
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Blockchain applications to Supply
Chain: an application to last-mile

delivery

Supervisors
prof. Guido Perboli
engr. Daniele Manerba

Candidate
Vittorio Capocasale

December 2019

Summary

The blockchain technology is gathering increasing interest in many fields. This is
due to its many properties, which make it suitable for many different applications.
The blockchain technology belongs to the wider group of the distributed ledger
technologies (DLT). The common core of the DLTs is the idea of storing the se-
quence of modifications a database is subject to, and not only its current state,
similarly to what happens in the accounting world. For this reason the database is
called ledger. The ledger is distributed among many peers, and each of them keeps
a full copy of it. Each peer (node) is responsible to update only its own copy of
the database, which is performed each time the node receive a transaction, and the
global state of the ledger is considered to be what the majority of the nodes agrees
upon. To ensure that the nodes reach a majority, some cryptographic techniques
and a consensus algorithm are used to solve the conflicts that may arise (“forks”),
as well as the order and authenticity of the transactions. For these reasons, the
blockchain technology offers an high level of data security, redundancy and distri-
bution and guarantees at the same time its immutability and authenticity, which
makes the blockchain a viable solution to solve the double spending problem with-
out relying on third-parties. For this reason, it was initially adopted in the financial
world, as proved by the Bitcoin blockchain. However, the technology application
can be easily extended to other fields, and in particular to the supply chain. In
fact, one of the main limits the supply chain companies have to face is the lack of a
standard interface to exchange information and a way to authenticate it: data gets
corrupted or simply lost in translation when exchanged between different informa-
tion systems. The blockchain technology has the potential to reduce the paperwork
processing costs and time, to reduce the amount of fake products introduced in the
market and to offer a way to identify them, to allow to track the origin of a product
from the producer to the consumer, and thus to limit the issues of a production
defect. Finally, if coupled with the IoT devices, it could even create new businesses
models and revolutionize the old ones. However there are also many issues which
could limit the actual adoption of the blockchain technology. In particular, two
are the main factors that must be taken into account. From an economic point of
view, the savings related to the adoption of the blockchian must justify the risks of
adopting an immature technology. From an efficiency point of view, the blockchain

2

must be able to guarantee the same throughput of the "legacy to be" systems. For
this reason, various methods to evaluate the performance of the blockchian solu-
tion have been proposed, even if it is challenging to establish a reliable metric that
takes into account all the possible aspects which may influence the measure. One
of the metrics mostly used is the number of transactions that can be performed in
a second (TPS). Of course, among other factors, this metric is dependant on the
complexity of the transactions used in the system. To cope with this problem, the
Hyperledger Sawtooth framework is used to implement a more complete supply
chain and a simplified one. The former presents entities and operations that can be
considered common to many real-world use-cases and mechanisms to handle shared
objects and the delegation of operations. The system is used to measure the TPS
value reached in three different use cases. The results are provided in figure 4.5
and figure 4.6. The results are compared with the ones of the other supply chain
that can perform only very simple (almost CRUD) transactions. This could give
a hint about the complexity of the complete one. The tests performed should be
replicated on bigger networks and using a more sophisticated hardware in order to
offer results closer to what could be a real world application.

3

Contents

Introduction 7

1 Blockchain as a distributed ledger technology 9
1.1 Database, blockchain and shared distributed ledger 9
1.2 Blockchain: an overview . 12

1.2.1 The DLT called blockchain 12
1.2.2 Consensus algorithms and their implications 13
1.2.3 Blockchian properties . 18

1.3 Smart Contract . 19

2 Blockchain and supply chain 21
2.1 Supply chain: an introduction . 21
2.2 Blockchain for supply chain . 22
2.3 Current applications . 25
2.4 Hyperledger Sawtooth, the chosen platform 28

3 Implementation 31
3.1 Simple supply chain . 31
3.2 Full supply chain: entities . 32

3.2.1 Actor . 32
3.2.2 Policy . 32
3.2.3 Proposal . 33
3.2.4 Asset . 33
3.2.5 Delivery . 34
3.2.6 Carrier . 35
3.2.7 Warehouse . 35

3.3 Full supply chain: operations . 36
3.3.1 Actor . 36
3.3.2 Policy . 36
3.3.3 Proposal . 37
3.3.4 Asset . 37
3.3.5 Delivery . 37

4

3.3.6 Carrier . 38
3.3.7 Warehouse . 39

3.4 Full supply chain: example flow . 40

4 Testing 43
4.1 Test Harness and methodology . 43

4.1.1 Hardware configuration . 43
4.1.2 Software configuration . 43
4.1.3 Network configuration . 44
4.1.4 Blockchain’s properties configuration 44
4.1.5 Validator’s properties configuration 44
4.1.6 Methodology . 45

4.2 Simple supply chain . 46
4.2.1 Single batch tests . 47
4.2.2 Batch dependency tests . 47
4.2.3 Batch concurrency tests . 49

4.3 Full supply chain . 49
4.3.1 First use case . 50
4.3.2 Second use case . 51
4.3.3 Third use case . 52

5 Conclusion 53

A Tests results 55

5

6

Introduction

The blockchain technology was introduced in 2008 [1], providing a way to perform
payments without the mediation of a trusted third party (e.g. a financial institu-
tion) [2]. The innovative capability of shifting the trust from an external entity to
the blockchain itself in a complete transparent way has gathered increasing interest
for this technology in many other fields. However, many are also the problems and
the challenges that this technology presents, usually linked to security, efficiency
and scalability which may hugely limit its practical applications [3].

Supply chain is one of the environments which may benefit from the blockchain
application: often times each organization has its own way to organize and store the
information about the products exchanged, and tracking them from the producer
to the final consumer is nearly impossible. This makes easier the dispatch of coun-
terfeit products and, at the same time, harder to identify all the items affected by
a manufacturing defect. It is consequently clear how crucial is data transparency
in a supply-chain environment, and the blockchain technology could satisfy this
necessity[4].

In this context, it is important to understand the applicability of the blockchain
solution to the supply chain by exploring its supported workload and its economic
advantages and disadvantages. This work is focused on the first of such inves-
tigations. In particular, a blockchain-based supply chain has been implemented,
defining actors and operations common in many use cases, with the goal to measure
the quantity of data the chain is able to process. Both the system dimension and
the hardware resources used in the tests are not comparable with what could be a
real world wide distributed system, and for this reason also the results of transac-
tions executed on a simpler chain are provided, in order to give a hint about the
performance decay due to the business logic complexity.

The following part of this work is organized as follows:

• the chapter 1 provides an overview of the blockchain technology, introducing
the main concepts and underlining the pros and cons of the blockchain solution;

• the chapter 2 introduces the supply chain and its relation to the blockchain and
some current applications of the blockchain to the supply chain are discussed;
then the Hyperledger Sawtooth blockchain is briefly described, pointing out

7

its features and the motivations of the choice of this framework for the imple-
mentation part of this work;

• the chapter 3 describes the implemented systems, their actors, operations and
standard operations’ flow;

• the chapter 4 provides information about the tests performed and the results
obtained;

• the chapter 5, after a brief summary of the results obtained in the previous
chapter, describes possible future developments of the work conducted so far.

8

Chapter 1

Blockchain as a distributed
ledger technology

At the beginning, this chapter presents some definitions of technologies that opened
the path to the blockchain evolution, then introduces the main blockchain concepts.
The description is done in a general way, and specific implementations may present
some differences. Reading this section, however, should provide the necessary infor-
mation to have a complete understanding of the blockchain functionalities, issues
and merits. The final section is dedicated to the smart contract concept and its
relation with the blockchain.

1.1 Database, blockchain and shared distributed
ledger

Storing information has always been a fundamental activity in human history, as
testified by the revolutions linked to it: the invention of writing is commonly con-
sidered as the separator between prehistory and history, the invention of printing
with movable type "accelerated the slow evolution of script and literacy" [5]. In
modern times information format keep migrating from analogue to digital [6], and
databases are the most common way of storing digital data.

At the beginning of the database era, the relational model was considered the
proper way of organizing database data [7], [8], by guaranteeing the consistency and
availability properties (CA) of the CAP theorem [8](figure 1.1). In fact, originally
databases were deployed as centralized entities, and consequently they were not
affected by network partition problems. Later on, due to scalability issues, the
increasing quantity of web data and the Object-Relational Impedance Mismatch
[8], [9], other technologies have emerged, each providing its own way of structuring
data (documents, graphs, etc.). These technologies are known as "NoSQL":

9

1 – Blockchain as a distributed ledger technology

"Carlo Strozzi coined this term in 1990 to refer to databases that do not
use SQL as their query language, and Eric Evans later used it to refer to
nonrelational and distributed databases" [8].

Distributed databases, in particular, have the common denominator of giving pri-
ority to the partition tolerance property of the CAP theorem over the consistency
or availability ones [8], [10]. Creating databases where the data is replicated in
many storage devices and it is handled by different processes simultaneously over a
best-effort network [11], in fact, can always suffer of network partitioning problems,
to the point that it is not considered possible to have a CA system in a distributed
environment [8], [10].

Figure 1.1. Cap theorem and databases [12].

A shared distributed ledger or distributed ledger technology (DLT) is similar
to a distributed database, because data is replicated in many storage devices, but
each of them is controlled by a different entity:

"Distributed ledger technology refers to the ability for users to store and
access information or records related to assets and holdings in a shared
database (i.e., the ledger) capable of operating without a central val-
idation system and based on its own standards and processes. DLTs
differ from standard accounting ledgers in that they are maintained by
a distributed network of participants (known as “nodes”) rather than a
centralized entity. Another common feature of DLTs is the use of cryp-
tography as a means of storing assets and validating transactions."[13]

10

1.1 – Database, blockchain and shared distributed ledger

Shared distributed ledger may seem a too much complicated name to describe a
database, but it is well suited:

ledger: because of the particular way data is managed. Each copy of a DLT
database is composed of records. Each record represents a modification of
the database data (e.g. creation, update or deletion of an object), but does
not modify the data itself. Because the current state of the data is expressed
as a sequence of modifications, the sequence must be immutable and ordered
1. For this reason, records can be added but never updated [14]. Records
are added through transactions, which are the way the nodes interact with
the blockchain. This particular way of recording data is derived from the
accounting world [15], and for this reason the database is named ledger;

shared: because the database does not belong to only one entity, but to a group
of them (nodes) and each of them does not trust the others. Each node is
responsible to menage only its own copy of the database and may submit
transactions to update its state. In this way, if one node misbehave, it does
not affect the general database, but only its own copy. At the same time,
the system works only if the majority of the nodes behaves correctly: if in
the system all the copies differ from one another, is impossible to detect the
only node which node is not misbehaving. For this reason, shared is not only
the control of the database, but also the interest into keeping the database
correctly updated;

distributed: because the database is composed by multiple copies. In particular
the blockchain is a peer-to-peer distributed system, because the nodes share
the system control in an even manner, and because communication "occurs
directly between peers instead of through a central node. Each node stores and
forwards information to all other nodes" [14]. For example, when a transaction
is submitted, it should be broadcasted to all the nodes, so that each of them
may update its own database. Consequently, DLTs present all the merits and
all the issues of other peer-to-peer distributed systems.

Often times, nodes in a DLT may be "light", when they limit themselves to submit
transactions and they do not store a copy of the database, or "full", in the case they
participate to all the others DLT activities. This approach is used, for example, in
IOTA [16].

One of the main reasons for the increasing interest in the DLTs and their initial
employment in the financial world is their ability to solve the double spending prob-
lem without the necessity to rely on a trusted third party. As the name anticipates,

1Because a modification may be dependent from a previous one, their sequence must be ordered
and immutable. The constraint on the order, however, could be a little relaxed by considering
that transactions with different reading and writing sets could be performed in parallel.

11

1 – Blockchain as a distributed ledger technology

the double spending problem consists in the attempt to use the same coin twice.
Because the records in the ledger are ordered and because all (or the majority of)
the nodes have the same copy of it, it is always possible to decide which transaction
spent the coin and to reject the other one [2]. A blockchain is a particular DLT,
and its characteristics are described in the next section.

1.2 Blockchain: an overview

1.2.1 The DLT called blockchain
According to the definition given in the previous section, in a DLT is mandatory:

• to enforce record immutability, because the ledger is a sequence of modifica-
tions;

• to enforce record order, because a different order in a sequence of modifications
may produce different results;

• in case two or more nodes have a different sequence of records, to decide which
one is correct;

• as a consequence of the low level of trust among the nodes, it must not be
possible to impersonate other nodes or to forge transactions. While it is not
required a mapping between a transaction submitter (identity) and the entity
that submits the transaction 2, it is still necessary to prevent the possible
malicious behavior of some transaction submitters (e.g. block any attempt to
sell something belonging to someone else).

A blockchain groups transactions together, before applying them to the ledger.
Groups are called blocks. The ledger is consequently a series of blocks. Each
block does not contain only the transactions, but also some other data to address
the immutability and order constraints of the records. In particular, each block
contains the hash of the previous block [2], [18], as shown in figure 1.2. In this way,
if a block is modified, its hash would not match the one stored in his subsequent
block. At the same time, if two block are swapped, the hash they contain would
not be the hash of their previous block. For these reasons, each block is linked to
its previous, like in a chain, and this explains the name blockchain.

Blocks are created by the nodes. Each node fills a block with the transactions
it is aware of, then broadcasts the block to the other nodes. In a distributed

2Each entity may use multiple identities to submit transactions (pseudonymity [14]) and some
studies even suggest ways to achieve anonymity by decoupling and mixing senders/receivers in-
formation [1], [17].

