
MASTER DEGREE THESIS
MASTER’S DEGREE IN COMMUNICATIONS AND COMPUTER

NETWORKS ENGINEERING

Assessment of Domain Adaptation Approaches for
QoT Estimation in Optical Networks

POLITECNICO DI TORINO

Supervisor:
Andrea BIANCO

Co-supervisors:
Cristina ROTTONDI

Alessandro GIUSTI

Author:
Riccardo DI MARINO

241826

DECEMBER, 2019

https://didattica.polito.it/laurea_magistrale/communications_and_computer_networks_engineering/en/home
https://didattica.polito.it/laurea_magistrale/communications_and_computer_networks_engineering/en/home
http://www.polito.it
https://www.telematica.polito.it/member/andrea-bianco/
https://www.telematica.polito.it/member/cristina-rottondi/
http://www.leet.it/home/giusti/website/doku.php

iii

A thesis submitted in fulfillment of the requirements for the
Master’s degree in Communications and Computer Networks Engineering

written in

Telecommunication Networks Group
@ Politecnico di Torino,

Department of Electronics and Telecommunications
@ Politecnico di Torino

https://didattica.polito.it/laurea_magistrale/communications_and_computer_networks_engineering/en/home
https://www.telematica.polito.it/
http://www.polito.it
http://www.det.polito.it/
http://www.polito.it

v

Abstract

Assessment of Domain Adaptation Approaches for
QoT Estimation in Optical Networks

Predicting the Quality of Transmission (QoT) of a candidate lightpath prior to its
establishment plays a pivotal role for an effective design and management of optical
networks. In the last few years, supervised Machine Learning (ML) techniques
have been advocated as promising approaches for QoT estimation, but to ensure the
effectiveness of their training phase, a large amount of samples (training set) must be
provided to the learning algorithm. Unfortunately, the collection of training samples
is often hindered by practical issues (e.g., lack of dedicated telemetry equipment
in every network node) or is too costly to permit the acquisition of large datasets.
However, it is sometimes possible to rely on large training datasets from a different
network (source domain) than the one on which the ML model operates (target
domain). In such a scenario, we wish to exploit at best the data from the source
domain to tailor a good model to the target domain. This approach is known in ML
research as Domain Adaptation (DA). Note that most of the existing DA techniques
require to complement the dataset from the source domain with a few samples
from the target domain: quantifying the amount of samples extracted from the
target domain needed to achieve satisfactory predictive performance of the adopted
learning model is a crucial issue to determine the practical applicability of DA techniques
in real-world scenarios. In this thesis, we evaluate the effectiveness of two existing
DA approaches (i.e., feature augmentation and domain adaptation) for ML-based
QoT estimation of candidate lightpaths, for a fixed/variable number of available
training samples from the source/target domain. As source/target domains, we
consider several network topologies with varying transmission equipment characteristics.
Results show that, when the number of samples from the target domain is very
limited (e.g., in the order of tens), DA approaches consistently outperform standard
supervised ML techniques.

KEYWORDS Machine learning, Transfer learning, Domain Adaptation, Quality
of Transmission, Bit Error Rate

vii

Acknowledgements
For electronic submission of this elaborate the page has been left blank.

ix

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis outline . 3

2 Related Work 5
2.1 Transfer Learning in literature . 5

2.1.1 QoT prediction in Real-Time Mixed Line-Rate Systems 5
2.1.2 OSNR estimation . 9
2.1.3 Spectrum Optimization for the Resource Reservation in Space

Division Multiplexing Elastic Optical Networks 11
2.1.4 Comparison to related work . 12

3 Background 15
3.1 Machine Learning . 15

3.1.1 Supervised learning . 16
3.1.2 Unsupervised learning . 17
3.1.3 Supervised learning Algorithms 18

Random Forest . 18
Support Vector Machines . 18
Logistic Regression . 20

3.2 Transfer Learning . 21
3.3 TL approaches . 23

3.3.1 Feature augmentation . 24
Problem formalization . 24

3.3.2 CORrelation ALignment . 26
Problem formalization . 27

3.4 BER calculation - The E-tool . 29

4 Transfer Learning framework for QoT estimation 31
4.1 QoT prediction framework . 31
4.2 Transfer Learning Framework . 32

4.2.1 Only source testbed . 33

x

4.2.2 Only target testbed . 33
4.2.3 Mixing testbed . 34
4.2.4 Feature Augmentation testbed 35
4.2.5 CORAL testbed . 36

4.3 Design of the experiments . 38
4.3.1 Source domain, Target domain andRsource,Rtarget selection . . 39
4.3.2 Data sampling . 39
4.3.3 Feature space transformation . 40
4.3.4 Data pre-processing . 40
4.3.5 Transfer learning algorithm execution 41
4.3.6 Learning algorithm test . 42
4.3.7 Performance evaluation . 43

Accuracy . 43
AUC - Area Under the Curve . 44

5 Numerical Assessment 47
5.1 Datasets description . 47
5.2 A first approach with Machine Learning 50

5.2.1 Changing the target domain . 52
RJapan and ENSF . 53
RNSF and EJapan . 54

5.2.2 Receiver Operating Characteristic curves 55
5.3 Baselines assessment . 55
5.4 Domain adaptation assessment . 59

5.4.1 Random Forest . 61
5.4.2 Support Vector Machine (SVM) 62
5.4.3 Logistic Regression . 66

5.5 Impact of dissimilarities between lightpath distributions 68
5.5.1 Intersection metric . 69

6 Conclusion 73

A Bit Error Rate - BER distributions 75

B Lightpath length distributions 77

Bibliography 79

xi

List of Figures

2.1 Supervised ANN model learning process 6
2.2 Transfer learning flow chart . 7
2.3 QoT prediction accuracy for varying launch power 9
2.4 Morphological characteristics of amplitude histograms 10
2.5 Transfer learning assisted DNN method for OSNR estimation 11
2.6 SMT prediction based on Transductive Transfer Learning 12

3.1 Support Vector Machines - hiperplane in two dimensions 19
3.2 Sigmoid function . 21
3.3 ML vs TL . 21
3.4 Feature Augmentation (FA) - General scheme 26
3.5 CORrelation ALignment (CORAL) . 28

4.1 Classification process for the QoT estimation 31
4.2 Data sampling - Only source testbed . 34
4.3 Data sampling - Only target testbed . 35
4.4 Data sampling - Mixing testbed . 36
4.5 Data sampling - Feature Augmentation testbed 37
4.6 Data sampling - CORAL testbed . 37
4.7 The experiment phases . 38
4.8 ROC curve - Ideal, Real and Worst cases 45

5.1 Japan Network Topology . 48
5.2 NSF Network Topology . 48
5.3 Performance evaluation -RJapan and EJapan 52
5.4 Performance evaluation -RNSF and ENSF 53
5.5 Performance evaluation -RJapan and ENSF 53
5.6 Performance evaluation -RNSF and EJapan 54
5.7 ROC curves for the impact of Train SetR size 56
5.8 Baseline bars - AUC comparison . 58
5.9 Baseline bars - Accuracy comparison . 59
5.10 Baseline boxplots - AUC comparison . 60
5.11 Baseline boxplots - Accuracy comparison 61
5.12 DA - Random Forest, Japan-to-NSF . 62
5.13 DA - Random Forest, NSF-to-Japan . 62

xii

5.14 DA - Support Vector Machine, NSF-to-Japan 63
5.15 DA - Support Vector Machine, Japan-to-NSF 64
5.16 DA - Support Vector Machine with subset S1, NSF-to-Japan 65
5.17 DA - Support Vector Machine with subset S1, Japan-to-NSF 66
5.18 DA - Logistic Regression, NSF-to-Japan 67
5.19 DA - Logistic Regression, Japan-to-NSF 67
5.20 DA - Logistic Regression with subset S1, NSF-to-Japan 68
5.21 DA - Logistic Regression with subset S1, Japan-to-NSF 68
5.22 Intersection - NSF-to-Japan, 10 and 50 target samples 70
5.23 Intersection - NSF-to-Japan, 100 and 500 target samples 71
5.24 Intersection - Japan-to-NSF, 10 and 50 target samples 72
5.25 Intersection - Japan-to-NSF, 100 and 500 target samples 72

A.1 Logarithmic histograms of BER distribution - Part I 75
A.2 Logarithmic histograms of BER distribution - Part II 76

B.1 Distributions ofR lightpath lenghts - Part I 77
B.2 Distributions ofR lightpath lenghts - Part II 78

xiii

List of Tables

2.1 Predicted parameters, ML models and TL approaches in literature . . . 13

3.1 ML and TL Learning settings . 23

5.1 Dataset Description - Train SetR and Test Set E 49
5.2 Lightpaths statistics - Minimum, Maximum and Mean 51
5.3 Feature Subsets . 52
5.4 Accuracy and AUC discrepancy (%) between testing on the same network

vs different network . 54

1

Chapter 1

Introduction

1.1 Motivation

Optical network systems have emerged as the best physical infrastructure to accommodate
large traffic volumes generated by new applications, e.g., cloud computing, but they
require to ensure to the application layer services the quality of transmission (QoT)
of the data flowing through the network. It could happen that a particular service
request is affected by degradation due to the lack of resources needed to ensure
correct transmission and has to be rerouted, or even blocked. For this reason, it is
crucial to allow the optimal support for the services that will leverage the underlying
network.

Predicting the QoT of a candidate lightpath, i.e a path between two nodes of the
network in which the optical signal can pass through without electronic conversion,
prior to its establishment plays a pivotal role for an effective design and management
of optical networks.

The approaches that since years have tried to solve this kind of issue are either
mathematical models, which approximate the behavior of the network under different
conditions, or by the use of simulation frameworks, that instead are able to emulate
the propagation of the optical signal along the fiber core; the former approach,
very often, leads to a not well-designed problem and introduce high margins in
the computations as a consequence of the initial uncertainties on input parameters
and simplified assumptions made at the beginning; the second one requires high
computational effort when applied to a realscale scenario. Both, furthermore, leads
to over-provisioning in the network design, thus incurring in increased costs.

In the last few years, Machine Learning (ML) is finding a lot applications in optical
networks, especially in cross-layer frameworks, i.e scenarios in which the physical
layer can interacts and trigger changes at network layer by the analysis of transmission
performance measurements such as the Bit Error Rate (BER) [13]; and its uses as
technique for QoT estimation have been considered as promising alternatives to the
traditional methods.

2 Chapter 1. Introduction

Supervised ML-based approaches are used to learn a mapping function which is
able to infer the value of an output variable from a vector of input features, e.g.,
properties of the lightpath such as length, amount of served traffic and adopted
modulation format. The output variable coincides with the expected QoT measure
along the lightpath, and it could be identified, for example, by the Bit Error Rate
(BER). The collection given as input to the ML algorithm is composed by samples
which are the features vector of an established lightpath. Each of these samples is
associated with the actual value of the output variable, measured at the receiver.

An effective learning phase can be achieved if a large training set, i.e. a collection of
features vectors, is provided to the learning algorithm.

On one hand, a large training set provides a general view of the already established
lightpaths and it is representative of the samples that will be used to train the model
and exploit it to predict the QoT. On the other hand, it is not so trivial to have a large
collection, especially because many times, the costs to acquire large datasets are very
high or there are some issues due to the lack of the necessary telemetry equipment
in the nodes of the network.

In a network in phase of deployment, it results difficult to make an efficient monitoring,
especially because the number of installed lightpaths is limited; as a consequence,
the collection of samples useful to build a wide training set is not possible. However,
data could be collected following a different approach: i.e, relying on another network,
for instance, in which a large number of lightpaths are already deployed and available
to obtain a dataset from which the ML model can learn.

Under some conditions, we are able to have a large amount of data S associated to a
source domain, i.e. monitoring a particular backbone network for a long period, and
train a model for predicting our target value, i.e. the QoT of the lightpaths that have
to be established into a different domain: the target domain. The target domain is
a newly deployed network that has a limited availability of labeled data T. In this
case, our purpose is to exploit the data extracted from the source domain to fit, in
the best way, a model to the target domain.

This kind of approach in ML research is know as Domain Adaptation (DA) and it
is based on the fact that samples belonging to a particular domain provide useful
information to other domain. In this thesis we investigate on the effectiveness of
this approach, when applied to the QoT estimation problem.

Intuitively, the accuracy of the prediction operated on the candidate lightpaths of
the target domain is affected by various aspects related to the difference between
the two domains (e.g., the type of fibers that are installed or the distribution of the
length of the lightpath). The more the target domain differs from the source domain,
the less accurate the prediction is expected to be.

1.2. Thesis outline 3

Indeed, the mapping between input features and target variable changes if applied
in the source or in the target domains. This is due to the fact that, formally, the
joint probability distribution of features vector and output variable differs in the
two domains.

Therefore, training samples coming from the target domain have to be somehow
integrated with samples of the source domain; this step is crucial, because it is
impossible to quantify first the amount of target data that ensure to achieve high
and accurate predictive performance. For this reason it results difficult to determine
the applicability of DA techniques in real-world scenarios.

To evaluate the effectiveness of existing DA approaches for ML-based QoT estimation
of candidate lightpaths, we consider two different network topologies characterized
by either links of the same fiber type and same transmission equipment, or by different
fiber and amplifier types.

In order to conduct experiments in different scenarios and exploit more combinations
of source and target domain, we redesign the two topologies, multiplying each of the
links by a particular scaling factor. This way, we obtain 24 combinations of source
and target domains to investigate about the different performance achieved by DA.

We assess the performance of two type of DA techniques comparing the performance
in the different cases, where we change the number of samples belonging to the
target domain. Besides, we investigate, on the degree of dissimilarity in between the
two domains, quantified as intersection metric and relate it to the different performance
achieved by DA, considering various combinations of source and target domains.

1.2 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 presents a review of the
related literature that exploits transfer learning and its application in optical networks
for QoT estimation. It provides a general overview of the current research directions
and highlights similarities and dissimilarities with respect to our work.

Chapter 3 reviews the key concepts to understand the theory on which the methods,
approaches and models we use to perform experiments are based. We provide a
ML basic overview with an explanation of the types of learning models and the
description of the algorithms adopted in this work. Then, the concept of transfer
learning it is introduced and in particular the DA schemes, focusing on implementation
details. At the end of the chapter, the tool we use to synthetically generate the dataset
belonging to a particular domain and evaluate the lightpath BER is also described.

In Chapter 4 the framework built to conduct our experiments is described in detail.
We discuss the assumptions on the compositions of datasets S and T (i.e, the training

4 Chapter 1. Introduction

datasets collected from the source and target domains and the testbed built in order
to perform DA, providing two variants.

In Chapter 5 we discuss and assess the results obtained from the numerical analysis,
first giving a description of the datasets and then focusing on the evaluation of the
performance metrics in the different considered scenarios.

Chapter 6 includes a conclusive section and summarizes the objectives achieved
from the assessment of the results. Furthermore, it contains other considerations
based on the developed experiments.

5

Chapter 2

Related Work

This chapter provides the description of recent studies that focus on the exploitation
of transfer learning techniques in optical transmission systems in order to make
predictions on various parameters that affect the quality of transmission. At the end
of these descriptions, similarities and differences with respect to the work developed
in this thesis will be highlighted.

2.1 Transfer Learning in literature

Recently, a few studies have appeared which propose the use of transfer learning to
predict various optical network parameters. These studies highlighted the ability
of transfer learning approaches to achieve good results in terms of performance,
number of samples used to perform the training step and computational burden.

More in detail, some applications of TL are:

• QoT prediction in Real-Time Mixed Line-Rate Systems;

• OSNR estimation;

• Spectrum Optimization for the Resource Reservation in Space Division Multiplexing
Elastic Optical Networks;

2.1.1 QoT prediction in Real-Time Mixed Line-Rate Systems

In [11], the prediction of quality of transmission (QoT) in a real-time mixed line-rate
system is obtained by an artificial neural network (ANN) based transfer learning
framework. The QoT prediction in optical transmission systems can be managed
well by supervised learning algorithms because they are good to discover relations
among input data and output data. The goal of the authors is to train a regression
model to predict the Q-factor from the different domains, time by time, without
making a classification based on QoT ranges.

The machine learning model is the artificial neural network that is a mathematical
model of the human brain. It consists of neurons organized on different layers:

6 Chapter 2. Related Work

FIGURE 2.1: Supervised ANN model learning process [22]

input, hidden and output layers. At the input layer there are the neurons that receive
the input data provided by the training set or the testing set; the hidden layers are
designed to make a non linear transformation to the data of the input layer applying
activation functions to each neuron. Activation functions permits to each node of the
network to produce an output value given some input values processing the input
value and mapping them with the specific type of function adopted; there exist a lot
of activation functions and some of them are exponential linear unit, sigmoid, hyperbolic
tangent, rectified linear unit (ReLU) and inverse square root linear unit (ISRLU). Here,
authors used ReLU.

The learning process of ANN model consists in several steps to setup an optimal
configuration of the weights of the neurons, in Figure 2.1 the crucial steps to achieve
this goal are illustrated.

First of all, it is necessary to initialize the network with random or given weights,
then all the data provided at the inputs are forwarded to the whole network and
the predicted output is obtained. At this point, a loss function is exploited to make
an estimation on the error that occurs in between the predicted output and the
desired output. The impact of each weight with respect to the total loss is evaluated
by calculating the derivative of the loss function applied in the reverse order, i.e
back-propagating from the last to the first layer of the ANN. Algorithms such as
stochastic gradient descending are implemented to decrease the global error rate and
adjusting/updating the weights. The process repeats iteratively and feed-forward and
back-propagation keep place again to continuously balance the weights of the ANN.

