to 80% of the battery
capacity (in practice charging times for high power chargers are often indicated at 80%).

14
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Figure 1.5 Infrastructure elements of EV charging [8

For that reason, charging time is a very important parameter to consider because a
battery pack cannot be charged at an arbitrarily high speed. Both the voltage and the
current influence the rate of charge: for example when charging at 7.4 kW this is generally
done at 230 V and 32 A (230 V * 32 A = 7360 W ~ 7.4 kW).

The battery charging time of an electric car is dependent on 3 key factors including the
charging speed, which, in turn, depends on the charging power available (measured in
kW) in the charging station subject to the maximum power accepted by the vehicle on-
board charger or by the infrastructure charger; the capacity (measured in kWh) of the
EV’s battery pack (that corresponds to the equivalent of the tank capacity of a car with
a thermal engine) and the charge level (in percentage) of the battery relative to its
capacity (i.e. the State of Charge, aka SoC®).

Hence, knowing these factors, to estimate the time needed for a complete charge of an
EV’s lithium-ion battery pack, it is sufficient to subtract the current capacity, determined
by the SoC, from the usable battery capacity (thereby obtaining the amount of charge
required) and divide it by the rate of charge, that is the charging power of the battery
charger (inside or outside the vehicle) [8]:

> Mode 2: Home or business AC charging (home charger or wall-box); Mode 3: AC charging for public
environments; Mode 4: Direct DC charging
% From now on the battery state/level of charge will be called SoC

15



Amount of charge required (kWh)

A
[ \

UBC (kWh) — ABC(kWh)
MPBC (kW)

= ECT (hrs)

Where:

» UBC'is the Usable Battery Capacity

» ABC'is the Actual Battery Capacity

» MPBC('is the Maximum Power of the Battery Charger
» FECT is the Estimated Charging Time

The battery pack of an electric car is never used 100%. The usable capacity is less than
the full capacity of the battery (it corresponds to about 90% of the total capacity) due
to safety reasons such as maintain a correct battery temperature.

It is important to notice that even the battery chemistry affects the charging rate and a
partial charge is also possible: in this case, the times are reduced proportionally.
Although EVs share these factors that affect time taken to charge the battery, the impact
of each factor is different for each vehicle make and model. Indeed, since battery pack
sizes vary considerably between EVs, charge times will vary accordingly.

Below are an example of charge times based on a 24 kWh battery pack (Table 1.1) and
the charging times with the battery packs parameters of some of the best-selling electric
car models in Ttaly (Table 1.2) in order to provide a reasonable comparison. Both for
Table 1.1 and Table 1.2, charging time calculations are theoretical.

MAXIMUM POWER EXAMPLE INPUT VOLTAGE MAXIMUM
QUTPUT FROM EVSE CHARGING TIME (VOLTS) CURRENT

(KILOWATTS) (HRS:MINS) (AMPS)

2.3kwW 8hrs 20mins 230 1-phase AC 10
3kwW 6hrs 30mins 230 1-phase AC 13
3.7kW Shrs 15mins 230 1-phase AC 16
2 7.4kW 2hrs 35mins 230 1-phase AC 32
14.5kW 1hr 20mins 400 3-phase AC 21
22kW 55mins 400 3-phase AC 32
43kW 30mins 400 3-phase AC 63
20kW 1hr 400 3-phase AC 40
8 50kW 25mins 400 3-phase AC 100
100kW 15mins 400 3-phase AC 200

Table 1.1 Ezample of charge times for a 24 kWh battery pack [8]"

" EVSE = Electric Vehicle Supply Equipment (covers all the EV charging equipment)
16



Brand Number of Nominal Battery Battery Energy Maximum Estimated
and Battery Pack capacity Pack Pack Density | power of the Charging
Model Cells [Ah] & Weight Capacity [Wh/kg] on-board Times [hrs] for
Voltage [V] [kg] [kWh] battery a full charge
of each charger [kW] | (0% > 100%)
cells
Renault 192 in 96s2p 63.4 & 3.8 305 45.6 150.0 Single-phase: 2.3 kW -> 24;
Zoe Z.E. | configuration (available 41) up to 7.4; 3.7 kW -> 14;
R110 40 Three-phase: 74 kW ->7;
up to 22 11 kW -> 4;
22 kW -> 2
Renault 192 (96s2p 65.0 & 7.5 290 23.4 80.7 Single-phase: 2.3 kW -> 9.6;
Fluence | configuration) (available 22) up to 3.7 3.7kW->59
Z.E. in 48 modules
Nissan 192 in 96s2p 325 & 3.8 209 40.0 188.0 Single-phase: 2.3 kW -> 174,
Leaf configuration up to 7.4 3.7 kW -> 10.8;
arranged into T4kW->54
24 modules
Tesla 4416 in 96s46p 5.0 & 4.2 480 92.0 191.7 Single-phase: 2.3 kW -> 32;
Model 3 | configuration (available 75) up to 7.4; 3.7 kW -> 20;
Three-phase: 74 kW -> 10;
up to 11 11 kW -> 6.8
Tesla 7104 (6s74p 3.0& 3.8 540 81.0 150.0 Single-phase: 2.3 kW -> 30;
Model S | configuration) (available 75) up to 3.7; 3.7 kW -> 19;
in 16 modules Three-phase: 11 kW -> 6.3
up to 11
Audi e- 432 in 36 60.0 & 3.3 700 95.0 135.0 Single-phase: 2.3 kW -> 41;
tron 55 modules (available up to 7.4; 3.7 kW -> 25.6;
83.6) Three-phase: 7.4 kW -> 12.8;
up to 11 11 kW -> 8.6
BMW i3 96 120.0 & 3.7 278 42.6 153.2 Single-phase: 2.3 kW -> 16.5;
(available up to 7.4; 3.7 kW -> 10.2;
42.2) Three-phase: 74 kW -> 5.1;
up to 11 11 kW -> 3.4

Table 1.2 Summary of battery packs parameters & charging times

The charging rate does not always behave constantly or at its maximum rate: in fact,

depending on the electric car model used, it progressively decreases as it approaches
100% of the battery capacity. This particular event is more evident as the charging power

increases. Consequently, at high rates the battery charge will reach very quickly a value

of charge (SoC) beyond which the charge rate will progressively reduce. The chart in
Figure 1.6 demonstrates the effect of different charging rates for four type of power

chargers.
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Figure 1.6 Impact on charge rate as battery fills [8]

The experimental results show a linear trend for charging curves with 7.4 kW and 25
kW up to 90% of the SoC. On the contrary, it is evident that at higher powers (50 kW
or above) there is a non-linear pattern.

It is important to point out that the charge curve of each electric vehicle on the market
is different and depends on the design choices accomplished by the vehicle manufacturer.

1.3 Motivation and critical issues

In practice the more the charging speed increases, the higher the current increases and
consequently the more the heat produced by the internal resistance of the battery
increases (following the well-known quadratic law of the Joule effect). This phenomenon
taken to its extreme consequences causes an excessive increase in battery cells
temperature with damage or destruction of the battery itself.

For illustrative purposes, the case of Tesla’s Supercharger is taken into consideration.
This system is a 480-volt DC fast-charging station, which provides up to 150 kW and
takes about 30 minutes to charge 80% of the 85 kWh Tesla Model S.

The power level required by Tesla’s Supercharger is so high that part of the transferred
energy is lost and converted into heat (Joule effect heat dissipation). The power
dissipated by the Joule effect on the charging station components increases with the
square of the current intensity. This leads to a discrepancy between the amount of energy
that reaches the battery (which is less) and that taken from the power grid.
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Some sources have shown that the charging rate is related to the charging damage to the
lithium-ion batteries. In particular, a study [9] reveals that the degradation of Li-ion
battery cells at fast charging is faster and irreversible. Indeed, scientists, examining
lithium-ion batteries by X-ray during rapid charging, have noticed the formation of holes
in some areas of the electrodes that can no longer be used for energy storage, and a
reduction in terms of lithium available to carry charges between the electrodes (lithium
plating). The internal structure of the electrodes is then irreversibly modified and the
degradation of the battery accelerated.

In summary, with the use of a high power (fast) charger, the damage to the battery
would be considerably higher than with a low power (slow) charger that thus has small
impact on battery life.

Thereby, current fast-charging technologies, such as Tesla Superchargers, are not the
best option for charging batteries, because they stress and overheat the battery of EVs,
resulting in energy loss. This in the long-term (i.e. after many charging cycles) leads to
battery damage, significantly shortening the life and the battery’s capability to maintain
the charge over time.

Besides, energy losses inevitably occur in the battery charging system and they are
mainly due to the devices used in the charging process. These elements include the
rectifier that converts alternating current (AC) to direct current (DC), the length of the
connection cable between the battery and the power source and the performance of the
battery charger itself. This means that the more the power (kW) increases (and also the
current), the more dissipation losses occur and as a result a slow charge is more efficient
and disperses less energy than a fast charge.

On the contrary, the battery swap solution allows to regulate and smooth out the power
demand peaks, limiting the negative effects of charging load on urban power grid, through
proper charging load control strategy. Battery swap improve charging efficiency avoiding
to accumulate excessive stress for the batteries while extending batteries’ life times and
leading to a significant saving of energy dissipated by the Joule effect due to high power
charges.

Despite significant technology developments and enhancements in battery chemistry with
regard to energy storage capacity and faster recharging are expected, battery swapping
remains the fastest and safest way to restore an EV’s range so far without damaging the
battery pack.

Unfortunately, this method is not exempt from several problems related to EV
manufacturers that work on this technology. In particular, to date, due to safety,
feasibility and liability issues, the OEMs (Original Equipment Manufacturers) prefer to
control their design strategies and so there is no compatibility between different car
brands or car models and no establishment of a common standard on EV Lithium-Ion
battery packs, dimension, type and configuration. Since each battery pack design is
different, it would be very expensive to create a network of BSSs with different battery
models and it is well known that the design of a BSS has very high cost implications.
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For that reason, to take off this technology, there is a need to establish similar
interchangeable battery packs for different manufacturers with common access to the
battery compartment for all cars.

Another important issue to consider is related to the location and setup of the network
of vehicle service stations, which must be well established and fit homogeneously into
the urban context respecting the existing rules and regulations.

However, these are just some of the issues and technical challenges concerning current
battery swap technology that researchers have to deal with in near future.

1.4 Background and Context

Yet still today, the major concerns hindering the wider take-up of electric vehicles are
chiefly related to high investment costs (the battery pack can be excessively heavy and
bulky for passenger comfort and it can be up to 50% of the cost of the entire vehicle)
and technological issues such as the poor autonomy caused by low battery capacity, the
time needed to recharge the battery pack at chargepoints, the lack of charging
infrastructures (charger locations and availabilities) and battery life-span. All these
factors lead, especially for long travels, to the resulting range anxiety issue, i.e. the fear
that a vehicle may not have sufficient range to reach its destination and would therefore
strand passengers.

Major research and development engineering centers worldwide are currently working to
improve the range of EVs and to reduce battery-recharging times.

Given this reality, it is easy to understand how the battery swap solution constitutes a
well-founded choice to overcome these barriers. This method consists in replacing the
exhausted battery from underneath the car with a charged one at a fully automatic
station, which is fitted with spare batteries that are already charged and ready to be
replaced when needed (see Figure 1.7). The station, called Battery Swap Station (BSS),
is equipped with a structure capable of performing the operation in an automated
manner, typically a mechanical carriage and a robotic arm/system. The depleted
swapped batteries are sent to a storage unit where they will be charged. In other words,
this service is very similar to the current service that gasoline stations provide to internal

combustion vehicles.
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Enter the BSS Removing the low battery Installing the charged battery Leave the BSS

Figure 1.7 Battery swap process phases - Hlustration by Pete Sucheski

In addition, there are many benefits offered by the battery swap system over conductive
or inductive charging not only for EV owners, but also for station/battery owners. Table
1.3 shows the list of the main features, with strengths and weaknesses, of this technology.
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Quick replacement of the depleted battery pack:
Battery swapping time (under 3 minutes) less
than refueling/recharging at filling stations

P

=

The procedure is automated, so the driver does
not need to get out of the car or He is free to do
anything else while the battery is swapped.

EV owner no longer has to worry about
battery life thanks to increasing driving
range (depending on stations availability)
& Reduced range anxiety.

Reduced purchase price for drivers because
They do not own the EV's battery: the costs
for battery maintenance and warranty are
borne by the battery owner

— Or

This procedure does not overheat or
damage/shorten battery life compared to
fast charging.

Controlled scheduling of battery charging (e.g.
charging batteries during night or off-peak
hours) that increases the battery lifetime

Table 1.3 Pros ¢ Cons of Battery Swap Technology

A survey was conducted last year [10] on a sample of about 800 people coming from
Europe which aims at deepening consumers' views on electric vehicles and obtaining
information on people's perception of battery swapping. The results of this survey show
that more than half of the respondents believe that EVs will completely replace gasoline-
powered cars over a ten-year time horizon, but at the same time less than 15% of the
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respondents, in everyday life, would consider using of battery swapping stations except
for the lack of charging infrastructure or simply because it is more convenient.

As it is evident, EVs are generally well accepted by majority of people in industrialized
countries, but uncertainties remain. Likely, the idea of leasing part of the car like the
battery, and swapping it, potentially does not attract drivers. Maybe the battery swap
technology is not yet mature enough and this could lead to safety problems (e.g. chemical,
electrical, and fire risks). Moreover, there are still few charging stations and maintenance
services for EVs and it is quite clear that users who would consider the purchase of an
electric vehicle, require characteristics similar to those of modern internal combustion
vehicles, especially in terms of performance, range, price and recharging/refueling times.

1.5 Business Models

The concept of battery swapping is not new, in fact, it dates back around a century ago,
but it has been possible to put it into practice, using appropriate facilities, only in more
recent times. Different business models and solutions have been developed. The first
company to develop an ambitious business model based on the battery swap and the
idea to separate the car ownership from battery ownership was Better Place®. The battery
swap process was fully automated and the battery was exchanged within about 3 minutes
through a robotic arm that removed the exhausted battery from underneath the car and
replaced it with a full one. The first electric car enabled with battery swap technology
and deployed by the company was the Renault Fluence Z.E. However, Better Place
announced bankruptcy in May 2013 due to the huge investments needed to design and
develop both the charging and the battery swap infrastructure (each Battery Swap
Station cost about $ 500,000 [11]). Figure 1.8 illustrates the basic design of the Better
Place’s BSS while in Figure 1.9 it is possible to see the Better Place battery swap facility
at Amsterdam's Schiphol airport.

8 Founded in 2007 and based in Palo Alto (California), it was a venture-backed company mainly active in
Israel.

23



Warehouse

Discharped Battery

Charged Battery |

Figure 1.8 Conceptual design of a BSS (Better Place)

Figure 1.9 Better Place electric car BSS at Amsterdam’s Schiphol airport’

Also the well-known Californian company Tesla Motors, in 2013, introduced the battery
swapping technology for their EVs (for Model S, Model X and Tesla Roadster) to extend
driving range replacing the battery pack in about 90 seconds. Tesla’s business model,
unlike that of Better Place, does not offer the option to lease the battery. Nevertheless,

9 Credit: https://www.pluginindia.com/blogs/electric-car-battery-swap-stations
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in the last few years it is exploiting the battery swap system as a service to support a
network of fast-charging stations scattered throughout the United States called
Supercharger able to charge up to 80% of a battery in 30 minutes.

In Ttaly, the noteworthy companies involved in the design of automatic battery exchange
stations are Picchio and Ecospazio. The former is engaged in research and design of
hybrid and electric road cars, while the latter belongs to the Green Mobility division of
Logiss Srl and it is dedicated to the construction of charging systems and infrastructure
that can be easily transported and installed for the use of EVs such as the EES (Energy
Exchange Station).

In East Asia, particularly in China, countless companies are developing a new approach
to urban transport. Among these, Kandi Technologies Group and NIO stand out. The
first company, Kandi Technologies Group, which bases its business model on the electric
car rental and car sharing, has devised a quick battery replacement system called “Quick
Battery Exchange” (QBEX), which involves the lateral extraction of batteries from the
vehicle by means of an automated robotic arm that deposits the exhausted batteries on
a charging shelf from which it will then pick up the charged batteries and put them back
into the vehicle. No special structures or transport systems such as forklifts, conveyor
belts and so on are required.

The Chinese automotive brand for electric vehicles NIO was founded in 2014 and it has
put into practice a battery swap service called “ Power Swap” in 12 cities (across China
and the world) including Shanghai, Beijing, San Jose, Munich, London and 7 other
locations. The company's network of battery swap stations, called NIO Power division,
has 18 battery swap stations (like the one in Figure 1.10) along the G4 Expressway in
China, which extends for about 2,273 km.
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Figure 1.10 External and Internal view of NIO Power Station'®

10 Credit: https://www.nio.com/nio-power
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2 State of Art

Following different criteria and points of view, many studies have been carried out and
many others are currently underway dedicated to the study and analysis of this
alternative strategy to the traditional recharge of the battery in electric cars, in order to
understand whether it is a feasible solution.

This section is intended to investigate the battery swap system’s players involved (the
EV owner and the station owner), how the battery swap procedure takes place in EVs
and all the related aspects, following the most recent developments published in scientific

literature.

2.1 Related Work

The system architecture of the BSS is substantially equipped with the following main

units:

1. distribution transformer to convert the volt to the charger’s nominal input voltage
from grid power system

2. chargers to convert AC power to DC power to charge the battery packs

3. rechargeable battery packs to provide energy to the EVs

4. battery pack replacement equipment/battery swapping system to replace an
exhausted battery pack with an fully charged one

5. battery pack storage warehouses, battery pack conveyor shuttles and battery
storage racks and rails

6. Other station units and control systems

Both the structural design of the BSS model and the architecture of battery placement
in the vehicle are point out in the U.S. patent [12] issued to Tesla Motors, Inc. The
patent describes in detail the main components of a BSS and all the steps for the
exchange of an Electric Energy Storage System (EESS), i.e. a battery pack, in an electric
vehicle. The patent application refers to swapping Tesla Model X or Model S battery
packs. The method includes the following sequence of operations that has been reported
as presented in the patent [12]:

27



~

. positioning an electric vehicle in x and y directions on an EESS exchange station

2. after positioning, raising the electric vehicle to a predetermined height using a

first lift

3. after raising the electric vehicle, raising an EESS lift toward the electric vehicle
until the EESS lift is correctly positioned relative to a first EESS

4. after raising the EESS lift, removing fasteners that secure a first EESS to the

electric vehicle

o

placing an EESS conveyor underneath the EESS lift

S

after placing the EESS conveyor, lowering the first EESS onto the EESS conveyor
using the EESS lift

=

after lowering the first EESS, removing the first EESS and instead placing a
second EESS underneath the electric vehicle

8. after placing the second EESS underneath the electric vehicle, raising the second
EESS toward the electric vehicle using the EESS lift until the second EESS is

correctly positioned relative to the electric vehicle
9. after raising the second EESS, fastening the second EESS onto the electric vehicle

10. after fastening the second EFESS, lowering the electric vehicle using the vehicle lift

Figure 2.1 The sketch shows the vehicle that creeps forward until it is correctly positioned in the z direction [12]
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Figure 2.2 The sketch shows a forklift used to raise and lower the battery pack and a moving device for battery packs
positioned on rails in order to move between battery storage and the serviced vehicle [12]

While in another patent [13], always filed by Tesla Motors, Inc., a platform with a battery
pack lift system and other systems to hold and move the battery packs are presented.
The lifting system includes a frame on which screwdrivers are mounted, a lift configured
to raise and lower the frame, and two air bearing configured to allow relative movement
between the frame and the lift and between the battery pack and the frame.

