
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master Thesis

Deep Neural Networks For Detection Of Solar

Corona Mass Ejections

Candidate: Alberto Calò

Supervisor: Professor Enrico Magli

Academic year 2018/19

i

Acknowledgements

First I would like to thank Professor Enrico Magli, for his expertise, guidance and

patience throughout the process of writing this thesis and for the opportunity he

gave me. I would like to thank Assistant Professor Diego Valsesia for his always

present availability and his technical advices.

Thanks to ESA and NASA for the CME catalog I used in this work. This CME

catalog is generated and maintained at the CDAW Data Center by NASA and

The Catholic University of America in cooperation with the Naval Research Lab-

oratory. SOHO is a project of international cooperation between ESA and NASA.

A special thanks to my family that has always supported me and to my friends

that always encourage me.

ii

Contents

1 Introduction 3

1.1 Purpose of the Thesis . 3

1.2 Coronal Mass Ejection . 3

1.2.1 Effects . 4

1.2.2 Detection . 5

1.3 SOHO/LASCO . 6

2 Neural-Network-Based Classification of Images 8

2.1 Image Classification . 8

2.2 Time Series Classification . 10

2.3 Neural Network . 11

2.3.1 Convolutional Neural Network 12

2.3.2 1-D Convolution . 13

2.3.3 2-D Convolution . 14

2.3.4 3-D Convolution . 15

3 Data Pre-Processing 19

3.1 The FITS file . 19

3.2 The Time filter . 19

3.3 Size Error And Photo Error . 20

3.4 Polar Transformation . 22

3.5 Sequences selection . 22

3.6 Data Analysis . 24

4 Models Definition and Evaluation 27

4.1 Temporal Convolutional Neural Network 27

4.2 Testing the Datasets . 33

4.2.1 D-0 . 34

4.2.2 D-1 . 38

4.2.3 D-2 . 41

4.3 3-Dimensional Neural Network Model 45

iii

4.3.1 D-2 . 46

4.3.2 D-3 . 51

5 Conclusion 55

5.1 Conclusion . 55

iv

List of Figures

1.1 A CME . 4

1.2 Solar Activity that does not produce a CME 5

1.3 Solar Activity that does not produce a CME 5

2.1 Features In Classification . 8

2.2 Classification . 9

2.3 Features in Time Series . 10

2.4 A simple Neural Network . 11

2.5 Artificial Neuron . 11

2.6 Convolution 1-D . 14

2.7 Convolution 2-D . 15

2.8 Convolution 3-D part a . 16

2.9 Convolution 3-D part b . 16

2.10 Composed 3D Convolution . 17

3.1 Discarded images . 20

3.2 Images with small errors not discarded 21

3.3 Final Images . 22

3.4 Data from 01/01/2014 to 31/12/2015 24

4.1 Features Extractor, no GAP . 28

4.2 Global Average Pool . 29

4.3 Temporal Network at Input Layer 30

4.4 Temporal Network at Hidden Layers 31

4.5 Sigmoid function . 32

4.6 Example of sequences in D-0 . 33

4.7 Example of sequences in D-0 with label 33

4.8 Example of sequences with all 0 (/1) 33

4.9 Example of sequences in D1 . 34

4.10 Example of sequences in D2 . 34

4.11 Training on D-0 . 37

4.12 Training on D-0 - Zoom . 37

v

4.13 Validation on D-0 . 38

4.14 Training on D-1 . 40

4.15 Training on D-1 - Zoom . 41

4.16 Validation on D-1 . 41

4.17 Training on D-2 . 43

4.18 Training on D-2 - Zoom . 44

4.19 Validation Accuracy on D-2 . 44

4.20 3-D network . 45

4.21 Losses in 3-D network . 48

4.22 Validation in 3-D network . 48

4.23 Losses in 3-D network over D2 dataset from 30 to 50 epochs 49

4.24 Losses in 3-D network over D2 dataset from 50 to 70 epochs 50

4.25 Example of sequences in D3 . 51

4.26 Losses in D3 . 52

4.27 Accuracy in D3 . 52

1

2

Chapter 1

Introduction

1.1 Purpose of the Thesis

Space exploration and astronomical knowledge reached by humanity in the last

century have laid the foundations for new discoveries, however as a species we do

not have a complete knowledge of the space that surrounds us. Goals such as the

creation of satellite networks or the man in space have suffered and still suffer

today from problems caused by our star. One of these problem is caused by an

activity called Solar Corona Mass Ejection which can cause problems due to the

high energy it contains. Not only in space, but also on earth, we can feel the

effects of these activities because the most powerful ones can create geomagnetic

storms. The purpose of this thesis is to provide a tool, based on modern Artificial

Intelligence technologies that is able to support researchers in the recognition and

detection of these particular events. The work done tries to classify these activities

based on the observable variations that happens in solar images sequences taken

in the various years of research. To achieve this goal, techniques based on deep

convolutional neural networks have been used. To solve the space-time problem,

a first technique of separating spatial information from temporal information was

tested. Later, in order to understand if the space-time approach was valid a

network based on the 3-dimensional convolution was tested.

1.2 Coronal Mass Ejection

A Coronal Mass Ejection is a huge release of solar matter during solar eruption.

This kind of event generally occur with solar flares and they are related with

the most well-know Solar Wind. A CME release large quantities of plasma and

electromegnetic radiation into space above the sun’s surface. These ejections can

both sorrund the space near the sun (solar prominence) or go through the inter-

3

Figure 1.1: [1]A Coronal Mass Ejection

planetary space (interplanetary CME or ICME). These types of events are able

to eject millions of coronal mass components, which is the mass relative to the

outermost part of the sun, and carry a magnetic field that is more intense than

the interplanetary magnetic field [2][3]. When a CME is directed towards the

Earth interacts with the Solar Wind and the Interplanetary Magnetic Field. The

propagation speed is therefore linked to this wind and this magnetic field. This

means that after recognition, it is possible to evalute a solar event after 8 minutes

from the begin, which is the time the light takes to reach the Earth from the Sun,

while instead a CME spends one or more days before arrive on Earth [4].

1.2.1 Effects

The most well-know effect is Norther and Southern Lights (aurora borealis and

aurora australis) that is the result of the meeting of solar energetic particles and

Earth’s magnetic field at the magnetic poles. CME can cause strong aurorae in

large region, disrupt radio transmission and cause damage electrical transmission

line facilities as well; the last one, potentially, can cause power outgate. The large

energy product by a CME increase the number of free electrons in the ionosphere

that is dangerous for people at high altitude. The same problem happens for

instance at the astronouts in the space station [3]. Around the Earth, due the high

energy particles moved by the Solar Wind demages to silicon-based components

may happen; so this is a real big problem for the entire satellite system.

Future Risk

According to a report the chance of Earth being hit by a Carrington-class storm

between 2012 and 2022 is up to12%[5]. The Carrington Event was a power-

full geomagnetic storm from 1855 to 1867. On the Earth it produced telegraph

4

disturbances[6] and aurorae lights seen from Roma[7], Cuba, Hawaii and Jamaica

[3].

1.2.2 Detection

The following images represent two sequences of solar activity for two different

days. Observing the flares moves you are able to detect if a CME happens or not.

Figure 1.2: [1]Three images figure out daily sun activity. s can be seen with the
naked eye in the three images there are few variations, with the exception of the
intensity of the light of the last, which however is not sufficient to mark the activity
as CME.

In the sequence above not relevant changes were recorded. Something seems

to happen but it is not enough relevant to be marked as CME event.

Figure 1.3: [1]Three images figure out daily sun activity. As can be easily seen in
the last image, solar activity has increased considerably to the point of marking
this activity as CME

The last sequence is more relevant; in fact small changes seems to happen

between first and second images, but large differences are found moving between

second and third images. As a result of this a new CME event is cataloged.

5

1.3 SOHO/LASCO

SOHO is the acronym of Solar & Heliospheric Observatory, it is a NASA and ESA

project to study the Solar Corona and the Solar Wind. Among the numerous

instruments inside the spacecraft there is LASCO (Large Angle and Spectrometric

Coronagraph). The LASCO Catalog contains all CMEs manually identified since

1996. LASCO has three telescope C1, C2 and C3 but only C2 and C3 is used. The

catalog is incomplete because of the absence of a strong automatic CME detector

program [8]. This thesis worked on the images provided by the C2 telescope.

6

7

Chapter 2

Neural-Network-Based

Classification of Images

In this chapter you see the main classification techniques and fundamental tools

that make up a neural network, in particular a deep neural network, and a new

approch that attempts a classification by extracting features from images and then

treating them as time sequential informations.

2.1 Image Classification

Image Classification is a process inside the computer vision field that provide or

try to provide classification of images working on visual context. An example is

a Network able to distinguish within a dataset of animals which of these images

represent a cat or a dog. In this context the informations extract from an image

are called features.

Figure 2.1: Features From An Input

The features generation algorithm give you information about the image; these

informations are used by the last layer to classify the content of the image itself.

