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Abstract

In rehabilitation field there is a need to improve the efficiency of treatments and
speed up the healing processes. Providing a support compares normal functional
abilities with reduced ones after a musculoskeletal problem is becoming a useful
way to increase patient motivation and adherence to the recommended exercise.
Human biomechanical parameters such as body balance disorder and range
of motion (ROM) can give useful information regarding the health status of
the individual. Their estimation helps in detecting disease and in assessing
people training activities before and after injuries. Those parameters also play
an important role in evaluating people’s rehabilitation process and in detecting
anomalous conditions.

In sports, providing a support that can help the athlete following an injury
represents a way to make faster the healing process. Furthermore, having an
instrument able to evaluate movements and their characteristics can match
normal functional abilities with the ones after an injury.

In this thesis, conceived together with LINKS Foundation, a mobile health
tool was developed to assist Dinamo Sassari basketball athletes and the sport
club in evaluating some movements to compare pre and post injury functionali-
ties using a "wearable" smartphone.

The three main athlete movements during a basketball match are:

• jumping

• throws of the ball, through flexion of the arm

• running

The thesis focused on the jumping act, by analyzing the movement and
estimating the height of the jump, and the arm movements.

The tool measures the postural sway angles by applying a trigonometric
formula and the maximum height of a countermovement jump implementing
an algorithm able to calculate the flight time. Furthermore, it integrates an
artificial intelligence algorithm to detect the correctness of the elbow joint range
of motion while performing a specific rehabilitation exercise. The parameters
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Abstract

of the One-Class Support Vector Machine algorithm have been optimized to
reduce the misclassification in both correct and incorrect exercise repetitions.
The comparison between normal athlete’s functionalities and reduced abilities
after an injury can help in making aware sportsperson of his total functional
recovery.
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Chapter 1

Introduction

Rehabilitation is the restoration of the optimal form (anatomy) and function
(physiology) [1]. The process aims at minimizing the loss associated with acute
injury by restoring the functional capacity.

In rehabilitation context, a clinician prescribes a collection of rehabilitation
exercises to a patient, performing the movements in front of him to strengthen
his perception. In this way, the patient becomes familiar with the exercise and
able to correctly reproduce it. Then the patient has the task of performing the
prescribed set of exercises at home. It is essential to face a correct rehabilitation
program following injuries or orthopedic surgery.

Physiological recovery times of the body and individual assessment must be
taken into account. It is essential not to "run too fast" with the times and accept
that each person reacts and recovers in a different way than any other, even if
the physical problem is the same. Factors that affect recovery times can be
physical, physiological, character and psychological; what makes a rehabilitation
process functional is above all the personal predisposition. Doctors ask patients
to record their daily progress following each type of rehabilitation exercise.
Patients will then have to visit the clinic periodically to evaluate progress with
a doctor after a series of exercises.

Numerous medical sources [2] [3] report low levels of patient motivation in
performing the exercises recommended for in-home rehabilitation. This lack of
adherence leads to prolonged treatment times and increased health care costs.
Many factors contribute to this problem, but the main one is the absence of
continuous feedback and timely supervision of patients’ exercises in a domestic
environment by a healthcare professional. This continuous feedback aims also
at identifying if the patient has recovered its total functional abilities.

Athletes are the individuals most exposed to musculoskeletal injuries, often
due to a strong force - such as fall, accident, and laceration. Nowadays, inertial
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sensor components, such as accelerometers and gyroscopes, are embedded
into smartphones. They can register position as acceleration and inclination.
Subsequently, a great number of mobile applications has been developed and,
any of the uses of these applications include a great capacity for tracing human
motion variables for both investigation and medical uses.

In the sports scenario, it could be useful to provide athletes with an in-
strument that can assist them during sports preparation, monitoring their
movements. The main purposes that are closely interconnected are perfor-
mance optimization and accident prevention. The monitoring of movements
certainly provides a useful tool of applicative interest when the athlete suffers
an injury during the course of his activity.

Rehabilitation in this case plays a fundamental role in order to return to
sporting activity. Early in rehabilitation, resistance training is typically of
lower intensity and supervised by an athletic trainer or physical therapist.
Exercises are prescribed for a number of reasons: the restoration of balance, the
development of reflex control, the redevelopment of neuromuscular control and
function, and the development of endurance in injured tissues. Unfortunately,
athletes often pay the price for poorly coordinated recovery plans within the
return-to-play process or lack of adherence to them. Return from athletic injury
can be a difficult and lengthy process.

The injured athlete receives care from several clinicians during rehabilitation.
As their condition improves, injured athletes recover strength programs for
return to play. Although the athlete may have recovered in medical terms
(improvements in flexibility, range of motion, functional strength), preparation
for competition requires the restoration of strength, speed and power at levels
exhibited in sport. When athletes resume team-based activities, emphasis
should be on generic movements (exercises inherent to most sports, such as
jumps and squats) and sport-specific movements that compose the complete
strength training program for an athlete.

In this sense it would be useful to provide technological support to the
athlete who keeps track of his functional abilities. Awareness of the state of
health and recovery is a vital factor. A lack of awareness can slow or prevent
athletes from returning to peak capability and increase the risk of new injuries
and even more devastating musculoskeletal problem.

The thesis has been conceived together with LINKS Foundation and aims
at supporting a basketball team called Dinamo Sassari. The purpose of the
thesis is to provide athletes and the sport club with a tool capable of evaluating
movements and their characteristics in a simple and intuitive way. Providing an
evaluation of the movement makes the athlete aware of the skills and abilities he

2



Introduction Chapter 1

possesses in every situation. An instrument capable of evaluating movements is
of fundamental importance following an injury, when the functional abilities of
the sportsman are compromised. The mobile health support evaluates physical
capacities in both static and dynamic situations.

The first ones regard the measurement of the postural sway in anteroposte-
rior and medial-lateral directions. Control of balance is complex and involves
maintaining postures, facilitating movement, and recovering equilibrium. Bal-
ance control consists of controlling the body’s center of mass over its limits
of stability. The tool will support athletes in maintaining balance providing
sound feedbacks and calculating the postural sway angles along the two body
directions. This functionality becomes important in the case of injury to the
lower limbs, a condition in which athletes find it difficult to intentionally shift
their weight along anteroposterior and medial-lateral directions or maintain
balance by placing themselves on one foot.

Furthermore, for the same purpose, the tool will provide with an automatic
calculation of the maximum vertical displacement of the centre of mass during
a countermovement jump. The comparison between the maximum height under
the "normal" condition of the athlete and the functional capabilities after an
orthopedic injury could motivate the patient.

These two activities have been carried out by following the procedures
found in the literature. The postural sway angles have been calculated through
a trigonometric formula, while the maximum height of a vertical jump was
evaluated by implementing an algorithm that allows to detect the flight time
of the jump and applying the physical formula of motion in free fall.

The dynamic activity developed in the tool, instead, consists of implementing
a machine-learning algorithm to automatically detect the correctness of a specific
rehabilitation exercise. The chosen exercise is the flexion-extension of the elbow.
This exercise becomes difficult to be performed following an injury at the
upper limbs. Elbow health represents one of the most important things for a
basketball player. The correctness of the specific rehabilitation exercise allows
to give athletes an index of the total recovery following an injury. The idea
was to build an ad-hoc machine that recognizes the normal functionality of
the athlete. At the beginning of the sporting season, the athlete records the
data needed for training the machine learning algorithm. It is assumed that
the athlete is at the top of his functional abilities and can perform the exercise
without any difficulty. The machine learns that this is the right movement and
identifies an anomaly if the exercise were performed differently. In this way,
when athlete suffers an injury and is aware of not succeeding in the correct
performance of the exercise, the machine recognizes the error, up to the moment
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of its total recovery. To pursue the goal, a semi-supervised machine learning
algorithm was explored. Only the correct exercises have been used to train the
machine. Since the tool was designed as an ad-hoc machine built for a specific
athlete, only the data of a single individual were used to conduct the work.

1.1 State-of-Art

This section aims at describing which technologies have been used in the
literature to evaluate the parameters which have been subject of study in
this thesis. It describes the sensors-based devices usage in detecting and
calculating balance disorders, height of a vertical jump and elbow joint range
of motion. Regarding the postural control, the chapter explains the importance
of continuously monitoring balance disorders as a consequence of disease and
injuries.

1.1.1 Postural control

Maintaining proper standing balance requires a series of sensory processing
and motor executing. Balance control is given by the input coordination from
multiple sensory systems: the vestibular, somatosensory and visual systems.
Different studies [4] [5] have shown the feasibility of using smartphone-based
accelerometers to identify body movement changes while performing different
tasks.

Basketball is one of the most popular sports in the world. Basketball players
must adjust their body position rapidly and continuously during the game.
They must maintain their center of gravity within the base of support while
performing very rapid and asymmetrical lower limb movements. Therefore,
body balance is crucial for basketball skill advancement, sports performance,
and injury prevention.