[l
) -t

0]
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Figure 2.3 The sketch shows the new battery pack (802) positioned on top of the lift system and ready to be attached
to the vehicle [15]

In the Figure 2.4 below there is the flow chart of the whole process required to remove

and replace the batteries:
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Figure 2.4 Procedure for swapping battery packs on electric vehicles [13]
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Most of the researches in this field are mainly focused on energy management, allocation
planning, optimal charging scheduling and decision-making problems, providing support
for configuration plan of BSS.

Recent studies [14] and [15], have proposed a BSS scheduling model for the battery
charging, according to the availability of battery chargers and hourly demand, to help
the BSS owners in managing their resources and a BSS model to determine a charging
schedule for electric buses minimizing energy cost and battery degradation, respectively.

An article disclosed on the journal “IEEE Transactions on Vehicular Technology” [16]
focuses on a mathematical optimization model for charging depleted batteries at BSS
whose purpose is to minimize its cost. In particular, the objective function to be
minimized is based on three elements: the number of batteries taken from stock, the
potential charging damage with different charging rates and the electricity cost. A
sequence of simulation studies is then performed to assess the feasibility of the proposed
model.

In [17], a new practical approach is suggested considering both the technical and socio-
economic impacts. Based on the concept of BSS, a battery sharing station (BShS) as a
part of a battery sharing network (BShN) is presented to improve the grid reliability and
stability. A renewable energy source (RES) and a photovoltaics (PV) system are
integrated with the BSS. In addition, a universal battery pack (UBP), that is linked
through the IoT to optimize the cost of charging, reduces the waiting time for battery
swaps and continuously manages the battery state of health (SOH), state of charge
(SOC) and broadcasts its data with the BShS and the BShN; is proposed as an alternative
to the traditional battery pack.

A closed-loop supply chain based on battery swapping-charging system (BSCS) is
designed in [18] in order to realize the combined action of battery charging stations
(BCSs) and battery swapping stations (BSSs) and at the same time ensuring the quality
of the battery swapping service and maximizing the revenue of the BSCS. The
optimization problem is formulated as a mixed-integer linear programming (MILP)
problem and it is solved in a distributed way by decomposing the BSCS into subsystems.

Y. Zheng et al. [19], based on life cycle cost (LCC) criterion, have designed a method for
locating and sizing BSSs in distribution systems to evaluate the cost/benefit of a BSS.
The proposed model has been tested on IEEE 15-bus and 43-bus distribution network
also considering the peak load in the system and the results demonstrate that the
residential and light industrial areas are suitable for building BSSs, i.e. BSS is more
suitable for public transportation in distribution systems.
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Published in 2018, the work of T. Zhang et al. [20] proves that there are some special
cases, such as taxi and bus fleets, in which, with a large number of EVs, battery swapping
has better performance in terms of equivalent service capacity and profitability with
respect to charging stations. They developed a stochastic model of buses, taxis, charging
stations and battery swapping systems using Monte Carlo simulation and taking into
account the impact of factors such as charging power, battery capacity, vehicle moving

speed and swap price.
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3 Scenario Definition

Once the current state-of-the-art implementations of the BSS have been discussed,
through this paragraph, the modeling of a service station for battery swapping (called
BSS) and a hypothesis of solution of use of this technology will be formulated as well as
the model development process will be illustrated. Later, the wvalidity and the
effectiveness of the proposed model will be proof by a set of concrete scenarios.

3.1 Model Building

Given the context discussed above, the focus of this section is the development of a model
for a BSS based on the configuration and discrete events modelling of a battery storage
site to allow the management of EVs’ battery using swap mode.

From the considerations made previously on the main characteristics of the EVs' battery
packs (see Chapter 1 section 1.2), the purpose of this work is to evaluate the efficiency
of the battery swap system through the design and simulation of a BSS model as realistic
and accurate as possible in a scenario where EVs are a widespread resource. The city of
Turin will be taken as a case study.

In order to consider both cars with standard range and with long range, it was decided
to work with only two types of EVs and so two different types of battery packs. These
battery packs belong to the two most sold electric cars in Italy in recent years (according
to data taken from [21]): Renault Zoe R110 Z.E. 40 [22] and Tesla Model 3 Long Range
[23]. The first battery pack have a capacity of 41 kWh while the second 75 kWh (see
Figures 3.1 and 3.2).
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Figure 3.2 41 kWh Renault Zoe R110 Z.E. 40 battery pack (Photo by Mark Kane)

The real range of these two types of cars varies depending on the combination of many
variables including speed and driving style, topography (road conditions) and outside
temperature (weather conditions). Nevertheless, the official test cycle WLTP!" (World
harmonized Light-duty vehicles Test Procedure) for Tesla Model 3 Long Range indicate
a range of 348 miles (560 km) on a single charge in a mainly city environment with an
efficiency of 13 kWh/100 km ( [24] and [25]). As regards Renault Zoe R110 Z.E. 40
instead, according to the results obtained during the approval procedure WLTP, the
range is 300 km under normal driving conditions with an efficiency of 14 kWh/100 km (
[26] and [27]).

More in detail, the WLTP test is the evolution of the old European NEDC test whose
values were based on theoretical driving profiles. This last has been designed in the 1980s
and has now become obsolete due to technological evolution (just think about EVs) and
changes in driving conditions (see Figures 3.3 and 3.4). Since the WLTP test gathers
real-driving data, it better matches today’s on-road performances and daily driving

1Tt provides fuel consumption and range data closer to actual than EPA (Environmental Protection
Agency) or NEDC (New European Driving Cycle) procedures because the tests are carried out under
more realistic and strict conditions
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profiles. Therefore, the WLTP standard is an objective criterion for measuring differences
in performance between the various models of different car manufacturers.

WHAT ARE THE BENEFITS OF WLTP?

WLTP WILL INTRODUCE MUCH MORE REALISTIC TESTING CONDITIONS. THESE INCLUDE:

Optional equipment: CO2
Mare realistic driving Higher average and values and fuel consumption
behaviour maximum speeds are provided for individual
vehicles as built

A greater range of driving
situations (urban, suburban,
main road, motorway)

Higher average and Stricter car set-up and
maximum drive power measurement conditions

More realistic ambient Enables best and worst-case
Longer test distances temperatures, closer to values on consumer
the European average information, reflecting the

options available for similar
More dynamic and
representative accelerations Shorter stops

car models
and decelerations

Because of all these improvements, WLTP will provide a much more accurate basis for calculating a car's fuel consumption
and emissions. This will ensure that lab measurements better reflect the on-road performance of a car.

Figure 3.3 Benefits of WLTP test [28]

WHAT IS WLTP AND HOW WILL IT WORK?

LABORATORY

TESTS FOR
PASSENGER
il S FUEL €02 POLLUTANT ENERGY CONSUMPTION VALUES OF
CONSUMPTION EMISSIONS EMISSIONS ALTERNATIVE POWERTRAINS
which are directly as well as the range of
related to fuel consumption electric vehicles

NEDC h_~ . A WLTP

New European Driving Cycle g N ; Worldwide Harmonised Light
v ad Vehicle Test Procedure

- Designed in the 1980s « Coming into force in 2017

+ Based on theoretical driving « Based on real-driving data
* Has become outdated + Better matches on-road performance

Figure 3.4 New CO2 emissions and fuel consumption test using WLTP [28]

In order both to predict daily battery swapping demand and to size the service station
in the simulation model used, an analysis of the urban traffic of Turin of the vehicles on
the road follows. Data on Turin city traffic flows have been provided by 5T Srl, which
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has developed and still manages the operational centre for real-time traffic monitoring
and supervision (Traffic Operations Centre). Furthermore, 5T’s measured data have a
high reliability index since they were collected through a network of traffic sensors at
fixed locations and using Floating Car Data technology, i.e. data from fleets of private
vehicles in motion [29].

In Figures 3.5 and 3.6, it is possible to see the distribution of the number of vehicles
circulating in Turin at different times of the day and the distribution of the number of
kilometers travelled on the city network over 24 hours respectively!?.

It is important to underline that this represents an estimation of the total traffic in the
city and the information obtained refers only to the vehicles measured by the sensors,
which therefore do not represent all the vehicles circulating in the city.
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Figure 3.5 Vehicles Distribution on road in different time slots in Turin [30]
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Figure 3.6 Kilometers Distribution covered by vehicles during time slots in Turin [30]

2 Green part refers to Monday 28/10/19, while Purple part refers to 21/10/19.
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By examining these distributions, the peak hours are from 08:00 to 09:00 in the morning
and from 17:00 to 19:00 in the evening. No significant differences emerge between the
distributions observed in other days of the week and the values are very similar to those
shown in the figures 3.5 and 3.6.

From the data obtained, the total number of kilometers travelled each day is thus about
8 million, while the total number of vehicles in circulation is on average about 320
thousand, which represents roughly 44% of the total vehicle fleet in Turin (720 831%).
At this point, given both the kilometers travelled and the vehicles in circulation every
hour, it is possible to derive the numbers of electric cars. Knowing that the car fleet in
Turin is 576 571, which corresponds to 80% of the vehicle fleet, the same percentage has
been used to estimate the number of cars in circulation every hour.

Assuming, in an ideal scenario, that all circulating cars are full electric and using only
the two types of electric cars considered as well as their ranges, it is estimated on average
the kilometers travelled by each car before recharging. Since Tesla Model 3's range is
greater than that of the Renault Zoe, the entire electric cars fleet will be divided into
34% Tesla Model 3 and 66% Renault Zoe respectively. Afterwards, through a weighted
average it is possible to know on average how many electric cars will need to recharge
the battery every hour over a 24-hour period in the metropolitan city of Turin dividing
the kilometers covered at each hour by the average kilometers travelled before recharging
the EV’s battery (see formula below).

At this point, given the large number of electric cars that may need to recharge the
battery, the possibility of installing more battery swap stations in Turin to serve all
electric cars will be considered.

To try to figure out what percentage of residual charge (SoC), i.e. the remaining battery
capacity relative to its maximum capacity, electric cars could reach the station, a survey
was carried out on a fairly disparate sample of 187 people focused on the behavior of
electric car owners in relation to the charging need. The results of the study are indicated
in Figure 3.7.

% Source: Tab TIT 28-29 from ACT (Automobile Club d’Ttalia) Statistical Yearbook 2019 data
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Figure 3.7 Survey on battery SoC levels to understand the drivers' behavior

As expected, the trend of the survey shows that there are both anxious and least
demanding customer. Nevertheless, it is evident that more than half of the participants
wait for their car's battery to reach the 25% of SoC before recharging it.

This study was also very useful for determining how many kilometers on average are
covered before recharging the battery, because the higher the percentage of SoC, the less
km the electric cars will travel on average and therefore the more cars will need to
recharge the battery at the station.

Based on this information, it was decided to analyze, in addition to cases where the
expected value of SoC is 20% and 25%, even the worst case in which cars arrive at the
station with 30% of SoC’s expected value in such a way as to stress the system and see
how it reacts. Accordingly, it is assumed that the EVs' SoC arriving at the station are
distributed according to a lognormal distribution, which reflects the survey result in
Figure 3.7.

The criterion used to calculate the average kilometers travelled before recharging (KMT)
is based on the assessment of the percentage of residual battery charge at the time of
replacement (see the survey above), the distribution of the number of incoming cars
according to the two types chosen and the range, in km, available at the time of
recharging. This results in the following weighted average:

KMT = %T = (RangeT * 0.9 — RangeT * ExpectedSoC) + %R
* (RangeR * 0.9 — RangeR * ExpectedSoC)1*

" The range is multiplied by 0.9 for the considerations made in Chapter 1 section 1.2
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Where:

o %T = 34% -> is the percentage of distribution of Tesla Model 3 cars

e %R = 66% -> is the percentage of distribution of Renault Zoe cars

e RangeT = 560 km -> is the Tesla Model 3 range

e RangeR = 300 km -> is the Renault Zoe range

o ExpectedSoC = 20%, 25%, 30% -> variable parameter according to the above
survey

Finally, to obtain an estimate of the hourly arrivals of the cars at the station, it is
sufficient to divide the km travelled every hour (Figure 3.6) by the value just obtained
(the results are shown in Chapter 4 section 4.6).

Lithium-ion batteries in electric cars can be recharged at any charge level (SoC), but
they have a progressive performance decay that is accelerated by temperature changes
and fast charging. As was pointed out earlier, charging times are also affected by the
temperature of the external environment and the State of Health (SoH) of the battery,
which represents the current condition of the battery, expressed as a percentage, with
respect to its ideal conditions. On average, the life cycle of lithium-ion batteries is fixed
at about 8 years or 1000 charging cycles. After a performance degradation of 20%, they
must be replaced. In the figure below (Figure 3.8), the influence of temperature and fast
charging on the life cycle of the Renault Zoe Z.E. 40 battery pack, made with 192 cells
LG Chem EG63, can be seen in detail.
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Figure 3.8 LG Chem E63 battery life cycle duration [31]
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The loss of efficiency over time for the Renault Zoe battery based on temperature and
cycles is evident: at 25°C, after 1400 cycles, the initial battery capacity drops to 80%,
while at 45°C, only after 1000 cycles, the initial battery capacity drops to 78%. Same
considerations will hold for fast charging: with a charging power of 43 kW after 1200
cycles the battery reach an efficiency level of 80% and using a power of 22 kW after 1600
cycles the battery efficiency is reduced by 20%.

Actually, the BSS must replace the battery packs when they reach an efficiency level of
less than 80%, but this feature has not been implemented in this work because it is not
part of the thesis goals.

In the BSS considered, a warehouse has the task of storing the exchanged batteries and
at the same time charging them. The warehouse is designed to store a maximum of 60
battery packs' and the 60 chargers used, transform the alternating current into direct
current before supplying the batteries. The charging time will depend on the factors
already addressed in Chapter 1, section 1.2. The maximum charging power used by the
chargers will be kept fixed at 22 kW (thus avoiding fast charges that could damage the
batteries) and each battery pack will be recharged to a maximum SoC percentage of
90%, in line with what has already been discussed in sections 1.2 and 1.3.

It is important to clarify how the purpose of the model is not to make profit for example
by selling electricity back to the grid through the discharging process of the batteries,
also because this would lead to the reduction of the battery’s lifecycle.

3.2 Model Assumptions

The stochastic model built involves the following assumptions that are applied to the

scenarios created:

1. The model consider only private EVs
2. Since the station is automated, it is open 24 hours a day

3. The station can serve a maximum number of EVs equal to the number of battery

swap workstations at a time

% This data have been provided by FEurofork, an Italian company located in the area of Turin
(https://www.eurofork.com/it)
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4. The battery packs for all incoming EVs can be of two different capacities and
types, but of standard dimensions

5. The principle “first-in first-out” is used to serve EVs according to their arrival

time

6. Each location in the warehouse is able to accommodate only one battery regardless
of the type or the capacity of the latter

7. The number of battery chargers available is equal to the number of batteries the
warehouse can hold

8. The battery's State Of Health (SoH) parameter will not be taken into

consideration

9. No breakdown and recovery times for objects in the model has been considered

Moreover, to ensure that the temperature does not affect the battery charging time, it is
assumed that in the warehouse there is an optimal temperature between 20 and 30 °C
during both winter and summer [32]. The main system parameters used in the simulation
model are summarized in the table below (Table 3.1):

Parameter Value
RACK
Rack Size Bays 10
(No. of items) Levels
Cell Capacity 1
Total (Maximum Content) 60
Rack Size Width of Bays
(meters) Height of Levels 1
No. of battery packs | Type 1 (41 kWh) 40
Type 2 (75 kWh) 20
Total 60
No. of chargers 60
VEHICLES
Task Executers | AGV (x-axis) 1
Speed (m/s) ASRS (x-axis)
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Task Executers | AGV 0.5
Acceleration  and | ASRS 0.5
Deceleration (m/s?)
Load Times (s) AGV 9
ASRS 9
Unload Times (s) AGV 9
ASRS 9
Capacity AGV
ASRS
Lift Speed (m/s) ASRS (z-axis) 0.23
Extension  Speed | ASRS (y-axis) 1.2
(m/s)
Initial Lift Height | ASRS 3
(m)

Table 3.1 Summary of Parameters used in the Simulation Model

Both vehicles parameters and warehouse performances are fixed and are those provided
today by the Eurofork company.
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4 Methodology

The set of assumptions and estimation methods discussed in the previous chapter, now
allow to develop the model for the Turin urban infrastructure. The creation of the model
implemented is explained through the use of the simulation software FlexSim and will
be discussed in this paragraph. The model allows to simulate the behavior of a BSS under
various conditions with the presence of some configurable elements inside it. The
stochastic behavior of the system considered as well as its performance will be also

investigated.

4.1 Discrete Event Simulation

To reproduce the behavior of a real system, even complex, it is necessary to build an
abstract simulation model, which allows both to define the relationships between the
elements and the decisions to be taken and to trace all the operations carried out on the
system and then predict its performance for the future. Simulation models can be
classified into different types of models:

e (Continuous Models: system in which the state variables change continuously over

time

e Discrete Models: system where state variables change only at certain moments in
time or when a specific event happen

e Static Models: in which a system is represented at a particular moment in time
e  Dynamic Models: in which a system that evolves over time is represented

o Deterministic Models: system in which probability distributions are not taken into

account
e Stochastic Models: system in which there are elements subject to randomness
All those types of simulation models that are discrete, dynamic and stochastic are

commonly called Discrete-Event Simulation models (see Figure 4.1) and are particularly
used in many applications such as software systems for higher-level automation of plants
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and industrial processes, to study the temporal evolution and approximate the behavior
of continuous systems.

Discrete event simulation (DES) is the process of codifying the behavior of a complex
system as an ordered sequence of well-defined events. In this context, an event comprises
a specific change in the system's state at a specific point in time [33].

In a discrete-event model the system is characterized in every moment of time by a set
of variables called state variables, by events that modify the value of at least one of the
state variables, by entities (single elements of the system) and their attributes, by
resources and by activities (operations of known duration) and delays.

System

Model

Deterministic Stochastic

Static Dynamic Static Dynamic

| | |
Continuous Discrete Continuous

Discrete-event
Simulation

Figure 4.1 Model taxonomy for systems

4.2 Simulation Software

From this perspective, among several commercial DES software that perform
manufacturing simulations (see Table 4.1), FlexSim has been chosen to visualize, analyze
and improve in a more concrete way the behavior of the considered system for real-world
processes and applications. Thanks to FlexSim, it was possible to easily create the
simulation model and achieve the final goal of this analysis, which is to better understand
what conditions and processes optimize the BSS system as well as the advantages and
disadvantages that a company can derive from its implementation.

44



FlexSim is 3D simulation software that models, simulates, predicts, and visualizes
business systems in a variety of industries: manufacturing, material handling, healthcare,
warehousing, mining, logistics, and more [34].