8

Figure 2.2: Classification Example

A Feature is an extremely important concept in Artificial Intelligence especially

in Pattern Recognition. It is a property of an image, sound, or phenomenon

in general that has been observed and is measurable. [9] Simply a feature is a

property or variable on which our models will perform classification and prediction.

In Computer Vision you are dealing with images and the achievement of a high

accuray is given by how good you are at extracting features from images that feed

the network. The neural networks that best serve this purpose are convolutional

networks. CNNs are the most used neural network for classification purpose[10].

You speak of convolutional networks because the mainly technique used to extract

features is convolution. In the next sections it will be explained when and how to

exploit this mathematical tool by analyzing different problems, which can be solved

by choosing, in rigth way, the most appropriate convolution. In particular we will

see how the convolution in one dimension can give us useful information about

the temporal trend; how two dimensional convolution can give information about

the images; finally, how three dimensional convolution could give we information

about sequential images. As said before currently the best algorithms for this task

are based on Convolutional Neural Network. The binary classification allows to

evaluate an image in a dataset and assign it a label that can be chosen between

two values only, since the dataset contains only two types of content. For example,

if we want to evaluate whether a set of mountains is covered with snow or not,

we can choose for the single instance between the ”snow-covered” label and the

”not snow-covered” label. The multiclass classification allows to discover which

class an image belongs to within a dataset going to evaluate various and different

possibilities. For example, if you have a dataset that contains images of dogs, cats

and elephants you want to assign to the single image only one of several different

label values, obviously going to correctly predict a cat like a cat, a dog like a dog

and so on.

9

2.2 Time Series Classification

An accurate temporal forecast is today very important in various sectors: from

the prediction of faults in the automotive sector to the value of actions in the

financial world, from the forecast of arrival of a transport system to the prediction

of weather conditions, and so on. As the name suggests, the data must have a

temporal or sequential logic.

Figure 2.3: Features capture in time series. Following the time line, from left to
right, we can observe the vectors that represent our data with their characteristics
and properties. These vectors follow a sequential logic. Note that sometimes
features are not extracted from sequential inputs, but you try directly to classify
or predict (just imagine single input values instead of vectors; in this case it is
useless to extract features because you could think of training the net simply by
changing weights and biases).

As shown in figure 2.3 it is possible to extract features from events locally

(in a temporal sense). Once again, through convolution it is possible to obtain

relations between the various input properties. In particular you can try to find

out what are the characteristics that over time change the final property of the

input. In addition to images, other sequential data such as audio or texts can

be finely processed with the Convolutional Neural Networks to reach state-of-the-

art performance for document classification and speech recognition[11] and it is

therefore possible to try to exploit these potentials in other areas such as videos

or, as in this work, images in sequence. There are various areas in which this

instrument is used: the classification of ECG signals (electrocardiogram), images

classification, motion sensor data classification, and so on.

10

2.3 Neural Network

Trying to simplify the neural biological networks, the field of artificial intelligence

has given birth to the so-called artificial neural networks (ANN). This type of

networks are composed of ”neurons” connected to each other,

Figure 2.4: As you can see this network is composed by 3 layers: the first one
is the input one, that is the data entry point (data is raw or pre-processed); the
second is a hidden layer in which you can see relations, which are weighted; the
third represents the final layer that through other weighted relationships will be
the layer from which you will extract the information for our classification.

generally, by non-linear mathematical models that give them the peculiarity

of being able to evolve over the training modifying biases and weights.

Figure 2.5: Figure 2.4 shows how the layers are composed by different neurons.
Each neuron is generally represented as in this image: you have a neuron which
is the sum of the weights, remembering that the weights represent the relations
with other neurons.

Given an input (i.e. pixels of an image) a neurons multiplies it by the associated

weight and adds the result to all the other inputs with their relative weights. At

this point the neuron passes through an activation function that generates the

final result. This type of neural networks are called feedforward because of flow is

one directional: from the input layer to the final layer crossing the various hidden

layers.

11

2.3.1 Convolutional Neural Network

One of the most important NN models is the Convolutional Neural Network,

which is the most widely used model for resolving image-driven classification

problems[12]. We can define a CNN as composed mainly of five key layers:

• INPUT layer: generally in the context of computer vision these are images.

In theory, any data can be treated by a neural network, as long as it can be

represented by an integer or a real. As seen in the previous paragraphs, there

are many situations in which neural networks can be applied. An important

note must be made about the quality and quantity of data: when possible

you must try to use a large number of input data (whether they are used to

train the network or to test the network); moreover it is very important to

have quality data and to know which data properties are actually useful for

our purpose (in this perspective you often talk about data pre-processing;

even raw data can be used).

• CONVOLUTIONAL layer: this type of layer exploits the mathematical

model of convolution to obtain an output starting from neurons that are

linked together by a particular logical region (a more in-depth analysis of

this part will follow shortly).

• SUBSAMPLING layer: it is used to reduce the size of the extracted features,

it can be useful to resize the layers due to the computational effort trying

not to affect the information obtained. The most common pooling layers

are max and average pooling. Pooling is a process of discretization[13].

The objective is the down-sampling of the input representations (generally

here the input is the output of another layer: for example, after extracting

features by convolution from an image it is possible to resize what we have

obtained) [15] reducing dimensionality and allow to formulate hypotheses on

the features contained in the sub-regions binned [13].

• FULLY CONNECTED layer or GLOBAL AVERAGE POOLING layer: the

fully connected layers are used to connect each neuron of a layer with the

neurons of the next layer; in this way each neuron of the next layer is con-

nected with all the neurons of the previous level. The number of neurons

between one layer and another varies: we can find layers that have a lower

number of neurons than the next layer. However, in convolutional neural

networks this type of layer is used after the features extraction through the

convolution mechanisms and therefore in CNN there are layers with a num-

ber of neurons higher than the subsequent layers. This is done in order to

progressive reduce the size of the agtents that appear in the network. Using

12

of one or more of these layers allows you to generate the final classes of be-

longing of a specific input. Tipically you use stack fully connected layer and

in general they perform well, but they introduce heavy computation due the

huge number of parameters that could slow down the network and maybe

overfitt. It is also possiible to use Global Average Pool on the feature maps

[16]. Like the max-pooling the GAP performs a reduction in dimensionality,

but unlike the max-pooling the GAP allows to perform an extreme reduction

in the dimensionality, however not losing points about the quality of infor-

mation extracted and also allowing a lower computational effort compared

to one fully connected layers stack.

• OUTPUT layer: it represents the layer containing all the possible classes

of belonging that our network is able to predict. It is often convenient to

use two concepts: output and logit. The logit represents the exit from the

last layer of the network before going through an activation function. The

output instead represents the value produced by the activation value. While

the output is used to verify the accuracy of the classification, the logit is

used to manage an optimizer and then to train the network.

Although various types of layers are used in the creation of this network, as the

name easily suggests, the main component is the Convolutional layer. Convolution,

in functional analysis, is an operation of two functions that produces a third

function which expresses how one of the starting function changes its shape due

to the other one. The following represent the mathematical formula of convolution:

2.3.2 1-D Convolution

As the name implies, convolution occurs in one dimension. Two different vectors

called Input and Kernel participate in the convolution in the form (Input * Kernel)

(∆T) producing an output vector. As can be seen in the image below, the kernel

size is generally small: in fact, we want to have a receptive field able of capturing

information regarding the inputs considered to be nearby. In this way it is possible

to segment the input locally and obtain features on these individual segments.

13

Figure 2.6: An example of how a vector is convolved with another generating a
new vector. The kernel, represented by the white vector, moves across the entire
input array. In particular, at each iteration (the step is defined by strides: strides
equal to one means moving one step forward, strides equal to two moving two steps
and so on. In this example the strides is equal to one) multiply the input values
that metch the floating window, or rather the kernel. Once multiplied, the final
value is added and obtained. In the second iteration for example the calculation
is (10 * 1/5) + (80 * 1/2) + (20 * 1/2) = 52. As you can see in the first and in
the last iteration the sliding windows does not completely match the input array:
in this case the cell assumes a value of zero and therefore the calculation in the
first iteration is (0 * 1/5) + (10 * 1/2) + (80 * 1/2) = 45. The choice to use 0 and
start from a cell with an index lower than the starting one is dictated by padding:
in this case the padding is same; in other cases, as in padding reflect instead of
using zero, the opposite value is reflected, in this case the last of the vector.

As mentioned above the convolution takes place in the form (Input * Kernel)

(∆T). This means that we are going to evaluate Input and Kernel as a domain

varies, this domain can be both spatial and temporal; in this specific case, the

temporal character of the domain was highlighted in this context since this type

of convolution is particularly suitable for the analysis of the series following a

temporal logic.