The adjusting/updating weight process inherits from the error margin between the
predicted output obtained at the previous iteration and the reference value. It follows

2.1. Transfer Learning in literature 7

FIGURE 2.2: Transfer learning flow chart [22]

that, by providing enough reference data, it is possible to obtain an accurate model
because in every cycle, the learning process upgrade its prediction capabilities. Authors
show that this kind of neural network can achieve an accurate Q-factor prediction
with a low root-mean-square error (RMSE).

A 4-span large effective area fiber (LEAF) with QPSK transmission is adopted as
source domain, while a 4-span LEAF 16 QAM, a 2-span LEAF 16 QAM and a 3-span
dispersion-shifted fiber (DSF) QPSK are used as target domains. After an initial
training phase, using samples from the source domain, the training is refined using
knowledge extracted from the source domain and adding a small number of samples
from the three different target domains. Figure 2.2 describes the steps of the process
to make predictions in the three target domains.

The adopted artificial neural network consists of one input layer, one output layer
and in between three hidden layers of 120, 120, and 60 neurons. Initially, the knowledge
is stored by tuning weights in the different layers where the ANN model is trained
with samples of source domain; then, to perform transfer learning the weights of
the hidden layer are readjusted based on a few samples from the target domain,
thus speeding up the training process w.r.t re-train the network from scratch. The
motivation to use the artificial neural network (ANN) as learning algorithm lies in
the way which transfer learning is implemented, depending on the type of weights
initialization scheme. In this case, instead of starting the learning phase from randomly
initialized weights, transfer learning leverages pre-trained weights, thus enabling a
fast upgrade of the ANN model with a limited amount of samples from the target
domain.

The ANN model is trained using 22 separates input features which are the combinations
of output power and modulation format of eleven entry channels.

In order to adapt the prediction to a real-time environment, the artificial neural
network is developed in a SDN controller, described in their testbed implementation,
that performs online learning to evaluate the Q-factor. Due to the lack of data, the
initial training phase in the network, is executed with 16 randomly chosen channel
loads. The online learning in the SDN controller allows the artificial neural network

8 Chapter 2. Related Work

both to make a faster collection of data and at the same time to adjust the weights of
the neurons of the inner layers.

The learning algorithm stops whenever the RMSE (Root Mean Squared Error) does
not decrease during two consecutive stages, thus denoting a well-suited weights
setting and an acceptable prediction of the Q-factor with respect to the actual values.

Results regarding the comparison between predicted Q-factor and its actual value,
show that only 20 training samples are necessary to fine-tune the weights in order
to produce an accurate prediction of QoT for the three domains applying transfer
knowledge. Furthermore, the choice to use artificial neural network is motivated by
the good performance achieved in the prediction comparing to other methods like
Support Vector Regressor and Ridge Regression.

In an extended version of their study [22], they provide more details about the
design of ANN and its implementation in an optical software defined networking
(SDN) controller. Authors address three aspects: the type of learned knowledge
that is transferred from the source domain in the ANN model, the usefulness of this
knowledge in the target domain and how much the target task is improved by using
transfer learning.

The testbed implementation and data collection follows the same scheme of their
previous work. Here instead, authors perform their model analysis following different
methods, for instance in the first stage of modeling in which the training of the
source domain keeps place, they incremented the number of homogeneous hidden
layers and also compared the results varying the number of neurons in each layer.
Homogeneous layers means that all layers have the same number of neurons.

In the second stage instead, the transfer training data were classified in three types
based on the channel power. This is done because channel power and wavelength
allocation are the most related features among the different domains.

Results for the homogeneous ANN structure model trained on the source domain
show that in order to obtain an accurate model for the Q-factor prediction, 2640
training samples are sufficient. In this scenario the ANN structure is composed of
three hidden layers with 128 neurons in each of them. This model is then tested with
330 test samples not previously used for training and the output is compared with
different methods like Ridge Regression and Support Vector Regressor. In Figure 2.3,
the accuracy of the prediction with respect to the 14 different output power levels
per channel is highlighted.

The homogeneous ANN structure model for the transfer learning has to be designed
taking into account that few samples from the target domain are available and,
because of the limited amount of such data, finding the right configuration from
the source domain plays a fundamental role. In order to conduct experiments, 20
training samples from the four span LEAF 16 QAM and the two span LEAF 16 QAM

2.1. Transfer Learning in literature 9

FIGURE 2.3: QoT prediction accuracy for varying launch power [22]

are selected, while 30 training samples from the three span DSF QPSK are chosen. To
test the performance 1280 samples from the corresponding target domain are used
and an ANN model with a number of layers in the range 2-4 and a structure of 256
neurons per layer is considered. Results show that, for the four span LEAF 16 QAM,
the best accuracy is obtained considering an ANN model with two layers; for the
two span LEAF 16 QAM system, the best accuracy is obtained using an ANN model
with four layers and tuning the weights of the second, the third, and the fourth layer,
while for the three span DSF QPSK system, the best accuracy is obtained using ANN
model constituted by four layers and tuning the weights of all of them.

Performance evaluation is conducted also adding heterogeneous layers, which means,
layers with different number of neurons. A two layer structure with 128 neurons in
each, is used as source domain ANN model. Results, in this case, show that the
highest accuracy is obtained adding 32 neurons in the third layer and tuning all the
layers of the two span LEAF 16 QAM, while adding 64 neurons in the third layer
and tuning all the layers of the three span DSF QPSK system.

As last step, authors compare transfer learning to a conventional training method in
the training of the four span LEAF 16 QAM. In this case, results show that, when
adopting transfer learning, the training target samples can be reduced from 1000
to 20, while still ensuring a reliable and accurate QoT prediction while achieving a
significant reduction of time required by the training phase.

2.1.2 OSNR estimation

Optical signal to noise ratio (OSNR) is a crucial parameter to be monitored in coherent
optical networks, as it measures the ratio between signal power and noise power of
an optical channel. In [20], the OSNR is monitored at the physical layer to enable
a suitable fast re-modeling of an OSNR predictor based on the variations of system
parameters, e.g., optical launch power, chromatic dispersion (CD) and bit-rate.

10 Chapter 2. Related Work

FIGURE 2.4: Morphological characteristics of amplitude histograms
with same OSNR but different chromatic dispersion [20]

To speed up OSNR estimation, they proposed a transfer learning (TL) assisted deep
neural network (DNN) implemented at the receiver, which is trained with numerous
samples whose features are 80 amplitude histograms (AH) of the received signals
plus one variance value, that reflects changes in the distribution of received data.

Authors highlight that signals with different chromatic dispersion (CD) values and
amplitude histograms with same OSNRs show different morphological characteristics,
as shown in Figure 2.4. This indicates that AHs based on the OSNR estimation
method will depend on the residual CD, i.e it is necessary to adapt the variation
of CD to enable efficient monitoring of the OSNR. Other samples are then generated
changing parameters in the physical layer such as launch power, residual dispersion
and bit-rate.

Transfer learning is applied by sharing values of the weights obtained from a deep
neural network trained with samples from the source domain in order to adapt to
the transmission parameter variation. The source DNN was trained with signals
at launch power 0 dBm and the knowledge of all layers in the source model was
transferred into the target model. Also in this case, the utilization of transfer learning
in deep neural networks exploits the re-usage of weights in one or more layers from
a pre-trained model in a new model, either keeping them fixed or fine-tuning them
to ease adaptation. In Figure 2.5, the relevant steps adopted by the algorithm to
perform OSNR estimation are depicted.

The DNN infrastructure is composed of seven neural layers: 81 neurons at the input
layer and one neuron at the output layer; in between, there are 64, 32, 16, 8, 4
neurons, respectively. The training phase is implemented by generating dataset
which contain numerous amplitude histograms (AHs), corresponding to different
OSNRs at different chromatic dispersions (CDs).

Results show a superior capability of fast remodeling with respect to parameter

2.1. Transfer Learning in literature 11

FIGURE 2.5: Transfer learning assisted DNN method for OSNR
estimation [20]

system changing, helpful for real-time OSNR estimation. Moreover, both training
epochs and training set sizes are reduced at the different system parameters settings
(target launch power, residual chromatic dispersion and bit-rate) with respect to
those obtained performing a retraining of the neural network from scratch, i.e making
a training that starts from a randomly-initialized weights scheme without relying on
any prior knowledge.

2.1.3 Spectrum Optimization for the Resource Reservation in Space Division
Multiplexing Elastic Optical Networks

In [21] a spectrum optimization model for space division multiplexing elastic optical
networks (SDM-EON) is described to enable a well-designed resource reservation
algorithm for the service requests, based on transductive transfer learning.

Firstly, authors model the request R according to a six-tuple:

R = {s, d, Tarrival , Tstart, Tend, RG, n}

where the pair s and d refers to the source node and the destination node, Tarrival ,
Tstart and Tend are the arrival time, the start time and end time of the service requests,
while RG indicates the level of the request relative to its service quality requirements.
Finally, n represents the number of frequency slots that have to be reserved for that
request.

As illustrated in Figure 2.6, a set of samples is collected from the source domain
topology, constituted by requests of services. This set is then sorted in order to
discriminate between blocked service set, consisting of all requests that will be blocked
and not be accounted for the reservation of the network resources, affected service set,
that instead, consists of all the requests already satisfied in the network and spectrum
de-fragmentation time set, which contains time value of spectrum de-fragmentation.
This ensemble is then used to perform the training phase and produces a so-called
pre-training model.

12 Chapter 2. Related Work

FIGURE 2.6: SMT prediction based on TTL [21]

From the selected target domain topology, the blocked service set and affected service
set are used as inputs of the pre-trained model. The outputs of the model coincide
with the prediction of spectrum migration time (SMT) of the requests. In practice,
the pre-trained model represents a structure that contains the knowledge acquired in
the source domain, able to predict the spectrum migration time of a specific request
from the target domain. Based on this, another phase is developed that is in charge
of optimizing the spectrum utilization and improve resource reservations among
different services.

Authors used a six node topology as source domain, while a 14 nodes NSF topology
is used as target domain. The model is trained, as said, with service requests which
are organized according to a specific scheme, grouped and labeled into different
kind of sets ready to be passed to the pre-training model.

Results highlight the possibility to decrease the blocking probability by about 67%
with respect to other methods that do not take into account transductive transfer
learning.

2.1.4 Comparison to related work

In this thesis, source and target domains are identified by synthetic data-sets generated
with E-tool (See Section 3.4) composed of synthetic data and starting from a given
network topology.

We will consider two topologies that in turn will be considered as source and target
domains. The experiments will focus on the classification of lightpaths that can be or
cannot be established in an optical transmission system, based on the bit-error rate
(BER) value measured at the receiver.

The approaches used to conduct experiments are feature augmentation and the correlation
alignment. The area under the curve (AUC) is used as metric to evaluate the performance
of the classifier. The learning model adopted to perform lightpath classification are

2.1. Transfer Learning in literature 13

TABLE 2.1: Predicted parameters, ML models and TL approaches in
literature

Authors PP ML Model TL approach

Weiyang Mo et al.[11] Q-factor Artificial Neural Network Tuning-weights
Feature extraction

Le Xia et al.[20] OSNR Deep Neural Network Tuning-weights
Feature extraction

Qiuyan Yao et al.[21] SMT Neural Network Tuning-weights
Feature extraction

(Us, 2019) BER
Random Forest Feature augmentation
Support Vector Machines CORrelation ALignment
Logistic regression

*PP = Predicted parameter
*ML = Machine Learning
*TL = Transfer Learning

Random Forests with 25 trees, Support Vector Machines (SVM) implementing linear
kernel and then Logistic Regression.

The choice of authors of [11, 20, 21, 22] to implement a neural network based transfer
learning allows them to make an accurate selection of the important features (feature
extraction) useful to perform learning and best tune the weights of the internal layers.
Indeed, their systems can leverage on a wide range of features and have to exploit
the ones that best fit with their purpose.

Differently, we focus on a restricted group of features, but firstly, we had select five of
them directly related to the lightpath, and then eleven ones specific of the lightpath
and its neighbors, to perform the training of the classifier. (See Chapter 4)

Table 2.1 summarizes the different scenarios illustrated in the previous subsections,
making a distinction between authors, predicted parameter, adopted machine learning
model and transfer learning approach.

15

Chapter 3

Background

In the last few years ML techniques have found a lot of application fields, e.g.,
autonomous vehicles, search engines or facial and vocal recognition. These kinds of
algorithms are designed to configure machines and adapt their behavior in order to
fulfill a predetermined task. In literature, ML-based frameworks have been widely
investigated and the ones leveraged in this work are domain adaptation and transfer
learning. They focus on the ability of a system to make use of the knowledge obtained
from data extracted from a source domain and enforce it to a target domain: i.e a
scenario different from the first one, but related to it. This concept finds application
in many supervised learning scenarios in which there are not sufficient samples
labeled, to train a classifier in the target domain; however, it results convenient to
use the small pool of them to improve knowledge learned from the source domain.

This chapter will provide some background on ML, starting from its definitions,
its categories of algorithms designed to tackle different problems, its application
in optical networks and finally, describing those models that are considered in this
work.

The concept of Transfer Learning (TL) will be then illustrated, giving the reader the
necessary tools to understand the domains of application of this technique and its
implication in the performance improvements obtained in this thesis.

Finally, the chapter will discuss the procedure through which synthetic data, leveraged
to conduct the experiments of this thesis, are generated, describing the Etool and the
algorithm for the dataset generation.

3.1 Machine Learning

The term Machine Learning refers to a specific branch of Artificial Intelligence (AI).
In the 1959, Arthur Samuel, the pioneer in ML, coined this term and provided the
definition:

“Field of study that gives computers the ability to learn without being explicitly programmed.”

16 Chapter 3. Background

Indeed, two characteristics of this concept can be extrapolated: 1) it is possible to
extend the application in various scenarios, automating complex tasks that normally
have be executed by humans and 2) from time to time, it is possible to improve the
experience of a machine to perform a specific task.

A more precise definition is proposed by Tom M. Mitchell in 1998 formalizing the
learning problem in a computer program:

“A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience
E.”

It results clear from this definition that the capability of a computer program to
improve the performance of a specific task is closely connected to its experience
accumulated solving that task; but, what if this experience derives from not well designed
learning procedures?

For this reason, a lot of machine learning algorithms that best fit the different problems
have been developed. These algorithms can be subdivided into three main categories:
supervised learning, unsupervised learning and an hybrid of the two, i.e., semi-supervised
learning.

3.1.1 Supervised learning

In supervised learning a vector of input variables is provided to the ML algorithm
and the goal is to make a prediction, as accurate as possible, of one or more output
variables. In this learning method the vector of input variables is associated to either
a numerical value or a well-known class to which the output variable related to this
sample belongs, by the use of labels.

The output variable can belongs to two type of domains: if it is a discrete variable,
then the supervised learning method exploits a classification problem, if it is a continuous
variable, then supervised learning method fulfills a regression problem. Both of them
have the aim to find a mapping function called hypothesis, that is able to estimate from
an input vector, an unknown output value, also called target value.

In practice, supervised learning tries to extract the common properties from the
input data and make predictions based on that. The problem can be formalized
as follow:

Let n_features be the number of features and be n_sample the number of samples. We
define a feature vector x ∈ Rn_ f eature and a set of labels y such that:{

y ∈ {−1, 1}, → (binary) classification problem

y ∈ R, → regression problem
(3.1)

3.1. Machine Learning 17

Given a collection of input variables X = {(xi, yi) | 0 ≤ i ≤ n_samples}, the goal is
to learn a mapping function y∗ = f (x), such that y∗ = f (x) + e | e ' 0, where e is
the prediction error.

Usually this methods require a lot of data in order to become efficient and reach an
high level of accuracy of predictions.

A collection of vectors of input variables which contains samples that are labeled
composes the training set if it is used to perform the training step of the learning
algorithm, then a separate testing set it is used to test the capabilities of the learning
algorithm.

Supervised learning can be subdivided into two main classes: parametric models and
non parametric models.

In parametric models a fixed set of parameters w is estimated. After the training,
the prediction associated to the new inputs is performed using only the parameters
that have already been learned and the training data can be discarded. The simplest
parametric models for regression and classification are linear models, i.e., a linear
combination of nonlinear basis functions. Basis functions can be of different types,
for example, gaussian, sigmoidal, polynomial. A set of basis functions can be applied
for each component in the case of multiple output variables. The application of
linear models is usually limited to problems that have a input space with few dimensions.

In nonparametric models, the number of parameters is dependent on the set size
of the training. Some examples of approach that exploit nonparametric models are
K-Nearest Neighbors (KNNs) and Support Vector Machines (SVMs). These models
can be used in order to solve both classification and regression problems.

3.1.2 Unsupervised learning

Unsupervised learning tackles scenarios where the class of the samples data used to
train a model is not known. In practice, the feature vector is not associated to the label.
This kind of learning models are useful to recognize the different classes based on
the data that are passed to the model during the training phase.

Unsupervised learning finds application in the vast majority of fields, especially
because in reality there exist much more scenarios in which the output variable
cannot be known in advance; clustering problems and cluster analysis are the most
common applications. Clustering refers to the identification of groups in the pool of
data that share similar characteristics. The similarity is evaluated taking into account
the type of data and in particular the features vector selected to train the learning
model; it is typically described by a distance function. The resolution of this task
points to group data into clusters, in which the intra-cluster similarity is high, while
inter-cluster similarity is low.