FlexSim is a powerful yet easy-to-use software package that implements a C-like language
called FlexScript and it has been designed with an open architecture to integrate with

C++ as well (see Figure 4.2). The main features of this simulation software comprise the
use of [34]:

1. A highly realistic 3D graphics simulation to see any actions that occur during the
simulation and to confirm whether the system is working or not as it was intended
to (visual validation)

2. A model layout that exploits drag-and-drop controls to arrange resources and 3D
objects used in model building directly into the 3D environment

3. A model building with:
[. a standard object library set and a drop-down lists to customize objects,
events, functionalities and system properties
II. a process flow using activity blocks to build system logic

4. A full suite of analysis features that includes a list of graphical interfaces,
predefined or customized by the user, called dashboards to better visualize data
of interest from running simulation and the possibility of collecting and exporting
data to other calculation applications like Excel spreadsheet (statistical
validation)

5. Two optimization tools (Experimenter & Optimizer) in order to simulate multiple

scenarios in which input variables and performance indicators are different, make

the best possible choices and compare the results of the solutions
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Figure 4.2 FlexSim 8D virtual environment

Number of stars Significance

* Inadequate

o Adequate

ook Satisfactory
ko Very satisfactory
ok Outstanding

Criteria Groups

Comparison Criteria

Simulation Software Tools

AnyLogic Arena Flexsim Plant Simulation Witness

Coding aspects ok ok ok Aok Ak
Hardware and Software compatibility s s sk seolese sAekdkok sokok
Software

User support Aotk ke Aokokok kel Aok

Purpose General General General General General
General features Experience required dokek et ok ook ek

Ease of use Fk ok ik Hokok Aok

On-line help bl dk Aok ke ok
quelhng Library and templates hadd wk Aokokok Aok ook
assistance . .

Comprehensiveness of prompting ok ok ook ook Hokok

Visual aspects ool ok el ok ek ek ek

Efficiency ok ok ko ek ek ke
Slmul.at.lfm Testability ok ekl Aok ek ook
capabilities A . L

Experimentation facilities doksk ok sk ke Wk

Statistical data ok ke deofols ek P

Input/output capabilities ki ok Aokokok otk Aok
Input / Output Manufacturing capabilities ek ok ok sk sesesdedese

Analysis capabilities Ak ok Aokokok Fk ok ook

Table 4.1 Rating scale & comparative matriz of the most used commercial simulation tools [35]

All these functionalities make this software very complete, allowing to easily control and
modify the simulation model from multiple perspectives.

In this thesis work, the most stable version of FlexSim has been used (version 19.0.0 for
64-bit built on 03/01/19).
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Taking into account the potentialities of FlexSim discussed above, a description more in-

depth of the virtual environment follows.

4.3 FlexSim Environment

The FlexSim user interface is divided into several box, as shown in Figure 4.3, which

interact with each other:

Library Properties
file Edit View Build Execys” Statistics Debug Help

AoE [r4 70 ~ B~ - 30 i toos @exca Hgrree Esomt ghomhboorss Aeocesion =[]0 @
dReset B Run top Bl step Run Tme: [0.00 = Runspeed: I 400 |+
Library x (VAR 1g Model * X %1 ProcessFow + X | Quick Properties x

W oa | ~ |5 views
v
= Fixed Resources A @
@ source ]
& quee X
o Processor
W snk | View Settings
® contrs Process e
W separator
@ MulProcess: FIOW [ Perspective Projection
Frack y ] show Connections.

o BasicFR 3D I\’IOdel Al"ea [ snap to Grid
-1 Task Executers Snap to Background

Dispatcher —i— Area ] Showe Grid
@ TaskExecuter 7 <how Names

% operator Color scheme
f Transporter Blueprmt
Wi More View Settings.

%, robot 2 2
o } Save Settings as Defaul.
] Asrsvehice =1 Capture View
N BasicTE width Height

= Travel Hetwors 1920 | [os0
" Networkhode Capture View
@ Trafccontrol
-/ Conveyors A‘ < >

= Staight Conveyor

Curved Conveya i =
%3, Jon Conveyors ed-»-/ ]
4 Deason Pont 1
B saton
.

41 photo eve :
o Script Console

Merge Controker -

Figure 4.3 FlexSim Main Screen

The 3D model area is located in the center panel in FlexSim, the library (and the toolbox)
in the left panel, the properties and the process flow view in the right side and the script
console in the bottom panel. In the FlexSim reference system, the x-axis (in red)
corresponds to the horizontal axis, the z-axis (in blue) coincides with the vertical axis
and the y-axis (in green) represents the depth. On these axes task executers (like AGV
and ASRS) can travel.

The 3D model field, that is the main workspace, is where, by means of animations and
3D graphics, the whole system is visualized and validated. The library includes all the
objects, divided into categories or classes that have a high level of customization and can
be used to both build the 3D simulation model and to create activity blocks in the process
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flow (see Figures 4.4 and 4.5). In the properties section, the most important details
(features, values, labels, etc.) about the objects present in the simulation model are given.
The script window is useful to execute FlexScript code in order to obtain information or
configure the simulation model without running the model. Moreover, in the script
console the code can be debugged. Lastly, there is the process flow interface that allows
to create and to build the overall logic of the simulation system that is the basis of the
operation of the simulation model.
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Figure 4.4 FlexSim Objects Library
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Figure 4.5 FlexSim Process Flow Library

The process flow tool has a flow chart-like visuals where is possible to create blocks that
represent tasks, activities or resources. The main elements of a process flow are tokens,
activities and shared assets. Tokens represent the simulation status and are essentially
flow items moving from one activity to the next. Moreover, they are specified by a green
circle and identify the position and activity that the item should perform in the model.
Each token contains basic information such as ID, name and labels in order to identify
and store custom data.

Tokens in this model are associated with battery packs in such a way that, by tracking
token information, it is possible to keep track of every battery pack in the system.
Activities are the logical operations in the process flow and are linked to each other with
connectors. A set of activities can be grouped together into a single stacked block creating
sequence of steps.

Shared assets are essentially limited resources that tokens can release or claim at specific
points in the process flow. Whenever a shared asset is unavailable, the token that requests
it has to wait for that resource to become available in order to move on to the next
activity. Shared assets can be of three different types including resources, lists and zones,
which correspond to limited supply of resources, lists and statistical information

respectively.
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4.4 Development of the Simulation Model

The model developed consists of two main parts. First, all necessary simulation objects
with their connections, corresponding parameters, labels and initial values have been
created directly in the 3D model area. After that, it still be possible to make manual
changes to the model in order to simulate and test situations that are even more complex.
In the second part, the model created in this way is then handled through a process flow
in which the rules of operation of the system are collected. Most of the values or
parameters assigned to objects in the model are not fixed and can be changed in the
simulation in order to make the model as flexible as possible for future changes. For this
reason, several of the customizable parameters in the model have been saved as global
variables. Among these, there are the maximum battery charge level, expressed as a
percentage, in the rack (MazLevelRackSoC); the SoC update rate for the batteries in the
warehouse (UpdatingTime); the time required to remove the battery or insert it into the
car (DelayTime); and the time it takes a customer to leave the station once served
(DepartureTime). In this paragraph, the general layout of the model is outlined,
highlighting all the objects involved.

It must be noted that, since it is not possible to draw on a precise reference plant layout
of the station, the distances and paths between objects may change. In this model, the
flow items will represent batteries that enter the BSS. Looking at Figure 4.10, at the end
of this section, six types of objects, made available by the software, can be identified in
the model and each of them is described in the next pages:

1. Two Sources (Fixed Resource) to generate the incoming battery packs during
runtime (SourceBattery) and the battery packs available in the rack at startup
(SourceRack)

2. Two Queue (Fixed Resource) to model the customers' waiting queue
(WaitingQueue) and the battery swap bay (SwapBay) where the AGV exchanges
the discharged battery for a charge, and two more queue for storage (StoringBay)
and retrieval (RetrievalBay) operations

3. A Sink (Fixed Resource) to represents the customers' exit from the station
(OutBattery)

4. An AGV (Automated Guided Vehicle) & an ASRS (Automated Storage and
Retrieval System) Vehicle (Task Executer) for transporting and moving batteries
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5. A Rack (Fixed Resource) to store and charge the battery packs
(BatteryWarehouse)

6. An AGV network (AGV) to provide a set of paths that will be followed by the
vehicle

The Sources:

The SourceBattery is the object that generates the incoming items that enter the station,
i.e. the batteries to be swapped. In the properties tab, the Arrival Style can be
parametrized with an inter-arrival time, an arrival schedule or with an arrival sequence.
In this model, the first method was chosen because it allows to better represent customers
(and so batteries) coming to the BSS. Since the source will determine how frequently
batteries arrive, for the same reasoning as in Chapter 3 section 3.1, the arrival rate was
modelled through “Hourly Rates, Custom Daily Repeat” which allows to specify the
arrivals at each hour in a day (Figure 4.6).

’ ‘SourceBattery ‘ @ ¢

Source Flow Triggers Labels General

Arrival Style | Inter-Arrival Time e
FowTtem Class Interval Variabiity |Constant Rate ~ | Sfream | getstream(cu Std Dev 20 %
Table Locally_Defined_Table -
[ Arrival at time Days
Inter-Arrivaltime: Day 1 |
0:00 - 1:00 5
1:00 - 2:00 2
2:00 - 3:00 2
3:00 - 4:00 1
4:00 - 5:00 3
5:00 - 6:00 7
6:00 - 7:00 20
7:00 - 8:00 32
8:00-9:00 30
©:00 - 10:00 25
10:00- 11:00 24
11:00 - 12:00 24
12:00 - 13:00 24
13:00 - 14:.00 24
14:00 - 15:00 26
15:00 - 16:00 22
16:00 - 17:00 31
- 17:00 - 18:00 33
© '8 |8 |1 soo 1000 30
——|19:00 - 20:00 23
20:00 - 21:00 15
21:00 - 22:00 i3 ¢
22:00 - 23:00 10
23:00 - 24:00 8

Figure 4.6 Example of battery hourly rates in a day

When an item is created from this source, the On Creation Trigger is executed and it

has the purpose of assigning all the labels necessary to uniquely identify the battery.
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These labels include the battery Type, the battery Capacity (expressed in kWh), the
battery State of Charge (expressed in percentage), the State, the MazSoCTime and a
binary label called ToSwap set to one to indicate that the battery should be exchanged.
Moreover, in the 3D model, to visually underline the different types of batteries, the
item’s color appearance is changed based on battery Type (Type 1 in red and Type 2 in
green). The On Creation Trigger code, written in FlexScript language, is shown below:

// On Creation Trigger

Object current = ownerobject(c);

Object item = param(l);

int rownumber = param(2); //row number of the schedule/sequence table

{ // khkkAk KAk k Kk Kk kKK PlckOptlon Start khkkhkKk KAk Ak Kk Kk kKKK //

Object involved = item;
string labelname = "Type";
Variant value = bernoulli (66, 1, 2, getstream(current));

involved. labels.assert (labelname) .value = value;
} [/ RREKRXK PickOption End ***xxxx //

{ // KAk AkKkK kKA Ak Kk kK PleOptlon Start khkk Kk KA ARk Kk kK kKK //

Object involved = item;
string labelname = SoC";
Variant value = lognormalmeanstdev (25, 25, getstream(current));

involved. labels.assert (labelname) .value = wvalue;
} // * Kk Kk Kk Kk ok k PleOptlon End * Kk Kk Kk ok kkx //

( // Ak kkhkKkkhk kA khkk Kk Kk PleOptlon Start KAk kkXkkhkkXk kK Kk )k //

Object involved = item;
string labelname = "ToSwap";
Variant value = 1;

involved. labels.assert (labelname) .value = value;
} [/ KREKKXK PickOption End ***xxx%x //

{ // KAk AkKkKKk KK Ak kKK PleOptlon Start khkkKkKAAKk KKk kKKK //

Object object = item;
object.color = Color.byNumber (item.Type) ;
} // * Kk kkkk Kk Plckoptlon End * k kK kKK //

{ // KAk AkKkkKk Ak AK Kk k) PleOptlon Start khkkKkKAAkRkk Kk kKKK //

Object involved = item;
string labelname = "Capacity";

Array vetttipo = Table.query ("SELECT ARRAY AGG(Type) FROM TypeTable") [1][1];
Array vettcap = Table.query ("SELECT ARRAY AGG (Capacity) FROM TypeTable") [1][1];

for (int i=1; i<= numType; i++) {
if (item.Type == vetttipo[i])
involved.labels.assert (labelname) .value = vettcap[i];
}
} // * Kk kK kK ok PickOption End ***x*x**x% //
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{ // R R IR b b b b o o PleOptlon Start R I b b b b b b o //

treenode involved = item;

string name = "Battery " + string.fromNum(nameBattery+l);
involved.name = name;

nameBattery++;

} // xxx%%k%x pickOption End **xx**x //
{ /) xxxskkxxxskkxx pickOption Start *x*kxxxxxkkkxx //

Object involved = item;
string labelname = "State";
Variant value = 1;

involved.labels.assert (labelname) .value = wvalue;
} /] KEAK KKK PickOption End *x*x**x*xx //
{ // * ok kkkkkkkkkkk PleOptlon Start Kk hkhkkkkhkkkkkkhkkk //

Object involved = item;
string labelname = "MaxSoCTime";
Variant value = -1;

involved. labels.assert (labelname) .value = value;
} // * Kk ok ok ok Kk ok Plckoptlon End * Kk Kk ok kKK //

As it can be seen from the code reported above, the value assigned to SoC' label varies
according to a lognormal statistical distribution (consistent with what is indicated in the
survey in Chapter 3 section 3.1) that follows the pattern shown in Figure 4.7 with
standard deviation equal to the mean. The Type label follows a Bernoulli distribution:
in that way 66% of the batteries generated will be of Type 1 (41 kWh) and 34% of Type
2 (75 kWh). This means that on the total number of EVs arriving at the station, about

§ will be Tesla and g Renault.

legnormalmeanstdev(25, 25, getstream(current)) ~ & = ;
Distribution | lognormalmeanstdey w
Mean 25 - *
Std Dey |25 -
Stream getstream{current) - ,

Based on 1000 samples

10 20 30 40 50 60 YO 80 90 100

Figure 4.7 Ezample of lognormal distribution with mean 25 and Std. Dev. 25

The SourceRack instead is responsible for generating the batteries inside the warehouse
at the beginning of the simulation. In this case, a single arrival schedule has been chosen
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with a quantity equal to the maximum content of the rack. Basically, this object assigns
the same labels to the batteries as described above for the SourceBattery, but with a
different SoC, equal to the global variable MaxLevelRackSoC, State and MaxSoCTime.
The ToSwap label is set to zero indicating that the batteries in the warehouse should not
be exchanged.

In Figure 4.8 it can be seen, on the left, the items labels properties generated by the
source SourceBattery and on the right the items labels properties created by the source

SourceRack and placed in the warehouse.

~| Labels =I Labels
A, RIS

[ : | |
| Type 1] Type 1
| SoC 22.36 || SoC 90
ToSwap 1 || ToSwap 0
| Capacity 41 || Capacity 41
| State 1 || state -1
' MaxSoCTime -1 || MaxSoCTime 0

Figure 4.8 Ezample of item's labels generated by the two sources

The Queues:

The WaitingQueue represent a queue where customers will wait for their turn. In its
properties tab, especially in Output section, the items are pushed to a global list called
WaitingBattery. In this way, when batteries enter the WaitingQueue, they will be added
to a list of waiting batteries, which will track useful information including how long
batteries, and so customers, have been waiting. The “Reevaluate Sendto on Downstream
Availability” box is checked in order to consider to push to list every time a downstream
object becomes available. The output logic of this queue is set to FIFO (First in First
Out). The OnEntry and OnExit Triggers are needed to store items’ time references.

SwapBay is the workstation where the battery swap takes place. Its maximum content
is set to one since the station can serve one customer at a time. In the Input group of
the flow tab, the pull strategy checkbox is selected because it should pull from
WaitingBattery list the battery that has been waiting the longest first so that following
FIFO strategy as explained before. This queue has a binary label called Busy that is used
essentially to engage the queue during the entire battery swap procedure and to not allow
other batteries, waiting to be served, to enter. Every time an item enters in this object
from the WaitingQueue, the OnEntry Trigger is activated and the Busy label is set to

one.
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In the StoringBay the AGV drops off the item, i.e. the depleted battery, and thus
simultaneously the ToSwap label of the item is changed to zero because the battery has
been swapped and will be stored in the rack, by means of the ASRS, where it will be
charged. The RetrievalBay is where the ASRS places the charged battery retrieved from
the rack that will be picked up by the AGV.

The Sink:

The OutBattery object is used to destroy items from the simulation model, so this sink
represent customers leaving the BSS. When this happens, the OnEntry Trigger is
activated and the label of the SwapBay is set to zero to allow the next waiting battery
to enter the workstation. In addition, to keep track of all destroyed batteries, two global
tables called BatteryTable and CustomersTable are filled, in which in each row data of
both battery and customer leaving the station are stored. Follows the code of the
OnEntry Trigger.

// On Entry Trigger

Object current = ownerobject (c);
Object item = param(l);
int port = param(2);

Object obj = model().find("SwapBay"):;
obj.labels.assert ("Busy") .value = 0;

Table table = Table ("BatteryTable");
Table tablel = Table("CustomersTable");
int riga = current.labels["Exit"].value;

// Update CustomersTable

tablel.addRow (riga) ;

tablel.setRowHeader (riga, "Customer " + string.fromNum (numCustomer)) ;
tablel.cell(riga,l) .value = item.StartWait;

tablel.cell (riga,2) .value = item.EndWait;

tablel.cell (riga, 3) .value = item.StartService;
tablel.cell(riga, 4) .value = item.EndService;

tablel.cell (riga,5) .value = item.EndWait-item.StartWait;
tablel.cell (riga, 6) .value = item.EndService-item.StartService;

tablel.cell (riga, 7) .value = tablel.cell(riga,5).value + tablel.cell (riga,6) .value;

numCustomer++;
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// Update BatteryTable

table.addRow (riga) ;

table.setRowHeader (riga, "Battery " + string.fromNum(numBattery));
table.cell (riga,l) .value = item.Type;

table.cell (riga, 2) .value item.Capacity;

table.cell (riga, 3) .value item.StoringSoC;

table.cell (riga, 4) .value item.SoC;

table.cell (riga, 5) .value item.EntryTime;

table.cell (riga, 6) .value item.MaxSoCTime;

table.cell (riga, 7) .value item.OutTime;

table.cell (riga, 8) .value item.State;

table.cell (riga, 9) .value item.Energy;
table.cell (riga, 10) .value = item.OutTime-item.EntryTime;

if (item.MaxSoCTime != -1){
table.cell (riga,11l) .value
table.cell (riga,12) .value

item.OutTime-item.MaxSoCTime;
item.MaxSoCTime-item.EntryTime;

}

else(

table.cell (riga,11l) .value = 0;

table.cell (riga,12) .value = item.OutTime-item.EntryTime;
}
numBattery++;

current.labels.assert ("Exit") .value+= 1;

The Vehicles:

The two task executers used in the model are the AGV and the ASRS vehicle. The first
is responsible for moving items from the SwapBay to the StoringBay and back from the
RetrievalBay to the SwapBay along its own x-axis. The most important parameters to
be set are the acceleration and the maximum speed as well as the loading and unloading
times. Its task sequence is described in the Process Flow in the next paragraph. The
second task executer is responsible for batteries storage (StoringBay) and retrieval
(RetrievalBay). This vehicle has significant parameters to take into consideration, which
include lift speed, extension speed, max speed, acceleration & deceleration as well as time
for loading and unloading operation. The values of the most important parameters
assigned to these two vehicles are listed in Table 3.1 Chapter 3 section 3.2.