2.3.3 2-D Convolution

The convolution seen previously works in one dimension, but in reality there is no

upper limit to the dimensionality of the functions, vectors or matrices to which it

can be applied. For example, if we consider an image, it can be seen as a pixels

matrix and therefore be considered as a two-dimensional structure. The multidi-

14

mensional convolution works as the one-dimensional convolution, therefore start-

ing from two functions f and g of n-dimensions, a res function of n-dimensions is

obtained as well. By creating a 2-dimensional Kernel you can use this mathemat-

ical tool to extract information from an image. Inputs and kernels are therefore

in the form (Input * Kernel) (∆x, ∆y).

Figure 2.7: An Example of 2-D Convolution. In this example the kernel is a two-
dimensional matrix as well as the input (if you are on an initial layer this input
could be an image where each cell of the matrix represents a pixel). In this case
the strides is three, in fact we can see how the first cell of the 3 * 3 kernel is in
the first iteration in position (0,0) while in the second it is in position (0, 3). The
calculation of the first iteration is (1*1) + (1*1) + (1*0) + (1*0) + (0*0) + (1*1)
+ (1*0) + (1*0) + (0*1) = 3. In this case you do not start from (-1, -1), but from
(0, 0) because the padding used is valid.

2.3.4 3-D Convolution

A 3-dimensional neural convolution network is generally used to extract features

from three-dimensional matrices or to establish a relationship between 3 dimen-

sions. It generally used to extract patterns from three-dimensional images by

studying fields such as height, width and depth. A specific use is in the medical

field for brain tumor segmentation [17], or even the detection and segmentation of

videos [18]. Over the years various attempts have been made, such as the recog-

nition of human actions, however due to the large number of necessary data and

the difficulties faced when training 3D convolution kernels only limited successes

have been obtained [19].As video analysis uses frames as a temporal sequence of

images in this work you evaluated the usefulness of using this type of convolution

to extract information about the space-time transformations that occur in the

15

Figure 2.8: An example of 3 dimensional convolution. As you can see the
kernel is a 3 dimensional matrix and the input matrix is threedimensional
as well. In this case the padding is valid, it means you start from posi-
tion (0,0) and every iteration the kernal does not spill out the matrix. The
first calculation is [(1*1)+(0*1)+(0*1)+(1*0)+(0*0)+(0*1)+(0*0)+(0*0)+(0*1)]
+ [(1*1)+(1*1)+(0*0)+(0*0)+(0*0)+(0*1)+(0*0)+(0*0)+(0*1)] = 3. On this
case the strides is two on te x and y axes, despite in z direction is 1.

time sequences of solar photographs. Inputs and kernels are in the form (Input *

Kernel) (∆x, ∆y, ∆z) or keeping in mind the purpose of this work you can think

of transforming the last dimension from spatial to temporal obtaining (Input *

Kernel) (∆x, ∆y, ∆t).

Figure 2.9: In this figure the trend of the convolution is shown and how it moves
in the three dimensions: you have first a displacement on the x axis, successively
on the y axis and finally on the z axis.

16

Disjoint Space from Time

The most common technologies in the field of deep learning adopt an approach

like the one seen above, that is to take advantage of the convolution in three

dimensions when dealing with spatio-temporal data. The work done during this

thesis has also tried a new type of approach: the separation of spatial dimensions

from temporal dimensions. In particular through the use of the convolution in

two dimensions a features extractor was built; features that were then the entry

of a new network that through the one dimensional convolution tries to produce

a time series classification.

Figure 2.10: Composed 3D Convolution. The figure explains how it is possible to
separate the spatial dimensions from the temporal dimensions. On the left side
of the image you see how a pair of images, which have a sequential logic between
them, are elaborated individually with the convolution techniques in 2 dimen-
sions.Once the features maps of both images are obtained, through appropriate
transformations, they are a layer input convoluted for the time dimension.

Some works have been carried out in this direction, but the approach involves

two-dimensional extractions followed by temporal analysis in the single blocks

[20].The one tested in this thesis is, as mentioned, an approach that aims first at

the complete extraction of all the features from all the images in the sequences

and then completes the classification through temporal analysis.

17

18

Chapter 3

Data Pre-Processing

3.1 The FITS file

FITS (Flexible Image Transport System) is the data format that is most used for

scientific data in the astronomical field. FITS file is structured on matrices and

multidimensional arrays and it allows the analysis and storage of these files (as

in our case the photos from the coronograph) in a format that allows, besides the

storage of the image, the creation of tables for the storage of information (therefore

you have a header that allows you to have access to numerous information such

as the date of creation of the file and the date on which the image was taken, or

who treated it, or the coronograph that took the image, and so on) [14]

3.2 The Time filter

You want to create sequences of images that can feed a neural network able to

extract space-time information from these sequences. Analyzing just the temporal

concept it is clear that 2 images taken at t 1 and t 2 that represent the transaction

from a state of ”quiet” of the sun to a state that causes a CME, cannot be

considered in the same way as two images that similarly produce this transaction,

but which are taken in a range t 1 >> t 2. An analysis carried out throughout

the data set showed that the most common number of seconds between two images

is 720. In order to obtain the maximum number of pairs close to each other all the

images at a distance between 710 seconds and 730 seconds are considered valid for

our purposes, while the others are discarded. It is useful to note that the images

at the beginning of the dataset have a higher average than the most recent images

that have an average like the one computed. This trend show you how manual

photos management has been improved over time.

19

3.3 Size Error And Photo Error

Once discarded images that do not follow the temporal logic previously descripted,

the aim next is to analyze which of these images is actually usable for our purpose.

The first check performed is on the FITS file headers: in this way anomalous values

in the dimensions can be easily identified and images that do not respect the

standard dimensions for height and width values can be discarded. The allowed

value for both sizes is 1024: the images are therefore 1024 * 1024. Although the

Figure 3.1: Discarded images. The three images in the figure represent corrupt
images that have been discarded. It is evident to a visual analysis as well that
these images can cause problems in the future training of the network. In the
first image, although the solar corona is visible, coronal mass expulsion may have
occurred in the portion of the image where we have no information. In the third
image half of the solar corona and half of the space around the sun are inaccessible.
In the second the solar corona is even completely inaccessible.

header gives you a first advice on the images to be discarded a more accurate

analysis of the properties it is done: it was discovered that in some of these

images one dimension, or both, does not have the expected values. The image

is therefore again processed even if the header returned the correct values: when

unexpected values of x or y are found, the image is discarded. After this filtering,

using statistical analysis on samples, it is discovered that some images pass the

dimensional filter, but have ”switched-off” pixels. Figures 3.1 and 3.2 show the

meaning of ”switched-off”. Normal ”switched-off” pixels depend on the darkening

20

of the center of the sun in order to better capture the lights of the solar corona:

the value associated with these pixels is therefore zero. It has been noted that

an image that optimally darkens the solar corona has a value of zero pixels equal

to 62463 or 62464. By studying all the filtered images, the photos that have a

value much higher than the previous values of zero pixels are discarded (remember

that the coronograph is subject to possible radiations coming from space and it

is therefore possible that the images are not transferred to Earth in the correct

way). In order to avoid an excessive downsizing of the dataset only the strongly

corrupted images have been discarded: the images that had less than double pixels

that are expected to be corrected have been kept as good images.

Figure 3.2: Images with small errors not discarded. Although some information
has been lost in these images it is clear that the main information is still available
to us and therefore it was decided to use these photos in the future training of the
network.

Another important thing is the images that compose coronograph first months

usage: in this part of the dataset, in fact, the center of the sun is darkened, but

the value of the pixels is not zero such as those discussed above. In this situation

the number of pixels equal to zero of an image must be exactly zero. Particular

attention therefore has to be paid to avoid that correct images are treated as

corrupted.

21

3.4 Polar Transformation

To have an effective representation of round images like the sun, remainig images

have been transformed into polar coordinates going to reduce also the dimension-

ality of the y axis. This step is the last step in filtering and transforming the data.

In the following paragraphs an analysis is made on the contents of the images

themselves and a focus is done on the right choice of the best temporal sequences

length. Figure 3.3 shows two sample of the tranformation ouput.

Figure 3.3: Two samples obtained after filtering and transforming.As can be easily
observed, you have gone from polar coordinates as in the figure 3.2 to cartesian
ones.

3.5 Sequences selection

Due to the large number of data and their quality, it was necessary to analyze

these images and discarded the corrupted images before being able to feed the

network with these data. In addition to a purely qualitative selection, we must

remember that our intent is to classify time sequences. In order to get the best

trade-off between the total sequences number and the length of the each sequence,

the following table can be observed:

22

Seq Length No. of Sequences No. of Events
2 168550 139431
3 150656 187042
4 134200 221918
5 119268 245979
6 106057 261836
7 95393 274425
8 86909 285493
9 80007 295321
10 73401 301329
11 67017 300601
12 60833 297734
13 54864 290119
14 49167 278965
15 43657 264289
16 38332 246179
17 33315 225691
18 28985 206249
19 25651 191166
20 22439 174194

Table 3.1: The possible lengths of the sequences and the relative number of se-
quences obtained on the data held. Next to this information it is also possible to
see the number of events that can be obtained starting from a certain length.