Postural sway is a very interesting parameter to identify balance disorders
given by many different diseases and injuries. Orthostatic tremor, Parkinson’s
disease, and stroke are the main fields of postural sway in the literature. Patients
affected by Orthostatic tremor occur in instability problems while standing and
walking. The continuous monitoring of this problem by a smartphone-based
accelerometer increases the possibility of detecting limits and serious situations.

For orthostatic tremor (OT), [6] showns the feasibility of detecting stand/gait
pattern by measuring acceleration values of a 3-axis accelerometer embedded
in an iPhone 6s, fastened tightly on the sacrum area via a running belt waist
pack. The sacrum area has been chosen since it is considered the location of
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the centre of mass of the body, so the centre of balance control. All research
participants had to perform two conditions: standing and walking. During
the first one, persons had to close their eyes for 20 seconds after 20 seconds of
opened eyes. The research demonstrates that patients with OT significantly
increased their accelerations in the medial-lateral direction than healthy ones.
This outcome has verified that using smartphone-based accelerometers can
identify the standing balance and gait changes in patients with OT. Another
research asserts that the balance control can be performed by subjects with
chronic stroke [7] supported with the help of a smartphone-based accelerometer.
Patients that survive a stroke - a cerebral artery disease - usually suffer balance
impairments, which affect their performance in daily living activities and
life quality. A smartphone HTC 10 - fixed to the back of subjects at the
second sacral spine - was used to perform the balance assessment in [7]. Data
coming from its built-in accelerometer and gyroscope were recorded to measure
postural sway. Accelerometer and gyroscope changes were the parameters used
for asserting disorders: higher values indicate more instability. Measurements
of anteroposterior and medial-lateral acceleration changes have been compared
with the Berg Balance Scale (BBS): a widely used clinical test to measure a
person’s static and dynamic balance abilities. Acceleration changes recorded by
smartphone have shown significant differences between healthy and ill patients.
Outcome of the study was the feasibility of smartphone as an instrument to
assess balance for patients affected by chronic stroke. Furthermore, the rating
of postural instability is an important concept if also related to people with
Parkinson’s disease.

A research article proved the utility of wearable sensors for evaluating
standing balance and walking stability in patients affected by Parkinson’s
disease [8]. During this study, sway was assessed with a wearable inertial sensor,
positioned with an elastic belt at the level of the fourth and fifth lumbar spine
segment. Two different metrics were considered to calculate postural balance:
the root mean square of acceleration values and the jerkiness of sway. The last
one represents the first derivative of the acceleration signal which indicates the
smoothness of postural sway. The study showed that body sway, measured by
wearable sensors, was not significantly different in PD patients and healthy
ones during standing conditions. On the contrary, it has been founded the
difference between the two groups while performing dynamic tasks.

Postural control assessment study for chronic ankle instability [9] has stated
that identifying decreased postural control ability could help in planning a
correct rehabilitation process. The result of the research was the statement
that the smartphone is a feasible device for monitoring postural balance. The
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study has proved that the mobile phone has a good correlation compared to the
force platform when recording the performance of a single leg stance balance
test.

Efficacy of smartphone usage has been proved also if located at a different
place concerning the centre of mass [10]. Smartphone LG G3 - fixed in the
centre of a balance platform - was used to record data coming from its built-in
gyroscope. The results of the research have shown a significant relationship
between body sway variability measured by the platform and the mobile phone
in both frontal and sagittal planes. Once again the Micro-Electro-Mechanical
Systems (MEMS) embedded in the before-mentioned smartphone has been
considered to have the potential for accurate assessment of postural balance.

1.1.2 Countermovement Jump

Countermovement jump, also known as CMJ, is a jump that contains a counter-
movement. A countermovement can be described as composed by a downward
action followed by a reciprocal upward action (more explanation about it will
be given in Chapter 2).

Functional deficits following an injury, have been associated with decreases
in jump height and sprint speed. Athlete’s readiness to return-to-play and later
return-to-performance is one of the most important aspect to be taken into
account.

Literature [11] has shown the feasibility of using wearable sensors in calcu-
lating the maximum height reached by the jumper and the flight time recorded
during the jump. Force platforms allow to accurately determine the vertical
acceleration of the centre of mass, but they are often expensive.

Nowadays, inertial measurement units (IMUs) have become popular for the
jump parameters analysis, probably because of reduced size and ease of use.
IMU sensors feasibility and reliability have to be proven.

Different are the methodologies to evaluate the maximum displacement
of the centre of mass during a vertical jump. These methods could rely on
numerical double integration (NDI), take-off velocity (TOV) and flight time
(FT). Many studies have validated IMU and smartphone-based sensors to
determine CMJ height, comparing the results with a force platform, considered
as a gold standard. Countermovement jump estimated with an IMU can be
used to evaluate functional performance in the lower limbs. The estimation of
height using the numeric double integration method has been considered as the
best way to evaluate maximum vertical displacement in [12]. This outcome can
be doubted because there are conflicting opinions in asserting the best manner
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for evaluating jump maximum height. The NDI approach introduces drifts due
to rounding errors. On the other hand, no study has shown which is the best
location of the body to wear the sensor.

The identification of take-off and landing during vertical jump via foot-
worn inertial sensing - mounted on the toe and the heel - has shown excellent
agreement with the gold standard optical motion capture system measurements
[13]. At the same time, the choice to mount an IMU device close to the ankle has
showed an elevate accuracy in detecting jump events [14]. In this case, landing
and take-off were estimated from the acceleration in the vertical direction and
flight time was calculated as the elapsed time between the two events plus
20ms of correction factor because of the delay in onboard data. Inertial sensors
integrated into the iPhone 4S - fixed at L5-S1 level attached to a belt - has
been used to describe and analyze kinematics characteristics [15]. The research
has described contact mat variables (jump height and jump time) to highlight
the differences in kinetic and kinematic measurements in men and women.

Limitations: Calculation of the height during a vertical jump requires
the exact identification of take-off and landing instants if the calculation is
based on the flight time method. The identification of these two instants
from wearable sensors is often really hard, since it is required to detect a
threshold in acceleration values that can trigger the jump event. At the same
time, if the maximum vertical displacement of the centre of mass is calculated
with the numerical double integration, it is necessary to take into account the
introduction of drifts due to rounding errors. Furthermore, take-off velocity
method also requires the identification of take-off. Therefore the limitation
found in the calculation of the height is the same as that found in the time of
flight method.

1.1.3 Limb Range of Motion

In rehabilitation process, another parameter to take into account is human
movement analysis. It has been subject of study and it is still being explored
by clinicians and researchers. One of the most important aspects of the before
mentioned analysis is joint angle measurement.

Information of limb range of motion is helpful since it allows to detect
movement disorders and it gives information about the achieved state of healing.
The conventional gold standard for monitoring and measuring the changes
in the joints’ angle is optically based. Alternatively, it is possible to use an
electrogoniometers which is an electronic device that uses angle sensors, such as
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potentiometers and, more recently, accelerometers to record such measurements.
While the first standard is not so practical since it requires a specific gait
laboratory and an expensive setup, the second method requires a trained
clinician to operate. To overcome these limitations, literature has explored
alternative methods of measuring the joint angle. Micro-electromechanical
systems have become practical solutions for clinical use.

The model used in [16] was composed of two wooden bars of the same
dimension jointed by a hinge. Sensors were attached to the bars using double-
sided adhesives and accelerometer values were used to calculate joint angles from
a trigonometric relationship. For validating the results, a flexible goniometer
was used as the gold standard. The research proved that acceleration values
coming from the model confirmed the goniometer readings. At the same time,
studies based on the calculation of joint angles from smartphone applications
have shown that mobile devices are reliable and valid for clinical use[17].

Smartphones are provided by sensor inertial measurement units able to
support medical researches and studies. Goniometer apps have become very
useful because they represent a portable instrument acting as the goniometers
usually used in clinical practice. Accelerometers, magnetometers and optical
sensors contained inside the mobile devices have been exploited to measure
the body movements. DrGoniometer[18] measures knee flexion positioning a
virtual goniometer, visible on the smartphone screen, on a photo taken by the
smartphone camera.

Clinometer [19], KneeGoniometer[20] and Angle [21] are accelerometer-based
goniometer applications able to measure knee flexion using acceleration values
coming from the inertial measurement unit embedded into the smartphone.

SimpleGoniometer [22] and GetMyROM[23] are also based on accelerometer
developed for the same purpose.

On the contrary, Compass[24] is an application that uses the magnetometer
to measure cervical range of motion (ROM) on the horizontal plane. A thesis
[25] based on the development of an application for home training has shown
the potentiality of the smartphone for measuring the limb joint. In particular,
the mobile application aims at calculating the knee joint angles from the
combination of a smartphone and an IoT device. The system showed an
average standard deviation of ±4.55° in the seated position when starting
the procedure for evaluating the joint angles. At the same time, also the
elbow joint angles were calculated through a smartphone inclinometer and
the outcomes have shown that despite smartphone applications are reliable
tools for this type of calculation, they overestimate flexion angles (mean of
6.4° ± 1.0°) with respect to the gold standard goniometer [28]. The extension
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angles measured by both the instruments, instead, have shown no particular
differences in measurements.