The Rack:

The BatteryWarehouse object is the main element of the model because it is not only
the place where the batteries are stored and picked up, but also where they are recharged.
It is initially filled with 60 charged batteries (40 of Type 1 and 20 of Type 2 to maintain
the proportions 66% and 34% respectively) placing the incoming items in a random bay
and level. After a series of simulations, it has been observed that the optimal
configuration for the warehouse, which allows to reduce the operations times for the 60
batteries stocked, is that one constituted by 6 bays and 10 levels. Every time an item
enters the rack, the OnEntry Trigger is executed: this assign to each item in the rack a
label to store the time it enters (EntryTime) and a label to store the SoC in order to
compute the batteries level of charge (StoredSoC). Moreover, the entering items are
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pushed to the global list BatteryRack that stores all relevant information about batteries
in the rack. The OnExit Trigger stores in the items the labels relating to the energy used
by the station during charging (Energy) and the time when the item is picked up from
the warehouse (OutTime).

Each item is assigned a label called State to distinguish the batteries inserted in the
warehouse at the beginning of the simulation, those that have reached the maximum
charge and finally those who are charging. This label has been inserted to first provide
the charged batteries already in the warehouse, then the swapped batteries that have
reached the maximum SoC and lastly those that have reached the highest SoC. When a
battery achieved its maximum charge, its label switches from one state to another as
illustrates in Figure 4.9.

Battery Already in the Rack Swapped Battery in the Rack
State = -1 State =1 State=0

1
1
1
1
1
1
1
1
Fully Charged Battery : Battery In Charge '————=> Fully Charged Battery
1
1
1
1
1
1
]

Figure 4.9 Battery State label transitions

In this way, the retrieval logic of the batteries to be picked up from the warehouse will
follow a priority order given by the descending State label: State = -1; State = 0 and
State = 1 (see next section).

Figure 4.10 shows the model side and top view with all the objects created (the batteries
of Type 1 are red, while those of Type 2 are green).

SourceBattery \waitingQueue SwapBay i AGV
OutBattery

e | = -
SourceBattery

WaitingQueue SwapBay AGV

OutBattery RetrievalBay

Figure 4.10 Model created in FlexSim
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When the model is reset, i.e. before starting the simulation run, The OnModelReset
Trigger is executed: this is useful to initialize and set all global tables to their starting
values. The OnModelReset code is presented below:

// On Reset Code
/* Reset Code */
Object obj = model()

// Reset TypeTable

Table table = Table ("TypeTable");
table.clear () ;
table.setColHeader (1, "Type");
table.setColHeader (2, "Capacity");
table.setSize (2, 2);
int tip = 1;
int cap = 41;
for (int i=1; i<=2; i++){
table.cell (i, 1) .value = tip;
table.cell (i, 2) .value = cap;
tipt+;
cap+=34;

}

// Reset BatteryTable
Table tablel =

Table ("BatteryTable") ;

tablel.clear () ;

tablel.setSize (0,12);
tablel.setColHeader (1, "Type");
tablel.setColHeader (2, "Capacity");
tablel.setColHeader (3, "StoringSoC");
tablel.setColHeader (4, "SoC");
tablel.setColHeader (5, "EntryTime");
tablel.setColHeader (6, "MaxSoCTime");
tablel.setColHeader (7, "OutTime");
tablel.setColHeader (8, "State");
tablel.setColHeader (9, "Energy");
tablel.setColHeader(l "StayTime") ;
tablel.setColHeader (1 "StayTimeToMax") ;
tablel.setColHeader (1 "ChargingTime") ;

// Reset CustomersTable
Table ("CustomersTable") ;

Table tableO =

tableO.clear () ;

tablel.setSize (0,7);
table0.setColHeader (1, "StartWait");
tablel.setColHeader (2, "EndWait");
tablel.setColHeader (3, "StartService");
table0.setColHeader (4, "EndService");
tablel.setColHeader (5, "TimeOfWait");
table0.setColHeader (6, "TimeOfService");
table0.setColHeader (7, "TimeInStation");

’

.find ("BatteryWarehouse") ;
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// Reset WaitTable & PowerTable
Table table2 = Table ("WaitTable");
Table table3 = Table ("PowerTable");
table2.clear () ;

int bay = rackgetnrofbays (obj) ;

int level = rackgetnroflevels (obj);
table2.setSize (level, bay) ;
table3.setSize (level, bay) ;

int dimensionl = 1;

for (int i=1; i<=level; i++) {
table2.setRowHeader (i, "Level " + string.fromNum(dimensionl)) ;
table3.setRowHeader (i, "Level " + string.fromNum(dimensionl));
dimensionl++;

}

int dimension2 = 1;

for (int i=1; i<=bay; i++){
table2.setColHeader (i, "Bay " + string.fromNum(dimension2));
table3.setColHeader (i, "Bay " + string.fromNum(dimension2));
dimension2++;

for (int i=1; i<=level; i++) {
for (int j=1; j<=bay; j++){
table2.cell (i, j) .value =
table3.cell (i, j) .value =

N O
O ~e

The next section provides a comprehensive description of the Process Flow operations.

4.5 Process Flow

Part of the logic has been integrated into the 3D model as pointed out before, while the
logic associated with the vehicles tasks and the SoC calculation for each battery was
built in the process flow tool. This is because transportation tasks are more efficient than
using the standard 3D operating logic as it can handle customization much better (see
FlexSim documentation). The process flow is divided into sections depending on the
functions performed. These sections are called containers and are suitable to visualize
and keep activities organized. The Process Flow of the model is illustrated in the
following figure (Figure 4.11), in which it is possible to see the decision-making logic

applied.
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# Source New Battery Arrived

K—— . Deride: Mew Battery Swap Request?

- Sghe

AGV TaskSequence / % ASRS TaskSequence Shared Assets

r h —

2 Sink

& Acquira AGV & Acryira ASRS. - o
= Travel to SwapBay & Pull from List BatteryRack ® e

a Lozd Exhausted Battery i Assign Time Labels

wa Delay Procedure # Load Charged Battery fi List WaitingBattery @
& Travel 1o StoringBay # Unlozd Charged Battery 4 List BameryRack

& Unlozd Exhaust=d Battary A, Decide: Exhaust=d Battery Arrived?

A, Decide: Charged Battery Arived?

‘& Wait for Swapped Battery 88 Assign Swapped Battery Labels

/ \ " Wait for ahauiﬁim* SoC Update

% UpdatingTime
# Lozd Exhausted Battery Code SoT Calculation
#eUnkad Exhausted Battery
= #: Releaze ASRS 1
# Load Charged Battery 3 Task Sequence Complate B So Cabdstion Compies
v Travel to SwapBay
# Unload Charged Bamery

&& Delay Procedure

4 Create Tokens & Delay Car Departures
€, Releass AGY s Mave Battery to Exit
3 Task Seguence Complets % Car Departures

Figure 4.11 The Process Flow of the model developed

» Shared Assets: In this container, the Resource blocks as well as the List blocks
are found. The resources represent the available task executers, i.e. the AGV and
ASRS vehicle. The two lists blocks here are linked to the global lists called
BatteryRack and WaitingBattery that act as a database for every battery in the
system. The first list contains all the data about the batteries currently stored
inside the warehouse already seen before, such as time of entry, type, capacity,
location in the rack, etc. Whenever a battery is retrieved from the rack, it is also
removed from the list, and at the same time, each time a battery enters the rack,
it is added to the list. While the second list hold the information about the
batteries arriving at the station and in WaitingQueue currently waiting to be
served. The list entries are updated every time a new item joins or leave the
WaitingQueue.

The event-triggered source New Battery Arrived monitors the entry of the SwapBay
queue and creates a token each time a battery enters it. The token represent the battery
swap request and will be associated with that specific battery. The decide activity New
Battery Swap Request is used to determine whether the battery needs to be replaced or
not (i.e. if the battery has already been replaced and is waiting to leave the station). The
token is then split in order to acquire simultaneously both the AGV resource and the
ASRS resource and in such a way as to manage the operations for the two vehicles in
two separate branches. Now the two task executers can begin their task sequences.

» ASRS TaskSequence: All the tasks executed by the ASRS are provided in this

section. The ASRS performs the retrieval cycle that consist in pulling from the
BatteryRack list the charged battery that will be swapped with the discharged
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one and thus inserted in the car. The most charged battery (with the highest SoC)
that matches the type of battery required is selected from the list according to
the logic discussed in section 4.4. The selection of the battery from the rack has
been optimized in such a way as to take first the charged batteries present in the
warehouse at the beginning of the simulation and, if these end, among those that
have been exchanged and have reached the maximum charge, the one that has
longest reached its maximum charge. This minimizes the time a charged battery
stays in the warehouse. Moreover, to reduce service times, the puller (ASRS) will
take not only the most charged battery but also the one closest to the position in
which it is located (i.e. the battery at the shortest distance). See code below for
more detail. Once the battery is selected, it is picked up and placed in
RetrievalBay. After the retrieval cycle is completed, the ASRS performs the
storage cycle taking the exhausted battery from the StoringBay (if it is present)
and inserts it in the warehouse in the same location of the retrieved battery. At
the end of this cycle, the battery is pushed to the BatteryRack list to store the
battery’s information and the ASRS resource is released.

// Set distance
Variant value = param(l);
Variant puller = param(2);

treenode entry

param(3) ;

double pushTime = param(4);

if (!objectexists (puller))

return -1;

treenode ASRS = puller.ASRS;
updatelocations (value) ;
updatelocations (up (puller)) ;

double height = getvarnum (ASRS, "forkresetheight");

double x1 = vectorprojectx(value, 0.5 * xsize(value), -0.5 * ysize(value), 0, model());
double yl = vectorprojecty(value, 0.5 * xsize(value), -0.5 * ysize(value), 0, model());
double zl = vectorprojectz (value, 0.5 * xsize(value), -0.5 * ysize(value), 0, model());
double x2 = vectorprojectx (ASRS, 0.5 * xsize(ASRS), -0.5 * ysize(ASRS), height, model());
double y2 = vectorprojecty(ASRS, 0.5 * xsize(ASRS), -0.5 * ysize(ASRS), height, model());
double z2 = vectorprojectz (ASRS, 0.5 * xsize(ASRS), -0.5 * ysize(ASRS), height, model());

return sqrt (sqr(xl - x2) + sqgr(yl - y2) + sqr(zl - z2));

A GV TaskSequence: All the tasks executed by the AGV are provided in this
section. Once the AGV resource is acquired, it travels to SwapBay to picks up the
battery to swap and, after a delay that represents the time it takes the automated
mechanism to perform all procedures to remove the empty battery from
underneath the car, it transports the battery depositing it in StoringBay. At the
same time, the AGV picks up the charged battery from the RetrievalBay (if it is
present) and travels back to SwapBay to insert the charged battery into the car
(also in this case there is a delay for the automatic procedure). The AGV resource
is freed.
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A further delay is added (Delay Car Departures) and represent the customer that get
the car started and leave the station. Finally, the battery is moved to the OutBattery
sink and it is stored in the global table BatteryTable to track valuable information.

» SoC Update: In this section, there is the code that constantly updates the SoC
of all batteries stored in the rack reading from global table PowerTable the power
values of chargers. More in detail, the table is used to identify what power value
to use based on the item’s location in the rack. The SoC' Calculation code saves
the labels values of all batteries in the rack and passes them to the NewSoC user
command that returns the updated SoC array for all batteries according to the
factors and formula seen in Chapter 1 section 1.2. As last step, the SoC
Calculation code updates the batteries labels and checks if a battery has reached
full charge accordingly by changing the State and MaxSoCTime labels. The SoC
Calculation code and the NewSoC user command are presented below:

// SoC calculation

/* Custom Code */

Object obj = model () .find("BatteryWarehouse");
Table table = Table ("WaitTable");

int dimensionrack = obj.subnodes.length;

’

Array captot Array (dimensionrack)
Array charge Array (dimensionrack)
Array carica = Array (dimensionrack)
Array tempori = Array (dimensionrack
Array bay = Array (dimensionrack);
Array level = Array (dimensionrack);
double sum = 0;

’

)i

// Store batteries labels values
for (int i=1; i <= dimensionrack; i++) {

captot [i] = obj.subnodes[i].labels["Capacity"].value;
charge [i] = obj.subnodes[i].labels["StoringSoC"].value;
tempori [i] = obj.subnodes[i].labels["EntryTime"].value;
carica [i] = obj.subnodes[i].labels["SoC"].value;

}

// function that returns the new SoC values based on the power provided by the chargers
Array final = NewSoC (captot, charge, tempori, carica).clone();

// Update all battery SoCs in the warehouse
for (int i=1; i <= dimensionrack; i++) {
obj.subnodes[i].labels.assert ("SoC") .value = final[i];

bay [i] = rackgetbayofitem(obj, obj.subnodes[i]):;
level [i] = rackgetlevelofitem(obj, obj.subnodes[i]);
if (obj.subnodes[i].labels["SoC"].value == MaxLevelRackSoC && tempori[i] != 0 &&
table[level[i]] [bay[i]] == 0){
obj.subnodes[i].labels.assert ("State") .value = 0O;

obj.subnodes[i].labels.assert ("MaxSoCTime") .value = time () ;
table[level[i]] [bay[i]]++;
}

sum += obj.subnodes[i].labels.assert ("Energy") .value;

}

TotEnergy = sum;
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// NewSoC

/* Custom Code*/

// totalcapacity -> param(l);
// storingSoC -> param(2);

// timeofentry -> param(3);
// newSoC -> param(4);

Object obj = model().find("BatteryWarehouse") ;
int dimensionrack = obj.subnodes.length;

Array age = Array (dimensionrack);
Array per = Array (dimensionrack);
Array tocharge = Array (dimensionrack);
Array bay = Array (dimensionrack);
Array level = Array (dimensionrack);

for (int i=1; i <= dimensionrack; i++) {
if (param(4) [i] < MaxLevelRackSoC) {

age [i] = time () - param(3) [i];

bay [i] = rackgetbayofitem(obj, obj.subnodes[i]);

level [i] = rackgetlevelofitem(obj, obj.subnodes[i]);

per [i] = (param(l)[i] - (age[i]/3600) * Table ("PowerTable")
[level([i]] [bay[i]])/param(1) [i];

obj.subnodes[i].labels.assert ("Energy") .value = Table ("PowerTable")
[level[i]] [bay[i]]*age[i]/3600;

tocharge [i] = 1 - per[i];

param(4) [1i] = param(2) [i] + tocharge[i] * 100;
}
else
param(4) [i] = MaxLevelRackSoC;

}

return param(4);

4.6 Plan of Experiments

Once the model has been completed and the operation of all the logics has been verified,
a series of experiments has been carried out in order to reproduce different operating
conditions and scenarios of the BSS with the aim of understanding where it would be
more appropriate to invest to improve its performance. These experiments are necessary
to understand what the most significant factors are and what their impact on the
simulation results is. In particular, the simulations plan will involve the variation of four
main elements in the station:

e The number of AGV used
e The number of battery swap workstation (i.e. the SwapBay object) used

e The expected state of charge (SoC) percentage of the incoming batteries at the
station

e The arrival rate of battery swap requests depending on the number of BSSs
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Table 4.2 contains the values of the factors varied in the simulations.

Factor Values

Size of AGV's fleet 2

No. of Workstations 2

20%
Expected State of Charge (SoC)™* 25%
30%

Arrival Rates & No. of BSSs B

Table 4.2 Factor values in simulations

For the arrival rates, the identifiers below have been used:

e A = hourly rates of the average number of EVs that need to recharge the battery
considering there are 60 BSSs available in Turin and with an expected SoC of 20,
25 and 30%

e B = hourly rates of the average number of EVs that need to recharge the battery
considering there are 65 BSSs available in Turin and with an expected SoC of 20,
25 and 30%

e (C = hourly rates of the average number of EVs that need to recharge the battery
considering there are 70 BSSs available in Turin and with an expected SoC of 20,
25 and 30%

It is clear that increasing the number of BSSs, decreases the arrival rates at each station.

16 For each expected SoC value (20%, 25% and 30%), a standard deviation equal to the average has been
selected
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Table 4.3 reports the three arrival rates (A, B and C) for every expected value of SoC.

Expected SoC value = 20% | Expected SoC value = 25% | Expected SoC value = 30%
Time Slots No. of EVs No. of EVs No. of EVs

00:00 + 01:00 6 5 5 6 6 5 6 6 6
01:00 + 02:00 3 3 2 3 3 3 3 3 3
02:00 + 03:00 2 2 2 2 2 2 2 2 2
03:00 + 04:00 2 2 1 2 2 2 2 2 2
04:00 + 05:00 4 4 3 4 4 4 5 4 4
05:00 + 06:00 8 8 7 9 8 8 10 9 8
06:00 + 07:00 23 21 20 25 23 21 27 25 23
07:00 + 08:00 37 34 32 40 37 34 43 40 37
08:00 + 09:00 35 32 30 38 35 32 41 38 35
09:00 + 10:00 30 27 25 32 29 27 34 32 30
10:00 + 11:00 28 26 24 31 28 26 33 31 28
11:00 = 12:00 28 26 24 30 28 26 33 30 28
12:00 + 13:00 27 25 23 29 27 25 32 29 27
13:00 + 14:00 28 26 24 31 28 26 33 31 28
14:00 + 15:00 30 28 26 32 30 28 35 32 30
15:00 + 16:00 26 24 22 28 26 24 30 28 26
16:00 + 17:00 36 33 31 38 35 33 42 38 36
17:00 + 18:00 38 35 32 41 38 35 44 41 38
18:00 + 19:00 35 32 30 37 34 32 40 37 35
19:00 + 20:00 27 25 23 29 27 25 31 29 27
20:00 + 21:00 17 16 15 19 17 16 20 19 17
21:00 + 22:00 13 12 11 14 13 12 15 14 13
22:00 + 23:00 11 10 10 12 11 10 13 12 11
23:00 + 24:00 10 9 8 10 9 9 11 10 10
Identifier A B C A B C A B C
No. of Stations 60 65 70 60 65 70 60 65 70

Table 4.3 Arrival Rates at different expected SoC values

An example of the scenarios with 3 workstations and an AGV as well as the one with 2
workstations and 2 AGVs are visible in Figure 4.12.