No. of Events No. of Sequences
0 27456
1 2804
2 3064
3 3462
4 3823
5 4248
6 4285
7 4052
8 3839
9 3715
10 12653

Table 3.2: Number of sequences per number of events with length 10. It can
easily be seen that the number of sequences made up entirely of non-events is
much greater than in all the other types of sequences. In second position we find
sequences entirely constituted by events. These two pieces of information allow
us to understand that the general rule is that when the sun produces events these
happen for a long time, as when the sun is in a quiet phase it does not produce
event for a long time (generally longer than when it produces events).

The goal is to get the best balanced sequences. It means that the number of

23

sequences containing Not-Events should be as close as possible to the number of

sequences containing Events. For instance, choosing 2 as length, 93538 sequences

contain only Not-Events, 10593 sequences contain a Not-Event and an Event and

64419 contains only Events are generated; you cannot take this because the se-

quences are not balanced enough. The length that most closely fits this property

is 10. Using 10 you obtain the most uniform distribution of sequences contain

events and not events. The number of sequences which contain no events and

sequences that only contain events still remains to be balanced. Furthermore, we

need to balance the number of sequences that produce an event and sequences that

do not produce an event (this is done in the following paragraph while creating

the datasets).

3.6 Data Analysis

Before proceeding with the creation of data sets it is useful to take a look at

how they are actually composed. Analyzing the images in a given period and

computing the average for each image, we get obtain following graphic:

Figure 3.4: Image’s mean per date in range 01/01/2014 - 31/12/2015

In the x-axis it is represented every day of which we hold data starting from

January 1st of 2014 until December 31st of 2015 (a total of two years of images).

For each of these days, the average of each image associated with that day is cal-

culated (since each image is composed of pixels, the average value of all the pixels

contained in a given image can be calculated). The y-axis therefore indicates the

average value of each image.

As you can see, there is a difference, even if not particularly strong, between the

24

average of the not-cme (in red) and the cme (in blue) on a particular day; this

makes us notice how the distinction and therefore the classification of CMEs may

be possible for a purely visual analysis. It’s important to note that this difference

is visible only when CME and not-CME occur on the same day, or at most in

neighboring days (if you take images at a great distance over time, like a CME on

April 4th of 2014 and a not-CME on December 23 of 2014, in not-CME turns out

to have a much higher average than CME, and this makes them incomparable,

this could be due to the fact that the coronograph orbits with the Earth around

the Sun, and therefore performs a periodic movement, which is easily observed in

the image above, between Aphelion and Perihelion, changing the exposure of the

taken photo); this can give value to the type of experiment dealt with in this thesis

in that by analyzing how features change over time we try to find a change in the

image from the sun at the local level. We recall as mentioned in the previous

paragraph that to train the network, series of length 10 are used where on average

the ”temporal distance” between one image and the other is 720 seconds; with the

exception of some particular cases where some images are at a distance of 1440

seconds, this last choice was made in order not to excessively reduce the size of

the final datasets.

Despite these differences at the local level, you can see that often not-CME and

CME of the same day have almost identical averages and this could lead to a diffi-

culty in their correct classification. Furthermore, it can easily be seen how outliers

exist for both classes, which could cause the classification of certain sequences to

fail. The problem of exposure also occurs at the local level even if with less impact.

To avoid this problem, each image of each sequence in the tests described in the

following paragraphs is normalized by subtracting each image from its support.

The average subtraction per channel is used to center the data around zero for

each channel (in this case a pixel in the image is not RGB, but is represented

by a float). This generally helps the network learn faster because the grades are

uniformly for that channel.

25

26

Chapter 4

Models Definition and Evaluation

4.1 Temporal Convolutional Neural Network

The approach performed in this work consists of a neural network divided mainly

into two parts:

• Features Extractor: the first is a deep convolutional network designed to

extract spatial features from a sequence of images. Being focused on spatial

concepts, this type of network extracts information from the single image in

order to obtain features (exactly 64 for each image) which then will be used

by the second part of the network. Once the features from each single image

are obtained, through a Global Avarege Pooling and a reshaping of the last

layer, the data show only temporal information.

• Temporal Network: information in input at this point must to be handle

in order to learn how they evolve over time. For this purpose this Tempo-

ral Convolutional Network is used, taking advantage from one dimensional

convolution potentiality. At the end, information obtained is used for classi-

fication of sequences and for computation of loss that allows us to train the

network itself.

The following figure represents the main part of the features extractor:

27

Figure 4.1: Features Extractor Starting From a Sequences of 10 images, for rep-
resentative simplicity only the features maps of a single image are shown.

Starting from a sequence of 10 images, each polarized and therefore of size

1024 * 512, we pass through a convolution in 2 dimensions in which the associated

weights and the relative kernel have dimension:

[3, 3, 1, 16] [1, 2, 2, 1]

The first two dimensions (3, 3) represent the receptive spatial kernel field, the third

(1) the number being at the first layer represents the number of input channels of

each image. Remember that the input layer is given in the format:

[Batch size per seq length, 1024, 512, 1]

Finally the last dimension (16) represents the number of features extracted at this

level. In order to perform subsampling a Kernel Dimensionality Reduction is used,

instead of the common average or max pooling strategies. Therefore the strides

used have the same spatial dimensions as the kernel:

[1, 3, 3, 1] [1, 2, 2, 1]

Obviously first and last dimension are equal to 1. In this way we can reduce the

dimension of x and y input image axis. This action produces first hidden layer

with dimension:

[Batch size per seq length, 512, 256, 16]

Proceeding in this way, because the same type of convolution is used, the other

hidden layers are obtained. Using the previous layer as input and using a kernel

of dimensions:

[3, 3, 16, 32] , [1, 2, 2, 1]

28

we get the second hidden layer with dimension:

[Batch size per seq length, 256, 128, 32]

And with:

[3, 3, 32, 64]

as kernel, you get the third hidden layer with dimension:

[Batch size per seq length, 128, , 64]

We finally got the 64 features. Now we need to reduce the spatial dimensionality

so that upon exiting this network we only have the above mentioned features. The

GAP (Global Average Pool) is then used as solution.

Figure 4.2: Global Average Pooling, for representative simplicity only the features
maps extracted from a single image are shown. Note that each cell on the right is
not a matrix, but a scalar number.

As the name suggests, the GAP is nothing more than an average pool layer

used to reduce the global size of the input layer. In this solution it is used to bring

the dimension of the third layer hidden to:

[Batch size per seq length, 1, 1, 64]

[Batch size per seq length, 64]

At this point, remembering that the length of the series is equal to 10, a reshaping

occurs in order to obtain as output of the feature extractor a tensor with

dimension:

[Batch size, 10, 64]

As you can see we are trying to move from two spatial dimensions to a temporal

29

one, at this point this type of information can be treated, and then passed, to the

second part of the network, the temporal one.

The following image shows the first layer of this part of the network, the input

layer of the temporal network:

Figure 4.3: Temporal Network at input layer. On the left side the input of the
temporal network is shown; using a kernel and convolution in 1 dimension the
dimensionality is reduced. On the right side you can se the products of these
convolution: a smaller number of features have been summerized.

This layer takes in input the 64 features of each of the 10 images that make

up the sequence to reduce the dimensionality in order to understand the temporal

progression of the sequence. Starting from a size input:

[Batch size, 10, 64]

Going through a one-dimensional convolution with a shape kernel:

[3, 64, 32]

The first dimension (3) represents the time window (and therefore the cardinality

of extracted features that you want to observe together) that the kernel is able to

associate with a specific location; second (64) and third (32) represent respectively

the number of inputs and the number of outputs associated with the relative

weights and biases (the latter only for the outputs). The first temporal hidden

layer is obtained:

[Batch size, 8, 32]

30

Figure 4.4: Temporal Network at input layer..

Figure 4.5 shows how the process described above can be repeated for the other

layers in order to obtain a logits unit that can be used for prediction.

Proceeding in the same way with a kernel of dimensions:

[4, 32, 16]

the second hidden temporal layer of dimensions is obtained:

[Batch size, 5, 16]

With:

[3, 16, 8]

you get the third:

[Batch size, 3, 8]

and finally with:

[3, 8, 1]

you get the scalar value that will be used for the prediction:

[Batch size, 1]

Once this value is obtained, you can go through an activation function to get our

prediction. Since our aim is to obtain a binary classification, the sigmoid is used

as activation function. The sigmoid function is an increasing monotonic function

that comes from -∞ and arrives at +∞, but at value 0 in the x-axis it is exactly

0.5. Using this function we can classify a sequence entering our network as a se-

quence that generates a CME if the output value is greater than 0.5, as a sequence

that does not generate a CME otherwise. To do this the y obtained from the

sigmoid is rounded to 0 or to 1.