Limitations: Different methods for measuring limb movements have been
investigated. The disadvantage of the photographic method is its time consum-
ing and set up that could be complex to use for oneself. Magnetometer-based
methods, instead, perform as reliable tools if compared to universal goniometer
but they are not widely used and considered more complex to get precise
measurements.

For this purpose, accelerometer-based modalities have shown the highest
degree of correlation with respect to the usual clinicians’ method. The men-
tioned researches have proved the reliability of the smartphones in calculating
the limb joint angles, but none of these focused on providing the patient with
information about the correctness of elbow flexion-extension movement. Several
studies in the literature employed machine learning methods that implement a
time-delay neural network for predicting real-time joint angles [29].

Other studies classify an exercise repetition into correct or incorrect classes
of movements, but no studies have focused on the classification of the correctness
of the specific rehabilitation exercise analyzed in this thesis (the exercise will
be described in Chapter 2).
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Chapter 2

Methods

This chapter aims at describing the entire process that was followed to de-
velop the mobile health tool in its three different parts: postural control,
countermovement jump and elbow range of motion.

These three activities were chosen to give an index of functional recovery
after an injury to basketball athletes. Functional recovery regards the lower
limbs when talking of postural control and countermovement jump and the
upper limbs when addressing the problem of the elbow range of motion.

The mobile health tool was developed with Android Studio with a smart-
phone provided with Android v7 operating system and three different sensors:
accelerometer, gyroscope and magnetometer. Each section of this chapter ex-
plores the technologies and the procedures used to collect, analyze and process
data.

Section 2.1 explains the calculation of postural sway angles obtained from
the application of a trigonometric formula found in the literature.

Section 2.2 focuses on countermovement jump performance analysis given
by the calculation of the flight time and the maximum height reached by the
jumper. It describes the threshold chosen for identifying the instants of take-off
and landing and how the calculation of the height has been derived from the
flight time.

Section 2.3 describes how the model for training the machine learning
algorithm in detecting the correctness of the elbow range of motion has been
built and tuned. It explains how data was processed before the training of the
machine and which features have been selected to build the model.
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2.1 Postural Control

2.1.1 Introduction

This section aims at describing the procedure that was done to calculate the
postural sway angles. Postural balance is the ability to control and maintain
the body centre of gravity toward the base of support. The postural sway [26],
in terms of the human sense of balance, is a measure of how much the body
oscillates around the center of gravity.

For a person the maintenance of balance requires input coordination from
multiple sensory systems: the vestibular, somatosensory and visual systems.
The first one controls balance and directional information concerning the
position of the head and the middle ear. The second detects information on the
relative movement of the supporting surface and the position of the different
parts of the body with respect to each other. Visual system, on the other
hand, refers to the verticality of body and head movement. These systems
coordinate together to allow us to maintain balance: the postural oscillation is
more balanced.

Loss of effectiveness of postural control, due to advanced age or to effects of
some pathologies, has led researchers to investigate the functioning of postural
control. The aim is to be able to determine and quantify the balance at every
moment. Patients affected by vestibular disorders rely excessively on visual
system and this leads them to have stability problems when they close their
eyes.

An individual in his upright position maintains balance thanks to small
but continuous oscillations, counterbalancing the weight force that would tend
to make it fall, due to gravity. Weight force and constraining reaction of the
ground apply respectively to its center of gravity (CoG) and the center of
pressure (CoP).

Centre of gravity is defined as the point of application of the resultant of the
forces acting on the body; while centre of pressure is the point of application
of the ground reaction force vector.

Many studies are based on measuring the parameters that are involved
in detecting balance disorders through the usage of a smartphone [27] [30].
These researches demonstrated the validity of the use of the smartphone [32],
comparing the results with measurements taken from a force platform [31].

In sport, the balance control is an index to be taken into account. It is
not always the vestibular disorders that can cause stability problems. This
condition can be compromised following an injury at the lower limbs. Athletes
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are the individuals most exposed to musculoskeletal injuries and in this situation,
basketball players have difficulty maintaining balance, for example by standing
on one leg.

Limits of Stability (LoS) are important parameters defined in postural
control. They are defined as the points at which the center of gravity (CoG)
approaches the limits of the base of support (BoS).

LoS are defined as the amount of maximum excursion a person is able to
intentionally cover in any direction without losing balance or taking a step.
The two directions that play a key role in investigating the stability impairment
are the anteroposterior and the medial-lateral ones (Figure 2.11). The normal
sway angle in the two before mentioned directions is approximately 12.5° and
16° respectively. The "Cone of Stability" is defined as the area of stable swaying
(12.5° in anteroposterior direction and 16° in medial-lateral direction). LoS
is a reliable variable of stability that provides important information about
voluntary motor control in the dynamic state. LoS helps assess balance in the
dynamic state by instantaneously tracking the change in COM velocity and
COM position.

The reduction in LoS for sportive athletes may be because of the weakness of
foot muscles and musculoskeletal problems of the lower limb. These impairments
may help physicians to correlate with the medical examination findings and
serve as an important outcome measure for the rehabilitation of these specific
underlying body impairments. This is the reason why the postural sway angles
have been considered a measurement to be included in the development of the
mobile health tool.

During human quiet standing, postural sway is indeed often quantified by
measuring the motion of centre of pressure, strongly related to the sway of
the center of mass (CoM). In this study, the postural control has been carried
on by measuring the anteroposterior (AP) and the medial-lateral (ML) sway
angles, by the only usage of sensors embedded in the smartphone.

2.1.2 Technologies

A smartphone was attached to the body with a belt at the centre of gravity
height. The orientation of the axes (x,y,z) is defined as: the X-axis is horizontal
and points to the right, the Y-axis is vertical and points downwards and
the Z-axis points towards the outside of the screen face. In this system, the
coordinates in front of the screen have negative Z values.

A triaxial accelerometer sensor was used to measure the sway angles of
1Source: https://images.app.goo.gl/MAvJPU3TxibyvHfo9
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Figure 2.1: Cone of Stability for antero-posterior and medial-lateral directions

interest because the used trigonometric formula is based on accelerometer
values. This smartphone sensor measures the acceleration force in m/s2 that is
applied to a device on all three physical axes (x, y, and z), including the force
of gravity.

In standing position, the smartphone thus placed records an acceleration
along the y-axis equal to the gravity. A 100Hz sample frequency was used for
carrying on the study.

2.1.3 Procedure

2.1.3.1 Removing offsets

Acceleration values measured by the triaxial accelerometer were treated to
remove the offsets to reduce noise in acceleration signal. During the standing
position, linear acceleration values along the three-axes were recorded for ten
seconds and averaged. Linear acceleration value is defined as the acceleration
force along the 3-axes (excluding gravity).

The resulted correction factor were subtracted from all the subsequent
measurements. Correction factor was calculated as the summation of the linear
acceleration values divided by the number of recorded samples.

Three different correction factors were obtained, one for each Cartesian axis
(x,y,z).
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2.1.3.2 Real-time processing

The cleaned acceleration values along the 3-axes were used in the calculation
of the sway angles.

Real-time in processing allows to have the displacements of sagittal and
coronal planes of the body (Figure 2.22) using only the instantaneous accelera-
tion values along the 3-axes. In this way, the individual can have information
about the postural sway at any instant of the dynamic state.

Calculated sway angles are the anteroposterior and the medial-lateral angles.
AP and ML sway angles are the angles between a line projecting vertically
from the center of foot support and a line from the center of foot support to
the center of gravity (COG) position on the body in the anteroposterior and
medial-lateral directions respectively.

Figure 2.2: Anatomical planes configuration

The trigonometric formulas used for evaluating the postural anteroposterior
(Equation 2.1) and medial-lateral (Equation 2.2) angles were respectively:

APangle[deg] = |90°− |
atan2accelerationy

accelerationz

pi
180

|| (2.1)

MLangle[deg] = |90°− |
atan2accelerationy

accelerationx

pi
180

|| (2.2)

2Source: https://images.app.goo.gl/GTGPnGPbgnB3iUAu9
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The two formulas (Equations 2.1 and 2.2) were applyed on cleaned data
after the offsets remotion.

The mobile health tool was also provided by a sound feedback that warns
the athlete when he is moving away from the initial position.

An example would be to keep the balance on one leg. If the athlete moves
away from the initial position - as a result of an injury to the lower limbs it
could be difficult to maintain the posture - the sound feedback will increase its
frequency in correspondence with an increase in distance.

2.2 Countermovement Jump

2.2.1 Introduction

This section converges its focus on the main components that were analyzed in
the study of the countermovement jump performance.

Countermovement Jump (CMJ) is an excellent movement for evaluating
athletes in several scenarios. It is a very simple and reliable measure for
evaluating lower-body power. Studies proved that it is the most indicated
measure of lower-body power compared to other jump tests.