12

1.2 – Blockchain: an overview

Figure 1.2. Three blocks chained [18].

system, however, it is not trivial to agree on the block sequence. A node may
receive/create a block and add it to its ledger while another node does the same
with another block. This creates a "fork". A graphic representation of a fork is
reported in figure 1.3. On which fork-branch the system should agree is decided by
a consensus algorithm. Many consensus algorithms exists, and they are listed in
the next subsection. It is worth noting that, when a node creates a new block, it
is not explicitly stated which transactions it will include in the block. A node may
give preferences to the transactions that include a reward for the node who publish
them. Finally, transactions must be digitally signed, and this prevents problems
like node impersonation and transaction forgery [2], [18].

1.2.2 Consensus algorithms and their implications
"A blockchain based system is as secure and robust as its consensus model"
[19].

The consensus algorithm can be considered as the core of the blockchain technology:
it must allow all the nodes to agree on the current ledger state, even if each node
does not trust the information received by the others.

"Achieving consensus in a distributed system is challenging. Consensus al-
gorithms have to resilient to failures of nodes, partitioning of the network,
message delays, messages reaching out-of-order and corrupted messages.
They also have to deal with selfish and deliberately malicious nodes." [19].

In literature, this problem has been addressed as "The Byzantine Generals Prob-
lem", and it can be modelled as follows:

"several divisions of the Byzantine army are camped out side an enemy
city, each division commanded by its own general. The generals can

13

1 – Blockchain as a distributed ledger technology

Figure 1.3. Example of a fork in a blockchain [18].

communicate with one another only by messenger. After observing the
enemy, they must decide upon a common plan of action. However, some
of the generals may be traitors, trying to prevent the loyal generals from
reaching agreement" [20].

The goal is to find an algorithm that guarantees that all the loyal generals take the
same decision. A simplified version of the problem does not present traitors gen-
eral, but only generals without messengers, so that they cannot participate in the
decision-making process. Algorithms that solve this simplified problem are defined
crash fault tolerant (CFT), while those that menage to solve the complete prob-
lem are called Byzantine fault tolerant (BFT). The first solutions to the complete
problem were poorly suited for a real implementation. Things changed with the
introduction of the Pratical BFT algorithm (PBFT):

"...a new state-machine replication algorithm that is able to tolerate Byzan-
tine faults and can be used in practice: it is the first to work correctly in
an asynchronous system like the Internet and it improves the performance
of previous algorithms by more than an order of magnitude" [21].

14

1.2 – Blockchain: an overview

Nowadays blockchains use different consensus algorithms, each of them with its
merits and issues. Follows a brief description of the most used.

Pratical BFT (PBFT)

PBFT is based on message exchanges among the nodes to decide the block to add
to the ledger. Because the decision is taken before adding the block, forks are not
possible. At the beginning of the algorithm and each time after a block is added to
the ledger, a leader must be chosen, based on a round-robin algorithm. The leader
collects the transactions, orders them and dispatches them to the other nodes.
To order transactions and to be sure that they are committed in the same order
independently from the correct behavior of the leader, three phases are required.
Each node advances from a phase to the other after collecting united messages from
the others nodes equal to 2/3 of the total number of nodes [18], [19], [21], [22].

This algorithm allows an high efficiency as a consequence of the lack of forks,
however:

• it requires that the nodes know the number of participants in the network, so
that each of them may know if the number of messages from distinct nodes is
bigger than the 2/3 threshold. This implies that "every node must be known
to the network" [18];

• it does not scale well, because of the number of messages exchanged [19].

Hyperledger Fabric uses (among others) a PBFT-based consensus algorithm [19].

Proof of Work (PoW)

PoW was the first consensus algorithm ever applied to the Blockchain technology.
In case of a fork, nodes should prefer the longest branch, or work on either one of
them until one becomes longer. The reason is that each time a block is added to
the ledger, the node who creates it has to solve a mathematical challenge (mining).
In particular, in the original PoW (Bitcoin Blockchain), among the non-transaction
data present in a block, there is a "nonce". It is a number the node has to chose so
that the block hash results smaller of a predefined threshold. Lowering the threshold
is a way to increase the challenge difficulty, in order to adapt it to the varying size
of the node network. Because the challenge can be resolved only with a brute-force
computation by trying all the possible nonces, a longer chain means more work
put into it, and it is a way to determine on what the majority of the nodes agrees,
assuming a uniform distribution of the computational resources among them. While
solving the challenge is a resource consuming task (time, electricity), verifying if a
received block satisfy the challenge rules is instead very simple, because the nonce
is known. Other PoW algorithms use a similar approach [2], [18], [19], [22].

15

1 – Blockchain as a distributed ledger technology

The PoW is scalable and completely decentralized, as proven by the thousands
of nodes composing the Bitcoin Blockchain, but:

• it has low efficiency, meaning that it allows few blocks to be published;

• it is highly resource consuming, in terms of electricity and time;

• it supposes a uniform distribution of the computing power. If a node(s)
menages to gain more computational power then the remaining ones, it will
have a bigger probability to solve the challenge before the others, thus gaining
the possibility to selectively decide to stall some transactions and to perform
a double spending. In case of a fork, in fact, all the nodes operating on the
smaller branch will revert all the transactions until they reach the fork block,
then they will apply all the transactions of the longer branch. Usually forks
are resolved quickly, and a transaction can be considered committed after a
few blocks are chained to the one containing the transaction itself, because, in
order to revert it, it would be necessary to overcame the good nodes compu-
tational power. This is the reason this attack is known as the 51% attack [19],
[22].

Proof of Stake (PoS)

"Many blockchains adopt PoW at the beginning and transform to PoS
gradually" [18].

PoS is a family of lottery based algorithms, used in blockchains with their own
cryptocurrencies. The probability for a node to create the next block is proportional
to the amount of coins it has and is calculated by a pseudo-random function. A 51%
attack would be possible for a node who holds the 51% of the coins, but it would go
to its own disadvantage, because it is damaging something he owns for the majority.
In order to break the combination richness/power, many implementations of the
PoS take into account other parameters in the selection of the next block creator
as well. Depending on the implementation, forks are possible even if unlikely. PoS
allows a good efficiency, it does not waste electricity and it is scalable. Its main
drawback remains the combination richness/power that may lead to a centralized
control of the system, other than some technical challenges that can be overcome
with a proper design (e.g. the nothing at stake problem) [18], [19], [22].

Delegated Proof of Stake (DPoS)

DPoS tries to mitigate the combination richness/power of the PoS through an
election mechanism: stakeholders can only vote for the node that will publish the
next block. The vote weight is proportional to the wealth of the stakeholder and
the probability for a node to publish the block is proportional to the weighted sum

16

1.2 – Blockchain: an overview

of the votes he has received. This mechanism is somehow similar to a representative
democracy. The main advantages of this algorithm are the increased efficiency and
scalability, as a consequence of the reduced number of nodes that takes part in the
block creation process. However, there are concerns about the real mitigation of
the combination richness/power and a more centralized control system [18], [22].

Proof of Elapsed Time (PoET)

It is a lottery based consensus algorithm that relies on a Trusted Execution Envi-
ronment (TEE).

"It guarantees the authenticity of the executed code, the integrity of the
runtime states (e.g. CPU registers, memory and sensitive I/O), and the
confidentiality of its code, data and runtime states stored on a persistent
memory. In addition, it shall be able to provide remote attestation that
proves its trustworthiness for third-parties. The content of TEE is not
static; it can be securely updated. The TEE resists against all software
attacks as well as the physical attacks performed on the main memory of
the system. Attacks performed by exploiting backdoor security flaws are
not possible" [23].

The current implementation (PoET-SGX) exploits the Intel TEE module (SGX),
but it is also provided a version that runs on any other processor (PoET-CFT, only
Crash Fault Tolerant, as the name states). Each node uses the TEE module to
select a random amount of time to start a timer, and it has to wait until the timer
expires to create a block. Because the code running in the TEE module should
be impossible to temper, the node that will publish the next block is chosen in a
fair way. Moreover, the TEE module provides a way for the other nodes to verify
the correctness of the procedure. It may happen that two or more nodes extract a
similar, low amount of time, end each of them tries to create a new block. In this
case, a fork arises. The metric used for the fork resolution is the "aggregate local
mean (a measure of the total amount of time spent waiting)" [24]. This algorithm
has no theoretical downsides: it does not waste resources, it is decentralized and
extremely scalable, and has a good efficiency [19], [25]. The only drawbacks are:

• the SGX module is produced by Intel only, making of Intel a trusted-third-
party or, even worse, a necessary third-party;

• the SGX module is currently unreliable, considering that "instead of protecting
users from harm, SGX currently poses a security threat, facilitating so-called
super-malware with ready-to-hit exploits" [26];

• flows in the PoET implementation have been discovered [27]. However, it is
hard to find software free from this type of problems.

17

1 – Blockchain as a distributed ledger technology

Others

Many other algorithms have been proposed, usually named as Proof of Something.
They all are somehow similar to the proof of Stake, but they differ in what de-
termines the probability for a node to publish a block. Examples are the Proof
of Capacity (based on the disk space committed), Proof of Importance (based on
the number of transactions the node is involved in), Proof of Burn (based on the
amount of cryptocurrency a node is willing to give up). All of these have differ-
ent trade-off among waste of resources, efficiency, network control distribution and
scalablity [28], [29].

1.2.3 Blockchian properties
Knowing that the blockchain technology is a DLT and that each blockchain may rely
on a different consensus algorithm, comes to small wander that some properties are
common to all the blockchain technologies, while other are consensus dependent:

type can be public, consortium or private. Public blockchains can be joined by
anyone and it is possible to participate in the consensus and ledger mainte-
nance. Often times they provide forms of pseudonymity/anonymity, as in the
Bitcoin Blockchian. Private blockchains are handled by one organization only,
that can apply its own policies and permissioning systems, although it is stated
that private blockchian "is just a confusing name for a shared database" [30].
Consortium blockchains are a mix of the previous two: only some nodes are
allowed participate to the consensus process, but they act as peers [18], [19],
[31].

finality can be deterministic or probabilistic. It is deterministic when there is
absence of forks, so that if a record is added to the ledger, it cannot be reverted.
It is probabilistic if forks may arise, and consequently the network consistency
is only eventual [19];

immutability is common to all the blockchain implementations, as a consequence
of the ledger structure and the hash mechanism [18], [31];

autonomy refers to the possibility to submit transactions without the involvement
of a trusted-third-party. [31]

decentralization is common to all the blockchain implementations, as a conse-
quence of the peer-to-peer network. Some consensus implementations, how-
ever, may centralize the network control, transforming the system in a master-
slave one [18], [31];

efficiency refers to the quantity of data flow the blockchain can handle [18], [19].
Various metrics exists, like counting the number of transactions committed per

18

1.3 – Smart Contract

second (TPS). It is highly influenced by the consensus algorithm used, and its
improvement is one of the main challenges of the blockchain technology;

currency orientation refers to the necessity of the blockchain to rely on a cryp-
tocurrency, for example as a consequence of the consensus algorithm used (e.g.
PoS), or as a reward to miners, to encourage them to perform the costly block
mining [19];

scalability refers to the ability of the network to become larger without deterio-
ration of the other properties. It highly depends on the consensus algorithm
[18], [19];

anonymity/pseudonymity refers to the ability of the network to hide the real
identity of a transactor (anonymity) or at least to conceal it (pseudonymity).
It is a distinctive feature of some blockchains [18], [31];

transparency refers to the complete access to the data that all the nodes have
[31], [32]. Of course, the use of cryptography and anonymity may limit the
the level of transparency reached by a blockchain, and consortium/private
blockchains may impose strong access-control over the ledger data;

trust model indicate if the nodes must be known or trusted, in order for the
blockchain to work. PBFT, for example, requires nodes to be known [19];

adversary tolerance represents the maximum percentage of malicious nodes the
system can tolerate without affecting the consensus. Because of the Byzantine
Generals Problem, it must be lower than 1/3 of the total nodes, unless some
constraints of the problem are relaxed [19], [20].

1.3 Smart Contract
"...systems which automatically move digital assets according to arbitrary
pre-specified rules." [33].

"A smart contract is an automatable and enforceable agreement. Au-
tomatable by computer, although some parts may require human input
and control. Enforceable either by legal enforcement of rights and obli-
gations or via tamper-proof execution of computer code." [34].

As introduced in the above definitions, smart contracts are a way to automatize
a contract. This may seem nothing new, and actually their history precedes the
one of the blockchain [35]. The idea is as simple as powerful: enforcing legal con-
tract application through an electronic system, in an automatic way [34]. In simple
terms, a smart contract is just a program running on a computer, and here resides

19

1 – Blockchain as a distributed ledger technology

its potentiality: as a program, it may react to external inputs, and dispatch some
information in case a particular condition takes place. Its application are many
and more, limited only by the complexity of the contract itself: as pointed out by
Nobel Prize Oliver Hart, contracts rarely cover all the possible outcomes of a situ-
ation, mainly because future events are predictable only partially, and often times
contract-related controversies are solved by dialogues and compromises among par-
ties [36]. Of course, this is not something that can be translated into a program.
However, smart contracts are powerful enough to automate simple or repetitive
actions such as the ones linked to bureaucratic paperwork. The scarce application
they have experienced in the past is mainly a consequence of the lack of a platform
to support them. Things changed with the introduction of the blockchain. In fact,
smart contract code could run on the blockchain itself: since the blockchain envi-
ronment is trusted and records are immutable, parties could agree on a contract
without the involvement of a notary, for example. The contracts could automat-
ically react to transaction submission that changes the status of contract-related
data [33], [35]. Other advantages include the increased efficiency due to the au-
tomation and the reduced legal costs as a consequence of the absence of a trusted
third party [37]. The versatility of the smart contracts is expressed by the number
of fields in which they find application: voting systems [38], financial applications
[33], automation of Internet of Things workflows [39] and identity management [40]
are a few examples.

