POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Civile

Tesi di Laurea Magistrale

Progetto strutturale e analisi LCCA della pavimentazione del tunnel del Fréjus

Relatore

Prof. Ezio Santagata

Correlatori

Prof. Pier Paolo Riviera Ing. Eldho Choorackal Avirachan

> **Candidato** Pietro Perlini

A Mamma e Papà,

che non mi hanno mai fatto mancare niente e che mi hanno supportato durante l'intero ciclo universitario.

Grazie infinite.

Desidero ringraziare,

i professori Ezio Santagata, Pier Paolo Riviera e Eldho Choorackal che mi hanno aiutato e consigliato al fine della realizzazione di tale lavoro.

Il mio amico Jean-Louis con cui ho condiviso tutti e cinque gli anni e le mille avventure nei vari lavori di gruppo a cui sono succeduti gioie e preoccupazioni.

Tutto l'ambiente del Collegio Universitario Crocetta (CUC) in cui ho trascorso questi 5 anni qui a Torino sentendomi sempre a casa e che mi ha formato come persona.

L'ambiente AGESCI e il gruppo Scout del Sanremo 2 che mi hanno fatto sentire parte di un'altra grande famiglia incoraggiandomi sempre.

INDICE GENERALE

INTRODUZIONE	1
PARTE 1: PROGETTO STRUTTURALE DELLA PAVIMENTAZIONE	6
CAPITOLO 1: IL TUNNEL DEL FRÉJUS	
1.1 Ubicazione e descrizione	
1.2 Progetto	
1.3 Sovrastruttura e sotto-servizi	
1.4 Stato Avanzamento Lavori	
CAPITOLO 2: DATI DI INPUT	
2.1 Tipologie di pavimentazione	
2.1.1 GG	
2.1.2 CG	
2.1.3 CS	
2.2 Caratteristiche meccaniche dei materiali	
2.3 Traffico	
2.4 Altri dati di input	
CAPITOLO 3: METODI MECCANICISTICO EMPIRICI: SAMDM & AUSTROADS	20
3.1 SAMDM (South Africa Mechanistic-empirical Design Method)	23
3.1.1 Le funzioni di trasferimento	24
3.1.2 Combinazione tra fase 1 e fase 2	
3.2 Austroads	
3.2.1 Le funzioni di trasferimento	
CAPITOLO 4: TRAFFICO	
4.1 SAMDM (South Africa Mechanistic-empirical Design Method	
4.1.1 E80/VP 4.1.2 Traffico cumulato anno per anno (ET)	۵۶ع
4.2 Austroads	
4.2.1 Calcolo del numero totale di gruppi d'assi nel periodo di analisi	
4.2.2 Calcolo della distribuzione dei carichi della flotta di traffico	
4.2.3 Calcolo del numero di assi standard di progetto	
CAPITOLO 5: CALCOLI E RISULTATI	
5.1 SAMDM (South Africa Mechanistic-empirical Design Method)	
5.1.1 Le funzioni di trasferimento	
5.1.2 Combinazione tra fase 1 e fase 2	
5.1.3 Traffico	
5.1.5 Risultati finali	
5.2 Austroads	
5.2.1 Traffico	
5.2.2 Le funzioni di trasferimento	
5.2.3 Combinazione tra fase 1 e fase 2	
5.2.4 Approccio cumulato	
5.2.5 Risultati finali	66
PARTE 2: ANALISI LCCA	72
CAPITOLO 1: ISO 14040 E ISO 14044	74
1.1 Principi dell'analisi LCA	76
1.1.1 Generalità	
1.1.2 Prospettiva del ciclo di vita	
1.1.3 Attenzione ambientale	
1.1.4 Approccio relativo ed unità funzionale	
1.1.6 Trasparenza	
1.1.7 Completezza	
1.1.8 Priorità dell'approccio scientifico	

1.2 Fasi dell'analisi LCA	77
1.2.1 Definizione dell'obiettivo e dell'ambito	
1.2.2 Analisi dell'inventario	
1.2.3 Valutazione dell'impatto	78
1.2.4 Interpretazione	78
CAPITOLO 2: PALATE, DATI DI INPUT	79
2.1 Obbiettivi e scopi dell'analisi	82
2.1.1 Unità funzionale	82
2.1.2 Ipotesi e confini del sistema	
2.2 LCI (Life Cycle Inventory)	85
2.2.1 Miscele di progetto	
2.2.2 Miscela di progetto per l'attività di manutenzione	
2.2.3 Prezzario	
CAPITOLO 3: LCIA E INTERPRETAZIONE RISULTATI	
3.1 Risultati economici	
3.1.1 GG	
3.1.2 CG	
3.2 Risultati ambientali	
3.3 Confronti tra pavimentazioni aventi stessi spessori	
3.3.1 Spessore di 30 mm dei congiomerato bituminoso	
3.4 Analisi conclusive	
CONCLUSIONI E STUDI FUTURI	
Bibliografia	132
ALLEGATI	136
Allegato A	138
Allegato B	152
ALLEGATO C	184
ALLEGATO D	
ALLEGATO E	
ALLEGATO F	
ALLEGATO G	
ALLEGATO H	
ALLEGATO I	277

Introduzione

Il progetto strutturale di una pavimentazione è un passo fondamentale nell'iter di progettazione. Si tratta di dover condurre prove sperimentali sui materiali affinché vengano selezionati opportunamente in base alle esigenze e di sceglierne gli opportuni spessori. In passato si realizzavano pavimentazioni con strati di conglomerato bituminoso molto spessi, ma oggi si cerca di ridurli per motivi economici.

Per far ciò ci si avvale di diversi metodi che vanno a considerare il fatto che la pavimentazione, nel tempo, sia soggetta ciclicamente a carichi veicolari che portano ad un danneggiamento della stessa.

Esistono tre diverse categorie di metodi di progettazione.

Il primo è l'AASHTO che prevede di monitorare lo stato della pavimentazione in precise condizioni di materiali, carichi, spessori ed ambiente.

Il secondo è il metodo empirico che si basa sull'esperienza. In questi casi, la variabile dipendente è il traffico ed è relazionata alle variabili indipendenti quali l'ambiente in cui è stata fatta la prova, i materiali che sono stati adottati e i carichi [1]. Quindi una volta fuori da tali condizioni il modello empirico non è più valido e si devono considerare dei coefficienti correttivi.

Il terzo è il metodo meccanicistico che si basa sull'uso di funzioni sia del comportamento del materiale che della risposta della pavimentazione, che si ritiene rappresentino il processo di deterioramento [1].

Dal secondo e dal terzo metodo si arriva ad un'ulteriore categoria: il metodo Empirico-Meccanicistico. Quindi si ha una parte meccanicistica che porta a definire la risposta della pavimentazione mediante la determinazione di tensioni, deformazioni e spostamenti per qualsiasi condizione e una parte empirica in grado di usare modelli (funzioni di trasferimento) che provengono da prove sperimentali al fine di legare la parte meccanicistica alla concezione di danno [1].

Nella tesi quindi verrà usato il metodo Empirico-Meccanicistico. Lo scopo sarà quello di valutare per diverse combinazioni di spessori e tipologie di pavimentazione quella che resiste meglio al traffico veicolare considerando i criteri di danno dell'ormaiamento e della fatica. Il primo si manifesta mediante un abbassamento della superficie della pavimentazione in prossimità del passaggio dei mezzi, mentre il secondo si manifesta con la classica fessurazione a "pelle di coccodrillo". Inoltre, si considereranno le stesse condizioni ambientali (temperature alte con punte anche di 32°C al centro del tunnel e piccole variazioni stagionali) e di traffico. Tali valutazioni verranno svolte tramite il South African Mechanistic-empirical Design Method (SAMDM) e la normativa australiana "Austroads" perché in tali luoghi si utilizzano molto pavimentazioni con la stessa struttura di quella del tunnel del Frejus. Non uso il metodo AASTHO o il MEPDG poiché non prendono in considerazione il comportamento del materiale innovativo che si utilizzerà. Per quanto riguarda il sottofondo e lo strato di fondazione abbiamo la miscela cementizia autocompattante ed auto-livellante, denominata "GEOMIX", che permette di velocizzare le operazioni di stesa all'interno del tunnel, di renderle più semplici. Inoltre tali caratteristiche, permettono di ottenere un materiale che è in grado di riempire, in parte, la sezione del tunnel anche in presenza di tubazioni contenenti i sotto-servizi e dotati di geometria complessa. Per quanto riguarda il pacchetto bituminoso, esso è costituito, in parte, da fresato proveniente da vecchie pavimentazioni.

Nella seconda parte del presente lavoro di tesi, il progetto strutturale della pavimentazione si legherà ad un'analisi economica basata sull'LCCA (Life Cycle Cost Analysis) in grado di dare una valutazione di costo, mediante il concetto di valore attuale netto, relativo alla costruzione iniziale, alla manutenzione e alla demolizione finale della pavimentazione considerando i materiali, i vari cicli produttivi e i trasporti.

È una metodologia che permette di valutare anche i vantaggi ecologici attraverso la quantificazione degli impatti ambientali connessi ai processi produttivi. Il modello di calcolo che si userà è il foglio Excel "PaLATE" (Pavement Life-Cycle Assessment Tool for Environmental and Economic Effects ovvero Strumento di Valutazione degli Effetti Ambientali ed Economici del Ciclo di Vita di una Pavimentzione Stradale).

Il metodo è stato sviluppato dall'Università della California al Consortium on Green Design and Manufactoring (CGDM) di Berkeley.

In seguito si propone un riassunto di ciò che contengono i capitoli della parte 1.

Il Capitolo 1 spiega dove si trova l'opera e ne descrive la funzione all'interno del contesto stradale europeo. Successivamente si danno le motivazioni per cui è stato necessario realizzare il tunnel, si parla degli impianti necessari da posizionare all'interno di esso e dell'attuale stato dei lavori.

Il Capitolo 2 descrive i vari dati di input tra cui le vare tipologie di pavimentazioni oggetto dello studio, le caratteristiche meccaniche dei materiali e le informazioni sul traffico.

Il Capitolo 3 ha l'obbiettivo di spiegare il metodo del SAMDM e di quello proposto nella normativa Austroads, partendo dall'uso del software BISAR e dall'esposizione delle funzioni di trasferimento, arrivando al come combinare la fase 1 e la fase 2 per le tipologie di pavimentazione in cui è incluso uno strato cementato per lo strato di fondazione.

Il Capitolo 4 descrive come analizzare i dati di traffico e trasformarli in assi standard sia per quanto riguarda il manuale sud africano sia per la normativa australiana.

Il Capitolo 5 tratta la parte di calcoli della relativa teoria spiegata nei capitoli 3 e 4 di un tipo di pavimentazione. Inoltre riporta la validazione degli stessi con l'approccio cumulato e tutti i risultati finali, per le varie combinazioni di spessori. Il tutto viene presentato in formato sia numerico che visivo grazie all'utilizzo di tabelle e grafici.

In seguito si ha un riassunto di ciò che contengono i capitoli della parte 2.

Il Capitolo 1 riporta gli scopi, i principi e le fasi dell'analisi LCCA così come vengono descritti nelle normative internazionali ISO 14040 e ISO 14044.

Il Capitolo 2 descrive le prime due fasi del metodo LCA che riguarda principalmente i dati di input, come la definizione degli obbiettivi dell'analisi, dell'unità funzionale e delle varie ipotesi fatte. Inoltre, nella fase dell'inventario sono riportate le attività di manutenzione scelte, le proprietà delle miscele che costituiscono le tre pavimentazioni e le voci di costo prese dai vari prezziari (ANAS e regione Piemonte).

Il Capitolo 3 analizza la terza ed ultima fase del metodo LCA che intende riportare, per i vari tipi di pavimentazione, i risultati economici ed ambientali con le loro interpretazioni e conclusioni.

Parte 1: progetto strutturale della pavimentazione

Capitolo 1: Il tunnel del Fréjus

1.1 Ubicazione e descrizione.

Nel 1974 sono iniziati i lavori di scavo del tunnel del Fréjus che collega Modane, nella valle della Maurienne in Savoia, a Bardonecchia, il comune più ad ovest d'Italia in valle di Susa. Il traforo venne aperto nel 1980, inizialmente esclusivamente per il traffico leggero e successivamente anche per quello pesante. La galleria è lunga 12,870 km di cui 6,394 in Italia ed era composta da un'unica canna che consente i due sensi di circolazione con corsie larghe 3,55 metri.

Figura 1.1. Ubicazione [2]

Il tunnel fa parte della rete stradale internazionale europea E70 che collega la città di La Coruña in Spagna con Trebisonda in Turchia, e per questo il raddoppio del tunnel è molto importante perché facilita la comunicazione tra paesi dell'Unione Europea ed è in grado di sviluppare economie su scala regionale ed internazionale.

È raggiungibile dal versante italiano tramite l'autostrada Torino – Bardonecchia (A32) o la statale 335 che sale da Oulx ove si stacca dalla statale 24, detta "del Monginevro" e raggiunge Bardonecchia dopo poco più di 20 km. Dal lato francese, è raggiungibile tramite la Route Nationale o tramite l'autoroute de la Maurienne, collegata all'autostrada per Lione (A43 nella numerazione francese) [3].

Attualmente è in concessione fino al 2050 alla SITAF (Società Italiana per il Traforo Autostradale del Fréjus), insieme alla A32 Torino-Bardonecchia e svolge attività di progettazione, di costruzione, di studi in nuove tecnologie avanzate e nella gestione del traffico.

1.2 Progetto

Gli incidenti che accadono in galleria sono molto spesso drammatici e possono portare a gravi conseguenze a persone e/o cose provocando morti, feriti, inquinamento, congestionamento del traffico ed elevati costi di riparazione. Esempi sono quelli avvenuti nel tunnel del Monte Bianco, del Tauern nel 1999 e del Gottardo nel 2001 causati da incendio che hanno portato alla perdita di vite umane.

In generale avvengono con bassa frequenza, in quanto le vetture viaggiano all'interno di un ambiente confinato dotato di sistemi di sicurezza e non interessato da agenti atmosferici. Tuttavia le conseguenze possono essere gravi se non fatali perché se avviene un incendio le persone possono rimanere intrappolate all'interno del tunnel senza la possibilità di poter uscire e soggette ad un innalzamento rapido delle temperature fino a 1300°C. Al fine di ridurre il rischio bisogna operare nella prevenzione per far si che gli incidenti non accadano, ma anche nella protezione, per esempio con sistemi di sicurezza anti-incendio.

Quindi il Parlamento Europeo, per aumentare i livelli di sicurezza in galleria e renderli omogenei in tutta Europa, ha emanato la Direttiva 2004/54/CE del 29 aprile 2004 relativa ai requisiti minimi di sicurezza per le gallerie della rete stradale trans-europea.

Inizialmente si decise di fare un progetto per una galleria di sicurezza avente diametro di 4,8 metri da affiancare al tunnel già esistente, ma successivamente all'incidente nel traforo del 4 giugno del 2005 si propose di aumentare il diametro della galleria ad 8 metri e di renderla a tutti gli effetti una galleria di transito.

Per questo nel 2011 sono iniziati i lavori di scavo, dal lato francese, della seconda canna del tunnel del Fréjus. L'avere due gallerie, una per senso di marcia, porta ad evidenti vantaggi tra cui lo sfruttare quella non critica per far fuggire la gente e per velocizzare l'accesso dei soccorsi e dei mezzi anti-incendio sul luogo dell'incidente [4].

Le caratteristiche geometriche e funzionali sono:

- Lunghezza: 12.878 metri ad un interasse medio di 50 metri dal tunnel in servizio
- Diametro interno: 8,20 m
- Pendenza media: 0,54% (Francia- Italia)
- Sagoma libera: 6,00 x 4,60 m
- 34 Rifugi con interasse medio di 367 metri e superficie per utenti di 110 m²
- 10 Stazioni Tecniche con interasse medio di 1.430 m
- 9 By-Pass con interasse medio di 1.288 m, indipendenti da rifugi e da Stazioni Tecniche
- Ventilazione longitudinale con acceleratori in volta e 2 centrali supplementari in corrispondenza delle attuali centrali B e C per garantire in caso di evento un'estrazione massiccia
- nuovi edifici multifunzionali sulle piattaforme di accesso, adattati alle esigenze dei servizi di soccorso, di gestione e di manutenzione
- gestione integrata del traforo e della galleria in un unico sistema di gestione di un'opera a doppia canna.

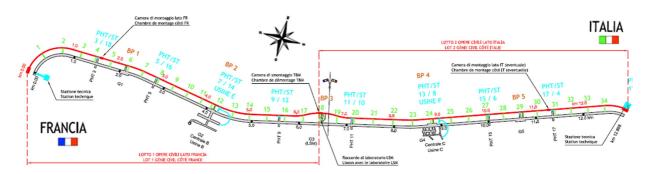


Figura 1.2. Planimetria

Sezione corrente (in corrispondenza dei dreni dell'ammasso) Coupe courante (en correspondance du drainage du terrain)

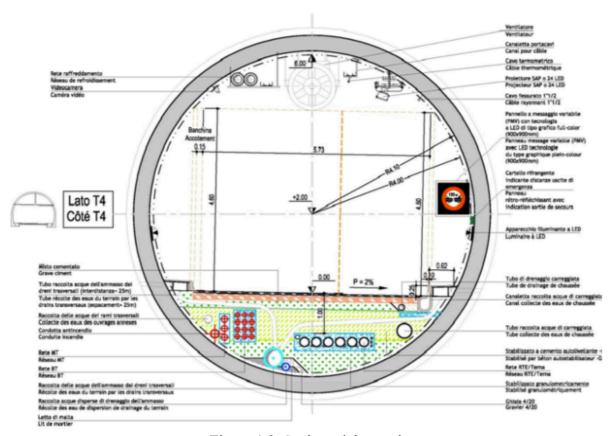


Figura 1.3. Sezione del tunnel

1.3 Sovrastruttura e sotto-servizi

Per far funzionare tutti gli impianti tecnologici all'interno della nuova galleria e di quella già esistente è necessario avere un'alimentazione elettrica, fornita da una linea ad alta tensione che verrà collocata all'interno del materiale di riempimento dell'arco rovescio.

Tale linea è costituita da quattro cavi elettrici alloggiati all'interno di tubazioni in polietilene ad alta densità.

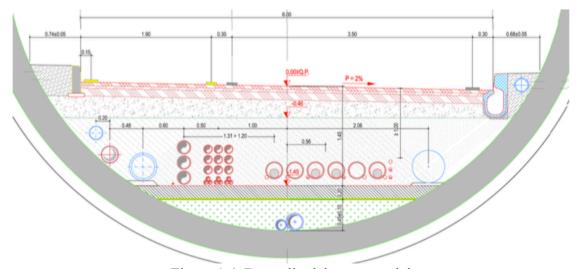


Figura 1.4. Dettaglio dei sotto-servizi

1.4 Stato Avanzamento Lavori

Lo scavo della galleria è terminato il 17 novembre del 2014.

Nel 2018 sono stati ultimati gli scavi per la realizzazione dei 5 by pass carrabili, delle 5 stazioni tecniche di competenza italiana, dei 16 rifugi. L'ultimazione di questi lavori, compresi i sottoservizi e le varie opere di genio civile (tra cui la sovrastruttura) dovrebbe terminare per la fine 2019/inizio 2020. Inoltre, nel 2018 sono terminate le procedure di gara per l'affidamento degli impianti della galleria in configurazione di transito e sono stati consegnati ad agosto 2018 i lavori per le opere sul piazzale Italiano che, oltre ai nuovi fabbricati di esercizio, prevedono la realizzazione della nuova Centrale di Ventilazione in sostituzione dell'attuale. Le opere saranno completate entro la fine del 2021 e attualmente registrano un ulteriore ritardo rispetto al cronoprogramma (2019). Alcune opere prioritarie per il transito, però, saranno concluse prima del 2021 [5].

Capitolo 2: Dati di input

Il progetto strutturale della pavimentazione del tunnel del Fréjus richiede, come prima aspetto, di definire i dati di input.

Si andranno a valutare 3 diverse tipologie di pavimentazione da un punto di vista strutturale ed economico.

2.1 Tipologie di pavimentazione

Tra le varie tipologie, si hanno anche le pavimentazioni invertite (GG e CG). In questo caso, le caratteristiche di rigidezza dei vari strati non è decrescente con la profondità, ma passando dal secondo al terzo, la rigidezza aumenta. Quindi si parla di una struttura "sbilanciata", ma che col passare del tempo si va a "bilanciare" perché lo strato cementato si trasforma in un materiale granulare equivalente e il modulo elastico si riduce.

2.1.1 GG

La prima tipologia è caratterizzata da due strati cementati per quanto riguarda il sottofondo e la fondazione, realizzati con un particolare materiale denominato GEOMIX. Infine il conglomerato bituminoso è costituito dai tre strati di usura, collegamento e base.

2.1.2 CG

In questo caso si ha sempre la stessa configurazione del pacchetto bituminoso, lo strato di fondazione è costituito da una miscela stabilizzata a cemento (misto cementato) e il sottofondo in GEOMIX.

2.1.3 CS

È la classica pavimentazione semi-rigida costituita dal solito pacchetto bituminoso, dalla fondazione in misto cementato e dal sottofondo costituito da terreno compattato.

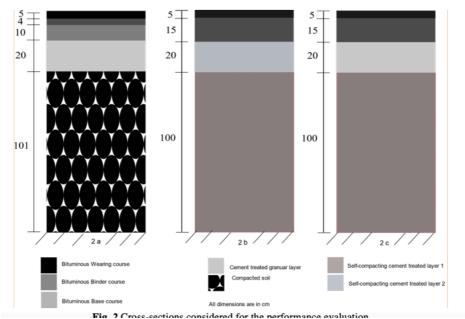


Figura 2.1 I tre tipi di pavimentazione oggetto del seguente studio

2.2 Caratteristiche meccaniche dei materiali.

Tali proprietà sono derivate da analisi di laboratorio, da prove sperimentali sul campo e dalla letteratura.

Per quanto riguarda i moduli elastici, questi sono stati calcolati con il processo della back-calculation, usando il Falling Weight Deflectometer su una pavimentazione in vera grandezza realizzata nell'impianto di Salbertrand, lo stesso che ha realizzato i conci che la TBM collocava sulle pareti del tunnel. Invece per il misto cementato e il suolo compattato i valori sono stati ricavati dalle ipotesi fatte durante il progetto preliminare [6].

Il modulo elastico del conglomerato bituminoso è stato scelto e fissato al valore di 2500 MPa nel presente lavoro di tesi. In realtà varia con i periodi dell'anno in funzione della temperatura che abbiamo all'interno del tunnel e considerando anche l'effetto dei cavi ad alta tensione passanti all'interno dell'arco rovescio. Queste condizioni quindi porterebbero il conglomerato ad assumere un comportamento visco-elastico lineare e un materiale meno rigido rendendolo maggiormente suscettibile al fenomeno dell'ormaiamento. Tuttavia ciò può essere bilanciato dal fenomeno dell'invecchiamento.

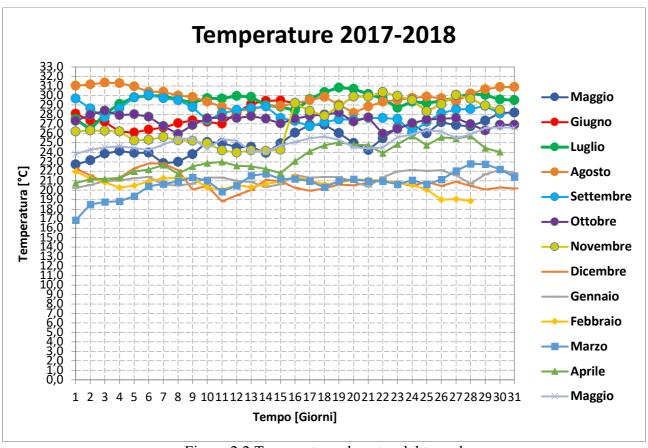


Figura 2.2 Temperature al centro del tunnel

I coefficienti di Poisson derivano dalla letteratura.

2.3 Traffico

Dal sito ufficiale della SITAF è possibile scaricare i dati di traffico dal 2014 al 2018, utili per il progetto strutturale della pavimentazione. Quindi viene dato il numero totale di passaggi che si hanno in funzione dei vari mesi dell'anno e in funzione del tipo di veicoli che transitano (veicoli leggeri, veicoli pesanti e bus) come si vede dalla figura seguente.