31

Figure 4.5: [21]Example of how Sigmoid Function Work

S(x) =
1

1 + exp(−x)

S(x) =
exp(x)

exp(x)− 1

Using this function the sigmoid cross entropy with logits of tensorflow during train-

ing is used to give information to the optimizer, so that it can be able to perform

the backpropagation. An Adam Optimizer is used to perform the learning.

Summary

Input : [Batch size per seq length, 1024, 512, 1]

Hidden Layer1 : [Batch size per seq length, 512, 256, 16]

Hidden Layer2 : [Batch size per seq length, 256, 128, 32]

Hidden Layer3 : [Batch size per seq length, 128, 64, 64]

GAP : [Batch size per seq length, 1, 1, 64]

GAP reshaped, T emporal Input : [Batch size, 10, 64]

Hidden Layer1 temporal : [Batch size, 8, 32]

Hidden Layer2 temporal : [Batch size, 5, 16]

Hidden Layer3 temporal : [Batch size, 3, 8]

Logits, Outputs : [Batch size, 1]

32

4.2 Testing the Datasets

To create the datasets a note must be made: the events in the catalog are cataloged

with a value from q0 to q5, which represents the quality (intended as intensity) of

the event.

From now, different datasets are defined:

• the first one, called D0, contains events of all qualities;

Figure 4.6: Example of sequences in D-0. Sequence 1 does not produce a CME:
in fact the image in position 10 is labelled with 0. Sequence 2 produces a CME:
in fact image in position 10 is labelled with 1. Remember that a NOT CME is
labelled with 0 and a CME with quality q0, q1, q2, q3, q4, q5 is labelled with 1

Figure 4.7: Example of sequences in D-0 with label. This figure reproduces the
figure above replacing the quality with the label 1.The cells with the thick lines
represent the label of the entire sequence.

Figure 4.8: Example of sequences in D-0 with images marked similar. In the
dataset D0 (in D1 and in D2 as well) it is common to find sequences like the
two shown in figure: often the images in the sequence contain the same marking
values.

• the second one, called D1, contains only events with quality 3, 4 and 5;

33

Figure 4.9: Example of sequences in D1. Sequence 1 does not produce a CME: in
fact the image in position 10 is labelled with 0. Sequence 2 produces a CME: in
fact image in position 10 is a q3 quality event marked as 1.

• the third and last one, called D2, contains all events qualities within the

sequences, but the event that appears in position 10 has quality 3, 4 or 5.

Figure 4.10: Example of sequences in D2. Sequence 1 does not produce a CME:
in fact the image in position 10 is labelled with 0. Sequence 2 produces a CME:
in fact image in position 10 is a q4 quality event marked as 1.

Of course the work done in figure 4.7 is done for all the datasets.

In order to allow the network to learn to recognize both types of sequences, it

is necessary to create fairly balanced training sets. Furthermore, to avoid that

variance and standard deviation can give us altered values during validation and

testing, these last two datasets have also been balanced so that the number of

labels of CME generating sequences is similar to the number of sequences that do

not generate CME. This causes a further elimination of data, especially in training

sets.

4.2.1 D-0

Training Set

Label 0: 27917, after resizing : 20000

Label 1: 19059, after resizing : 19059

Sequences 0 ones: 12907 (0 are labelled with 1)

Sequences 1 ones: 1488 (880 are labelled with 1)

Sequences 2 ones: 1696 (987 are labelled with 1)

Sequences 3 ones: 1889 (1071 are labelled with 1)

Sequences 4 ones: 2134 (1215 are labelled with 1)

34

Sequences 5 ones: 2308 (1340 are labelled with 1)

Sequences 6 ones: 2355 (1380 are labelled with 1)

Sequences 7 ones: 2154 (1347 are labelled with 1)

Sequences 8 ones: 2158 (1438 are labelled with 1)

Sequences 9 ones: 2081 (1512 are labelled with 1)

Sequences 10 ones: 7889 (7889 are labelled with 1)

Validation Set

Label 0: 6299, after resizing : 5500

Label 1: 5445, after resizing : 5454

Sequences 0 ones: 3027 (0 are labelled with 1)

Sequences 1 ones: 445 (214 are labelled with 1)

Sequences 2 ones: 466 (239 are labelled with 1)

Sequences 3 ones: 566 (286 are labelled with 1)

Sequences 4 ones: 584 (291 are labelled with 1)

Sequences 5 ones: 673 (339 are labelled with 1)

Sequences 6 ones: 669 (349 are labelled with 1)

Sequences 7 ones: 746 (418 are labelled with 1)

Sequences 8 ones: 610 (357 are labelled with 1)

Sequences 9 ones: 706 (499 are labelled with 1)

Sequences 10 ones: 2453 (2453 are labelled with 1)

Testing Set

Label 0: 8980, after resizing : 5700

Label 1: 5700, after resizing : 5700

Sequences 0 ones: 3712 (0 are labelled with 1)

Sequences 1 ones: 483 (298 are labelled with 1)

Sequences 2 ones: 495 (304 are labelled with 1)

Sequences 3 ones: 540 (330 are labelled with 1)

Sequences 4 ones: 615 (366 are labelled with 1)

Sequences 5 ones: 651 (382 are labelled with 1)

Sequences 6 ones: 751 (466 are labelled with 1)

Sequences 7 ones: 659 (425 are labelled with 1)

Sequences 8 ones: 639 (437 are labelled with 1)

Sequences 9 ones: 544 (381 are labelled with 1)

Sequences 10 ones: 2311 (2311 are labelled with 1)

35

Evaluation

The following tables represent the scoring from the traning of the network and

the validation step. The parameters represent the learning rate (that is, how

parameters change during the descent of the gradient; the smaller is this changing,

the more specific characteristics could be noticed, but there is a risk of generalizing

too little the network: it may not be able to recognize other sequences than those

used during training. In this case we talk about overfitting. On the other hand if

it is too high we can jump between different values too quickly, risking to skip local

lows. In this case we talk about underfitting), the number of epochs of training

(the number of times that the whole training set passes through the network),

the training loss (or how much the predicted value is far from the real value),

the validation loss (like the training loss, but the calculation is performed on the

validation set) and validation accuracy (how much the batch validation passed to

the network is accurate, in percentage terms).

Params: learning rate: 1e-6, epochs : 2.
Each epochs run for 3h and 12m.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
1 31.1602 79.7908 51.67%
2 26.3456 66.5545 51.93%

Params: learning rate: 1e-4, epochs : 3.
Each epochs run for 3h and 47m.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
1 30.9787 61.3146 47.79%
2 10.3879 13.3667 44.35%
3 10.1101 12.7287 46.92%

Params: learning rate: 1e-5, epochs : 5.
Each epochs run for 3h and 26m.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
1 0.6977 0.7139 49.29%
2 0.6853 0.7069 49.61%
3 0.6816 0.7065 47.98%
4 0.6792 0.7086 50.09%
5 0.6775 0.7100 50.15%

Table 4.1: Experiments on D-0

36

Figure 4.11: D-0 is trained over two epochs with different learing rate

As can be seen from the image and the data in the table, all three experiments

seem to decrease towards limit values. It is evident that training with learning rate

= 1e-5 decreases to its minimum value faster than the others; this minimum

value is also the smallest recorded. The training with learing rate = 1e-6 and

learning rate = 1e-4 decreas slowly to a limit that is approximatly near to 10,

that is higher than 0.6853 recorder for the training with learning rate = 1e-5. For

that reason the experiment is again performed with learning rate = 1e-5 increase

the number of epochs to 5 as reported in the previous table.

Figure 4.12: D-0 losses training and validation on experiment 3

As can be seen from Figure 4.8, the loss of the training set decreases rapidly

until it converges to a value of 0.67. This value seems to diminish very little during

all the ages, so it is useless to continue further in the training. A similar argument

can be made by observing the loss of the validation-set, which converges rapidly

37

to a value of 0.70 and in the last epochs oscillate slightly.

Figure 4.13: D-0 Validation Accuracy over 5 epochs

Figure 4.9 shows us how the accuracy fluctuates around the value of 50% for

all training periods (observed in last section of table 4.3 as well). This information

combined with the training loss, which states that the network has stopped learn-

ing, makes us understand that this type of network is not able to learn information

for the D-0 dataset.