20

Chapter 2

Blockchain and supply chain

This chapter is focused on the relation between supply chain and blockchain. The
first section gives a definition of supply chain and introduces some important related
concepts, focusing on the importance of the information flows in the supply chain
context. The second section discusses some of the supply chain current limitations
and shows how the blockchain application can mitigate them. In the third section
the dissertation is contextualized in the current status of integration between supply
chain and blockchain. Finally it is introduced the Hyperledger Sawtooth blockchain,
a project that well fits the supply chain needs.

2.1 Supply chain: an introduction
In order to discuss about the relation between blockchain and supply chain, it is
first required to introduce the concepts of competitive advantage, supply chain and
the related ones.

"Competitive advantage grows out of value a firm is able to create for its
buyers that exceeds the firm’s cost of creating it. Value is what buyers
are willing to pay, and superior value stems from offering lower prices
than competitors for equivalent benefits or providing unique benefits that
more than offset a higher price. There are two basic types of competitive
advantage: cost leadership and differentiation."[41].

For the purposes of this work, the following definition of supply chain is considered
well suited:

"a set of three or more entities (organizations or individuals) directly
involved in the upstream and downstream flows of products, services,
finances, and/or information from a source to a customer" [42].

It is worth noting that this definition explicitly underlines the importance of the
flow of information as a component of the supply chain, but it is also quite generic,

21

2 – Blockchain and supply chain

in order to cope with the multiple transformations the supply chain undergoes.
The process leading these changes is the supply chain management (SCM). The
literature proposes many definitions of SCM, to the point that it "is actually trying
to define two concepts with one term" [42]. For the purposes of this work, however,
it is not particular relevant to enter into the details of the matter, and even one of
the earliest definitions can be considered sufficient:

"The objective of managing the supply chain is to synchronize the re-
quirements of the customer with the flow of materials from suppliers in
order to effect a balance between what are often seen as conflicting goals
of high customer service, low inventory management, and low unit cost"
[43].

Already in those early stages, it was underlined how one of the main goals of SCM
was to improve supply chain integration (SCI) [43], [44], to the point of considering
SCI as the core of SCM [45]:

"supply chain integration is the alignment, linkage and co-ordination of
people, processes, information, knowledge, and strategies across the sup-
ply chain between all points of contact and influence to facilitate the effi-
cient and effective flows of material, money, information, and knowledge
in response to customer needs" [45].

The relation between SCM and competitive advantage is well expressed by the
following quote:

"supply chain management (SCM) has become a potentially valuable way
of securing competitive advantage and improving organizational perfor-
mance since competition is no longer between organizations, but among
supply chains" [46].

In more recent times, the development of many new technologies in the IT sector
supported SCM toward a better integration of the information flow and a bigger
amount of data shared in the supply chain system, providing many advantages,
including a reduction of the inventory size, an increased delivery efficiency, a better
capital utilization [47] and, more generally, a reduction of costs [48]. The impact
that those technologies had on the supply chain was so decisive that the expression
"digital supply chain" (DSC) was introduced in literature [49]. The adoption of
the blockchain technology may lead to an ulterior revolution in the supply chain
context.

2.2 Blockchain for supply chain
The real value the blockchain technology has to offer to the supply chain is the
standardization of immutable and transparent information and the automation of

22

2.2 – Blockchain for supply chain

its exchanges, all in a trusted environment, that may "transform the current trust-
based theories in supply chain management" [50]. Despite the progresses in the
supply chain information flow integration as a consequence of the IT technologies
development, issues are still present, and their relevance increases with the number
of entities involved in the system (actors) and their dispersion across the world [4],
[51]. The reason is mainly linked to the heavy bureaucracy needed for international
shipments and to the different ways the information is organized by each actor.
This last problem cannot be overcome by the definition of a common interface
to exchange data because of the low level of trust present among the actors [52].
Moreover,

"the data sharing must be secured, distributed (e.g., for optimizing the
subsystems locally) and with some automated actions related to the dif-
ferent regulations and negotiations" [53].

The supply chain limitations expressed above are particularly relevant in the fol-
lowing four use cases [4], and the introduction of the blockchain technology may be
the way to overcome them:
bureaucracy/paperwork processing: the information standardization and the

information exchange automation with the use of smart contracts may reduce
paperwork processing time and cost. Moreover, it would limit the human
interaction and thus its related errors [4], [49];

counterfeit products identification: the transparency and immutability prop-
erties of the blockchain technology may reduce the number of counterfeit prod-
ucts by either making their recognition easier or even by preventing their in-
troduction in the materials and products flows [4];

tracking of products: the transparency and immutability properties of the blockchain
technology may also increase the detail level of information of the products,
which would make easier to track down contamination sources and the defects
affecting them [4]. It could also create an additional differentiation competitive
advantage for some actors, because costumers may easily discover important
qualities of the products (like bio, green, Km0 etc.). For the same reason, it
could discourage unethical or unsustainable actors’ behavior [50];

"Sustainability has been defined by the triple-bottom-line concept
that includes a balance of environmental, social, and business dimen-
sions when managing the supply chain" [50].

IoT integration: the blockchain technology in cooperation with the smart con-
tract one could be used to automatize in a secure and reliable way the interac-
tion of IoT devices [4], [39]. This could be very powerful due to the fact that
IoT devices are often times the interface between the digital and the physical
worlds [39].

23

2 – Blockchain and supply chain

While some of the possible benefits of the application of the blockchain technology
to the supply chain have been described so far, there are also many barriers that
may limit their entanglement, which is important to identify. To this purpose,
the article "Blockchain technology and its relationships to sustainable supply chain
management" is taken in great consideration because

"is the first papers to clearly identify and categorise blockchain barriers
in general, and those specific to the adoption of the technology for supply
chain purposes" [50].

Following the distinction proposed in such an article, four main types of barriers
are identified:

intra-organizational: these barriers are originated from challenges internals to
each organization. They take into consideration the costs of the migration
toward the blockchain solution, the lack of awareness and long-term commit-
ment at management level, the lack of knowledge and expertise, as well as the
proper policies for the usage of this new technology. They also take into ac-
count the reluctance in replacing working "legacy" systems, the hesitation due
to the possible changes in the organizational hierarchy and the general lack of
indicators, tools, and methods to evaluate the sustainability of the blockchain
solution application. [50];

inter-organizational: these barriers are linked to the relationship among sup-
ply chain actors. They take into account the concerns about the information
disclosure to non-trusting parties, the problems linked to different priorities,
goals and culture that may reduce the level of communication and collabora-
tion among the actors. Moreover, there are challenges linked to the supply
chain transformation toward sustainability, which, as described above, in in-
directly led by the enhanced traceability of the products [50];

system-related: these challenges are linked to the technology itself. They take
into account its immaturity, its security flows, its immutability, which would
make impossible to hide eventual errors and the difficulties of developing/purchasing
new IT tools to fully benefit from the blockchain solution adoption. They also
take into account the association between the blockchain and the cryptocurren-
cies used for illegal practices, and the bad perception this gives to the general
public [50];

external: these barrier are linked to the interaction with entities not directly in-
volved in the supply chain. They include the lack of governmental regulations,
the lack of external investments and incentives toward sustainability, the scarce
interest of companies in ethical practices, the market competition and uncer-
tainty, which may not reward the investment in the blockchain technology
[50].

24

2.3 – Current applications

A scheme representing the main barriers the blockchain technology has to overcome
is shown in figure 2.1.

Summarizing, the adoption of the blockchain technology could radically change
the supply chain. Some of these changes may benefit all the actors in the system,
some only a few of them, some may even damage them. As a consequence, the
interest of the companies may go against the investment in this new technology.
The interest in a more sustainable economy, however, should push the governments
to encourage the adoption of the blockchain.

Figure 2.1. Barriers of blockchain adoption in the supply chain environment (with
a focus on sustainability) [50].

2.3 Current applications
In literature, there are many papers describing the blockchain, its possible applica-
tion to the supply chain and the related advantages and disadvantages, considering

25

2 – Blockchain and supply chain

that, at the time of writing, it has been introduced by only a decade. However,
the applications they describe are often times only hypothetical or cannot be fully
disclosed due to confidentiality reasons; consequently there is a general lack of infor-
mation regarding the applicability of the blockchain solution in terms of return on
investment and supported workload. Consequently, more studies should investigate
it in real cases scenarios, or at least in a simulation of those.

In the article "Blockchain in Logistics and Supply Chain: A Lean Approach for
Designing Real-World Use Cases", the authors provide an interesting description of
an application of the blockchain to a supply chain for the fresh food delivery. In
particular they show the cost sustainability of the blockchain solution, with savings
mainly related to the identification of unsafe storage conditions and a better usage
of information about the expiration date of the products. Moreover, they underline
how it is critical to identify the right processes to migrate toward the blockchain
technology, as a consequence of its current efficiency limitations [53].

In the article "Blockchain-based Traceability in Agri-Food Supply Chain Man-
agement: A Practical Implementation" another blockchain-based food supply chain
is implemented and then used to compare two blockchain platforms: Hyperledger
Sawtooth and Ethereum. The results give a performance advantage to the first,
but the authors warn about the higher maturity level of the second [54].

Walmart and IBM announced in 2016 a collaboration with the objective to proof
that the blockchain could be used to authenticate and trace food deliveries from
supplier to consumer. With the adoption of the blockchain in the mangoes supply
chain, they reduced the time to find the origin of a product from almost a week to
a few seconds, by solving the problem that "stakeholders maintain records for one
step up and one step down. This means that each stakeholder in the mango supply
chain had to work with the next node in the chain to identify the provenance of my
mangoes" [55]. The figure 2.2 shows how the introduction of the blochchain tech-
nology transforms the information flow in a supply chain from linear to circular.
Walmart and IBM also used the blockchain technology to track and authenticate
pork meat, reducing the number of paper documents and increasing the informa-
tion detail level associated with each pork. Given the promising results of these
first implementations, they extended the blockchain adoption to the production
environment [55].

The project SmartLog, funded by the EU and with the purpose to address
the lack of information sharing in the supply chain context, is another interesting
application of the blockchain solution. The project stores information about cargo
transportation in order to improve its efficiency [56], [57], but the official website
does not provide any insight about its achievements.

In the article "Blockchain based Wine Supply Chain Traceability System", the
authors describe a traceability system in the context of a wine supply chain. The
system assigns to each wine bottle a unique identification number, which can be
used by a customer to retrieve all the transactions involving it [58]. The authors’

26

2.3 – Current applications

research, however, is more focused on the transparency and security of their solution
than on its costs and performance evaluation. Other articles with a similar approach
describe examples of the blockchain application to other types of supply chains, like
manufacturing [59], drugs [60] or wood [61].

Given the lack of papers discussing the performance evaluation of the blockchain
solution in the supply chain context, this work objective is to provide some results
in such a direction. The first step is to identify a blockchain platform well suited
for this goal.

Figure 2.2. Supply chain transformation [50].

27

2 – Blockchain and supply chain

2.4 Hyperledger Sawtooth, the chosen platform
Hyperledger Sawtooth is the platform used for the supply chain implementation.
It is a framework for the development of blockchains for business purposes. Its
main strengths are its scalability and its modularity, which make of Hyperledger
Sawtooth a good framework for a great variety of use cases. It offers a dynamically
pluggable consensus algorithm, the possibility to implement a custom business logic
through the use of smart contracts and many of the most common programming
languages, like Go, Python, Javascript, Java and C++. Moreover, it requires from
an application layer programmer a minimal knowledge of the underlying framework
implementation details, freeing him from the problem to address the security con-
cerns. In the framework, nodes are called "validators". Each block they publish
contains a group of batches, with each batch being a group of transactions. The
transactions in a batch are applied in order, with an all or nothing approach [62].
The framework architecture includes five components [63]:

the peer to peer network, that allows the nodes to exchange messages and the
transactions to be propagated through a gossip algorithm. Nodes use 0MQ
messages over a TCP channel. Messages are serialized using Google’s Protocol
Buffers. At this layer is also implemented the access control system, that
allows to decide which nodes can join the network, which can participate at
the consensus and which can submit transactions;

the distributed log, used to record transactions. It is the actual blockchain
ledger, and transactions are strictly ordered. Even so, at transaction pro-
cessing time, the framework offers a parallel scheduler;

the smart contract logic layer, used to process the application business logic.
The framework introduces the concept of transaction family, which is a way
to indicate a set of custom operations (transactions) the system recognizes.
The smart contract handling such operations is called transaction processor.
An interesting transaction family provided by the framework is the settings
one. It allows to set some parameters regulating the blockchain itself, like the
consensus algorithm to be used, in a dynamic way. Other transaction families
and transaction processors can be defined at will;

the distributed state, which can be considered as a key-value store where the
transactions processors can read and store data. In this way it is not necessary
to go trough all the distributed log in order to retrieve the current value of
some data. It thus represents the current state of the blockchain. The system
is consistent when, after any transaction, all the nodes reach the same state
(the data stored is the same). Wrong smart contract code may lead to state
inconsistencies. For example, in the Go programming language, maps are

28

2.4 – Hyperledger Sawtooth, the chosen platform

iterated in random order, which may cause inconsistencies if the serializer
used to store them in the distributed state does not enforce an external order;

the consensus algorithm, which is pluggable and can be dynamically changed.
The following consensus algorithms are currently implemented: Devmode
(used for testing of networks with at most one validator); PoET-CFT, PoET-
BFT, PBFT, Raft (non-forking CFT algorithm).