Traforo Autostra del Freius	na Traffico: GRATUITO PAGANTE Società Italiana dele Piazzale: Piazzale:								
VL.	TRANS. 2018	TRANS. 2017	TRANS, 2016		TRANS, 2014	SC. 2018/2017	SC. 2018/2016	SC. 2018/2015	
Sennaio	77.434	76.634	85.307	72.734	72.066	+1,04%	-9,23%	+6,46%	+7,45
ebbraio	74.916	75.253	95.883	68.142	64.979	-0,45%	-21,87%	+9,94%	+15,29
farzo	87.341	84.340	96.391	71.829	79.359	+3,56%	-9,39%	+21,60%	+10,06
prile	96.322	102.030	90.342	95.305	83.006	-5,59%	+6,62%	+1,07%	+16,04
laggio	94.390	79.846	83.345	91.142	79.485	+18,22%	+13,25%	+3,56%	+18,75
iugno	76.598	75.801	80.262	79.205	72.499	+1,05%	-4,57%	-3,29%	+5,6
SEMESTRE 1 uglio	507.001 127.686	493.904 136.933	531.530 136.052	478.357 135.262	451.394 111.228	+2,65% -6,75%	-4,61% -6,15%	+5,99% -5,60%	+12,3:
gosto	170 689	164 309	161 924	185.597	158 381	+3.88%	+5 41%	-5,00% -8.03%	+7.7
ettembre	81.322	84.059	77.069	83.670	73.777	-3,26%	+5,52%	-2,81%	+10,2
ttobre	70.160	72.860	75.610	87.145	68.489	-3,71%	-7,21%	-19,49%	+2,4
lovembre	65.580	64.420	64.859	60.887	59.136	+1,80%	+1,11%	+7,71%	+10,9
licembre	77.407	83.897	82.007	84.593	75.937	-7,74%	-5,61%	-8,49%	+1,94
SEMESTRE 2	592.844	606.478	597.521	637.154	546.948	-2,25%	-0,78%	-6,95%	+8,3
TOT. ANNO		1.100.382	1.129.051	1.115.511	998.342	-0,05%	-2,59%	-1,40%	+10,1
VP+BUS	TRANS. 2018		TRANS. 2016	TRANS. 2015				SC. 2018/2015	
ennaio	66.913	60.104	56.925	57.575	58.974	+11,33%	+17,55%	+16,22%	+13,4
ebbraio	66.453	62.829	63.930	59.256	60.325	+5,77%	+3,95%	+12,15%	+10,1
farzo prile	75.384 73.413	70.963 60.409	67.462 64.118	64.745 61.645	64.134 61.772	+6,23% +21.53%	+11,74% +14.50%	+16,43% +19.09%	+17,5
faggio	72.636	67.030	64.404	56.645	58.411	+8.36%	+12.78%	+28.23%	+24.3
Siugno	73.655	66 532	66.145	62.134	60.014	+10,71%	+11,35%	+18,54%	+22,7
SEMESTRE 1	428.454	387.867	382.984	362.000	363.630	+10,46%	+11,87%	+18,36%	+17,8
uglio	71.303	64.688	61.778	62.937	64.254	+10,23%	+15,42%	+13,29%	+10,9
gosto	49.217	47.966	45.041	40.243	39.748	+2,61%	+9,27%	+22,30%	+23,8
ettembre	66.510	69.233	64.274	62.995	62.377	-3,93%	+3,48%	+5,58%	+6,6
Ottobre	73.668	72.204	63.700	63.432	64.297	+2,03%	+15,65%	+16,14%	+14,5
lovembre	68.952	67.098	64.127	59.723	56.983	+2,76%	+7,52%	+15,45%	+21,0
icembre SEMESTRE 2	55.129 384.779	57.505 378 694	54.344 353.264	52.323 341.653	50.439 338.098	-4,13% +1,61%	+1,44%	+5,36% +12,62%	+9,3
DEIVIES I RE 2		0.004		703.653	000.000			T12,02%	
TOT ANNO								±45 57%	
TOTALE		766.561 TRANS 2017	736.248 TRANS 2016		701.728 TRANS 2014	+6,09% SC 2018/2017	+10,46% SC 2018/2016	+15,57% SC 2018/2015	
TOTALE	813.233 TRANS. 2018 144.347		736.248 TRANS. 2016 142.232	TRANS. 2015 130.309				+15,57% SC. 2018/2015 +10,77%	SC. 2018/20
TOTALE iennaio	TRANS. 2018	TRANS. 2017	TRANS. 2016	TRANS. 2015	TRANS. 2014	SC. 2018/2017	SC. 2018/2016	SC. 2018/2015	SC. 2018/20 +10,1
TOTALE Sennaio ebbraio	TRANS. 2018 144.347	TRANS. 2017 136.738	TRANS. 2016 142.232	TRANS. 2015 130.309	TRANS. 2014 131.040	SC. 2018/2017 +5,56%	SC. 2018/2016 +1,49%	SC. 2018/2015 +10,77%	SC. 2018/20 +10,1 +12,8
TOTALE Gennaio ebbraio farzo	TRANS. 2018 144.347 141.369	TRANS. 2017 136.738 138.082 155.303 162.439	TRANS. 2016 142.232 159.813 163.853 154.460	TRANS. 2015 130.309 127.398 136.574 156.950	TRANS. 2014 131.040 125.304 143.493 144.778	SC. 2018/2017 +5,56% +2,38%	SC. 2018/2016 +1,49% -11,54%	SC. 2018/2015 +10,77% +10,97% +19,15% +8,15%	SC. 2018/20 +10,19 +12,89 +13,40
TOTALE iennaio ebbraio larzo prile laggio	TRANS. 2018 144.347 141.369 162.725 169.735 167.026	TRANS. 2017 136.738 138.082 155.303 162.439 146.876	TRANS. 2016 142.232 159.813 163.853 154.460 147.749	TRANS. 2015 130.309 127.398 136.574 156.950 147.787	TRANS. 2014 131.040 125.304 143.493 144.778 137.896	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05%	\$C. 2018/2015 +10,77% +10,97% +19,15% +8,15% +13,02%	SC. 2018/20 +10,19 +12,89 +13,40 +17,20 +21,11
TOTALE idennaio debbraio larzo prile laggio diugno	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63%	SC. 2018/2015 +10,77% +10,97% +19,15% +8,15% +13,02% +6,31%	SC. 2018/20 +10,1: +12,8: +13,4! +17,2: +21,1: +13,3:
TOTALE sennaio ebbraio larzo prile laggio siugno BEMESTRE 1	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253 935.455	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56% +6,09%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63% +2,29%	SC. 2018/2015 +10,77% +10,97% +19,15% +8,15% +13,02% +6,31% +11,32%	SC. 2018/20 +10,1: +12,8: +13,4! +17,2: +21,1: +13,3: +14,7:
TOTALE Gennaio ebbraio larzo prile laggio diugno SEMESTRE 1 uglio	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253 935.455 198.989	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771 201.621	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514 197.830	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357 198.199	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024 175.482	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56% +6,09%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63% +2,29% +0,59%	\$C. 2018/2015 +10,77% +10,97% +19,15% +8,15% +13,02% +6,31% +11,32% +0,40%	SC. 2018/20 +10,1! +12,8: +13,4! +17,2: +21,1! +13,3! +14,7! +13,4!
TOTALE Sennaio ebbraio farzo prile faggio Siugno SEMESTRE 1 uglio	TRANS. 2018 144.347 141.369 162.725 169.735 167.025 150.253 935.455 198.989 219.906	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771 201.621 212.275	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514 197.830 206.965	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357 198.199 225.840	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024 175.482 198.129	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56% +6,09% -1,31% +3,59%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63% +2,29% +0,59% +6,25%	SC. 2018/2015 +10,77% +10,97% +19,15% +8,15% +13,02% +6,31% +11,32% +0,40% -2,63%	SC. 2018/20 +10,1! +12,8: +13,4! +17,2: +21,1! +13,3! +14,7! +13,4! +10,9!
TOTALE Sennaio ebbraio farzo prile faggio Semestre 1 uglio gosto settembre	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253 935.455 198.989	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771 201.621	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514 197.830	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357 198.199	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024 175.482 198.129	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56% +6,09%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63% +2,29% +0,59%	\$C. 2018/2015 +10,77% +10,97% +19,15% +8,15% +13,02% +6,31% +11,32% +0,40%	SC. 2018/20 +10,1! +12,8: +13,4! +17,2: +21,1: +13,3: +14,7! +13,4! +10,9! +8,5i
TOTALE Gennaio ebbraio farzo prile faggio Giugno GEMESTRE 1 uglio gosto eettembre Ottobre	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253 935.455 198.989 219.906	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771 201.621 212.275 153.292	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514 197.830 206.965 141.343	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357 198.199 225.840 146.665	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024 175.482 198.129	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56% -1,31% +3,59% -3,56%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63% +2,29% +0,59% +6,25% +4,59%	\$\text{SC.2018} \text{10.77}\\ \text{+10.77}\\ \text{+10.97}\\ \text{+19.15}\\ \text{+8.15}\\ \text{+3.02}\\ \text{+3.02}\\ \text{+3.14}\\ \text{-2.63}\\ \text{+0.80}\\ \text{-0.80}\\	SC. 2018/20 +10,1! +12,8: +13,4! +17,2: +21,1: +13,3: +14,7! +13,4! +10,9! +8,5:
	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253 935.455 198.989 219.906 147.832	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771 201.621 153.292 145.064	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514 197.830 206.965 141.343	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357 198.199 225.840 146.665 150.577	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024 175.482 198.129 136.154	SC. 2018/2017 +5,56% +2,38% +4,78% +13,72% +5,56% +6,09% -1,31% +3,59% -3,56% -0,85%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,29% +0,59% +6,25% +4,59% +3,24%	SC. 2018/2015 +10.77% +10.97% +19.15% +8.15% +13.02% +6.31% +11,32% +0.40% -2.63% +0.80% -4.48%	+15,8' SC. 2018/2C +10,11 +10,11 +112,8' +113,4' +17,2' +21,11 +113,3' +14,7' +13,4' +10,9' +8,5' +8,5' +15,8' +4,8' +4,8' +4,8' +4,8' +4,8' +4,8' +4,8' +4,8' +4,8' +4,8' +15,8' +4,8' +4,8' +15,8' +4,8' +
TOTALE dennaio debbraio larzo prile laggio diugno SEMESTRE 1 duglio gosto ettembre dittobre dovembre	TRANS. 2018 144.347 141.369 162.725 169.735 167.026 150.253 935.455 198.989 219.906 147.832 143.828	TRANS. 2017 136.738 138.082 155.303 162.439 146.876 142.333 881.771 201.621 212.275 145.3292 145.064 131.518	TRANS. 2016 142.232 159.813 163.853 154.460 147.749 146.407 914.514 197.830 206.965 2141.343 139.310 128.986	TRANS. 2015 130.309 127.398 136.574 156.950 147.787 141.339 840.357 198.199 225.840 146.665 150.577 120.610	TRANS. 2014 131.040 125.304 143.493 144.778 137.896 132.513 815.024 175.482 198.129 136.154 132.786	SC. 2018/2017 +5,56% +2,38% +4,78% +4,49% +13,72% +5,56% +6,09% -1,31% +3,59% -0,85% +2,29%	SC. 2018/2016 +1,49% -11,54% -0,69% +9,89% +13,05% +2,63% +2,29% +0,59% +6,25% +4,59% +3,24% +4,30%	SC. 2018/2015 +10.77% +10.97% +19.15% +8.15% +6.31% +0.40% -2.63% +0.80% +4.48% +11.54%	SC. 2018/20 +10,1! +12,8: +13,4! +17,2: +21,1: +13,3: +14,7! +13,4! +10,9: +8,5: +8,3: +15,8!

Figura 2.3 Dati di traffico

Nei calcoli che verranno svolti, si trascura il danno provocato dai veicoli leggeri e si considereranno solo i veicoli pesanti e i bus.

Da ciò che si trova in figura 2.3 si possono ricavare la percentuale dei veicoli pesanti, il fattore di crescita r_{BUS+VP} anno per anno ed un fattore di crescita medio detto h.

	2014	2015	2016	2017	2018
VL	998.342	1.115.511	1.129.051	1.100.382	1.099.845
BUS+VP	701.728	703.653	736.248	766.561	813.233
%VP	41,3	38,7	39,5	41,1	42,5
TOTALE	1.700.070	1.819.164	1.865.299	1.866.943	1.913.078
r _{BUS+VP}	-	0,3	4,6	4,1	6,1
h [%]	3,8				

Figura 2.4 Analisi dei dati di traffico

Avendo solo informazioni sulle quantità ma non sulle caratteristiche tecniche e meccaniche dei mezzi che vi transitano, ossia numero di assi e loro peso, si dovrà usare una flotta di traffico, tipica per la tipologia di strada, data dal catalogo italiano delle pavimentazioni (CNR 178) [7].

Tipo	Veicoli [%]		Avantreno			Retrotreno	
3	1,7	80			80		
5	73,0	40			80	80	
6	17,7	60			100	100	
7	2,3	40	90		80	80	
8	2,3	60	100		100	100	
9	0,3	40	80	80	80	80	
16	2,8	50			80		

Tabella 2.1 Caratteristiche del traffico

In grassetto sono evidenziati gli assi tandem.

2.4 Altri dati di input

Importante da definire è anche l'affidabilità di progetto fissata al 95% e il periodo di analisi della pavimentazione di 20 anni.

Gli spessori degli strati variano a seconda dello strato che si considera:

- il conglomerato bituminoso ha spessori dai 50 ai 200 millimetri;
- la fondazione ha spessori tra i 200 e i 400 millimetri;
- il sottofondo ha uno spessore fisso di 1000 millimetri.

Da qui si avranno varie combinazioni di spessori che saranno analizzate successivamente.

	Strato	Spessore [mm]	E [MPa]	ν[-]
GG	Conglomerato bituminoso	50 - 200	2500	0,35
	Fondazione	200 - 400	Non fessurata 350	0,15
			Fessurata 227,5	0,35
	Sottofondo	Semi-Infinito	1000	0,15
CG	Conglomerato bituminoso	50 - 200	2500	0,35
	Fondazione	200 - 400	Non fessurata 800	0,15
			Fessurata 400	0,35
	Sottofondo	Semi-Infinito	1000	0,15
CS	Conglomerato bituminoso	50 - 200	2500	0,35
	Fondazione	200 - 400	Non fessurata 800	0,15
			Fessurata 400	0,35
	Sottofondo	Semi-Infinito	200	0,4

Tabella 2.2 Riassunto delle variabili in gioco.

I modelli che si utilizzeranno per valutare la pavimentazione da un punto di vista strutturale sono il SAMDM e la normativa australiana.

Capitolo 3: Metodi Meccanicistico Empirici: SAMDM & Austroads

Per il metodo sud africano, la parte relativa al progetto strutturale della pavimentazione si trova nel capitolo 10 del manuale e può essere consultato nel caso di pavimentazioni flessibili oppure rigide. È un metodo di tipo meccanicistico-empirico che studia lo stato tensionale e deformativo mediante un modello multi-strato elastico lineare per poi legarlo, tramite le funzioni di trasferimento, al danno.

Nella figura seguente si può vedere la sequenza logica con cui il metodo lavora.

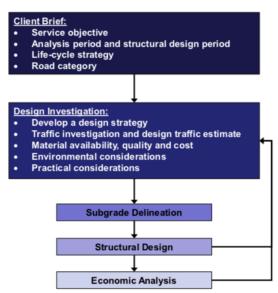


Figura 3.1 Flow chart per il progetto delle nuove pavimentazioni

Per il metodo australiano, la parte relativa al progetto strutturale delle pavimentazioni flessibili si trova nel capitolo 8 della normativa. È un metodo di tipo meccanicistico-empirico che studia lo stato tensionale e deformativo mediante un modello multi-strato elastico lineare per poi legarlo, tramite le funzioni di trasferimento, al danno.

Nella figura seguente si possono vedere i vari passi di calcolo proposti.

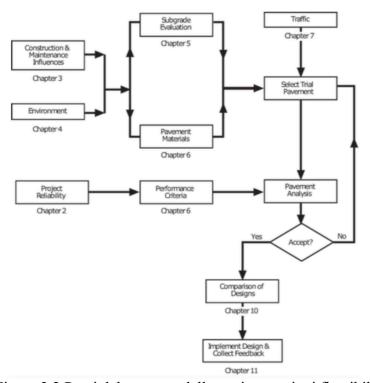


Figura 3.2 Passi del progetto delle pavimentazioni flessibili

3.1 SAMDM (South Africa Mechanistic-empirical Design Method)

Al fine di usare le funzioni di trasferimento, risulta necessario caricare la pavimentazione, avente determinate caratteristiche geometriche (spessore degli strati) e meccaniche (modulo elastico, coefficiente di Poisson), e valutare le tensioni e le deformazioni che ha la struttura.

Il manuale definisce la geometria dell'asse standard (ESA). Esso è costituito da un singolo asse, composto da un totale di quattro ruote e ciascuna di esse trasferisce alla pavimentazione un carico di 20 kN. Le gomme sono gonfiate ad una pressione di 520 kPa e ciò porta ad avere un'area di contatto con la pavimentazione avente un raggio di 0,111 metri.

Tuttavia nel modello si considererà soltanto metà asse in quanto le altre due ruote si troveranno ad una distanza tale da non influire sul risultato.

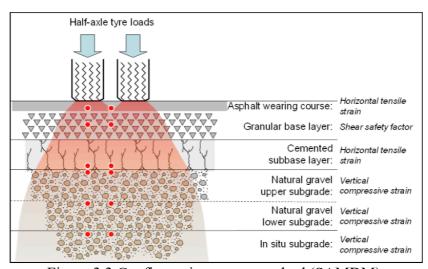


Figura 3.3 Configurazione asse standard (SAMDM)

Nella figura 3.3 i pallini rossi rappresentano i punti in cui valuto gli effetti prodotti dal carico. Si nota che questi sono localizzati sotto una delle due ruote e tra le due ruote perché in quest'ultima posizione le zone di influenza del carico vanno a sovrapporsi producendo tensioni e deformazioni rilevanti. Tra i due valori di tensioni e deformazioni, ricavati alla stessa profondità, si scelgono quelli massimi.

Per fare ciò ci si avvale dell'aiuto del software BISAR (Bitumen Stress Analysis in Roads), un software della SHELL, che si basa su un sistema a più strati avente le seguenti caratteristiche:

- 1) gli strati sono orizzontali di spessore uniforme, appoggiati su una base semi-infinita;
- 2) gli strati hanno un'estensione infinita nelle direzioni orizzontali;
- 3) il materiale di ciascuno strato ha un comportamento omogeneo ed isotropo;
- 4) i materiali hanno comportamento elastico e una relazione lineare tensione-deformazione. Per il suo utilizzo basterà compilare le seguenti tabelle che riguardano il carico, la geometria e le posizioni in cui voglio valutare gli effetti del carico ed infine il software ci darà i risultati [8].

Load Number	Vertical Load (kN)	Radius (m)	X Coordinate (m)	Y Coordinate (m)	Horizontal Load (kN)	Shear Direction (degr.)
1	0.000	0.0000	0.0000	0.0000	0.000	0.0
2	0.000	0.0000	0.0000	0.0000	0.000	0.0

Figura 3.4 Tabella BISAR del carico

Layer Number	Thickness (m)	Modulus of Elasticity (MPa)	Poisson's Ratio
1	0.200	3.00E+03	0.35
2	0.250	1.00E+02	0.35
3		5.00E+01	0.35

Figura 3.5 Tabella BISAR degli strati

Position Number	X Coordinate (m)	Y Coordinate (m)	Z (depth) Coordinate (m)	Layer No
1	0.0000	0.0000	0.0000	1
2	0.0000	0.0000	0.1000	1
3/4	0.0000	0.0000	0.2000	1/2
5	0.0000	0.0000	0.3000	2
6/7	0.0000	0.0000	0.4500	2/3

Figura 3.6 Tabella BISAR delle posizioni

3.1.1 Le funzioni di trasferimento

Una volta che si è definito il modello strutturale della pavimentazione in tutte le sue parti e si sono determinati gli stati tensionali e di deformazione, è necessario usare delle funzioni di trasferimento, opportunamente calibrate tramite analisi sperimentali, per legare i risultati provenienti dal software BISAR alle performance che la pavimentazione è in grado di dare. Con ciò, si intende definire il numero di carichi che può sopportare la struttura prima di perdere completamente le caratteristiche di sicurezza e comfort e non essere più adeguata al passaggio dei veicoli.

Gli strati di usura, collegamento e base vengono analizzati come un unico "pacchetto", tenendo in considerazione solo del fenomeno della fatica che si manifesta con una fessurazione diffusa a "pelle di coccodrillo". Verrà considerata nel modello soltanto la fessura che si propaga dal basso verso l'alto come si vede nella seguente figura.

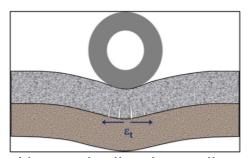


Figura 3.7 Parametro critico e sua localizzazione per il conglomerato bituminoso

La funzione di trasferimento viene descritta nella tabella 28 del manuale.

$$N_f = SF \cdot 10^{\alpha \left(1 - \frac{\log \varepsilon_t}{\beta}\right)}$$

dove:

- N_f è la vita a fatica;
- α e β sono coefficienti dati dalla tabella 28 del manuale che dipende dal modulo elastico, dalla categoria della strada, dallo spessore dello strato e per spessori inferiori ai 50 millimetri dalla tipologia della miscela e dalla categoria di strada;
- ε_t è la deformazione orizzontale alla base dello strato;
- SF è lo shift factor che dipende dallo spessore dello strato.

Per tutti i tipi di pavimentazione analizzati, lo strato di fondazione è costituito da un materiale innovativo che ha lo stesso comportamento durante il passaggio dei veicoli. Inizialmente siamo nella fase 1 e si ha la formazione di fessure che si originano alla base dello strato per poi propagarsi verso il conglomerato bituminoso. Quando si ha una situazione di micro-fessurazione, ossia si vengono a formare blocchi aventi dimensioni da 1 a 5 volte lo spessore dello strato [9], il sistema passa alla fase 2, cioè si ha una diminuzione del modulo elastico e la fondazione è come se fosse costituita da un materiale granulare. Tale processo è spiegato nella figura successiva tratta dal manuale.

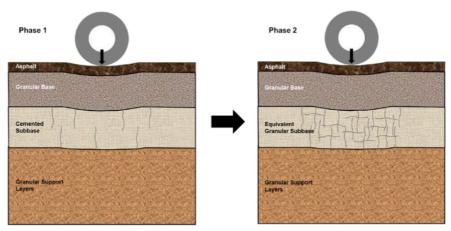


Figura 3.8 Passaggio dalla fase 1 alla fase 2

Il manuale raccomanda di utilizzare determinati moduli elastici affinché i modelli di danno funzionino al meglio.

Initial Class	Modulus (MPa)	Strain-at- Break (ε _b)	UCS (kPa)	Equivalent Granular Class	Modulus (MPa)
C3	2 000	125	2250	EG4	300
C4	1 500	145	1125	EG5	200

Figura 3.9 Moduli elastici e proprietà dei materiali suggeriti dal SAMDM

Quindi per la pavimentazione GG si è deciso di utilizzare la classe C4, mentre per le pavimentazioni CS e CG la classe C3. Questo perché il Geomix presente nella prima ha un modulo elastico inferiore rispetto al misto cementato che è presente nelle altre due tipologie di pavimentazione. Tuttavia nel BISAR vengono utilizzati sempre gli stessi moduli stabiliti nel capitolo 2.

Si analizza anche in questo caso il fenomeno della fatica come si evince dalla seguente figura.

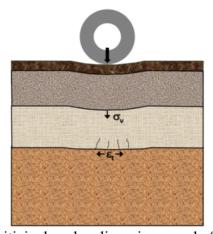


Figura 3.10 Parametri critici e loro localizzazione per la fondazione non fessurata

Infine si applica la funzione di trasferimento data nella tabella 35 del manuale, per uno strato di fondazione non fessurato (fase 1), usando la formula seguente che permette di calcolare il numero di carichi che portano il sistema a passare alla fase 2.

$$N_{eff} = SF \cdot 10^{c\left(1 - \frac{\varepsilon}{d\varepsilon_b}\right)}$$

dove:

- N_{eff} è la vita a fatica;
- ε è la deformazione orizzontale alla base dello strato;
- ε_h è la deformazione a rottura data dalla figura 3.9;
- c e d sono coefficienti che dipendono dalla categoria della strada;
- SF è un fattore moltiplicativo il cui valore dipende dallo spessore dello strato.

Quando si studia, invece, uno strato di fondazione fessurato (fase 2), bisogna considerare lo strato avente lo stesso modulo elastico di un materiale granulare e per la precisione, quello riportato nella colonna "Equivalent Granular Class" della figura 3.9. La funzione di trasferimento della tabella 30 del manuale valuta il danno della deformazione permanente (ormaiamento) e si basa sul modello di Mohr-Coulomb come evidenziato nella figura seguente.

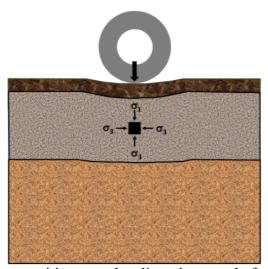


Figura 3.11 Parametro critico e sua localizzazione per la fondazione fessurata

$$N=10^{(\alpha F+\beta)}$$

dove:

- α e β sono coefficienti che dipendono dalla categoria della strada;

$$-F = \frac{\sigma_3 \Phi_{term} + C_{term}}{\sigma_1 - \sigma_3}$$

dove:

- Φ_{term} e C_{term} sono coefficienti data dal manuale che dipendono dalla "equivalent granular class" della figura 3.9 e dalle condizioni di umidità a cui è soggetta la strada;
- σ_1 e σ_3 sono le tensioni principali che agiscono nella mezzeria dello strato. Devono essere entrambe positive, altrimenti si trasla il cerchio di Mohr in modo tale che il valore negativo sia pari a 0.

Per lo strato di sottofondo bisogna valutare il danno della deformazione permanente, detta anche ormaiamento che si manifesta in superficie. Quindi si valuta lo stato tensionale in direzione verticale che ho sulla sommità dello strato come evidenzia la figura seguente.

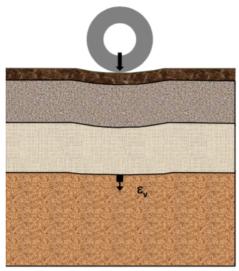


Figura 3.12 Parametro critico e sua localizzazione per il sottofondo

Tramite la funzione di trasferimento della tabella 37 del manuale è possibile calcolare il numero di passaggi che la pavimentazione può sopportare fino ad arrivare ad una profondità delle ormaie di 10 millimetri.

$$N_{PD} = 10^{(a-10log\varepsilon_v)}$$

dove:

- N_{PD} è il numero di passaggi per avere una deformazione permanente pari a 10 millimetri;
- a è una costante data dal manuale in funzione della categoria della strada;
- ε_{ν} è lo stato di deformazione verticale calcolato sulla sommità dello strato.

3.1.2 Combinazione tra fase 1 e fase 2

Questo è il punto più delicato dell'intero metodo perché si va a esprimere il numero di passaggi che la pavimentazione è in grado di supportare prima che uno degli strati raggiunga la condizione limite per fatica o per deformazioni permanenti.

Si calcola, per le due fasi, la vita per tutti gli strati applicando le funzioni di trasferimento descritte nei paragrafi precedenti e ricordandosi della diminuzione del modulo elastico della fondazione cementata nella seconda fase.

La rimanente parte della vita ricavata nella fase 1 (A), detta anche vita residua, per gli strati deve essere ridotta mediante un opportuno coefficiente moltiplicativo (B). Il metodo lo assume equivalente al rapporto tra la vita calcolata nella fase 2 e quella calcolata nella fase 1 per uno specifico strato.

$$AR_n = AB = (L_{n1} - min(L_{11}; L_{21}; L_{31})) \frac{L_{n2}}{L_{n1}}$$

Eccezione fatta per lo strato cementato la cui vita ricomincerà da zero in quanto è come se lo strato fosse completamente cambiato. Tale vita verrà successivamente sommata totalmente a quella ricavata nella fase 1.

Quindi si somma la fase 1 alla fase 2 per il materiale cementato, mentre per gli altri strati si somma la vita della fase 1 con la vita residua ridotta (AR_n) . Infine si considera il valore minimo. Tale procedura è spiegata nella figura seguente [9].

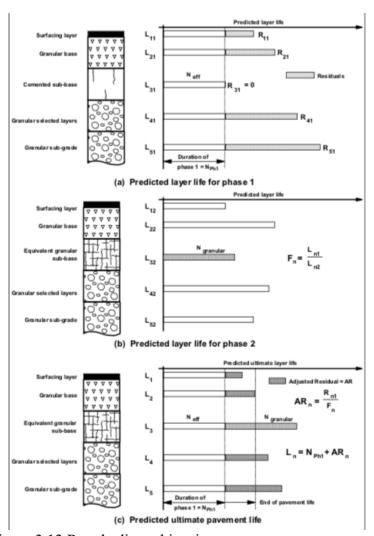


Figura 3.13 Regola di combinazione per uno strato cementato

Il ragionamento è il medesimo nel caso in cui abbia due strati cementati, ma avrò tre fasi invece che due. Quindi alla fine della fase 1 avrò un primo strato cementato che si frattura e di cui diminuisce il modulo elastico. Poi alla fine della fase 2 anche l'altro strato cementato va a trasformarsi in un materiale granulare equivalente e avrò anche una fase 3 nella quale dovrò calcolare le performance della pavimentazione. Il tutto è espresso nella figura seguente [9].

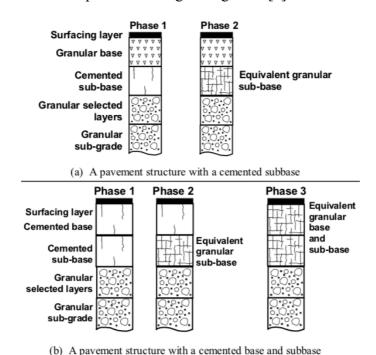


Figura 3.14 Regola di combinazione per due strati cementati

Si possono usare tali regole nel caso in cui la vita del conglomerato sia superiore alla vita della fondazione nella fase 2 oppure il viceversa nella fase 1.

Altrimenti si applicherà una diversa regola di combinazione e la vita ultima della fondazione si calcolerà con la seguente formula:

$$Life = subbase\ phase\ 1 + \frac{life\ asphalt\ phase\ 2}{life\ asphalt\ phase\ 1} \cdot (life\ asphalt\ phase\ 1 - life\ subbase\ phase\ 1)$$

Per spiegare tale formula bisogna considerare il fatto che dal momento in cui si fessura per primo lo strato di fondazione, il conglomerato bituminoso continua a rimanere nella fase 1 anche se il sistema è passato a quella successiva.

3.2 Austroads

L'asse standard che viene considerato è composto da 4 ruote, ciascuna avente un carico di 20 kN e generante una pressione, su una superficie di contatto circolare di raggio 92,1 mm, di 750 kPa. La distanza tra le due ruote adiacenti è pari a 330 mm, mentre la coppia di ruote interne dista 1470 mm, come si vede dalla figura seguente [10].