18 Chapter 3. Background

Examples of clustering types are hierarchical clustering, K-means clustering, K-Nearest
Neighbors (KNNs), and Principal Component Analysis (PCA).

As it will be described in Subsection 3.3.2, we make use of an unsupervised DA
technique, called CORAL (CORrelation ALignment), which exploits the capacity to
approach as long as possible target domain and source domain, through a geometric
transformation of data. We assume that our target domain dataset contains unlabeled
samples. By this fact, we can exploit the totality of target domain samples to perform
the transformation step and improve learning from the input data.

3.1.3 Supervised learning Algorithms

Random Forest

Random Forest (RF) is a simple algorithm that can be used in classification problems
and regression problems. A RF classifier is a meta estimator that creates a forest of
decision tree classifiers and determines the class most often chosen by the trees.

In order to create the forest, each tree of the ensemble is built following the bagging
technique. The idea behind the bagging algorithm is to create B datasets, sampling
with replacement I instances from the original training set. N identifies the number
of instances of the initial training set, this means that bagging will produce B trees
with I samples in each. The Bi, i = 1, 2, ..., B tree produces an estimation of the class
Ci. The final predicted class C is the one exhibiting most occurrences.

The randomness introduced by this method is very useful because it reduces the
variance of the forest estimator w.r.t the individual decision tree which tends to show
high variance and lead to overfitting problem. RF algorithms achieve low variance by
the combination of the inner trees and reach high performance in the classification.

In this thesis a random-forest classifier which predicts the probability for unestablished
lightpaths to exceed a given BER threshold is used. Based on work exposed in
[16], we decide to use 25 estimators in order to preserve a good tradeoff between
achieved performance and computational time to complete the training and the
testing phases.

Support Vector Machines

Support Vector Machine (SVM) is a ML supervised algorithm that locates each sample
of the dataset into a geometric space of n dimensions, where n is the number of
attributes (or features) available. SVMs models try to draw into the n-dimensional
space an hyperplane that separates or divides data belonging to different classes. It
is used in both classification and regression problems.

Consider a group of data that have been classified into two classes; if it is possible
to linearly separate the two groups of data points, the two classes are separable and
SVM can draw an hyperplane of n dimensions. In the example reported in Figure 3.1

3.1. Machine Learning 19

d
im

e
n

si
o
n

 x
1

hyperplane

support vector

support vector

margin

dimension x2

FIGURE 3.1: Support Vector Machines in two dimensions and with
two data points classes

n is equal to two, because only two features are present, so the hyperplane coincides
with a straight line.

If two classes are linearly separable, there exist an infinite number of hyperplanes
that could be drawn; SVM optimize this choice selecting the one that maximizes
the separation among the two classes and uses it as decision boundary. Figure 3.1
represents a particular scenario in which a training set with two classes is used to
train the SVM algorithm. The separation between the two classes is said margin,
while the points which are closest to the upper and lower margin of the hyperplane
are called support vectors.

SVM algorithms are the extension of linear models such as, e.g., linear regression and
logistic regression, indeed they can shift on n different dimensions to identify the best
decision boundary based on the number of attributes and the distributions of the
training set data. Attributes of a sample identify the geometric space of data, but
generally data are not separable in a low dimensional space, while they may became
separable in a space with more dimensions.

SVM is considered a kernel method: indeed, it exploits different types of kernels to
adapt also to non linear models. With the use of different kernel functions, such as,
e.g., linear kernel, polynomial kernel, gaussian or radial basis function (RBF) kernel,
it is possible to abstract in higher dimensions the sample features mapped at a lower
dimensional space. The general definition of the kernel is K(x, y) = 〈φ(x), φ(y)〉,
where φ(x) and φ(y) are the mapping feature function from a n dimensional space
to an m dimensional space, with m > n.

In this thesis a linear kernel will be used,

K(xi, yi) = xi · yi

20 Chapter 3. Background

it is the simplest one, and it receives two vectors in input and computes the scalar
product of the two, as it has been proved to yield good classification results and
limits the overfitting problem; future investigations of this work can be done considering
the adoption of a different kernel type.

SVM algorithms, in general, lead to accurate predictions, but may require significant
computational time if the number of considered dimensions is high. Like RF and
ANN, SVMs find application in optical networks especially in failure prediction and
identification of the cause at the root [14].

Logistic Regression

A linear regression model can be generalized to a classification model, in our case a
binary classification, selecting a Bernoulli distribution, because it is more suitable to
indicate a binary response y∗ ∈ {0, 1} [12].

The selection can be described formally with:

p(y∗ | x, β) = Ber(y∗ | µ(x)) (3.2)

where, x is the features vector, β denotes the regression weights and µ(x) the mean
value of x, which can be written as µ(x) = E[y∗ | x] = p(y∗ = 1 | x).

The computation of the linear combination of the inputs is performed additionally
passing through a function which ensures that 0 ≤ µ(x) ≤ 1 through the use of the
basis function sigm(η), i.e., the sigmoid function, also called logistic or logit.

µ(x) = sigm(βTx) (3.3)

The sigmoid function is defined as:

sigm(η)
def
=

1
1 + e−η

=
eη

eη + 1
(3.4)

and its shape is represented in Figure 3.2, where sigm(−∞) = 0, sigm(0) = 0.5 and
sigm(+∞) = 1. Observing the trend of the sigmoid function it is possible to note
that the response value y∗ is equal to 0 when sigm(η) < 0.5 or equal to 1 when
sigm(η) ≥ 0.5. The decision rule for our response value y∗ is determined by the
threshold set when η = 0 i.e

=⇒ sigm(0).

Substituting the µ(x) equality of Equations 3.3 into the 3.2, we obtain the formal
definition of Logistic Regression:

p(y∗ | x, β) = Ber(y∗ | sigm(βTx)) (3.5)

3.2. Transfer Learning 21

-10 100 5-5

0

1

0.5

FIGURE 3.2: Sigmoid function - Decision rule in red, in this case the
threshold value is 0.5.

Machine Learning

Domain
A

Task
A

Domain
B

Task
B

Model B

Model A

Transfer Learning

Domain
B

Model B KNOWLEDGE

Domain
A

TASK

Model A

FIGURE 3.3: Traditional ML-Training and testing of the model on
samples of the same domain & TL process-Knowledge of a model

transferred and applied in other related domain

Despite the name, this method does not tackle a regression problem, but rather a
classification one.

3.2 Transfer Learning

If ML approaches typically aim to the training of a model with data of a particular
domain and evaluate its performance in resolving a particular task within the same
domain, TL tries to use the knowledge obtained in a particular scenario and transfer
it to another related one, thus allowing to train a model within one domain and
apply it to a different one during the test phase. In Figure 3.3 the main differences
among the two approaches are shown. In human learning mechanisms, a lot of
examples dealing with transfer learning are present, e.g., the knowledge of a color
results useful to understand and make a distinction with another one, the idea of a
cat can be helpful to recognize dogs. TL aims to extract the knowledge, acquired by
a source domain data trained model, to solve a source task and apply it to another target
task related to target domain data [15]. A fundamental motivation to investigate TL is
that, when applying ML models trained on a given domain to a different one, it is

22 Chapter 3. Background

needed to store and upgrade the learned knowledge without retraining the model
from scratch, in order to save time and speed up the following processes.

In order to implement a particular transfer learning approach, it is important to
correctly define the domains of application and their characteristics, i.e., features
space and distributions which are associated to them.

The majority of the proposed approaches present in literature, including ours, start
from the definitions of domain and task:

• a domain D is identified by two components: a feature space χ and a marginal
probability distribution P(X), where X = {x1, x2, x3, ..., xn} ∈ χ;
χ defines the space of all features, while X is the sample composed by the xi,
with i = 1, 2, . . . , n, features.
In general, a domain is represented by D = {χ, P(X)} and it follows that:
D1 6= D2, if χ1 6= χ2 ∨ P1(X) 6= P2(X);

• a task T consists of two components: a label space ν and an objective predictive
function f (·). The former identifies all the possible classes yi, with i = 2, 3, . . .
to which a sample can be associated to, so if it is a binary classification we can
have y1 =True and y2 =False; the latter is used to predict the label y of an
unknown sample X, i.e., f (X) = P(y | X), a task is represented by the notation
T = {ν, f (·)}.

After the definition of domain and task, it is necessary to focus on the discrimination
among the two main environments in which TL is really applied: source and target
domains.

• Let DS be the source domain data-set denoted by

DS = {(xS1 , yS1), . . . , (xSs , ySs)}

where xSi ∈ χS is the i− th instance of features vectors collection χS and ySi ∈
νS is the i− th class label, with i = 1, 2, . . . , s;

• Let TS be the learning task associated to DS;

• Let Dt be the target domain data-set denoted by

DT = {(xT1 , yT1), . . . , (xTt , yTt)}

where xTi ∈ χT is the i− th instance of features vectors collection χT and yTi ∈
νT is the i− th class label corresponding to the output, with i = 1, 2, . . . , t;

• Let TT be the learning task associated to DT.

Note that it is very common that 0 < t� s, which states that the number of samples
of the target domain is very limited with respect to that of the source domain. Now

3.3. TL approaches 23

TABLE 3.1: ML and TL Learning settings

Setting DS and DT TS and TT

Machine Learning Traditional DS = DT TS = TT

Transfer Learning
ITL DS = DT TS 6= TT
UTL DS 6= DT TS 6= TT
TTL DS 6= DT TS = TT

*ITL = Inductive Transfer Learning
*UTL = Unsupervised Transfer Learning
*TTL = Transductive Transfer Learning

that the basic definitions and assumptions have been discussed, a general definition
of TL concept [15] can be provided:

Transfer learning definition: Given DS and TS, DT and TT, TL aims to increase the
effectiveness of the target learning predictive function fT(·) in DT exploiting the
knowledge of DS and TS, where DS 6= DT or TS 6= TT.

Note that in the particular scenario where DS = DT and TS = TT the learning
problem coincides with a traditional ML problem. Based on the above definition,
authors in [15] provide a taxonomy of the different types of TL approaches, depending
on the characterization of elements in the source and in the target domains and tasks.
In particular, they identify three types of TL: inductive transfer learning, transductive
transfer learning and unsupervised transfer learning. Table 3.1 highlights the main
commonalities and different aspects of the above mentioned TL settings.

In inductive TL, the tasks achieved in source and target domains are different, while
domains are the same, formally DS = DT and TS 6= TT. In unsupervised TL, similarly
to the previous one, source and target tasks differs even if they are related: it focuses
on solving clustering and estimation of density problems in the target domains, and
no labeled data are available in both domains. In transductive TL, source and target
domains are different, while source and target tasks are equal, formally DS 6= DT

and TS = TT.

In this thesis experiments are designed to consider two domains, with same feature
spaces χS and χT, but different marginal probability distributions PS(X) and PT(X),
and they are used to train a learning model able to execute the same task in the
source and in the target domain (TS = TT), i.e., a TTL setting has been considered.

3.3 TL approaches

The overview provided in Chapter 2 discusses the TL approaches that have been
adopted in optical networks and highlights the importance of neural networks (NNs)
and weight tuning techniques in order to transfer knowledge through the inner layers
of the networks. Differently, our approach is to explore different domain adaptation

24 Chapter 3. Background

techniques in the development of algorithms that can be exported from a domain
to another one. In this sense, DA can be considered as a sub category of the TL
methodologies. More in detail, we start from the assumption that the size of the
training dataset gathered from the target domain is limited, so we have to combine
the large pool of source domain samples with the few samples of the target domain.
Practically, our analysis focus on the transformation of the source and target feature
spaces χS, χT and then, it tries to find useful training strategies for our classifier.

The following section describes the two approaches, Feature augmentation [10] and
Correlation Alignment (CORAL) [19], used to perform the transformation of our
feature spaces, motivating the choice and illustrating their advantages and disadvantages.

3.3.1 Feature augmentation

As said, the task of DA consists in the exportation of a trained learning algorithm
from a domain to an other one; this is not so easy due to the lack of labeled target data
useful to extract precious information from the application domain (target domain).
The technique from which we take inspiration is based on the transformation of a
DA learning problem into a standard supervised problem in which our classifier can
be applied.

Feature Augmentation (FA) [10] transforms the feature space of source and target
domains by augmenting it. The result of this transformation is then used to train
our classifier. As the authors of [10], we also focus on the fully supervised case, i.e.,
a scenario in which data from source and target domains are entirely labeled. This
option has been chosen because we generate data synthetically, so we assumed that
a long period of network monitoring in the various source and target domains has
been done and there is the availability of labeled data.

Problem formalization

In order to describe the steps to compute the transformation, we first introduce some
notations. Given:

• Input space χ;

• Output space ν;

• Source domain DS;

• Target domain DT;

For the sake of easiness we assume χ = RF, where F > 0. Actually F is the
cardinality of the feature space. What we want to obtain is the design of the augmented
space of input features and the mapping functions among source and target data.

3.3. TL approaches 25

The augmented feature space can be defined as:

χ̆ = R(K+1)F

where K is the number of domains we consider, while the mapping functions of
source and target data are respectively, φs, φt and defined as:

φs, φt : χ → χ̆

φs(x) = 〈x, x, 0〉 (3.6)

φt(x) = 〈x, 0, x〉 (3.7)

where 0 = 〈0, 0, . . . , 0〉 ∈ RF and it corresponds to the zero vector.

The equations 3.6 and 3.7 correspond to the linear transformation of the feature space
and introduce a replication of the features with respect to their proper domain. To
clarify this concept, we try to map the problem to our application scenario. Given
two domains (K = 2), as in our case they are two network topologies, we expand
their feature spaces of K + 1, translating χ = RF → χ̃ = R3F. For each expansion
χ̃ there are K + 1 replicas of the same features. The first replica refers to the general
version of the features, the second is associated to the source-specific version and the
third matches with the target-specific version.

In the training phase, samples that belong to the source domain set to zero the vector
of the target-specific version; on the contrary, samples that come from the target domain
reset to zero the vector corresponding to the source-specific version. Note that, during
the training phase, two versions of the same feature are always seen by the classifier,
what changes is the distribution of the weights into the feature vector that is provided
to the learning algorithm and the trade-off between source, target and general version
is regulated by the supervised learning algorithm.

Authors used the example of Hilbert space χ with kernel K : χ× χ → R. The kernel
K can be written as the dot product of two vectors in χ: K(x, x′) = 〈φ(x), φ(x′)〉χ.
Defining again φs and φt:

φs(x) = 〈φ(x), φ(x), 0〉 (3.8)

φt(x) = 〈φ(x), 0, φ(x)〉 (3.9)

and compute the expanded Reproducing Kernel Hilbert Space (RKHS) using the
original kernel:

K̆(x, x′) =

{
2 ∗ K(x, x′) → same domain

K(x, x′) → different domain
(3.10)

So considering the kernel as metric to evaluate the similarity of data we can conclude
that samples belonging to the same domain are naturally two times more similar

26 Chapter 3. Background

Trainset Transformed Trainset

FA

Classifier

Testset

FA

Transformed Testset

QoT prediction

FIGURE 3.4: Feature Augmentation (FA) - General scheme

than samples that instead, belong to different domains. For this reason, the influence
provided by instances of the target domain is twice higher than influence provided by
source instances during the testing phase.

Note that augmentation transformation process is applied to all samples, both in the
training and test phases. Figure 3.4 represents the general scheme followed by data
before training and testing phase.

3.3.2 CORrelation ALignment

Typically, supervised ML algorithms perform well if a large set of labeled samples
are provided in input and if the model is evaluated using samples test which follow
the same distribution of the training data. The domain shift leads to performance
degradation due to diversity among source and target data distributions. In the
previous approach [10], a fully supervised DA algorithm has been developed, that
replicates the features space and uses it to feed the learning algorithm. But frequently,
there is no availability of labeled target data and for this reason it is impossible to
adopt a supervised TL approach.

This section describes a different DA technique, called CORAL [19], which minimizes
domain shift by aligning the input feature distributions of source and target datasets.
In practice, authors propose a method that exploits the analysis of the second-order
statistics, i.e., the covariance of the features in the two domains and applies a linear
transformation to the features of the source domain.

Formally, it is an unsupervised learning DA technique, indeed, the target data are not
labeled and are used to re-color the distribution of the source data, but after the

3.3. TL approaches 27

transformation, supervised learning trains the classifier with transformed source data.
In our work this approach has been developed because it allowed us to leverage a
large dataset of unlabeled data from the target domain to compute the transformation
of the source data.