The choice of this framework and the PoET consensus algorithm is based on the
following considerations:

• the adoption of the blockchain technology is based on a common goal of the
actors of the supply chain. For this reason, the block mining process should be
driven by such a goal and not from a block mining reward. This allows the cost
for submitting a transaction to be zero. Consequently, non currency-oriented
platforms are preferable. Hyperledger Sawtooth is not currency oriented, but
a currency system can be implemented over it;

• costumers should not handle the consensus algorithm, but they should be able
to interact with the blockchain (e.g. by placing orders). Often times customers
represent the majority of the participants in a supply chain and do not nec-
essarily share the same goal of the rest of them. Moreover, competitors may
join the network as customers, with the objective to take over the control of it.
For these reasons, and because currency oriented blockchains are often times
also public, the desired platform is a consortium blockchain, like Hyperledger
Sawtooth;

• efficiency is a major concern. The blockchain solution should be able to handle
the same number of transactions of a centralized system. This imposes a big
limitation on the viable consensus algorithms to be used. The possibility
to dynamically change consensus algorithm as a consequence of the evolving
efficiency requirements is thus considered useful. Hyperladger Sawtooth has a
pluggable consensus algorithm. The PoET-BFT has a good efficiency, and its
CFT version can be used with a non-TEE processor for testing purposes;

• scalability is not a major concern. Because consensus nodes in the supply chain
should represent organizations and not single users, the blockchain network
dimension can be considered limited to hundreds of nodes in the worst case
scenario. The PoET good scalability is thus an extra;

• deterministic finality has to be preferred over the probabilistic one, but the
benefit is not crucial. For some financial applications waiting a few seconds
for a transaction to be committed can make a huge economic difference. This
is usually never the case in the supply chain environment, where a delay of
even a few hours can be considered acceptable. The PoET guarantees only
probabilistic finality;

29

2 – Blockchain and supply chain

• smart contracts usage and custom application logic definition should be pos-
sible, in order to cope with the different necessities of the supply chain actors.
Moreover, the application logic layer should be separated from the blockchain
one (to avoid the creation of security flows) and it should be possible to de-
fine permissioning rules at both levels. Hyperledger Sawtooth provides such
functionalities.

30

Chapter 3

Implementation

This chapter describes the entities and the operations used to test the efficiency of
the supply chain with blockchain support. The first section is dedicated to a simple
system that implements the minimal functionalities of a supply chain. The second
and third sections are dedicated to a more complex system that includes some of
the most common entities and operations present in many supply chain systems.
In particular, the second section is dedicated to the entities, while the third one to
the operations. The last section shows a standard flow of operations in the complex
system, to better clarify how entities and operations are related.

3.1 Simple supply chain
The simple supply chain implements the basic concept of property exchange in the
blockchain context. Because of its simplicity, it can be used to estimate an upper
bound to the blockchain performance in a given network configuration. It defines
only three entities and four possible operations that can be performed:

actor entity: it is the entity that interacts with the supply chain by performing the
related operations. It has only to generate a pair of valid keys to digitally sign
the transactions it submits. Actors are not explicitly handled by the system,
and their identity is deduced from the key used to sign the transactions;

asset entity: it models the concept of exchangeable property. It is composed of a
string treated as an unique identifier, an integer representing the state of the
asset and by a string indicating the public key of the actor who owns it;

proposal entity: it models the attempt from an actor to change the ownership of
an asset. It keeps track of both the actor and the asset.

create operation: is used to create a new asset. The asset owner is considered
to be the actor who submitted the create transaction. Such an actor must

31

3 – Implementation

also provide a unique id to identify the asset, otherwise the transaction is not
committed;

update operation: it is used to update the state of an asset. The system guar-
antees that only the owner of an asset can update its state;

exchange operation: it is used to start the exchange of an asset, by creating a
proposal. Any actor can start an exchange, but it does not take place unless
both the original owner and the new owner agree on it;

vote operation: it concludes a previously started exchange, by voting an existing
proposal. After this operation, the property of an asset is assigned to the new
owner.

The system described has many limitations, in particular it does not model the
concepts of custody, of shared property and of operation delegation, where an
actor could allow another one to perform some operations on his behalf. The
system, however, allows the exchange of assets in a secure and transparent way,
without the involvement of any third-party.

3.2 Full supply chain: entities
The full supply chain extends the simple one by introducing new entities and new
operations, common in many supply chain use cases. Moreover, it introduces a more
sophisticated access control system that allows to model the concepts of custody,
operation delegation and shared property.

3.2.1 Actor
It is the entity that interacts with the supply chain by performing the related oper-
ations. It has only to generate a pair of valid keys to digitally sign the transactions
it submits. Actors are not explicitly handled by the system, and their identity is
deduced from the key used to sign the transactions. An actor can be a customer,
an employee of a company, an IoT device or even a smart contract;

3.2.2 Policy
It is the entity used to perform access control. It is composed of:

ID: a string unique in the system;

permissions: a map between a string (the name of an operation) and the list
of allowed public keys. For each entry, the map also stores a counter, which
represents the quorum that must be reached in order to perform the operation.

32

3.2 – Full supply chain: entities

The operations are of two types: the ones affecting another entity and the ones
affecting the policy itself;

admin: a string representing an actor’s public key. Such an actor is considered the
default administrator of the policy. In case an operation on the policy itself is
not defined among the permissions, only the default administrator is allowed
to perform it (so it is treated as a fallback).

3.2.3 Proposal
In case an actor tries to modify an entity whose policy has a permission with a
quorum bigger than one, a proposal must be created. A proposal stores information
about the entities involved, the operations to be performed and the number of actors
who already accepted them (voters). In particular a proposal is composed of:

ID: a string unique in the system. Currently it is assigned automatically by the
system, by concatenating the id of the entities to be modified and the public
key of the actor proposing the modifications. As a consequence, an actor
cannot propose more than one modification on the same set of entities;

promoter: a string representing the public key of the actor proposing the modifi-
cation;

modifications: a list containing information on the proposed operations to be
performed. Each element of the list stores the data to retrieve the entity to be
modified from the distributed state, the name of the operation to be performed
on the entity, the list of actors who already agreed on the operation and the
set of actors whose vote is required. Once the number of voters is bigger than
the quorum and all the required voters are included in the list of voters, the
operation can be performed. If all the operations in the list of modifications
can be performed, the changes are applied.

3.2.4 Asset
It is the entity that represents objects exchanged in the supply chain. It has some
properties common in many supply chains, but specific ones could be added to
better represent information useful in some particular scenarios. The properties
already defined are:

ID: a string unique in the system;

owner: a string representing the public key of the actor who owns the asset.

keeper: a string representing the public key of the actor who is currently in custody
of the asset. In the current implementation the keeper must be explicitly

33

3 – Implementation

allowed by the policy to update the asset, but a more flexible mechanism
could be used in the future to reduce the dependencies between owner and
keeper;

volume: an integer representing the volume of the asset, in volume units. This is
a simplified version of what could be a real case scenario, where also the shape
of the asset could be important for storing purposes;

temperature: an integer representing the temperature of the asset;

position: a pair of floats representing the latitude and the longitude where the
asset is located;

policy: a string representing the name of the policy regulating the asset. In case
a policy is not specified, the owner is the only actor who can modify the
properties of the asset.

3.2.5 Delivery
It is the entity used to represent the movement of assets in the system. It is
described by the following properties:

ID: a string unique in the system;

keeper: a string representing the public key of the actor who is currently handling
the delivery;

receiver: a string representing the public key of the receiver of the delivery. In
case the receiver’s policy is set, this field is ignored;

status: the current delivery status. In the current implementation a delivery can
be "in preparation", if the sender has not started the delivery process yet, "in
transit", if the sender has started the delivery process, but the assets didn’t
reach the receiver yet or "received" if the delivery process is completed;

assets: the list of assets that belong to the delivery;

estimated time: the time at which the delivery is supposed to reach its destina-
tion;

real time: the time at which the delivery reached its destination;

delay cause: a string containing the reason the delivery arrived late, in case the
real time is bigger than the estimated time;

policy: a string representing the name of the policy regulating the delivery. In
case a policy is not specified, the keeper is the only actor who can modify the
properties of the delivery.

34

3.2 – Full supply chain: entities

receiver’s policy: a string representing a policy. This policy should define which
actors can accept the delivery. In case a policy is not specified, the receiver is
the only actor who can accept the delivery.

3.2.6 Carrier
A carrier is the entity in charge of moving assets in the system. It is described by
the following properties:

ID: a string unique in the system;

owner: a string representing the public key of the actor who owns the carrier.

fuel consumption rate: a float representing fuel consumption rate of the carrier.
In reality, this parameter should vary based on various factors, like the carrier
speed and the traffic condition, but for simplicity it is considered to be a
constant;

emission rate: a float representing the CO2 emission rate of the carrier. As for
the fuel consumption rate, this value is considered a constant also if in reality
its value is affected by various conditions;

fuel consumption: a float representing the quantity of fuel consumed by the car-
rier;

emission: a float representing the quantity of CO2 produced by the carrier;

position: a pair of floats representing the position of the carrier;

current deliveries: a list representing the deliveries the carrier is currently per-
forming;

completed deliveries: a list representing the deliveries the carrier has completed.
While historic data can be always retrieved by analyzing the distributed log,
it is more efficient to store it in the distributed state. This is an example of
historic data saved in the distributed state;

policy: a string representing the name of the policy regulating the carrier. In
case a policy is not specified, the owner is the only actor who can modify the
properties of the carrier.

3.2.7 Warehouse
It is the entity used to represent a storing facility for the assets. It is described by
the following properties:

35

3 – Implementation

ID: a string unique in the system;

owner: a string representing the public key of the actor who owns the warehouse.

free space: an integer representing the quantity of space still available in the ware-
house for storing purposes. It is expressed in volume units;

free docks: an integer representing the number of carriers that can be accepted
in the warehouse;

free trucks: an integer representing the number of available carriers ready to be
loaded;

temperature: an integer representing the temperature of the warehouse;

policy: a string representing the name of the policy regulating the warehouse. In
case a policy is not specified, the owner is the only actor who can modify the
properties of the warehouse.

3.3 Full supply chain: operations

3.3.1 Actor
Because the actor entity is not directly handled by the system, no operation can
be performed on it.

3.3.2 Policy
On a policy the following actions can be performed:

create: creates a new policy. The admin field is initialized with the public key of
the actor who submitted the create transaction;

update admin: updates the admin field with the value provided as parameter;

append permission: append a new permission to the policy. After this transac-
tion is committed, the policy allows a new operation to be performed on all
the entities regulated by the policy;

remove permission: removes from the policy a permission;

create proposal: creates a proposal to perform some of the previous operations.
It is the only option to perform such operations in case the number of voters
needed to perform such operations is bigger than one.

36

3.3 – Full supply chain: operations

3.3.3 Proposal
On a proposal the following operations can be performed:

vote: adds the current transactor to the voters list. The proposal is committed
if all the required voters are included in the voters list and if the quorum is
reached;

unvote: undo a previous vote operation. If after this operation the voters list is
empty, the proposal is removed from the system.

3.3.4 Asset
On an asset the following actions can be performed:

create: creates a new asset;

delete: deletes an asset, based on its ID;

update owner: updates the owner of the asset. It is possible to specify a new
policy too;

update keeper: updates the keeper of the asset;

update position: updates the position of the asset;

update volume: updates the volume of the asset;

update temperature: updates the temperature of the asset;

update policy: updates the policy of the asset. The current policy must allow to
be replaced for this transaction to be successful;

create proposal: creates a proposal to perform some of the previous operations.

3.3.5 Delivery
On a delivery the following actions can be performed:

create: creates a new delivery;

delete: deletes a delivery;

update keeper: updates the information about the actor who is performing the
delivery;

add asset: add an asset to the ones belonging to the delivery;

remove asset: removes an asset from the ones belonging to the delivery;

37

3 – Implementation

update estimated time: updates the estimated delivery time;

update delay cause: updates the information about what caused the delivery to
be late;

update receiver: updates the receiver of the delivery;

update receiver’s policy: updates the policy regulating who can accept the de-
livery;

update policy: updates the policy regulating the delivery itself;

create proposal: creates a proposal to perform some of the previous operations;

begin delivery: starts a delivery from a non-warehouse entity. It updates the de-
livery status and performs the operation "add delivery" of the carrier specified
as parameter. This action can only be performed as a proposal;

finish delivery: ends a delivery to a non-warehouse entity. It updates the status
and the real time properties of the delivery, and performs the operation "end
delivery" of the carrier handling it. This action can be only performed as a
proposal;

start delivery: as for begin delivery, but from a warehouse entity. Additionally,
it performs the "send delivery" operation of the warehouse entity. This action
can be only performed as a proposal;

end delivery: as for finish delivery, but to a warehouse entity. Additionally, it
performs the "receive delivery" operation of the warehouse entity. This action
can be only performed as a proposal;

stop delivery: as for end delivery, but it does not change the status or the real
time properties of the delivery. A delivery can be stopped because it reached
an intermediate warehouse where some operation needs to be done on the
assets. This action can be only performed as a proposal;

continue delivery: continues a previously stopped delivery. It is similar to "start
delivery", but it does not change the delivery status. This action can be only
performed as a proposal.