55
—~" WaitingQueue SwapBay \'4
AF;
SourceBattery ' = .
WaitingQueue2 SwapBay2
OutBattery
WaitingQueue3 SwapBay3

+

WaitingQueue SwapBay

SourceBattery OutBattery

) RetrievalBay

WaitingQueue2 SwapBay2

Figure .12 Scenarios with 3 workstations, 1 AGV (above) and 2 workstations, 2 AGVs (below)
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To manage more AGVs, a network of routes has been created both to avoid collisions
between vehicles and to avoid causing deadlocks. Besides this, the logic whereby the
AGVs can deal with multiple workstations, not just one has been implemented. Three
labels have also been inserted on each AGVs (Destination, Position and Busy) and
through the Process Flow it was possible to handle both the movements and the division
of tasks between more AGVs.

Moreover, in the case of more than one workstation, in the output flow tab of
SourceBattery the logic of sending the batteries to the shortest queue has been used, as
shown in the code below (suitable for 3 workstations).

// Sending logic
Object item = param(l);
Object current = ownerobject (c);

Object bayl = model () .find("SwapBay");
Object bay2 = model () .find("SwapBay2");
Object bay3 = model () .find("SwapBay3");
int occupiedl = bayl.labels["Busy"].value;
int occupied2 = bay2.labels["Busy"].value;
int occupied3 = bay3.labels["Busy"].value;

treenode tempobject;

int curmincontent = 1000000000; // this sets the integer to the largest possible value
that an integer can hold
double curminindex = 0;
if ((occupiedl == 1 && occupied2 == 1 && occupied3 == 1) || (occupiedl == 0 && occupied2
== 0 && occupied3 == 0)) {

for (int index = 1; index <= current.outObjects.length; index++) { // numofoutport

tempobject = current.outObjects[index]; // obj connected to the
outport=index
if (opavailable (current,index) && tempobject.subnodes.length <
curmincontent) {
curmincontent = tempobject.subnodes.length;
curminindex = index;
}
}
return curminindex; // outputport

}

if (occupiedl == 1 && occupied2 == 0 && occupied3 == 0) // 1,0,0
return duniform(2,3); // random queue
if (occupiedl == 0 && occupied2 == 1 && occupied3 == 0){ // 0,1,0
int count = duniform(l,2); // random queue
if (count == 1) {
return 1;

}
if (count == 2){
return 3;
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if (occupiedl == 0 && occupied2 == 0 && occupied3 == 1) // 0,0,1

return duniform(1,2);

// random queue

if (occupiedl == 1 && occupied2 == 1 && occupied3 == 0) // 1,1,0
return 3;

if (occupiedl == (0 && occupied2 == 1 && occupied3 == 1) // 0,1,1
return 1;

if (occupiedl == 1 && occupied2 == 0 && occupied3 == 1) // 1,0,1
return 2;

To identify which queue an item

the queue to which it belongs.

The simulations carried out will be aimed at determining the optimal number of stations
in Turin. The only limit to the accuracy of the result is the variability of the arrival data.
By varying the above-mentioned factors, 81 scenarios are obtained to evaluate the
feasibility and the performance of the system. To validate the model, the behavior and
functioning of the decisional logics implemented in the software have been tested.
Furthermore, to guarantee the repeatability and randomness of results, each experiment
is repeated 5 times for 405 simulations as a whole. For the sake of clarity, the first 18

experiments of all the possible 81 scenarios are listed in Table 4.4.

belongs to, a label Queue is associated that indicates

No. of No. of No. of Average State Arrival
Experiment | AGVs | Workstations | Of Charge (SoC) | Rates
1 A
2 1 1 20% B
3 C
4 A
5 1 1 25% B
6 C
7 A
8 1 1 30% B
9 C
10 A
11 2 1 20% B
12 C
13 A
14 2 1 25% B
15 C
16 A
17 2 1 30% B
18 C

Table 4.4 First 18 experiments out of 81 conducted
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The others parameter values used in the simulations and explained in section 4.4 are

shown in Table 4.5.

value |
MaxLevelRackSoC a0
UpdatingTime 0.10
DelayTime 10
DepartureTime 10

Table 4.5 Stmulation Parameters

Through FlexSim Experimenter tool, it has been possible to run the simulation model
several times, changing more than one parameters to obtain a set of scenarios with
statistical data about different results. Figure 4.13 displays the Experimenter tool. Each

simulation launched ends once it reaches 24 hours of activity.

Scenarios Performance Measures Experiment Run  Optimizer Design  Optimizer Run  Optimizer Resufts  Advanced 9
g End Time  (00:00:00 % |15/11/2019 B~ Save statistics data for each replication
Reset Experiment | | | P
Run Time | 86400.00 Seconds ~ | [] save state after each replcation
Repications per Scenario | 5.00 Warmup Seconds ~ | [] Restore original state after each replication

Experiment Status

View Results Export/Merge Results  ~ | [_] Export results after each replication

Figure 4.13 FlexSim's Experimenter tool

4.7 Collection Methodology of Results

Through the study and evaluation of the characteristics of the system (with the analysis
of performance), the optimal values of the parameters of interest are defined and the

critical points (bottlenecks) of the built model are determined.
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The parameters and performance measures observed, that have been tracked and

collected from each simulation experiment, are related to:

e Average value and standard deviation for Customer Waiting Time

e Average value and standard deviation for Service Time

e Average value and standard deviation for Battery Charge Level Provided

e Daily energy required by the station

e Average value and standard deviation for Staytime of fully charged batteries in

the rack

e Average value and standard deviation for Charging time

e Average Vehicles (AGV and ASRS) Utilization

Moreover, both the number of batteries delivered not at full charge and the number of

recharged batteries are stored. Figure 4.14 shows the key performance indicators (KPIs)

measured in each scenario.

Scenarios  Performance Measures  Experiment Run  Optimizer Design  Optimizer Run - Optimizer Results - Advanced (7]
@ | X t 3 Name ‘ Mean Time Of Wait |
MeAMImECHR Label for Y-axis ‘ Value |

Std. Dev. Time Of Wait
Mean Time Of Service
Std. Dev. Time Of Service
Mean SoC

Std. Dev. SoC

Total Station Energy
Energy In Exit

Mean StayTime To Max
Std. Dev. StayTime To Max
Mean Charging Time

Std. Dev. Charging Time
Num Charged Battery
Battery Not Max

State Bar AGV - Utlization Average
State Bar ASRS - Utiization Average

Performance Measure |Custom Code -2

Figure 4.14 KPIs measured through the Experimenter tool

The data collection has been carried out by storing a series of significant moments of

time, in which a certain action takes place. In practice, time information of the various

activities are directly stored in the items’ labels. All items’ information will be accessible
in the form of global table at the end of the simulation. Table 4.6 shows the global table
BatteryTable that contains data about batteries leaving the station, among which are:

e Type: the battery type;

e Capacity: the battery capacity (in kWh);

e StoringSoC: the battery charge level when it entered the warehouse (in %);
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Table 4.6 Stored Data for Batteries in BatteryTable

e SoC: the battery charge level when it left the warehouse (in %);

e  EntryTime: the time when the battery enters the warehouse (in sec);

o  MazSoCTime: the time when the battery reaches its maximum charge (in sec);

e QutTime: the time when the battery leaves the warehouse (in sec);

e State: the battery status;

e Energy: the energy used to recharge the battery (in kWh);

o StayTimeToMax: the dwell time of fully charged battery in the warehouse, in
other words is the difference between OutTime and MaxSoCTime (in sec);

e ChargingTime: the time when the battery has been in charge in the warehouse,
that is to say the difference between OutTime and EntryTime for the batteries
that have not reached their maximum charge and between MazSoCTime and
EntryTime for the batteries that have reached the maximum charge (in sec)

Type |Capacity [StoringSoC |SoC  [EntryTime  [MaxSoCTime [OutTime  |State [Energy |StayTime |StayTimeToMax |ChargingTime
Battery 57 2 75 90 90 0 0 6106.50 -1 0 6106.50 6106.50 0
Battery 58 1 41 90 90 0 0 6216.84 -1 0 6216.84 6216.84 0
Battery 59 1 41 90 90 0 0 6320.82 -1 0 6320.82 6320.82 0
Battery 60 2 75 90 90 0 0 6436.77 -1 0 6436.77 6436.77 0
Battery 61 1 41 27.19 90 142.58 4356.60 6552.06 0 25.75 6409.48 2195.46 4214.02
Battery 62 1 41 27.25 90 783.41 4993.60 6662.61 0 25.73 5879.20 1669.01 4210.19
Battery 63 2 75 41.73 73.59 2863.91 -1 6774.60 1 23.90 3910.69 0 3910.69
Battery 64 2 75 25.09 73.00 1002.34 -1 6881.89 1 35.93 5879.55 0 5879.55
Battery 65 1 41 18.24 90 360.90 5175.50 6997.18 0 29.42 6636.28 1821.68 4814.60
Battery 66 1 41 37.68 90 1677.91 5188.20 7103.16 0 21.45 5425.26 1914.96 3510.29
Battery 67 1 41 12.92 90 254.48 5425.80 7216.45 0 31.60 6961.97 1790.65 5171.32
Battery 68 2 75 11.97 67.00 566.38 -1 7319.85 1 41.27 6753.46 0 6753.46
Battery 69 1 41 14,98 90 457.86 5481.10 7425.14 0 30.76 6967.28 1934.04 5033.24
Battery 70 1 41 20.62 90 §91.05 5546.10 7532.53 0 28.45 6641.48 1986.43 4655.05

It is important to underline that, since there is the possibility to provide the customer

with batteries that have not reached the maximum charge (i.e. where the State attribute

is equal to 1), these batteries will have negative values for MazSoCTime label and zero

value for StayTimeToMax label.

In an

additional table (Table 4.7), called CustomersTable, it is possible to read

meaningful details for the customers at the station like:

StartWait: the time when the customer starts waiting for his turn (in sec);

EndWait: the time when the customer’s turn has come (in sec);

StartService: the time when the customer starts to be served (in sec);

EndService: the time when the customer was served (in sec);
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o TimeOfWait: the time elapsed from when the customer enters the station to when
he is served, which is the difference between EndWait and Start Wait (in sec);

o  TimeOfService: the actual customer service time, that is the difference between
EndService and StartService (in sec)

Startwat |Endwait |StartService |EndService | TimeOfwait | TimeOfService | TimeInStation
Customer 57 5700 6132.62  6132.62 6222.96 432.62 90.33 522.96
Customer 58 5800 6242.96 624296 6331.29 442,96 88.33 531.29
Customer 59 5900 6351.29  6351.29 6442.89 451.29 91.60 542.89
Customer 60 6000 6462.89  6462.89  6559.22 462.89 96.33 559.22
Customer 61 6100 6579.22  6579.22  6669.77 479.22 90.55 569.77
Customer 62 6200 6689.77  6689.77  6785.06 489.77 95.29 585.06
Customer 63 6300 6805.06  6805.06 6897.05 505.06 91.99 597.05
Customer 64 6400 6917.05  6917.05  7006.34 517.05 89.29 606.34
Customer 65 6500 7026.34  7026.34 7113.63 526.34 87.29 613.63
Customer 66 6600 7133.63  7133.63 7225.61 533.63 91.99 625.61
Customer 67 6700 724561 724561 7331.01 545.61 85.39 631.01
Customer 68 6800 7351.01 735101  7440.30 551.01 89.29 640.30
Customer 69 6900 7460.30  7460.30  7545.69 560.30 85.39 645.69
Customer 70 7000 7565.69  7565.69  7654.98 565.69 89.29 654.98

Table 4.7 Stored Data for Customers in CustomersTable

With reference to the total energy required by the station, this is stored at the end of
each simulation in the global variable StationEnergy which is equivalent to the sum of
the energy used to recharge the batteries in the warehouse at the end of the simulation
(TotEnergy) and that used for the replaced batteries that left the station (AddEnergy).

After running the Experimenter for each scenario, to see all performance measures for all
replications, a SQL query is entered in a calculated table as shown in the image below
(Figure 4.15):

| calculatedTable | [ Enabed

Calculations  Display Format General

Update Mode  Manual v
Update Interval
Query
SELECT * FROM Experiment.PerformanceMeasures
Update
Result 7
Scenario | Replication | Mean Time Of Wait | 5td. Dev. Time Of Wait | Mean Time Of Service | 5td. Dev. Time Of Service| Mean Time In
1.00 1.00 092.76 591.46 §9.71 5.13
1.00 2.00 671.09 605.24 89.70 4.56
1.00 3.00 649.91 577.75 89.37 4.52
1.00 4.00 699.66 600.72 90.13 4.87
1.00 5.00 696.43 595.87 89.87 4.85
< >

Figure 4.15 Example of calculated table’s result
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From here, data can be exported in table as comma-separated values (CSV) format,
where they will be analyzed in an Excel spreadsheet to create charts like boxplots and
to calculate useful statistics.

For each experiment carried out, a descriptive analysis of the data will be presented to
observe the distribution and qualitatively identify the factors that most affect the
performance of the system. The results of the 5 replications for each experiment of the
model described above are reported in the next chapter.
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5 Results and Discussion

Before testing the various experiments, it was necessary to determine which scenarios
were meaningful to be investigated. After a preliminary observation on the responsiveness
of the model, it was noticed that in the scenarios in which the number of AGVs is greater
than the number of workstations, the percentage of vehicles utilization was very low and
therefore they have not been studied. For this reason, it was decided to consider only the
cases in which the number of vehicles (AGVs) is less than or equal to the number of
battery swap workstation, which means considering the remaining 54 scenarios after
deleting the scenarios corresponding to the configurations to be discarded.

Figure 5.1 illustrates the updated experimental plan without the scenarios that were
thrown away.

Comparisons on the incidence of the main factors on station performance will now follow.
To simplify the reading of the graphs below, the simulations results will be grouped by
expected SoC value (20%, 25% and 30%). The graphs underneath show be the KPIs
discussed and analyzed in Chapter 4 section 4.7 (vertical y-axis) depending the
configurations subdivided by number of stations, number of workstations and number of
AGVs (horizontal x-axis).
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5.1 Waiting & Service Time

The waiting time is clearly one of the most interesting factors to evaluate. Dividing the
results obtained according to the number of stations together with the number of
workstations and AGVs, a separation of performance is obtained.

With the same number of stations, the customers' waiting time is shortened and so there
is a considerable time saving if the number of workstations used is equal to the number
of AGVs, while it increases if the workstations are greater than the AGVs (see Figures
5.2, 5.3 and 5.4). Same considerations holds for service time but it can be observed that
using 3 workstations and 3 AGVs compared to 2 workstations and 2 AGVs there are
slightly worse service times as the number of arrivals at the station increases (that is
when the number of stations used decreases): this is due to the ASRS which represents
the bottleneck for these systems (see Figures 5.5, 5.6 and 5.7).

|Mean WaitingTime at different configurations with expected SoC value = 20%‘
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]
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Figure 5.2 Mean WaitingTime for Expected SoC value = 20 %
Mean WaitingTime at different configurations with expected SoC value = 25%|
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Figure 5.3 Mean WaitingTime for Expected SoC value = 25%
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\Mean WaitingTime at different configurations with expected SoC value = 30%|
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\Mean ServiceTime at different configurations with expected SoC value = 30%|
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Figure 5.7 Mean ServiceTime for Expected SoC value = 30%

5.2 SoC of the provided batteries

As regards the percentage of charge of the batteries provided to customers, it can be
noted how, increasing the number of stations (from 60 to 70), the number of cars arriving
at each station decreases and therefore the percentage of the battery charge level (SoC)
increases (see Figures 5.8, 5.9 and 5.10). This is because the batteries in the warehouse
have more time to recharge. It is worth noting that the SoC values are barely below the
maximum charge level chosen that is 90% (dashed red line).

|Mean SoC provided at different configurations with expected SoC value = 20%|
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Figure 5.8 Mean SoC provided for Expected SoC value = 20%
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\Mean SoC provided at different configurations with expected SoC value = 25%|
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Figure 5.9 Mean SoC provided for Expected SoC value = 25%

|Mean SoC provided at different configurations with expected SoC value = 3D%|
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Figure 5.10 Mean SoC provided for Expected SoC value = 30%

5.3 Energy consumption by the station

A contrary trend to the previous one can be observed for the energy absorbed by the
station to charge the batteries in the warehouse. In particular, as the number of arrivals
at the stations decreases, the less batteries to recharge there will be and so less energy
required by the stations (see Figures 5.11, 5.12 and 5.13).
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5.4 Staytime from maximum charge level of batteries in

the rack

In this case, it can be easily verified from the results that, as the number of stations used
increases, the fully charged batteries remain in the warehouse for longer, consequence of
the fact that they stay in charge longer (see section below). The boxplots also indicates
the percentages of batteries supplied to the customer that have not reached the maximum
charge (SoC = 90%). This percentage is decreased as the number of stations employed
increases (see Figures 5.14, 5.15 and 5.16).

\Mean StayTimeToMax at different configurations with expected SoC value = 20%
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Figure 5.1/ Mean StayTimeToMaz for Expected SoC value = 20%
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Figure 5.15 Mean StayTimeToMaz for Expected SoC value = 25%
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\Mean StayTimeToMax at different configurations with expected SoC value = 30%
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Figure 5.16 Mean StayTimeToMaz for Expected SoC value = 30%

5.5 Charging Time

Classifying the results according to the time that the batteries remain in charge in the
warehouse, the following situation is obtained, in which the dashed red line indicates the
average weighted charging time from the expected SoC value (20, 25 or 30%) to the
maximum charge (90%). It is interesting to observe that the results are slightly below
this average but still of the order of minutes, which means that the batteries supplied
will be slightly below the maximum charge (see Figures 5.17, 5.18 and 5.19). Again, by
increasing the number of stations and thus decreasing the number of cars arriving at
each station, the batteries in the warehouse have more time to recharge. This is a direct
consequence of the performances already observed for the average percentage of charge
of the batteries provided to customers (see section 5.2).
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Figure 5.17 Mean ChargingTime for Expected SoC value = 20%
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|Mean ChargingTime at different configurations with expected SoC value = 25%\

| .ﬂmiiiii-““

Mean ChargingTime [sec]

e 6011 6021 6031 60.2,2 60,2 6033 6511 65,2,1 65,31 65,2.2 6532 6533 11 02,1 7031 ™32 03,2 7033
No. of stations, No. of workstations, No. of AGVs
Figure 5.18 Mean ChargingTime for Expected SoC value = 25%
IMean ChargingTime at different configurations with expected SoC value = 30%J

5400

g

il
.
i
-l
KN
L 3
-
-l
-
-
-
L
128

a1 [ a2 w22 “a2 @3 a1 a1 TERs 65,22 6532 [ m11 m21 m31 25 LEE] LLEE]

Na. of stations, No. of workstations, No. of AGVs

Figure 5.19 Mean ChargingTime for Expected SoC value = 30%

5.6 Vehicles Utilization

It is also noteworthy the average vehicle utilization indicator for both AGVs and ASRS
(see Figures 5.20, 5.21, 5.22 and 5.23, 5.24, 5.25). Especially for the AGVs, the utilization
percentages are high when the latter are in lower number than the number of
workstations, while there are in general low utilization percentages when fewer arrivals
are registered, i.e. when using a growing number of stations. As far as the ASRS is
concerned, there is a progressive decrease in the utilization percentage as the number of
stations increases.