Axle with dual tyres

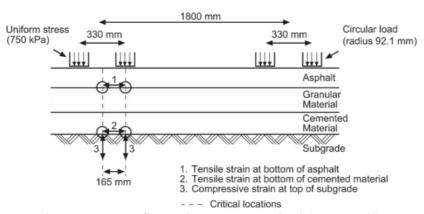


Figura 3.15 Configurazione asse standard (Austroads)

Tuttavia nel modello si considererà soltanto metà asse in quanto le altre due ruote si troveranno ad una distanza tale da non influire sul risultato.

Nella figura 3.15 i pallini rappresentano i punti in cui si valutano gli effetti prodotti dal carico. Si nota che questi sono localizzati sotto una delle due ruote e tra le due perché in quest'ultima posizione le zone di influenza del carico vanno a sovrapporsi producendo tensioni e deformazioni rilevanti. Tra i due valori di tensioni e deformazioni, ricavati alla stessa profondità, si scelgono quelli massimi.

La normativa propone anche l'utilizzo di un asse composto da solo due ruote con un carico di 53 kN, ma poiché non abbiamo sufficienti dati di traffico, nemmeno nel catalogo italiano delle pavimentazioni, si ipotizza di considerare soltanto l'asse presentato nella figura 3.15.

3.2.1 Le funzioni di trasferimento

Come già spiegato nel paragrafo 3.1.1 sono molto importanti in quanto legano la parte meccanicistica a quella empirica per andare a valutare il danno.

Per lo strato di conglomerato bituminoso, il tipo di danno valutato è la vita a fatica della pavimentazione. La funzione di trasferimento determina il numero di passaggi ammissibili di uno specifico gruppo d'assi, avente un determinato carico.

$$N_{ij} = \frac{1}{n} \cdot \frac{SF}{RF} \cdot \left[\frac{6918(0,856V_b + 1,08)}{E^{0,36}\mu\varepsilon_{ij}} \right]^5$$

dove:

- N_{ij} è il numero ammissibile di passaggi di un certo gruppo i, avente un certo carico j;
- n è il numero di assi all'interno del gruppo i;
- V_h è la percentuale del volume di bitume nella miscela;
- E è il modulo elastico del conglomerato;
- SF è lo shift factor che secondo la normativa è equivalente a 6;
- RF è il fattore legato all'affidabilità di progetto dato dalla tabella 6.16 della normativa;
- $\mu \varepsilon_{ij}$ è lo stato deformativo misurato alla base del conglomerato bituminoso causato dallo specifico gruppo d'assi i e con uno specifico carico j.

Quindi con l'ultimo termine la normativa ci suggerisce di valutare lo stato deformativo che si ha sulla pavimentazione causato da tutte le possibili configurazioni combinando ciascun gruppo d'assi con ciascun carico. Questa procedura è molto impegnativa e laboriosa. Per cui, è stato dimostrato [11] che, in un modello multistrato lineare elastico, lo stato deformativo risultante da un asse standard può essere scalato linearmente per stimare la risposta di uno specifico gruppo d'assi avente un determinato carico. Si può usare la formula seguente

$$\mu \varepsilon_{ij} = \frac{L_{ij}}{n} \cdot \frac{\mu \varepsilon_{SADT,80}}{80}$$

dove

- L_{ij} è il carico j del generico gruppo i;
- n è il numero di assi all'interno del gruppo d'assi;
- $\mu \varepsilon_{SADT,80}$ è la deformazione alla base dello strato causata dall'asse standard singolo di 80 kN C'è anche la formula per il carico da 53 kN ma non verrà usata per lo stesso motivo spiegato precedentemente.

Se lo strato ha uno spessore superiore a 175 mm, si considereranno due fasi separate in cui la fondazione in GEOMIX o di misto cementato vede una riduzione del modulo elastico.

Per lo strato di fondazione, ciò che viene considerato è la resistenza a fatica dello strato, valutata solo nella fase 1, sia che il conglomerato abbia uno spessore maggiore o minore di 175 mm. Inoltre si ipotizza che le fessure che si creano nella fondazione, non si propaghino nel conglomerato altrimenti non si può applicare il metodo [10] (Austroads, 8.2.6, secondo paragrafo). Verrà usata la seguente funzione di trasferimento

$$N_{ij} = \frac{1}{n} \cdot RF \cdot \left(\frac{K}{\mu \varepsilon_{ij}}\right)^{12}$$

dove:

- N_{ij} è il numero ammissibile di passaggi di un certo gruppo i, avente un certo carico j;
- n è il numero di assi all'interno del gruppo i;
- K è una costante ricavata moltiplicando lo shift factor pari a 1,55 con la costante di fatica k proveniente da indagini di laboratorio;
- RF è il fattore legato all'affidabilità di progetto;
- $\mu \varepsilon_{ij}$ stato deformativo misurato alla base della fondazione causato dallo specifico gruppo d'assi i e con uno specifico carico j.

Per lo strato di sottofondo si fa una valutazione delle deformazioni permanenti, sia per la fase 1 che per la fase 2 nel caso in cui lo spessore del conglomerato bituminoso sia superiore a 175 mm. La funzione di trasferimento è la seguente.

$$N = \left[\frac{9150}{\mu\varepsilon}\right]^7$$

dove:

- N è il numero ammissibile di passaggi;
- $\mu\varepsilon$ deformazione verticale misurata sulla sommità dello strato.

3.2.2 Combinazione tra fase 1 e fase 2

Tale regola si applica solo nel caso in cui lo strato di conglomerato bituminoso abbia uno spessore di almeno 175 mm.

Si prevede l'utilizzo delle seguenti formule messe a disposizione dalla normativa

$$N_A = N_C + \left(1 - \frac{N_C}{N_{1stA}}\right) N_{2ndA}$$

dove:

- N_A è il carico ammissibile in ESA per arrivare al danno di fatica dello strato bituminoso;
- N_C è il carico ammissibile in ESA per arrivare al danno di fatica dello strato cementato;
- N_{1stA} è il carico ammissibile in ESA per arrivare al danno di fatica dello strato bituminoso nella fase 1, ossia prima della fessurazione dello strato cementato;
- N_{2ndA} è il carico ammissibile in ESA per arrivare al danno di fatica dello strato bituminoso nella fase 2, ossia dopo la fessurazione dello strato cementato.

$$N_S = N_C + \left(1 - \frac{N_C}{N_{1stS}}\right) N_{2ndS}$$

dove:

- $N_{\rm S}$ è il carico ammissibile in ESA per arrivare al danno dell'ormaiamento del sottofondo;
- N_C è il carico ammissibile in ESA per arrivare al danno di fatica dello strato cementato;
- N_{1stS} è il carico ammissibile in ESA per arrivare al danno dell'ormaiamento del sottofondo nella fase 1, ossia prima della fessurazione dello strato cementato;
- N_{2ndS} è il carico ammissibile in ESA per arrivare al danno dell'ormaiamento del sottofondo nella fase 2, ossia dopo la fessurazione dello strato cementato.

Infine si prende il valore minimo per determinare la vita ultima della pavimentazione.

Nel caso in cui il termine nelle parentesi non sia positivo, la vita ultima della pavimentazione risulta data dal minimo tra N_{1stA} e N_C .

Capitolo 4: Traffico

4.1 SAMDM (South Africa Mechanistic-empirical Design Method

4.1.1 E80/VP

È un fattore molto importante da determinare ed è in grado di convertire, per ciascun veicolo pesante, il peso totale del carico che si scarica sulla pavimentazione in un numero preciso di assi aventi ciascuno un carico di 80kN (l'asse standard equivalente). Tipicamente non interessa il valore per ciascun tipo di mezzo pesante, ma alla fine si farà una media pesata. La procedura è riportata nella figura seguente tratta dal manuale.

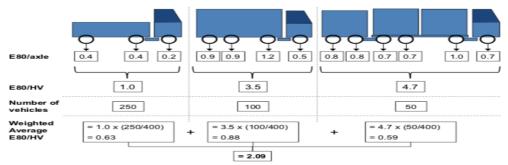


Figura 4.1 E80/veicolo pesante

Quindi si ricava per ciascun tipo di veicolo pesante il numero di assi standard tramite:

$$\frac{E80}{VP} = \sum_{i=1}^{n} \left(\frac{P_i}{80}\right)^4$$

dove:

- P_i è il carico dell'i-esimo asse dello specifico mezzo pesante

E poi si fa una media pesata in cui i pesi sono le probabilità che ho di trovare ciascun veicolo all'interno della distribuzione dei carichi di figura 2.5

4.1.2 Traffico cumulato anno per anno (ET)

Si vuole descrivere come definire, anno per anno, il numero cumulato di assi standard che transitano all'interno del tunnel.

Si parte dal considerare un fattore di crescita che è in grado di combinare la crescita annuale del numero dei mezzi pesanti h e la crescita annuale dei carichi che portano v:

$$i = [(1+h)(1+v) - 1]$$

Poi si calcola la media giornaliera degli assi equivalenti (ADE) che si ha per corsia

$$ADE = \frac{E80/VP \cdot VVP}{durata \cdot corsie}$$

dove:

- VVP è il volume di veicoli pesanti misurato in un periodo e numero di corsie preciso.

Successivamente si calcola la media annuale giornaliera del numero di assi standard (AADE). Poiché si ha a disposizione dei dati di traffico di anni interi, non è necessario calcolare coefficienti correttivi da usare per l'ADE al fine di ottenere AADE. Quindi i due valori saranno gli stessi. Poi bisogna valutare come il volume di traffico cresce fino all'anno di apertura della strada andando a calcolare:

$$AADE_0 = AADE_S(1+i)^n$$

dove:

- $AADE_O$ e $AADE_S$ sono la media annuale giornaliera del numero di assi standard rispettivamente all'anno dell'apertura e all'anno in cui si registrano i dati di traffico.
- n è il numero di anni che intercorre tra i due momenti descritti precedentemente.

Infine si calcola per l'intero periodo di analisi della pavimentazione il numero di assi standard cumulati che transitano su di essa anno per anno con la seguente formula:

$$ET = 365 \cdot AADE_o(1+i) \frac{[(1+i)^y - 1]}{i} LDF$$

dove:

- y è l'anno che considero all'interno del periodo di analisi;
- LDF è il fattore di distribuzione da adottare sulla corsia di progetto.

4.2 Austroads

4.2.1 Calcolo del numero totale di gruppi d'assi nel periodo di analisi

Una volta definito il periodo di analisi e la corsia più trafficata da progettare, bisogna valutare il numero giornaliero medio annuo di veicoli pesanti che transita.

$$N_i = AADT \cdot DF \cdot \%HV \cdot LDF$$

dove:

- AADT è il traffico giornaliero medio annuo in veicoli al giorno nelle due direzioni;
- DF è il fattore di direzione;
- %HV è la percentuale di mezzi pesanti all'interno del traffico;
- LDF è il fattore di distribuzione del traffico sulle due corsie.

Successivamente, tramite un fattore di crescita ottenuto dai dati di traffico, si ricava il numero giornaliero di veicoli pesanti che transitano nel primo anno di apertura della pavimentazione. Moltiplicando tale valore per 365 si passa alla grandezza annuale.

$$HV_{year1} = 365 \cdot N_i \cdot \frac{\left(1 + \frac{h}{100}\right)^{n-1} - 1}{\frac{h}{100}} \cdot \left(1 + \frac{h}{100}\right)$$

dove:

- h è il fattore di crescita;
- n è il numero di anni che intercorre tra l'ultimo rilevamento dei dati di traffico e l'anno di apertura della pavimentazione.

L'amministrazione del tunnel del Fréjus, per motivi di sicurezza, impone che i veicoli viaggino con una velocità massima di 70 km/h e con uno spazio di almeno 150 m tra uno e l'altro [12]. Quindi la pavimentazione sarà soggetta ad una certa capacità massima e per stimare il numero totale di veicoli pesanti all'interno del periodo di analisi si confronteranno entrambi i valori.

Per la determinazione della capacità, bisogna pensare che il flusso di veicoli è dato sia da quelli leggeri che da quelli pesanti. Realizzando i calcoli di capacità sulla base dei mezzi leggeri, bisognerà riportare tale numero sulla base dei mezzi pesanti adottando la procedura descritta nella normativa.

$$C_{pce} = \frac{C_{pc}}{1 + \frac{P_{HV}}{100} \cdot (E_{HV} - 1)}$$

dove:

- C_{pce} è il massimo volume orario di veicoli leggeri equivalenti per corsia;
- C_{pc} è il massimo volume orario di veicoli leggeri in grado di attraversare il tunnel per corsia;
- P_{HV} è la percentuale di veicoli pesanti presenti all'interno della corrente di traffico [%];
- E_{HV} è il numero medio di veicoli leggeri equivalenti che occupano lo stesso spazio di una precisa tipologia di mezzo pesante. Dato dalla normativa

$$C_{hv} = \frac{C_{pce}}{E_{HV} + \frac{100}{P_{HV}} - 1}$$

dove:

- C_{hv} è il massimo volume orario di veicoli pesanti per corsia.

Moltiplicandolo per 8760 (numero di ore in un anno) l'ultimo valore ottenuto, si ricava il numero massimo di mezzi pesanti che possono transitare nel tunnel in un anno.

Per la determinazione del numero di veicoli pesanti anno per anno si usa la seguente relazione

$$HV_{vear\,n} = HV_{vear\,1}(1+0.01h)^{n-1}$$

dove:

- $HV_{year n}$ è il numero di veicoli pesanti all'anno n;
- $HV_{year\ 1}$ è il numero di veicoli pesanti all'anno di apertura al traffico della pavimentazione;
- n è l'anno n-esimo che si considera.

Da qui è possibile verificare che per ogni anno, il numero di veicoli pesanti sia inferiore alla capacità, altrimenti si sostituisce quest'ultimo al valore di $HV_{year\,n}$.

Poi si calcola il numero totale di veicoli pesanti nel periodo di analisi detto N_{HV} e, conoscendo il numero medio di assi gruppo per veicolo pesante N_{HVAG} , è possibile ricavare il numero totale di gruppi d'assi che transitano nel tunnel durante il periodo di analisi con la seguente relazione

$$N_{DT} = N_{HV} \cdot N_{HVAG}$$

4.2.2 Calcolo della distribuzione dei carichi della flotta di traffico

Si definiscono le seguenti grandezze, utili successivamente per il paragrafo 4.2.3:

- P_i che è la percentuale di presenza del gruppo d'assi di tipo i che si ha all'interno della distribuzione;
- P_{ij} che è la percentuale di presenza del gruppo d'assi di tipo i, avente un carico j che si ha all'interno della distribuzione.

4.2.3 Calcolo del numero di assi standard di progetto

Una volta che si conosce il numero totale di gruppi d'assi, come spiegato nel paragrafo 4.2.1, lo si deve trasformare in assi standard, per ottenere la giusta unità di misura al fine di svolgere i successivi calcoli riguardanti il progetto strutturale della pavimentazione.

Quindi bisogna calcolare il fattore del gruppo d'assi che può essere definito come il numero di assi standard che in media sono presenti in un gruppo d'assi ed è esprimibile con la seguente formulazione.

$$ESA/HVAG = \sum_{gll\ i} \left[P_i \cdot P_{ij} \cdot \left(\frac{L_{ij}}{SL_i} \right)^4 \right]$$

dove:

- SL_i è il carico standard per il gruppo d'assi di tipo i, dato dalla tabella 7.7 e 7.8 della normativa.

Infine si determina il numero totale di assi standard di progetto

$$DESA = N_{DT} \cdot ESA/HVAG$$

Capitolo 5: Calcoli e risultati

5.1 SAMDM (South Africa Mechanistic-empirical Design Method)

In questo paragrafo vengono sviluppati i calcoli riguardanti la tipologia di pavimentazione GG caratterizzata da:

- conglomerato bituminoso avente spessore di 200 millimetri;
- strato di fondazione avente spessore di 200 millimetri;
- sottofondo avente un'estensione semi-infinita.

Per tutte le altre casistiche le procedure di calcolo e le variabili da considerare sono le stesse, a parte qualche caso particolare che si proverà a descrivere.

Si usa il software BISAR per la determinazione delle tensioni, deformazioni e spostamenti sia per la fase 1 che per la fase 2

5.1.1 Le funzioni di trasferimento

Nel conglomerato bituminoso, per il calcolo dei coefficienti α e β è stata fatta una interpolazione lineare per ottenere i relativi valori per il modulo elastico di 2500 MPa.

Lo shift factor verrà sempre calcolato con la formula della tabella 28 del manuale in quanto lo spessore del conglomerato supera sempre i 25 mm di spessore. A questo, ne viene aggiunto uno ulteriore pari a 1,1 per tener conto della presenza degli additivi polimerici che sono stati inseriti nella miscela al fine di migliorare la resistenza a fatica del materiale.

Nella tabella seguente sono mostrati i risultati.

α	15,94
β	3,346
SF	9,56; 1,10
ε_t [microstrain]	87
N_f	$5,24 \cdot 10^7$

Tabella 5.1 Calcoli conglomerato bituminoso (fase 1)

Nella fase 2 si sono svolti gli stessi calcoli, ma cambia solo la risposta strutturale della pavimentazione in termini di deformazioni che sono misurate nelle stesse posizioni della fase 1

α	15,94	
β	3,346	
SF	9,56; 1,10	
ε_t [microstrain]	111	
N_f	$1,65 \cdot 10^7$	

Tabella 5.2 Calcoli conglomerato bituminoso (fase 2)

Ora si tratta il caso particolare in cui lo spessore del pacchetto bituminoso sia di 50 mm. Cambieranno soltanto i coefficienti α e β presi sempre dalla tabella 28 del manuale. Si analizza sempre la pavimentazione GG.

Per il tunnel si userà una miscela con una granulometria continua, ossia con un numero inferiore possibile di vuoti. Questo perché, in caso di incidente, la pavimentazione potrebbe trattenere gas infiammabili e tossici, rendendo più difficili le operazioni di soccorso e di successiva pulizia del manto stradale [10]. (Austroads 3.15.4)

α	17,4	
β	3,4	
SF	2,22; 1,10	
ε_t [microstrain]	178	
N_f	$1,86 \cdot 10^6$	

 N_f 1,86 · 10⁶ Tabella 5.3 Calcoli conglomerato bituminoso (fase 1), caso particolare

Nella fase 2 si sono svolti gli stessi calcoli, ma cambia solo la risposta strutturale della pavimentazione in termini di deformazioni che sono misurate nelle stesse posizioni della fase 1

α	17,4
β	3,4
SF	2,22; 1,10
ε_t [microstrain]	310
N_f	$1,09 \cdot 10^{5}$

Tabella 5.4 Calcoli conglomerato bituminoso (fase 2), caso particolare

Nella tabella seguente sono mostrati i risultati per lo strato di fondazione

С	6,72
d	7,49
SF	1,89
ε_t [microstrain]	11,3
N_{eff}	$8,45 \cdot 10^6$

Tabella 5.5 Calcoli fondazione (fase 1)

Nella fase 2 si deve calcolare il coefficiente F (stress ratio), che dipende dal tipo di materiale che si può ricavare dalla figura 3.9, dalle condizioni ambientali a cui è soggetta la pavimentazione e dallo stato tensionale misurato sotto la ruota e tra le due. Nel nostro caso, si usa la condizione di ambiente secco in quanto all'interno del tunnel non possono avvenire precipitazioni, al massimo solo agli imbocchi.

Inoltre cambia la risposta strutturale della pavimentazione e nella tabella seguente vengono mostrati i risultati.

Φ_{term}	3,37
C_{term}	120
σ_1 [kPa]	75,47
σ_3 [kPa]	18,26
F	3,17
α	2,605122
β	3,480098
N	$5,58 \cdot 10^{11}$

Tabella 5.6 Calcoli fondazione (fase 2)

Le tensioni principali riportate nella tabella precedente sono la coppia che mi porta a minimizzare il valore di F.

Nella tabella seguente sono mostrati i risultati per lo strato di sottofondo

a	33,3
$\varepsilon_{v,top}$ [microstrain]	58,08
N_{pd}	$4,57 \cdot 10^{15}$

Tabella 5.7 Calcoli sottofondo (fase 1)

Nella fase 2 si sono svolti gli stessi calcoli ma cambia la risposta strutturale della pavimentazione in termini di deformazioni che sono misurate nelle stesse posizioni della fase 1.

a	33,3	
$\varepsilon_{v,top}$ [microstrain]	61,48	
N_{pd}	$2,59 \cdot 10^{15}$	

Tabella 5.8 Calcoli sottofondo (fase 2)

5.1.2 Combinazione tra fase 1 e fase 2.

Ora siamo nell'ultimo caso spiegato nel paragrafo 3.1.2

	Fase 1	Fase 2
Conglomerato	$5,24 \cdot 10^7$	$1,65 \cdot 10^7$
Fondazione	$8,45 \cdot 10^6$	$5,58 \cdot 10^{11}$
Sottofondo	$4,57 \cdot 10^{15}$	$2,59 \cdot 10^{15}$
R_{11}	$4,4 \cdot 10^7$	
F_1	3,17	
AR_1	$1,39 \cdot 10^7$	
Vita della pavimentazione	$2,23 \cdot 10^7$	

Tabella 5.9 Vita ultima della pavimentazione (I caso)

Riprendendo il caso particolare spiegato nel paragrafo 5.1.1, si può applicare una differente regola di combinazione perché la vita del conglomerato nella fase 2 o nella fase 1 è minore o maggiore rispettivamente, della vita della fondazione. Ciò è spiegato nella prima parte del paragrafo 3.1.2. Quindi si calcola:

	Fase 1	Fase 2
Conglomerato	1,86E+06	1,09E+05
Fondazione	7,52E+06	2,54E+06
Sottofondo	2,85E+12	7,00E+11
R_{11}	0	
R_{21}	5,66E+06	
R_{31}	2,85E+12	
F_1	17,17	
F_2	2,96	
F_3	4,07	
AR_1	0	
AR_2	1,91E+06	
AR_3	7,00E+11	
L_1	1,86E+06	
L_2	9,43E+06	
L_3	3,55E+12	
Vita della pavimentazione	1,86E+06	
D 1 11 # 10 TTL 1.1 1.1		. /TT

Tabella 5.10 Vita ultima della pavimentazione (II caso)

I calcoli relativi alle altre combinazioni di spessori e alle altre pavimentazioni, sono riportati nell'allegato A.

5.1.3 Traffico

Per il calcolo di E80/VP, applicando ciò che è descritto nella figura 4.1, si ottiene:

Tipo	E80/asse1	E80/asse2	E80/asse3	E80/asse4	E80/asse5	E80/VP	N° VP	M.P.E80/VP
3	1,0	1,0				2,0	13811	0,03
5	0,1	1,0	1,0			2,1	593067	1,5
6	0,3	2,4	2,4			5,2	143798	0,92
7	0,1	1,6	1,0	1,0		3,7	18686	0,08
8	0,3	2,4	2,4	2,4		7,6	18686	0,18
9	0,1	1,0	1,0	1,0	1,0	4,1	2437	0,01
16	0,2	1,0				1,2	22748	0,03
							813233	<u>2,76</u>

Tabella 5.11 Il fattore dei veicoli pesanti.

Per il calcolo del traffico cumulato anno per anno (ET), si ipotizza che con il passare degli anni, si incrementino solo i volumi di traffico, mentre i carichi portati da questi si mantengano costanti \rightarrow v=0 \rightarrow i=h. Si effettuano i seguenti calcoli:

i [%]	3,8
ADE [VP/g/corsia]	3076
AADE _s [VP/g/corsia]	3076
AADE _o [VP/g/corsia]	3193

Tabella 5.12 Traffico giornaliero medio annuo

Infine si calcola il numero di assi standard che transitano anno per anno.

Anno	ET	ET/anno
1	9,67E+05	9,67E+05
2	1,97E+06	1,00E+06
3	3,01E+06	1,04E+06
4	4,09E+06	1,08E+06
5	5,22E+06	1,12E+06
6	6,38E+06	1,16E+06
7	7,59E+06	1,21E+06
8	8,84E+06	1,25E+06
9	1,01E+07	1,30E+06
10	1,15E+07	1,35E+06
11	1,29E+07	1,40E+06
12	1,44E+07	1,45E+06
13	1,59E+07	1,51E+06
14	1,74E+07	1,57E+06
15	1,91E+07	1,63E+06
16	2,07E+07	1,69E+06
17	2,25E+07	1,75E+06
18	2,43E+07	1,82E+06
19	2,62E+07	1,89E+06
20	2,82E+07	1,96E+06
		2,82E+07

Tabella 5.13 Traffico equivalente in assi standard

5.1.4 Approccio cumulato

In questo tipo di analisi si esprime l'evoluzione del danno con il passare degli anni che si ha separatamente sullo strato di conglomerato bituminoso e sulla fondazione. I risultati ottenuti, dovranno coincidere con quelli che si ricavano con la regola di combinazione studiata nel paragrafo 5.1.2.

Dai calcoli esposti nel paragrafo 5.1.1 è possibili ricavare i risultati raggruppati nella tabella seguente

Conglomerato bituminoso		Fondazione	
Fase 1 Fase 2		Fase 1	Fase 2
N_{fat1}	N_{fat2}	N_{eff}	N_a
$5,24 \cdot 10^7$	$1,65 \cdot 10^7$	$8,45 \cdot 10^6$	$5,58 \cdot 10^{11}$

Tabella 5.14 Risultati del paragrafo 5.1.1

Quindi conoscendo i valori riportati nella tabella 5.14, è possibile calcolare il danno che accumula nel tempo la pavimentazione con la legge di Miner espressa nella formula seguente

$$D = \frac{N}{N_{tf}}$$

dove:

- N è il numero di carichi che si hanno all'interno di un anno
- N_{tf} è il numero di carichi che lo strato sopporta nella fase 1 o nella fase 2 Si ottengono i seguenti risultati

	1	T	T
	Anni	Danno fondazione	Danno conglomerato
Fase 1	1	0,11	0,02
	2	0,23	0,04
	3	0,36	0,06
	4	0,48	0,08
	5	0,62	0,10
	6	0,75	0,12
	7	0,90	0,14
Fase 2	7,8	1,00	0,16
	8	0,000001	0,18
	9	0,000003	0,26
	10	0,000005	0,35
	11	0,000008	0,43
	12	0,000011	0,52
	13	0,000013	0,61
	14	0,000016	0,70
	15	0,000019	0,80
	16	0,000022	0,90
	16,8	0,000025	1,00

Tabella 5.15 Risultati dell'approccio cumulato

Come si può notare dalla tabella, una volta che la fondazione passa alla fase 2, il conteggio del danno riprende da 0, mentre per il conglomerato bituminoso l'accumulo del danno continua in quanto il suo comportamento varia solo in funzione della fondazione, senza nessun cambiamento nel modulo elastico. Andando a diagrammare i risultati si ottiene:

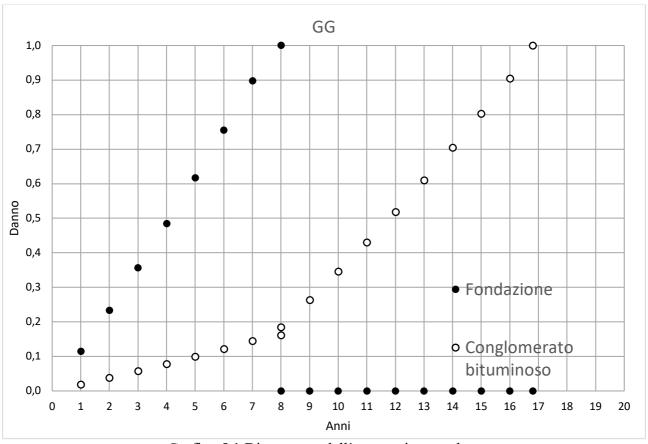


Grafico 5.1 Diagramma dell'approccio cumulato

Si possono notare dei cambi di pendenza dovuti al fatto che si ha una variazione di comportamento della fondazione, precisamente nel suo modulo elastico che riducendosi porta ad una pendenza maggiore.