Contact mats, force platforms, accelerometers, high-speed cameras, and
infrared platforms showed to provide a valid measure of CMJ performance –
through force platforms which are considered as the gold standard. During
CMJ (Figure 2.33), the jumper starts from an upright standing position (Figure
2.3 (a)), makes a preliminary downward movement by flexing at the knees and
hips (Figure 2.3 (b-c)), then immediately extends the knees and hips again to
jump vertically up off the ground (Figure 2.3 (d-e-f)).

Athletes, especially basketball players, rely a lot on lower-body power during
the matches. Giving them an instrument able to evaluate the maximum height
reached during a vertical jump allows them to compare their body capabilities
in top conditions with respect to the ones under a post-injury situation.

During the rehabilitation program, an individual must be able to recover all
its functionalities and can be interesting to keep continuously track of previous
and present motor skills. In this way the rehabilitation process is tuned to
readjust the athlete’s features and recover normal abilities. Countermovement
jump tests are commonly used to assess recovery of muscle function following
musculoskeletal injury. Traditionally CMJ performances were evaluated by
a vertical structure where athletes jump to touch a peg to evaluate their
maximum centre of mass vertical displacement. According to Section 1.1.2,

3Source: https://images.app.goo.gl/mmrCaoSceKt5529p6
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different devices4 were used to evaluate CMJ performances. Surely, the usage
of inertial sensors to assess CMJ recovery in athletes offers several advantages
over the other methods. Inertial devices are small, portable and wearable.
Data, derived from these sensors, agrees well with simultaneously recorded data
by force plate, even if they slightly underestimate jump height compared to
the force plate. Studies showed the calculation of jump height using different
methodologies: take-off velocity, numeric double integration and flight time.

To carry on the development of the mobile health tool, the method relies on
flight time was chosen. To estimate the flight time, it was necessary to identify
the take-off and landing instants. It can be said that the jump is identified
by three phases: the take-off, the flight and the landing ones. The flight time
is defined as the elapsed time between the instant of take-off and the instant
of landing. To estimate this time, it was necessary to identify the two main
before mentioned moments. In physics, when the sensed acceleration is 0 or
approximately 0 - it is equal or approximately equal to the acceleration of
gravity of Earth - this means that the jumper is either standing on the ground,
or is reaching the highest point in the air, or is falling back on the floor. What
is found out in literature is that the accelerometers in the smartphone can
measure the time of the flight with reasonable precision.

Figure 2.3: Countermovement jump phases illustration

4contact mats, force platforms, accelerometers, high-speed cameras, and infrared platforms
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2.2.2 Technology

A smartphone was attached to the body with a belt at the height of the
centre of mass. The orientation of the axes (x,y,z) is defined as: the X-axis is
horizontal and points to the right, the Y-axis is vertical and points downwards
and the Z-axis points towards the outside of the screen face. In this system,
the coordinates in front of the screen have negative Z values (as mentioned in
Section 2.1.2).

A triaxial accelerometer sensor was used to measure the maximum vertical
displacement of centre of mass during the vertical jump. This smartphone
sensor measures the acceleration force in m/s2 that is applied to a device on
all three physical axes (x, y, and z), including the force of gravity. In standing
position, the smartphone thus placed records an acceleration along the y-axis
equal to the gravity.

A 100Hz sample frequency has been used for carrying on the study.

2.2.3 Procedure

2.2.3.1 Removing offsets

Acceleration values measured by the triaxial accelerometer were treated to
remove the offsets. During the standing position, linear acceleration values
along the three-axes were recorded for ten seconds and averaged.

In this way, it was possible to obtain three different correction factors for
removing the offsets values from the three-axes measurements. The resulted
correction factor was subtracted from all the subsequent acceleration values
measured by the accelerometer during the vertical jump.

The correction factor was calculated as the summation of the linear acceler-
ation values divided by the number of recorded samples.

2.2.3.2 Data processing

After the offsets remotion, cleaned acceleration values were recorded for six
seconds during which the subject performs the countermovement jump. Data
was sent in real-time to a personal computer through a Bluetooth connection
and processed offline using Python code to tune the algorithm for calculating
the vertical height.

A 1st-order Butterworth low-pass filter with a cut off frequency of 10Hz
was used to smooth the acceleration signals. A cut off frequency of 10 Hz was
shown to be the best cut off frequency when analyzing accelerometer data [33].

18



Methods Chapter 2

Figure 2.4 shows the acceleration values along the 3-axes during a counter-
movement jump lasts six seconds. While it can be said that the acceleration
values along the X-axis are not particularly relevant because of its orientation,
the accelerometer records a signal along the Z-axis that is consistent because
of the trunk bending during the vertical jump.

Figure 2.5 shows the module of the three axes acceleration values, calculated
as in Equation 2.3.

A[m/s2] =
√
accX2 + accY 2 + accZ2 (2.3)

Figure 2.4: Acceration values along the 3-axes performing a countermovement jump

Figure 2.5: Acceration module during countermovement jump performance

To calculate the maximum displacement of the centre of mass during the
countermovement jump, only the acceleration value along the Y-axis was taken
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into account. Finding the maximum height of the jump by using the method
based on the flight time means identifying the instants of take-off and landing.

The take-off instant is defined as the moment in which the feet come off the
ground before the jump. The landing moment instead is the moment in which
the feet touch again the ground after the jump. Therefore the flight time is
defined as the elapsed time between these two moments.

All of the conducted researches in literature had the aim of correlating as
much as possible the outcomes of the body-mounted accelerometer with the
force platform used as a gold standard. The force platform allows perfectly to
detect the flight time because of the take-off coindices with the moment in which
the subject leaves the platform and registers a force equal to zero. For carrying
on the calculation of the flight time, the instants of take-off and landing were
identified as the moments in which the acceleration values along the Y-axis cross
half of the gravity [34]. This identification allowed improving the calculation of
jump height for greater accordance with a force platform. Force values recorded
with force platform allows perfectly to detect the flight event (force values
equal to zero). Figure 2.65 shows the recorded vertical force values during a
countermovement jump with a force platform. It is clearly visible which are
the instants of take-off and landing that trigger the jump event. The same
consideration cannot be done for body-mounted accelerometer (Figure 2.4)
with which is very hard to find exactly take-off and landing moments.

Figure 2.6: Countermovement jump recorded by a force platform

5Source: https://images.app.goo.gl/4T1wxHcAfr6pJ9gH6
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Equation 2.4 shows the formula used to calculate the flight time. This
formula contains a subjective error because the athlete can fold his legs during
the falling and then extend the fall time.

The assumption that must be performed is in fact that the body configu-
ration is the same at the instant of take-off than at landing. The maximum
height of the jump, instead, was calculated with the formula of free-fall motion
(Equation 2.5) where gravity is the only acceleration acting on the body.

tf [s] = T landing − Ttakeoff (2.4)

h[m] = 1
2 ∗ g ∗

t2f
4 (2.5)

An algorithm that detects automatically four main points in Y-axis accel-
eration values was developed. The threshold to identify take-off and landing
has been set when the acceleration values cross an half of the gravity. Figure
2.7 shows the outcome of the algorithm developed for the identification of the
acceleration values and correspondent instants of time to calculate the flight
time. These four main points are: maximum peak before the jump (orange
point), take-off point (green point), landing point (red point) and maximum
peak after the jump (purple point).

Figure 2.7: Automatically detection of maximum peak before the jump, take off
instant, landing instant and maximum peak after jump in Y-axis
accelerometer values.

The maximum peak before take-off identifies the end of the downward phase
performed by the jumper. Landing corresponds to feet contact with the ground
following the jump.
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Despite the offsets remotion and the low-pass filtering, the acceleration
values exhibit a step trend in some points. This behavior could be due to
the body position to which the smartphone is attached. Oscillations of the
accelerations may be due to normal abdominal breathing, during which there
is a slight protrusion of the abdominal wall. Furthermore, these oscillations
in the accelerometer signal during flight are due to the wobbling of the device
with respect to the pelvis.

2.3 Elbow joint range of motion

2.3.1 Introduction

This section aims at describing the entire methodology that was developed
to create an ad-hoc machine able to recognize the correctness of a specific
rehabilitation exercise.

The chosen exercise as case study was the flexion-extension of the elbow.
Basketball players rely heavily on the elbow as it is one of the main parts of

the body used in this type of sport. For this reason it was decided to conduct
the work focalizing on the elbow functionalities.

The elbow swings 180 degrees in a direction for the forearm and it helps
turn to the point where the the radius and ulna meet. The analyzed movement
consists in starting from a position in which the arm is completely extended
at shoulder height with the hand facing upwards. By mantaining the arm
orthogonal to the shoulder, the forearm must fold completely over the arm
until it touches the shoulder and goes back to the initial position.