3.3.6 Carrier
On a carrier the following actions can be performed:

create: creates a new carrier;

delete: deletes a carrier, based on its ID;

38

3.3 – Full supply chain: operations

update owner: updates the owner of the carrier. It is possible to specify a new
policy too;

update fuel consumption rate: updates the fuel consumption rate of the car-
rier;

update emission rate: updates the CO2 emission rate of the carrier;

update fuel consumption: updates the total fuel consumption of the carrier;

update emission: updates the total CO2 emission of the carrier;

update position: updates the position of the carrier;

update policy: updates the policy regulating the carrier;

create proposal: creates a proposal to perform some of the previous operations;

add delivery: adds a delivery to the active ones. This operation cannot be exe-
cuted directly by submitting a transaction, but it is executed as a consequence
of the operations called on a delivery entity;

end delivery: removes a delivery from the active ones and moves it in the com-
pleted ones. This operation cannot be executed directly by submitting a trans-
action, but it is executed as a consequence of the operations called on a delivery
entity.

3.3.7 Warehouse
On a warehouse the following actions can be performed:

create: creates a new warehouse;

delete: deletes a warehouse;

update owner: updates the owner of the warehouse. It is possible to specify a
new policy too;

update free space: updates the free space in the warehouse;

update free docks: updates the number of carriers that can enter in the ware-
house;

update free trucks: updates the number of carriers ready to start a delivery;

update temperature: updates the temperature of the warehouse;

update policy: updates the policy of the warehouse with the one whose ID is
provided as parameter;

39

3 – Implementation

create proposal: creates a proposal to perform some of the previous operations;

send delivery: updates the warehouse internal state as a consequence of a delivery
leaving the warehouse. It increases its free space of an amount equals to the
total amount of the volume of the assets belonging to the delivery, increases
the number of free docks and reduces the number of free trucks. This operation
cannot be executed directly by submitting a transaction, but it is executed as
a consequence of the operations called on a delivery entity;

receive delivery: updates the warehouse internal state as a consequence of a de-
livery reaching the warehouse. It reduces its free space of an amount equals
to the total amount of the volume of the assets belonging to the delivery, de-
creases the number of free docks and increases the number of free trucks. This
operation cannot be executed directly by submitting a transaction, but it is
executed as a consequence of the operations called on a delivery entity.

3.4 Full supply chain: example flow
In this section it is provided an example to better understand the relation between
the entities and the operations of the full supply chain. For simplicity, the example
shows the delivery of one asset from a producer to a consumer, with the support
of one retailer owing two warehouses. The actors in the systems are the following:

• a temperature sensor (TS). For simplicity, TS is the only sensor used;

• a producer (P) who creates the asset (A) that will be exchanged in the system.
P places TS on A;

• a retail company (RC), represented by its administrator. RC owns two ware-
houses (W1 and W2) and it does not want to handle directly all the exchanges
of assets in which it is involved. RC buys A from P. For simplicity, RC trusts
TS and it does not feel the need to place its own sensor on the received asset.
RC also has a website (S) where the assets belonging to RC are advertised;

• a customer (C) who buys A from RC;

• four warehouse managers (WM1, WM2, WM3 and WM4) hired by RC. WM1,
WM2 and WM3 are in charge of W1 while WM4 is in charge of W2. RC wants
to enforce that any operation in W1 takes place only if at least two among
WM1, WM2 and WM3 give their consent. A is delivered to W1 from P, then
from W1 to W2, which is the nearest warehouse to C;

• a carrier company (CC) represented by its administrator. For simplicity, the
company has only one carrier and the administrator is also the carrier driver.

40

3.4 – Full supply chain: example flow

Initialization In the initialization phase, all the entities interacting in the system
are created. Their creation could also be performed at any other time, but creating
them all together before starting the exchange of the asset makes the example
clearer.

First of all, each actor needs to generate a pair of keys to interact with the
system. Each actor does it autonomously and no transaction is submitted to the
system.

P creates a policy and then uses the "append permission" policy operation to
allow himself to perform any operation and to allow TS to perform the "update
temperature" operation on an asset.

RC creates two policies (WP1 and WP2), one for each warehouse. RC uses
the "append permission" policy operation of WP1 to allow WM1, WM2 and WM3
to perform any operation, and sets the quorum to 2 for each operation. RC uses
the "append permission" policy operation of WP2 to allow WM4 to perform any
operation, and sets the quorum to 1 for each operation. RC will then create two
warehouses and assign to each of them the proper policy using the "update policy"
warehouse operation. The policies created can also be assigned to other objects,
like the assets belonging to RC. For this reason, the policies allow TS to perform
the "update temperature" asset operation and CC to perform the "update position"
asset operation.

CC will create a carrier end will not assign any policy to it. As a consequence
only CC will be able to perform any operation on the carrier because he is its owner.

From P to W1 P creates A and uses the "update policy" asset operation to
assign the policy he created to A. He also uses the others update operations of the
asset to set its position, volume, temperature and any other relevant information.
At this point, WM1 creates a proposal to update the owner of A using policy WP1
(WM1 tries to buy A). P and WM2 vote the proposal, committing it. P creates
a delivery and adds A to it. P sets the receiver’s policy of the delivery to be the
policy used to buy A (WP1). P performs the "delivery begin" operation to start
the delivery using carrier CC. CC votes the proposal, becoming the keeper of the
delivery and of A. During the travel, TS periodically updates the temperature and
CC the position of A. CC updates also the position, the fuel consumption and
the CO2 emission of his carrier according to the distance traveled. In proximity
of W1, CC creates a "delivery end" proposal. WM1 and WM2 vote the proposal,
committing it (WP1 allows them to vote in stead of RC). At this point the owner
and keeper of A are both equals to RC.

From W1 to W2 C visits S, adds A to his cart and tires to purchase it. WM1
creates a proposal to update the owner of A with the public key of C. WM2 votes
the proposal, as C does (by pressing a confirmation button). The proposal is com-
mitted. A different policy definition could allow directly S to create such proposal.

41

3 – Implementation

WM1 creates a delivery using WP1 as policy, adds A to the delivery and sets the
receiver of the delivery to be C. WM1 executes the "delivery start" operation, which
creates a proposal. CC votes the proposal and becomes the keeper of the delivery
and of A. WM1 and WM2 update the policy of A to be WP2. During the travel, TS
periodically updates the temperature and CC the position of A. CC updates also
the position, the fuel consumption and the CO2 emission of its carrier according to
the distance traveled. In proximity of W2, CC creates a "delivery stop" proposal
using policy WP2, because some operation needs to be performed on A in W2.
WM4 votes the proposal, committing it (WP2 allows him to vote in stead of RC).
At this point the owner of A is C and its keeper is RC.

From W2 to C The next day, the delivery can be resumed. For this reason, WM4
executes the "delivery continue" operation, which creates a proposal. CC votes the
proposal and becomes the keeper of A once again. TS periodically updates the
temperature and CC updates the position of A. CC updates also the position, the
fuel consumption and the CO2 emission of its carrier according to the distance
traveled. Arrived at C’s house, CC executes a "delivery finish" operation which
creates a proposal. C votes the proposal once he has the asset in his hands. C is
now the owner and the keeper of A.

42

Chapter 4

Testing

This chapter describes the tests performed on the two implemented chains. Ac-
cording to the "Hyperledger Blockchain Performance Metrics" paper [64], first the
general system description is given, including hardware, software and network con-
figuration used to perform the tests. Then the tests performed on the simple chain
are described, and finally the ones performed on the full chain using three different
use cases. The use cases differ in the number of producers and customers in the
system, but overall the flow of transactions is similar to the one described in section
3.4. The results of the tests performed are reported in Appendix A.

4.1 Test Harness and methodology
The tests are performed using a single computer and the Docker platform to virtu-
alize the blockchain network. The transaction processors are implemented in Go,
while the clients in Typesript. The configuration of the properties of the blockchain
and of the validators are based on the one proposed by Mattew Rubino [65].

4.1.1 Hardware configuration
MODEL: ASUS N56JK-CN051H;

CPU: Intel Core i7-4710HQ, 2.50GHz, octacore;

RAM: 7,7 GiB DDR3, 1600 MT/s;

DISK: 343,0 GB, 5400 RPM.

4.1.2 Software configuration
Ubuntu: 18.04.3 LTS;

43

4 – Testing

Docker: version 19.03.3, build a872fc2f86;

Sawtooth: 1.0.5;

Go: version go1.11.2 linux/amd64;

Node: v11.0.0;

Angular: 8.3.1;

Google Chrome: 70.0.3538.77, launched with the "–disable-web-security" com-
mand line option to avoid problems related to the CORS policy.

4.1.3 Network configuration
Consensus protocol: PoET-CFT;

Geographic distribution: co-located nodes;

Network model: 5-node complete graph (fig. 4.1);

Number of nodes involved in the test transaction: 1 to 5, specified in each
test;

Software component dependencies: none, other than the default ones.

4.1.4 Blockchain’s properties configuration
sawtooth.poet.target_wait_time: 5;

sawtooth.poet.initial_wait_time: 25;

sawtooth.publisher.max_batches_per_block: 1000;

sawtooth.validator.max_transactions_per_block: 1000;

sawtooth.poet.ztest_minimum_win_count: 999999999.

4.1.5 Validator’s properties configuration
peering: dynamic;

scheduler: parallel;

network: trust;

44

4.1 – Test Harness and methodology

Figure 4.1. Network of validators [66].

4.1.6 Methodology

Test tools and framework. The tests are performed in a local environment,
thus the client is hosted on the same machine of the network of validators. Net-
work load is generated and captured using the Angular framework and the Google
Chrome web browser. The node used by the client to submit the transactions
changes in each test. This information is thus provided with the description of each
of the tests performed.

Workload. For the simple supply chain the workload is a combination of the only
four possible operations. For the full supply chain a sample workload is described
in section 3.4.

45

4 – Testing

Finality threshold. The finality threshold is 100% of the nodes: all the valida-
tors must consider a transaction committed before it is considered as such by the
client.

Measure type. The focus of this work is on the transaction throughput measure
(TPS), defined as: total committed transactions / total time in seconds [64].

Observation points. The blockchain performance is measured from the per-
spective of a client. The total time to calculate the TPS measure is thus de-
fined as: time the client reads the transaction as committed on all the nodes −
time the client submits the transaction to one node.

Testing strategy. The tests are performed using a polling strategy. This allows
the client to know the status of a batch with a little delay in the worst case, while
the events broadcasted by the framework may be grouped together to reduce the
number of messages sent [67]. Moreover, the reads performed to poll the system help
the simulation, because in a real-case scenario both transactions and reads should
be submitted by the clients. During the tests.The network traffic quantity is kept
almost constant, by allowing only up no N batches to be pending. Various values of
N are used in the tests. All the batches used in each test are prepared in advance,
so that they can be submitted immediately without spending computational time
on the client. Due to the memory constraints of the computer used, this may limit
the total number of batches used.

Transactions characteristics. The transactions used for testing purposes can
all be considered small and simple. Some of them are more complex than oth-
ers, to the point that some transactions represent groups of simpler ones often
submitted together. However, even transactions that are linear in the number of
entities defined in the system can be considered simple as a consequence of the
limited amount of such entities. The dependencies and data access patterns of the
transactions follow the ones of a simple production use.

4.2 Simple supply chain

The tests performed on the simple supply chain are various and involve a limited
number of repetitions (ten each). The goal is to find out differences in the TPS
values as a consequence of different batches sizes and submission methods.

46

4.2 – Simple supply chain

4.2.1 Single batch tests
In this type of tests only one batch is submitted in the system (N=1), and thus all
the transactions are submitted to the same validator. The objective of these tests
is to find the number of transactions in a batch that maximizes the TPS value.
The results are reported in figure 4.2, and the maximum TPS value is reached with
batches containing among 35 and 350 transactions.

Figure 4.2. TPS for the single batch tests.

4.2.2 Batch dependency tests
In this type of tests the client submits each batch to a different validator, in a
round robin fashion. A total of twenty batches are submitted, each containing a
different number of transactions in each test. The client allows up to three batches
to be not yet committed (N=3). Each batch is dependent from the previous one,
so a total order on the batches is enforced. The objective of these tests is to clarify
the impact the dependencies among transactions and batches have on the TPS
value. The results are shown in figure 4.3. It is important to remark that while
the numbers of transactions per batch used in these tests are a subset of the one
used in the previous one, the total number of transaction and the way they are
submitted differs. This must be taken into account when comparing the results of
the two type of tests.

47

4 – Testing

Figure 4.3. TPS for the batch dependency tests.

Figure 4.4. TPS for the batch concurrency tests.

48

4.3 – Full supply chain

4.2.3 Batch concurrency tests
In this type of tests the client submits each batch to a different validator, in a round
robin fashion. A total of twenty batches are submitted, each containing a different
number of transactions in each test. The client allows up to ten batches to be not yet
committed (N=10). All batches are independent from one another. The objective
of these tests is to clarify if the simultaneous presence of many transactions in the
system improves the TPS value found in the previous section as a consequence of
the fact that each block will contain more transactions (and thus a minor number
of blocks is required to be mined), or if this approach only favors the arise of forks.
The results are shown in figure 4.4, and they highlight a general performance decay
with respect to the results provided in section 4.2.2.

4.3 Full supply chain

Figure 4.5. Transaction per second (TPS) for the three use cases.

The tests performed on the full supply chain take into account the results ob-
tained in the previous section in order to optimize the TPS value. A total of twenty
batches are simultaneously submitted in each test, and each batch contains thirty-
five transactions. Differently from the previous section, the client also counts the
total number of reads performed. Each test includes a total of fifty repetitions.
The results of the tests are reported in figures 4.5 and 4.6. Figure 4.5 shows the
TPS value reached in each use case, while figure 4.6 shows the number of reads
performed in a second (RPS) for each use case. This value is used to give an idea

49

4 – Testing

Figure 4.6. Read per second (RPS) for the three use cases.

of the workload the system was subject to during the tests, and it does not rep-
resent the maximum number of reads the system is able to support. The graphs
show a good consistency among the results of the three use cases and they confirm
some observations already done in the previous section: the presence of too many
transactions in the system and their submission to different validators negatively
affects the TPS value. Although this tendency is in line with the behaviour of
other networks, like the IP one, it can be probably mitigated with a variation of
the "sawtooth.poet.target_wait_time" setting value.