I restanti risultati sono riportati nell'allegato B.

5.1.5 Risultati finali

Quello che otteniamo è che la pavimentazione può resistere, prima che si abbia un conglomerato fessurato per il 95% della superficie (affidabilità), a 2,23 · 10⁷ assi standard di 80 kN.

Si nota che tale numero è inferiore al traffico totale che si ha nei 20 anni previsti, come calcolato nel paragrafo 5.1.3, quindi la soluzione scelta non è quella ottimale.

Se si applicano gli stessi calcoli per tutte le varie combinazioni di pavimentazione si ottengono i risultati seguenti.

GG			
Spessore conglomerato [mm]	Spessore fondazione [mm]	ESA	
50	200	1,86E+06	
50	300	1,78E+06	
50	400	1,81E+06	
100	200	1,30E+06	
100	300	1,16E+06	
100	400	1,12E+06	
150	200	8,32E+06	
150	300	7,57E+06	
150	400	7,12E+06	
200	200	2,23E+07	
200	300	2,49E+07	
200	400	3,58E+07	

Tabella 5.16 Risultati pavimentazione GG

CG		
Spessore Conglomerato [mm]	Spessore Fondazione [mm]	ESA
50	200	7,29E+06
50	300	1,46E+07
50	400	2,98E+07
100	200	7,38E+06
100	300	1,47E+07
100	400	2,55E+07
150	200	1,42E+07
150	300	2,06E+07
150	400	3,50E+07
200	200	5,42E+07
200	300	5,40E+07
200	400	6,55E+07

Tabella 5.17 Risultati pavimentazione CG

CS		
Spessore Conglomerato [mm]	Spessore Fondazione [mm]	ESA
50	200	8,04E+05
50	300	3,85E+06
50	400	1,19E+07
100	200	1,84E+06
100	300	5,23E+06
100	400	1,38E+07
150	200	5,91E+06
150	300	1,06E+07
150	400	2,04E+07
200	200	2,47E+07
200	300	3,33E+07
200	400	4,60E+07

Tabella 5.18 Risultati pavimentazione CS

In tutte le casistiche, lo strato critico è sempre il conglomerato bituminoso, eccetto che nella pavimentazione CS per le combinazioni di spessori 50-200 mm e 50-300 mm. Quindi le performance delle pavimentazioni sono sfruttate al massimo. In nessuno dei casi risulta critico il danno delle deformazioni permanenti. Quindi può essere utile soltanto fare delle attività di manutenzione solo per gli strati di usura.

Nelle tabelle precedenti sono evidenziati in grassetto le pavimentazioni che sopportano il traffico ricavato al paragrafo 5.1.3.

Se si vanno a confrontare le pavimentazioni più resistenti, si nota che il numero più alto di passaggi lo si ottiene dalla pavimentazione CG, seguita, nell'ordine dalla CS e poi GG.

Come risultato finale, si consiglia di adottare la pavimentazione CG, avente coppia di spessori 200-200 mm, per il tunnel del Fréjus. Il motivo non è solo la resistenza al numero di passaggi previsto all'interno del periodo di analisi del tunnel, ma anche per modalità operative di posa in opera del sottofondo, che ricordiamo ha caratteristiche auto-compattanti ed auto-livellanti, per la migliore conduttività termica e per la possibilità di usare materiali provenienti da prodotti di riciclo. Grazie a ciò sarà possibile ridurre l'uso di materiali vergini, quindi abbatterne i costi di produzione, e la quantità di materiali da conferire in discarica rendendo il ciclo di vita della pavimentazione meno impattante sull'ambiente. Tutto ciò verrà trattato successivamente nella Parte 2 del presente lavoro di tesi. Inoltre lo spessore totale coincide con quello scelto in fase di progettazione.

Andando a vedere i grafici che si trovano nella versione del 2012 della normativa australiana, si nota che in generale, all'aumentare dello spessore della pavimentazione, il traffico che può transitare aumenta. Tuttavia, se si diagramma il numero di carichi in funzione dello spessore della pavimentazione si ottengono i seguenti risultati.

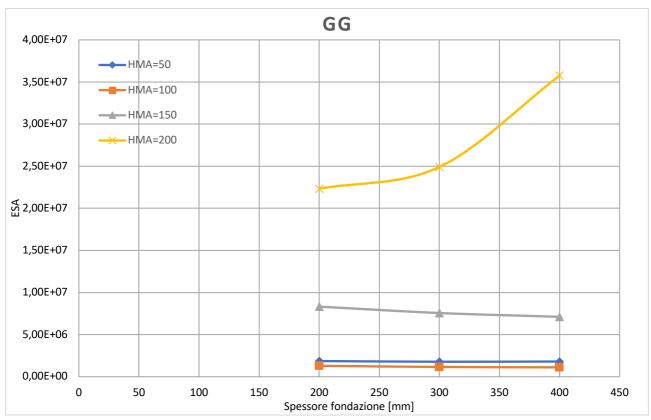


Grafico 5.2 ESA vs spessore fondazione (GG)

Per la pavimentazione avente due strati di GEOMIX, gli andamenti degli ESA sono tutti decrescenti all'aumentare dello spessore, a parte il caso del conglomerato bituminoso di 50 mm che presenta una configurazione ad "U" e di quello di 200 mm in cui l'andamento è crescente. Per il primo tipo di trend il motivo può essere il fatto che all'aumentare dello spessore globale della pavimentazione, l'effetto del sottofondo, a cui è associato un modulo elastico elevato pari a 1000 MPa, abbia un effetto sempre minore sul supporto al carico perché si allontana sempre di più da quest'ultimo. Nel trend ad "U", si ha un comportamento misto. Nella prima parte come quello spiegato precedentemente, mentre nella seconda quello ipotizzato dalla normativa australiana.

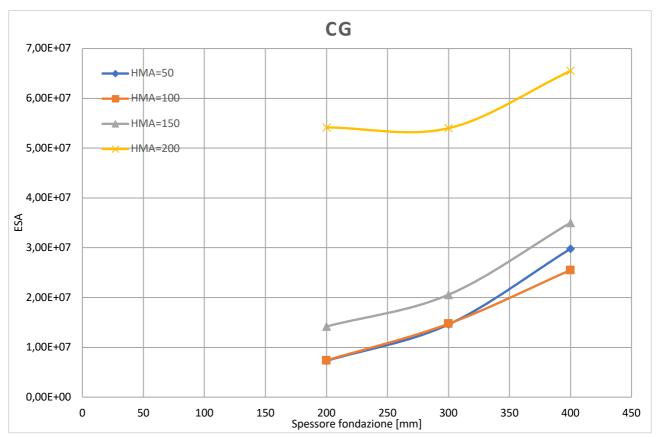


Grafico 5.3 ESA vs spessore fondazione (CG)

Per la pavimentazione avente il misto cementato e uno strato di GEOMIX gli andamenti sono quelli ipotizzati eccetto per la struttura con un conglomerato bituminoso di 200 mm, in cui all'aumentare dello spessore globale della pavimentazione, l'effetto del sottofondo, a cui è associato un modulo elastico elevato pari a 1000 MPa, abbia un effetto sempre minore sul supporto al carico perché si allontana sempre di più da quest'ultimo.

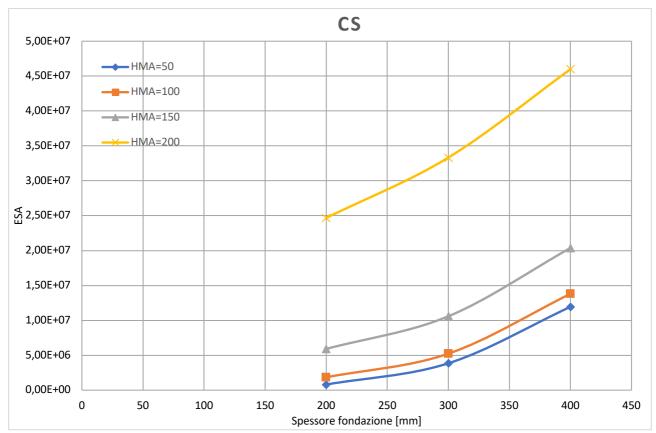


Grafico 5.4 ESA vs spessore fondazione (CS)

Per la classica soluzione di pavimentazione semi-rigida, tutti i trend sono coerenti con le supposizioni iniziali.

5.2 Austroads

In questo paragrafo vengono sviluppati i calcoli riguardanti la tipologia di pavimentazione GG caratterizzata da:

- conglomerato bituminoso avente spessore di 200 millimetri;
- strato di fondazione avente spessore di 200 millimetri;
- sottofondo avente un'estensione semi-infinita.

Per tutte le altre casistiche le procedure di calcolo e le variabili da considerare sono le stesse, a parte qualche caso particolare che si proverà a descrivere.

Si usa il software BISAR per la determinazione delle tensioni, deformazioni e spostamenti sia per la fase 1 (pre-cracking) che per la fase 2 (post-cracking) perché il conglomerato ha uno spessore superiore ai 175 mm.

5.2.1 Traffico

Dalla figura 2.4 è noto il numero di veicoli pesanti che transita in entrambe le direzioni nell'arco di un anno, ed è pari a 813233. Di conseguenza, ipotizzando un fattore di direzione pari allo 0,5, si arriva a 406617 veicoli pesanti che si muoveranno sul nuovo tunnel. Tale risultato è valido per il 2018 e per riportare tale dato al 2020 (anno in cui si ipotizza l'apertura del tunnel), basta usare il fattore di crescita, ottenendo 421979 veicoli pesanti.

Per quanto riguarda la capacità del tunnel, valutata in veicoli leggeri, si può fare la seguente analisi

Lunghezza [m]	13000
d _{min} [m]	160

k [pc/km/ln]	6,3
Veicoli totali	81
V [km/h]	70
q [pc/h/ln]	438

Tabella 5.19 Calcolo capacità veicoli leggeri

Per trasformare tale quantità in veicoli pesanti all'ora per corsia e infine all'anno per corsia si applica la seguente procedura. Inizialmente bisogna ricavare il coefficiente E_{HV} , associando a ciascuna tipologia di veicolo l'equivalente classe della normativa australiana.

CNR 178	Austroads
3	3
5	4
6	4
7	5
8	5
9	8
10	8
16	3

Tabella 5.20 Trasformazione di classe

Quindi si fa una media pesata in cui i pesi sono le percentuali di presenza di ciascun tipo di veicolo all'interno della flotta e si ottiene la classe numero quattro che porta ad un $E_{HV} = 2$

C _{pce} [pce/h/ln]	307
C_{HV} [HV/h/ln]	92
$C_{HV} \cdot 8760 [HV/y/ln]$	802193

Tabella 5.21 Calcolo capacità veicoli pesanti

Ora si calcola il numero totale di veicoli pesanti all'interno del periodo di analisi

Anno	VP
1	421979
2	437921
3	454466
4	471637
5	489455
6	507947
7	527138
8	547054
9	567722
10	589171
11	611430
12	634530
13	658503
14	683382
15	709201
16	735995
17	763801
18	792658
19	802193
20	802193
NHV	1,22E+07

Tabella 5.22 Numero totale di veicoli pesanti

Si può notare che all'anno 19 si arriva alla completa saturazione del tunnel con possibilità di formazione di code nei piazzali d'ingresso.

Grazie alla tabella 2.1 si individua il numero di gruppi d'asse in ciascuna tipologia di veicolo e successivamente si fa una media pesata in cui i pesi sono le percentuali di presenza di ciascun tipo di mezzo nella flotta di traffico. Si otterrà una media di 2 gruppi d'asse e combinandola con il risultato finale della tabella 5.22 è possibile ottenere il numero totale di gruppi d'assi pari a 2,56E+07

In questo paragrafo è necessario dichiarare che tutti gli assi del traffico sono composti da quattro ruote in quanto, come si vedrà successivamente, tale ipotesi porta ad un valore plausibile di ESA/HVAG e ad utilizzare un minor numero di dati di input.

Prima di tutto si deve compiere un'analisi dei dati di traffico determinando il numero di veicoli pesanti che si hanno in un anno qualsiasi in cui si sono realizzati i conteggi, disgregando i risultati per tipologia di mezzo (come si vede dalla figura 2.5). Da qui è possibile determinare il numero totale di gruppi d'asse e disgregare ulteriormente questa grandezza nei vari tipi di gruppi d'asse (singoli, doppi).

CNR 178	VP nel 2020	numero totale di gruppi d'asse	Assi singoli	Assi doppi
3	7174	14347	14347	0
5	308045	616089	308045	308045
6	74690	149380	74690	74690
7	9706	38822	38822	0
8	9706	38822	38822	0
9	1266	3798	1266	2532
16	11815	23631	23631	0
	Totali	884889	499623	385267

Tabella 5.23 Informazioni per la distribuzione dei carichi

Infine si arriva alla distribuzione dei carichi

Carico dell'asse [kN]	SADT	TADT
40	0,65	
50	0,02	
60	0,19	
80	0,08	
90	0,02	
100	0,06	
160		0,81
200		0,19
Totali	1,02	1,00
P_i	0,56	0,44

Tabella 5.24 Determinazione di P_{ij}

Ora si utilizza la legge di potenza (power law) per ogni carico di ogni tipo di gruppo d'assi e l'ipotesi fatta al paragrafo precedente permette di usare un fattore SL pari a 80 kN.

Carico [kN]	SADT	TADT
40	0,06	
50	0,15	
60	0,32	
80	1,00	
90	1,60	
100	2,44	
160		1,97
200		4,82

Tabella 5.25 ESA

Si calcola ESA/HVAG

Carico [kN]	SADT	TADT
40	0,023	
50	0,002	
60	0,034	
80	0,043	
90	0,018	
100	0,080	
160		0,693
200		0,407
ESA/HVAG	1,3	30

Tabella 5.26 Calcolo del fattore del gruppo d'assi

Da ciò si determina il numero totale di assi standard di progetto

$$DESA = 3.32 \cdot 10^7$$

5.2.2 Le funzioni di trasferimento

È importante avere informazioni sulle proprietà volumetriche della miscela del conglomerato bituminoso, in particolare sul volume di bitume, proprietà fondamentale per la funzione di trasferimento. Questo valore viene posto pari a 11,1 [%].

Quindi si procede a determinare il numero ammissibile di passaggi che ogni carico di ciascun tipo di asse gruppo può imporre sulla pavimentazione. Questi sono i risultati.

SADT			N_{ij}		
Carico [kN]	Assi nel gruppo	Deformazioni critiche [microstrain]	Numeratore	Denominatore	Finale
40	1	48,2	73203,51	806,28	6,17E+09
50	1	60,3	73203,51	1007,85	2,02E+09
60	1	72,3	73203,51	1209,42	8,12E+08
80	1	96,4	73203,51	1612,56	1,93E+08
90	1	108,5	73203,51	1814,13	1,07E+08
100	1	120,6	73203,51	2015,70	6,32E+07

Tabella 5.27 Numero passaggi ammissibili conglomerato per asse singolo (fase 1)

TADT				N_{ij}	
Carico [kN]	Assi nel gruppo	Deformazioni critiche [microstrain]	Numeratore	Denominatore	Finale
160	2	96,4	73203,51	1612,56	9,64E+07
200	2	120,6	73203,51	2015,7	3,16E+07

Tabella 5.28 Numero passaggi ammissibili conglomerato per asse doppio (fase 1)

Stessa procedura di calcolo per quanto riguarda la seconda fase da considerare in quanto lo spessore del conglomerato bituminoso è superiore ai 175 mm. L'unica cosa che cambia è la risposta strutturale della pavimentazione poiché ho una riduzione del modulo elastico della fondazione.

SADT				N_{ij}	
Carico [kN]	Assi nel gruppo	Deformazioni critiche [microstrain]	Numeratore	Denominatore	Finale
40	1	61,0	73203,51	1019,14	1,91E+09
50	1	76,2	73203,51	1273,92	6,27E+08
60	1	91,4	73203,51	1528,70	2,52E+08
80	1	121,9	73203,51	2038,27	5,98E+07
90	1	137,1	73203,51	2293,06	3,32E+07
100	1	152,4	73203,51	2547,84	1,96E+07

Tabella 5.29 Numero passaggi ammissibili conglomerato per asse singolo (fase 2)

TADT				N_{ij}	
Carico [kN]	Assi nel gruppo	Deformazioni critiche [microstrain]	Numeratore	Denominatore	Finale
160	2	121,9	73203,5088	2038,27186	2,99E+07
200	2	152,4	73203,5088	2547,839825	9,79E+06

Tabella 5.30 Numero passaggi ammissibili conglomerato per asse doppio (fase 2)

In questo caso, per lo strato di fondazione, un parametro molto importante è la costante K.

$$K = k \cdot SF$$

Partendo dall'equazione 10 del paragrafo 6.4.6 della normativa, che rappresenta l'espressione della fatica in servizio della pavimentazione, differente da quella che proviene da indagini di laboratorio, si ha

$$N = RF \cdot \left(\frac{K}{\mu\varepsilon}\right)^{12} = 1 \cdot 1,55^{12} \cdot \left(\frac{k}{\mu\varepsilon}\right)^{12}$$

Se a tale formulazione si sostituiscono dei valori tipici da indagini di laboratorio fatti su provini cilindrici di calcestruzzo si ricava

$$10^6 = 1,55^{12} \cdot \left(\frac{k}{80}\right)^{12}$$

e si ottiene k = 163

Quindi si procede a determinare il numero ammissibile di passaggi che ogni carico di ciascun tipo di gruppo d'assi può imporre sulla pavimentazione. Questi sono i risultati.

SADT			
Carico [kN]	Assi nel gruppo	Deformazioni critiche [microstrain]	N_{ij}
40	1	5,9	1,82E+17
50	1	7,4	1,25E+16
60	1	8,9	1,41E+15
80	1	11,9	4,45E+13
90	1	13,4	1,08E+13
100	1	14,9	3,06E+12

Tabella 5.31 Numero passaggi ammissibili fondazione per asse singolo (fase 1)

TADT			
Carico [kN]	Assi nel gruppo	Deformazioni critiche [microstrain]	N_{ij}
160	2	11,9	2,23E+13
200	2	14,9	1,53E+12

Tabella 5.32 Numero passaggi ammissibili fondazione per asse doppio (fase 1)

Si ricorda che nella normativa non si prevede di fare tali calcoli anche per la fase 2. Dalla tabella 5.27 alla 5.32, si nota che con l'aumentare della deformazione critica il numero di passaggi ammissibili per quel carico ovviamente diminuisce.

Per lo strato di sottofondo, si ottengono i seguenti risultati, rispettivamente per la fase 1 e la fase 2

N_{1stS}	1,82E+15
N_{2ndS}	1,24E+15

Tabella 5.33 Numero passaggi ammissibili sottofondo (fase 1/fase 2)

5.2.3 Combinazione tra fase 1 e fase 2

Come primo passo sarà necessario legare i passaggi ammissibili, ottenuti tramite le funzioni di trasferimento con il concetto di danno. Per fare ciò, è necessario individuare, per ciascun carico di ciascun gruppo d'assi, il numero di passaggi che ci aspettiamo (e_{ij}) , in base alle informazioni sulla distribuzione dei carichi che abbiamo nella tabella 5.24 e sul numero dei gruppi d'assi ricavati nel paragrafo 5.2.1.

Questi sono i risultati, ottenuti usando la seguente relazione

$$e_{ij} = P_{ij} \cdot P_i \cdot N_{DT}$$

SADT				
Carico [kN]	P_{ij}	P_i	N_{DT}	e_{ij}
40	0,65	0,56	2,56E+07	9,43E+06
50	0,02	0,56	2,56E+07	3,41E+05
60	0,19	0,56	2,56E+07	2,78E+06
80	0,08	0,56	2,56E+07	1,11E+06
90	0,02	0,56	2,56E+07	2,81E+05
100	0,06	0,56	2,56E+07	8,42E+05

Tabella 5.34 Numero di passaggi aspettati per asse singolo

TADT				
Carico [kN]	P_{ij}	P_i	N_{DT}	e_{ij}
160	0,81	0,44	2,56E+07	8,98E+06
200	0,19	0,44	2,56E+07	2,16E+06

Tabella 5.35 Numero di passaggi aspettati per asse doppio

Ora è possibile calcolare il danno per ogni carico di ogni gruppo d'assi usando la seguente relazione.

$$d_{ij} = \frac{e_{ij}}{N_{ij}}$$

dove:

- d_{ij} è il danno causato dall'i-esimo gruppo d'assi avente un carico j-esimo;
- e_{ij} è il numero di passaggi che ci aspettiamo dal gruppo d'assi i-esimo avente il carico j-esimo;
- N_{ij} è il numero di passaggi ammissibile per il j-esimo gruppo d'assi avente il carico i-esimo.

SADT			
Carico [kN]	e_{ij}	N_{ij}	d_{ij}
40	9,43E+06	6,17E+09	1,53E-03
50	3,41E+05	2,02E+09	1,69E-04
60	2,78E+06	8,12E+08	3,42E-03
80	1,11E+06	1,93E+08	5,76E-03
90	2,81E+05	1,07E+08	2,62E-03
100	8,42E+05	6,32E+07	1,33E-02
TADT			
160	8,98E+06	9,64E+07	9,31E-02
200	2,16E+06	3,16E+07	6,83E-02
		Danno totale	1,88E-01

Tabella 5.36 Danno valutato per lo strato di conglomerato (fase 1)

SADT			
Carico [kN]	e_{ij}	N_{ij}	d_{ij}
40	9,43E+06	1,91E+09	4,93E-03
50	3,41E+05	6,27E+08	5,45E-04
60	2,78E+06	2,52E+08	1,10E-02
80	1,11E+06	5,98E+07	1,86E-02
90	2,81E+05	3,32E+07	8,46E-03
100	8,42E+05	1,96E+07	4,30E-02
TADT			
160	8,98E+06	2,99E+07	3,00E-01
200	2,16E+06	9,79E+06	2,21E-01
		Danno totale	3,87E-01

Tabella 5.37 Danno valutato per lo strato di conglomerato (fase 2)

SADT			
Carico [kN]	e_{ij}	N_{ij}	d_{ij}
40	9,43E+06	1,82E+17	5,17118E-11
50	3,41E+05	1,25E+16	2,72576E-11
60	2,78E+06	1,41E+15	1,97897E-09
80	1,11E+06	4,45E+13	2,49351E-08
90	2,81E+05	1,08E+13	2,59017E-08
100	8,42E+05	3,06E+12	2,75131E-07
TADT			
160	8,98E+06	2,23E+13	4,03346E-07
200	2,16E+06	1,53E+12	1,41154E-06
		Danno totale	2,14291E-06

Tabella 5.38 Danno valutato per lo strato di fondazione (fase 1)

Ora si può applicare la regola di combinazione spiegata nel paragrafo 3.2.2, calcolando il numero di assi standard necessari affinché gli strati arrivino a manifestare il danno della fatica oppure delle deformazioni permanenti tramite la seguente formula

$$A_{ESA} = \frac{N_{DT} \cdot ESA/HVAG}{D}$$

dove

- A_{ESA} è il numero di assi standard ammissibili per lo strato di conglomerato o di fondazione;
- N_{DT} è il numero totale di assi gruppo durante il periodo di analisi;
- D è il danno totale che si è calcolato per tutti gli strati;
- ESA/HVAG è il fattore del gruppo d'assi.

Questi sono i risultati

N_{1stA}	1,77E+08
N_C	1,55E+13
N_{2ndA}	8,59E+07
N_S	1,25E+15
N_A	No calcolo

Tabella 5.39 Combinazione 1

Come si può notare non è stato possibile effettuare il calcolo per la vita a fatica del conglomerato a causa delle restrizioni spiegate nel paragrafo 3.2.2. Quindi in questo caso per la vita ultima della pavimentazione sarà necessario prendere il minore tra N_{1stA} e N_C .

In questo caso risulta evidente che lo strato critico è il conglomerato bituminoso.

Si analizza il seguente caso particolare: combinazione di spessori 200-200, ma pavimentazione di tipo CS. Ora è possibile svolgere il completo calcolo come si vede nella tabella seguente

N_{1stA}	8,04E+08	
N_C	9,42E+02	
N_{2ndA}	7,68E+07	
N_S	3,86E+11	
N_A	7,68E+07	

Tabella 5.40 Combinazione 2

È necessario considerare il minimo tra gli ultimi due valori.

Si analizza il caso particolare in cui le pavimentazioni hanno uno spessore del conglomerato bituminoso inferiore ai 175 mm. In questo caso, si ha solo la fase 1 e, poiché non si applica la regola di combinazione, è sufficiente prendere il valore minimo dei carichi ammissibili. L'esempio riportato è quello per la pavimentazione GG con gli spessori di 150 mm e 200 mm rispettivamente per il conglomerato e la fondazione.

SADT					
Carico [kN]	Assi in gruppo	Deformazioni critiche [microstrain]	N_{ij}	e_{ij}	d_{ij}
40	1	69,1	1,02E+09	9,43E+06	9,20E-03
50	1	86,3	3,36E+08	3,41E+05	1,02E-03
60	1	103,6	1,35E+08	2,78E+06	2,06E-02
80	1	138,1	3,20E+07	1,11E+06	3,47E-02
90	1	155,4	1,78E+07	2,81E+05	1,58E-02
100	1	172,6	1,05E+07	8,42E+05	8,02E-02
TADT					
160	2	138,1	1,60E+07	8,98E+06	5,61E-01
200	2	172,6	5,25E+06	2,16E+06	4,12E-01
				Danno totale	1,13E+00

Tabella 5.41 Numero passaggi ammissibili e danno conglomerato

SADT					
Carico [kN]	Assi in gruppo	Deformazioni critiche [microstrain]	N_{ij}	e_{ij}	d_{ij}
40	1	7,3	1,59E+16	9,43E+06	1,1E-07
50	1	9,1	1,09E+15	3,41E+05	2,9E-06
60	1	10,9	1,22E+14	2,78E+06	3,6E-07
80	1	14,6	3,88E+12	1,11E+06	9,0E-07
90	1	16,4	9,43E+11	2,81E+05	3,6E-06
100	1	18,2	2,66E+11	8,42E+05	1,2E-06
TAST					
160	2	14,56	1,94E+12	8,98E+06	4,6E-06
200	2	18,2	1,33E+11	2,16E+06	1,6E-05
				Danno totale	2,5E-05

Tabella 5.42 Numero passaggi ammissibili e danno fondazione

Alla fine tramite la funzione di trasferimento del sottofondo e l'equazione di A_{ESA} per il conglomerato e la fondazione è possibile ricavare i seguenti risultati.

N_{1stA}	2,93E+07
N_C	1,35E+12
N_{1stS}	3,75E+14

Tabella 5.43 Risultati finali

Per ricavare la vita ultima della pavimentazione, dalla tabella precedente basterà considerare il valore minimo.

I calcoli relativi alle altre combinazioni di spessori e alle altre pavimentazioni, sono riportati nell'allegato C.

5.2.4 Approccio cumulato

In questo tipo di analisi si vuole andare ad esprimere l'evoluzione del danno con il passare degli anni che si ha separatamente sullo strato di conglomerato bituminoso e sulla fondazione. I risultati ottenuti, dovranno coincidere con quelli che si ricavano con la regola di combinazione studiata nel paragrafo 5.2.3.

Nel caso in cui lo spessore del conglomerato bituminoso sia inferiore ai 175 mm, non si ha la presenza della fase 2, quindi una volta che uno degli strati ha raggiunto la condizione critica, si ottiene la vita ultima della pavimentazione.