Problem formalization

Given a source domain Ds = {~xi},~x ∈ RD labeled with labels Ls = {yi}, y ∈ 1, . . . , L,
and a target domain Dt = {~zi},~z ∈ RD. The vectors ~x and ~z represent the feature
vectors provided at the input with dimension D. The feature vectors undergo to a
prior normalization step, that sets to zero mean and unit variance the distribution of the
data:

• Mean of the source feature vector: µs = 0;

• Variance of the source feature vector: σs = 1;

• Mean of the target feature vector: µt = 0;

• Variance of the target feature vector: σt = 1;

The goal is to minimize the distance between the distributions of the source and
target features, calculating the covariance and applying a linear transformation P
to source features and using Frobenius norm as the metric to evaluate the distance
between matrices:

min
P
‖Cŝ − Ct‖2

F = min
P
‖PTCsP− Ct‖2

F (3.11)

where Cŝ is the covariance matrix of the transformed source domain, Cs is the covariance
matrix of the original source features, Ct corresponds to the covariance matrix of the
target features, and ‖ · ‖2

F is the Frobenius norm. Authors identify an optimal solution
of the transformation P, [19]; it corresponds to:

P = (UsΣ
1
2
s UT

s)︸ ︷︷ ︸
W

(UtΣ
1
2
t UT

t)︸ ︷︷ ︸
C

(3.12)

where, W and C correspond to Singular Value Decomposition (SVD) conducted on
Cs and Ct. In particular, W identifies the procedure of whitening the source data, Ds

W−→
D̂s, while C, that of re-coloring transformed source (D̂s), with covariance matrix of the
target data Ct, D̂s

C−→ D̆s. The whitening procedure (W) of the source domain is done
performing the following operation:

D̂s = Ds ∗ C−
1
2

s (3.13)

The re-coloring procedure (C) of the whitened source with target covariance feature
is executed by calculating:

D̆s∗ = D̂s ∗ C
1
2
t (3.14)

28 Chapter 3. Background

(A) Covariance distributions of
source and target domains

(B) Whitening of the source data
De-correlation of the features

(C) Re-coloring of the source
Re-correlation of the features

adding Ct to source

(D) Whitening of both source and target
Wrong approach

FIGURE 3.5: CORrelation ALignment (CORAL)[19]

Then the transformed source domain data is used to train the classifier with supervised
learning methods.

Figure 3.5 illustrates different cases of two data points distributions belonging to a
source and to a target domain.

Figure 3.5a shows how the covariance distributions of the two data appear before
applying the linear transformation. The transfer of the knowledge of a trained
classifier between the two domains is crucial due to the diversity of their spatial
covariance distributions. After applying the whitening of the source (Figure 3.5b),
data rotate and distribute in a subspace of the previous one, whereas nothing happens
to target data. In Figure 3.5c, the re-coloring phase takes place and the covariance
matrix of the target features Ct is added to the whitened source; it results a scenario in
which target and source distributions are well aligned. In this scenario, the transformed
feature space can be used to train the classifier. Figure 3.5d depicts a particular case
in which whitening has been applied to data belonging to both source and target
domains. This causes a rotation both of source and target data and consequentially
the creation of two different sub-spaces on which data reside, that causes the failure

3.4. BER calculation - The E-tool 29

of this method. Other approaches can be performed, i.e., the whitening of the target
features and then re-coloring with source data; it has been proved that this method
obtains lower performance with respect to the other one [8, 6], and so we decided to
develop the first approach.

3.4 BER calculation - The E-tool

The generation of data is made synthetically by simulating BER measurements from
the field. We adopt the generation tool described in [16] (E-tool), which is able to
produce an estimation of the pre-FEC BER of a candidate lightpath given a particular
modulation format, i.e., the bit error rate (BER) at the input of the forward error
correction (FEC) soft decoder.

The majority of FEC codes base their selection on a threshold value, i.e., if the pre-
FEC BER is lower than a determined value, then the output of the FEC will be able
to satysfy BER system requirement, with high probability. Given that, there exists
continuity in between the pre-FEC and the BER requirement of the system, it has
been considered pre-FEC as target value of the BER and a typical value of BER target
is given by T = 4 · 10−3 [2].

In optical system affected only by chromatic dispersion (CD) and additive white
Gaussian noise (AWGN), the pre-FEC BER depends on the pre-FEC signal to noise
ratio (SNR). So, fixing the BER target value, it is possible to compute the required
SNR.

A good link budget estimation that considers launch power, gains and losses of the
optical signal allows the estimation of pre-FEC SNR and, if it exceeds the required
SNR, then lightpath can be established.

Although nonlinear propagation effects can appear in the optical signal, it has been
assumed the scenario where the system behaves like a linear one and nonlinear
propagation effects are treated as independent contribution of AWGN with a proper
power signal: the non linear interference power PNLI . PNLI depends on the input power
and modulation format of each channel [3, 5], and can be computed starting from
the calculation of the input power (Pin) of a standard single-mode fiber (SMF).

The following formula has been adopted to obtain a conservative value of Pin and it
is based on the assumption made in [2], about the Gaussian modulation format:

Pin =
G− 22

3
[dBmW] (3.15)

where G is the gain that we consider of 20 dB, carried by optical amplifiers, located
100 Km far away one from the other, that restore the optical signal power.

30 Chapter 3. Background

After the computation of Pin, a conservative value of PNLI can be obtained considering
the channel bandwidth of the nearest neighbors and the modulation formats; the
numerical value of PNLI is found following the approach of [5]. Then PNLI is converted
to a loss term and added to the link budget.

Other penalty terms are defined and added to the link budget by the E-tool: back-
to-back penalties in a 37.5 GHz flexible grid network for BPSK, QPSK and 8QAM,
16QAM, 32QAM and 64QAM modulation formats; values kept from [Table I, 2] and
[Fig. 7, 23] and a system margin parameter randomly extracted from an exponential
distribution with average 2 dB, that is associated to fast-varying penalties.

31

Chapter 4

Transfer Learning framework for
QoT estimation

This chapter provides a detailed description of the transfer learning framework built
in order to perform our experiments. The framework required by each TL approach
will then be illustrated in details.

Finally, we present the design of experiments and discuss the generation process
of the train and the test datasets. Note that the development of the complete TL
framework is written in Python programming language, with the use of libraries
such as scikit-learn to implement all the learning algorithms.

4.1 QoT prediction framework

In this thesis, we adopt the classifier proposed in [17], which is trained with samples
belonging to a training set gathered from a specific domain and then it is tested with
samples of a test set acquired independently from the training set (see Figure 4.1).

Each sample is composed by a variety of features, that characterize the different
lightpaths. More in detail, we identify 11 features for each lightpath:

FIGURE 4.1: Classification process for the QoT estimation [17]

32 Chapter 4. Transfer Learning framework for QoT estimation

• Lightpath length;

• Longest link length;

• Number of traversed links;

• Traffic volume;

• Modulation format;

• Left & Right guardband;

• Traffic volume of the left and right nearest optical channel;

• Modulation format of the left and right nearest optical channel.

The last six attributes are optional and characterize the left or right neighbor channels
of the lightpath, identified according to their spectral allocation, and are expected to
capture the effects of cross-channel nonlinear interference.

We provide at the input of our classifier different routes with different combinations
of attributes and for each of them the classifier returns an output probability pth

that the lightpath configuration will exceed a given threshold value th of the BER
measured at the receiver.

The predicted class (True or False) is then obtained according to the following rule:{
True if pth < th

False otherwise
(4.1)

Note that different choices of this value can affect the performance of the classifier;
i.e., increasing the value of th decreases the number of samples that we classify as
over threshold (positives) and, on the contrary, the number of lightpaths classified
as below threshold (i.e., negative) increases.

4.2 Transfer Learning Framework

In order to apply the TL methods presented in Section 3.3, we consider two different
topologies. One represents the source domain (Ds), the other represents the target
domain (Dt).

Each domain is associated to a source training datasetRsource, a target training dataset
Rtarget and a separate target test dataset Etarget.

Every dataset contains a set of lightpath samples labeled according to a binary classification,
i.e., True or False, depending on their associated BER value, computed as described
in 3.4.

Basically, we design our experiment with two different data sampling approaches:

4.2. Transfer Learning Framework 33

• only variable target sampling: it means that we do not perform data sampling
from the source training datasetRsource, but we only extract samples randomly
from the target training datasetRtarget;

• fixed source sampling plus variable target sampling: it means that we consider
the entire source training dataset Rsource and combine it with a variable data
sampling from the target training datasetRtarget.

In the following subsections, we describe the five different TL settings considered in
the experiments: only source testbed, only target testbed, mixing testbed, Feature Augmentation
testbed and CORAL testbed, highlighting the sampling rules adopted in each setting
for the construction of the training sets S ⊆ Rsource and T ⊆ Rtarget.

S and T subsets are then merged together in order to produce the dataset to give as
the input to our classifier.

At the end of each testbed subsection a formal description of the data sampling
relative to each setting will be provided together with a simple graphical scheme to
let the reader easily understand the implementation steps to build our framework.

4.2.1 Only source testbed

In this setting we consider a subset S ⊆ Rsource of variable size obtained via random
sampling, whereas T = ∅.

This scenario has been considered to inspect the performance of our classifier when
it is trained only with samples belonging to training setRsource.

Figure 4.2 illustrates this setting, while below, the sampling process from theRsource

andRtarget training set, which allows to obtain the data useful to perform the experiment,
is described formally

S + T s.t

Rsource
random sampling−−−−−−−−−→ S 6= ∅

Rtarget
zero sampling−−−−−−−→ T = ∅

(4.2)

4.2.2 Only target testbed

In this second setting, we consider a subset T ⊆ Rtarget of variable size obtained via
random sampling, whereas S = ∅.

This setting identifies the cases in which the training phase is conducted exploiting
only samples that belong to training setRtarget.

Through this scenario we want to analyze the behavior of our classifier and its ability
to predict the classes of samples belonging to a given domain, when trained with
data belonging to the same domain.

34 Chapter 4. Transfer Learning framework for QoT estimation

ML

Predicted
 class

TRAIN

TEST

FIGURE 4.2: Only source testbed - Variable number of samples
extracted from the source domain training set and zero samples

extracted from the target domain training set

In practice, this is the only setting in which we perform traditional ML algorithm,
indeed it is clear that Ds = Dt and Ts = Tt, i.e., domains and tasks remain unvaried.

The scenario can be summarized defining the dataset to give as input to the classifier
as:

S + T s.t

Rsource
zero sampling−−−−−−−→ S = ∅

Rtarget
random sampling−−−−−−−−−→ T 6= ∅

(4.3)

Figure 4.3 illustrates the scenario described above and clarifies the similarity with a
traditional ML algorithm.

4.2.3 Mixing testbed

In the third setting, i.e., the mixing testbed, we assume a fixed S ⊆ Rsource, whereas
the set T ⊆ Rtarget has variable size and is generated via random sampling.

There exist the case T = ∅, then, only samples from the source domain are leveraged
during the training phase.

Note that the sampling from the training setRsource is performed once and then will
be fixed for all the future sampling of the same case.

Mixing testbed explores the properties of the cases which combine samples both of
the training set sourceRsource and targetRtarget.

4.2. Transfer Learning Framework 35

ML

Predicted
 class

TRAIN

TEST

FIGURE 4.3: Only target testbed - Zero samples extracted from the
source domain training set and variable number of samples extracted

from the target domain training set

In these cases our classifier will receive a larger number of samples, and our analysis
focus, in particular, on the ability of the classifier to deal with samples from both
domains.

As it will be described in the following setting, mixing testbed is the basic architecture
on which the next two testbeds evolve, integrating their proper feature space transformations.

Resulting dataset of the mixing testbed is given by:

S + T s.t

Rsource
random sampling−−−−−−−−−→ S 6= ∅

Rtarget
random sampling−−−−−−−−−→ T 6= ∅

(4.4)

Figure 4.4 illustrates the scenario resulting from the above described data sampling
approach.

4.2.4 Feature Augmentation testbed

The fourth setting, i.e., Feature Augmentation testbed is the first setting in which we
apply a TL approach over the dataset resulting from the data sampling phase.

The construction of sets S and T is analogue to the mixing testbed, so both S and T
are not empty (S, T 6= ∅), but once the sampling process is completed, data undergo
the feature space transformation procedure in order to perform the Feature Augmentation
approach described in Section 3.3.1.

36 Chapter 4. Transfer Learning framework for QoT estimation

ML

Predicted
 class

TRAIN

TEST

FIGURE 4.4: Mixing testbed - Fixed n◦ of samples extracted from the
source domain training dataset and variable n◦ of samples, extracted

from the target domain training dataset

Figure 4.5 shows, also for this case, a general view of the implemented testbed,
including the additional green FA box, which regards the feature space transformation
phase that is described Section 3.3.1, proper of each experiment.

4.2.5 CORAL testbed

The fifth setting is the CORAL testbed; we consider exactly the same sampling criteria
of the Feature Augmentation testbed and so also of the mixing testbed, but we
exploit the whole set Rtarget, considering only the features vector and not the label,
in the computation of the correlation, to estimate the transformation function to be
applied to the samples in S.

Similarly to the previous case, we assume S ⊆ Rsource, whereas the set T ⊆ Rtarget

has variable size and is generated via random sampling.

The transformation function is used to align the second order statistic of the feature
space, i.e., the covariance, according to the process explained in Section 3.3.2.

Transformation step keeps place after applying a normalization step to the features of
the datasets, i.e., the considered training sets are normalized according to a standard
normal distribution with zero mean and unit variance.

Figure 4.6 shows the characteristics of this setting.

4.2. Transfer Learning Framework 37

ML

Predicted
 class

TRAIN

TEST

FA

FIGURE 4.5: Feature Augmentation testbed - Fixed n◦ of samples
extracted from the source domain training dataset and variable n◦

of samples extracted from the target domain training dataset

ML

Predicted
 class

TRAIN

TEST

CORAL

FIGURE 4.6: CORAL testbed - Fixed n◦ of samples extracted from the
source domain training dataset, fixed n◦ of samples extracted from
the target domain training dataset to estimate the transformation
function and variable n◦ of samples extracted from the target domain

training dataset

38 Chapter 4. Transfer Learning framework for QoT estimation

Transfer
Learning

Model

AUC

1

2

3

4

5

6

2b

Transformation

Source Domains

Target Domains

FIGURE 4.7: The experiment phases - 1) Data collection, 2) Data
sampling, 2b) (optional) Feature space transformation 3) Data pre-
processing, 4) Learning algorithm execution, 5) Learning algorithm

test, 6) Performance evaluation

4.3 Design of the experiments

The experiments that have been developed in this work follow a simple scheme: data
collection, data sampling, optional feature space transformation, (only for the execution
of Feature augmentation and CORAL settings), data pre-processing, transfer learning
algorithm execution, transfer learning algorithm test and performance evaluation. All of
them are detailed in the following subsections, highlighting the key aspects of our
implementation.

Figure 4.7 illustrates the fundamental steps of an experiment. We refer to an experiment
as the programmed mechanism in which the already described settings are established
and execute in turn.

4.3. Design of the experiments 39

4.3.1 Source domain, Target domain andRsource,Rtarget selection

In this work all the experiments are conducted considering always two domains:
a source domain and a target domain. The selection of source and target domain is
identified by one combination among the many datasets generated according to the
rules described in Section 3.4 and exploiting the E-tool.

Indeed, with E-tool we have generated a collection of training source datasets Csource,
from which we extract a training source dataset Rsource and a collection of training
target datasets Ctarget, from which we extract a training target datasetRtarget.

Each collection of training datasets is composed by unique elements, related to the
characteristics of the network topology used to generate them; this ensures that all
the source and target training datasets are different:

Csource = {Rsource1,Rsource2, . . . ,RsourceN}, N ∈ N (4.5)

Ctarget = {Rtarget1,Rtarget2, . . . ,RtargetN}, N ∈ N (4.6)

where N is a finite number.

Once the couple Rsource, and Rtarget has been selected data can be forwarded to the
next phase of the experiment: the Data sampling.

4.3.2 Data sampling

During this phase the data inherited from the previous step have to be sampled in
order to establish the particular setting explained in Section 4.2.

The sampling function f̊s(x) is responsible for returning a finite number of unique
elements x from the original dataset and consists in a random sampling without replacement
method1.

In Python, the programming language used to perform experiments, the sampling
function f̊s(x) that we decided to apply to our datasets is sample().

Function sample() invokes the basic function random(), which exploits pseudo random
numbers generator (RNG) according to uniform distribution in the semi-open range
[0.0, 1.0).

Marsenne Twister is a complete deterministic core generator and it is widely used as
RNG; it produces 53-bit precision floats with a period of 219937− 1 and is well suited
for our purpose2.

1Sample function
2Module random

https://docs.python.org/3.8/library/random.html?highlight=random$%$20sample#random.sample
https://docs.python.org/3/library/random.html#module-random

40 Chapter 4. Transfer Learning framework for QoT estimation

In our experiments, the sampling function f̊s(x) is applied twice; once for the source
domain Ds and once for the target domain Dt, returning the following sets of sampled:

f̊s(x) :

{
Rsource −→ S

Rtarget −→ T
(4.7)

The new datasets S and T are then concatenated and ready to be either transformed
and pre-processed if the considered settings are Feature Augmentation and CORAL
or only pre-processed if only source setting, only target setting and mixing setting
have been initialized in the experiment.

4.3.3 Feature space transformation

Feature space transformation is a crucial phase of this thesis, because the assessment
of DA techniques performance passes through well designed transformation procedures.
It is an optional phase, actually it coincides with the number 2b in Figure 4.7, which
is performed by Feature Augmentation setting and CORAL setting.

If the setting in building is the Feature Augmentation the S dataset and T dataset are
processed and their feature space will be reconfigured according to the transformation
described in Section 3.3.1 in order to obtain a transformed source training set S̃ and
a transformed target training set T̃: S FA−→ S̃

T FA−→ T̃
(4.8)

Conversely for the CORAL setting, we have to process the same S training source
dataset and the same T training target dataset, applying on them the transformation
illustrated in Section 3.3.2 in order to obtain the transformed training set of source
domain S̃ and the transformed training set of target domainT̃:S CORAL−−−−→ S̃

T CORAL−−−−→ T̃
(4.9)

The resulting transformed training source dataset S̃ and transformed training target
dataset T̃ are now ready to pass through the following phase of our experiments:
Data pre-processing.