4.3.1 First use case

Figure 4.7. Supply chain configuration for the first use case.

This use case presents a single producer and a single customer. A graphical
representation is reported in figure 4.7. This use case is characterized by an high
number of dependent transactions, because the assets are moved between the same
points, which enforces a total order among the batches. At the same time, all the
batches are submitted to the same validator.

50

4.3 – Full supply chain

4.3.2 Second use case

Figure 4.8. Supply chain configuration for the second use case.

This use case presents three producers and three customers. A graphical rep-
resentation is reported in figure 4.8. This use case is characterized by a greater
number of parallel deliveries with respect to the previous one, because the assets
can be produced by different sources and can reach different destinations. The main
transaction flow, however, is similar to the one described in section 3.4, with the
difference that there are three concurrent deliveries from the various producers to
the warehouses and three more from the warehouses to the customers. The batches
are submitted to three different validators (batches related to the same delivery
flow are submitted to the same validator).

Figure 4.9. Supply chain configuration for the third use case.

51

4 – Testing

4.3.3 Third use case
This use case presents three producers and five customers. A graphical representa-
tion is reported in figure 4.9. As a consequence of the bigger number of customers
with respect to the previous use case, the number of concurrent deliveries is also
increased. In fact, there are three deliveries from the various producers to the ware-
houses, and five from the warehouses to the customers. The batches are submitted
to all the validators (batches related to the same delivery flow are submitted to the
same validator).

52

Chapter 5

Conclusion

The blockchain technology has the potential to revolutionize the supply chain en-
vironment by offering a standard way to share data among different entities in
an immutable and transparent way. Its application could reduce the paperwork
processing costs and time, reduce the amount of fake products introduced in the
market and offer a way to identify them, allow to track the origin of a product from
the producer to the consumer, and thus to limit the issues related to a production
defect. Finally, if coupled with the IoT devices, it could even create new businesses
models and revolutionize the old ones. One of the main issues affecting the technol-
ogy is its low efficiency, if compared to the one of many distributed databases. In
literature there is a general lack of information regarding the quantity of data that
the blockchian technology is able to process because it is hard to define a reliable
metric that takes into account all the variables that can affect the blockchain per-
formance. One of the metrics mostly adopted is the TPS value, used in this work to
evaluate the blockchain performance. In particular, a network of five nodes hosted
on the same computer was built using the Hyperledger Sawtooth framework and
the the Docker technology. The choice of the Sawtooth framework was mainly due
to its modularity and its scalability. Hyperledger Fabric could have been evenly
if not better suited, but it has been discarded because it was not fully decentral-
ized [68] when the choice was made, nor completely BFT [69]. Quorum (Ethereum
based) was another viable solution, but it offered only two consensus algorithms:
Raft (CFT) and IBFT which is based on PBFT and inherits its scalability limita-
tions [70]. Finally, Corda was mostly renowned in the financial sector [71], while
Sawtooth already furnished some supply chain implementation examples.

Two types of supply chain have been implemented: a simpler supply chain char-
acterized by the definition of really simple transactions, whose complexity is com-
parable with the one of a CRUD operation, and a more complex one, that defines
entities and operations common to many supply chains and gives the possibility
to manage shared assets and to delegate operations. Various tests have been per-
formed that highlight a decay of the performance of the blockchain system if too

53

5 – Conclusion

many transactions are submitted simultaneously or if they are submitted to differ-
ent nodes. This is probably a consequence of the creation of forks related to the
consensus algorithm used in the blockchain, the PoET-CFT, and is thus proba-
bly linked to the "sawtooth.poet.target_wait_time" setting value. Moreover, the
reduced hardware resources used during the tests limits the exploitation of the re-
sults in a real case scenario. For these reasons, possible extensions of the work
conducted so far could involve the usage of a wider blockchain network and of more
advanced hardware resources or the usage of different consensus algorithms and
blockchain settings. Of the two implemented supply chain, the more complex one
has been tested in three different use cases, but many more could be produced to
find out which are the factors that mainly affect the blockchain performance or as
a reference of supported workload for real case usages. Moreover, some investiga-
tions could be performed to determine if there is a strong correlation between the
complex and the simple supply chain TPS values, independently from the network
configuration, which could lead to the definition of a transaction unit of standard
complexity. Finally, the system itself could be improved. In particular the following
observations are considered interesting:

• the system currently does not distinguish the concepts of delivery, intended
as a point to point (e.g. warehouse to warehouse) movement of assets and
of order, intended as an actor to actor movement of assets. This distinction
could produce a more realistic implementation of the system;

• the policy mechanism is quite powerful, but at the same time not much flexible.
The introduction of a role-based approach could reduce this restriction. In
particular, the implementation of the concept of custody could benefit from a
more flexible solution;

• the proposal mechanism is currently limited to sets of predefined modifica-
tions. The introduction of a way to add a custom modification among the
ones defined in the system could allow users to define custom sets of oper-
ations to be performed. The drawback of this approach is that voting such
proposals must be done carefully because the voter must be fully aware of how
each modification may affect the system;

• each modification in the proposal mechanism can be a CRUD, an append or a
remove operation. The mechanism could be enhanced to invoke any function
defined in a registry in the system;

• the system could define the Actor entity and associate a policy to it. This
could allow the removal of the owner, keeper and receiver fields from all the
entities and replace them with the respective policies, in order to simplify the
transaction logic.

54

Appendix A

Tests results

This appendix contains the results of the tests. For the simple supply chain, from
each set of tests the maximum and minimum values are removed before performing
any computation on the data.

Simple supply chain: single batch tests, 1 transaction
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 1 1184 284 ± 50
1 1 1184 339 ± 50
1 1 1184 262 ± 50
1 1 1184 287 ± 50
1 1 1184 7281 ± 50
1 1 1184 318 ± 50
1 1 1184 298 ± 50
1 1 1184 1815 ± 50
1 1 1184 270 ± 50
1 1 1184 278 ± 50

55

A – Tests results

Simple supply chain: single batch tests, 7 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 7 11844 281 ± 50
1 7 11844 278 ± 50
1 7 11844 299 ± 50
1 7 11844 387 ± 50
1 7 11844 275 ± 50
1 7 11844 271 ± 50
1 7 11844 8748 ± 50
1 7 11844 267 ± 50
1 7 11844 502 ± 50
1 7 11844 247 ± 50

Simple supply chain: single batch tests, 35 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 35 58401 825 ± 50
1 35 58401 691 ± 50
1 35 58401 1132 ± 50
1 35 58401 3251 ± 50
1 35 58401 1018 ± 50
1 35 58401 874 ± 50
1 35 58401 1061 ± 50
1 35 58401 908 ± 50
1 35 58401 948 ± 50
1 35 58401 992 ± 50

Simple supply chain: single batch tests, 70 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 70 116596 1577 ± 100
1 70 116596 3122 ± 100
1 70 116596 1677 ± 100
1 70 116596 1258 ± 100
1 70 116596 1253 ± 100
1 70 116596 1452 ± 100
1 70 116596 1729 ± 100
1 70 116596 1295 ± 100
1 70 116596 1472 ± 100
1 70 116596 1265 ± 100

56

A – Tests results

Simple supply chain: single batch tests, 140 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 140 232987 2943 ± 100
1 140 232987 2826 ± 100
1 140 232987 3808 ± 100
1 140 232987 2852 ± 100
1 140 232987 3221 ± 100
1 140 232987 2786 ± 100
1 140 232987 2658 ± 100
1 140 232987 2793 ± 100
1 140 232987 2646 ± 100
1 140 232987 2761 ± 100

Simple supply chain: single batch tests, 350 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 350 582157 10264 ± 250
1 350 582157 12374 ± 250
1 350 582157 10778 ± 250
1 350 582157 9062 ± 250
1 350 582157 15910 ± 250
1 350 582157 8767 ± 250
1 350 582157 8357 ± 250
1 350 582157 10307 ± 250
1 350 582157 10262 ± 250
1 350 582157 7848 ± 250

Simple supply chain: single batch tests, 700 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 700 1164107 27056 ± 250
1 700 1164107 25508 ± 250
1 700 1164107 28374 ± 250
1 700 1164107 27249 ± 250
1 700 1164107 20162 ± 250
1 700 1164107 25291 ± 250
1 700 1164107 22839 ± 250
1 700 1164107 19916 ± 250
1 700 1164107 24168 ± 250
1 700 1164107 21872 ± 250

57

A – Tests results

Simple supply chain: single batch tests, 994 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

1 994 1652945 38397 ± 250
1 994 1652945 39832 ± 250
1 994 1652945 42287 ± 250
1 994 1652945 42553 ± 250
1 994 1652945 42622 ± 250
1 994 1652945 43755 ± 250
1 994 1652945 42396 ± 250
1 994 1652945 45318 ± 250
1 994 1652945 42456 ± 250
1 994 1652945 44686 ± 250

Simple supply chain: batch dependency tests, 7 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 7 12761 9373 ± 250
20 7 12761 8279 ± 250
20 7 12761 8768 ± 250
20 7 12761 9944 ± 250
20 7 12761 9609 ± 250
20 7 12761 7799 ± 250
20 7 12761 10054 ± 250
20 7 12761 7597 ± 250
20 7 12761 7127 ± 250
20 7 12761 11311 ± 250

Simple supply chain: batch dependency tests, 35 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 35 62986 26950 ± 500
20 35 62986 23606 ± 500
20 35 62986 25628 ± 500
20 35 62986 30135 ± 500
20 35 62986 31304 ± 500
20 35 62986 29086 ± 500
20 35 62986 24807 ± 500
20 35 62986 33403 ± 500
20 35 62986 30856 ± 500
20 35 62986 34988 ± 500

58

A – Tests results

Simple supply chain: batch dependency tests, 70 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 70 125766 61599 ± 1500
20 70 125766 61664 ± 1500
20 70 125766 53255 ± 1500
20 70 125766 74967 ± 1500
20 70 125766 58010 ± 1500
20 70 125766 45959 ± 1500
20 70 125766 69280 ± 1500
20 70 125766 77287 ± 1500
20 70 125766 71152 ± 1500
20 70 125766 54310 ± 1500

Simple supply chain: batch dependency tests, 140 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 140 251327 106031 ± 2500
20 140 251327 133364 ± 2500
20 140 251327 155395 ± 2500
20 140 251327 123921 ± 2500
20 140 251327 115735 ± 2500
20 140 251327 130033 ± 2500
20 140 251327 113196 ± 2500
20 140 251327 131385 ± 2500
20 140 251327 122542 ± 2500
20 140 251327 117376 ± 2500

Simple supply chain: batch concurrency tests, 7 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 7 11844 8949 ± 250
20 7 11844 6336 ± 250
20 7 11844 9067 ± 250
20 7 11844 12991 ± 250
20 7 11844 15467 ± 250
20 7 11844 7077 ± 250
20 7 11844 8277 ± 250
20 7 11844 10758 ± 250
20 7 11844 13861 ± 250
20 7 11844 8071 ± 250

59

A – Tests results

Simple supply chain: batch concurrency tests, 35 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 35 58401 30099 ± 500
20 35 58401 34425 ± 500
20 35 58401 41535 ± 500
20 35 58401 30206 ± 500
20 35 58401 33105 ± 500
20 35 58401 30509 ± 500
20 35 58401 29543 ± 500
20 35 58401 32865 ± 500
20 35 58401 31026 ± 500
20 35 58401 46687 ± 500

Simple supply chain: batch concurrency tests, 70 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 70 116596 56985 ± 1500
20 70 116596 54803 ± 1500
20 70 116596 78956 ± 1500
20 70 116596 84849 ± 1500
20 70 116596 86417 ± 1500
20 70 116596 64722 ± 1500
20 70 116596 92318 ± 1500
20 70 116596 66564 ± 1500
20 70 116596 121532 ± 1500
20 70 116596 117321 ± 1500

Simple supply chain: batch concurrency tests, 140 transactions
Batches Transactions per

batch
Batch length
(bytes)

Execution time
(ms)

20 140 232987 152076 ± 2500
20 140 232987 249963 ± 2500
20 140 232987 225297 ± 2500
20 140 232987 313814 ± 2500
20 140 232987 221052 ± 2500
20 140 232987 187504 ± 2500
20 140 232987 163286 ± 2500
20 140 232987 216584 ± 2500
20 140 232987 227064 ± 2500
20 140 232987 290825 ± 2500

60

A – Tests results

Full supply chain: First use case
Batches (trans-
actions per
batch)

Total batches
length (kilo-
bytes)

Number of reads Execution time
(ms)