Quindi considerando la pavimentazione GG con gli spessori di 150 mm e 200 mm rispettivamente per il conglomerato e la fondazione si ottengono i seguenti risultati

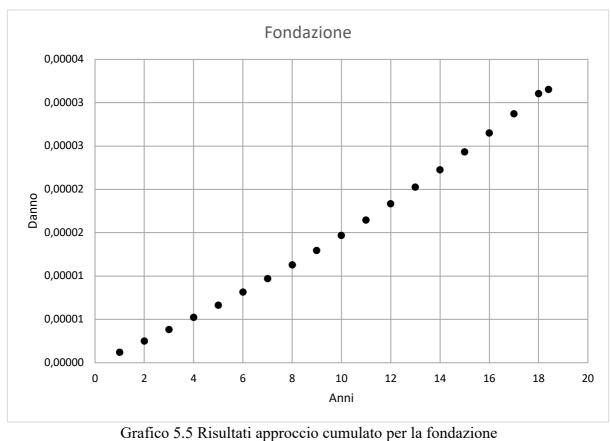

Conglomerato bituminoso	Fondazione
N_{1stA}	N_C
2,93E+07	1,35E+12

Tabella 5.44 Risultati della tabella 5.43

Usando la regola di Miner esplicata nel paragrafo 5.1.4 si ottengono i seguenti risultati

Anni	Danno fondazione	Danno conglomerato
1	0,000001	0,04
2	0,000003	0,08
3	0,000004	0,12
4	0,000005	0,17
5	0,000007	0,21
6	0,000008	0,26
7	0,000010	0,31
8	0,000011	0,36
9	0,000013	0,41
10	0,000015	0,47
11	0,000016	0,52
12	0,000018	0,58
13	0,000020	0,64
14	0,000022	0,71
15	0,000024	0,77
16	0,000027	0,84
17	0,000029	0,91
18	0,000031	0,98
18,4	0,000032	1,00

Tabella 5.45 Risultati dell'approccio cumulato

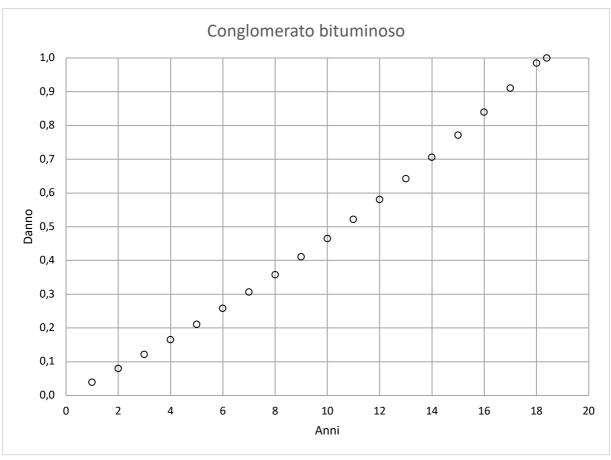


Grafico 5.6 Risultati per l'approccio cumulato del conglomerato bituminoso

La prima cosa da notare per quanto riguarda i due grafici è la differente scala dell'asse delle ordinate (è il motivo per cui si diagramma in due momenti separati gli andamenti) e si può notare che lo strato critico è il conglomerato. Inoltre non si hanno cambi di pendenza che rappresentano il passaggio dalla fase 1 alla fase 2.

Gli altri risultati sono riportati nell'allegato D.

5.2.5 Risultati finali

Quello che si ottiene è che la pavimentazione può resistere, prima che si abbia un conglomerato fessurato per il 95% della superficie (affidabilità), a $1,77 \cdot 10^8$ assi standard di 80 kN.

Si nota che tale numero è superiore al traffico totale che ho nei 20 anni previsti, come calcolato nel paragrafo 5.2.1, quindi la soluzione scelta può essere quella ottimale.

Se applico gli stessi calcoli per tute le varie combinazioni di pavimentazione si ottengono i risultati seguenti.

GG		
Spessore conglomerato [mm]	Spessore fondazione [mm]	ESA
50	200	1,09E+06
50	300	1,06E+06
50	400	1,07E+06
100	200	4,15E+06
100	300	3,76E+06
100	400	3,63E+06
150	200	2,93E+07
150	300	2,57E+07
150	400	2,43E+07
200	200	1,77E+08
200	300	1,51E+08
200	400	1,29E+07

Tabella 5.46 Risultati pavimentazione GG

CG		
Spessore conglomerato [mm]	Spessore fondazione [mm]	ESA
50	200	9,31E+07
50	300	9,44E+07
50	400	9,57E+07
100	200	7,45E+07
100	300	7,32E+07
100	400	7,32E+07
150	200	3,56E+08
150	300	3,46E+08
150	400	3,43E+08
200	200	1,77E+09
200	300	1,71E+09
200	400	1,69E+09

Tabella 5.47 Risultati pavimentazione CG

CS		
Spessore conglomerato [mm]	Spessore fondazione [mm]	ESA
50	200	1,05E-01
50	300	2,29E+01
50	400	2,34E+03
100	200	2,64E+00
100	300	3,86E+02
100	400	2,80E+04
150	200	5,69E+01
150	300	5,35E+03
150	400	2,75E+05
200	200	7,68E+07
200	300	9,11E+07
200	400	1,23E+07

Tabella 5.48 Risultati pavimentazione CS

In tutte le casistiche, lo strato critico è sempre il conglomerato bituminoso, eccetto che nella pavimentazione CS per le combinazioni di spessori dalla 50-200 mm alla 150-400 mm, ovvero quelle sezioni nelle quali non si considera la seconda fase. In nessuno dei casi risulta critico il danno delle deformazioni permanenti. Quindi per il tipo GG, CG e CS (con uno spessore del conglomerato di 200 mm) può essere utile fare delle attività di manutenzione solo per gli strati di usura. Per le altre pavimentazioni CS sarà anche necessario agire sulla fondazione, ma ciò tipicamente non viene mai fatto.

Nelle tabelle precedenti sono evidenziati in grassetto le pavimentazioni che sopportano il traffico ricavato al paragrafo 5.2.1.

Se si vanno a confrontare le pavimentazioni più resistenti, si nota che il numero più alto di passaggi lo si ottiene dalla pavimentazione CG, seguita, nell'ordine dalla GG e poi CS.

Come risultato finale, si può adottare la pavimentazione CG, avente coppia di spessori 200-200 mm, per il tunnel del Fréjus. La stessa conclusione la si ottiene usando il metodo sud africano. Tuttavia si può notare che possiamo anche usare una pavimentazione CG avente coppia di spessori di 100-300 mm perché resiste al traffico di progetto, inoltre si può ridurre lo spessore del conglomerato che rappresenta lo strato più costoso da mettere in opera. Tale soluzione è anche preferibile rispetto alla pavimentazione CS con spessori 200-200

Andando a vedere i grafici che si trovano nella versione del 2012 della normativa australiana, si nota che in generale, all'aumentare dello spessore della pavimentazione, il traffico che può transitare aumenta. Tuttavia, se si diagramma il numero di carichi in funzione dello spessore della pavimentazione si ricavano i seguenti risultati.

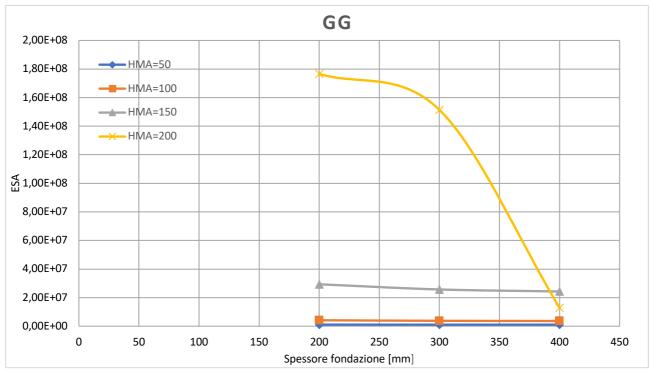


Figura 5.7 ESA vs spessore fondazione (GG)

Per la pavimentazione avente due strati di GEOMIX, gli andamenti degli ESA sono tutti decrescenti all'aumentare dello spessore, a parte il caso del conglomerato bituminoso di 50 mm che presenta una configurazione ad "U". Per il primo tipo di trend il motivo può essere il fatto che all'aumentare dello spessore globale della pavimentazione, l'effetto del sottofondo, a cui è associato un modulo elastico elevato pari a 1000 MPa, abbia un effetto sempre minore sul supporto al carico perché si allontana sempre di più da quest'ultimo.

Nel trend ad "U", si ha un comportamento misto. Nella prima parte come quello spiegato precedentemente, mentre nella seconda quello ipotizzato dalla normativa australiana.

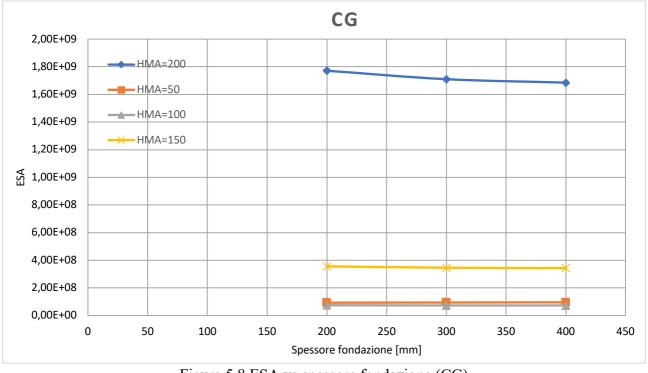


Figura 5.8 ESA vs spessore fondazione (CG)

Per la pavimentazione avente il misto cementato e uno strato di GEOMIX gli andamenti sono tutti decrescenti, a parte per il conglomerato da 50 mm, e il motivo può essere il fatto che all'aumentare dello spessore globale della pavimentazione, l'effetto del sottofondo, a cui è associato un modulo elastico elevato pari a 1000 MPa, abbia un effetto sempre minore sul supporto al carico perché si allontana sempre di più da quest'ultimo. Invece, la struttura con un conglomerato bituminoso di 50 mm, rispetta l'andamento ipotizzato.

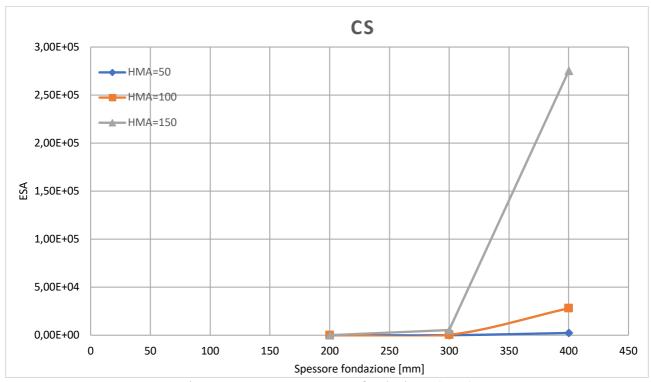


Figura 5.9 ESA vs spessore fondazione (CS I)

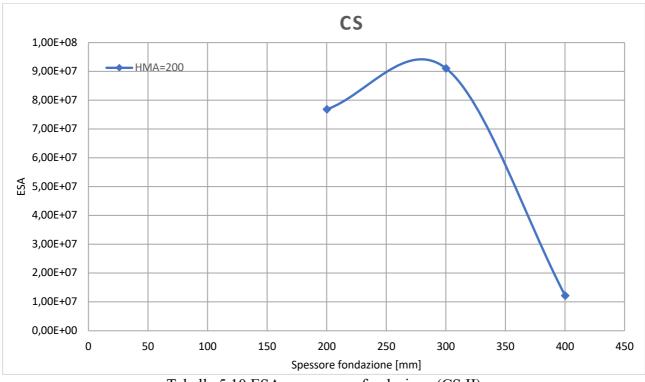


Tabella 5.10 ESA vs spessore fondazione (CS II)

Per la classica soluzione di pavimentazione semi-rigida, tutti i trend sono coerenti con le supposizioni iniziali, eccetto per la struttura avente un conglomerato di 200 mm che ha un andamento a "U" rovesciata nel quale si ha un comportamento misto. Nella prima parte l'andamento, è quello ipotizzato dalla normativa australiana, mentre nella seconda, il motivo può essere il fatto che all'aumentare dello spessore globale della pavimentazione, l'effetto del sottofondo, a cui è associato un modulo elastico elevato pari a 1000 MPa, abbia un effetto sempre minore sul supporto al carico perché si allontana sempre di più da quest'ultimo.

Parte 2: Analisi LCCA

Capitolo 1: ISO 14040 e ISO 14044

Per quanto riguarda l'analisi LCCA, è importante seguire le normative internazionali ISO 14040 e ISO 14044 del 2006. La prima descrive i principi e la struttura del metodo, mentre la seconda presenta i dati di input e le linee guida per condurre l'analisi.

La maggiore consapevolezza dell'importanza della protezione ambientale e dei possibili impatti associati ai prodotti di un processo, sia fabbricati che consumati, ha aumentato l'interesse per lo sviluppo di metodi per comprenderne le cause. Una delle tecniche sviluppate a tale scopo è la valutazione del ciclo di vita (LCA) che può aiutare a:

- identificare opportunità per migliorare le prestazioni ambientali dei prodotti nelle varie fasi del loro ciclo di vita:
- aiutare i responsabili nel prendere decisioni nel campo dell'industria, delle organizzazioni governative o non governative (per esempio a scopo di pianificazione strategica, definizione delle priorità, progettazione di prodotti o processi o riprogettazione),
- la selezione di indicatori pertinenti delle prestazioni ambientali, comprese le tecniche di misurazione:
- marketing (ad esempio con l'attuazione di un sistema di etichettatura ecologica, la presentazione di dichiarazioni ambientali o la produzione di una dichiarazione ambientale di prodotto). Il LCA affronta gli aspetti e i potenziali impatti ambientali (ad esempio analizza l'uso delle risorse e le conseguenze ambientali delle emissioni) durante il ciclo di vita di un prodotto dall'acquisizione delle materie prime alla produzione, uso, trattamento di fine vita, riciclaggio e smaltimento finale (per esempio usando l'approccio "dalla culla alla tomba").

1.1 Principi dell'analisi LCA

1.1.1 Generalità

Questi principi sono fondamentali e dovrebbero essere usati come guida per le decisioni relative sia alla pianificazione che alla conduzione di una LCA.

1.1.2 Prospettiva del ciclo di vita

Il LCA considera l'intero ciclo di vita di un prodotto, dall'estrazione, acquisizione e produzione delle materie prime, alla produzione di energia e materiali, fino al trattamento di fine vita e allo smaltimento finale.

1.1.3 Attenzione ambientale

Il LCA affronta gli aspetti e gli impatti ambientali di un sistema di prodotto. Quelli economici e sociali sono, in genere, al di fuori del campo di applicazione dell'LCA. Altri strumenti possono essere combinati con LCA per valutazioni più approfondite.

1.1.4 Approccio relativo ed unità funzionale

Il LCA è un approccio relativo, che è strutturato attorno ad un'unità funzionale che definisce ciò che viene studiato. Tutte le analisi successive sono quindi relative a quell'unità funzionale, poiché tutti gli ingressi e le uscite nell'LCI e di conseguenza il LCIA sono correlati all'unità funzionale.

1.1.5 Approccio iterativo

Il LCA è una tecnica iterativa. Le singole fasi di un LCA utilizzano i risultati delle altre fasi. L'approccio iterativo all'interno e tra le fasi contribuisce alla completezza e coerenza dello studio e dei risultati riportati.

1.1.6 Trasparenza

A causa della complessità intrinseca del LCA, la trasparenza è un importante principio guida nell'esecuzione di esso, al fine di garantire una corretta interpretazione dei risultati.

1.1.7 Completezza

Il LCA considera tutti gli attributi o gli aspetti dell'ambiente naturale, della salute umana e delle risorse. Considerando tutti gli attributi e gli aspetti propri di uno studio in una prospettiva attraverso più mezzi, è possibile identificare e valutare i potenziali compromessi.

1.1.8 Priorità dell'approccio scientifico

Le decisioni all'interno di un LCA si basano preferibilmente sulla scienza naturale. Se ciò non è possibile, si utilizzano altri approcci scientifici (ad esempio provenienti dalle scienze sociali ed economiche) o si fa riferimento a convenzioni internazionali. Se non esiste né una base scientifica né una giustificazione basata su altri approcci scientifici o convenzioni internazionali, allora, se del caso, le decisioni possono essere basate su scelte di valore.

1.2 Fasi dell'analisi LCA

Ci sono quattro fasi in uno studio LCA:

- a) la fase di definizione dell'obiettivo e dell'ambito;
- b) la fase di analisi dell'inventario;
- c) la fase di valutazione dell'impatto;
- d) la fase di interpretazione.

1.2.1 Definizione dell'obiettivo e dell'ambito

L'ambito, compreso il confine del sistema e il livello di dettaglio, di un LCA dipende dall'argomento dello studio e possono differire considerevolmente a seconda dell'obiettivo di una particolare analisi.

1.2.2 Analisi dell'inventario

La fase di analisi dell'inventario del ciclo di vita (fase LCI) è la seconda fase dell'LCA. È un inventario dei dati di input/output per quanto riguarda il sistema che si vuole studiare. Implica la raccolta dei dati necessari per raggiungere gli obiettivi definiti.

1.2.3 Valutazione dell'impatto

La fase di valutazione dell'impatto ambientale ed economico del ciclo di vita (LCIA) è la terza fase dell'LCA. Lo scopo di LCIA è fornire ulteriori informazioni per aiutare a valutare i risultati del LCI di un sistema di prodotti in modo da comprenderne meglio il significato ambientale.

1.2.4 Interpretazione

L'interpretazione del ciclo di vita è la fase finale della procedura LCA, in cui i risultati di un LCI o di un LCIA, o entrambi, sono riassunti e discussi come base per conclusioni, raccomandazioni e decisioni in conformità con l'obiettivo e la definizione dell'ambito [13].

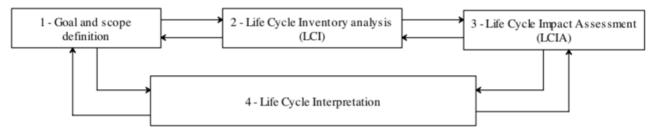


Figura 1.1 Fasi dell'analisi LCCA

Capitolo 2: PaLATE, dati di input

In questo capitolo, si presenta l'utilizzo dello strumento Excel "PaLATE", molto usato in campo commerciale e nella ricerca, sia per pavimentazioni flessibili che rigide. Questo applicativo è scaricabile in rete ed è composto da diverse parti; ognuna di esse è in grado di ricevere dati di input ed informazioni di tipo ingegneristico, ambientale ed economico per poi ottenere risultati di costo e di inquinamento dell'aria. Il tutto avviene grazie all'utilizzo di banche dati presenti di default all'interno del software che includono informazioni su densità, attrezzature, emissioni dei trasporti, produzione di vapori e percolato. Solo la parte legata ai prezzi dei materiali e di particolari attività è stata ricavata dal Prezziario Regionale del Piemonte del 2019.

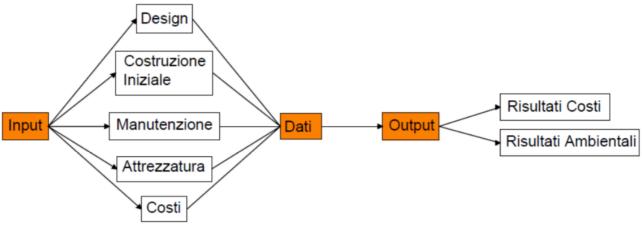


Figura 2.1 Legame tra input ed output

Quindi si devono analizzare separatamente le varie fasi del ciclo di vita come si vede dall'immagine seguente.

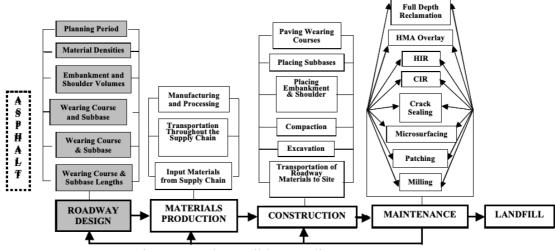


Figura 2.2 Flusso di lavoro di "PaLATE" [13]

2.1 Obbiettivi e scopi dell'analisi

In generale, si vogliono confrontare, dal punto di vista economico ed ambientale, due tipi di pavimentazioni innovative (GG e CG) con la configurazione standard semi-rigida (CS). La differenza principale sono gli strati di fondazione e sottofondo costituiti non da materiale granulare, bensì da miscele cementizie o dal misto cementato.

Una volta che per ogni tipologia di pavimentazione e combinazione di spessori si è a conoscenza del numero totale di passaggi che sopportano (vedere la parte 1 del presente lavoro di tesi) calcolati con il metodo sud africano, si vanno a scegliere, per condurre l'analisi LCCA ed operare i relativi confronti, quelle con un basso (< 10 milioni di ESA) e alto (>30 milioni di ESA) volume di traffico, a parità di spessore. Quest'ultima condizione mi permette di separare così, la parte del progetto strutturale da quella che sto trattando ora.

Tutto ciò che si ha durante l'utilizzo della pavimentazione, tra cui l'inquinamento prodotto dai veicoli e il traffico causato dalle attività di manutenzione previste, non viene considerato nella presente trattazione in quanto si deve usare un altro strumento, per esempio "EPA's MOBILE 6.2".

2.1.1 Unità funzionale

Come già accennato, si analizzano le tre tipologie di pavimentazione che abbiamo descritto nel paragrafo 2.1 della Parte 1, aventi gli spessori 50-200-1000 mm per quella ad alto volume di traffico e 200-200-1000 mm per quella a basso volume, considerando una lunghezza del tratto di strada di 13 km ed una larghezza della pavimentazione di 6 m. Quindi si avrà un numero di 6 scenari totali. Il periodo di analisi è stato fissato a 20 anni.

2.1.2 Ipotesi e confini del sistema

Le ipotesi che si fanno sono le seguenti:

- non si considera la presenza del corpo stradale, ma solo un sottofondo avente lo spessore di 1 m e non si considera la presenza delle scarpate;
- poiché nel software non ho la voce che riguarda i fanghi che vengono dalle attività di lavaggio, questi vengono sostituiti con la voce delle ceneri volanti di carbone, notando che i pesi specifici dei due materiali non variano di molto.
- non è presente la voce dell'acqua che si utilizza per il GEOMIX, e quindi non verrà inserita nel software;
- non si ha la voce degli additivi polimerici, e quindi non verranno presi in considerazione dal software;
- si considera l'attività di compattazione con il rullo per la pavimentazione CG, sia per la fondazione che per il sottofondo;
- nelle varie attività proposte non è presente quella relativa all'attività di miscelazione dei vari materiali che fanno parte del GEOMIX;
- Le macchine considerate sono modelli che vengono usati principalmente in America, essendo il software sviluppato a Berkeley.

Per i confini del sistema, si può far riferimento alla figura seguente, che riporta anche le fasi del ciclo di vita analizzate.



Figura 2.3 Fasi e confini del sistema [14] [15]

L'attività di manutenzione considerata è solo quella della fresatura e successiva ricostituzione dello strato di usura all'interno del periodo di analisi. Ciò è definito il "Full depth reclamation". Per le pavimentazioni con un basso volume di traffico la frequenza di tale attività dipende dalla tipologia che si considera:

- GG ogni 3 anni;
- CS ogni 4 anni;
- CG ogni 6 anni.

Questa scelta perché la CG resiste meglio ai carichi rispetto alla CS e GG, quindi richiederà meno manutenzione.

Alla fine del periodo di analisi si prevede la dismissione della pavimentazione andando a fresare solo il conglomerato bituminoso, conferendolo totalmente in discarica.

Per le strutture con un alto volume di traffico la manutenzione si svolge con le stesse frequenze del caso precedente. Inizialmente si può pensare che lo spessore totale della pavimentazione cresce e ciò porterebbe a diminuire la frequenza di manutenzione, ma questo primo aspetto viene bilanciato dal fatto che in contemporanea aumenta il volume di traffico.

Alla fine del periodo di analisi si ha la dismissione della pavimentazione con la fresatura del conglomerato bituminoso e conferimento totale in discarica dei rifiuti.

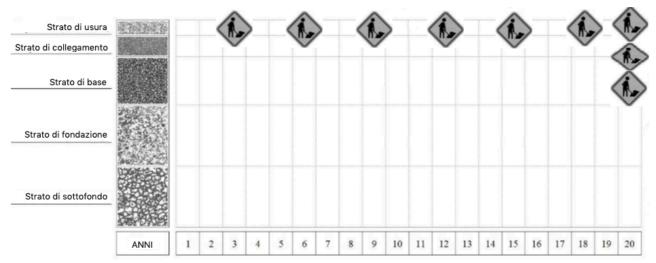


Figura 2.4 Piano di manutenzione pavimentazione GG

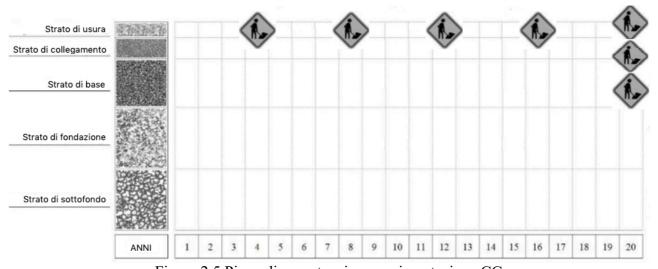


Figura 2.5 Piano di manutenzione pavimentazione CG

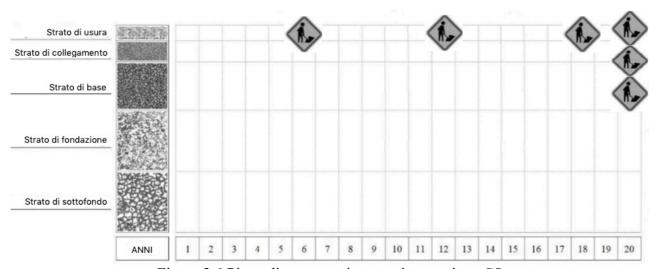


Figura 2.6 Piano di manutenzione pavimentazione CS

2.2 LCI (Life Cycle Inventory)

2.2.1 Miscele di progetto

Per il conglomerato bituminoso e per gli strati di usura, collegamento e base, per tutte le tipologie di pavimentazione, sono importanti le informazioni sulle caratteristiche volumetriche. In seguito ad analisi sperimentali si definisce una composizione avente il 95% degli aggregati vergini e un 5% di bitume.

Quindi partendo dal concetto di densità e dalle proprietà volumetriche, si ottengono il peso del materiale per metro cubo di miscela

Conglomerato bituminoso	GG & CG & CS
Aggregati vergini [kg/m^3]	2612,5
Bitume [kg/m ³]	55

Tabella 2.1 Miscela conglomerato bituminoso

Infine per arrivare a definire i kg/t, per andare a inserire i valori nel software, si fanno i seguenti calcoli

$$Dosaggio_{i}[m^{3}/t] = \frac{D_{i}\left[kg/m^{3}\right]}{\sum_{i=1}^{n}D_{i}\left[kg/m^{3}\right]} \cdot \frac{1}{D_{i}[t/m^{3}]}$$

dove

- D_i è la densità del materiale i-esimo proveniente dalla tabella 2.1 [kg/m 3];
- D_i è la densità del materiale i-esimo data dalla banca dati del software [t/m 3]
- n è il numero di componenti della miscela

Ora si ricava il volume di ogni singolo materiale che comporrà lo strato della pavimentazione in questione tramite una semplice proporzione

$$x$$
: $volume totale del singolo strato = $Dosaggio_i$: $\sum_{i=1}^{n} Dosaggio_i$$

I risultati finali, combinando le due relazioni precedenti, sono

$x [m^3]$	GG & CG & CS
Aggregati vergini	3689,98
Bitume	210,02

Tabella 2.2 Volumi di materiale del conglomerato bituminoso da 50 mm

$x [m^3]$	GG & CG & CS
Aggregati vergini	14759,93
Bitume	840,07

Tabella 2.3 Volumi di materiale del conglomerato bituminoso da 200 mm

Per lo strato di fondazione, per la pavimentazione GG si ha il GEOMIX 2 che ha la seguente miscela, proveniente da prove effettuate in laboratorio per soddisfare le esigenze richieste.