4.3.4 Data pre-processing

Data sampled and transformed are now ready to pass through the last phase before
the training: the pre-processing step. This is a common requirement for many ML
algorithms, that improves a lot the performance achieved by an estimator.

4.3. Design of the experiments 41

Unknown distributions that present too dispersed data in the space have points with
high variance, e.g., it can happen that a feature fx, having a variance with an order
of magnitude larger than other, can affect the ability of the classifier to learn from
others features, because fx dominates over the others.

In order to avoid this kind of problem and also to facilitate the learning phase of
our classifier, in each experiment we perform the pre processing phase of the data,
calling the StandardScaler class of the scikit-learn open source library for Python
programming 3.

This class allow us to standardize the collection of features vectors (dataset) through
the removal of the mean and the scaling of the variance to one.

In order to implement this procedure, we have to calculate the standard score z for
each sample (feature vector) of the dataset:

z =
x− µ

σ
(4.10)

where µ is the mean value of the training samples, i.e., the feature vector, while σ is
the variance. Applying this normalization, we center our data to the zero mean value
and scale to unit variance the datasets.

As said, the feature scaling results useful for many algorithms, such as K-Nearest
Neighbors, Support Vector Machine and Logistic Regression, which require features
to be normalized; anyway there exist different feature scaling approaches, e.g., Z-
score normalization, which is the one that we use in our experiments, scaling features
that lie in a particular range (MinMaxScaler), K-bins discretization, feature binarization,
and so on.

From the practical point of view, since the most machine learning approaches are
based on the euclidean distance between data points of the distribution used to train
the model, the pre processing phase reduces the range of the features space distribution
of our datasets and circumscribe all the value in a limited interval, according to the
type of standardization adopted.

At this point, pre-processed data are ready to be used as input for our classifier,
which can perform the training phase under the best conditions.

In the following subsection it will be shown how the training is managed and which
kind of classifier is used.

4.3.5 Transfer learning algorithm execution

We are now dealing directly with learning models, in particular, in TL algorithm
execution: we provide pre-processed data as input to a classifier to be leveraged
during the training phase.

3StandardScaler

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

42 Chapter 4. Transfer Learning framework for QoT estimation

The training phase coincides with a supervised learning algorithm that configures
the internal structure of a model, evaluating samples and relative labels. The aim
is to acquire as much knowledge as possible in order to cope with a classification
problem.

In this phase of our experiments the training phase consists basically of two parts:

1. definition of the classifier;

2. fitting of the model.

In this thesis, three types of classifiers have been adopted: Random Forest4 (RF),
Logistic Regression5 (LR) and Support Vector Machine6 (SVM). The definition of
these three classifiers is made exploiting the relative modules of the scikit-learn library.

The fitting of the model is realized through the fit method, also provided by the
scikit-learn. It is the crucial instruction in which the model can compare the samples
belonging to the transformed source training set S̃, and transformed target training
set T̃, with the corresponding label. It corresponds to the core phase of the training
and it is the most expensive time procedure of our simulations.

For each experiment, the training phase is executed three times in every setting
configuration: the first time to perform the training of a RF classifier, the second
time to train a Logistic Regression classifier and the third time to realize the training
of a SVM classifier (all algorithms are described in Section 3.1.3).

4.3.6 Learning algorithm test

In our work the testing phase is performed collecting for each source training set
Rsource and target training setRtarget the corresponding target testing set Etarget.

This phase is mainly characterized by one task:

1. Computing the probability of an instance to belong to one class, rather than to
the other one.

The Etarget is used to verify the capability of the trained model to classify unlabeled
target testing set samples.

In only target setting and mixing setting, it is possible to identify two limit cases
regarding the data sampling, i.e., no samples of the training set source Rsource plus
the maximum number of samples of training set target Rtarget, and the maximum
number of samples of training set source Rsource plus no samples of the training set
target Rtarget. These two cases identify the best case and the worst case of the baseline,
that we use as a fixed reference to compare the achieved performance in the five
settings of our learning algorithms.

4Random Forest
5Logistic Regression
6Support Vector Machines

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

4.3. Design of the experiments 43

In the following subsection we describe the last phase of the experiment: performance
evaluation; it regards mainly the metrics adopted to evaluate the output results of the
classifier in terms of performance and understand its goodness.

4.3.7 Performance evaluation

The last subsection is characterized by the description of the metrics involved in the
quality measurements of our binary classifier, i.e., the Accuracy and the Area Under
the Curve (AUC)[1].

Accuracy

Given the testing set target Etarget, the accuracy is defined as the ratio of the number
of Etarget samples that are correctly classified, to the total number of samples of Etarget.
Although it is very intuitive and easily understandable, accuracy suffers of some
drawbacks.

The first one is that accuracy is most influenced by the instance number of the two
classes present in the test set, i.e., if almost the totality of samples belongs to one
class C, the level of accuracy reached by a classifier which always returns the class
C will be very high; but this does not provide useful information, nevertheless this
measure can be considered as a good metric to evaluate the quality of the classifier.

Another one depends from the value of threshold used to binarize the output probability
of the classifier. Indeed, the choice of the threshold affects a lot the value of the
accuracy. For example, a classifier that has a constant behavior in the sample assignment
of the two classes will lead to low accuracy values if the threshold is set far from
the classification scores of the classifier, while lead to high values of accuracy if the
threshold is set near to the constant score values.

A third drawback is the difficulty for accuracy to highlight the quality of a classifier
that operates in a ambiguous scenario. Consider a test set in which samples are
divided into three groups: 25% of true samples, 25% of false samples and a 50% of
samples both true and false but very difficult to distinguish among them.

If a classifier C1 scores 1 for instances of the first group, 0 for instances of the second
group and values close to 0.5 for the third one, it is preferable with respect to a
classifier C2 that instead scores 1 and 0 as the previous one, while values near to 0
or 1 for the third group. Both classifiers reach a 75% of accuracy but the second one
C2 manifests a wrong capability to discern instances inside the third group, which
are very similar. C1, instead, exhibits better ability especially for the third group by
assigning to them value near to 0.5 and so with better decision quality.

44 Chapter 4. Transfer Learning framework for QoT estimation

AUC - Area Under the Curve

The other metric, i.e., Area Under the Curve (AUC), tries to solve the above mentioned
issues related to the accuracy and it is extremely used in Machine Learning literature.
Also in this case, is given a testing set target Etarget, it is possible to fix an arbitrarly
threshold th and divide Etarget into four subsets:

1. True Positive (TP) set: the ensemble of samples which are correctly classified
because positive by nature and positive by classification;

2. True Negative (TN) set: the ensemble of samples which are correctly classified
because negative by nature and negative by classification;

3. False Positive (FP) set: the ensemble of samples which are not correctly classified
because negative by nature and positive by classification;

4. False Negative (FN) set: the ensemble of samples which are not correctly classified
because positive by nature and negative by classification.

Characterizing the groups helps to inherit other parameters directly connected to the
numerosity of positive and negative samples in the testing set target Etarget. Indeed,
the TP + FN corresponds to the total number of positive (by nature) samples, while
TN + FP corresponds to the total number of negative (by nature) samples.

It follows the definition both of true positive rate (TPR) and false positive rate (FPR):

TPR =
TP

TP + FN
(4.11)

is the fraction between the True Positive (TP) set and the total number of positive
(by nature) samples.

FPR =
FP

TN + FP
(4.12)

is the fraction between the False Positive (FP) set and the total number of negative
(by nature) samples. The domain in which TPR and FPR is comprised between 0
and 1;

Receiver Operating Characteristic (ROC) curve is represented in Cartesian axis, where
the x-axis corresponds to the FPR, while the y-axis corresponds to the TPR, both for
different values of threshold th. If the threshold th is maximum, i.e., equal to 1, so
all samples of Etarget are classified as negative, therefore FPR and TPR are very close
to zero; vice-versa if threshold th is minimum, i.e., equal to 0, so all samples of Etarget

are classified as positive, therefore FPR and TPR are very close to one;

By increasing the threshold value th the number of positive classified samples reduces
(and number of TP decreases), while the number of negative classified samples
augments (and number of TN increases); both TPR and FPR decrease.

4.3. Design of the experiments 45

FPR

T
P
R

0

1

1

(A) AUC = 1

FPR

T
P
R

0

1

1

(B) 0.5 < AUC < 1

FPR

T
P
R

0

1

1

(C) AUC = 0.5

FIGURE 4.8: ROC curve - Ideal, Real and Worst cases

By decreasing the threshold value th the number of positive classified samples augments
(and number of TP increases), while the number of negative classified samples decrements
(and number of TN decreases); both TPR and FPR increase.

The ROC curve connects always the extremes (0,0) and (1,1), in the middle we can
observe three different scenarios:

• Figure 4.8a - ROC curve connecting (0,0), (0,1), (1,1) Ideal−−→ AUC = 1;

• Figure 4.8b - ROC curve in the middle Real−−→ 0.5 < AUC < 1;

• Figure 4.8c - ROC curve connecting (0,0), (1,1) Worst−−−→ AUC = 0.5.

The AUC does not depend on the choice of the threshold th, it is robust and it is
recommended to be used to evaluate binary classifiers[7].

47

Chapter 5

Numerical Assessment

This chapter provides a full overview of all the experiments done in this work and
exhibits the numerical assessment for each of them.

Our analysis will move from the generation of the datasets, and their technical
description, i.e., the network topologies to which are related, the scaling factor adopted
to resize them, the total samples size, the number of samples per class.

After describing the complete pool of data that have been used in the experiments,
we consider different combinations of source and target domain datasets and apply
the TL learning models described in Sections 4.2.4 and 4.2.5.

The performance analysis considers the two metrics described in Section 4.3.7, which
clarify the different behavior of the classifiers with respect to the different considered
domains.

In the first part of the chapter, results obtained wuth the Random Forest classifier
and the simple swapping of source domain and target domain are obtained and
compared to those presented in [16], while in the second part, the other two classifiers,
i.e., SVM and Linear regression, are also adopted and their behavior is evaluated
under all the settings described in Chapter 4.

As last step, we investigate how the performance values are related to the distance
that exists between the lightpath length distributions of the source dataset and target
dataset.

5.1 Datasets description

For the generation of the datasets1 we refer to a transmission system in which optical
channels have a slice width of 12.5 GHz [18] and elastic tranceivers operate at 28
Gbaud with a bandwidth of three slices, i.e., 37.5 GHz. Modulation formats are
chosen among dual polarization (DP)-BPSK, QPSK and n-QAM, with n = 8, 16, 32,
64. For traffic demands that exceed the transceiver bandwidth, multiple adjacent

1The generation of the dataset has been done, making use of the cluster of the High Performance
Computing (HPC)[9] center of the Politecnico di Torino, running Matlab scripts.

48 Chapter 5. Numerical Assessment

FIGURE 5.1: Japan Network Topology

FIGURE 5.2: NSF Network Topology

transceivers are used. We consider standard single mode fiber (SMF) transparent
links, where equally spaced optical amplifiers over the links restore the signal power
every 100 Km. Other parameters setting are indicated in Section 3.4.

We consider the Japan and NSF networks shown in Figure 5.1 and 5.2, respectively,
where the reported link lengths, refer to the original topology (not re-scaled). In
order to get additional datasets, the two original topologies have been multiplied by
a scaling factor (SF), that either magnifies or shrinks the link lengths.

Table 5.1 lists the 16 datasets corresponding to the training set R and testing set E
used to perform our experiments, indicating the considered topology, scaling factor
value, total size and percentage of samples which exhibit a BER above the fixed
threshold value γ. The scaling factor (SF) indicates the multiplicative factor applied
to each link of the topology to obtain a re-scaled version.

The train sets R are generated according to the associated topology structure, we
produce 10000 instances by randomly selecting a source-destination node pairs, a
modulation format and a traffic demand, which is uniformly extracted from a range
of [50 − 500] Gbps, with 50 Gbps granularity. Finally, the BER is evaluated with
the E-tool described in Section 3.4. During the generation of Japan∗, the parameter
setting is slightly different, indeed the fiber attenuation per km changes from 0.2 to
0.25, and the Noise Figure amplifier from 5 dB becomes 6 dB.

5.1. Datasets description 49

TABLE 5.1: Dataset Description - Train SetR and Test Set E

R / E Topology SF∗ Total size Above γ - (%)

R Japan 0.5 10000 25.04
R Japan 1 90000 40.97
R Japan 2 10000 63.92
R Japan∗ 1 10000 59.93
R NSF 0.2 10000 62.25
R NSF 0.5 10000 78.97
R NSF 1 90000 89.91
R NSF 2 10000 96.69

E Japan 0.5 90000 55
E Japan 1 90000 42.08̄
E Japan 2 90000 62.1̄
E Japan∗ 1 90000 59.686̄
E NSF 0.2 90000 67
E NSF 0.5 90000 82.331̄
E NSF 1 90000 90.538̄
E NSF 2 90000 97.473̄

*Scaling Factor;
*γ = 4 · 10−3.

The test sets E follow the same rules of the train sets generation, the difference is that
in this case the total sample size is 90000.

The BER threshold value γ selected is 4 · 10−3 for both train setsR and test sets E .

For each train set R, we compute the number of samples which are above or below
the BER threshold γ, this is done through the use of a logarithmic scale which
improves the readability of these data. We want to explore how the number of True
samples, i.e., below γ, and the number of False samples, i.e., above threshold γ, can
affect the performance of our classification problem. For this reason, Appendix A
reports the logarithmic histograms for each train setR, that highlight the number of
samples for different ranges of BER values.

The total number of sample size below the threshold γ keep decreasing when augmenting
the scaling factor (SF), so the more a network become larger, the more the number
of samples below the threshold γ decreases. Vice-versa, the total number of sample
size above the threshold γ keep increasing when augmenting the scaling factor (SF).

This trend is confirmed in both the network topologies reported in Appendix A: the
maximum value of samples above the threshold belong to the Japan topology, re-
scaled according to SF = 0.5, as illustrated in Figure A.1a. It has 7496 true values,
with respect to the 2504 samples, which instead are False.

The minimum value of True samples is reached by the NSF topology, re-scaled
according to SF = 2, i.e., all link lengths are doubled. In Figure A.2d is shown

50 Chapter 5. Numerical Assessment

that, for this topology, the number of True samples is 331.

Generally, the Japan topology exhibits more True values with respect to the NSF
topology: this is due to the smaller size of the Japan network in comparison to the
NSF network.

For example, the smallest NSF topology, i.e., the NSF re-scaled with SF = 0.2, has
similar size of the largest Japan topology, i.e., Japan re-scaled with SF = 2, and for
the first, the number of True samples is 3775 (Figure A.2a), while for the second, the
number of True samples is 3608 (Figure A.1c); the two values are very similar due to
the similar size of the two topologies.

For each train set R we also evaluated the probability distribution function of the
lightpath lengths associated to each source-destination node pair.

Figures B.1 and B.2 reported in Appendix B provide a representation of the probability
distribution function of lightpath lengths for each combination of the two topologies.
As said before, the Japan topology is in general much smaller than NSF topology, so
for networks topologies of very different sizes, the shared support between the two
is minimal. In this initial stage, we are interested in the evaluation of the similarity of
two topologies in terms of shared area between distributions, so the more the shared
area is large, the more the two distributions are similar.

Observing the graphs in Appendix B, the distribution of each topology scales according
to the SF, but does not change its shape. This is due to the fact that, we design our
generation process in order to create re-scaled datasets which recall to the original
ones by the selection of the same routes among the nodes.

Borderline cases for different network topologies correspond to Figure B.1d, in which
the area shared by the two distributions is very small, and on the contrary, to Figure
B.2c, in which instead, the support of the two distribution is almost the same and
the shared area by the distribution is big.

The 12 combinations of train set R, resulting by the 3 versions of re-scaled Japan
topologies and the 4 versions of re-scaled NSF topologies are listed in the Table 5.2,
where the minimum lightpath length for both topologies, the maximum lightpath
length for both topologies and their corresponding average values are indicated.
The probability distribution function (pdf) of the lightpaths is obtained considering
histograms with 300 Km binwidth.

5.2 A first approach with Machine Learning

We initially consider the same scenario proposed in [16] and replicate the results
therein reported by training of a Random Forest (RF) classifier with samples belonging
to a given topology and performing the test with samples of the same topology.

5.2. A first approach with Machine Learning 51

TABLE 5.2: Lightpaths statistics - Minimum, Maximum and Mean

R1 − SF1 Min. length (Km) Max. length (Km) Mean value (Km)R2 − SF2

Japan - 0.5 20 640 254.21
NSF - 0.2 80.0 2628.7854 995.059
Japan - 0.5 20 640 254.21
NSF - 0.5 150 4250 1799.38
Japan - 0.5 20 640 254.21
NSF - 1 300 8500 3598.76
Japan - 0.5 20 640 254.21
NSF - 2 600 17000 7197.52
Japan - 1 40 1280 508.42
NSF - 0.2 80.0 2628.7854 995.059
Japan - 1 40 1280 508.42
NSF - 0.5 150 4250 1799.38
Japan - 1 40 1280 508.42
NSF - 1 300 8500 3598.76
Japan - 1 40 1280 508.42
NSF - 2 600 17000 7197.52
Japan - 2 80 2560 1016.84
NSF - 0.2 80.0 2628.7854 995.059
Japan - 2 80 2560 1016.84
NSF - 0.5 150 4250 1799.38
Japan - 2 80 2560 1016.84
NSF - 1 300 8500 3598.76
Japan - 2 80 2560 1016.84
NSF - 2 600 17000 7197.52

In [16] this kind of approach has been then extended in order to perform an analysis
on the feature relevance. In particular, the selected subsets of features are represented
in Table 5.3 and are used in turn, to train the classifier with 1000 training samples.
The considered features are those enumerated in Section 4.1.