20 (35) 1157 635 66753 ± 250
20 (35) 1157 535 54174 ± 250
20 (35) 1157 455 45365 ± 250
20 (35) 1157 435 42688 ± 250
20 (35) 1157 495 49553 ± 250
20 (35) 1157 515 51698 ± 250
20 (35) 1157 575 58748 ± 250
20 (35) 1157 530 53347 ± 250
20 (35) 1157 560 56938 ± 250
20 (35) 1157 565 57842 ± 250
20 (35) 1157 470 47649 ± 250
20 (35) 1157 655 68340 ± 250
20 (35) 1157 550 55731 ± 250
20 (35) 1157 675 71210 ± 250
20 (35) 1157 540 55816 ± 250
20 (35) 1157 545 56543 ± 250
20 (35) 1157 535 55355 ± 250
20 (35) 1157 560 58451 ± 250
20 (35) 1157 500 51313 ± 250
20 (35) 1157 485 50851 ± 250
20 (35) 1157 560 57225 ± 250
20 (35) 1157 475 48053 ± 250
20 (35) 1157 585 61461 ± 250
20 (35) 1157 490 49297 ± 250
20 (35) 1157 505 51086 ± 250
20 (35) 1157 525 53412 ± 250
20 (35) 1157 555 56424 ± 250
20 (35) 1157 530 53682 ± 250
20 (35) 1157 615 63695 ± 250
20 (35) 1157 520 52353 ± 250
20 (35) 1157 570 58069 ± 250
20 (35) 1157 580 59533 ± 250
20 (35) 1157 525 53176 ± 250
20 (35) 1157 510 51962 ± 250
20 (35) 1157 595 61320 ± 250
20 (35) 1157 595 60992 ± 250
20 (35) 1157 580 59273 ± 250

61

A – Tests results

20 (35) 1157 540 55053 ± 250
20 (35) 1157 625 64704 ± 250
20 (35) 1157 565 57447 ± 250
20 (35) 1157 580 59279 ± 250
20 (35) 1157 585 59870 ± 250
20 (35) 1157 510 49948 ± 250
20 (35) 1157 520 51204 ± 250
20 (35) 1157 560 56439 ± 250
20 (35) 1157 450 43786 ± 250
20 (35) 1157 525 51959 ± 250
20 (35) 1157 580 55603 ± 250
20 (35) 1157 545 54848 ± 250
20 (35) 1157 550 55109 ± 250

Full supply chain: second use case
Batches (trans-
actions per
batch)

Total batches
length (kilo-
bytes)

Number of reads Execution time
(ms)

20 (35) 1157 1175 54462 ± 250
20 (35) 1157 790 38632 ± 250
20 (35) 1157 1285 58977 ± 250
20 (35) 1157 1275 57620 ± 250
20 (35) 1157 1450 64969 ± 250
20 (35) 1157 1105 53329 ± 250
20 (35) 1157 1060 45077 ± 250
20 (35) 1157 840 38566 ± 250
20 (35) 1157 1125 51063 ± 250
20 (35) 1157 1200 67251 ± 250
20 (35) 1157 1450 67958 ± 250
20 (35) 1157 940 42766 ± 250
20 (35) 1157 1300 55694 ± 250
20 (35) 1157 870 42084 ± 250
20 (35) 1157 1095 51413 ± 250
20 (35) 1157 1275 64047 ± 250
20 (35) 1157 1275 57776 ± 250
20 (35) 1157 1045 44221 ± 250
20 (35) 1157 1310 73980 ± 250
20 (35) 1157 970 44356 ± 250
20 (35) 1157 975 47146 ± 250
20 (35) 1157 900 42051 ± 250
20 (35) 1157 1115 49759 ± 250
20 (35) 1157 1230 55593 ± 250

62

A – Tests results

20 (35) 1157 1095 48824 ± 250
20 (35) 1157 915 43324 ± 250
20 (35) 1157 1060 47783 ± 250
20 (35) 1157 1325 67694 ± 250
20 (35) 1157 1430 71639 ± 250
20 (35) 1157 1220 53457 ± 250
20 (35) 1157 930 42107 ± 250
20 (35) 1157 1245 62922 ± 250
20 (35) 1157 840 44590 ± 250
20 (35) 1157 1140 49357 ± 250
20 (35) 1157 960 44085 ± 250
20 (35) 1157 1430 69148 ± 250
20 (35) 1157 1220 56132 ± 250
20 (35) 1157 1150 50667 ± 250
20 (35) 1157 1025 46560 ± 250
20 (35) 1157 935 40457 ± 250
20 (35) 1157 965 45991 ± 250
20 (35) 1157 825 39927 ± 250
20 (35) 1157 1260 58422 ± 250
20 (35) 1157 810 44231 ± 250
20 (35) 1157 925 42558 ± 250
20 (35) 1157 1015 47451 ± 250
20 (35) 1157 1070 52785 ± 250
20 (35) 1157 1310 57299 ± 250
20 (35) 1157 1045 49358 ± 250
20 (35) 1157 1005 48339 ± 250

Full supply chain: third use case
Batches (trans-
actions per
batch)

Total batches
length (kilo-
bytes)

Number of reads Execution time
(ms)

20 (35) 1157 1640 54238 ± 250
20 (35) 1157 1735 60592 ± 250
20 (35) 1157 2070 61689 ± 250
20 (35) 1157 1930 57299 ± 250
20 (35) 1157 2695 77529 ± 250
20 (35) 1157 1630 53575 ± 250
20 (35) 1157 2180 64768 ± 250
20 (35) 1157 1745 58826 ± 250
20 (35) 1157 2260 70708 ± 250
20 (35) 1157 1370 48563 ± 250
20 (35) 1157 3195 91598 ± 250

63

A – Tests results

20 (35) 1157 2050 69319 ± 250
20 (35) 1157 3325 98733 ± 250
20 (35) 1157 2495 83813 ± 250
20 (35) 1157 2090 69074 ± 250
20 (35) 1157 1940 58541 ± 250
20 (35) 1157 1855 56813 ± 250
20 (35) 1157 3100 88520 ± 250
20 (35) 1157 2005 64469 ± 250
20 (35) 1157 1955 72516 ± 250
20 (35) 1157 2210 69597 ± 250
20 (35) 1157 2145 64615 ± 250
20 (35) 1157 2020 64817 ± 250
20 (35) 1157 2380 75818 ± 250
20 (35) 1157 2415 70255 ± 250
20 (35) 1157 2090 70936 ± 250
20 (35) 1157 3005 102231 ± 250
20 (35) 1157 2120 59438 ± 250
20 (35) 1157 2675 83054 ± 250
20 (35) 1157 1985 60832 ± 250
20 (35) 1157 2525 75038 ± 250
20 (35) 1157 2470 83747 ± 250
20 (35) 1157 2725 77515 ± 250
20 (35) 1157 2485 76282 ± 250
20 (35) 1157 1985 64969 ± 250
20 (35) 1157 2845 83098 ± 250
20 (35) 1157 1730 53565 ± 250
20 (35) 1157 2300 65870 ± 250
20 (35) 1157 2195 72090 ± 250
20 (35) 1157 3090 89086 ± 250
20 (35) 1157 2750 78457 ± 250
20 (35) 1157 2060 65289 ± 250
20 (35) 1157 1790 56316 ± 250
20 (35) 1157 1965 60864 ± 250
20 (35) 1157 2510 71282 ± 250
20 (35) 1157 1740 52927 ± 250
20 (35) 1157 2080 63131 ± 250
20 (35) 1157 1625 58714 ± 250
20 (35) 1157 1725 56723 ± 250
20 (35) 1157 2405 80419 ± 250

64

Bibliography

[1] E. Heilman, F. Baldimtsi, and S. Goldberg, «Blindly Signed Contracts: Anony-
mous On-Blockchain and Off-Blockchain Bitcoin Transactions», vol. 9604,
Feb. 2016, pp. 43–60, isbn: 978-3-662-53356-7. doi: 10.1007/978-3-662-
53357-4_4.

[2] S. Nakamoto, «Bitcoin: A Peer-to-Peer Electronic Cash System», Cryptogra-
phy Mailing list at https://metzdowd.com, Mar. 2009.

[3] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, «Blockchain challenges
and opportunities: A survey», International Journal of Web and Grid Ser-
vices, vol. 14, p. 352, Oct. 2018. doi: 10.1504/IJWGS.2018.095647.

[4] N. Hackius and M. Petersen, «Blockchain in Logistics and Supply Chain: Trick
or Treat?», Oct. 2017. doi: 10.15480/882.1444.

[5] L. Hellinga, «The Gutenberg Revolutions», in. Sep. 2019, pp. 377–392, isbn:
9781119018179. doi: 10.1002/9781119018193.ch25.

[6] J. Serrano, «Changes in the management of information in audio-visual archives
following digitization: Current and future outlook», Journal of Librarian-
ship and Information Science - J LIBR INF SCI, vol. 40, Mar. 2008. doi:
10.1177/0961000607086617.

[7] E. Codd, «A Relational Model of Data for Large Shared Data Banks», Com-
mun. ACM, vol. 13, pp. 377–387, Jan. 1970. doi: 10.1007/978- 3- 642-
48354-7_4.

[8] S. Y. Shim, «Guest Editor’s Introduction: The CAP Theorem’s Growing Im-
pact», Computer, vol. 45, no. 02, pp. 21–22, Feb. 2012, issn: 1558-0814. doi:
10.1109/MC.2012.54.

[9] D. Colley, M. Asaduzzaman, and C. Stanier, «Investigating the Effects of
Object-Relational Impedance Mismatch on the Efficiency of Object-Relational
Mapping Frameworks», Nov. 2018.

[10] C. Hale. (Oct. 7, 2010). You Can’t Sacrifice Partition Tolerance, [Online].
Available: https : / / codahale . com / you - cant - sacrifice - partition -
tolerance/.

65

https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1504/IJWGS.2018.095647
https://doi.org/10.15480/882.1444
https://doi.org/10.1002/9781119018193.ch25
https://doi.org/10.1177/0961000607086617
https://doi.org/10.1007/978-3-642-48354-7_4
https://doi.org/10.1007/978-3-642-48354-7_4
https://doi.org/10.1109/MC.2012.54
https://codahale.com/you-cant-sacrifice-partition-tolerance/
https://codahale.com/you-cant-sacrifice-partition-tolerance/

BIBLIOGRAPHY

[11] M. T. Özsu and P. Valduriez, Principles of distributed database systems.
Springer Science & Business Media, 2011.

[12] M. Shertil, «TRADITIONAL RDBMS TO NOSQL DATABASE: NEW ERA
OF DATABASES FOR BIG DATA», Dec. 2016.

[13] H. Kakavand, N. Sevres, and B. Chilton, «The Blockchain Revolution: An
Analysis of Regulation and Technology Related to Distributed Ledger Tech-
nologies», SSRN Electronic Journal, Jan. 2017. doi: 10.2139/ssrn.2849251.

[14] M. Iansiti and K. R. Lakhani, «The Truth about Blockchain», 2017.
[15] M. Smith, «Luca Pacioli: The Father of Accounting», SSRN Electronic Jour-

nal, Jan. 2013. doi: 10.2139/ssrn.2320658.
[16] IOTA Foundation. (Oct. 7, 2019). Frequently asked questions. Common ques-

tions about the IOTA Protocol and Tangle., [Online]. Available: https://
www.iota.org/get-started/faqs.

[17] J. Bergquist, A. Laszka, M. Sturm, and A. Dubey, «On the Design of Com-
munication and Transaction Anonymity in Blockchain-Based Transactive Mi-
crogrids», Dec. 2017, pp. 1–6. doi: 10.1145/3152824.3152827.

[18] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, «An Overview of Blockchain
Technology: Architecture, Consensus, and Future Trends», Jun. 2017. doi:
10.1109/BigDataCongress.2017.85.

[19] A. Baliga, «Understanding Blockchain Consensus Models», 2017.
[20] L. Lamport, R. Shostak, and M. Pease, «The Byzantine Generals Problem»,

ACM Trans. Program. Lang. Syst., vol. 4, Feb. 2002. doi: 10.1145/357172.
357176.

[21] M. Castro and B. Liskov, «Practical Byzantine Fault Tolerance», OSDI, Mar.
1999.

[22] T. Nguyen and K. Kim, «A survey about consensus algorithms used in Blockchain»,
Journal of Information Processing Systems, vol. 14, pp. 101–128, Jan. 2018.
doi: 10.3745/JIPS.01.0024.

[23] M. Sabt, M. Achemlal, and A. Bouabdallah, «Trusted Execution Environ-
ment: What It is, and What It is Not», Aug. 2015, pp. 57–64. doi: 10.1109/
Trustcom.2015.357.

[24] Intel Corporation. (Nov. 12, 2018). Journal, [Online]. Available: https://
sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/
journal.html.

[25] ——, (Nov. 12, 2018). PoET 1.0 Specification, [Online]. Available: https:
//sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/
poet.html.

66

https://doi.org/10.2139/ssrn.2849251
https://doi.org/10.2139/ssrn.2320658
https://www.iota.org/get-started/faqs
https://www.iota.org/get-started/faqs
https://doi.org/10.1145/3152824.3152827
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.3745/JIPS.01.0024
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/journal.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/journal.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/journal.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html

BIBLIOGRAPHY

[26] M. Schwarz, S. Weiser, and D. Gruss, «Practical Enclave Malware with Intel
SGX», in. Jun. 2019, pp. 177–196. doi: 10.1007/978-3-030-22038-9_9.

[27] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, «On Security Analysis
of Proof-of-Elapsed-Time (PoET)», Oct. 2017, pp. 282–297, isbn: 978-3-319-
69083-4. doi: 10.1007/978-3-319-69084-1_19.

[28] D. Bit. (Mar. 8, 2018). 9 Types of Consensus Mechanisms That You Didn’t
Know About, [Online]. Available: https://medium.com/the-daily-bit/
9- types- of- consensus- mechanisms- that- you- didnt- know- about-
49ec365179da.

[29] T. Jenks. (Mar. 8, 2018). Pros and Cons of Different Blockchain Consensus
Protocols, [Online]. Available: https://www.verypossible.com/blog/pros-
and-cons-of-different-blockchain-consensus-protocols.