This movement can completely performed in normal condition (i.e. when
the subject does not have any musculoskeletal problems on the arm or elbow
injury), while it becomes difficult when a problem at the upper limbs occurs.
The machine learning algorithm was developed ad-hoc on the single athlete.

This concept allowed to consider as valid only the data coming from a single
subject. The idea was to assume that at the beginning of the sportive season,
athlets - not affected by any kind of problems - perform the exercise to populate
the dataset that will be used for training the machine learning algorithm. In
this way if N is the number of athlets, N will be also the number of trained
machine learning algorithms. Under this hypothesis, the training phase of the
machine learning algorithm ends when an injury occurs to the athlete and the
event will be triggered by the individual with a flag inserted in the mobile
health tool. There exists different types of machine learning algorithm and
they can be grouped into two main categories: supervised and unsupervised
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ones.
Supervised learning algorithms aim at identifing objects of a specific class

amongst all objects, by primarily learning from a training set containing only
the objects of that class. Unsupervised learning algorithms, instead, aim at
finding previously unknown patterns in data set without pre-existing labels.

In biomedical field, often, data for other classes can be difficult or impossible
to obtain. In particular in binary classification, data for the second labeled
class can be hard to collect. In the specific case of study tought for the mobile
health tool, the machine learning algorithm should be able to classify correct
and uncorrect movements to make aware the athlete of its elbow functional
recovery after an injury.

Since it is not possible to obtain data of the individual after injury before it
occurs, it has been necessary to identify a solution for modelling the problem.
The so-called tipicality approach has been demonstrated to be the most useful
in analysing biomedical data [36]. It is based on the clustering of data by
examining data and placing it into new or existing clusters [37]. To apply the
approach to one-class classification, each new observation y0 is compared to
the target class C and identified as an outlier or a member of the target class.

The algorithm chosen for detecting anomalies in performing the arm motion
was the one-class Support Vector Machine. It is a semisupervised algorithm
that learns a decision function for novelty detection: classifying new data as
similar or different to the training set. Hyper parameters of the one-class SVM
are the kernel type, which specified the kernel to be used in the algorithm, η
that represents an upper bound on the fraction of training errors and a lower
bound on the fraction of support vectors and γ which is the kernel coefficient.
The η parameter tunes the trade off between overfitting and generalization.
Indeed, a decrease in training error is to be expected by decreasing η, since
more training data points fall on the correct side of the hypersphere. But
assuming a too small outlier ratio can easily result in many negatives also
falling on this side of the hypersphere, causing a higher test error. Therefore
it was necessary to tune the values of η and γ to not fall into overfitting and
underfitting situations.

2.3.2 Technology

A smartphone, during arm flexion-extension motion, was held in the hand. The
orientation of the axes (x,y,z) is defined as: the X and the Y axes are in the
horizontal plane and points to the right and downwards rispectively. The Z axis
points towards the outside of the screen face. In this system, the coordinates
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in front of the screen have negative Z values (as mentioned in Section 2.1.2).
When the arm is in the initial position - completely extended at shoulder height
- the accelerometer values recorded from the Z-axis are equal to the gravity.

2.3.3 Procedure

2.3.3.1 Data collection

Data coming from accelerometer, gyroscope and magnetometer was gathered
while performing the exercise. For each sensor, values along 3-axes (x, y and
z) were sent with a sample frequency of 10Hz via a Bluetooth connection to a
personal computer on a running Python code.

Each repetition of arm flexion-extension has a time duration of twelve
seconds and therefore a total of 120 samples have been counted. In the case
in which the number of samples was different from 120 in a reasonable range,
data was interpolated to have the same size. 208 exercise correct repetitions
and 162 uncorrect repetitions have been gathered from the smartphone by a
single subject to train and test the machine learning algorithm. Repetitions of
incorrect exercise have been recorded as simulating an elbow injury.

2.3.3.2 Data processing

Acceleration values along the 3-axes were filtered by a median filter with a
window lenght of 5 and subsequently by a 1st order low-pass Butterworth
filter to remove noisy signal. The Median Filter is a non-linear digital filtering
technique used to remove noise from a signal6. A low-pass filter, instead, passes
signals with a frequency lower than a certain cut-off frequency and attenuates
signals with frequencies higher than the cut-off frequency. The cut-off frequency
of the filter was changed systematically in a range [0.1,1] and a frequency of
0.5Hz was chosen to filter out outliers and to smooth acceleration values.
Figures 2.8, 2.9 and 2.10 show the comparison between filtered acceleration
values (red line) and not filtered ones (blue line) for x,y and z axes respectively.
As it clear from Figure 2.8, 2.9 and 2.10 the filter allowed to make smoothier
the acceleration values. Oscillations that they initially presented may be caused
by the precision and measurement accuracy of the sensors integrated in the
smartphone.

6Source: https://en.wikipedia.org/wiki/Median_filter
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Figure 2.8: Filtered acceleration values compared to original acceleration values
along the X-axis.
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Figure 2.9: Filtered acceleration values compared to original acceleration values
along the Y-axis.
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Figure 2.10: Filtered acceleration values compared to original acceleration values
along the Z-axis.

A feature extraction was performed from existing features. Joint angles of
the elbow and the tilt angles along x,y and z axes were calculated as Equation
2.6, 2.7, 2.8 and 2.9 respectively.

JointAngle[deg] = |180°− |
atan2accelerationy

accelerationz

pi
180

|| (2.6)

TiltAnglex[deg] = atan
accelerationxñ

acceleration2
y + acceleration2

z

(2.7)

TiltAngley[deg] = atan
accelerationyñ

acceleration2
x + acceleration2

z

(2.8)

TiltAnglez[deg] = atan
accelerationzñ

acceleration2
x + acceleration2

y

(2.9)

The calculation of the elbow joint angle was done before and after the
data filtering and Figure 2.11 shows the calculation of the elbow joint angle
before that acceleration values have been filtered (Figure 2.11 (a)) and after
the processing (Figure 2.11 (b)). It can be seen that the calculation of the
angle was also affected by the oscillations due to error in sensor measurements.
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(a) Elbow joint angle calculation from not filtered
acceleration values

(b) Elbow joint angle calculation from filtered ac-
celeration values

Figure 2.11: Elbow joint angle calculation from filtered acceleration values toward
not filtered ones.

At the end of the features extraction, the dataset was made of 208 repetitions
of the correct exercise and 162 repetitions of the uncorrect exercise with 120
samples and 13 features each. The features are: 3-axes accelerometer values,
3-axis gyroscope values, 3-axis magnetometer values, elbow joint angle and
3-axes tilt angle.

2.3.4 Artificial Intelligence

2.3.4.1 Support Vector Machine

As mentioned in Section 2.3.1, the machine learning algorithm chosen for
carrying on the study was the one-class Support Vector Machine.

The algorithm is particularly useful when there are a lot of "normal" data
and a lack of anormalities that have to be detected. In the specific case analyzed
in this thesis, data after injuries can be difficult to be obtained. This is because
there are different levels of severity and different types of injuries that can
affect the upper limbs and it is not possible to explore all of them. Therefore,
in one-class SVM, the support vector model is trained on data belonging to
only one class, which is the "normal" class (i.e. the class of correct exercise
repetitions). It infers the properties of normal cases and from them, it can
predict which examples are unlike the normal ones. This is useful for anomaly
detection because of the lack of training examples that are defined anomalies.

In this regard, only the data concerning the correct repetition of the exercise
was used to train the machine learning algorithm since this data represents the
athlete fully of his functional abilities. On the contrary, data which simulate an
injury at the upper limbs was used to test the machine in detecting anomalies.

28



Methods Chapter 2

At the beginning, all of the 13 features were used in training the machine
learning algorithm and to tune η and γ by choosing the Radial Basis Function
Kernel (RBF). RBF kernel on two samples x and x’ is represented as feature
vectors in some input space and it is defined as Equation 2.10, where the term
in the denominator of the exponential argument represents instead the gamma
coefficient of the kernel (Equation 2.11).

K(x, xÍ) = exp(−||x− x
Í||2

2σ2 ) (2.10)

γ = 1
2σ2 (2.11)

The terms ||x-x’|| and σ in Equation 2.10 represent the Euclidean distance
between the feature vectors and a free parameter respectively. η and γ param-
eters were tuned to reduce as much as possible the number of misclassified
training examples and to decrease the error in the test set.

Training set was composed by only correct data, while the test phase has
been made on two different datasets: a dataset containing correct exercise
repetitions and a dataset with uncorrect ones. Since the One-class SVM requires
a 2 dimensional vector as input, it was necessary to reshape each repetition
made of 120 samples and 13 features into a single row data. At the end, the
training set was made of 166 rows and the test sets were made by 42 "normal"
rows data and 162 anomalies rows data respectively, each of length 1560.

At the beginning, a randomly range of values for η and γ was selected to
train the SVM. Different proves have been done and a finally value of 7.4*10−3
for η and a value of 9*10−6 for γ were chosen for tuning the machine.