Figure 5.3 and 5.4 report the histograms that show the performance achieved by the
classifier in terms of Accuracy and AUC with the Japan and NSF topologies assuming
SF=1, for the scenario test with the complete E and for the scenario test with the near
to threshold samples of the E . The near to threshold identifies the dataset E which
has been filtered keeping the samples that are close to the threshold value γ. In
particular, filtering is performed selecting only the values in between the interval
[4 · 10−4, 4 · 10−2] to investigate on the special scenario in which the instances are
difficult to classify.

From the results depicted in Figure 5.3 and 5.4, it is possible to note that in Japan
topology the difference in terms of both AUC and Accuracy of near to threshold
samples is not pronounced as in the NSF topology. In addition, it results clear

52 Chapter 5. Numerical Assessment

TABLE 5.3: Feature Subsets

Features S1 S2 S3 S4 S5 S6 S7

Number of links X X X X
Lightpath length X X X X X X
Length of longest link X X X X
Traffic volume X X X X X
Modulation format X X X X X X
Guardband, modulation format X

and traffic volume of nearest left
and right neighbor

(A) Accuracy, depending on the feature set
selection relative to Japan topology

(B) AUC, depending on the feature set selection
relative to Japan topology

FIGURE 5.3: Performance evaluation w.r.t feature selection using
RJapan and EJapan[16]

the impact of particular subsets of feature with respect to others; for example the
lowest performance are achieved when modulation format attribute is not considered,
i.e., subset S3, while the highest performance are obtained when subsets S1, S2, S5
are considered. The training with the features which are proper of the links, i.e.,
lightpath length, traffic volume and modulation format (subset S5) allows to reach good
performance in both topologies and are comparable with the subsets that exploit all
the 11 features (S1) and subset S2, which adds number of links and length of the longest
link attributes. Readers interested in learning more about these results, are invited
to read the complete description given in [Section C., 16]. Based on the described
results, we decided to adopt only S1 and S2 subsets.

5.2.1 Changing the target domain

Maintaining the same Random Forest classifier of [16] for the sake of comparison,
which exploits a forest of 25 decision trees, we repeat the same experiments illustrated
above, but using the test Etarget of a different domain. So, for example, if subset S1 is

5.2. A first approach with Machine Learning 53

(A) Accuracy, depending on the feature set
selection relative to NSF topology

(B) AUC, depending on the feature set selection
relative to NSF topology

FIGURE 5.4: Performance evaluation w.r.t feature selection using
RNSF and ENSF [16]

used to train the RF classifier with samples drawn from the Japan topology, then the
test is performed using the target test set Etarget of the NSF topology.

Intuitively, this is a bad scenario to apply a machine learning algorithm, because a
ML model is able to recognize samples very similar to those used for the training.

RJapan and ENSF

Figure 5.5 shows the results obtained training a RF classifier withRJapan, and testing
it with ENSF, following the same procedure of the previous experiments. In comparison
to results plotted in Figure 5.3 the performance reached both by Accuracy and AUC
consistently decreases, but the AUC exhibits a better trend in the full test condition,
confirming that the best scenarios under which perform the train are: S1, S2, S5.

For the near to threshold cases, the performance degradation is even more pronounced
both for AUC and Accuracy, and the discrepancy between the full test scenario and
near to threshold scenario is much more evident.

S1 S2 S3 S4 S5 S6 S7
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Full
Near to T

(A) Accuracy, depending on the feature set
selection relative to Japan topology

S1 S2 S3 S4 S5 S6 S7
0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Full
Near to T

(B) AUC, depending on the feature set selection
relative to Japan topology

FIGURE 5.5: Performance evaluation w.r.t feature selection using
RJapan and ENSF

54 Chapter 5. Numerical Assessment

RNSF and EJapan

Figure 5.6, instead, shows the results of the opposite case in which RNSF is used
as training set, while EJapan is used as test set. The Accuracy touches low values
both for full test scenario and near to threshold and the subset S5, seems to better
behave with respect to others. The AUC instead, maintains higher values, especially
considering the full test scenario and making the training with S1, S2, S5 subsets.

S1 S2 S3 S4 S5 S6 S7
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Full
Near to T

(A) Accuracy, depending on the feature set
selection relative to NSF topology

S1 S2 S3 S4 S5 S6 S7
0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Full
Near to T

(B) AUC, depending on the feature set selection
relative to NSF topology

FIGURE 5.6: Performance evaluation w.r.t feature selection using
RNSF and EJapan

Results reported in Figures 5.5-5.6 allow us to quantify the impact of changing the
domain where a trained ML model is applied, thus motivating the need for the
adoption of TL methodologies. Table 5.4, reports the difference of AUC and Accuracy
values between the testing made on the same network versus the testing made on
different network is quantified in percentages.

TABLE 5.4: Accuracy and AUC discrepancy (%) between testing on
the same network vs different network

S1 S2 S3 S4 S5 S6 S7

JJ-JN
Accuracy

Full 22.03 18.61 4.94 7.15 11.89 3.73 35.78
Near 20.61 21.83 4.29 15.38 22.32 24.33 13.52

AUC
Full 3.51 2.5 0 5.52 0.90 3.62 5.66
Near 27.20 29.94 7.44 24.47 28.79 25.99 27.26

NN-NJ
Accuracy

Full 11.02 10.72 0 5.87 1.21 0 43.28
Near 41.29 22.53 26.12 25.92 14.28 10.29 56.11

AUC
Full 0.89 0.51 0 0 0 0 5.67
Near 24.78 15.14 32.66 5.75 11.57 3.16 13.38

JJ=RJapanEJapan
NN=RNSFENSF
JN=RJapanENSF
NJ=RNSFEJapan

5.3. Baselines assessment 55

5.2.2 Receiver Operating Characteristic curves

Another element of comparison among the results obtained in [16] and ours, consists
in the representation of the ROC curves.

Several trials have been conducted modifying the samples size of training sets R,
in particular our training datasets are composed by 90000 instances each, and we
evaluate the impact of the training set size in five different cases, sampling the R in
a subset R̄ | R̄ ⊆ R:

• Train Set R̄ of 10 samples;

• Train Set R̄ of 100 samples;

• Train Set R̄ of 1000 samples;

• Train Set R̄ of 10000 samples;

• Train Set R̄ of 90000 samples.

Intuitively, the increment in the training set size should yield to a better performance,
and, consequently, a higher AUCs. ROC curves appeared in [16] are illustrated in
Figure 5.7a and 5.7b, and are used for comparison to our scenarios, in which the
target domain instead, E are swapped.

As illustrated in Figure 5.7c and Figure 5.7d, though the AUC values grow with
increasing train set size, by simple visual inspection it results clear that changing
target domain leads to a consistent reduction of AUC values, w.r.t. Figures 5.7a and
5.7b.

Note that the trend of the brown ROC curves in Figures 5.7c and 5.7d follows that of
black ROC curve; this fact indicates that using a train set size 90000 samples does not
significantly improve the performance of our classifier with respect to using a train
set size of 10000 samples. For this reason, from now on we can consider a training
setR of 10000 samples.

This important aspect of our investigation has been used in order to built our baselines
and obtain the results reported in the next subsections.

5.3 Baselines assessment

We now report a first evaluation of the performance improvements achieved by the
simplest DA technique described in Section 4.2.3,i.e., dataset mixing.

The baseline assessment consists into twelve study cases which are referred to the
only target testbed and the mixing testbed described in the previous Sections 4.2.2 and
4.2.3.

In particular, in the only target setting there are no instances from the source domain
Rsource, whereas we consider 10, 50, 100 500, 1000 and 10000 samples from target

56 Chapter 5. Numerical Assessment

10
100
1000
10000
90000

(A) ROC curve for different R size over Japan
topology

10
100
1000
10000
90000

(B) ROC curve for different R size over NSF
topology

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

10
100
1000
10000
90000

(C) ROC curve for different R size over Japan
topology and testing with NSF

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
10
100
1000
10000
90000

(D) ROC curve for different R size over NSF
topology and testing with Japan

FIGURE 5.7: ROC curves for the impact of Train SetR size

domain Rtarget, for a total of six different cases, formally:

S + T s.t

Rsource
zero sampling−−−−−−−→ S = ∅

Rtarget
random sampling−−−−−−−−−→ T = i, i = 10, 50, 100, 500, 1000, 10000

(5.1)

Intuitively, performance metric are expected to grow when increasing the number of
samples in T, from 10 up to the maximum value.

Last case, i.e., T = 10000 samples, corresponds to the best case scenario, in which
the classifier can be trained and tested with all data of target domain.

The mixing setting is composed, instead, by the last six cases, in which 10000 fixed
instances of the source domainRsource are combined with 0, 10, 50, 100, 500 and 1000
samples of target domainRtarget, formally:

S + T s.t

Rsource
f ixed sampling−−−−−−−−→ S = 10000

Rtarget
random sampling−−−−−−−−−→ T = i, i = 0, 10, 50, 100, 500, 1000

(5.2)

5.3. Baselines assessment 57

Once sampled, the 10000 samples of S remain fixed for all the cases, while the target
instances T keep growing time by time from 10 to 10000.

Note that when i = 0, the training step is performed ones with samples of the source
domain, while testing step is executed with samples belonging to target domain;
therefore, it is expected that the classification is more difficult for the model and
furthermore the performance should be worse with respect to other cases, where
some samples drawn from the target domain are also available for the training
phase. For this reason, we identify this particular case study as the worst case
scenario.

Results that we are going to show merge the two settings in a single graph, where
the achieved values of AUC and Accuracy are compared taking into consideration
the following scenarios:

• Japan-to-NSF: The considered source domain is the Japan network while the
considered target domain is the NSF network. To perform the training RJapan

is selected as source train set and RNSF as target train set, while the testing is
performed with the complete target test set ENSF of 90000 instances;

• NSF-to-Japan: The considered source domain is the NSF network while the
considered target domain is the Japan network. To perform the training is used
RNSF as source train set, and RJapan as target train set, while the testing is
performed with the complete target test set EJapan of 90000 instances.

The only target setting is identified by the blue bar and each case is labeled with the
notation xNSF, in the Japan-to-NSF scenario or xJAP, in the Japan-to-NSF, where x
denotes the number of sampled instances from theRNSF orRJapan, respectively.

The mixing setting is identified by the yellow bar and each case is labeled with the
notation xall, in both Japan-to-NSF and NSF-to-Japan scenarios, where x denotes
the number of sampled instances from the targetRNSF or targetRJapan, respectively.

Best case and worst case are depicted with dashed red and blue lines, respectively.

From now on, all the results that will be provided are averaged are averaged base
on 20 replicas of the same experiments.

Figure 5.8 illustrates the bars that represents the performance value of AUC achived
in the scenario Japan-to-NSF and in the scenario NSF-to-Japan, respectively. Figure
5.8a, shows a best case close to one, while a worst case baseline near to 0.9. In between
we can observe an increasing trend according to the growth of the samples size.

Results obtained in the mixing setting always outperform those obtained in the only
target setting.

For what concerns instead the Figure 5.8b, it is possible to note a higher value of
the worst case AUC, and the yellow bars are significantly higher than the blue bars

58 Chapter 5. Numerical Assessment

especially in the cases with few sample of the target training set are considered;
conversely, for high number of samples, i.e., 500 and 1000, the behavior of the yellow
and blue bars seems to be comparable in both scenarios.

10
NS
F

10
all
50
NS
F

50
all

10
0N
SF

10
0a
ll

50
0N
SF

50
0a
ll

10
00
NS
F

10
00
all

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

10000NSF
10000JAP

(A) AUC - Japan-to-NSF

10
JAP 10

all
50
JAP 50

all

10
0JA
P

10
0a
ll

50
0JA
P

50
0a
ll

10
00
JAP

10
00
all

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

10000JAP
10000NSF

(B) AUC - NSF-to-Japan

FIGURE 5.8: Baseline Japan-to-NSF / NSF-to-Japan - Bars, Area
Under the Curve (AUC) comparison

Figure 5.9 presents analogous results considering the Accuracy metric, for the Japan-
to-NSF and the NSF-to-Japan scenarios. In particular, Figure 5.9a, shows that also
the Accuracy presents an increasing trend for both blue and yellow bars. Best case
accuracy is in between 0.97 and 0.98. Moreover we can observe that the mixing
testbed beats the only target testbed almost in all the cases, except for the first two
ones, i.e., with 10 and 50 samples.

For what concerns instead Figure 5.9b, Accuracy values are generally lower than
in the Japan-to-NSF. Here, mixing testbed always outperforms the blue bars. From
the graph of the distribution B.2a, it results evident that the NSF network, given
its bigger dimension, contains lightpath lengths that can be established in Japan
topology, so the training performed under mixing setting, brings benefits to the
capacity of the classifier to get better performance.

This intuition is valid in general, because performing the training in a set S and test
the model in a subset T can be useful because surely the model has seen the type of
data in T, vice-versa, the probability that a model has seen the type of data of S, after
the training in T, is related to the grade of similarity or dissimilarity, or the distance,
that exists between the two sets.

Last task of baseline analysis regards the study of the distributions of the obtained
performance values, both for the AUC and Accuracy. To this aim, we provide boxplots
of the AUC and Accuracy values obtained in the scenarios already described.

5.4. Domain adaptation assessment 59

10
NS
F

10
all

50
NS
F

50
all

10
0N
SF

10
0a
ll

50
0N
SF

50
0a
ll

10
00
NS
F

10
00
all

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

10000NSF
10000JAP

(A) Accuracy - Japan-to-NSF

10
JAP 10

all
50
JAP 50

all

10
0JA
P

10
0a
ll

50
0JA
P

50
0a
ll

10
00
JAP

10
00
all

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

10000JAP
10000NSF

(B) Accuracy - NSF-to-Japan

FIGURE 5.9: Baseline Japan-to-NSF / NSF-to-Japan - Bars, Accuracy
comparison

In general, in both the only target (blue) and mixing (yellow) settings, boxplots become
narrower with the increase of the number of samples; this is due to the fact that
we run the same experiments 20 times and so, every time, the sampling procedure
selects a different target train set Rtarget; as a consequence, the cases in which the
number of sampled instances is low, manifest an higher variance in the space. This
is true, especially for the only target setting, because we perform the training with
at most 1000 samples (excluding the best case scenario), while in mixing setting, the
minimum number of fixed samples is given by the source train setRsource.

Figure 5.10 shows the boxplots of AUC for each case of every setting, while Figure
5.11 shows the boxplots of Accuracy: the trend follows that of the bars in Figure
5.8 and 5.9; as said before, we can notice an interesting characteristic, common to
both the only target and mixing settings, i.e., the narrowing of the boxplots with the
increase of the number of samples. The mixing setting case always outperforms the
only target setting.

Int he next subsection, we explore the performance of the other two DA techniques
(i.e., FA and CORAL) to see if they can outperform the mixing approach.

5.4 Domain adaptation assessment

We have seen that with a Random Forest classifier is possible to achieve good levels
of AUC and Accuracy, in this section we provide results obtained performing two
DA techniques: Feature Augmentation and CORAL. So, we extend the graph reported
in the previous subsection including the FA setting and the CORAL setting, in which
the feature transformation keeps place. The Feature Augmentation setting is labeled
by Taug, where T ∈ {10, 50, 100, 500, 1000} corresponds to the sampled instances

60 Chapter 5. Numerical Assessment

10
NS
F

10
all

50
NS
F

50
all

10
0N
SF

10
0a
ll

50
0N
SF

50
0a
ll

10
00
NS
F

10
00
all

0.90

0.92

0.94

0.96

0.98

1.00
AU

C

10000NSF
10000JAP

(A) AUC - Japan-to-NSF

10
JAP 10

all
50
JAP 50

all

10
0JA
P

10
0a
ll

50
0JA
P

50
0a
ll

10
00
JAP

10
00
all

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

10000JAP
10000NSF

(B) AUC - NSF-to-Japan

FIGURE 5.10: Baseline Japan-to-NSF / NSF-to-Japan - Boxplots, AUC
comparison

from the target set Rtarget. Actually, we decided to remove out the case in which
T = 1000 because it behaves approximately as the case T = 500.

For what concerns the best case scenario, i.e., when considering 10000 samples of
target set Rtarget, we adopted a dashed dot line, while for the worst case one, i.e.,
when are considered only 10000 source set Rsource samples, we opted for a simply
dotted line.

For CORAL setting we made the assumption that 10000 unlabeled instances ofRtarget

are used to re-color source data; note that, for the QoT prediction task, collecting
unlabeled samples of the target setRtarget is trivial, as we simply need to select route,
traffic volume and modulation format of a perspective ligthpath to derive its feature
vector, but we do not need to measure its BER.

We refer to this particular case with the notation xCOR, where x corresponds to the
sampled instances of the target setRtarget which are appended to the 10000 instances
of the transformed source setRsource.

As done for baseline assessment, we conduct our experiment considering the two
scenarios:

• Japan-to-NSF: The considered source domain is the Japan network while the
considered target domain is the NSF network;

• NSF-to-JAP: The considered source domain is the NSF network while the considered
target domain is the JAP network.