[30] A. Narayanan. (Sep. 8, 2015). “Private blockchain” is just a confusing name
for a shared database, [Online]. Available: https://freedom-to-tinker.
com/2015/09/18/private-blockchain-is-just-a-confusing-name-for-
a-shared-database/.

[31] I.-C. Lin and T.-C. Liao, «A survey of blockchain security issues and chal-
lenges», International Journal of Network Security, vol. 19, pp. 653–659, Sep.
2017. doi: 10.6633/IJNS.201709.19(5).01.

[32] K. Francisco and D. Swanson, «The supply chain has no clothes: Technology
adoption of blockchain for supply chain transparency», Logistics, vol. 2, no. 1,
p. 2, 2018.

[33] V. Buterin, «Ethereum White Paper: A next-generation smart contract and
decentralized application platform», 2013.

[34] C. Clack, V. Bakshi, and L. Braine, «Smart Contract Templates: founda-
tions, design landscape and research directions, C.D.Clack, V.A.Bakshi and
L.Braine. arxiv:1608.00771. 2016», Aug. 2016.

[35] M. Bellini. (Dec. 17, 2018). Smart Contracts: che cosa sono, come funzio-
nano quali sono gli ambiti applicativi, [Online]. Available: https://www.
blockchain4innovation.it/mercati/legal/smart-contract/blockchain-
smart-contracts-cosa-funzionano-quali-gli-ambiti-applicativi.

[36] O. Hart. (Jul. 24, 2019). Nobel Prize-Winning Economist Shares His Thoughts
On Smart Contracts, [Online]. Available: https://www.youtube.com/watch?
time_continue=142&v=Ee_3Nvl-lGE.

[37] M. Giancaspro, «Is a ‘smart contract’ really a smart idea? Insights from a
legal perspective», Computer Law & Security Review, vol. 33, Jun. 2017. doi:
10.1016/j.clsr.2017.05.007.

[38] P. McCorry, S. Shahandashti, and F. Hao, «A Smart Contract for Boardroom
Voting with Maximum Voter Privacy», Jan. 2017.

67

https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1007/978-3-319-69084-1_19
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://www.verypossible.com/blog/pros-and-cons-of-different-blockchain-consensus-protocols
https://www.verypossible.com/blog/pros-and-cons-of-different-blockchain-consensus-protocols
https://freedom-to-tinker.com/2015/09/18/private-blockchain-is-just-a-confusing-name-for-a-shared-database/
https://freedom-to-tinker.com/2015/09/18/private-blockchain-is-just-a-confusing-name-for-a-shared-database/
https://freedom-to-tinker.com/2015/09/18/private-blockchain-is-just-a-confusing-name-for-a-shared-database/
https://doi.org/10.6633/IJNS.201709.19(5).01
https://www.blockchain4innovation.it/mercati/legal/smart-contract/blockchain-smart-contracts-cosa-funzionano-quali-gli-ambiti-applicativi
https://www.blockchain4innovation.it/mercati/legal/smart-contract/blockchain-smart-contracts-cosa-funzionano-quali-gli-ambiti-applicativi
https://www.blockchain4innovation.it/mercati/legal/smart-contract/blockchain-smart-contracts-cosa-funzionano-quali-gli-ambiti-applicativi
https://www.youtube.com/watch?time_continue=142&v=Ee_3Nvl-lGE
https://www.youtube.com/watch?time_continue=142&v=Ee_3Nvl-lGE
https://doi.org/10.1016/j.clsr.2017.05.007

BIBLIOGRAPHY

[39] K. Christidis and M. Devetsikiotis, «Blockchains and Smart Contracts for the
Internet of Things», IEEE Access, vol. 4, pp. 1–1, Jan. 2016. doi: 10.1109/
ACCESS.2016.2566339.

[40] M. Al-Bassam, «SCPKI: A Smart Contract-based PKI and Identity System»,
Apr. 2017, pp. 35–40, isbn: 978-1-4503-4974-1. doi: 10 . 1145 / 3055518 .
3055530.

[41] M. E. Porter, Competitive advantage: Creating and sustaining competitive ad-
vantage. New York: Free Press, 1985.

[42] J. Mentzer, W. Dewitt, J. Keebler, S. Min, N. Nix, C. Smith, and Z. Zacharia,
«Defining Supply Chain Management», Journal of Business Logistics, vol. 22,
Sep. 2001. doi: 10.1002/j.2158-1592.2001.tb00001.x.

[43] G. Stevens, «Integrating the Supply Chain», 8, vol. 19, 1989, pp. 3–8. doi:
10.1108/EUM0000000000329.

[44] L. D. Fredendall and E. Hill, Basics of supply chain management. CRC Press,
2016.

[45] M. Johnson and G. Stevens, «Integrating the Supply Chain... 25 years on», In-
ternational Journal of Physical Distribution & Logistics Management, vol. 46,
Feb. 2016. doi: 10.1108/IJPDLM-07-2015-0175.

[46] S. Li, B. Ragu-Nathan, T. Ragu-Nathan, and S. S. Rao, «The impact of sup-
ply chain management practices on competitive advantage and organizational
performance», Omega, vol. 34, no. 2, pp. 107–124, 2006.

[47] A. Rai, R. Patnayakuni, and N. Seth, «Firm performance impacts of digitally
enabled supply chain integration capabilities», MIS quarterly, pp. 225–246,
2006.

[48] B. Sezen, «Relative effects of design, integration and information sharing
on supply chain performance», Supply Chain Management: An International
Journal, vol. 13, no. 3, pp. 233–240, 2008.

[49] K. Korpela, J. Hallikas, and T. Dahlberg, «Digital supply chain transforma-
tion toward blockchain integration», in proceedings of the 50th Hawaii inter-
national conference on system sciences, 2017.

[50] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, «Blockchain technology
and its relationships to sustainable supply chain management», International
Journal of Production Research, vol. 57, no. 7, pp. 2117–2135, 2019.

[51] H. M. Kim and M. Laskowski, «Toward an ontology-driven blockchain design
for supply-chain provenance», Intelligent Systems in Accounting, Finance and
Management, vol. 25, no. 1, pp. 18–27, 2018.

68

https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1145/3055518.3055530
https://doi.org/10.1145/3055518.3055530
https://doi.org/10.1002/j.2158-1592.2001.tb00001.x
https://doi.org/10.1108/EUM0000000000329
https://doi.org/10.1108/IJPDLM-07-2015-0175

BIBLIOGRAPHY

[52] E. Olszewski. (May 16, 2019). Why Blockchain Matters To Enterprise (Hint:
It’s Not Because Of Decentralization), [Online]. Available: https://medium.
com/@eolszewski/why-blockchain-matters-to-enterprise-hint-its-
not-because-of-decentralization-8c38674f43c6.

[53] G. Perboli, S. Musso, and M. Rosano, «Blockchain in Logistics and Supply
Chain: a Lean approach for designing real-world use cases», IEEE Access,
vol. PP, pp. 1–1, Oct. 2018. doi: 10.1109/ACCESS.2018.2875782.

[54] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, «Blockchain-based trace-
ability in Agri-Food supply chain management: A practical implementation»,
in 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tus-
cany), IEEE, 2018, pp. 1–4.

[55] F. Yiannas, «A new era of food transparency powered by blockchain», Inno-
vations: Technology, Governance, Globalization, vol. 12, no. 1-2, pp. 46–56,
2018.

[56] M. Lammi. (Mar. 29, 2018). Project SmartLog: blockchain in logistics, [On-
line]. Available: https://smartlog.kinno.fi/articles/project-smartlog-
blockchain-logistics.

[57] K. Sadouskaya, «Adoption of Blockchain Technologyin Supply Chain and
Logistics», 2017.

[58] K. Biswas, V. Muthukkumarasamy, and W. L. Tan, «Blockchain based wine
supply chain traceability system», in Future technologies conference, 2017,
pp. 1–7.

[59] S. A. Abeyratne and R. P. Monfared, «Blockchain ready manufacturing supply
chain using distributed ledger», 2016.

[60] J.-H. Tseng, Y.-C. Liao, B. Chong, and S.-w. Liao, «Governance on the drug
supply chain via gcoin blockchain», International journal of environmental
research and public health, vol. 15, no. 6, p. 1055, 2018.

[61] S. Figorilli, F. Antonucci, C. Costa, F. Pallottino, L. Raso, M. Castiglione, E.
Pinci, D. Del Vecchio, G. Colle, A. Proto, et al., «A blockchain implementation
prototype for the electronic open source traceability of wood along the whole
supply chain», Sensors, vol. 18, no. 9, p. 3133, 2018.

[62] Intel Corporation. (Nov. 12, 2018). Transactions and Batches, [Online]. Avail-
able: https://sawtooth.hyperledger.org/docs/core/releases/1.0/
architecture/transactions_and_batches.html.

[63] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and C. Mont-
gomery, «Sawtooth: An Introduction», Jan. 2018.

69

https://medium.com/@eolszewski/why-blockchain-matters-to-enterprise-hint-its-not-because-of-decentralization-8c38674f43c6
https://medium.com/@eolszewski/why-blockchain-matters-to-enterprise-hint-its-not-because-of-decentralization-8c38674f43c6
https://medium.com/@eolszewski/why-blockchain-matters-to-enterprise-hint-its-not-because-of-decentralization-8c38674f43c6
https://doi.org/10.1109/ACCESS.2018.2875782
https://smartlog.kinno.fi/articles/project-smartlog-blockchain-logistics
https://smartlog.kinno.fi/articles/project-smartlog-blockchain-logistics
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/transactions_and_batches.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/transactions_and_batches.html

BIBLIOGRAPHY

[64] The Hyperledger Performance and Scale Working Group. (Oct. 7, 2019). Hy-
perledger Blockchain Performance Metrics, [Online]. Available: https://www.
hyperledger.org/resources/publications/blockchain-performance-
metrics.

[65] M. Rubino. (Oct. 31, 2018). A 5 node Hyperledger Sawtooth cluster with
IntKey and PoET. ‘docker-compose -f sawtooth5.yaml up‘, [Online]. Available:
https://gist.github.com/mtrubs/defd83fb30e3bca85fb76be01d813f04.

[66] Intel Corporation. (Jul. 24, 2019). Using Docker for a Sawtooth Test Network,
[Online]. Available: https : / / sawtooth . hyperledger . org / docs / core /
nightly/1-2/app_developers_guide/docker_test_network.html.

[67] ——, (Nov. 12, 2018). Events and Transaction Receipts, [Online]. Available:
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/
events_and_transactions_receipts.html.

[68] P. Sitoh. (Dec. 4, 2018). What are the differences between Ethereum, Hy-
perledger Fabric and Hyperledger Sawtooth?, [Online]. Available: https://
medium.com/coinmonks/what-are-the-differences-between-ethereum-
hyperledger-fabric-and-hyperledger-sawtooth-5d0fc279d862.

[69] A. Le Hors. (Apr. 23, 2019). Demystifying Hyperledger Fabric ordering and de-
centralization, [Online]. Available: https://developer.ibm.com/articles/
blockchain-hyperledger-fabric-ordering-decentralization/.

[70] chris-j-h. (Aug. 24, 2018). Quorum Whitepaper, [Online]. Available: https:
//github.com/jpmorganchase/quorum/blob/master/docs/Quorum%5C%
20Whitepaper%5C%20v0.2.pdf.

[71] R. G. Brown, «The corda platform: An introduction», 2018.

70

https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
https://www.hyperledger.org/resources/publications/blockchain-performance-metrics
https://gist.github.com/mtrubs/defd83fb30e3bca85fb76be01d813f04
https://sawtooth.hyperledger.org/docs/core/nightly/1-2/app_developers_guide/docker_test_network.html
https://sawtooth.hyperledger.org/docs/core/nightly/1-2/app_developers_guide/docker_test_network.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/events_and_transactions_receipts.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/events_and_transactions_receipts.html
https://medium.com/coinmonks/what-are-the-differences-between-ethereum-hyperledger-fabric-and-hyperledger-sawtooth-5d0fc279d862
https://medium.com/coinmonks/what-are-the-differences-between-ethereum-hyperledger-fabric-and-hyperledger-sawtooth-5d0fc279d862
https://medium.com/coinmonks/what-are-the-differences-between-ethereum-hyperledger-fabric-and-hyperledger-sawtooth-5d0fc279d862
https://developer.ibm.com/articles/blockchain-hyperledger-fabric-ordering-decentralization/
https://developer.ibm.com/articles/blockchain-hyperledger-fabric-ordering-decentralization/
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum%5C%20Whitepaper%5C%20v0.2.pdf
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum%5C%20Whitepaper%5C%20v0.2.pdf
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum%5C%20Whitepaper%5C%20v0.2.pdf

	Introduction
	Blockchain as a distributed ledger technology
	Database, blockchain and shared distributed ledger
	Blockchain: an overview
	The DLT called blockchain
	Consensus algorithms and their implications
	Blockchian properties

	Smart Contract

	Blockchain and supply chain
	Supply chain: an introduction
	Blockchain for supply chain
	Current applications
	Hyperledger Sawtooth, the chosen platform

	Implementation
	Simple supply chain
	Full supply chain: entities
	Actor
	Policy
	Proposal
	Asset
	Delivery
	Carrier
	Warehouse

	Full supply chain: operations
	Actor
	Policy
	Proposal
	Asset
	Delivery
	Carrier
	Warehouse

	Full supply chain: example flow

	Testing
	Test Harness and methodology
	Hardware configuration
	Software configuration
	Network configuration
	Blockchain's properties configuration
	Validator's properties configuration
	Methodology

	Simple supply chain
	Single batch tests
	Batch dependency tests
	Batch concurrency tests

	Full supply chain
	First use case
	Second use case
	Third use case

	Conclusion
	Tests results