4.2.2 D-1

Training Set

Label 0: 19070, after resizing : 1700

Label 1: 1632, after resizing : 1632

Sequences 0 ones: 1549 (0 are labelled with 1)

Sequences 1 ones: 119 (105 are labelled with 1)

Sequences 2 ones: 126 (109 are labelled with 1)

Sequences 3 ones: 138 (116 are labelled with 1)

Sequences 4 ones: 155 (131 are labelled with 1)

Sequences 5 ones: 138 (117 are labelled with 1)

Sequences 6 ones: 118 (102 are labelled with 1)

Sequences 7 ones: 99 (84 are labelled with 1)

Sequences 8 ones: 99 (86 are labelled with 1)

Sequences 9 ones: 86 (77 are labelled with 1)

Sequences 10 ones: 705 (705 are labelled with 1)

38

Validation Set

Label 0: 4702, after resizing : 500

Label 1: 474, after resizing : 474

Sequences 0 ones: 443 (0 are labelled with 1)

Sequences 1 ones: 34 (30 are labelled with 1)

Sequences 2 ones: 43 (31 are labelled with 1)

Sequences 3 ones: 41 (33 are labelled with 1)

Sequences 4 ones: 41 (33 are labelled with 1)

Sequences 5 ones: 38 (34 are labelled with 1)

Sequences 6 ones: 33 (26 are labelled with 1)

Sequences 7 ones: 29 (27 are labelled with 1)

Sequences 8 ones: 31 (25 are labelled with 1)

Sequences 9 ones: 26 (20 are labelled with 1)

Sequences 10 ones: 215 (215 are labelled with 1)

Testing Set

Label 0: 6064, after resizing : 406

Label 1: 406, after resizing : 406

Sequences 0 ones: 392 (0 are labelled with 1)

Sequences 1 ones: 23 (23 are labelled with 1)

Sequences 2 ones: 24 (21 are labelled with 1)

Sequences 3 ones: 18 (16 are labelled with 1)

Sequences 4 ones: 21 (19 are labelled with 1)

Sequences 5 ones: 24 (23 are labelled with 1)

Sequences 6 ones: 23 (20 are labelled with 1)

Sequences 7 ones: 20 (20 are labelled with 1)

Sequences 8 ones: 21 (20 are labelled with 1)

Sequences 9 ones: 23 (21 are labelled with 1)

Sequences 10 ones: 223 (223 are labelled with 1)

39

Evaluation

Params: learning rate: 1e-5, epochs: 10.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
1 0.7722 0.7998 49.53%
2 0.7134 0.7427 47.56%
3 0.7120 0.7413 47.10%
4 0.7104 0.7392 47.33%
5 0.7090 0.7392 47.10%
6 0.7076 0.7386 46.57%
7 0.7064 0.7377 46.41%
8 0.7052 0.7396 46.18%
9 0.7040 0.7401 46.18%
10 0.7029 0.7415 46.18%

Table 4.2: Experiment on D-1

In this experiment is evaluated the net just using a learning rate = 1e-5, due the

goal now is not to find the best fitting for the net, but if the net is able or not

to predict our datas. As shown in D-0, a learning rate of 1e-5 is a good one to

perfom the training. Due the size of D-1, that is small than D-0, the number of

epochs is doubled in order to be sure that the train is not stopped early.

As shown in table 4.4 and after in figures 4.10 and 4.11 the training loss seems to

converge rapidly after a few eras to the limit value of 0.70, while the validation

loss, similarly, converges around 0.74.

Figure 4.14: Net trained on D-1 dataset. Are shown the training and validation
losses.

40

Figure 4.15: Zoom on last 3 epochs on Training the Net with D-1 dataset

Figure 4.16: Validation Accuracy on D-1. The first figure shows the general trend.
The second and third ones show the trand in a specifc epoch.

The figures below show the trend of Validation Accuracy. They are reported

first and last epochs that represent best and worst performance. How you can

see the accuracy fluctuate around the 50%. It can be said that the model fails to

learn even on D-1.

4.2.3 D-2

Training Set

Label 0: 12759, after resizing : 1800

Label 1: 1743, after resizing : 1743

Sequences 0 ones: 1459 (0 are labelled with 1)

Sequences 1 ones: 97 (63 are labelled with 1)

Sequences 2 ones: 105 (74 are labelled with 1)

Sequences 3 ones: 108 (70 are labelled with 1)

41

Sequences 4 ones: 116 (71 are labelled with 1)

Sequences 5 ones: 119 (72 are labelled with 1)

Sequences 6 ones: 135 (90 are labelled with 1)

Sequences 7 ones: 111 (79 are labelled with 1)

Sequences 8 ones: 102 (65 are labelled with 1)

Sequences 9 ones: 116 (84 are labelled with 1)

Sequences 10 ones: 1075 (1075 are labelled with 1)

Validation Set

Label 0: 3072, after resizing : 560

Label 1: 554, after resizing : 554

Sequences 0 ones: 400 (0 are labelled with 1)

Sequences 1 ones: 27 (11 are labelled with 1)

Sequences 2 ones: 29 (13 are labelled with 1)

Sequences 3 ones: 33 (16 are labelled with 1)

Sequences 4 ones: 33 (16 are labelled with 1)

Sequences 5 ones: 43 (18 are labelled with 1)

Sequences 6 ones: 43 (28 are labelled with 1)

Sequences 7 ones: 43 (22 are labelled with 1)

Sequences 8 ones: 35 (19 are labelled with 1)

Sequences 9 ones: 43 (26 are labelled with 1)

Sequences 10 ones: 385 (385 are labelled with 1)

Testing Set

Label 0: 4131, after resizing : 400

Label 1: 401, after resizing : 401

Sequences 0 ones: 330 (0 are labelled with 1)

Sequences 1 ones: 19 (12 are labelled with 1)

Sequences 2 ones: 18 (11 are labelled with 1)

Sequences 3 ones: 15 (7 are labelled with 1)

Sequences 4 ones: 17 (11 are labelled with 1)

Sequences 5 ones: 29 (15 are labelled with 1)

Sequences 6 ones: 22 (13 are labelled with 1)

Sequences 7 ones: 27 (15 are labelled with 1)

Sequences 8 ones: 20 (15 are labelled with 1)

Sequences 9 ones: 20 (18 are labelled with 1)

42

Sequences 10 ones: 284 (284 are labelled with 1)

Evaluation

Params: learning rate: 1e-5, epochs : 5.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
1 18.1357 19.4116 50.81%
2 0.8102 0.7626 55.43%
3 0.7267 0.7000 54.89%
4 0.7187 0.6980 51.63%
5 0.7117 0.6987 48.36%

Table 4.3: Experiment on D-2

[Aggiungere i valori dei TP, TN, FP e FN per spiegare il perchè quei valori

come 54, 55% non possono essere presi in considerazione: far vedere che per brevi

alcuni periodi la rete predice sempre lo stesso risultato come ad esempio 0 e che

quando arrivano in sequenza sequenze che non producono eventi spesso si hanno

valori come 100% di accuratezza che spostano verso l’alto l’accuratezza generale

dell’intervallo e di una determinata epoca, e che quindi non possono essere con-

siderati come veritieri]

Figure 4.17: Net trained on D-2 dataset. Are shown the training and validation
losses.

As shown in table 4.5 and in figure 4.13 both losses tend to fall quickly. Already

in the middle of the second epoch we are almost close to the convergence value,

which is around 0.72 for the training-set and around 0.69 for the validation-set.

43

Figure 4.18: Zoom on last 3 epochs on Training the Net with D-2 dataset

In figure 4.14 we see how, especially for the validation loss, in the last two

epochs the value stops around 0.698, moreover while this value is blocked, in

training it goes down, even if very little. We therefore stop and observe the

accuracy value shown in figure 4.15 and in table 4.5.

Figure 4.19: Validation Accuracy on D-2. The first figure shows the general trend.
The second and the third ones the accuracy over first and last epoch

Figure 4.15 shows how the accuracy value still fluctuates around 50%. We

can therefore state that the network randomly predicts the class to which the

sequences belong.

With these experiments it was not possible to classify the classes of belonging of

the sequences in a fairly correct way, independently of their quality. You might

think that the space-time approach is not suitable for this type of data or simply

that the network can be right, but not able to learn from this kind of data.

44

4.3 3-Dimensional Neural Network Model

In order to understand if a space-time approach can work on this type of data, a

new network model has been defined to try to classify the sequences. This model

is no longer structured on the division of tasks by the sub-networks within the

network. The new structure tries to use the convolution using three dimensions,

trying to mix the spatial approach with the temporal one.

Figure 4.20: 3-D network

Staring from a sequences of [Batch size, 10 , 1024, 512, 1] and pass throug a

3-D convolution with kernel dimensions: [3, 3, 3, 1, 16] and strides: [1, 1, 2, 2, 1]

you get the first hidden layer. The second hidden layer is compute with [3,

3, 3, 16, 32] as kernel size and [1, 1, 2, 2, 1] as strides. The third hidden layer is

compute with [3, 3, 3, 32, 64] as kernel size and [1, 1, 2, 2, 1] as strides. The fourth

hidden layer is compute with [3, 3, 3, 64, 64] as kernel size and [1, 1, 2, 2, 1] as

strides; this last one hidden layer is used to reduce time dimensionality over the

same number of features. For subsampling this last layer is used a max pooling

strategy in order to reduce computationally effort for the fully connected node.

After flat this layer all neurons are connected with the first fully connected

node followed by a second fully connected node in order to get one neuros

used for the classification.