GEOMIX 2	GG
Cemento [kg/m^3]	60
Sabbia [kg/m^3]	597,6
Ghiaia [kg/m^3]	332
RAP [kg/m^3]	332
Limo [kg/m^3]	398,4

Tabella 2.4 Miscela GEOMIX 2

Applicando poi la stessa procedura del conglomerato bituminoso si ottengono i seguenti risultati:

$x [m^3]$	GG
Cemento	653,47
Sabbia	6582,39
Ghiaia	3389,91
RAP	2473,72
Limo	2500,51

Tabella 2.5 Volumi di materiale della fondazione (GG)

Per lo strato di fondazione, per la pavimentazione CG e CS abbiamo il misto cementato la cui composizione deriva dalle prove effettuate dalla Tecno Piemonte S.p.A. come riportato nell'allegato E. Da qui si possono ricavare le percentuali della sabbia e della ghiaia, rispettivamente il 40% ed il 20% sull'intera miscela e infine derivare

Misto cementato	CG & CS
Cemento [kg/m^3]	94,5
Sabbia [kg/m^3]	1691,42
Ghiaia [kg/m^3]	833,09

Tabella 2.6 Miscela misto cementato

Applicando poi la stessa procedura del conglomerato bituminoso si ottengono i seguenti risultati:

$x [m^3]$	CG & CS
Cemento	566,42
Sabbia	10326,71
Ghiaia	4706,87

Tabella 2.7 Volumi di materiale della fondazione (CG & CS)

Per lo strato di sottofondo, per le pavimentazioni GG e CG si ha il GEOMIX 1 che ha la seguente miscela, proveniente da prove effettuate in laboratorio per soddisfare le esigenze richieste.

GEOMIX 1	GG & CG
Cemento [kg/m^3]	1000
Sabbia [kg/m^3]	568,43
Ghiaia [kg/m^3]	315,80
RAP [kg/m^3]	315,80
Limo [kg/m^3]	378,96

Tabella 2.8 Miscela GEOMIX 1

Applicando poi la stessa procedura del conglomerato bituminoso si ottengono i seguenti risultati:

$x [m^3]$	GG & CG
Cemento	6718,07
Sabbia	22421,16
Ghiaia	19802,54
RAP	14450,50
Limo	14607,73

Tabella 2.9 Volumi di materiale del sottofondo (GG & CG)

Per lo strato di sottofondo, per la pavimentazione CS si ha il misto granulare e partendo dalla densità, introducendo il concetto della presenza dei vuoti si ottiene la seguente miscela

Misto granulare	CS
Terreno [kg/m^3]	2250

Tabella 2.10 Miscela misto granulare

Poiché ho solo tale materiale nella miscela, il suo volume sarà pari a quello dell'intero strato

$x [m^3]$	CS
Terreno	78000

Tabella 2.11 volume del materiale del sottofondo (CS)

Ciò che è contenuto nelle tabelle 2.2, 2,3, 2.5, 2.7, 2.9, 2.11, verrà inserito come dati di input all'interno del software.

Altre informazioni da inserire riguardano i mezzi di trasporto su strada, che devono essere idonei al tipo di materiale, e la distanza unidirezionale che dall'impianto di Salbertrand porta al cantiere ed è pari a circa 20 km.

2.2.2 Miscela di progetto per l'attività di manutenzione

L'attività verrà svolta solo per lo strato di usura, quindi la miscela sarà sempre la stessa indipendentemente dal tipo di pavimentazione. Inoltre, si ipotizza che il 30% del materiale fresato vengo conferito nell'impianto di Salbertrand per essere recuperato e più precisamente per essere nuovamente miscelato con gli aggregati vergini ed il bitume.

Quindi per ogni singola manutenzione, nel software, è necessario inserire i seguenti volumi

$$RAP_{imnianto} = 0.3Volume_{usura}$$

e ciò porta a delle variazioni nella miscela

$$RAP_{discarica} = Volume_{usura} - RAP_{impianto}$$

$$x_i: \left(Volume_{usura} - RAP_{impianto}\right) = x_{tabella2.2,i}: Volume_{usura}$$

Per esempio, per la pavimentazione avente un conglomerato bituminoso di 5 cm e 20 cm si ha

50-200-1000	GG & CG & CS
Volume _{usura} [m ³]	819
$RAP_{impianto} [m^3]$	245,7
$RAP_{discarica} [m^3]$	573,3
$x_{aggregati\ vergini}\ [m^3]$	542,43
$x_{bitume} [m^3]$	30,87

Tabella 2.12 Singola manutenzione spessore di 50 mm

200-200-1000	GG & CG & CS
Volume _{usura} [m³]	3276
$RAP_{impianto} [m^3]$	982,8
$RAP_{discarica} [m^3]$	2293,2
$x_{aggregati\ vergini}\ [m^3]$	2169,71
x_{hitume} [m ³]	123,49

Tabella 2.13 Singola manutenzione spessore di 200 mm

Anche in questo caso sarà necessario scegliere nel software il sistema di trasporto più opportuno per ciascun tipo di materiale e la distanza di trasporto unidirezionale dall'impianto al cantiere, o viceversa per il riutilizzo del fresato bituminoso, pari a 20 km.

2.2.3 Prezzario

Un altro passaggio fondamentale, è quello di inserire informazioni di costo all'interno del software, che riguardano i materiali e le macchine per la costruzione iniziale dell'intero pacchetto della pavimentazione, per le attività di manutenzione e per la successiva demolizione del conglomerato bituminoso. Sono ricavabili nel Prezzario Regionale del Piemonte del 2019 [15], nel prezzario dei costi elementari del 2017 proposto da ANAS S.p.A. [16] e nel prezzario delle nuove costruzionimanutenzione straordinaria del 2018 sempre proposto da ANAS S.p.A. [17].

L'elenco dei prezzi fornito in seguito, include sia il 13% di spese generali sia il 10% di utile di impresa per arrivare ad un totale di 24,3%, anche la manodopera e i relativi macchinari, ma non gli oneri per la sicurezza.

Per gli aggregati vergini, si deve considerare che al loro interno si hanno molte tipologie di materiale, ma in questo caso si sono scelte le due più importanti per poi fare una media di prezzi.

Sezione	Codice	Descrizione	U.M.	Euro
01	01.P03.A10	Aggregati per calcestruzzo conformi alla UNI 8520- 2/EN 12620		
01	01.P03.A10.005	Sabbia 0/8	m^3	28,96
01	01.P03.B80	Pietrisco sfuso, di cave note ed accette o di torrente, ottenuto dalla frantumazione meccanica di roccia o di ciottoli serpentinosi non amiantiferi di buona qualità		
01	01.P03.B80.005	pezzatura piccola (5/15-15/30)	m^3	23,14

Tabella 2.14 Prezzo Aggregati vergini, prezziario regionale

Quindi il risultato finale sarà 26,05 €/m 3

Per quanto riguarda il bitume, poiché costa diversamente a seconda che sia impiegato per lo strato di usura, di collegamento o di base, si fa la media dei prezzi

Sezione	Codice	Descrizione	U.M.	Euro
25	25.A01.D55			
25	25.A01.D55.005	CONGLOM. BITUMIN. PER STRATO DI BASE. Conglomerato bituminoso per strato di base fornito a piè d'opera.	m^3	72,60
25	25.A01.D60			
25	25.A01.D60.005	CONGLOMERATO BITUMINOSO BINDER. Conglomerato bituminoso, binder fornito a piè d'opera	m^3	89,59
25	25.A01.D65	Tappeto di usura		
25	25.A01.D65.005	TAPPETO DI USURA IN CONGLOMERATO BITUMINOSO. Tappeto di usura in calcestruzzo bituminoso fornito a piè d'opera.	m^3	103,95

Tabella 2.15 Prezzo bitume, prezziario regionale

Quindi il risultato finale sarà 88,71 €/m 3

Per quanto riguarda il RAP ho il prezzo al quintale, facilmente convertibile alla tonnellata e poi passare al metro cubo grazie alla densità proposta dal software

Codice	Descrizione	U.M.	Prezzo
CE.4.30	Fresato di pavimentazione stradale	q	0,05

Tabella 2.16 Prezzo RAP, costi elementari ANAS 2017

Per quanto riguarda le ceneri volanti di carbone, poiché non si è trovato il prezzo, si fa riferimento a quello proveniente dal prezziario regionale della regione Veneto del 2012 equivalente a 34,12 €/m³

Per andare ad inserire il costo della ricostituzione dello strato di usura dopo l'attività di fresatura si fa riferimento alla voce seguente

Sezione	Codice	Descrizione	U.M.	Euro
25	25.A15.A20	CONGLOMERATO BITUMINOSO PER TAPPETO DI USURA. Tappeto di usura in conglomerato bituminoso come da norme tecniche compattato in opera.		
25	25.A15.A20.005	PER OGNI m3. DI TAPPETO COMPATTATO IN OPERA	m^3	135,8

Tabella 2.17 Prezzo strato usura, prezziario regionale

Si introduce nel software il costo del conglomerato bituminoso della pavimentazione. Essendo composto da strati diversi con costi diversi, ma dovendone inserire solo uno, si farà una media pesata tra la voce nella tabella 2.17 e quelle nella tabella successiva, in cui i pesi sono gli spessori dei rispettivi strati.

Sezione	Codice	Descrizione	U.M.	Euro
25	25.A15.A10	CONGLOMERATO BITUMINOSO PER STRATO DI BASE. Conglomerato bituminoso per strato di base come da Norme tecniche, compreso ogni onere, misurato dopo compattazione		
25	25.A15.A10.005	PER OGNI m3. DI CONGLOMERATO COMPATTATO IN OPERA	m^3	102,66
25	25.A15.A15	CONGLOMERATO BITUMINOSO BINDER. Conglomerato bituminoso - binder, come da norme tecniche, compattato in opera compreso ogni onere		
25	25.A15.A15.005	PER OGNI m3. DI CONGLOMERATO COMPATTATO IN OPERA	m^3	123,04

Tabella 2.18 Prezzo strati collegamento e base, prezziario regionale

Per il caso in cui lo strato di conglomerato abbia uno spessore di 50 mm, da un punto di vista costruttivo è impossibile andare a dividerlo negli strati di usura, collegamento e base, per cui si usa solo il primo. Quindi il costo che si inserirà nel software sarà pari a 135,8 €/m³ Invece nell'altro caso si inserirà il valore di 115,02 €/m³

Ora, si introduce nel software il costo della fondazione e del sottofondo della pavimentazione. Anche in questo caso si richiede un solo valore di costo per cui, si farà una media pesata tra le due voci in cui i pesi sono gli spessori degli strati.

Per quanto riguarda gli strati di GEOMIX 1 e GEOMIX 2, avendo le stesse miscele (ovviamente con quantità diverse), si considerano le stesse voci di costo.

Il prezzo in quintali è facilmente convertibile in tonnellate, e poi si passa ai metri cubi grazie alla densità del cemento proposta dal software.

Il prezzo in litri, invece, è convertibile in kg dividendolo per la densità del super fluidificante e dell'accelerante che sono rispettivamente 1,06 kg/dm^3 e 1,185 kg/dm^3 . Successivamente si moltiplica nuovamente per le stesse densità ma espresse in kg/m^3 per passare ai metri cubi.

Sezione	Codice	Descrizione	U.M.	Euro
01	01.P02.A05	Cementi comuni conformi alla norma UNI EN 197- 1:2006		
	01.P02.A05.015	sfuso, tipo 42,5 R	q	12,65
01	01.P03.A10	Aggregati per calcestruzzo conformi alla UNI 8520- 2/EN 12620		
01	01.P03.A10.005	Sabbia 0/8	m^3	28,96
01	01.P03.B80	Pietrisco sfuso, di cave note ed accette o di torrente, ottenuto dalla frantumazione meccanica di roccia o di ciottoli serpentinosi non amiantiferi di buona qualità		
01	01.P03.B80.005	pezzatura piccola (5/15-15/30)	m^3	23,14
	01.P29.A25	Additivi per calcestruzzi preconfezionati conformi alle norme UNI EN 934-2, UNI EN 480-1 UNI 10765		
01	01.P29.A25.010	Super fluidificante	1	2,00
01	01.P29.A25.015	Accelerante di presa	1	1,26
25	25.P05.D40	ACQUA		
25	25.P05.D40.010	ACQUA. Fornitura di acqua per usi industriali presso cantiere di lavoro comprese le spese per allacciamento ad acquedotto od altra fonte, in questo caso compresa la depurazione, per il confezionamento di calcestruzzi o per altri usi.	m^3	1,34

Tabella 2.19 Prezzo GEOMIX, prezziario regionale

Se a questi elementi si aggiunge anche il RAP proveniente dalla fresatura della tabella 2.16, si ottiene un costo totale di 297,24 €/m³

Questo sarà il costo che si inserirà nel software per la pavimentazione GG.

Per lo strato in misto cementato si fa riferimento alla seguente voce

Codice	Descrizione	U.M.	Euro
	Fondazione stradale in misto granulare stabilizzato		
D.01.001	Con granulometria continua, compresa la fornitura del materiale, l'eventuale aggiunta di acqua, la compattazione con idonei rulli vibranti di idoneo peso, il tutto secondo le prescrizioni del CSA. È compresa la fornitura, la posa in opera, ogni fornitura, lavorazione ed onere per ottenere un lavoro a perfetta regola d'arte misurato in opera dopo il costipamento.		
D.01.001.a	Per area nord. AO, TO, GE, MI, VE, TS, BO	m^3	25,24

Tabella 2.20 Prezzo misto cementato, nuove costruzioni-manutenzione straordinaria 2018

Invece per il GEOMIX devo fare riferimento alla tabella 2.19 e alla tabella 2.16 ottenendo un costo di $297,24 \, \text{€/m}^3$

Il costo che si inserirà nel software per la pavimentazione CG sarà 251,91 €/m³

Per lo strato in misto cementato si fa riferimento alla tabella 2.20, mentre per lo strato in misto granulare alla seguente

Sezione	Codice	Descrizione	U.M.	Euro
25	25.A02.A50	Sistemazione		
25	25.A02.A50.005	SISTEMAZIONE IN RILEVATO GRUPPI A1, A2-4, A2-5, A3. Sistemazione in rilevato od in riempimento di materiali idonei come da norme tecniche ecc a) appartenenti ai gruppi A1,A2-4, A2-5, A3, ovvero di frantumati di roccia o smarino di galleria.	m^3	1,62

Tabella 2.21 Prezzo misto granulare, prezziario regionale

Il costo che si inserirà nel software per la pavimentazione CS sarà $5,56~\text{€/m}^3$

Capitolo 3: LCIA e interpretazione risultati

Si arriva così all'ultima fase dell'analisi che riguarda la determinazione finale e valutazione degli impatti dell'opera sia da un punto di vista economico che da un punto di vista ambientale.

3.1 Risultati economici

È ancora necessario inserire qualche altro dato di input per arrivare alla definizione dei costi per la costruzione iniziale, manutenzione, materiali, manodopera, attrezzature, profitti ed utile d'impresa. Si deve prima di tutto definire il tasso di sconto r, perché il denaro ha un costo che dipende dal tempo, ossia è l'interesse che la banca centrale, in quanto produttrice di carta moneta, applica sulle banche che sono poi accessibili ai cittadini e alle imprese. Tipicamente in Europa si assume un valore pari al 4%, confermato dalla Banca Centrale Europea [18].

Da qui si può ricavare il fattore di recupero del capitale di una serie di pagamenti uguali (UCRF), introducendo anche il concetto della vita utile n, ossia il periodo previsto (stimato) durante il quale la pavimentazione potrà essere proficuamente usata dall'impresa

$$UCRF = \frac{r(1+r)^n}{(1+r)^n - 1} = 0.0736$$

Rappresenta la parte di capitale che dovrebbe entrare nelle casse ogni anno affinché si estingua il prestito iniziale, in questo caso il costo della costruzione iniziale.

All'inizio si dovrà calcolare il costo iniziale per l'installazione dell'intera pavimentazione, inserire nel modello i costi per la manutenzione che si hanno nei vari anni e la quantità di materiale da conferire in discarica considerando che al ventesimo anno si prevede la dismissione del conglomerato bituminoso, mentre negli altri si considererà che un 30% del volume dello strato sarà riutilizzato e quindi non verrà conteggiato in questa parte. Si suppone un prezzo per il trasporto in discarica pari a 7,8€.

I costi che vengono effettuati fuori dall'anno 0, dovranno essere attualizzati, cioè se ne dovrà calcolare uno nuovo che sia equivalente, da un punto di vista economico, all'anno in cui costruisco la pavimentazione, applicando l'equazione seguente

$$P_0 = \sum_{n=0}^{20} \frac{P_n}{(1+r)^n}$$

dove:

- P_0 è il valore attuale netto totale all'anno 0
- P_n è il valore della manutenzione o di eventuali costi da sostenere all'anno n;
- n anno in cui sostengo i costi;

Successivamente il software ha la possibilità di disgregare i costi di costruzione e manutenzione nelle varie componenti di materiali, attrezzature, manodopera, spese generali ed utile d'impresa. Per fare ciò, è necessario partire dalla sezione dei materiali.

Quindi si inseriscono i volumi e i relativi costi che vengono sostenuti per ogni anno e infine il software mediante l'ultima espressione presentata riporta tutto all'anno 0.

Si fa l'ipotesi che in questi 20 anni, i prezzi rimangano costanti anche se in realtà varierebbero in base all'inflazione.

Infine il modello calcola anche i costi annuali da sostenere con la seguente formula

Costo annuale =
$$P_0 \cdot UCRF$$

Per le spese generali e gli utili d'impresa, basta applicare il 24,3% sul costo della costruzione iniziale o sul costo della manutenzione per quello specifico anno.

Infine, conoscendo l'incidenza dei materiali sui costi totali e possibile ricavare una percentuale che sarà da dividere tra le attrezzature e la manodopera. In ogni caso l'incidenza della seconda verrà supposta maggiore dell'incidenza della prima in quanto i materiali vergini hanno bisogno di lavorazioni per essere idonei alla posa in opera.

3.1.1 GG

Per tale pavimentazione con uno spessore del conglomerato bituminoso di 50 mm si hanno le seguenti tabelle

	Costo della Full-depth Reclamation			RAP dal sito alla discarica (trasporto & costi di smaltimento)			
	Costo unitario:	€135,8/ m ³		Costo unitario:	€7,80 /m3	(tassa di trasporto) + trasporto	
	Volume costruzione iniziale [m³]:			Volume costruzione iniziale [m³]:			
	Volume totale manutenzione [m³]:	4914		Volume totale manutenzione [m³]:	7.339,8		
Anno	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	819	135,8	111220	573,3	7,8	4472	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	
6	819	135,8	111220	573,3	7,8	4472	
7	0	0	0	0	0	0	
8	0	0	0	0	0	0	
9	819	135,8	111220	573,3	7,8	4472	
10	0	0	0	0	0	0	
11	0	0	0	0	0	0	
12	819	135,8	111220	573,3	7,8	4472	
13	0	0	0	0	0	0	
14	0	0	0	0	0	0	
15	819	135,8	111220	573,3	7,8	4472	
16	0	0	0	0	0	0	
17	0	0	0	0	0	0	
18	819	135,8	111220	573,3	7,8	4472	
19	0	0	0	0	0	0	
20	0	0	0	3.900	7,8	30420	
	T/ANT	• • • •	60			60	
	VAN costruzione iniziale		€0			€0	
	VAN manutenzione		€451.041			€32.018	
	Costo annuale: Costruzione iniziale		€0/anno			€0/anno	
	Costo annuale: N		€33.188/anno			€2.356/anno	
	Costo annuale: Totale		€33.188/anno			€2.356/anno	

Tabella 3.1 Manutenzione

Per la prima colonna si considera solo il volume dello strato di usura e lo si riporta per ogni anno.

Nella seconda colonna all'anno 20 ho il volume intero di conglomerato bituminoso, mentre negli altri anni, al volume dello strato di usura si toglie solo un 30%.

	Aggregati Vergini		Bitume		
	Costo unitario:	€26,05 /m ³	Costo unitario:	€88,71/ m ³	
	Volume costruzione iniziale [m³]:	3690,0	Volume costruzione iniziale [m³]:	210,02	
	Volume totale manutenzione [m ³]:	3254,6	Volume totale manutenzione [m³]:	185,2	
Anno	Volume [m ³]	Costo [€]	Volume [m ³]	Costo [€]	
0	3690,0	96124	210,02	18631	
1	0	0	0	0	
2	0	0	0	0	
3	542,4	14130	30,9	2739	
4	0	0	0	0	
5	0	0	0	0	
6	542,4	14130	30,9	2739	
7	0	0	0	0	
8	0	0	0	0	
9	542,4	14130	30,9	2739	
10	0	0	0	0	
11	0	0	0	0	
12	542,4	14130	30,9	2739	
13	0	0	0	0	
14	0	0	0	0	
15	542,4	14130	30,9	2739	
16	0	0	0	0	
17	0	0	0	0	
18	542,4	14130	30,9	2739	
19	0	0	0	0	
20	0	0	0	0	
	VAN	€137.480		€25.865	
	Costo annuale	€10.116/anno		€1.903/anno	

Tabella 3.2 Materiali 1

Nella prima colonna per gli anni della manutenzione, basta inserire i quantitativi di aggregato vergine da usare nella nuova miscela in cui è presente anche il fresato. (Vedi differenza tra tabella 2.2 e tabella 2.12)

RAP dall'impianto di trattamento		RAP dal sito alla discarica		
Costo unitario:	€1,21 /m3	Costo unitario:	€7,80 /m3	
Volume costruzione iniziale [m³]	16924,2	Volume costruzione iniziale [m³]	0	
Volume totale manutenzione [m³]:	1474,2	Volume totale manutenzione [m³]:	7.339,8	
Volume [m ³]	Costo [€]	Volume [m ³]	Costo [€]	
16924,2	20478	0	0	
0	0	0	0	
0	0	0	0	
245,7	297	573,3	4472	
0	0	0	0	
0	0	0	0	
245,7	297	573,3	4472	
0	0	0	0	
0	0	0	0	
245,7	297	573,3	4472	
0	0	0	0	
0	0	0	0	
245,7	297	573,3	4472	
0	0	0	0	
0	0	0	0	
245,7	297	573,3	4472	
0	0	0	0	
0	0	0	0	
245,7	297	573,3	4472	
0	0	0	0	
0	0	3900	30420	
VAN	€35.494,65		€33.901,61	
Costo annuale	€2.611,76/anno		€2.494,54/anno	

Tabella 3.3 Materiali 2

In questo caso si ha la continuazione della tabella riguardante i materiali. Nella prima colonna, per la costruzione iniziale, il volume di RAP dipende dalla miscela degli strati di fondazione e sottofondo, mentre per la manutenzione i valori sono il 30% del volume dello strato di usura. Nella seconda colonna si fanno i medesimi ragionamenti della tabella 3.1.

Manodopera	Attrezzature	Spese generali ed utile d'impresa	Totale
[€]	[€]	[€]	Materiali, manodopera, attrezzature
		24,3%	Spese generali ed utile d'impresa [€]
10706963	7850345	6889362	28351284
0	0	0	0
0	0	0	0
35219	30721	28113	115692
0	0	0	0
0	0	0	0
35219	30721	28113	115692
0	0	0	0
0	0	0	0
35219	30721	28113	115692
0	0	0	0
0	0	0	0
35219	30721	28113	115692
0	0	0	0
0	0	0	0
35219	30721	28113	115692
0	0	0	0
0	0	0	0
35219	30721	28113	115692
0	0	0	0
0	0	0	30420
€10.432.491,78	€7.668.204,29	€6.734.011,24	€27.725.330
€767.641,01/anno	€564.239,89/anno	€495.500,33/anno	€2.040.078/anno

Tabella 3.4 Manodopera, attrezzatura, spese generali, utili d'impresa, totali

Per la pavimentazione con un conglomerato spesso 200 mm i ragionamenti sono i medesimi, ma cambieranno i volumi e quindi i costi. Tali valori sono riportati nell'allegato F. Gli altri materiali che vengono impiegati solo all'anno 0 nella costruzione iniziale, sono riportati nei grafici successivi 3.2 e 3.4.

Nel seguito vengono riportati i risultati economici prodotti dal software.

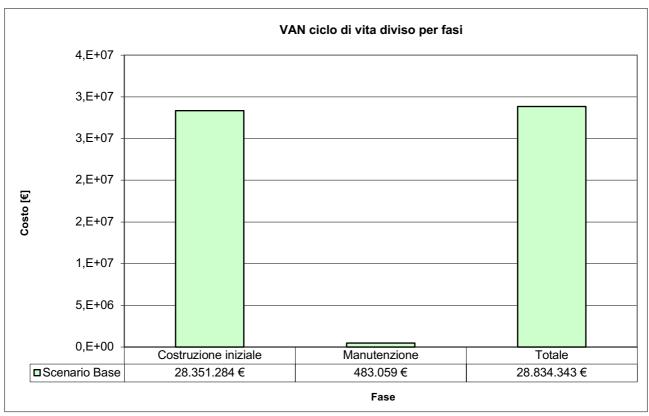


Grafico 3.1 VAN pavimentazione stradale GG per un conglomerato di 50 mm

Nel grafico precedente sono riportati i costi totali che si devono sostenere per la costruzione iniziale e per la manutenzione.

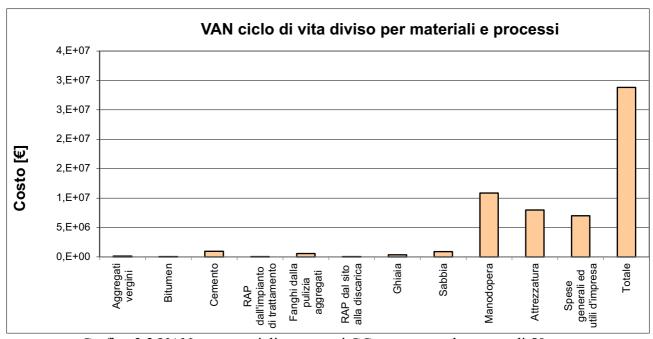


Grafico 3.2 VAN per materiali e processi GG per un conglomerato di 50 mm

Nel grafico 3.2 si hanno i costi che si devono sostenere per i vari tipi di materiale e per i vari processi insieme ad informazioni sui costi di manodopera, attrezzature, spese generali ed utile d'impresa.

Nella tabella seguente sono riportati tutti i costi

Materiali	VAN [€]
Aggregati vergini	153427
Bitume	29738
Cemento	932500
RAP dall'impianto di trattamento	21684
Fanghi dalla pulizia aggregati	583733
RAP dal sito alla discarica	32018
Ghiaia	345336
Sabbia	907811
Manodopera	10849791
Attrezzature	7974932
Spese generali ed utile d'impresa	7003372
Total	28834343

Tabella 3.5 VAN per materiali e processi GG per un conglomerato di 50 mm

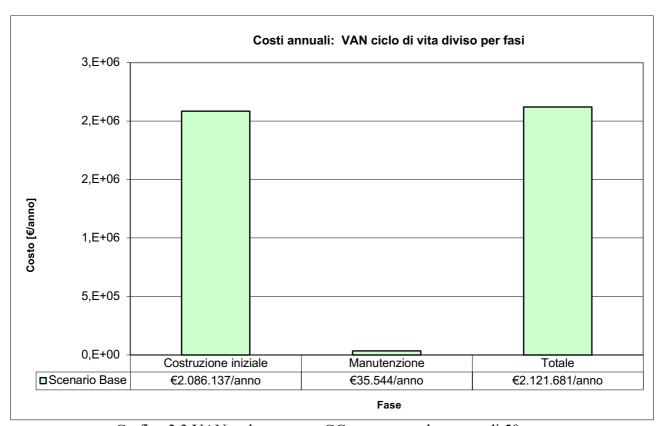


Grafico 3.3 VAN su base annua GG per un conglomerato di 50 mm

Nel Grafico 3.3 si presenta il costo su base annua che si dovrà sostenere per la costruzione iniziale e la manutenzione.