5.4. Domain adaptation assessment 61

10
NS
F

10
all

50
NS
F

50
all

10
0N
SF

10
0a
ll

50
0N
SF

50
0a
ll

10
00
NS
F

10
00
all

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

10000NSF
10000JAP

(A) Accuracy - Japan-to-NSF

10
JAP 10

all
50
JAP 50

all

10
0JA
P

10
0a
ll

50
0JA
P

50
0a
ll

10
00
JAP

10
00
all

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

10000JAP
10000NSF

(B) Accuracy - NSF-to-Japan

FIGURE 5.11: Baseline Japan-to-NSF / NSF-to-Japan - Boxplots,
Accuracy comparison

5.4.1 Random Forest

We start our analysis considering the Random Forest classifier used in the previous
cases, but this time, we integrated the experiments with the transfer learning models.

Figure 5.12 shows the performance achieved by the classifier under the Japan-to-
NSF scenario, in particular Figure 5.12a reports the AUC performance values. It
is possible to note that in this case, the highest performance are reached by the
mixing setting, while FA and CORAL approaches, lightgrey and darkgrey boxplots,
respectively, obtain discretely good values of AUC, that increase with the increasing
of the number of instance.

Although the AUCs are around 0.9, the two domain adaptation techniques do not
outperform the other approaches.

Figure 5.12b represents instead the results related to Accuracy metric; in this case
the values are slightly lower than AUCs, but the trend is equal to the previous one,
except for CORAL that instead, achieves lower result for 10, 50 and 100 samples and
acceptable values (but not as high as the others), improvements for 500 samples.
Also in this case we do not achieve performance exploiting the two DA approaches,
except for the single case of 10aug, Figure 5.12b, which is slightly larger than 10NSF
and 10all cases.

We replicated the same experiments considering NSF-to-Japan; results are shown in
Figure 5.13, where in general AUC values are slightly larger than Accuracy values.
Also for this case, both Feature Augmentation and CORAL are always below the
mixing setting and the only target setting.

62 Chapter 5. Numerical Assessment

0.80 0.85 0.90 0.95 1.00
AUC - Area under the curve

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Random Forest

0.5 0.6 0.7 0.8 0.9
Accuracy

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Random Forest

FIGURE 5.12: Domain adaptation Japan-to-NSF & Random Forest

0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUC - Area under the curve

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Random Forest

0.5 0.6 0.7 0.8 0.9
Accuracy

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Random Forest

FIGURE 5.13: Domain adaptation NSF-to-Japan & Random Forest

Results for these two scenarios show that adoption of TL models does not provide
a valid alternative to the simple mixing of the source data with target data. For
this reason, we decided to investigate alternative ML models that can perform the
classification. So, motivated by the use of the same two TL techniques, in the following
we investigate on the exploitation of different learning algorithms: i.e., the Support
Vector Machine and Logistic Regression.

5.4.2 Support Vector Machine (SVM)

As said, we decided to move from a Random Forest classifier to a Support Vector
Machines algorithm described in Section 3.1.3, which are used to perform the same
classification problem. In order to be consistent with respect to the previous case,
we perform the same experiments done before, first analyzing the NSF-to-Japan
scenario the opposite one.

Figure 5.15a plots the resulting AUC in the specific case where NSF network is used

5.4. Domain adaptation assessment 63

0.800 0.825 0.850 0.875 0.900 0.925 0.950
AUC - Area under the curve

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Support Vector Machine

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Support Vector Machine

FIGURE 5.14: Domain adaptation NSF-to-Japan & Support Vector
Machine

as source domain, while Japan network is adopted as target domain. The average
lightpath length in the NSF topology (See Fig. 5.2) is consistently higher than in he
Japan topology (See Fig. 5.1). For a deep inspection on that, it is possible to compare
the distributions of lightpath length reported in B for the case in Fig. B.2a, where
the lightpaths deployed in in the Japan network never exceed 2000 km, whereas
in the NSF network the maximum reached is around 8000 km, though lightpath
lengths in the order of hundreds of km there exist also for this topology. Therefore,
the train source set RNSF (or S) is expected to contain a representative number of
lightpath samples for a wide range of lengths. By this fact, there exist a small gap,
around 0.02, between the AUC values obtained in 10000 source and 10000 target
scenarios, meaning that algorithm which learns from samples gathered from the
NSF already provides a reasonable knowledge on the BER of lightpaths deployed in
Japan network. In addition, when the sampled train target set T ⊆ RJapan is low,
10000 source scenario outperforms only target scenario; this example confirms that
learning from a high number of train source set S samples is more effective than
learn from a limited number of train target set T. Moreover, learning from the set
S ∪ T, i.e., the mixing setting, leads to modest improvements on the AUC values
when T is high. As for the transfer learning approaches, when T is low, CORAL
significantly improves the AUC values with respect to the 10000 source scenario, only
target setting and mixing setting, while Feature Augmentation achieves on average
lower AUC than mixing setting and manifests comparable performance to only target
setting. Conversely, when T = 500, the only target, FA and CORAL provide similar
results, which closely approach 10000 target cases. Indeed, it is possible to conclude
that, when the number of available samples from the target domain train set is quite
large, DA techniques are expected to be less useful, as those samples are already
representative of the feature space.

In Figure 5.15a we report the AUC results in the case we used Japan topology as

64 Chapter 5. Numerical Assessment

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
AUC - Area under the curve

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Support Vector Machine

0.5 0.6 0.7 0.8 0.9
Accuracy

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Support Vector Machine

FIGURE 5.15: Domain adaptation Japan-to-NSF & Support Vector
Machine

source domain and NSF topology as target domain. In this case, the gap between
the 10000 source, i.e., only 10000 samples of Japan network, and 10000 target, i.e.,
only 10000 samples of NSF network, is larger than before (Fig 5.15a). As the average
lightpath length in the Japan topology is considerably lower with respect to that of
NSF topology, little knowledge about the BER of long lightpaths can be obtained
through the samples of the Japan network, i.e., the source domain used to compute
10000 source. For this reason, even when T is low, the only target almost always
outperform 10000 source. This could be an hint, that learning from a few samples
gathered from the NSF network yields to knowledge about the lightpaths for which
the links are long, rather than relying on a large amount of samples of short lightpaths
obtained from the source domain. Indeed considering the performance of mixing
cases, it turns out that learning from S ∪ T, always leads to worse AUC values, with
respect to learning only from T. For what concern the DA approaches, both FA and
CORAL outperform the 10000 source scenario and the mixing cases. In Figure 5.15a,
CORAL shows highest AUC values for small T, whereas, Feature Augmentation
shows comparable performance to the only target cases and more closely approaches
the baseline 10000 target than CORAL.

Figure 5.15b presents the analysis of the Accuracy, which globally shows lower levels
w.r.t the AUC. In particular, CORAL manifests a constant behavior around 0.5, while
FA performs well, reaching both with few samples and also with many samples of
target domain the higher values of the only target and the best case setting. The mixing,
instead resides in the middle of CORAL and FA, presenting a notable increase with
many sample of target. Figure 5.14b instead is comparable with 5.15b especially
for the different gap between best and worse scenario, which results more restricted.
CORAL behaves wrong as before, while the mixing manifests good performance
already from few samples of target.

We now move our considerations quantifying, at least visually, how much a different

5.4. Domain adaptation assessment 65

0.4 0.5 0.6 0.7 0.8 0.9
AUC - Area under the curve

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Support Vector Machine

0.5 0.6 0.7 0.8 0.9
Accuracy

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Support Vector Machine

FIGURE 5.16: Domain adaptation NSF-to-Japan with features subset
S1 & Support Vector Machine

feature selection impacts the performance in the cases described above. In particular
we shift our selection from the subset S2, i.e., with the selection of the features:
number of links, lightpath length, length of longest link, traffic volume and modulation
format, to the subset S1, which is the same as S2, but extended with six additional
features (See Table 5.3).

As before, we reported the results in terms of AUC and Accuracy, related to the NSF-
to-Japan and Japan-to-NSF scenarios. Figure 5.16 and 5.17 can be easily compared
with Figure 5.14 and 5.15 respectively. It is possible to note that for each scenario the
trends followed by the AUC values are very similar.

The good aspect is that also with this selection of features the TL techniques outperform
in many cases both the only target and the simple mixing. CORAL always beats the
10000 source baseline, while FA outperforms the 10000 source baseline where T is
large enough, e.g., 100 or 500 samples. Note that, using a total amount of 11 features
increases the computational time to perform the training because the feature space
has more dimensions.

Furthermore, this leads to an increase of the variance in the distributions of the
experiments results, (that are replicated 20 times). So, with an expanded feature
space, the variance of the distribution of the AUC values increases.

Finally, we have evaluated the scenario in which Japan* network with different
parameter of loss is tested with NSF network first as source source domain, then
as target domain. In this particular cases it is possible to appreciate the same trend
of the Figure 5.14 and Figure 5.15, remarking the higher effectiveness of the TL
techniques, Feature Augmentation and CORAL, w.r.t the other techniques. Although
the trend is similar to previous cases we observed, generally, a slightly deterioration
of the performance, i.e., AUC and Accuracy are generally lower for all the settings.
This is a direct consequence of the diverse penalty terms setting, modified during the

66 Chapter 5. Numerical Assessment

0.75 0.80 0.85 0.90 0.95
AUC - Area under the curve

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Support Vector Machine

0.6 0.7 0.8 0.9
Accuracy

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Support Vector Machine

FIGURE 5.17: Domain adaptation Japan-to-NSF with features subset
S1 & Support Vector Machine

generation of the dataset, indeed the attenuation of the fiber have been augmented
by 0.05 dB/Km and the noise figure amplifier lifted from 5 to 6 dB.

5.4.3 Logistic Regression

As last step for the experiment that regards the Domain Adaptation assessment, we
implemented also an additional classification model, i.e. a generalized linear model,
although it is based on a decision rule that is carried out from a sigmoid function: the
Logistic Regression (See 3.1.3 for details). For these set of results we considered the
same scenarios of the SVM classifier used before.

Figure 5.18 and 5.19 illustrate the results achieved by AUC and Accuracy under the
NSF-to-Japan scenario and Japan-to-NSF.

In particular it is possible to verify that for the first scenario, the two trends follow
in almost the totality of settings, the behavior already seen for the SVM classifier in
Figure 5.14. Indeed, it is true that the average lightpath length in NSF topology is
higher than in the Japan one, thus a little portion of the two supports is shared, and
for this reason, as said before, the train set S is expected to include many lightpath
samples for a wide range of lengths.

In such way the samples collected from NSF topology and used to train the model
provide a reasonable knowledge on BER of the lightpaths that could be find in Japan
topology.

Furthermore, the case in which the sampled target set T is low, shows that 10000
source baseline outperforms only target setting and this confirms that learning from
a numerous source set S is more effective than learning from a limited number of
target set T.

5.4. Domain adaptation assessment 67

0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
AUC - Area under the curve

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Logistic Regression

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Logistic Regression

FIGURE 5.18: Domain adaptation NSF-to-Japan & Logistic
Regression

0.86 0.88 0.90 0.92 0.94 0.96 0.98
AUC - Area under the curve

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Logistic Regression

0.5 0.6 0.7 0.8 0.9
Accuracy

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Logistic Regression

FIGURE 5.19: Domain adaptation Japan-to-NSF & Logistic
Regression

When T is low, the performance of CORAL grows up w.r.t the 10000 source baseline,
only target setting and mixing. FA instead is lower than than mixing setting and
presents a trend comparable to that of the only target setting.

When T is high, instead, only target, FA and CORAL hold similar trends that approach
the 10000 target baseline.

Finally it can be asserted that when the number of samples from target domain T is
quite large, the TL techniques results less useful because those samples are already
representative of the feature space.

Also for the second scenario (Japan-to-NSF), the pair of plots show a similar situation
with respect to that of SVM.

The cases in which the S1 subset (containing 11 features) is adopted are shown
in Figure 5.20 and 5.21. Also for this case the performance achieved by logistic

68 Chapter 5. Numerical Assessment

0.70 0.75 0.80 0.85 0.90 0.95
AUC - Area under the curve

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Logistic Regression

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

10JAP
10all

10aug
10COR
50JAP
50all

50aug
50COR
100JAP
100all

100aug
100COR
500JAP
500all

500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Logistic Regression

FIGURE 5.20: Domain adaptation NSF-to-Japan with features subset
S1 & Logistic Regression

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
AUC - Area under the curve

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(A) AUC - Logistic Regression

0.6 0.7 0.8 0.9
Accuracy

10NSF
10all

10aug
10COR
50NSF

50all
50aug
50COR

100NSF
100all

100aug
100COR
500NSF

500all
500aug
500COR

10000 target
10000 source
Only target
Mixing
FA
CORAL

(B) Accuracy - Logistic Regression

FIGURE 5.21: Domain adaptation Japan-to-NSF with features subset
S1 & Logistic Regression

regression are similar to SVM with a very little decrement in only few cases regarding
the scenario NSF-to-Japan.

With logistic regression we are able to confirm the effectiveness of our proposed DA
techniques, which exploit the feature space transformation, and we are motivated
to proceed in exploring particular insights relative to critical cases described in the
following. In particular we are going to explore the testing made using samples
which are difficult to classify because have a BER value which is near to the decision
threshold.

5.5 Impact of dissimilarities between lightpath distributions

In this last section, we try to put in relation the previous results with a similarity
measure, which is able to verify that the trends of performance are directly linked

5.5. Impact of dissimilarities between lightpath distributions 69

to the grade of similarity between the domains at which traditional ML and TL
techniques have been applied.

A first approach to verify the statement could be to quantify the overlaps of considered
pairs of distributions (See Appendix A) using the intersection metric.

5.5.1 Intersection metric

The intersection (I) between two probability distribution functions (pdfs) have been
widely used as a form of similarity. It is defined as [4]:

I =
d

∑
i=0

min(Pi, Qi) (5.3)

where P and Q correspond to the pdf values of the distribution used as source
domain and as a target domain, respectively, while d represents the length of the
two vectors.

In order to graphically evaluate the relation among intersection metric and achieved
performance, we considered the case in which Support Vector Machine with S2
subset of features were adopted, using the area under the curve (AUC) as performance
metric (See Figure 5.14 and 5.15).

In particular, we replicated the same experiments for all the combinations of networks,
grouping results in relation to the same target domain network. So for example, if
the pair source-target were Japan network-NSF network, we grouped the same NSF
network for all the re-scaled Japan topologies and so on.

We reported the resulting scenarios of the experiments run, considering both the
NSF-to-Japan and Japan-to-NSF, and the corresponding cases with a different number
of samples (10, 50, 100, 500) of the target domain.

Figures 5.22 and 5.23 illustrate the comparison among intersection metric (I) and
performance achieved in the NSF-to-Japan.

It is possible to note that the trends are coherent with the metric values, indeed, the
more the two networks overlap, the more the performance increase. In particular,
the mixing (yellow bars) scenario manifests a degradation w.r.t the decrease of intersection
I value, i.e., when the grade of dissimilarity of the two networks increase.

We can observe that the two DA techniques (red and green bars) outperforms the
mixing; CORAL beats mixing already when few samples of target are considered
(Figure 5.22a, 5.22b, 5.23a, 5.23b), while FA outperforms mixing when the samples
of target are more, i.e., 100 and 500 (Figure 5.23a and 5.23a). Furthermore, both DA
approaches often outperform the only target setting (blue bars) especially with few
samples.

70 Chapter 5. Numerical Assessment

0.8
0

0.8
2

0.8
4

0.8
6

0.8
8

0.9
0

0.9
2

0.9
4

0.9
6NS

Fx
02
_JA
Px
1

NS
Fx
05
_JA
Px
1

NS
Fx
1_
JAP

x1

NS
Fx
2_
JAP

x1

10JAP
10all

10aug
10COR

0.4
92

0.2
67

0.1
01

0.0
3

(A) AUC NSF-to-JAP / Intersection metric vs 10
target samples

0.9
35

0.9
40

0.9
45

0.9
50

0.9
55

0.9
60

NS
Fx
02
_JA
Px
1

NS
Fx
05
_JA
Px
1

NS
Fx
1_
JAP

x1

NS
Fx
2_
JAP

x1

50JAP
50all

50aug
50COR

0.4
92

0.2
67

0.1
01

0.0
3

(B) AUC NSF-to-JAP / Intersection metric vs 50
target samples

FIGURE 5.22: Intersection metric in NSF-to-Japan scenario, 10 and 50
target samples

It is also possible to note a constant trend of CORAL almost in the entire cases (10,
50, 100 and 500 target samples), while FA is more sensitive to the increase of the
target samples.

In conclusion, the worsening of DA techniques performance with the increase of the
degree of dissimilarity is less pronounced with respect to the mixing setting, in some
case it does not exist, especially with CORAL (5.23a and 5.22b).

Figure 5.24 and 5.25 illustrate the comparison among intersection metric (I) and
performance achieved in the Japan-to-NSF.

As in the previous case, the trends obtained grouping the NSF topology with scaling
factor SF = 1 are coherent with the metric values: the more the two networks
overlap, the more the performance improves.

Indeed, from the first case in which only 10 samples of target are considered, to that
in which 500 target samples are used, it is evident that performance degrade with
the decrease of intersection value I (Figure 5.24a, 5.24b, 5.25a and 5.25b).

The decreasing trend of mixing (yellow bars) is more accentuated w.r.t that of the
two DA approaches. FA and CORAL present generally higher values and always
outperform the mixing setting.