Summary

Input : [Batch size, 10, 1024, 512, 1]

Hidden Layer1 : [Batch size, 8, 512, 256, 16]

Hidden Layer2 : [Batch size, 6, 256, 128, 32]

45

Hidden Layer3 : [Batch size, 4, 128, 64, 64]

Hidden Layer4 : [Batch size, 2, 64, 32, 64]

Max Pooling Layer : [Batch size, 2, 32, 16, 64]

Fully Connected Layer1 : [Batch size, 65536]

Fully Connected Layer2 : [Batch size, 1000]

Outputs, Logits : [Batch size, 1]

4.3.1 D-2

In order to perform this network, useful to show if a 3D approach can be done,

the D2 dataset (described in the paragraph 4.2.3) has been used: in this way you

can immediately understand if these types of experiments are valid or not.

Evaluation

To evaluate this new network you started from information obtained from the

previous network. In fact, although the previous network was not able to give you

adequate accuracy, it was useful in giving you some indications concerning some

parameters such as the learning that you decided to set with a starting value of

1e-6 and the number of epochs that you have seen it necessary to make it grow in

particular when the datasets are small (like the D2 that is used in this training).

Params: learning rate: 1e-6, epochs : 30.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
1 16.7932 19.8135 51.74%
2 4.2734 8.0294 52.50%
3 1.5243 5.2119 51.50%
5 0.7040 4.2173 54.75%
10 0.2572 3.9651 56.71%
15 0.2154 4.4007 56.71%
20 0.0429 5.3073 59.61%
21 0.0374 5.3575 60.30%
22 0.0758 5.4979 60.42%
28 0.0974 4.6807 62.04%
29 0.0794 4.6807 60.4%
30 0.3685 5.0527 54.15%

Table 4.4: 3-D experiment on D-2. For ease of visualization only some periods are
reported.

Table 4.4 shows the first experiment conducted on this network. This first

training was launched for 30 epochs with a learning rate of 1e-6. As you can easily

46

see from the table the training has a positive trend concerns our purpose: although

the validation loss has an oscillatory trend, the validation accuracy grows over time

in parallel with the decrease of the training loss. With this first training it was

observed that the network is able to learn something, for this reason by modifying

the parameters it was decided to train the network for another 20 epochs in order

to see if it can actually achieve better results.

Params: learning rate: 1e-6, epochs : 20.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
41 0.00519198 4.148036 65.39%
42 0.00487719 4.139599 65.16%
43 0.00460525 4.151326 65.05%
44 0.00434201 4.155872 64.58%
45 0.00451232 4.280730 65.51%
46 0.00367322 4.181511 65.62%
47 0.00343623 4.186375 65.16%
48 0.00401666 4.177502 66.20%
49 0.00279858 4.198667 66.55%
50 0.00258480 4.198675 66.32%

Table 4.5: This table shows the last 10 periods of the second training. As you can
see the results are positive with the passing of the epochs.

As you can see in table 4.5 the training loss continues to decrease, while the

validation loss fluctuates between 4.1 and 4.2. In this situation also the accuracy

has grown: in fact you have gone from 60% of the first training to a 66% in this

last training. At this point it was decided to try yet another training by modifying

the learning rate, decreasing it to 1e-7, to try and see if it is possible to find new

local minimums. Since you could in the subsequent training incur in overfitting

the last epoch of this part of training is saved (as well as the number 30 in the

previous training).

Params: learning rate: 1e-7, epochs : 20.
EPOCH TRAINING LOSS VALIDATION LOSS VALIDATION ACCURACY
66 0.00104314 4.720064 65.62%
67 0.0010270 4.724249 65.62%
68 0.0010010 4.726898 65.51%
69 0.0009806 4.729340 65.51%
70 0.0009605 4.732010 65.51%

Table 4.6: This table figure out the last five epochs of the last training. How is
easly visible the training loss slowly decreases while the validation loss increases.
It is explained by overfitting. Due this the training is finally stopped.

In these following pages the graphs obtained from these trainings will be ana-

47

lyzed in order to understand the overall network trend and then move on to the

testing set.

Figure 4.21: Losses in 3-D network over D2 dataset. his graph represents the
overall trend of the network in the three trainings. We can observe, in green, the
validation loss which tends to decrease and then slowly go up again in the last
epochs and the training loss, in blue, which constantly decreases.

As shown in figure 4.21 both the validation loss and the training loss decrease

rapidly, breaking the value of 5 in the very epochs. As is usually for neural

networks, the value of training loss is lower than validation one.

Figure 4.22: Validation Accuracy in 3-D network over D2 dataset. This image
represents the overall trend of accuracy on the validation set during all 70 training
periods. It can be seen how the score obtained during the epochs is increasing,
with the exception of the last part of the training where, due to some overfitting,
it tends to decrease.

The trend of training loss can be approximated to a descending function, while

the trend of the validation loss is fluctuating: in fact between the twelfth and the

twenty-third epoch it grows and then falls towards the end of the first training

48

(remember that the first training lasted 30 epochs). After a downward peak

around the thirtieth epoch the value of the validation loss seems to fade, and

slightly rise, around a convergence value for the entire second training (between

the epoch 30 and epoch 50). This value then grows constantly in the last training

(between epoch 50 and epoch 70): this behavior is most likely due to an overfitting

situation (analyzing the performance of the training loss it can be seen that it

continues to fall, look at the image 4.23). In parallel to the study of the losses one

you must analyze the trend of the accuracy, as shown in figure 4.21. As can be

seen, the accuracy trend is increasing, except for the last part of the network and

some downward peaks that can be observed in different epochs. In particular it is

evident that the network quickly learns in the first epochs passing from about 50%

accuracy of the first epoch to around 65% of the epoch 35 (in the middle of the total

training). Around the time 50 the highest peak of correct prediction is reached

and subsequently until the end of the training accuracy decreases constantly giving

value to the idea of overfitting (in fact in figure 4.20 we noticed how the validation

loss grew while the training loss continued to fall). Summary it can be said that

this type of network in 3 dimensions is able to learn a fair amount of sequences by

recognizing which ones produce an event and which ones not. In the next section

you will try to rerun the validation set on the network loaded with the parameters

of different epochs to try to refine the accuracy achieved.

Figure 4.23: Training Loss and Validation Loss in 3-D network over D2 dataset
from 30 to 50 epochs.In the first image you can see how the training loss constantly
decreases, while in the second image, even if only slightly, the validation loss grows.

49

Figure 4.24: Training Loss and Validation Loss in 3-D network over D2 dataset
from 50 to 70 epochs.In the first image you can see how the training loss constantly
decreases, while in the second image, even if only slightly, the validation loss grows.

Validation & Testing

Once the training has been completed analyzing the predictions made on the

validation set, it was noticed that in most cases the threshold value for which a

sequence was classified as ”producing a CME” or as ”not producing a CME” is

variable and is not the value 0.5. It must be remembered that the value 0.5 is

the threshold for which the activation function, used in the network to produce

the output, that is the sigmoid, uses to give as output a 1 or a 0 (the labels for

”producing a CME” and ”not producing a CME”). To find the best threshold value

that best fits the data in our possession, the validation set calculation function

was relaunched using a mobile threshold: we started from 0.1 to 0.9 with step 0.1

in order to find what value produce the highest accuracy.

EPOCH BEST VAL FITTING VALIDATION ACC
30 0.6 65.71%
50 0.8 68.58%
70 0.8 67.06%

Table 4.7: Accuracy validation for Mobile Threshold on 3D network.For epochs
30, 50 and 70 the accuracy is calculated again using a mobile threshold. For each
of these epochs the value of the threshold for which the best result and the result
itself is obtained is reproduced.

Table 4.7 shows the values for the validation accuracy calculated on the network

parameterized with the variables and weights of epochs 30, 50 and 70. For each of

50

the afore mentioned epochs the threshold values that produce the highest accuracy

are calculated. It can be noted, as similarly happened for the values during the

training, that the parameters that give the highest result are those of the epoch

50, which using the value 0.8 produce an accuracy of 68.58%, that is more than

two percentage points compared to the value obtained with the same set used

during training. Once this information is obtained, you can choose the epoch 50

with a threshold value of 0.8 as epoch to test the testing set.

EPOCH TRESHOLD TESTING ACCURACY
30 0.6 68.04%
50 0.8 72.17%
70 0.8 71.07%

Table 4.8: Test on the 3D network.

Table 4.8 shows the results obtained on all three eras. As previously stated,

the value to be taken into consideration is epoch 50 which allows us to obtain a

final result of 72.17% accuracy on the testing set.

4.3.2 D-3

After this result a new Dataset is defined:

• D3 contains, in addition to not cme events, all events quality within the

sequences, but the event that appears in position 10 has quality q4 or q5:

Figure 4.25: Example of sequences in D3. Sequence 1 does not produce a CME:
in fact the image in position 10 is labelled with 0. Sequence 2 produces a CME: in
fact image in position 10 is a q5 quality event marked as 1. Sequences containing
both cme and not cme are extremely rare: in fact in this dataset the general
behavior is all zero or all one within a sequence.