Figure 2.12: Misclassification samples with a fixed γ by varying η in a range
[0.0001,0.1]
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Figure 2.13: Misclassification samples with a fixed γ by varying η in a range [0.1,0.5]

Figures 2.12 and 2.13 show how the error ratio on training and test set
varies with respect to a fixed γ and by varying η. As expected a decrease in
training error is shown by decreasing η and the same concept applies for the
error ratio in the test set.

What is visible from Figure 2.12 is that the so-built model is affected by
underfitting, since the error in test phase is much lower than the one in training
phase. On the contrary, Figure 2.13 shows an inverse situation for the model
that is affected by overfitting (i.e. the test set has poor performance with
respect to training set one). To find a trade off between the two performances,
it has been tought to fix the η parameter to minimize the error in the training
set and by varying gamma (η = 7.4*10−3).

Figure 2.14: Misclassification samples with a fixed η by varying γ in a range
[0.000001,0.00002]
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Figure 2.15: Misclassification samples with a fixed η by varying γ in a range
[0.00001,0.001]

Figures 2.14 and 2.15 show the variation of the error ratio for both training
and test set by fixing the value of η and varying γ. As it clear, an increasing
error in both training and test set is given by increasing the value of γ.

To overcome underfitting, the value of γ was chosen such that the perfor-
mance in training set is greater than the ones in testing set.

At the same time, γ had to be selected such that the distance between the
the two sets error was relatively small. Under this hypothesis, the values for
η and γ were fixed to 7.4*10−3 and 9*10−6 respectively. Table 2.1 shows the
test results for the one-class SVM by considering all the features to train the
machine. The value for the True Negative shows that the machine is able to
recognize all the anomalies, without misclassified them.

TP TN FP FN Sensivity Specificity
Test 39 162 0 3 0.9285 1

Table 2.1: Metric evaluation One-class SVM with all features.

As the machine learning algorithm will be run on a smartphone, it would
be useful to reduce the amount of data used to train the machine to reduce the
computational time and the heaviness of the algorithm.

For this reason, it was necessary to explore different features combinations
to understand if a feature reduction could maintain the same accuracy on
training and test set or even reduce it. In this regard, it has been necessary to
evaluate the correlation matrix of the features to see which of them could be
selected.
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Figure 2.16: Features correlation matrix

Figure 2.16 shows the correlation of the features that were used in the
construction of the model. Starting from the less correlated feature (gyroscope
values along Y-axis), different combinations were explored to select the most
suitable ones and to reduce the amount of data used for the model.

TP TN FP FN Sensivity Specificity Accuracy ErrorRate
[gyrY, gyrZ, T iltAngleZ, accZ] 42 152 10 0 1 0.9382 0.9509 0.049

[gyrY, T iltAngleZ, accZ] 42 152 10 0 1 0.9382 0.9509 0.049
[gyrY, gyrZ, accZ] 42 152 10 0 1 0.9382 0.9509 0.049

[gyrY, accZ] 42 152 10 0 1 0.9382 0.9509 0.049
[gyrY, gyrZ] 0 152 10 0 0 1 0.7941 0.2058
[gyrY, accY ] 42 160 2 0 1 0.9876 0.9901 0.0098

Table 2.2: One-class SVM testing set metric evaluation with different features
combination.

Table 2.2 shows the different proves that were done to reduce the amount
of data to train the one-class SVM algorithm.

As it is clear, using only the gyroscope values and the acceleration values
along the Y-axis it is possible to have an accurancy on the testing set equal
to 99.01 percentage. Based on these results, the two features used to ulti-
mately train the algorithm were, as mentioned before, the gyroscope and the
accelerometer values along the Y-axis.
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Results

This chapter aims at describing and discussing the results obtained from the
development of the mobile health tool in its three different parts.

Outcomes concerning postural control regard the calculation of AP and ML
angles while performing one of the most sophisticated tests to assess balance
(Limits of Stability Test).

Analyzed results for countermovement jump performance analysis were
acquired from the comparison between the mobile health tool and a commercial
mobile application named MyJump2 and with a built video-system. A video-
system was built because of the large differences in calculating flight time and
height between the mobile health tool and the MyJump2 mobile application.
Calculated flight times overestimated the ones obtained by the commercial
application.

The last section of the chapter analyzes the machine learning algorithm
performances when 16 different models are built on 16 different subjects. Models
were trained by using the best parameters and the selected features mentioned
in Section 2.3.4. After that, because of the low performances in training
and test phases when building the model on a reduced dataset, a chosen
subject was asked to record other repetitions of the normal exercise (i.e. arm
flexion-extension).

3.1 Postural Control

This section focuses on the results obtained during the implementation of the
postural control part of the mobile health tool. Postural control study was
considered a valid analysis when it comes to support athletes suffering from
a musculoskeletal problem. Healthy individuals do not present any kind of
problem in postural control. This condition can instead be violated following a
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problem of various natures. One of the injuries that most affects athletes is the
one that affects the lower limbs. As a result of this injury, athletes are unable
to make movements like when they are at the height of their functional abilities
and motor skills. For this reason, providing them with an index that can make
them aware of their pre and post-injury skills can encourage physical recovery.

The Limits of Stability Test is one of the most sophisticated tests to assess
balance. During the test, the individual is asked to intentionally shift his body
weight in the cued direction. It was interesting to see if the anteroposterior
and medial-lateral angles calculated with the mobile health tool could be in
line with the maximum limits denoted by the Limits of Stability test. For
this reason, an individual was asked to shift the weight of the body first in
the anteroposterior direction and then in the mediolateral direction with a
smartphone attached as described in Chapter 2. After having pressed a start
button and waited for the calibration of the device, the subject was asked to
make the agreed movement.

Figure 3.1 shows data gathered from the mobile health tool while performing
a task of the LOS test, shifting the body forward. The task was performed
by a healthy subject, so an individual who has not been affected by an injury
at the lower limbs. Performing this task would become more difficult if the
subject shows pain following a musculoskeletal problem.

The mobile health tool records a minimum angle which is approximately
0.05° and a maximum one 12.59°. Since the normal sway angle, while performing
the specific task, should be approximate of 12.5° (as mentioned in Section 2.1),
on one hand, it can be concluded that the mobile health support is able of
calculating this postural sway maximum excursion with large reliability. On the
other hand, the graph (Figure 3.1) shows noisy acceleration values despite the
offset remotion performed. This is reasonable since data has not post-processed
by filtering out the noise, but the sway angles were calculated in real-time.

With the same purpose, Figure 3.2 shows postural sway in medial-lateral
direction while performing Limits of Stability test shifting the body weight to
the right. In this case, the normal sway angle should be 16°, and the maximum
recorded from the support is 15.53°.

Anteroposterior and medial-lateral angles (Equation 2.1-2.2) were then
translated into a quality score, by calculating the equilibrium score for both
anteroposterior and medial-lateral directions. Equilibrium score for the antero-
posterior direction was subsequently calculated as a percentage, which compares
the peak amplitude of AP sway to the theoretical AP limits of stability using
the formula 3.1, while for the medial-lateral direction using 3.2 with the same
principle.
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EquilibriumScoreAP = 12.5°− [APanglemax − APanglemin]
12.5° ∗ 100 (3.1)

EquilibriumScoreML = 16°− [MLanglemax −MLanglemin]
16° ∗ 100 (3.2)

A high score of 100 represents no postural sway, and lower scores indicate a
poor balance or postural instability.

These are only representative examples that show the potential of calculating
postural sways with the only usage of a smartphone to support the athletes
in post-injury rehabilitation, giving it an index which compares the normal
functionalities (i.e. in healthy individual condition) with respect to compromised
capabilities of a person under musculoskeletal problems.

Figure 3.1: Antero-posterior sway during LOS test
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Figure 3.2: Medial-lateral sway during LOS test

The mobile health support was also provided with sound feedback to guide
the subject to maintain balance with respect to an initial position. Sound
feedback was set so that an increase in the frequency corresponds to an increase
in the distance with respect to the initial position. In this way, the athlete can
recognize if he can maintain a given posture after an injury at the lower limbs
or if the total functional abilities have not been recovered yet.

3.2 Countermovement Jump

This section analyzes the results obtained with the comparison between the
countermovement jump performances given by the mobile health tool and the
ones calculated with a commercial mobile application. Countermovement jump
test was considered a valid tool to analyze to support athletes in post reha-
bilitation process. Knowing the normal performance of the athlete, following
an injury, it is possible to understand when all the motor skills are restored
through this test. If athlete before the injury could reach an average height of
40 cm during the jump, following the traumatic event he will have to slowly
recover his skills.