82



|Mean AGV Utilization at different configurations with expected SoC value = 20%|
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Mean ASRS Utilization at different configurations with expected SoC value = 20%
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Figure 5.25 Mean ASRS Utilization for Expected SoC value = 30%

To understand the importance of these outcomes and to compare the performances
obtained between the simulations carried out, a more in-depth analysis follows.
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5.7 Optimal configuration for expected SoC value

The purpose of this thesis is to choose the configuration that best fits the urban area of
Turin minimizing or maximizing at the same time some selected criteria.

In order to evaluate which of all the possible alternatives is the best solution, a Multiple-
Criteria Decision Analysis (MCDA) approach is used because it is capable of
simultaneously taking into account and comparing a set of alternatives according to their
suitability.

The MCDA is a discipline in the category of operational research, oriented to support
the decision-maker whenever he has to operate with numerous and conflicting
evaluations.

Among the most frequently used multi-criteria decision-making methods (Figure 5.26),
the one called "Technique for Order Preference by Similarity to Ideal Solution" (TOPSIS)
has been applied since it is more suitable for this study case with a large number of
criteria and alternatives. This technique was developed by Ching-Lai Hwang and Yoon
in 1981 [36]. Essentially, it is based on the choice of the best alternative through the
similarity with the ideal solution.

More specifically, this method classifies the alternatives in such a way that the best
alternative should be the one that is closest to the positive ideal solution (i.e. the one
composed of all best values reachable) and farthest from the negative ideal solution (i.e.
the one that consists of all the worst values achievable).

*  Multi-Attribute Utility Theory (MAUT)

* Analytic Hierarchy Process (AHP)

* Fuzzy Set Theory

* Analytic Network Process (ANP)

* (Case-based Reasoning

* Data Envelopment Analysis

* Simple Multi-Attribute Rating Technique
* Goal Programming

* ELECTRE

* PROMETHEE

*  Weighted Averaged Sum (WAS)

* | Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS)

* Additive Ratio ASsessment (ARAS).
Figure 5.26 Multi Criteria Decision Analysis Methods [37]
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The main steps involved in this multi-criteria decision making technique are the following
[38] and are illustrated in Figure 5.27:

1. Construct the decision matrix and determine the weight of the criteria
2. Compute the normalized decision matrix

3. Compute the weighted normalized decision matrix

4. Define the positive and negative ideal solutions

5. Compute the separation measures from the positive ideal solution and the negative
ideal solution

6. Compute the relative nearness to the positive ideal solution

7. Rank the preference order and select the alternative closest to 1

This section is focused on the application of the TOPSIS method to the case considered.

I Step 1: Establish a performance matrix |

y

| Step 2: Normalize the decision matrix ‘

Y

| Step 3: Calculate the weighted normalized decision matrix |

Y
| Step 4: Determine the positive ideal and negative ideal solutions |

l Step 5: Calculate the separation measures I

y

l Step 6: Calculate the relative closeness to the ideal solution |

Y
| Step 7: Rank the preference order ‘

Figure 5.27 TOPSIS method algorithm [39]

In this case, the alternatives are 18 and are characterized by the number of BSS,
workstations and AGVs (see Figure 5.28). While the criteria chosen are 14 and are
referred to the cost of infrastructure and energy employed, the quality of service (waiting
time, service time and % of SoC provided) and, lastly, the battery preservation (battery
staytime and charging time). In Figure 5.29, it is possible to see the hierarchical tree
with (aggregate) weights assigned to the various criteria and also the criteria to be

maximized (in green) and minimized (in red).
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‘ ALTERNATIVES \

p— P, P e = . R (G . (e
§0,1,1 ‘sa,u 6031 60,22 [60,3,2 6033 |651,1| |6521 6531| [6522 6532 6533

Figure 5.28 All the 18 alternatives examined

OPTIMAL CONFIGURATION P
(RANK)
——— =
[ cosT J | QUALITY OF SERVICE

BATTERY PRESERVATIONJ
ENERGY

01
05 |

7033

7011 (7021|7031 (7022 i 7032

STAYTIME CHARGING TIME

Figure 5.29 Weights tree assigned to criteria using TOPSIS algorithm

Table 5.1 clarifies which criteria represent cost functions (i.e. to minimize) and which

stand for benefit functions (i.e. to maximize).

Cost Benefit
Facility % SoC provided
Energy Charging Time

Waiting Time
Service Time

Battery Staytime

Table 5.1 Cost and Benefit criteria

Let X = (xl- j) be the decision matrix and W = [wy, w,, ..., w,,| the weighted vector, where
Xij,w; € R and Z;-‘zl w; =1 with w; the weight of the j-th criterion.

Since the criteria are measured in various units (second, kWh, etc.), the scores in the
evaluation matrix X have to be transformed to a normalized scale. The normalization of
decision matrix’s values is carried out by the following standardized formula:

- Xij . .
Xji = ——— fori=1,..,18 j=1,..,14
Y n 2
i=1%ij
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Indices i and j refer to alternatives and criteria respectively. The weighted normalized
value v;; is calculated in this way:

V; j = x_” W]
At this point, the ideal positive solution and the negative ideal solution are identified:
the first is the solution that maximizes the benefit criteria and minimizes the cost criteria
whereas the second maximizes the cost criteria and minimizes the benefit criteria.
V* = positive ideal solution = [(maxv;; | j € C),(minv;; |j € D)]
V'~ = negative ideal solution = [(min vijlj € C), (max viilj € D)]
Where C is associated with benefit criteria and D with the cost criteria.

The separation of each alternative from the positive ideal solution and from the negative
ideal solution are given as the Euclidean distance:

2 2
+ _ n ot - _ n =
S = \/Zj=1(vi]' Yj ) Si = \/Zj=1(vl] vy )
The relative closeness of the alternatives with respect to V* is defined as:

S

i

p.=—2*
YOS+ ST

Where 0 < P; < 1.
Finally, the set of alternatives can be ranked by the descending order of P; value.

The identified solutions, obtained through the TOPSIS method explained before, are as

close as possible to the ideal solution and are divided for expected SoC value as shown
in Tables 5.2, 5.3 and 5.4 below.
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Solving MCDA problem using TOPSIS Method

Configurations with expected SoC value

BENEFIT
Costs Quality of Service Battery Preservation
03 0,6 0,1
Criteria
0,5 0,5 0,4 0,5 0,1 0,2 0,8
0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3
Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024
60,1,1 1 1 60| 16616,562; 85,340 9,272|271,738 | 350,294| 89,518 4,680 2329,236, 2982,698: 5422,040 2014,824
60,2,1 2 1 60| 16689,400, 85,534 8,894|645,114  624,260| 187,756; 49,870 2343,908| 2930,214; 5447,430: 2024,510
60,3,1 3 1 60| 16709,516; 85,588 8,812| 763,536 667,664| 299,614| 87,232 2356,260, 2918,890: 5455,982: 2030,172
60,2,2 2 2 60| 16591,400; 85,272 9,366| 141,806 222,184| 134,176] 51,510  2325,170, 3004,390: 5412,668 2008,006
60,3,2 3 2 60| 16628,406; 85,370  9,244|235,926  346,938| 200,036 107,144 2327,360, 2967,854: 5427,738 2019,198
60,3,3 3 3 60| 16538664 85,392 9,222| 22,892| 71,680| 135,880] 71,304  2354,586, 3037,756: 5382,854: 2047,266
65,1,1 1 1 65| 15661,022| 86,316 7,840 40,798 80,666| 89,552] 4,698 2772,358  3142,022: 5548,400; 2113,868
65,2,1 2 1 65| 15697,214| 86,420 7,652| 197,872 290,418| 152,812] 58,576  2768,986, 3095,230; 5561,480; 2128,284
65,3,1 3 1 65| 15706,070, 86,448  7,624| 208,204 318,618| 217,174{ 111,758 2769,516, 3084,040; 5565,378 2132,956
65,2,2 2 2 65| 15652,198 86,288 7,906| 4,208 24,636/ 100,498| 27,8061 2773,572 | 3151,218 5544,868| 2114,516
65,3,2 3 2 65| 15663,184 86,322 7,826| 19,978 72,180| 141,534, 78,696 2766,934 3136,018 5547,198| 2114,552
65,3,3 3 3 65| 15651,7801 86,792 7,286/ 0,000, 0,000/ 93,924| 13,290! 2772,228 3072,076: 5539,600! 2161,028
70,1,1 1 1 70| 14808,420] 87,304 6,5574| 0,282 1,446| 89,578 4,640! 3199,098| 3273,492| 5664,426| 2220,326
70,2,1 2 1 70| 14807,260/ 87,302 6,466| 28,634| 64,440| 131,304 48,950 3186,560  3271,998| 5664,128| 2211,158
70,3,1 3 1 70| 14813,930/ 87,324 6,400/ 30,764 90,790| 171,818 90,714:3182,220 3265,088! 5666,466! 2210,364
70,2,2 2 2 70| 14807,736! 87,304 6,576 0,000 0,000| 88,334 6,528 3197,744| 3275,390! 5663,940! 2219,774
70,3,2 3 2 70| 14805,360! 87,298! 6,582| 0,000 0,000] 93,040{ 8,84213195,934| 3275,440! 5663,1721 2219,398
70,3,3 3 3 70| 14807,422| 87,302 6,576/ 0,000 0,000 90,258! 7,074!3198,130| 3273,112} 5664,052! 2220,056
BENEF!
Costs Quality of Service Battery Preservation
0,3 0,6 0,1
Criteria
0,5 0,5 0,4 0,5 0,1 0,2 0,8
0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3
Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024

60,1,1 | 0,09623| 0,12910] 0,21714|  0,24913]0,232840,27808| 0,24446| 0,30220| 0,14042/0,01861] 0,19680| 0,22516 0,23037, 0,22356
60,2,1 | 0,19245| 0,12910 0,21714|  0,250230,23337,0,26675| 0,58035| 0,53855| 0,29452/0,19831] 0,19804| 0,22120] 0,23144] 0,22463
60,3,1 | 0,28868| 0,12910| 0,21714|  0,250530,233520,26429| 0,68688| 0,57599| 0,46999]0,34688] 0,19908| 0,22034| 0,23181] 0,22526
60,22 | 0,19245| 0,25820] 0,21714|  0,24876/0,23266/ 0,28090| 0,12757| 0,19168| 0,21047/0,20483] 0,19646| 0,22680| 0,22997| 0,22280
60,32 | 0,28868| 0,25820| 0,21714|  0,24931] 0,2329310,27724| 0,21224| 0,29930| 0,31379]0,42606 0,19664| 0,22404] 0,23061] 0,22404
60,33 | 0,28868| 0,38730| 0,21714|  0,24797)0,23299]0,27658| 0,02059| 0,06184| 0,21315/0,28354] 0,19894| 0,22932] 0,22870{ 0,22716
651,1 | 0,09623| 0,12910] 0,23524|  0,234810,23551]0,23514| 0,03670| 0,06959| 0,14048|0,01868] 0,23424| 0,23719] 0,23573] 0,23455
652,1 | 0,19245| 0,12910] 0,23524|  0,23535/0,2357910,22950| 0,17801| 0,25054| 0,23971/0,23293] 0,23396| 0,23365 0,23629| 0,23615
65,3,1 | 0,28868| 0,12910 0,23524|  0,23548| 0,235870,22866| 0,18730| 0,27487| 0,34067|0,44441, 0,23400 0,23281  0,23646, 0,23666
652,22 | 0,19245| 0,25820, 0,23524|  0,23467|0,23543,0,23711| 0,00379| 0,02125| 0,15765/0,11057, 0,23434 0,23788| 0,23558, 0,23462
65,32 | 0,28868| 0,25820, 0,23524|  0,234840,23552,0,23472| 0,01797| 0,06227| 0,22202/0,31294; 0,23378] 0,23673 0,23568, 0,23462
65,33 | 0,28868| 0,38730, 0,23524|  0,23467)0,23681,0,21852| 0,00000| 0,00000| 0,14733}0,05285, 0,23423| 0,23191 0,23536, 0,23978
70,1,1 | 0,09623| 0,12910 0,25333|  0,22202}0,23820,0,19717| 0,00025| 0,00125| 0,14052|0,01845, 0,27030| 0,24711 0,24066, 0,24636
70,2,1 | 0,19245| 0,12910 0,25333|  0,22201]0,23820,0,19393| 0,02576| 0,05559| 0,20597|0,19465, 0,26924| 0,24700| 0,24065, 0,24534
70,3,1 | 0,28868| 0,12910 0,25333|  0,22211]0,23826,0,19195| 0,02768| 0,07832| 0,26952|0,36073; 0,26887| 0,24648  0,24075, 0,24525
70,22 | 0,19245| 0,25820] 0,25333|  0,22201]0,23820, 0,19723| 0,00000| 0,00000| 0,138560,02596, 0,27018| 0,24725  0,24064 0,24630
70,32 | 0,28868| 0,25820 0,25333|  0,22198|0,23819;0,19741| 0,00000| 0,00000| 0,14595/0,03516; 0,27003| 0,24726  0,24061| 0,24626
70,33 | 0,28868| 038730 0,25333|  0,22201]0,23820]0,19723| 0,00000| 0,00000| 0,14158|0,02813] 0,27022| 0,24708  0,24065, 0,24633

BENEFIT
Costs Quality Service Battery Preservation
0,3 0,6 0,1
Criteria
0,5 0,5 0,4 0,5 0,1 0,2 0,8
Performance score
0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3
Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024 Si“ S P; Rank

60,1,1 | 0,00289| 0,00194| 0,02280| 0,03737]0,03912]0,02002] 0,05134| 0,02720| 0,00590] 0,00033] 0,00276| 0,00135| 0,01290| 0,00537 0,05825 0,09794 0,62705| 16
60,2,1 | 0,00577| 0,00194| 0,02280| 0,03753|0,03921;0,01921| 0,12187| 0,04847| 0,01237|0,00357, 0,00277| 0,00133| 0,01296, 0,00539 0,13147 002557 0,16281| 17
60,3,1 | 0,00866| 0,00194] 0,02280|  0,037580,039230,01903| 0,14425| 0,05184| 0,019740,00624, 0,00279| 0,00132] 0,01298| 0,00541 0,15420 0,00779 18
60,22 | 0,00577| 0,00387 0,02280|  0,037310,03909,0,02023| 0,02679| 0,01725| 0,008840,00369, 0,00275| 0,00136 0,01288, 0,00535 0,03264 0,12328 0,79066| 12
60,32 | 0,00866| 0,00387 0,02280| 0,03740] 0,03913]0,01996| 0,04457| 0,02694| 0,01318|0,00767, 0,00275| 0,00134| 0,01291, 0,00538 005362 0,10322 0,65812| 15
60,33 | 0,00866| 0,00581 0,02280| 0,03719]0,03914]0,01991| 0,00432| 0,00557| 0,00895|0,00510, 0,00279| 0,00138  0,01281] 0,00545 001214 0,14797 0,92419| 10
65,1,1 | 0,00289| 0,00194| 0,02470|  0,03522]0,03957,0,01693| 0,00771| 0,00626| 0,00590] 0,00034, 0,00328 0,00142| 0,01320, 0,00563 0,01084 0,14504 0,93047| 7
65,2,1 | 0,00577| 0,00194| 0,02470|  0,03530] 0,039610,01652| 0,03738| 0,02255| 0,01007|0,00419, 0,00328 0,00140 0,01323| 0,00567 0,04437 011147 0,71527| 13
65,3,1 | 0,00866| 0,00194] 0,02470|  0,03532]0,03963] 0,01646| 0,03933| 0,02474| 0,01431|0,00800, 0,00328 0,00140 0,01324, 0,00568 0,04843 0,10864 0,69165| 14
65,2,2 | 0,00577| 0,00387 0,02470|  0,03520] 0,039550,01707| 0,00079| 0,00191| 0,00662|0,00199| 0,00328 0,00143| 0,01319 0,00563 0,00613 0,15268| 0,96138| 1
65,32 | 0,00866| 0,00387 0,02470|  0,035230,03957|0,01690| 0,00377| 0,00560| 0,009320,00563] 0,00327| 0,00142] 0,01320] 0,00563 001192 0,14835 0,92561| 9 m
65,3,3 | 0,00866| 0,00581 0,02470| 0,03520| 0,03978}0,01573| 0,00000| 0,00000| 0,006190,00095; 0,00328] 0,00139! 0,01318; 0,00575 0,00876 0,15408  0,94621 : BEST ALTERNATIVE
8

70,1,1 0,00289| 0,00194| 0,02660 0,03330 0,04002!0,01420{ 0,00005| 0,00011} 0,00590]0,00033! 0,00378| 0,00148! 0,01348! 0,00591 0,00720 0,15423  0,95537
70,2,1 0,00577| 0,00194| 0,02660 0,03330] 0,04002}0,01396| 0,00541| 0,00500] 0,00865} 0,00350: 0,00377; 0,00148 0,01348 0,00589 0,01164 0,14716 0,92672
70,3,1 0,00866| 0,00194| 0,02660 0,03332 0,04003,0,01382| 0,00581| 0,00705] 0,01132}0,00649: 0,00376, 0,00148 0,01348 0,00589 0,01554 0,14587 0,90372| 11
70,2,2 0,00577| 0,00387] 0,02660 0,03330/ 0,040020,01420{ 0,00000| 0,00000; 0,00582}0,00047; 0,00378 0,00148 0,01348 0,00591 0,00800 0,15420 0,95070 3
70,3,2 0,00866| 0,00387| 0,02660 0,03330 0,04002;0,01421| 0,00000| 0,00000; 0,006130,00063; 0,00378 0,00148 0,01347; 0,00591 0,00943 0,15413  0,94234 5
70,33 0,00866| 0,00581 0,02660 0,03330] 0,040020,01420| 0,00000| 0,00000] 0,00595] 0,00051; 0,00378 0,00148 0,01348; 0,00591 0,01001 0,15414  0,93902 6

Positive Ideal

0,00289 0,00194 0,02280 0,03330 0,04003 0,02023 0,00000 0,00000 0,00582 0,00033 0,00275 0,00132 0,01348 0,00591

0,00866 0,00581 0,02660 0,03758 0,03909 0,01382 0,14425 0,05184 0,01974 0,00800 0,00378 0,00148 0,01281 0,00535

Table 5.2 Optimal Solution for Ezpected SoC Value = 20%
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Configurations with expected SoC value = @

BENEFIT

Costs Quality of Service Battery Preservation
03 0,6 0,1
Criteria Facility Energy % SoC Waiting Time Service Time Battery Staytime Charging time
05 05 04 05 01 0,2 08
No. of No. of

Workstat. [No. AGVs| stations | TotEnergy | Mean |[Std.Dev.| Mean | Std.Dev.| Mean |[Std.Dev.| Mean Std.Dev. Mean Std.Dev.