Training Set) Label 0: 700 sequences, Label 1: 689 sequences.

Validation Set) Label 0: 243 sequences, Label 1: 243 sequences.

Testing Set) Label 0: 140 sequences, Label 1: 140 sequences.

51

Evaluation

The following images show the losses and the accuracy trend:

Figure 4.26: Losses in D3. The figure shows the trend of losses. As you can easily
see, both losses rapidly decrease.

The training is performed for 50 epochs with a learning rate of 1e-6 and then

for other 20 epochs with learning rate of 1e-7.

Figure 4.27: Accuracy in D3. As you can see, the accuracy has a growing trend
up to around the epoch 50. After this time the accuracy decreases slightly, due to
a small overfitting due to a too low larning rate.

Validation & Testing

As done for the D2 dataset the best threshold was calculated.

EPOCH BEST VAL FITTING VALIDATION ACC
30 0.7 62.60%
50 0.8 63.58%
70 0.6 62.96%

Table 4.9: D3 validation threshold. The same operation done for D2 experiment.
For each epoch is computed the threshold that perform the best accuracy using
validation set.

Also in this case, the epoch 50 allows us to achieve the best accuracy. Pro-

ceeding with the testing set and using the 50 age as a session and a threshold

52

equal to 0.8, an accuracy of 72.14% is reached. It is not an improvement from

the previously dataset. This could be explained by two reasons: the high size

reduction occurred in D3 sets and the similarity between q3 (present in D2) and

q4/q5 quality events; in the last case the quality q3 is closer to q4 and q5 than to

a not-event.

53

54

Chapter 5

Conclusion

5.1 Conclusion

As seen in the previous chapter, the first network, the one composed of a part of

features extractor and one of convolution over time, did not produce significant

results in any of the datasets created: we concluded that the network was not able

to learn from these data and in fact the classification was random. This result

does not preclude the possible goodness and functionality of this type of network;

the results show only that the data in our possession are not suitable for this

network. Instead a space-time approach with a network that uses 3 dimensional

convolution is possible: in this case, although the experiments have been carried

out with reduced datasets and of a quality higher than the average of the total

data, it has been possible to reach an accuracy of 72.17%, as seen with the D2

dataset. With this experiment about three-quarters of the sequences tested at the

end of the process were correctly classified.

Another important conclusion concerns the quality and quantity of data. As seen

in the chapter about data pre-processing and in the chapter in which training,

validation and testing sets were defined, most of the starting data were discarded

due to time filters, intrinsic errors in the images and for the balance requirement

of the various datasets. As can be seen from the various analyzes and results

obtained from the 3-dimensional convolution network, the quality and quantity

of images has increased over time, indicating a photos management and retrivial

from the coronograph that has improved over time. This last indication can make

us think that it is possible in the future to retest these networks in order to try to

achieve higher accuracy. In conclusion it is therefore possible to use the realized

network that performs the best accuracy to help those who currently manage the

classification, in this way they can have a technological tool able to give feedback

to their work. It is also possible in the future, when data will be better, retrain

55

the network and try to predict whether a sequence will produce a CME or not

trying to anticipate solar events becoming able to take precautions before a CME

event occurs.

56

57

Bibliography

[1] Images taken from https://cdaw.gsfc.nasa.gov/CME_list/

[2] https://www.swpc.noaa.gov/phenomena/coronal-mass-ejections

”Coronal Mass Ejections (CMEs) are large expulsions of plasma and

magnetic field from the Sun’s corona. They can eject billions of tons of

coronal material and carry an embedded magnetic field (frozen in flux) that

is stronger than the background solar wind interplanetary magnetic field

(IMF) strength.”

[3] https://en.wikipedia.org/wiki/Coronal_mass_ejection

[4] https://www.spaceweatherlive.com/en/help/

what-is-a-coronal-mass-ejection-cme

[5] https://aviationweek.com/awin/major-solar-

event-could-devastate-power-grid ”Recent calculations suggest there is

a 6-12% chance of another storm at that level in any given year.”

[6] https://aviationweek.com/awin/

major-solar-event-could-devastate-power-grid

”That storm took down parts of the growing U.S. telegraph network, starting

fires in the process and subjecting some telegraph operators to electric shock.”

[7] https://books.google.it/books?id=73IRAAAAYAAJ&pg=PA732&dq=1859+

aurora+boreale&lr=#v=onepage&q=1859%20aurora%20boreale&f=false

Aurora boreale in Roma, in La Civiltà Cattolica, Anno decimo, vol. III della

serie quarta, Roma, 1859, pp. pp. 732-733.

[8] https://sohowww.nascom.nasa.gov/about/instruments.html

[9] Bishop, Christopher (2006). Pattern recognition and machine learning. Berlin:

Springer. ISBN 0-387-31073-8.

[10] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, Pierre-Alain Muller (2018). Deep learning for time series clas-

sification: a review. arXiv:1809.04356v4

58

https://cdaw.gsfc.nasa.gov/CME_list/
https://www.swpc.noaa.gov/phenomena/coronal-mass-ejections
https://en.wikipedia.org/wiki/Coronal_mass_ejection
https://www.spaceweatherlive.com/en/help/what-is-a-coronal-mass-ejection-cme
https://www.spaceweatherlive.com/en/help/what-is-a-coronal-mass-ejection-cme
https://aviationweek.com/awin/major-solar-
event-could-devastate-power-grid
https://aviationweek.com/awin/
major-solar-event-could-devastate-power-grid
https://books.google.it/books?id=73IRAAAAYAAJ&pg=PA732&dq=1859+aurora+boreale&lr=#v=onepage&q=1859%20aurora%20boreale&f=false
https://books.google.it/books?id=73IRAAAAYAAJ&pg=PA732&dq=1859+aurora+boreale&lr=#v=onepage&q=1859%20aurora%20boreale&f=false
https://sohowww.nascom.nasa.gov/about/instruments.html

[11] https://towardsdatascience.com/the-4-convolutional-neural-

network-models-that-can-classify-your-fashion-images-9fe7f3e5399d

”Convolutional Neural Networks (CNNs) is the most popular neural network

model being used for image classification problem.”

[12] https://medium.com/datadriveninvestor/

why-are-convolutional-neural-networks-

good-for-image-classification-146ec6e865e8

”CNN’s are really effective for image classification as the concept of dimen-

sionality reduction suits the huge number of parameters in an image.”

[13] https://www.quora.com/

What-is-max-pooling-in-convolutional-neural-networks

”Max pooling is a sample-based discretization process. The objective is to

down-sample an input representation (image, hidden-layer output matrix,

etc.), reducing its dimensionality and allowing for assumptions to be made

about features contained in the sub-regions binned.”

[14] https://fits.gsfc.nasa.gov/ See documentation.

[15] https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

(2018).

[16] Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, Serge Belongie;

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 2921-2930

[17] Bora Erden, Noah Gamboa, Sam Wood; Stanford University; 3D Convolu-

tional Neural Networkfor Brain Tumor Segmentation, 2017

[18] Rui Hou,Chen Chen and Mubarak Shah; An End-to-end 3D Convolutional

Neural Networkfor Action Detection and Segmentation in Videos, 2015

[19] Lin Sun, Kui Jia, Dit-Yan Yeung, Bertram E. Shi; Human Action Recogni-

tion Using Factorized Spatio-Temporal Convolutional Networks; The IEEE

International Conference on Computer Vision (ICCV), 2015, pp. 4597-4605

[20] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, Manohar

Paluri; Dartmouth College; A Closer Look at Spatiotemporal Convolutions

for Action Recognition, (2018)

[21] The function at the center of the figure is in By Qef

(talk) - Created from scratch with gnuplot, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=4310325

59

https://towardsdatascience.com/the-4-convolutional-neural-
network-models-that-can-classify-your-fashion-images-9fe7f3e5399d
https://medium.com/datadriveninvestor/
why-are-convolutional-neural-networks-
good-for-image-classification-146ec6e865e8
https://www.quora.com/
What-is-max-pooling-in-convolutional-neural-networks
https://fits.gsfc.nasa.gov/
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

	Introduction
	Purpose of the Thesis
	Coronal Mass Ejection
	Effects
	Detection

	SOHO/LASCO

	Neural-Network-Based Classification of Images
	Image Classification
	Time Series Classification
	Neural Network
	Convolutional Neural Network
	1-D Convolution
	2-D Convolution
	3-D Convolution

	Data Pre-Processing
	The FITS file
	The Time filter
	Size Error And Photo Error
	Polar Transformation
	Sequences selection
	Data Analysis

	Models Definition and Evaluation
	Temporal Convolutional Neural Network
	Testing the Datasets
	D-0
	D-1
	D-2

	3-Dimensional Neural Network Model
	D-2
	D-3

	Conclusion
	Conclusion