Heights calculated with the mobile health tool were compared with the ones
calculated with MyJump2 application. MyJump2 is an application developed
for iPhone and Android that gives advanced information of jumps using the
camera on smartphones or tablets [35]. Just recording a jump and selecting
accurately take-off and landing, the application evaluates the maximum vertical
displacement of the centre of mass during a countermovement jump using the
flight time method. Flight time method allows the calculation of the maximux
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height by using the physical formula of motion in free-fall that takes into
account the time spent in air by the jumper. Furthermore, the commercial
application calculates the height, flight time, velocity, force and power of the
vertical jumps. MyJump2 showed to have a good agreement in measures
of jump height with compared to force platform data in terms of Pearson’s
product-moment correlation coefficient (r = 0.80). One of the limitations of
this application is having to necessarily be assisted during the jump. A second
person, in fact, has to record the performance and the individual cannot be
able to do it alone.

To test the concurrent validity of the mobile health tool, Pearson’s product-
moment correlation coefficient (r) was performed. It is a measure of the linear
correlation between two variables X and Y. According to the Cauchy–Schwarz
inequality, the coefficient has a value between +1 and -1, where 1 is a total
positive linear correlation, 0 is no linear correlation, and -1 is the opposite of
1. Pearson’s correlation coefficient, when applied to a sample, is commonly
represented by equation 3.3 and may be referred to as the sample correlation
coefficient.

rxy =
qn

i=1(xi − x̂)(yi − ŷ)ñqn
i=1(xi − x̂)2

ñqn
i=1(yi − ŷ)2

(3.3)

In Equation 3.3, n is the sample size, x and y are the individual sample points
and x̂,ŷ are the sample mean. Ten repetitions of countermovement jump were
performed with the mobile health tool attached with a belt at the height of
the centre of mass. At the same time, the individual repetitions were recorded
with the MyJump2 and the instants of take-off and landing were identified
by following the procedure explained in the commercial application. Ten
heights obtained from the two different instruments were gathered, matched
and Pearson’s correlation coefficient has shown a correlation equal to 0.57
between them.

Table 3.1 shows the comparison between the mobile health tool and MyJump2
in evaluating the flight time and the height during a vertical jump. Outcomes
show that flight times and heights calculated with the mobile health tool over-
estimate the ones evaluated with the MyJump2 application. For the flight time,
an average overestimation of 0.038 seconds is shown with a standard deviation
of 0.015. Height, instead, is overestimated with a mean of 3.58 centimeters and
a standard deviation of 1.40. Figures 3.3 and 3.4 show the flight times and the
heights calculated with the mobile health tool (blue line) and MyJump2 (red
line) application respectively. As it is clear, both the calculations performed
with the mobile health tool are overestimated with respect to the ones evaluated
with the commercial application.
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Countermovement Jump
Mobile health tool MyJump2

Flight Time[ms] Height[cm] Flight Time[ms] Height[cm]
1 409 20.59 354 15.38
2 400 19.60 346 14.67
3 409 20.59 350 15.02
4 401 19.68 354 15.38
5 430 22.8 400 19.62
6 411 20.69 375 17.24
7 380 17.68 358 15.75
8 382 17.87 354 15.38
9 382 17.87 371 16.86
10 392 18.82 350 15.02

Table 3.1: Countermovement Jump: comparison between the Mobile Health tool
and MyJump2 in evaluating flight time and height

Figure 3.3: Flight time calculated with the mobile health tool compared to
MyJump2 evaluation

From the moment that the searches made on MyJump2 showed a correlation
with force platform equal to 0.8, but did not indicate whether the maximum
height during the jump overestimated or underestimated those of the gold
standard, it cannot be stated with certainty which of the two are closer to
reality.

It was necessary to perform another test to conclude if the mobile health
tool gives reasonable results in evaluating the height during a countermovement
jump. A system that recorded the jumper while it performed the jump with
the smartphone attached to the body was built. Two cameras were placed: one
at feet height and one at the location of the head. Moreover, a meter tool was
been attached to the wall to observe the displacement of the head with respect
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Figure 3.4: Height calculated with the mobile health tool compared to MyJump2
evaluation

to the initial position. Camera placed at the height of feet allowed to identify
take-off and landing instants. The one placed at head height allowed to observe
how much was the maximum movement achieved during the jump. Looking
at the camera placed at head height, in fact, from the empirical research it
was deduced that the data calculated with the mobile health tool came closer
to reality, compared to those obtained by MyJump2. This result, although
interesting, is to be considered subject to observation errors.

Furthermore, the obtained flight times from the smartphone - calculated as
explained in Section 2.2.3 - were compared with the ones obtained from the
recorded videos. The videos were processed with a video-editing program to
identify the exactly instants for take-off and landing by extracting the elapsed
time between the frames which identified the two before mentioned moments.
A total of 5 vertical jump repetitions were made and Table 3.2 shows the
percentage of error between the flight times evaluated with the two different
systems.

Countermovement Jump: percentage error
1st jump 2nd jump 3rd jump 4th jump 5th jump

0% 0.2% 1.5% 0.8% 1.2%
Table 3.2: Countermovement Jump: comparison between the flight times calculated

with the Mobile Health tool and the ones calculated from recorded video

The low percentage error shows a great agreement between the mobile
health support and the built video-system in evaluating the flight time and,
subsequently, in calculating the maximum height reached by the jumper during
the countermovement jump.
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It can be concluded that, despite the assumption that the body configuration
is the same at the instant of take-off and landing, the chosen threshold for
detecting the jump event can identify the flight time with reasonable precision
if compared to the built video-system.

3.3 Elbow Joint Range of Motion

Chapter 2 focused on the importance of supporting athletes during rehabilitation
post-injury. Postural control and countermovement jump performance analysis
was proved to be useful in assessing functional recovery after musculoskeletal
problems at the lower limbs. As with the lower limbs, it is important to have a
support that evaluates the skills of the upper limbs. Basketball players rely
heavily on the elbow because it is one of the most stressed parts of the body
during their sporting activity. In this regard, it was decided to provide the
mobile health tool to guide the sportsman to make him aware of his total
functional recovery following a traumatic event.

Eight males and eight females were asked to do a set of normal repetitions
of the arm flexion-extension exercise followed by 5 repetitions in which subjects
had to simulate an arm injury. The aim was to see if the fixed values for η
and γ (η=7.4exp−3 and γ=9exp−6) and the selected features (gyroscope and
acceleration values along Y-axis) could be fine to train 16 different machine
learning algorithms (one for each individual involved in the experiment).

The followed protocol asked the subjects to do the exercise in question with
naturalness and maximum of their functionality. Subjects were asked to extend
their arms to shoulder height with their hands facing upwards and to press a
start button that started the exercise. Once the start button was pressed, the
mobile health tool emitted a sound indicating the beginning of repetition. At
that point, subjects were asked to bring their hand as close to their shoulders
and wait for the second sound to return to their initial position. The mobile
health tool was set to make a beep 6 seconds after the first sound. Once back
in the initial position, the individuals had to wait for 2 consecutive beeps that
denoted the end of a single repetition.

Incorrect repetitions, indeed, were performed by asking to subjects to
perform 5 specific movements:

• First exercise: Inward rotation of the forearm.

• Second exercise: Outward rotation of the forearm.

• Third exercise: Half elbow flexion
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• Fourth exercise: Forearm flexion-extension with the hand rotated 90
degrees with respect to the normal position

• Fifth exercise: A complete flexion-extension at high speed

Incorrect repetitions that were taken into account represent some of the
many problems that could affect the elbow following an injury. The choice
of these exercises was made solely to test the machine and to evaluate its
performance.

After the data collection, 16 machine learning algorithms were trained and
subsequently tested. Each training set was made of all the correct repetitions of
a single subject, while each test set with injury simulations. Percentage errors
for both the training and test phase were evaluated. They were calculated as the
number of misclassified samples out the total number of samples respectively
for training and test phases.

Arm flexion-extension: percentage error
RBF Linear Sigmoid

Training set Test set Training set Test set Training set Test set
1 100% 20% 0% 20% 12.5% 20%
2 13.33% 40% 13.33% 60% 100% 0%
3 100% 0% 0% 40% 25% 40%
4 93.33% 0% 6.6% 40% 93.33% 20%
5 100% 0% 13.33% 40% 80% 40%
6 73.33% 0% 13.33% 20% 60% 0%
7 6.6% 0% 0% 0% 6.6% 0%
8 86.6% 0% 6.6% 80% 66.6% 60%
9 100% 0% 6.6% 60% 40% 60%
10 100% 0% 13.33% 60% 93.33% 20%
11 20% 0% 6.6% 80% 93.33% 40%
12 13.33% 40% 13.33% 60% 100% 0%
13 73.33% 0% 6.6% 80% 60% 20%
14 66.6% 0% 6.6% 0% 60% 0%
15 0% 100% 6.6% 60% 66.6% 40%
16 100% 0% 0% 40% 26.66% 40%

Table 3.3: Arm flexion-extension training and testing error on population of 16
subjects

Table 3.3 shows the resulted percentage errors while performing the training
and the test phase on a population of 16 subjects. Chosen parameters and
selected features to build the model were the ones selected in Section 4.3.3
(η=7.4exp−3, γ=9exp−6, features=[gyrY, accY]).