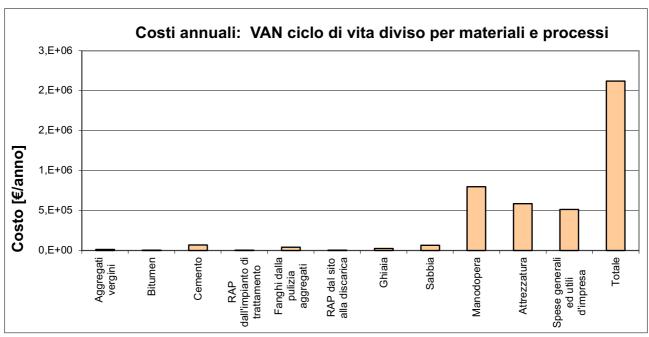


Grafico 3.4 VAN su base annua per materiali e processi GG per un conglomerato di 50 mm

Nel grafico 3.4 si hanno i costi su base annua che si devono sostenere per i vari tipi di materiale e per i vari processi insieme ad informazioni sui costi di manodopera, attrezzature, spese generali ed utile d'impresa.

Nella tabella seguente abbiamo tutti i costi su base annua

Materiali	Costi annuali [€/anno]
Aggregati vergini	11289
Bitume	2188
Cemento	68615
RAP dall'impianto di trattamento	1596
Fanghi dalla pulizia aggregati	42952
RAP dal sito alla discarica	2356
Ghiaia	25410
Sabbia	66798
Manodopera	798347
Attrezzature	586809
Spese generali ed utile d'impresa	515320
Total	2121681

Tabella 3.6 VAN per materiali e processi su base annua GG per un conglomerato di 50 mm

Si può notare dal grafico 3.1 e 3.1 che i costi della manutenzione non influiscono particolarmente sui costi per la costruzione iniziale.

Quelli per un conglomerato da 200 mm sono riportati nei grafici seguenti.

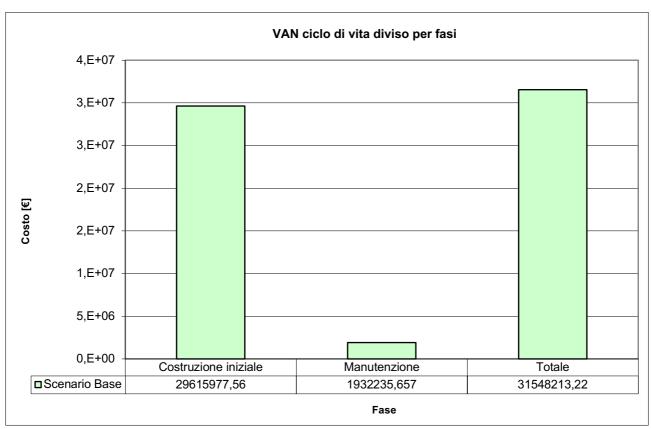


Grafico 3.5 VAN pavimentazione stradale GG per un conglomerato di 200 mm

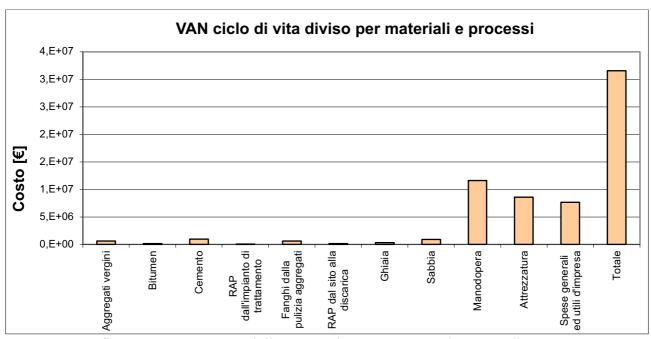


Grafico 3.6 VAN per materiali e processi GG per un conglomerato di 200 mm

Materiali	VAN [€]
Aggregati vergini	613709
Bitume	118953
Cemento	932500
RAP dall'impianto di trattamento	25301
Fanghi dalla pulizia aggregati	583733
RAP dal sito alla discarica	128072
Ghiaia	345336
Sabbia	907811
Manodopera	11632019
Attrezzature	8608058
Spese generali ed utile d'impresa	7652721
Total	31548213

Tabella 3.7 VAN per materiali e processi GG per un conglomerato di 200 mm

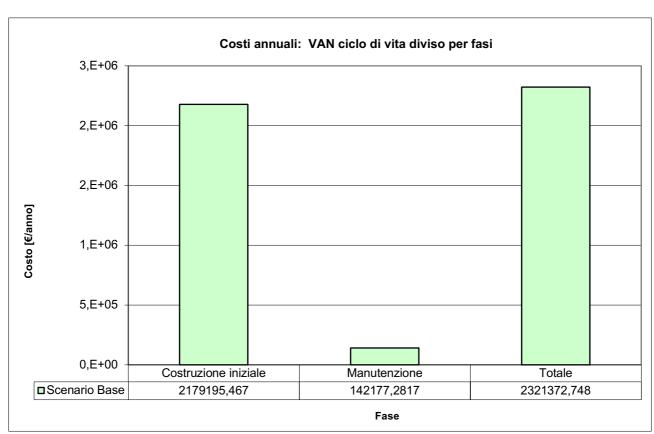


Grafico 3.7 VAN su base annua GG per un conglomerato di 200 mm

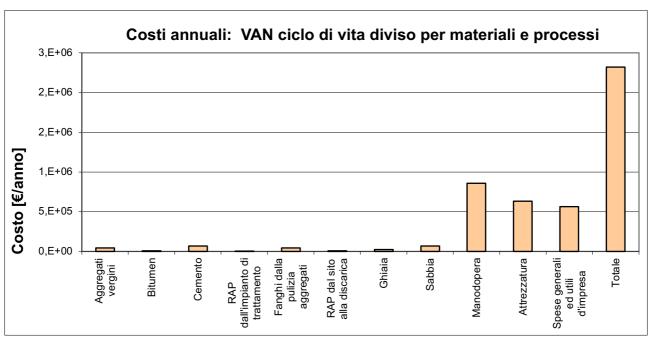


Grafico 3.8 VAN su base annua per materiali e processi GG per un conglomerato di 200 mm

Materiali	Costi Annuali [€/anno]
Aggregati vergini	45158
Bitume	8753
Cemento	68615
RAP dall'impianto di trattamento	1862
Fanghi dalla pulizia aggregati	42952
RAP dal sito alla discarica	9424
Ghiaia	25410
Sabbia	66798
Manodopera	855904
Attrezzature	633396
Spese generali ed utile d'impresa	563101
Total	2321373

Tabella 3.8 VAN per materiali e processi su base annua GG per un conglomerato di 200 mm

3.1.2 CG

In questo caso i valori di input da inserire, che riguardano l'utilizzo di materiali per la costruzione iniziale e le varie fasi di manutenzione, cambiano, sia per un conglomerato da 50 mm che per uno da 200 mm. Ci si riferisce sempre alle tabelle dalla 3.1 alla 3.4 e i risultati sono riportati nell'allegato G.

I risultati economici per un conglomerato da 50 mm sono i seguenti.

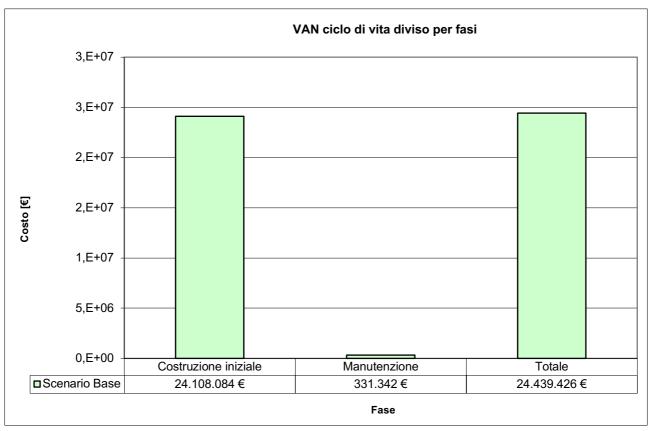


Grafico 3.9 VAN pavimentazione stradale CG per un conglomerato di 50 mm

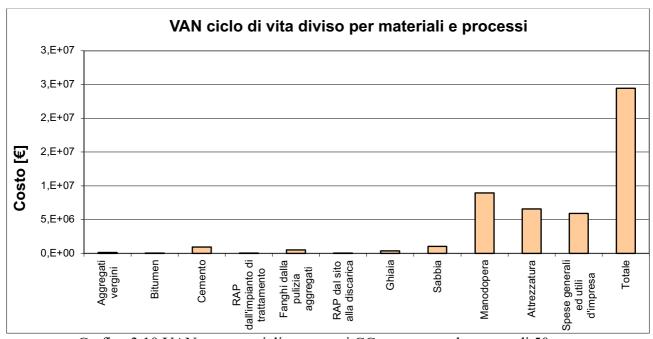


Grafico 3.10 VAN per materiali e processi CG per un conglomerato di 50 mm

Materiali	VAN [€]
Aggregati vergini	134897
Bitume	26147
Cemento	921488
RAP dall'impianto di trattamento	18301
Fanghi dalla pulizia aggregati	498416
RAP dal sito alla discarica	26154
Ghiaia	364945
Sabbia	1025008
Manodopera	8928700
Attrezzature	6559964
Spese generali ed utile d'impresa	5935407
Total	24439426

Tabella 3.9 VAN per materiali e processi CG per un conglomerato di 50 mm

Grafico 3.11 VAN su base annua CG per un conglomerato di 50 mm

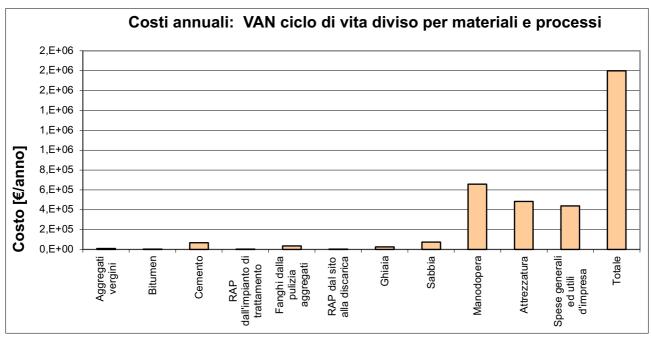


Grafico 3.12 VAN su base annua per materiali e processi CG per un conglomerato di 50 mm

Materiali	Costi annuali [€/anno]
Aggregati vergini	9926
Bitume	1924
Cemento	67805
RAP dall'impianto di trattamento	1347
Fanghi dalla pulizia aggregati	36674
RAP dal sito alla discarica	1924
Ghiaia	26853
Sabbia	75422
Manodopera	656989
Attrezzature	482694
Spese generali ed utile d'impresa	436738
Total	1798296

Tabella 3.10 VAN per materiali e processi su base annua CG per un conglomerato di 50 mm

I risultati economici per un conglomerato da 200 mm sono i seguenti.

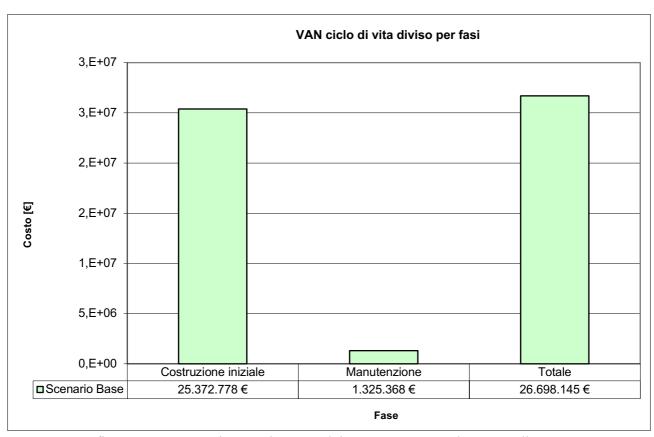


Grafico 3.13 VAN pavimentazione stradale CG per un conglomerato di 200 mm

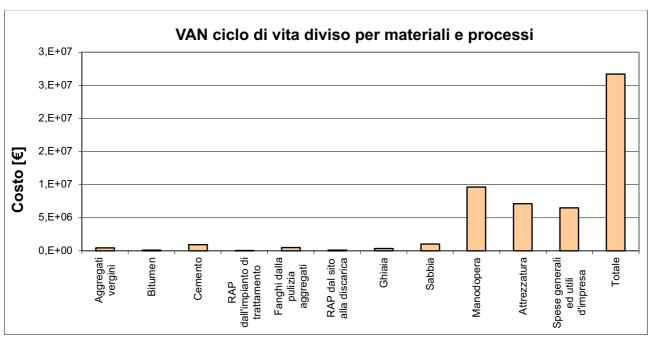


Grafico 3.14 VAN per materiali e processi CG per un conglomerato di 200 mm

Materiali	VAN [€]
Aggregati vergini	450964
Bitume	87408
Cemento	946973
RAP dall'impianto di trattamento	20748
Fanghi dalla pulizia aggregati	498416
RAP dal sito alla discarica	104615
Ghiaia	369855
Sabbia	1008382
Manodopera	9620935
Attrezzature	7115695
Spese generali ed utile d'impresa	6474155
Total	26698145

Tabella 3.11 VAN per materiali e processi CG per un conglomerato di 200 mm

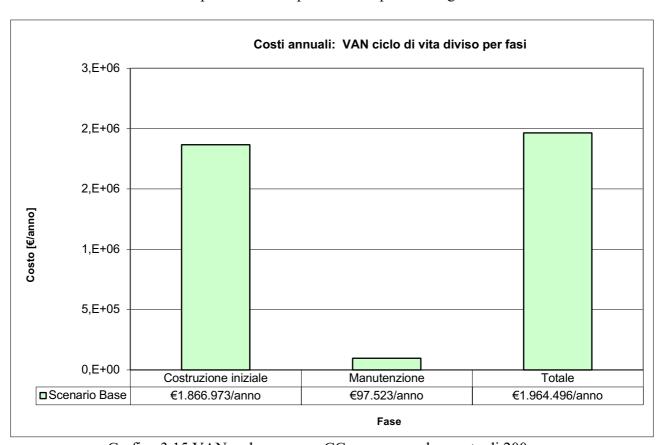


Grafico 3.15 VAN su base annua CG per un conglomerato di 200 mm

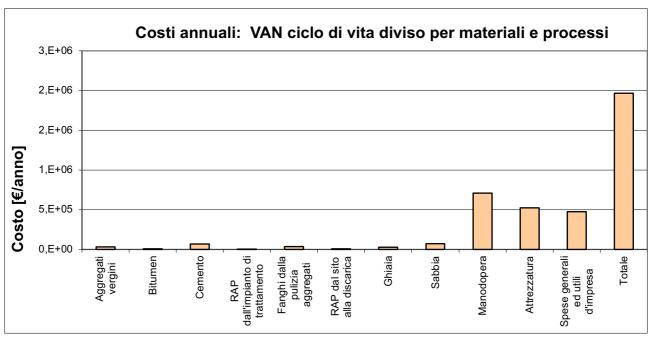


Grafico 3.16 VAN su base annua per materiali e processi CG per un conglomerato di 200 mm

Materiali	Costi annuali [€/anno]
Aggregati vergini	33183
Bitume	6432
Cemento	69680
RAP dall'impianto di trattamento	1527
Fanghi dalla pulizia aggregati	36674
RAP dal sito alla discarica	7698
Ghiaia	27215
Sabbia	74198
Manodopera	707925
Attrezzature	523585
Spese generali ed utile d'impresa	476380
Total	1964496

Tabella 3.12 VAN per materiali e processi su base annua CG per un conglomerato di 200 mm

3.1.3 CS

In questo caso i valori di input da inserire, che riguardano l'utilizzo di materiali per la costruzione iniziale e le varie fasi di manutenzione, cambiano, sia per un conglomerato da 50 mm che per uno da 200 mm. Ci si riferisce sempre alle tabelle dalla 3.1 alla 3.4 e i risultati sono riportati nell'allegato H.

I risultati economici per un conglomerato da 50 mm sono i seguenti.

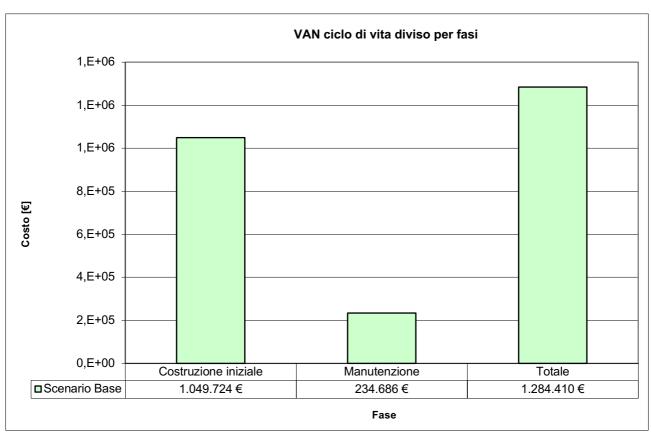


Grafico 3.17 VAN pavimentazione stradale CS per un conglomerato di 50 mm

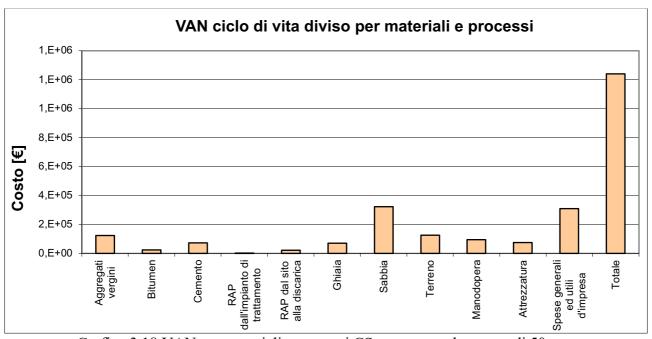


Grafico 3.18 VAN per materiali e processi CS per un conglomerato di 50 mm

Materiali	VAN [€]
Aggregati vergini	123092
Bitume	23858
Cemento	71652
RAP dall'impianto di trattamento	567
RAP dal sito alla discarica	22418
Ghiaia	70085
Sabbia	323226
Terreno	126360
Manodopera	94636
Attrezzature	75442
Spese generali ed utile d'impresa	308738
Totale	1240075

Tabella 3.13 VAN per materiali e processi CS per un conglomerato di 50 mm

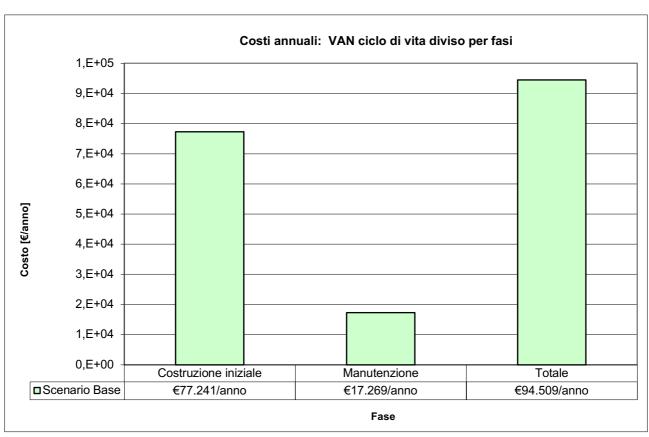


Grafico 3.19 VAN su base annua CS per un conglomerato di 50 mm

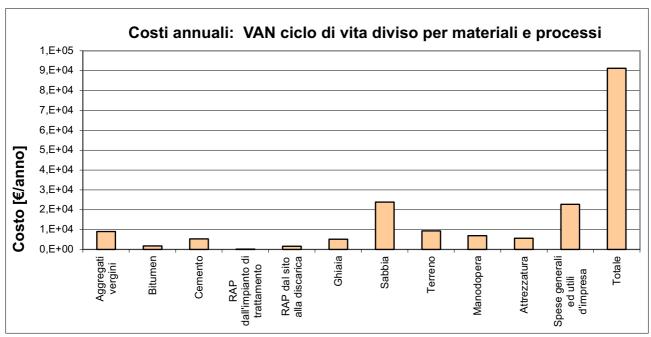


Grafico 3.20 VAN su base annua per materiali e processi CS per un conglomerato di 50 mm

Materiali	Costi annuali [€/anno]
Aggregati vergini	9057
Bitume	1756
Cemento	5272
RAP dall'impianto di trattamento	42
RAP dal sito alla discarica	1650
Ghiaia	5157
Sabbia	23784
Terreno	9298
Manodopera	6963
Attrezzature	5551
Spese generali ed utile d'impresa	22717
Totale	91247

Tabella 3.14 VAN per materiali e processi su base annua CS per un conglomerato di 50 mm

I risultati economici per un conglomerato da 200 mm sono i seguenti.

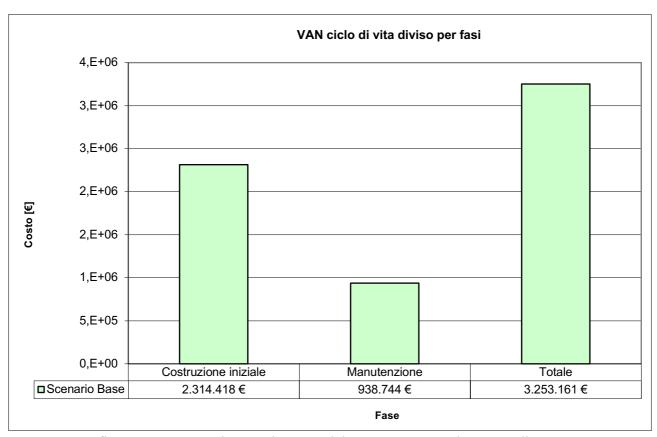


Grafico 3.21 VAN pavimentazione stradale CS per un conglomerato di 200 mm

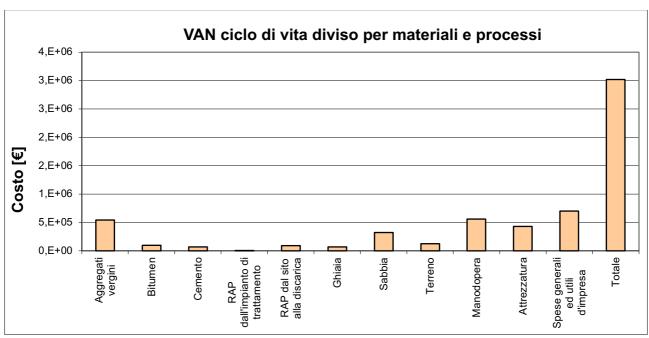


Grafico 3.22 VAN per materiali e processi CS per un conglomerato di 200 mm

Materiali	VAN [€]
Aggregati vergini	543735
Bitume	98984
Cemento	71652
RAP dall'impianto di trattamento	2270
RAP dal sito alla discarica	89671
Ghiaia	70085
Sabbia	323226
Terreno	126360
Manodopera	559993
Attrezzature	432167
Spese generali ed utile d'impresa	701416
Totale	3019560

Tabella 3.15 VAN per materiali e processi CS per un conglomerato di 200 mm

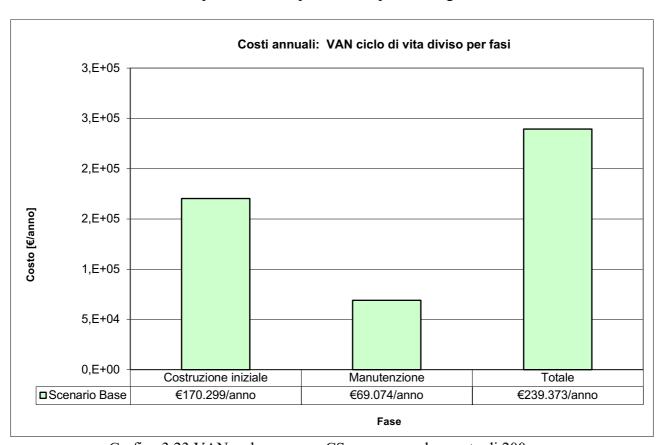


Grafico 3.23 VAN su base annua CS per un conglomerato di 200 mm

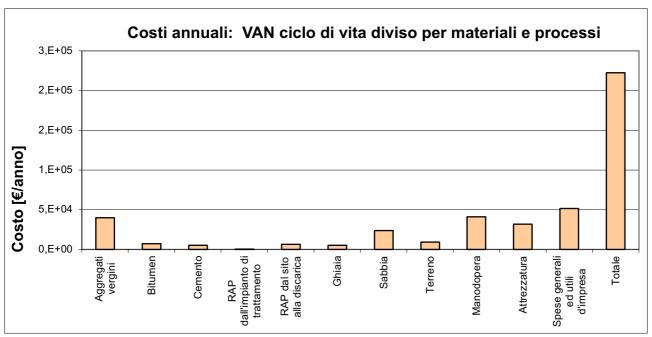


Grafico 3.20 VAN su base annua per materiali e processi CS per un conglomerato di 200 mm

Materiali	Costi annuali [€/anno]				
Aggregati vergini	40009				
Bitume	7283				
Cemento	5272				
RAP dall'impianto di trattamento	167				
RAP dal sito alla discarica	6598				
Ghiaia	5157				
Sabbia	23784				
Terreno	9298				
Manodopera	41205				
Attrezzature	31800				
Spese generali ed utile d'impresa	51611				
Totale	222185				

Tabella 3.16 VAN per materiali e processi su base annua CS per un conglomerato di 200 mm

3.2 Risultati ambientali

strategie di manutenzione.

In questo paragrafo si vogliono valutare gli impatti ambientali che ha la pavimentazione durante le fasi di costruzione e manutenzione, a loro volta suddivisi nelle fasi di produzione dei materiali, trasporto e processi (attrezzature).

Gli aspetti che vengono analizzati sono il consumo di energia e di acqua, la produzione di anidride carbonica, ossidi di azoto, particolato (PM), anidride solforosa, monossido di carbonio, mercurio, piombo, rifiuti pericolosi e sostanze tossiche cancerogene e non cancerogene.

I più importanti sono l'anidride carbonica, la principale causa di gas serra, i PM che sono polveri finissime disperse nell'aria che derivano da molti processi di produzione, il monossido di carbonio, un gas velenoso e il mercurio che deriva dagli scarti industriali in grado di inquinare acque e terre. Il software valuta i parametri sopra menzionati per i processi di manutenzione e costruzione, per il trasporto e la produzione dei materiali nelle due fasi, suddivisi in base allo strato che si analizza. Infine si aggregano tutti i risultati fino ad ottenere delle tabelle riassuntive e dei grafici. Da qui sarà possibile avere un'idea generale di come impatta l'opera sull'ambiente e se è necessario, si può cercare di ridurre tali effetti andando a scegliere migliori materiali da utilizzare che richiedano minori processi di lavorazione, metodi di trasporto più efficienti oppure diverse

Nel seguito sono pubblicati i risultati ambientali per le diverse tipologie di pavimentazione, mentre i grafici relativi sono riportati nell'allegato I.