An evident difference with respect to the previous case (Figure 5.22 and 5.23), is that
only target setting presents higher values, so it is not easy for FA and CORAL to beat
the blue bars, especially in the cases where the number of target samples is high
(Figures 5.24b, 5.25a and 5.25b). Generally, in this case, we can observe a constant

5.5. Impact of dissimilarities between lightpath distributions 71

0.9
45
0

0.9
47
5

0.9
50
0

0.9
52
5

0.9
55
0

0.9
57
5

0.9
60
0NS

Fx
02
_JA
Px
1

NS
Fx
05
_JA
Px
1

NS
Fx
1_
JAP

x1

NS
Fx
2_
JAP

x1

100JAP
100all

100aug
100COR

0.4
92

0.2
67

0.1
01

0.0
3

(A) AUC NSF-to-JAP / Intersection metric vs 100
target samples

0.9
48

0.9
50

0.9
52

0.9
54

0.9
56

0.9
58

0.9
60

0.9
62

0.9
64

NS
Fx
02
_JA
Px
1

NS
Fx
05
_JA
Px
1

NS
Fx
1_
JAP

x1

NS
Fx
2_
JAP

x1

500JAP
500all

500aug
500COR

0.4
92

0.2
67

0.1
01

0.0
3

(B) AUC NSF-to-JAP / Intersection metric vs 500
target samples

FIGURE 5.23: Intersection metric in NSF-to-Japan scenario, 100 and
500 target samples

behavior of CORAL and mixing trends in all the four cases, but CORAL and FA are
less sensitive to the decreasing of the intersection metric.

These results generalize the previous numerical and graphical analysis, highlighting
the usefulness of DA techniques for QoT estimation, that in many scenarios have
been shown to ouperform with respect to traditional ML algorithms.

72 Chapter 5. Numerical Assessment

0.8
8

0.9
0

0.9
2

0.9
4

0.9
6

0.9
8

JAP
x2
_N
SF
x1

JAP
x1
_N
SF
x1

JAP
x0
5_
NS
Fx
1

10NSF
10all

10aug
10COR

0.2
67

0.1
01

0.0
3

(A) AUC Japan-to-NSF / Intersection metric vs 10
target samples

0.8
8

0.9
0

0.9
2

0.9
4

0.9
6

0.9
8

JAP
x2
_N
SF
x1

JAP
x1
_N
SF
x1

JAP
x0
5_
NS
Fx
1

50NSF
50all

50aug
50COR

0.2
67

0.1
01

0.0
3

(B) AUC Japan-to-NSF / Intersection metric vs 50
target samples

FIGURE 5.24: Intersection metric in Japan-to-NSF scenario, 10 and 50
target samples

0.8
8

0.9
0

0.9
2

0.9
4

0.9
6

0.9
8

JAP
x2
_N
SF
x1

JAP
x1
_N
SF
x1

JAP
x0
5_
NS
Fx
1

100NSF
100all

100aug
100COR

0.2
67

0.1
01

0.0
3

(A) AUC Japan-to-NSF / Intersection metric vs 100
target samples

0.8
8

0.9
0

0.9
2

0.9
4

0.9
6

0.9
8

JAP
x2
_N
SF
x1

JAP
x1
_N
SF
x1

JAP
x0
5_
NS
Fx
1

500NSF
500all

500aug
500COR

0.2
67

0.1
01

0.0
3

(B) AUC Japan-to-NSF / Intersection metric vs 500
target samples

FIGURE 5.25: Intersection metric in Japan-to-NSF scenario, 100 and
500 target samples

73

Chapter 6

Conclusion

The ever increasing traffic volumes served by backbone optical networks require the
development of transmission systems which can ensure suitable QoT requirements.
For this reason, the prediction of the QoT of a candidate lightpath plays a pivotal
role for an effective design and management of optical networks. In the last few
years, ML have found a lot of applications as technique for the QoT estimation in
optical networks. In this thesis, the particular case where QoT has to be predicted
for a different, but related domain has been investigated. Unfortunately, for new
deployed optical systems, the availability of data is not sufficient or the acquisition
of large datasets requires high costs. For this reason, it is necessary to optimize the
utilization of few data of target domain and integrate with the large datasets of the
source domain. Specifically, in this thesis we have focused on domain adaptation
approaches: DA techniques transform the features space, either augmenting or aligning
the source and target domains. We assessed the performance of two type of DA
techniques in different settings, where we change the number of samples belonging
to the target domain. Achieved results show that Feature Augmentation [10] and
CORAL [19] are able to outperform the basic mixing of the data. In particular, it
has been seen that training a Support Vector Machine classifier with data for which
have been applied DA approaches, it is possible to develop models which reach
values of area under the curve (AUC) and Accuracy around 0.9, exploiting no more
than 500 samples of target domain. In addition, we replicated same experiments,
changing the ML model, i.e., using the logistic regression, and we obtained almost
same results, confirming the improvements in terms of performance provided by
Domain Adaptation techniques. Finally, the intersection metric has been adopted
to explore the dependency of the AUC on the degree of similarity between the
two distributions of lightpath lengths of the two domains. Results show that DA
techniques reduce the AUC when the intersection between the two distributions
becomes smaller.

75

Appendix A

Bit Error Rate - BER distributions

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

2142

56

429

149146
183

1797

184

452517460
572

697
942

1274

TRUE: 7496, FALSE: 2504
4e-3
JAPx05

(A) BER distribution in Japan topology, SF=0.5

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

102

103

Nu
m

be
r o

f i
ns

ta
nc

es 1155

86

241

87
126145

1680

185

316350370
484

697

1127

2951
TRUE: 5598, FALSE: 4402

4e-3
JAPx1

(B) BER distribution in Japan topology, SF=1

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

426

50

107

54 62
85

1124

167
235

287319370
559

1407

4748
TRUE: 3608, FALSE: 6392

4e-3
JAPx2

(C) BER distribution in Japan topology, SF=2

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

456

38

119

56 64 55

1206

191
302360324

456
673

1501

4199
TRUE: 4007, FALSE: 5993

4e-3
JAPx1star

(D) BER distribution in Japan∗ topology, SF=1

FIGURE A.1: Logarithmic histograms of BER distribution - Part I

76 Appendix A. Bit Error Rate - BER distributions

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

500

41
66 59 66 69

1149

177
249303340

447
563

1432

4539
TRUE: 3775, FALSE: 6225

4e-3
NSFx02

(A) BER distribution in NSF topology, SF=0.2

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

146

24 25
34 32 33

582

118
151183220

322
452

2107

5571
TRUE: 2103, FALSE: 7897

4e-3
NSFx05

(B) BER distribution in NSF topology, SF=0.5

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

101

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

32

6 5

11
6

11

236

45
67 73

117
161

263

2669

6298
TRUE: 919, FALSE: 9081

4e-3
NSFx1

(C) BER distribution in NSF topology, SF=1

10 14 10 12 10 10 10 8 10 6 10 4 10 2 100

BER - Bit Error Rate

100

101

102

103

104

Nu
m

be
r o

f i
ns

ta
nc

es

7

1
2

3

1 1

52

17 23
38 42

64
138

3074
6537

TRUE: 331, FALSE: 9669
4e-3
NSFx2

(D) BER distribution in NSF topology, SF=2

FIGURE A.2: Logarithmic histograms of BER distribution - Part II

77

Appendix B

Lightpath length distributions

0 500 1000 1500 2000 2500
Length (Km)

0.0000

0.0005

0.0010

0.0015

0.0020

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:9; binwidth:300(km)
JAPx05
NSFx02

(A) Lightpath length distribution in Japan
topology, SF=0.5 & NSF topology, SF=0.2

0 1000 2000 3000 4000
Length (Km)

0.0000

0.0005

0.0010

0.0015

0.0020
no

rm
al

ize
d

n°
 in

st
an

ce
s

n_bin:15; binwidth:300(km)
JAPx05
NSFx05

(B) Lightpath length distribution in Japan topology,
SF=0.5 & NSF topology, SF=0.5

0 2000 4000 6000 8000
Length (Km)

0.0000

0.0005

0.0010

0.0015

0.0020

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:29; binwidth:300(km)
JAPx05
NSFx1

(C) Lightpath length distribution in Japan
topology, SF=0.5 & NSF topology, SF=1

0 2500 5000 7500 10000 12500 15000 17500
Length (Km)

0.0000

0.0005

0.0010

0.0015

0.0020

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:57; binwidth:300(km)
JAPx05
NSFx2

(D) Lightpath length distribution in Japan
topology, SF=0.5 & NSF topology, SF=2

0 500 1000 1500 2000 2500
Length (Km)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:9; binwidth:300(km)
JAPx1
NSFx02

(E) Lightpath length distribution in Japan topology,
SF=1 & NSF topology, SF=0.2

0 1000 2000 3000 4000
Length (Km)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:15; binwidth:300(km)
JAPx1
NSFx05

(F) Lightpath length distribution in Japan topology,
SF=1 & NSF topology, SF=0.5

FIGURE B.1: Distributions ofR lightpath lenghts - Part I

78 Appendix B. Lightpath length distributions

0 2000 4000 6000 8000
Length (Km)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:29; binwidth:300(km)
JAPx1
NSFx1

(A) Lightpath length distribution in Japan
topology, SF=1 & NSF topology, SF=1

0 2500 5000 7500 10000 12500 15000 17500
Length (Km)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:57; binwidth:300(km)
JAPx1
NSFx2

(B) Lightpath length distribution in Japan topology,
SF=1 & NSF topology, SF=2

0 500 1000 1500 2000 2500
Length (Km)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:9; binwidth:300(km)
JAPx2
NSFx02

(C) Lightpath length distribution in Japan
topology, SF=2 & NSF topology, SF=0.2

0 500 1000 1500 2000 2500 3000 3500 4000
Length (Km)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:14; binwidth:300(km)
JAPx2
NSFx05

(D) Lightpath length distribution in Japan
topology, SF=2 & NSF topology, SF=0.5

0 2000 4000 6000 8000
Length (Km)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:29; binwidth:300(km)
JAPx2
NSFx1

(E) Lightpath length distribution in Japan topology,
SF=2 & NSF topology, SF=1

0 2500 5000 7500 10000 12500 15000 17500
Length (Km)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

no
rm

al
ize

d
n°

 in
st

an
ce

s

n_bin:57; binwidth:300(km)
JAPx2
NSFx2

(F) Lightpath length distribution in Japan topology,
SF=2 & NSF topology, SF=2

FIGURE B.2: Distributions ofR lightpath lenghts - Part II

79

Bibliography

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag, 2006, pp. 1–58.

[2] G. Bosco et al. “On the Performance of Nyquist-WDM Terabit Superchannels
Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers”. In:
Journal of Lightwave Technology 29.1 (2011), pp. 53–61. DOI: 10.1109/JLT.2010.
2091254.

[3] Andrea Carena et al. “EGN model of non-linear fiber propagation”. In: Optics
express 22 (June 2014), pp. 16335–16362. DOI: 10.1364/OE.22.016335.

[4] Sung-Hyuk Cha. “Comprehensive Survey on Distance/Similarity Measures
Between Probability Density Functions”. In: Int. J. Math. Model. Meth. Appl.
Sci. 1 (Jan. 2007).

[5] Ronen Dar et al. “Accumulation of nonlinear interference noise in fiber-optic
systems”. In: Optics express 22 (Oct. 2013). DOI: 10.1364/OE.22.014199.

[6] Basura Fernando et al. “Unsupervised Visual Domain Adaptation Using Subspace
Alignment”. In: (Dec. 2013). DOI: 10.1109/ICCV.2013.368.

[7] Peter Flach, Jose Hernandez-Orallo, and Cèsar Ferri. “A Coherent Interpretation
of AUC as a Measure of Aggregated Classification Performance.” In: Proceedings
of the 28th International Conference on Machine Learning, ICML 2011 (Jan. 2011),
pp. 657–664.

[8] Maayan Harel and Shie Mannor. “Learning from Multiple Outlooks”. In: Computing
Research Repository - CORR (Apr. 2010).

[9] Computational resources provided by HPC@POLITO. which is a project of Academic
Computing within the Department of Control and Computer Engineering at the Politecnico
di Torino (http://hpc.polito.it).

[10] Hal III. “Frustratingly Easy Domain Adaptation”. In: ACL 2007 - Proceedings
of the 45th Annual Meeting of the Association for Computational Linguistics (July
2009).

[11] Weiyang Mo et al. “ANN-Based Transfer Learning for QoT Prediction in Real-
Time Mixed Line-Rate Systems”. In: (Jan. 2018), W4F.3. DOI: 10.1364/OFC.
2018.W4F.3.

[12] Kevin P. Murphy. Machine Learning : a Probabilistic Perspective. Mass.: MIT Press,
2012, pp. 21–22.

https://doi.org/10.1109/JLT.2010.2091254
https://doi.org/10.1109/JLT.2010.2091254
https://doi.org/10.1364/OE.22.016335
https://doi.org/10.1364/OE.22.014199
https://doi.org/10.1109/ICCV.2013.368
https://doi.org/10.1364/OFC.2018.W4F.3
https://doi.org/10.1364/OFC.2018.W4F.3

80 Bibliography

[13] F. Musumeci et al. “An Overview on Application of Machine Learning Techniques
in Optical Networks”. In: IEEE Communications Surveys Tutorials 21.2 (2019),
pp. 1383–1408. DOI: 10.1109/COMST.2018.2880039.

[14] Francesco Musumeci et al. “A Tutorial on Machine Learning for Failure Management
in Optical Networks”. In: Journal of Lightwave Technology PP (June 2019), pp. 1–
1. DOI: 10.1109/JLT.2019.2922586.

[15] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transactions
on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359. DOI: 10.1109/
TKDE.2009.191.

[16] Cristina Rottondi et al. “Machine-Learning Method for Quality of Transmission
Prediction of Unestablished Lightpaths”. In: Journal of Optical Communications
and Networking 10 (Feb. 2018), A286. DOI: 10.1364/JOCN.10.00A286.

[17] Matteo Salani, Cristina Rottondi, and Massimo Tornatore. “Routing and Spectrum
Assignment Integrating Machine-Learning-Based QoT Estimation in Elastic
Optical Networks”. In: Apr. 2019, pp. 1738–1746. DOI: 10 . 1109 / INFOCOM .
2019.8737413.

[18] “Spectral grids for WDM applications: DWDM frequency grid”. In: ITU-T
Reccomendation G.694.1 (Feb. 2012).

[19] Baochen Sun, Jiashi Feng, and Kate Saenko. “Return of Frustratingly Easy
Domain Adaptation”. In: (Nov. 2015).

[20] Le Xia et al. “Transfer learning assisted deep neural network for OSNR estimation”.
In: Optics Express 27 (July 2019), p. 19398. DOI: 10.1364/OE.27.019398.

[21] Qiuyan Yao et al. “Spectrum Optimization for Resource Reservation Based on
Transductive Transfer Learning in Space Division Multiplexing Elastic Optical
Networks”. In: (Sept. 2018), pp. 1–3. DOI: 10.1109/ECOC.2018.8535242.

[22] J. Yu et al. “Model transfer of QoT prediction in optical networks based on
artificial neural networks”. In: IEEE/OSA Journal of Optical Communications and
Networking 11.10 (2019), pp. C48–C57. DOI: 10.1364/JOCN.11.000C48.

[23] X. Zhou et al. “High Spectral Efficiency 400 Gb/s Transmission Using PDM
Time-Domain Hybrid 32–64 QAM and Training-Assisted Carrier Recovery”.
In: Journal of Lightwave Technology 31.7 (2013), pp. 999–1005. DOI: 10.1109/
JLT.2013.2243643.

https://doi.org/10.1109/COMST.2018.2880039
https://doi.org/10.1109/JLT.2019.2922586
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1364/JOCN.10.00A286
https://doi.org/10.1109/INFOCOM.2019.8737413
https://doi.org/10.1109/INFOCOM.2019.8737413
https://doi.org/10.1364/OE.27.019398
https://doi.org/10.1109/ECOC.2018.8535242
https://doi.org/10.1364/JOCN.11.000C48
https://doi.org/10.1109/JLT.2013.2243643
https://doi.org/10.1109/JLT.2013.2243643

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis outline

	Related Work
	Transfer Learning in literature
	QoT prediction in Real-Time Mixed Line-Rate Systems
	OSNR estimation
	Spectrum Optimization for the Resource Reservation in Space Division Multiplexing Elastic Optical Networks
	Comparison to related work

	Background
	Machine Learning
	Supervised learning
	Unsupervised learning
	Supervised learning Algorithms
	Random Forest
	Support Vector Machines
	Logistic Regression

	Transfer Learning
	TL approaches
	Feature augmentation
	Problem formalization

	CORrelation ALignment
	Problem formalization

	BER calculation - The E-tool

	Transfer Learning framework for QoT estimation
	QoT prediction framework
	Transfer Learning Framework
	Only source testbed
	Only target testbed
	Mixing testbed
	Feature Augmentation testbed
	CORAL testbed

	Design of the experiments
	Source domain, Target domain and Rsource, Rtarget selection
	Data sampling
	Feature space transformation
	Data pre-processing
	Transfer learning algorithm execution
	Learning algorithm test
	Performance evaluation
	Accuracy
	AUC - Area Under the Curve

	Numerical Assessment
	Datasets description
	A first approach with Machine Learning
	Changing the target domain
	RJapan and ENSF
	RNSF and EJapan

	Receiver Operating Characteristic curves

	Baselines assessment
	Domain adaptation assessment
	Random Forest
	Support Vector Machine (SVM)
	Logistic Regression

	Impact of dissimilarities between lightpath distributions
	Intersection metric

	Conclusion
	Bit Error Rate - BER distributions
	Lightpath length distributions
	Bibliography