Table 3.3 suggests low performance for both training and test when using
the Radial Basis Function (RBF) as a kernel type. Radial Basis Function
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was chosen in the development of the model in Section 4.3.3 and it gave great
performance in both training and test set when the dataset was composed of
208 correct exercise repetitions.

The poor results obtained from training 16 machine learning algorithms
can be considered reasonable if thinking that the machine was trained on a
reduced training set.

As is known, few samples allow different models to "explain" the data, but
they will probably malfunction compared to the test data. Outliers are extreme
values that fall a long way outside of the other observations. In a small dataset,
the impact of an outlier can be much greater, since it will have a heavyweight
for the model.

For this reason, the machine learning algorithm was, firstly, trained by
choosing a different kernel parameter. Table 3.3 shows the percentage errors
on training and test sets, using the linear kernel and the sigmoid kernel. The
Linear kernel is the simplest kernel function and it is given by the inner product
<x,y> plus an optional constant c (Equation 3.4). The sigmoid kernel, instead,
acts similar to the sigmoid function in logistic regression (Equation 3.5 when γ
and r are kernel parameters).

K(x, y) = xTy + c (3.4)

K(x, y) = tanh(γ ∗ xTy + r) (3.5)

The Linear kernel, despite the reduced dimension of the training set, showned
best results if compared to the RBF and sigmoid kernels. The error in the
training set using the linear kernel can be considered reasonably low if one
considers the low number of examples on which to train the machine. As
far as the error of the test set is concerned, it is obtained on a number of
samples equal to 5. A percentage error of 20 indicates that one of the exercises
simulating an elbow injury was misclassified by the machine.

To see if the percentage error decreases with the increasing of the training
set size, a subject of the 16 was asked to perform other 10 repetitions of the
exercise. In this way, the machine learning algorithm was trained on a dataset
of 25 samples and tested on the same 5 incorrect exercises. Once again the
percentage errors were calculated for both training and test set.

Table 3.4 shows the obtained percentage error when increasing the training
set of 10 samples. It compares the training and the test phase of the machine
of a 15 samples training set with a dataset made of 25 samples. As it is clear,
the percentage error decreases with the increase in training set size. With a
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Arm flexion-extension: percentage error
RBF Linear Sigmoid

Training set Test set Training set Test set Training set Test set
15-samples 13.33% 40% 13.33% 60% 100% 0%
25-samples 8.3% 20% 4.16% 60% 41.66% 20%
Table 3.4: Arm flexion-extension percentage error increasing training set size

dataset made of only 15 rows data, it is possible to notice overfitting of the
machine learning algorithm. The training phase, in fact, performs much better
than the test one. Furthermore, it is possible to underline that, enlarging the
dataset, the best performance is given when the model is built using a Radial
Basis Function kernel, as specified in Section 2.3.4.

Since the machine was an ad-hoc machine, it is reasonable thinking that the
accuracy of the algorithm could be lower at the beginning of the data collection.
As mentioned in Chapter 2, athletes will be asked to record the repetitions
of the exercise until an injury occurs. The unpleasant event will be triggered
by a flag inserted in the mobile health tool. The larger the training set, the
greater the accuracy of the algorithm in detecting an anomaly and therefore
an incorrect movement of the elbow following an injury.
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Conclusions

This thesis proposes the smartphone as a powerful device in supporting post-
injury rehabilitation and evaluating movements in sports. A mobile health tool
has been developed, made of three main parts. The first one evaluates the
postural sway angles, by measuring the movements of the trunk with respect
to the support base. The second part focuses on the countermovement jump
performance analysis with the calculation of the maximum height reached by
the jumper. The last part provides the detection of anomalies while performing
an arm flexion-extension rehabilitation exercise.

Athletes are the individuals most exposed to musculoskeletal injuries and
it is useful to make them aware of their functional abilities before and after
a musculoskeletal problem. In sports, providing a tool that helps the athlete
following an injury represents a way to make the healing process faster.

Postural control was addressed by measuring the postural sway angles in the
anteroposterior and medial-lateral directions by using a trigonometric formula.
Calculated angles have been compared, while performing the Limits of Stability
Test (LoS), with the maximum angles that an individual should be able to cover
when he shifts intentionally his body weight in a given direction. Meausures
have shown near-perfect agreement within the normal maximum limits.

Countermovement jump performance analysis has been carried out imple-
menting an algorithm that calculates the maximum height reached by the
jumper using the flight time method. Flight time method is based on the
identification of take-off and the landing instants. It was necessary to set a
threshold to exactly define the beginning and the end of the jump. The thresh-
old has been set to define take-off and landing when the acceleration value
along Y-axis crosses half of the gravity. This threshold has been considered in
the literature to have a great agreement in the calculation of the flight time
with a body-mounted accelerometer when compared with a force platform.
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Once the algorithm was implemented, flight times and resulting heights were
compared with those calculated by a commercial application called MyJump2.
Our study presented a correlation between the two of 0.57 in terms of Pearson’s
correlation coefficient. Under this result, the mobile health tool has shown a
discrete agreement with the commercial application.

MyJump2 calculated flight times starting from the identification of the
frames representing the take-off and landing instants. Previous research con-
ducted on the validity of MyJump2 had shown a correlation index of 0.8 with
the force platform. This good but not excellent correlation of MyJump2 with
the force platform has fueled the need of a different way to validate the results
obtained with the mobile health tool.

A video system was designed that recordes the vertical jump parallel to the
data gathered with the mobile health tool.

By placing two cameras, one at head height and one at foot height and a
meter tool, it was possible to assess the maximum displacement during the
jump. Looking at the camera placed at head height, from the empirical research
it was deduced that the data calculated with the mobile health tool came closer
to reality, compared to those obtained by MyJump2.

This result, although interesting, is to be considered subject to observation
errors. The recorded video from the second camera has been, instead, post-
processed with a video-editing program to calculate the flight time by detecting
take-off and landing moments in the frames.

Resulted flight time was in line with the one calculated by the tool. At the
same time, the maximum displacement observed from a camera placed at head
height was found to be in great agreement with that calculated by the device.

A lot of improvements could be implemented in the countermovement jump
performance analysis. The first one could be to tune the data from the mobile
health tool with a force platform to be used as a gold standard. In this
way, it would be possible to find a different way to calculate the height with
better precision and reliability. Furthermore, it would be useful to calculate, in
addition to height, other characteristic parameters such as explosive power and
force. These two parameters would give a greater indication of the recovery of
the functional abilities of the athlete following an injury.

A third activity included in the mobile health tool was the use of artifi-
cial intelligence to detect the correctness of a specific rehabilitation exercise.
Following an injury, it is useful to know if the athlete has managed to re-
cover the total functional capacity. By training a machine learning algorithm,
the application was provided with a useful tool to make the athlete aware of
post-injury functional recovery. The machine learning algorithm used was the
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One-class Support Vector Machine. This algorithm required the setting of three
main parameters: the type of kernel, eta, and gamma. Optimization of these
parameters had the purpose of minimizing the misclassification error in the
training and in the testing phases. Afterward, the main features were selected
in order to reduce the amount of data needed to train the machine.

The purpose of integrating artificial intelligence was to train an algorithm
for each athlete. At the beginning of the season, in fact, every athlete is required
to do a series of repetitions of flexion and extension of the arm. The collection
of these data ends when an injury occurs. The experiment was performed
training 16 models, collecting data from 16 different subjects. Subjects were
asked to do 15 repetitions of the correct exercise and 5 in which they simulated
an arm injury. The model, using the parameters that had been set to reduce
errors in training and testing, showed low performance when trained on the few
data collected by each individual subject. The reason of the bad performance
is possibly due to the reduced training set size. It was choosen a different type
of kernel and then to enlarge the dataset to see how the error behaved in the
training and testing of the algorithm. From the first solution, it emerged that
the type of kernel that most reduced misclassification errors was the linear type.
However, this solution introduced overfitting.

Expanding the dataset, asking one of the subjects to record additional
repetitions, it is clear instead that the kernel Radial Basis Function is the one
that introduces fewer misclassification errors both in the training and in the
testing set.

A possible extension of the mobile health tool concerning the identification
of the anomaly in the repetition of the rehabilitation exercise, could be to
associate a quality score to the movement. This solution can be implemented
by founding metrics to quantify movement performance and mapping them into
numerical scores of movement quality. At that point, it would be interesting to
train a deep neural network for regressing quality scores of input movements.

It is possible that the generation of quality scores could encourage athletes
to follow meticulously the rehabilitation program to recover the functional
abilities. Moreover, reinforcing the perception of the individual in performing
the movement more correctly and closer to normality, could push him to recover
his initial abilities much faster.

It can be concluded that a portable mobile health tool that brings together
the three activities implemented during this thesis work is able to provide
support to basketball athletes in evaluating movements and, above all, in post-
injury rehabilitation concerning both lower and upper limbs. Before this thesis
work, there was no mobile application that focused on post-injury rehabilitation,
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integrating the mentioned three specific activities in a single instrument.
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