0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3

Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024
60,1,1 1 1 60| 16795,098; 85,498 8,848 672,762| 600,324 89,548, 4,748 2173,050; 2838,494| 5055,792} 2142,052
60,2,1 2 1 60| 16910,070; 86,118 7,986{2274,212{1441,294: 203,168| 39,452| 2347,978! 2777,396| 5136,304| 2199,860
60,3,1 3 1 60| 16868,674: 86,304 7,744]2587,578/1665,778  314,768| 75,012} 2410,918: 2785,838| 5162,032; 2219,076
60,2,2 2 2 60| 16774,566; 85,448 8,936, 434,398 473,552 153,424| 51,690 2156,728: 2866,018| 5049,188 2136,074
60,3,2 3 2 60| 16801,160; 85,514; 8,774 685,180; 600,012 : 271,556 85,356 2179,130; 2822,574| 5059,568 2134,658
60,3,3 3 3 60| 16734,216. 85,350 9,210 148,750| 231,802 165,680 91,496 2148,306: 2916,528| 5035,198  2137,400
65,1,1 1 1 65| 15787,612! 86,454 7,692 226,890| 297,892 89,550| 4,778 2604,422: 3071,158| 5176,776; 2247,114
65,2,1 2 1 65| 15856,342; 86,640; 7,358 571,288 572,202: 181,114 53,230; 2615,648; 3020,110; 5197,448 2267,334
65,3,1 3 1 65| 15865,736; 86,668 7,344 637,808| 586,570 292,494| 90,452} 2625,194; 3009,214| 5201,312; 2265,668
65,2,2 2 2 65| 15767,454 86,404 7,742] 111,914 180,858 130,540| 50,808 2600,180: 3090,028| 5169,220: 2242,730
65,3,2 3 2 65| 15795,490; 86,476: 7,698 192,712 289,002 195,132|106,010; 2603,024: 3057,412| 5179,850; 2255,394
65,3,3 3 3 65| 15744,474; 86,004; 6,788 10,744| 49,608 128,734| 64,756 2613,780; 3102,002| 5151,718; 2299,812
70,1,1 1 1 70| 14940,910 87,288 6,428 36,652| 72,406 89,534 4,702 3029,910: 3215,178| 5290,944 2341,906
70,2,1 2 1 70| 14972,696: 87,384 6,232 197,722 289,976 153,148| 58,508 3028,374: 3164,876 | 5295,312 2346,008
70,3,1 3 1 70| 14980,442; 87,404: 6,198 204,810; 312,882  217,242/111,752 3031,948: 3156,316] 5298,946 2351,776
70,2,2 2 2 70| 14933,860; 87,268 6,468 3,240] 19,694 99,952 26,984 3030,756: 3221,690| 5288,070: 2341,160
70,3,2 3 2 70| 14942,008 87,292] 6,416 16,664| 64,446 139,534| 76,900 3024,762| 3206,004| 5288,952| 2344,076
70,3,3 3 3 70| 14932,292! 87,264 6,492 0,000 0,000; 93,190] 11,052} 3031,710: 3223,318| 5287,562 2341,260

BENEFIT

Costs Quality of Service Battery Preservation
03 0,6 0,1
Criteria Facility Energy % SoC Waiting Time Service Time Battery Staytime Charging time
0,5 0,5 04 0,5 0,1 0,2 0,8
No. of No. of

Workstat. |No. AGVs| stations | TotEnergy | Mean [Std.Dev.| Mean | Std.Dev.| Mean |Std.Dev.| Mean Std.Dev. Mean Std.Dev.

0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3
Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024

60,1,1 | 0,09623] 0,12910| 0,21714|  0,24938]0,23300/0,27705| 0,18033| 0,22819. 0,11678/0,01708, 0,19358] 0,22050| 0,22981 0,22363
60,2,1 | 0,19245] 0,12910| 0,21714|  0,25108:0,23469/0,25006| 0,60961| 0,54785. 0,26496|0,14191| 0,20916  0,21576| 0,23347, 0,22967
60,3,1 | 0,28868] 0,12910| 0,21714|  0,25047,0,23519/0,24248| 0,69360| 0,63318! 0,41050|0,26983| 0,21477. 0,21641| 0,23464; 0,23167
60,22 | 0,19245] 0,25820| 0,21714|  0,24907|0,23286.0,27981] 0,11644| 0,18000 0,200080,18594 0,19212} 0,22264| 0,22951. 0,22301
60,32 | 0,28868] 0,25820| 0,21714|  0,24947,0,23304/0,27473| 0,18366] 0,22807, 0,35414|0,30704 0,19412 0,21927| 0,22998; 0,22286
60,33 | 0,28868| 0,38730| 0,21714|  0,24847,0,23259/0,28839 0,03987| 0,08811 0,21607|0,32912| 0,19137; 0,22656| 0,22887 0,22315
65,1,1 | 0,09623] 0,12910| 0,23524|  0,23442}0,23560/0,24085| 0,06082 0,11323! 0,11678|0,01719| 0,23200 0,23858 0,23531) 0,23460
65,2,1 | 0,19245| 0,12910| 0,23524|  0,23544}0,23611/0,23040, 0,15313| 0,21750 0,23620/0,19148 0,23300; 0,23461| 0,23625. 0,23671
65,3,1 | 0,28868| 0,12910| 0,23524|  0,23558,0,23619/0,22996| 0,17097, 0,22296; 0,38145|0,32537, 0,23385, 0,23376 0,23642; 0,23654
65,22 | 0,19245| 0,25820| 0,23524|  0,234121 0,23547/0,24242| 0,03000| 0,06875! 0,17024|0,18276, 0,23163| 0,24004| 0,23496| 0,23414
65,32 | 0,28868| 0,25820| 0,23524|  0,23454:0,23566/0,24104| 0,05166, 0,10985: 0,25448| 0,38133, 0,23188 0,23751| 0,23545. 0,23547
65,33 | 0,28868| 0,38730| 0,23524| 0,23378.0,2343810,21255| 0,00288| 0,01886: 0,16789|0,23294, 0,23284 0,24097| 0,23417  0,24010
70,1,1 | 0,09623| 0,12910| 0,25333|  0,22185: 0,23788/0,20128| 0,00982 0,02752: 0,11676| 0,01691 0,26991 0,24976  0,24050' 0,24450
70,2,1 | 0,19245| 0,12910] 0,25333|  0,22232;0,23814:0,19514| 0,05300| 0,11022; 0,19972/0,21046  0,26977; 0,24586| 0,24070; 0,24493
70,3,1 | 0,28868| 0,12910| 0,25333|  0,22243;0,23819:0,19407, 0,05490| 0,11893: 0,28331/0,40199 0,27009; 0,24519| 0,24086. 0,24553
70,22 | 0,19245| 0,25820| 0,25333|  0,22174;0,23782:0,20253| 0,00087| 0,00749: 0,13035/0,09707 0,26998' 0,25027| 0,24037 0,24442
70,32 | 0,28868| 0,25820| 0,25333|  0,22186| 0,23789/0,20090, 0,00447| 0,02450. 0,18197/0,27662| 0,26945! 0,24905| 0,24041. 0,24473
70,33 | 0,28868| 0,38730| 0,25333|  0,22172;0,23781/0,20328| 0,00000| 0,00000; 0,12153/0,03976  0,27007| 0,25040| 0,24034 0,24443

BENEFIT

Costs Quality Service Battery Preservation
0,3 0,6 0,1
Criteria Facility Energy % SoC Waiting Time Service Time Battery Charging time
0,5 0,5 04 0,5 0,1 0,2 0,38
No. of No. of Performance score
Workstat. [No. AGVs| stations | TotEnergy | Mean [Std.Dev.| Mean | Std.Dev.| Mean |Std.Dev.| Mean Std.Dev. Mean Std.Dev.

0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3

Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024 Si+ Si- P; Rank
60,1,1 0,00289| 0,00194| 0,02280| 0,03741!0,03914:0,01995| 0,03787| 0,02054: 0,00490|0,00031| 0,00271i 0,00132] 0,01287; 0,00537 0,04330 0,11509 0,72661| 14

60,2,1 | 0,00577| 0,00194| 0,02280|  0,03766] 0,03943:0,01800, 0,12802| 0,04931 0,01113/0,00255| 0,00293; 0,00129| 0,01307, 0,00551 0,13748 0,02201  0,13800| 17
60,3,1 | 0,00866| 0,00194| 0,02280| 0,03757;0,03951/0,01746| 0,14566] 0,05699; 0,017240,00486] 0,00301; 0,00130| 0,01314; 0,00556 0,15716 0,00695
60,22 | 0,00577| 0,00387| 0,02280|  0,03736;0,03912/0,02015, 0,02445| 0,01620| 0,00840|0,00335| 0,00269; 0,00134| 0,01285. 0,00535 0,03021 0,12850 0,80965| 12
60,32 | 0,00866| 0,00387| 0,02280|  0,03742}0,03915/0,01978| 0,03857| 0,02053| 0,01487|0,00553| 0,00272 0,00132| 0,01288. 0,00535 0,04574 011340 0,71256| 16
60,33 | 0,00866| 0,00581| 0,02280| 0,03727;0,03908/0,02076| 0,00837, 0,00793; 0,00907,0,00592] 0,00268; 0,00136; 0,01282; 0,00536 0,01575 0,14623 0,90277| 7
65,1,1 | 0,00289| 0,00194| 0,02470|  0,03516]0,03958/0,01734| 0,01277| 0,01019; 0,00490|0,00031| 0,00325; 0,00143| 0,01318; 0,00563 0,01693 0,14184 0,89337| 8
65,2,1 | 0,00577| 0,00194| 0,02470|  0,03532;0,03967;0,01659| 0,03216] 0,01957, 0,00992|0,00345, 0,00326; 0,00141 0,01323; 0,00568 0,03856 0,11996 0,75676| 13
65,3,1 | 0,00866| 0,00194| 0,02470|  0,03534;0,03968/0,01656| 0,03590| 0,02007; 0,016020,00586, 0,00327; 0,00140| 0,01324; 0,00568 0,04365 0,11595 0,72648| 15
65,22 | 0,00577| 0,00387| 0,02470|  0,03512}0,03956;0,01745, 0,00630| 0,00619 0,00715}0,00329| 0,00324; 0,00144| 0,01316; 0,00562 0,01108 0,14884 0,93072| 6
65,32 | 0,00866| 0,00387| 0,02470|  0,03518;0,03959;0,01736, 0,01085| 0,00989; 0,01069|0,00686 0,00325; 0,00143| 0,01319 0,00565 0,01867 0,14304 0,88454| 10
6533 | 0,00866 0,00581| 0,02470|  0,03507:0,03938/0,01530| 0,00060| 0,00170! 0,00705| 0,00419| 0,00326: 0,00145| 0,01311; 0,00576 0,01044 0,15564 093715 4
70,1,1 | 0,00289] 0,00194| 0,02660|  0,03328}0,03996;0,01449| 0,00206, 0,00248, 0,00490 0,00030, 0,00378; 0,00150{ 0,01347; 0,00587 0,00809 0,15447 0,95024| 1 ‘%

70,2,1 | 0,00577] 0,00194| 0,02660|  0,03335;0,04001/0,01405, 0,01113] 0,00992; 0,008390,00379| 0,00378; 0,00148 0,01348; 0,00588 0,01777 0,14299 0,88948| 9 ‘
70,3,1 | 0,00866] 0,00194| 0,02660|  0,03337;0,04002/0,01397| 0,01153| 0,01070; 0,01190 0,00724; 0,00378; 0,00147| 0,01349; 0,00589 0,02097 014211 0,87143| 11
70,22 | 0,00577| 0,00387| 0,02660|  0,03326|0,03995/0,01458| 0,00018] 0,00067, 0,00547|0,00175| 0,00378 | 0,00150{ 0,01346  0,00587 0,00830 0,15664 0,94968| 2
70,32 | 0,00866| 0,00387| 0,02660|  0,03328}0,03996:0,01446| 0,00094| 0,00220; 0,00764 0,00498| 0,00377; 0,00149| 0,01346; 0,00587 001129 0,15513 093214 5
70,33 | 0,00866] 0,00581| 0,02660|  0,03326;0,03995;0,01464| 0,00000| 0,00000; 0,00510,0,00072] 0,00378; 0,00150{ 0,01346; 0,00587 0,01009 0,15708 093965 3

BEST ALTERNATIVE

Positive Ideal
Solution

V+ 0,00289 0,00194 0,02280 0,03326 0,04002 0,02076 0,00000 0,00000 0,00490 0,00030 0,00268 0,00129 0,01349 0,00589
0,00866 0,00581 0,02660 0,03766 0,03908 0,01397 0,14566 0,05699 0,01724 0,00724 0,00378 0,00150 0,01282 0,00535

Negative ideal
solution

Table 5.3 Optimal Solution for Ezpected SoC Value = 25%
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Solving MCDA problem using TOPSIS Method

Configurations with expected SoC value =

BENEFIT

Costs Quality of Service Battery Preservation

03 0,6 0,1
Criteria

0,5 0,5 0,4 0,5 0,1 0,2 0,8
0,2 0,1 0,7 1 0,7 0,3 0,7 03 0,7 0,3 0,7 03 0,7 03
Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024
60,1,1 1 1 60 17032,636! 86,204 7,876]2274,2981435,364] 89,644] 4,848| 2144,916| 2642,388| 4795,448| 2307,096
60,2,1 2 1 60 17067,842, 87,068] 6,704|4371,308:2735,212| 205,796, 36,434| 2498,222| 2728,758| 4912,090 | 2392,666
60,3,1 3 1 60 16914,918 87,258 6,432{4679,206:3021,850; 317,920; 71,676| 2592,042| 2758,262; 4939,622| 2403,884
60,2,2 2 2 60 16774,566 85,448 8936 434,398 473,552; 153,424; 51,690| 2156,728| 2866,018| 4997,188| 2136,074
60,3,2 3 2 60 16801,160! 85,514{ 8,774| 685,180 600,012{ 271,556; 85,356 2179,130| 2822,574| 5011,568 | 2134,658
60,3,3 3 3 60 16835,730; 85,380| 8,884 446,324 552,546| 171,478 86,334| 2006,100| 2703,302| 4707,156| 2257,280
65,1,1 1 1 65 16079,886; 86,556 7,436; 682,320 601,806; 89,632; 4,838| 2388,762| 2911,780, 4834,592| 2336,448
65,2,1 2 1 65 16183,126; 87,108 6,620]2275,820:1440,406; 203,126; 39,488| 2573,588| 2844,822| 4902,626| 2394,356
65,3,1 3 1 65 16148,322| 87,270] 6,376|2576,936: 1662,072| 314,748| 74,944| 2638,464| 2853,096| 4924,922| 2405,606
65,2,2 2 2 65, 15767,454! 86,404 7,742 111,914: 180,858! 130,540; 50,808| 2600,180| 3090,028| 4999,220| 2242,730
65,3,2 3 2 65 15795,490 86,476 7,698! 192,712: 289,002; 195,132} 106,010| 2603,024| 3057,412| 5051,850| 2255,394
65,3,3 3 3 65 16016,322; 86,626 6,920 164,728: 250,132; 138,128 92,564| 2369,052| 2970,472| 4820,714| 2371,134
70,1,1 1 1 70 15168476 87,334{ 6,432 275,684 354,264 89,560; 4,732| 2807,092| 3113,782| 4940,022| 2428,132
70,2,1 2 1 70 15236,070! 87,516 6,104 653,362 625,988 187,238! 50,984| 2823,478| 3066,244| 4956,682| 2449,770
70,3,1 3 1 70 15253,384! 87,568 6,036/ 760,932 665,466 299,322; 87,252| 2838,590| 3055,190| 4966,218| 2447,928
70,2,2 2 2 70 14933,860; 87,268 6,468 3,240: 19,694; 99,952; 26,984 2920,756| 3221,690; 4938,070| 2341,160
70,3,2 3 2 70 14942,008{ 87,292{ 6,416] 16,664: 64,446; 139,534; 76,900| 2914,762| 3206,004| 5038,952| 2344,076
70,3,3 3 3 70/ 15108,162; 87,390 5,950 20,156 67,650{ 97,168 71,766| 2801,360| 3159,058| 4922,978| 2429,308
BENEFIT

Costs Quality of Service Battery Preservation

0,3 0,6 0,1
Criteria

0,5 0,5 0,4 0,5 0,1 0,2 0,8
0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3

Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024

60,1,1 | 0,09623] 0,12910| 0,21714]  0,25059 0,23418/0,25904] 0,29245: 0,28198] 0,10933/0,01764| 0,19728| 0,21087| 0,22944| 0,23243
60,2,1 | 0,19245| 0,12910| 0,21714]  0,25111}0,23653/0,22049| 0,56210: 0,53735| 0,25099;0,13259| 0,22978 0,21776] 0,23502| 0,24105
60,3,1 | 0,28868| 0,12910 0,21714,  0,24886| 0,23705/0,21155| 0,60169: 0,59366| 0,38774;0,26083| 0,23841| 0,22012] 0,23634| 0,24218
60,22 | 0,19245| 0,25820 0,21714,  0,24679}0,23213/0,29390| 0,05586. 0,09303| 0,18712}0,18810| 0,19837| 0,22871] 0,23909| 0,21520
60,32 | 0,28868| 025820 0,21714,  0,24718,0,23231/0,28858] 0,08811: 0,11788| 0,33120;0,31062| 0,20043| 0,22525, 0,23978| 0,21506
60,33 | 0,28868| 0,38730| 0,21714,  0,247690,23195/0,29219| 0,05739. 0,10855| 0,20914;0,31417| 0,18451| 0,21573] 0,22522| 0,22741
65,1,1 | 0,09623| 0,12910| 0,23524|  0,23657,0,23514/0,24457| 0,08774 0,11823| 0,10932{0,01761| 0,21971{ 0,23237| 0,23131| 0,23539
65,2,1 | 0,19245| 0,12910| 0,23524,  0,23809 0,23664/0,21773| 0,29264. 0,28298| 0,24774}0,14370| 0,23671| 0,22702] 0,23457| 0,24122
653,1 | 0,28868| 0,12910 0,23524,  0,23758;0,23708/0,20971] 0,33136 0,32652] 0,38387;0,27273| 0,24268 0,22768| 0,23564| 0,24235
65,22 | 0,19245| 025820 0,23524,  0,23198] 0,23473/0,25463| 0,01439: 0,03553| 0,15921}0,18489| 0,23915| 0,24659| 0,23919| 0,22594
6532 | 0,28868| 0,25820 0,23524,  0,23239;0,2349210,25319| 0,02478 0,05678| 0,23799;0,38578| 0,23942| 0,24399| 0,24171| 0,22722
65,33 | 0,28868| 0,38730 0,23524,  0,235640,2353310,22760, 0,02118: 0,04914| 0,16846;0,33685| 0,21790| 0,23705| 0,23065| 0,23888
70,1,1 | 0,09623| 0,12910| 025333,  0,22316 0,23725/0,21155| 0,03545: 0,06960| 0,10923;0,01722| 0,25819| 0,24849| 0,23636| 0,24462
70,21 | 0,19245| 0,12910| 025333,  0,22416| 0,23775/0,20076 0,08401: 0,12298| 0,22836|0,18553| 0,25969| 0,24469| 0,23716| 0,24680
70,3,1 | 0,28868| 0,12910| 0,25333,  0,22441;0,23789/0,19852| 0,09785: 0,13073| 0,36506;0,31751| 0,26108| 0,24381| 0,23761| 0,24662
70,22 | 0,19245| 025820 0,25333,  0,21971;0,23707/0,21273| 0,00042: 0,00387| 0,12190; 0,09820| 0,26864| 0,25710| 0,23626| 0,23586
70,32 | 0,28868| 0,25820 0,25333|  0,21983;0,23714/0,21102| 0,00214: 0,01266| 0,17018; 0,27984| 0,26809| 0,25585| 0,24109| 0,23615
70,33 | 0,28868| 0,38730 0,25333]  0,22228]0,23741/0,19570| 0,00259: 0,01329| 0,118510,26116| 0,25766 0,25210| 0,23554| 0,24474

BENEFIT
Costs Battery Preservation
0,3 0,1
Criteria
0,5 0,5 0,4 0,5 0,1 0,2 0,8
Performance score
0,2 0,1 0,7 1 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3 0,7 0,3
Weights 0,03 0,015 0,105 0,15 0,168 | 0,072 0,21 0,09 0,042 0,018 0,014 0,006 0,056 0,024 Si’ Si- P; Rank

60,1,1 | 0,00289| 0,00194] 0,02280,  0,03759!0,03934/0,01865| 0,06141: 0,02538| 0,00459}0,00032| 0,00276] 0,00127| 0,01285| 0,00558 0,06645 0,07259 052207 14
60,2,1 | 0,00577| 0,00194| 0,02280,  0,03767,0,03974/0,01588, 0,11804 0,04836| 0,01054;0,00239| 0,00322| 0,00131] 0,01316| 0,00579 0,12774 0,01383  0,09767| 17
60,3,1 | 0,00866| 0,00194] 0,02280,  0,03733]0,03982/0,01523, 0,12636 0,05343| 0,01629;0,00469| 0,00334| 0,00132] 0,01323| 0,00581 0,13786 0,00614
60,22 | 0,00577| 0,00387| 0,02280,  0,03702]0,03900{0,02116, 0,01173; 0,00837] 0,00786; 0,00339| 0,00278| 0,00137| 0,01339| 0,00516 001582 0,12382 0,88671| 8
60,32 | 0,00866| 0,00387| 0,02280,  0,03708}0,03903/0,02078 0,01850: 0,01061| 0,01391;0,00559| 0,00281| 0,00135| 0,01343| 0,00516 0,02480 0,11635 0,82432| 12
60,33 | 0,00866| 0,00581| 0,02280,  0,03715]0,03897/0,02104, 0,01205. 0,00977| 0,00878}0,00566| 0,00258| 0,00129| 0,01261| 0,00546 0,01860 0,12286 0,86848| 9
65,1,1 | 0,00289| 0,00194| 0,02470,  0,03549}0,03950/0,01761, 0,01843} 0,01064| 0,00459;0,00032| 0,00308/ 0,00139| 0,01295| 0,00565 0,02158 0,11718 0,84448| 10
65,2,1 | 0,00577| 0,00194| 0,02470,  0,03571]0,03976/0,01568, 0,06146: 0,02547| 0,01040; 0,00259| 0,00331| 0,00136] 0,01314| 0,00579 0,06698 0,07129 0,51558| 15
653,1 | 0,00866| 0,00194| 0,02470,  0,03564]0,03983/0,01510| 0,06959: 0,02939| 0,01612; 0,00491| 0,00340| 0,00137| 0,01320| 0,00582 0,07687 0,06189 0,44601| 16
6522 | 0,00577| 0,00387| 0,02470,  0,03480|0,03943/0,01833| 0,00302; 0,00320{ 0,00669; 0,00333| 0,00335| 0,00148| 0,01339| 0,00542 0,00765 0,13373| 0,94590| 1
65,32 | 0,00866| 0,00387| 0,02470,  0,03486;0,03947,0,01823| 0,00520: 0,00511} 0,01000;0,00694| 0,00335| 0,00146] 0,01354| 0,00545 001327 0,13071 090783| 7
65,33 | 0,00866| 0,00581| 0,02470,  0,03535]0,03954/0,01639, 0,00445: 0,00442| 0,00708;0,00606| 0,00305| 0,00142| 0,01292| 0,00573 0,01250 0,13177 091337| 6 BEST ALTERNATIVE
70,1,1 | 0,00289| 0,00194| 0,02660,  0,03347;0,03986/0,01523| 0,00744. 0,00626] 0,00459; 0,00031| 0,00361| 0,00149| 0,01324| 0,00587 001184 0,12890 091587| 5
70,2,1 | 0,00577| 0,00194| 0,02660,  0,03362]0,03994/0,01445| 0,01764. 0,01107| 0,00959;0,00334| 0,00364| 0,00147| 0,01328| 0,00592 0,02295 0,11710 0,83613| 11
70,3,1 | 0,00866| 0,00194 0,02660,  0,03366;0,03997,0,01429 0,02055; 0,01177| 0,01533;0,00572| 0,00366| 0,00146] 0,01331| 0,00592 002811 0,11387 0,80200| 13
70,22 | 0,00577| 0,00387| 0,02660,  0,03296]0,03983/0,01532; 0,00009: 0,00035| 0,00512}0,00177| 0,00376| 0,00154| 0,01323| 0,00566 0,00805 0,13766 0,94478| 2
70,32 | 0,00866| 0,00387| 0,02660,  0,03297]0,03984/0,01519, 0,00045: 0,00114| 0,00715; 0,00504| 0,00375| 0,00154| 0,01350| 0,00567 0,01088 0,13676 092632| 3
70,33 | 0,00866| 0,00581| 0,02660,  0,03334]0,03988/0,01409| 0,00054. 0,00120{ 0,00498; 0,00470| 0,00361| 0,00151] 0,01319| 0,00587 001160 0,13678 092184| 4

Positive Ideal

0,00289 0,00194 0,02280 0,03296 0,03997 0,02116 0,00009 0,00035 0,00459 0,00031 0,00258 0,00127 0,01354 0,00592

0,00866 0,00581 0,02660 0,03767 0,03897 0,01409 0,12636 0,05343 0,01629 0,00694 0,00376 0,00154 0,01261 0,00516

Table 5.4 Optimal Solution for Expected SoC Value = 30%
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Therefore, the best alternative for expected SoC value 20% and 30% is the one with 65
stations, 2 AGVs and 2 workstations, while for expected SoC value 25% is the one with
70 stations, 1 AGV and 1 workstation. Independently of where it is located in Turin,
each station is assumed to have the same layout.

5.8 The Impact on the Power System

It is interesting to observe the energy behavior of the system since significant
considerations can be derived. In this regard, it is worthwhile to evaluate the values of
energy taken from the electricity grid in relation to electricity consumption to measure
the impact that such stations may have on the existing electricity distribution network.
The energy consumption required by a single BSS to recharge the batteries in a single
day, considering the worst case in which the expected SoC value is 30% (i.e. there are
more cars that require battery exchange), is on average 16 thousand kWh, i.e. 16 MWh.
In the optimal configurations chosen (see previous section), the results obtained suggest
that the annual energy consumed to recharge the battery packs, in the 65 stations
planned in Turin, will be given by the following formulas in which it is assumed, as a
worst-case scenario, that each station remains open and operational 365 days a year, 24
hours a day:

16 MWh/day * 365 day = 5840 MWh/year

5840 MWh/year * 65 stations = 379 600 MWh/year

Subsequently, taking into consideration the data on energy produced from renewable
sources in Turin and its province in 2017, which is 3.536 TWh and corresponds to 3.4%
of what is produced in Italy (104 TWh) [40], and comparing the result just obtained it
is clear that it accounts for only about 11% of all energy production. This clearly
demonstrates the feasibility, suitability and sustainability of this project. If we would
like to make a further comparison with the production of electricity from renewable
sources in Piedmont in the same year (9.717 TWh) [40], this ratio is reduced to 4%. As
a result of the calculations carried out through this study, it was found that in energy
terms, the impact of such a charging infrastructure on the power grid would still be
marginal. This is also due to the fact that the designed stations do not use fast charging
but the chargers are limited to a power of 22 kW.
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In Chapter 3, it was assumed to convert the entire fleet of vehicles of Turin into electric
cars. About this, it is now possible to make a comparison between internal combustion
vehicles (ICE) and electric vehicles (EV) from the point of view of the energy spent on
feeding these two types of vehicles.

Taking as reference the study case analyzed in this work, on average about 16 MWh of
energy was used by one BSS to charge electric cars. On the other hand, to supply the
same number of internal combustion (ICE) vehicles would have required instead an
energy almost three times higher: 46 MWh (calculations made based also on data
provided by [41]). This is essentially due to the difference between the two energy
production lines.

As reported by Enel’s data [42], for a gasoline car, the energy extraction process is divided
into the following phases: oil refining, transport and conversion into mechanical energy
of gasoline through the engine. The result is an overall efficiency of 18-19%.

At the same time, for an electric car, the energy analysis passes through the following
steps: electricity production, transmission along the grid, transformation of the electrical
energy stored in the batteries into mechanical energy through the motor. In this case,
the efficiency reaches 52% [42]. In short, EVs are three times as efficient as ICE vehicles.

As a complementary verification and validation of the EVs’ energy data obtained in this
thesis work, the specific energy consumption per kilometer for electric cars has been
computed and compared with that of ICE vehicles. From the best solutions found with
the TOPSIS method, dividing the average total station energy by the Weighted Average
per km of Range Recharged (WARR), 0.14 kWh/km is achieved:

WARR = (%T * NCB * RangeRechargedT) + (%R * NCB * RangeRechargedR)

Where:

o %T: is the percentage of distribution of Tesla Model 3 cars (1/3)
e J%R: is the percentage of distribution of Renault Zoe cars (2/3)

e NCB: is the total number of charged batteries

e RangeRechargedT: is the Tesla’s restored range in km

e RangeRechargedR: is the Renault’s restored range in km

16 MWh | WARR = 0.14 kWh/km

This outcome is consistent with that obtained from the research conducted by the Energy
& Strategy Group in collaboration with the Polytechnic of Milan [43], which indicates
an average consumption of 0.15 kWh/km for a fully electric car.

Using fossil fuels such as gasoline or diesel instead, higher consumptions are obtained.
To make a homogeneous comparison with traditional vehicles it is necessary to know
how many kWh of energy are contained in a liter of diesel or gasoline. In particular, 1
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liter of diesel has an energy content of about 10 kWh, while 1 liter of gasoline contains
about 8.9 kWh of energy. For instance, as regards gasoline cars, knowing that they
consume on average about 45 kWh per 100 kilometers, the average consumption turns
out to be of 0.45 kWh/km.

However, as evidenced by this comparison, the ratio remains constant and in favor of
electric vehicles. Especially, the ratio of energy consumption of EVs to ICE vehicles is
one to three (that is, 1:3).

In the Italian transport system there are currently 14 647 electric vehicles in circulation
on a vehicle fleet of about 39 thousand cars, equivalent to a market penetration of
0.04%"". In the intermediate scenario of the study elaborated by The European House —
Ambrosetti for Enel and Enel Foundation [44], by 2030, the estimate is to reach 5 million
(14% of registrations). However, growth prospects have to deal with the impact of power
consumption on the electricity system.

Starting from these last data, based on the reasoning supported by the research of the
Energy & Strategy Group [43], it is estimated that, assuming an average annual distance
of 11.000 km and an average consumption of 15 kWh/100 km, the average annual
consumption of a full electric vehicle is about 1760 kWh. This value amounts to nearly
half of the consumption of an average Italian family per year. The study [43] underlines
that the total estimated consumption of the 7340 BEVs present at the end of last year
in Italy is about 11.3 GWh/year, i.e. the 0.0035% of the national electricity consumption
(320 TWh). As one may guess from the exiguous percentage, nothing to worry about it.
Now, assuming a number of electric vehicles equal to 4.8 million, as in the moderate
development scenario forecast for 2030 by the same study [43], and the same average
consumption presented before, the total demand for electricity would be 8.4 TWh/year,
which corresponds to about 2.5% of current electricity consumption in Italy. Therefore,
the impact that an increase in the number of electric vehicles in circulation would have
on the capacity of electricity distribution systems to support the power flows necessary
for recharging is not so alarming.

What could actually can have a negative impact on the electrical grid is the huge amount
of power required.

Figure 5.30 shows the power requirement during the day of a single station in the optimal
configuration with 65 stations, 2 AGVs and 2 workstations in which an expected SoC
value of 30% is estimated. It is clear that the power reaches its peak (around 1078 kW)
between 09:00 and 10:00 and also at 20:00 for satisfying the battery swap demands.

IT Re-elaboration of data from UNRAE
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Power vs Time
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Figure 5.30 Power vs Time in the configuration 65, 2, 2 with expected SoC = 30%

This peak power value, considering all 65 stations, is 1078 kW * 65 =~ 70 MW and it
represents approximately 4.3% of the installed power from renewable sources in Turin
and its province in 2017 (about 1.65 GW) [40]. As can be seen, the power involved in
charging using chargers with a maximum power of 22 kW is not critical for the
distribution lines. Conversely, a very different result it is achieved with regard to the fast
recharge.

As a matter of fact, continues the study [43], if we consider an average charging power
for fast charging spots of 100 kW and that 0.5% of vehicles (185 000) have to recharge
simultaneously with a fast socket, the committed power would result in 18.5 GW. With
reference to the maximum Italian committed power by renewable energy sources, which
is around 53.26 GW [40], the value just found constitutes an increase of more than 34%,
which means that the distribution lines, the transformers and the power plants need to
handle enormous peaks of electrical demand when cars plug in. The current way of
managing the urban power grid will face challenges and opportunities to adapt to the
increase in EVs.

5.9 Further Improvement

As last step, to increase the system's efficiency, a further optimization is suggested.

Since there are chargers with adjustable charging current (from a minimum to a
maximum value) where it is possible to choose the charging power according to the needs
and so minimizing the risk of overload and increasing battery life, a smart type of charger
that can vary the power based on demand can be employed in the BSS. These chargers,
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equipped with both a remote control system and a compatible monitoring system, can
automatically adjust the charging current (and so the power). The following images
(Figures 5.31 and 5.32) show an example of an adjustable EVR3W charger with power
consumption (kW) in both three-phase and single-phase versions for each selectable
current level (A):

current (6 (8) (10) (13) (16) (20) (24) (28) (32) A

1 PHASE 14 18 23 30 3.7 46 55 64 74 kW
3 PHASE 41 55 69 9.0 11.0 13.816.6 19.3 22.0 kW

Figure 5.81 Range of current and power values [45]

Figure 5.32 Detail of the EVRSW charger [45]

This is the most advanced solution on the market for charging electric vehicles because
it allows automatic adjustment of the charging power. In this way, each battery can be
recharged within the available capacity limits of the station's power system. The BSS’s
warehouse will vary the power of the chargers depending on the urgency of the swapping
orders, trying to minimize the damage incurred to the batteries if high charging rates are
used. In other words, the chargers’ power is not fixed but varies according to system
utilization (the more it is used, the more the power increases). As a result, if there is a
lot of demand fast charging will be used, otherwise slow charges will be preferred to avoid
further stressing the batteries. It is worth recalling that, in general, as the charging power
increases, charging times are reduced to the detriment of the health of the battery.

For this purpose, an example code that dynamically modifies the power (using only 3
power values) of the chargers in the warehouse, based on two SoC’s threshold values, is
provided. These two thresholds are set as global variables and are called LowThresh and
HighThresh. The value that is compared with these two thresholds is the average SoC of
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the batteries exiting the rack (SoCmean), which is computed every time a battery leaves
the warehouse. Also the 3 power values are set as global variables (MinPow, MeanPow
and MaxPow) so that they can be changed in the future.

// Change the power values according to threshold values
Object current = param(l);

treenode activity = param(2);

Token token = param(3);

treenode processFlow = ownerobject (activity);

double SoCmean = 0;

double add = token.SwappedBattery.SoC;
sumexit ++;

total += add;

SoCmean = total/sumexit;

if (SoCmean >= HighTresh) {
for(int i = 1; i <= Table("PowerTable").numCols; i++) {
for(int j = 1; j <= Table("PowerTable") .numRows; Jj++) {
Table ("PowerTable") [j] [i] = MinPow;
}

}
if (SoCmean < HighTresh && SoCmean >= LowTresh) {
for(int i = 1; i <= Table("PowerTable") .numCols; i++) {
for(int j = 1; j <= Table("PowerTable") .numRows; j++) {

Table ("PowerTable") [j] [1i] = MeanPow;
}

}
if (SoCmean < LowTresh) {
for(int i = 1; i <= Table("PowerTable").numCols; i++) {
for(int j = 1; j <= Table("PowerTable") .numRows; Jj++) {
Table ("PowerTable") [j] [1] = MaxPow;
}

In this fashion not only the life cycle of the batteries increases, but also the peak power
on the power grid for each station in operation is relieved. It is important to keep in
mind that these types of charging stations (with automatically adjustable power) are
quite complex, they have lower overall reliability and are significantly more expensive
than those with fixed charging power.
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6 Conclusion and Future Work

In order to reliably predict the performance achievable in the automatic service system
examined, it was decided to use the FlexSim discrete event software. It has made it
possible to evaluate the effectiveness of the control logics implemented, nevertheless,
given the lack of elements and functions specifically designed for this type of systems, it
is convenient to use more advanced and suitable software.

However, the goal of this work is twofold: it evaluate the efficiency of the battery swap
system providing a methodology for handle EV batteries in a station that uses the battery
swap method and it would like to be the starting point for a future development in which

many other improvement can be integrated.

The hope is that the conclusions and the results obtained in this work can be very useful
for companies that want to exploit this type of technology encouraging at the same time
car manufacturers to adopt a standard battery pack format interchangeable between
different models of car manufacturers, which is one of the main factors that does not
contribute to the worldwide spread of the technique treated in this thesis work.

As soon as more data will be available, the proposed model could be extended and
improved creating a more robust and large-scale model. By the way, a number of relevant
topics not implemented need to be further investigated, including:

e The analysis of BSSs’” positioning at strategic places in a country considering traffic
network when choosing location (e.g. along the highway network or at the toll plazas
or even along the thoroughfares linking suburbs and cities)

e Extending the model to also include a wider range of car types and thus battery packs
and to include EVs fleet of public transport such as taxis, buses or even electric car

sharing services

e Implementing some variables and parameters that have been left out like the battery’s
State of Health (SoH), the battery’s Depth of Discharge (DoD), battery life cycles,

and so on

e C(Creation of a software or an app for smartphones capable of interacting with the
Battery Swap Station from both the customer’s and the station owner's point of view,
for instance, checking the presence of charged batteries of a specific type in a station,
etc.
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Ultimately, whilst it is true that battery swapping solution has to face several obstacles
in the private car sector because of the existence of a conservative and deep-rooted “car
culture” that considers the car as something strictly personal, it can provide more benefits
for urban public transport as an ancillary service for electric buses and taxis.

E-Mobility

Figure 6.1 Main means of transport involved in E-Mobility

In fact, the BSSs can be used in a shared way and placed at the bus stands, in strategic
points of prearranged routes or in the areas of vehicle storage as regards buses whose
routine is relatively predictable and at taxi stands or parking areas such as parking near
stations, airports, hotels or shopping centers for taxis on duty that unlike scheduled
public transport do not follow fixed routes. The installation of BSSs in these locations
would solve the problem of limited range for some type of electric vehicles.

One thing is for sure: changes related to autonomous, shared and electric mobility will
considerably rewrite the structure of road transport in the coming decades.
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