		Energia [MJ]	Consumo d'Acqua [kg]	CO2 [Mg] = GWP	NOx [kg]	PM10 [kg]	SO2 [kg]	CO [kg]	Hg [g]	Pb [g]	RCRA Produzione Rifiuti Pericolosi [kg]	Potenziale Tossicità Umana (Cancerogena)	Potenziale Tossicità Umana (Non cancerogena)
Costruzione	Produzione Materiali	73218453	27550	5010	47156	27439	149698	17371	49	4606	134938		12186564303
Iniziale	Trasporto Materiali	4883954	832	365	20016	3899	1201	1668	4	164	35192	104691	128440009
IIIIZIAIE	Processi (Attrezzature)	1003016	171	75	1525	148	101	329	1	34	7227	0	0
	Produzione Materiali	7304997	1894	354	2958	1705	134228	1110	7	364	73352	1036951	1848124891
Manutenzione	Trasporto Materiali	857269	146	64	3414	675	205	285	1	29	6177	18376	22544771
	Processi (Attrezzature)	68603	12	5	123	9	8	27	0	0	0	0	0
	Produzione Materiali	80523450	29444	5364	50114	29144	283926	18482	56	4970	208289	4935007	14034689194
Totale	Trasporto Materiali	5741223	977	429	23430	4575	1406	1953	4	193	41369	123067	150984780
	Processi (Attrezzature)	1071619	182	80	1648	157	109	355	1	34	7227	0	0
	Totale	87336291	30604	5874	75192	33876	285441	20789	61	5197	256886	5058074	14185673975

Tabella 3.17 Risultati ambientali, GG, conglomerato di 50 mm

		Energia [MJ]	Consumo d'Acqua [kg]	CO2 [Mg] = GWP	NOx [kg]	PM10 [kg]	SO2 [kg]	CO [kg]	Hg [g]	Pb [g]	RCRA Produzione Rifiuti Pericolosi [kg]	Potenziale Tossicità Umana (Cancerogena)	Potenziale Tossicità Umana (Non cancerogena)
Costruziono	Produzione Materiali	96171625	33992	6180	55614	33230	470562	21119	74	5842	383988		18155964638
Costruzione Iniziale	Trasporto Materiali	5609957	955	419	22907	4455	1374	1909	4	189	40423	120253	147532713
IIIIZIaie	Processi (Attrezzature)	1120623	191	84	1731	157	114	373	1	38	8075	0	0
	Produzione Materiali	29219987	7576	1414	11832	6821	536913	4442	29	1457	293406	4147803	7392499564
Manutenzione	Trasporto Materiali	3429075	584	256	13658	2702	819	1138	2	115	24709	73505	90179086
	Processi (Attrezzature)	274414	47	21	493	35	33	106	0	0	0	0	0
	Produzione Materiali	125391613	41568	7594	67447	40051	1007475	25561	102	7299	677394	11395017	25548464202
Totale	Trasporto Materiali	9039033	1539	676	36565	7156	2194	3047	7	304	65132	193758	237711799
	Processi (Attrezzature)	1395037	238	105	2224	192	147	479	1	38	8075	0	0
	Totale	135825682	43344	8374	106235	47399	1009816	29087	110	7641	750601	11588775	25786176001

Tabella 3.18 Risultati ambientali, GG, conglomerato di 200 mm

		Energia	Consumo d'Acqua	CO2 [Mø]							RCRA Produzione	Potenziale	Potenziale
		[MJ]	[kg]	= GWP	NOx [kg]	PM10 [kg]	SO2 [kg]	CO [kg]	Hg [g]	Pb [g]	Rifiuti Pericolosi [kg]	Tossicità Umana	Tossicità Umana
		[]	1.01	• • • • • • • • • • • • • • • • • • • •								(Cancerogena)	(Non cancerogena)
Costruzione	Produzione Materiali	73747927	27461	5047	46479	28646	149274	17242	49	4580	134571	3773769	12243732629
Iniziale	Trasporto Materiali	4797183	817	359	19588	3816	1175	1632	3	161	34567	102831	126158074
IIIIZIAIE	Processi (Attrezzature)	981367	167	74	1597	154	106	344	1	33	7071	0	0
	Produzione Materiali	4869998	1263	236	1972	1137	89486	740	5	243	48901	691300	1232083261
Manutenzione	Trasporto Materiali	640792	109	48	2552	504	153	213	0	22	4617	13736	16851775
	Processi (Attrezzature)	45736	8	3	82	6	5	18	0	0	0	0	0
	Produzione Materiali	78617925	28723	5283	48452	29783	238759	17983	53	4823	183472	4465070	13475815890
Totale	Trasporto Materiali	5437974	926	407	22140	4320	1328	1845	4	183	39184	116567	143009850
	Processi (Attrezzature)	1027103	175	77	1679	160	111	362	1	33	7071	0	0
	Totale	85083002	29824	5767	72271	34263	240199	20190	58	5039	229728	4581637	13618825739

		Energia [MJ]	Consumo d'Acqua [kg]	CO2 [Mg] = GWP	NOx [kg]	PM10 [kg]	SO2 [kg]	CO [kg]	Hg [g]	Pb [g]	RCRA Produzione Rifiuti Pericolosi [kg]	Potenziale Tossicità Umana (Cancerogena)	Potenziale Tossicità Umana (Non cancerogena)
	Produzione Materiali	97921798	34523	6302	55999	34592	471265	21365	74	5919	384118		
Costruzione Iniziale	Trasporto Materiali	5524252	941	413	22484	4372	1349	1874	4	186	39806	118416	145278810
iniziale	Processi (Attrezzature)	1099189	187	83	1803	164	119	389	1	37	7920	0	0
	Produzione Materiali	9196970	2164	419	4099	1953	214195	1282	8	417	84030	1264779	2254041693
Manutenzione	Trasporto Materiali	1773620	302	133	7064	1389	424	589	1	60	12780	38019	46643307
	Processi (Attrezzature)	130255	22	10	236	17	16	51	0	0	0	0	0
	Produzione Materiali	107118769	36688	6721	60098	36545	685459	22648	82	6336	468148	8394139	20574341046
Totale	Trasporto Materiali	7297872	1243	546	29548	5761	1773	2462	5	245	52586	156435	191922117
	Processi (Attrezzature)	1229444	209	92	2039	180	135	439	1	37	7920	0	0
	Totale	115646084	38140	7359	91685	42486	687367	25549	88	6619	528654	8550574	20766263163

Tabella 3.20 Risultati ambientali, CG, conglomerato di 200 mm

		Energia [MJ]	Consumo d'Acqua [kg]	CO2 [Mg] = GWP	NOx [kg]	PM10 [kg]	SO2 [kg]	CO [kg]	Hg [g]	Pb [g]	RCRA Produzione Rifiuti Pericolosi [kg]	Potenziale Tossicità Umana (Cancerogena)	Potenziale Tossicità Umana (Non cancerogena)
Costruzione	Produzione Materiali	15746219	4451	964	7351	6510	110465	2888	12	804	93750	1388128	3537286641
Iniziale	Trasporto Materiali	4480039	763	335	17844	3475	1071	1487	3	151	32282	96033	117817722
IIIIZIAIE	Processi (Attrezzature)	893135	152	67	1454	144	96	313	1	30	6436	0	0
	Produzione Materiali	3652498	947	177	1479	853	67114	555	4	182	36676	518475	924062445
Manutenzione	Trasporto Materiali	532553	91	40	2121	418	127	177	0	18	3837	11416	14005277
	Processi (Attrezzature)	34302	6	3	62	4	4	13	0	0	0	0	0
	Produzione Materiali	19398718	5398	1140	8830	7363	177580	3444	15	986	130426	1906604	4461349087
Totale	Trasporto Materiali	5012593	853	375	19965	3894	1198	1664	4	169	36119	107448	131822999
	Processi (Attrezzature)	927437	158	70	1516	148	100	327	1	30	6436	0	0
	Totale	25338747	6410	1585	30310	11405	178878	5434	20	1185	172981	2014052	4593172086

Tabella 3.21 Risultati ambientali, CS, conglomerato di 50 mm

		1	T	ı	T		1	T					
		Energia	Consumo d'Acqua	CO2 [Mø]							RCRA Produzione	Potenziale	Potenziale
		[MJ]	[kg]	= GWP	NOx [kg]	PM10 [kg]	SO2 [kg]	CO [kg]	Hg [g]	Pb [g]	Rifiuti Pericolosi [kg]	Tossicità Umana	Tossicità Umana
		[1413]	[kg]	- GWP							Killuti Pelitolosi [kg]	(Cancerogena)	(Non cancerogena)
Costruzione	Produzione Materiali	38699392	10893	2133	15809	12300	431330	6636	36	2041	342800	4737286	9506686976
Iniziale	Trasporto Materiali	5206043	886	389	20735	4031	1244	1728	4	175	37513	111595	136910427
IIIIZIAIE	Processi (Attrezzature)	1010742	172	76	1660	153	110	358	1	34	7283	0	0
	Produzione Materiali	18528248	4556	894	7472	4900	354521	2679	17	870	172614	2493480	5367467352
Manutenzione	Trasporto Materiali	1982524	338	148	7896	1568	474	658	1	67	14285	42497	52137137
	Processi (Attrezzature)	168996	29	13	302	22	20	65	0	0	0	0	0
	Produzione Materiali	57227640	15450	3027	23282	17200	785851	9315	53	2911	515414	7230766	14874154327
Totale	Trasporto Materiali	7188567	1224	537	28631	5599	1718	2386	5	242	51798	154092	189047564
	Processi (Attrezzature)	1179738	201	89	1962	175	130	423	1	34	7283	0	0
	Totale	65595944	16874	3653	53875	22974	787698	12124	59	3187	574495	7384858	15063201891

Dalle tabelle precedenti si può notare come in ogni caso il consumo di energia per la produzione dei materiali sia molto elevata rispetto a quella prodotta dalle attività di trasporto oppure dai vari processi e relative attrezzature, sia per la costruzione che per la manutenzione. Inoltre in tutti i casi, l'energia consumata per la produzione di bitume è sempre superiore a quella degli aggregati perché la lavorazione e soprattutto l'estrazione del petrolio sono attività molto complesse e laboriose che richiedono impianti particolari.

Stessa situazione per quanto riguarda il consumo d'acqua in cui c'è sempre una differenza di un ordine di grandezza

L'anidride carbonica è preponderante nelle fasi di produzione dei materiali rispetto a quelle di trasporto e lavorazione con le attrezzature. Per quanto riguarda la pavimentazione CS, si hanno elevate riduzioni di tali quantità perché, confrontando le tabelle 2.5 e 2.7, nel misto cementato non si ha la presenza del RAP che troviamo nel GEOMIX e inoltre le quantità di cemento che si utilizzeranno sono inferiori rispetto alla miscela cementizia auto-compattante. Invece lo strato di sottofondo in misto granulare non ha bisogno di molte lavorazioni bensì dell'utilizzo solo di macchine movimento terra che producono emissioni nettamente inferiori rispetto agli impianti che trattano fresato stradale o cemento.

La presenza degli ossidi di azoto ha lo stesso ordine di grandezza tra la produzione dei materiali e le fasi di trasporto per tutte le casistiche perché dipende dalle combustioni ad alta temperatura che avvengono nei motori dei veicoli. È l'unico gas che ha un andamento del genere.

L'anidride solforosa, il monossido di carbonio, il mercurio ed il piombo vengono prodotti principalmente dai processi che riguardano l'estrazione e la lavorazione del petrolio per la produzione di bitumi e cementi.

La pavimentazione, una volta costruita, è ricca di rifiuti pericolosi, primi fra tutti gli strati in conglomerato bituminoso che, alla fine della vita utile, non possono essere semplicemente conferiti in discarica. Questo perché al loro interno contengono idrocarburi che possono avere effetti cancerogeni o mutageni sugli esseri viventi e quindi quelli più pericolosi vengono inceneriti, mentre quelli meno pericolosi potranno successivamente essere riutilizzati.

Si può affermare che per un'opera stradale la costruzione e la manutenzione del conglomerato bituminoso, in particolare il bitume, influenza molto i risultati finali dell'analisi specialmente da un punto di vista ambientale. Per questo si dovranno usare materiali innovativi oppure il fresato proveniente da pavimentazioni stradali che permette quindi di usare minori quantità di aggregati vergini e di bitume. Ciò impatta anche sulle attività di smaltimento di tale rifiuto che, come accennato precedentemente, devono essere scelte opportunamente.

3.3 Confronti tra pavimentazioni aventi stessi spessori

3.3.1 Spessore di 50 mm del conglomerato bituminoso

Dai seguenti grafici e tabelle si può notare che le pavimentazioni GG e CG hanno più o meno gli stessi costi e producono le stesse quantità di inquinanti, ma sono più costose da un punto di vista economico ed ambientale rispetto alla pavimentazione CS.

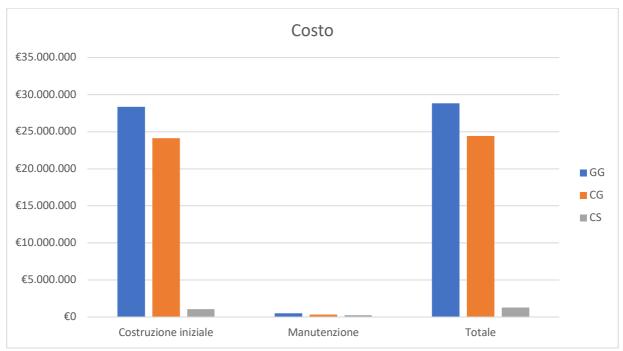


Grafico 3.21 Costi per le tre tipologie di pavimentazione con conglomerato di 50 mm

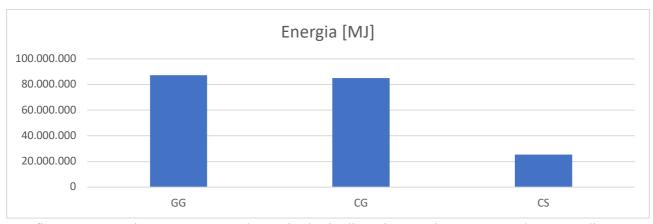


Grafico 3.22 Energia consumata per le tre tipologie di pavimentazione con conglomerato di 50 mm

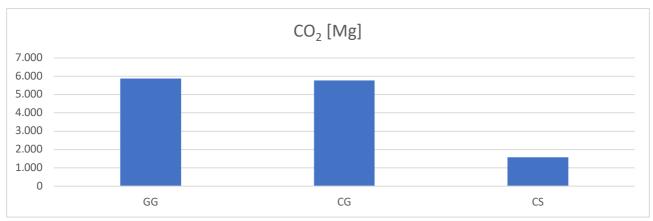


Grafico 3.23 Anidride carbonica prodotta per le tre tipologie di pavimentazione con conglomerato di 50 mm

Nel seguente grafico si notano le riduzioni nel consumo di energia e nella produzione di anidride carbonica rispetto alla condizione peggiore, ossia la soluzione GG

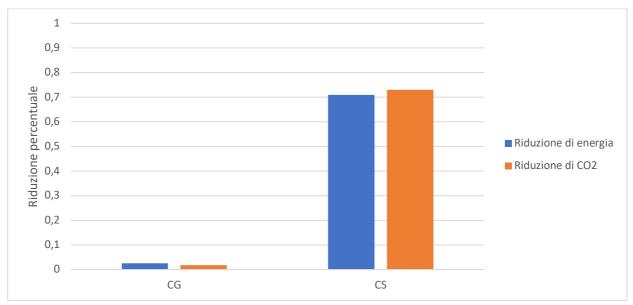


Grafico 3.24 Riduzioni di consumo di energia e nella produzione di anidride carbonica con un conglomerato di 50 mm

Questo accade in quanto i tipi GG e CG hanno strati di fondazione e sottofondo molto più complessi rispetto a quelli del tipo CS, di conseguenza, i primi, richiedono maggiori quantità di processi produttivi. Altra motivazione può essere il fatto che le attività di manutenzione sono meno frequenti.

	GG	CG	CS
Energia [MJ]	87336291	85083002	25338747
Consumo d'acqua [kg]	30604	29824	6410
CO ₂ [Mg] = Effetto serra	5874	5767	1585
NO _x [kg]	75192	72271	30310
PM10 [kg]	33876	34263	11405
SO ₂ [kg]	285441	240199	178878
CO [kg]	20789	20190	5434
Hg [g]	61	58	20
Pb [g]	5197	5039	1185
RCRA Generazione rifiuti pericolosi [kg]	256886	229728	172981
Potenziale tossicità umana (Cancerogeno)	5058074	4581637	2014052
Potenziale tossicità umana (Non cancerogeno)	14185673975	13618825739	4593172086

Tabella 3.23 Comparazione risultati ambientali per conglomerato da 50 mm

Quando si comparano i risultati della tabella precedente si può ragionare sull'utilizzo dei materiali riciclati, ma per un certo livello di dettaglio: il RAP. In molti studi si nota che all'aumentare della presenza di tale materiale, tutte le emissioni ambientali e i costi vanno a diminuire. Nel nostro caso si ha una tendenza inversa poiché quello che cambia da una pavimentazione all'altra è la fondazione ed il sottofondo che tuttavia, sono costituiti da tanti altri materiali oltre che dal fresato, mentre gli strati di conglomerato bituminoso hanno tutti lo stesso spessore e le stesse quantità di RAP. Nel caso in cui in quest'ultimo strato cambiano le percentuali di riutilizzo, si potrebbe manifestare il trend descritto precedentemente.

3.3.2 Spessore di 200 mm del conglomerato bituminoso

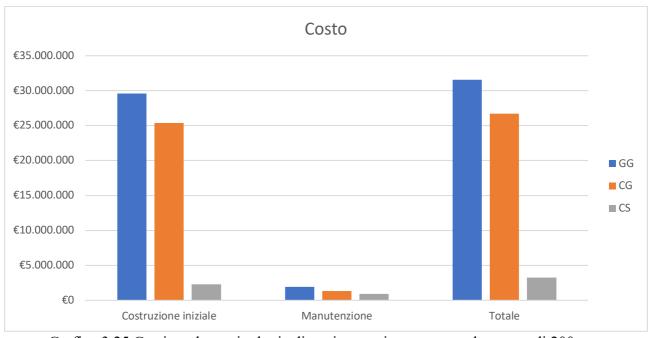


Grafico 3.25 Costi per le tre tipologie di pavimentazione con conglomerato di 200 mm

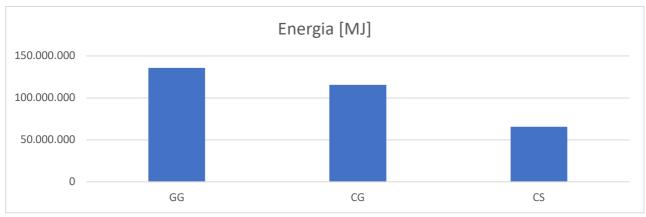


Grafico 3.26 Energia consumata per le tre tipologie di pavimentazione con conglomerato di 200 mm

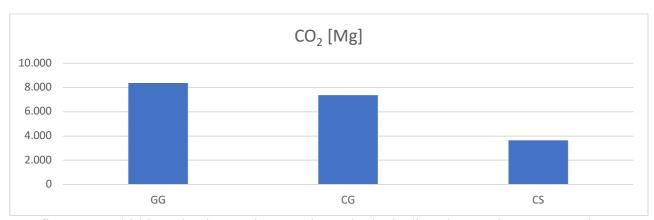


Grafico 3.27 Anidride carbonica prodotta per le tre tipologie di pavimentazione con conglomerato di 200 mm

I trend dei tre grafici precedenti sono gli stessi di quelli riportati nel paragrafo 3.3.1. Cambiano solo le quantità in quanto cambia lo spessore del conglomerato.

Nel seguente grafico si notano le riduzioni nel consumo di energia e nella produzione di anidride carbonica rispetto alla condizione peggiore, ossia la soluzione GG

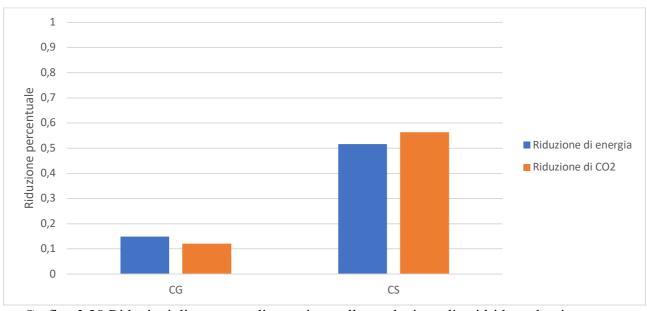


Grafico 3.28 Riduzioni di consumo di energia e nella produzione di anidride carbonica con un conglomerato di 200 mm

Quindi per la CG è aumentata la differenza con la pavimentazione GG, mentre è diminuita quella della CS sempre rispetto alla GG. Questo è l'effetto che produce l'aumento di spessore del conglomerato bituminoso.

	GG	CG	CS
Energia [MJ]	135825682	115646084	65595944
Consumo d'acqua [kg]	43344	38140	16874
CO ₂ [Mg] = Effetto serra	8374	7359	3653
NO _x [kg]	106235	91685	53875
PM10 [kg]	47399	42486	22974
SO ₂ [kg]	1009816	687367	787698
CO [kg]	29087	25549	12124
Hg [g]	110	88	59
Pb [g]	7641	6619	3187
RCRA Generazione rifiuti pericolosi [kg]	750601	528654	574495
Potenziale tossicità umana (Cancerogeno)	11588775	8550574	7384858
Potenziale tossicità umana (Non cancerogeno)	25786176001	20766263163	15063201891

Tabella 3.24 Comparazione risultati ambientali per conglomerato da 200 mm

3.4 Analisi conclusive

Nella seconda parte del presente lavoro di tesi si è svolta un'analisi LCA con il software PaLATE e per ora è uno di quei pochi strumenti utili per fare un'analisi semplificata per valutare l'intero ciclo di vita dell'opera, perché in esso sono stati raccolti molti dati, altrimenti costosi, in termini di tempo, da reperire.

Attualmente questi strumenti si stanno sviluppando anche in Europa perché si guarda alle opere stradali con un approccio diverso: esse devono essere sostenibili da un punto di vista sia economico che ambientale oltre che fornire un servizio pubblico.

Il software PaLATE ha origini americane, quindi è necessario modificare qualche informazione al suo interno, anche se quelle riguardanti i processi produttivi e le macchine sono state mantenute. Inoltre in esso collaborano tutti i vari settori che sono necessari per la costruzione di un'opera stradale come l'ingegneria civile, la produzione dei materiali e il settore ambientale e di riciclaggio. Dalle applicazioni studiate in precedenza risulta che le attività di manutenzione rappresentano una piccola parte di costo se confrontata con l'attività di costruzione iniziale e che la produzione di materiali, specialmente quella di bitume, è tra le più impattanti a livello ambientale.

In seguito all'analisi degli scenari studiati si può dire che in ogni caso la soluzione che porta con sé più benefici è la pavimentazione CS indipendentemente dallo spessore del conglomerato bituminoso.

Conclusioni e studi futuri

Nel presente lavoro di tesi si è parlato del progetto strutturale della pavimentazione flessibile che verrà molto probabilmente usata per la seconda canna del tunnel del Fréjus e a ciò si è legata anche un'analisi LCA che valuta l'impatto economico ed ambientale che ha l'opera. Quindi, una volta selezionati i dati di input, per tre tipi di pavimentazioni flessibili, si sono considerate diverse combinazioni di spessori al fine di valutarne, per ciascuna, il numero di carichi che sono in grado di sopportare facendo uso di due metodi meccanicistico-empirici: il metodo sud africano ed il metodo australiano.

Siccome nella parte 1 si è applicato il metodo allo stesso tipo di pavimentazione con gli stesi spessori, confrontando i valori finali ottenuti si può affermare che tra i due metodi si ha un ordine di grandezza di differenza, inoltre si può dire che il metodo sud africano tende in generale a sottostimare il numero di passaggi. Quest'ultima affermazione è deducibile andando a confrontare le tabelle 5.16, 5.17 e 5.18 con le tabelle 5.46, 5.47 e 5.48.

Per il metodo sud africano la pavimentazione più opportuna è quella di tipo CG avente il conglomerato e la fondazione lo spessore di 200 mm. Tuttavia è necessario affinare il metodo perché si è riscontrato che per pavimentazioni di tipo GG e CG, si ha una diminuzione del numero ammissibile di passaggi all'aumentare dello spessore generale della pavimentazione. Il motivo di ciò può essere legato al fatto che lo strato di fondazione ha un modulo elastico che varia in base allo spessore della struttura. Una possibile risoluzione, per studi futuri, è quella di andare a considerare un comportamento non lineare di tale strato usando una procedura iterativa che prevede di dividerlo in più parti e per ciascuno di esse determinare un modulo elastico. Successivamente la struttura va implementata in BISAR e poi gli stati di deformazione e tensione devono essere trattati nuovamente con il metodo sud africano.

Per il metodo australiano potrei usare sia una combinazione di spessori 200-200 che una 100-300 per la tipologia CG, quest'ultima meno costosa. Tuttavia anche in questo caso è necessario affinare il metodo perché si è riscontrato che per pavimentazioni di tipo GG, CG e CS, si ha una diminuzione del numero ammissibile di passaggi all'aumentare dello spessore generale della pavimentazione. Il motivo di ciò può essere legato al fatto che lo strato di fondazione ha un modulo elastico che varia in base allo spessore della struttura. Una possibile risoluzione, per studi futuri, è quella di andare a considerare un comportamento non lineare di tale strato usando una procedura iterativa che prevede di dividerlo in più parti e per ciascuno di esse determinare un modulo elastico. Successivamente la struttura va implementata in BISAR e poi gli stati di deformazione e tensione devono essere trattati nuovamente con la normativa australiana.

Per la valutazione degli impatti ambientali e di costo che ha la pavimentazione, si adotta il software PaLATE che offre la possibilità di compiere un'indagine speditiva che altrimenti richiederebbe molto tempo. Si è deciso di compiere lo studio per ogni tipologia e considerando solo gli spessori che portano un traffico inferiore a 10 milioni di assi standard e superiore a 30.

Come già accennato la soluzione migliore è la pavimentazione CS per i casi analizzati nella parte 2. Nel caso in cui si vogliono collegare le due parti, si consiglia di andare a considerare per le tre tipologie di pavimentazione solo quelle con uno spessore totale tra conglomerato e fondazione pari a 400 mm (per motivi di mantenimento delle quote di progetto) e quelle che rispettano il traffico di progetto. Per ciascuna di esse, infine, compiere l'analisi LCA. Successivamente cercare la soluzione che abbia il minor impatto sull'ambiente.

Per il metodo sud africano risulterebbe ottimale la soluzione CG con spessori 200-200, in quanto è l'unica a soddisfare i requisiti della prima parte.

Per quello australiano le pavimentazioni che rispettano le due condizioni della parte progettuale sono elencati nella seguente tabella.

GG	200 – 200
CG	100 - 300
	200 - 200
CS	200 - 200

Tabella 3.25 Pavimentazioni che soddisfano le condizioni della parte 1 (Austroads)

La soluzione migliore è la CS, ma, considerando che la pavimentazione verrà impiegata nel tunnel del Fréjus la soluzione ottimale è la CG con spessori 200-200 perché migliore da un punto di vista di materiali rispetto alla CS e da un punto di vista dell'impatto economico ed ambientale rispetto all GG. Per studi futuri sarebbe utile confrontare questa soluzione con la pavimentazione CG con spessori 100-300 (manca solo l'analisi LCA).

In seguito, sempre in ulteriori studi futuri, si può andare anche ad effettuare l'analisi del ciclo di vita considerando diverse percentuali di riutilizzo del fresato stradale nelle fasi di manutenzione.

Bibliografia

- [1] C. Caliendo, «Local calibration and implementation of mechanistic-empirical pavement design guide for flexible pavement design,» vol. 138, n. 3, pp. 348-360, 2012.
- [2] «Viamichelin,» [Online]. Available: https://www.viamichelin.it. [Consultato il giorno 9 Settembre 2019].
- [3] Wikipedia, «Wikipedia,» 12 Agosto 2019. [Online]. Available: https://it.wikipedia.org/wiki/Traforo_stradale_del_Frejus. [Consultato il giorno 7 Settembre 2019].
- [4] SITAF S.p.A, «SITAF tunnel Frejus,» [Online]. Available: http://www.sitaftunnelfrejus.it. [Consultato il giorno 2019 Settembre 8].
- [5] OTI Nord-Ovest, «OTI Nord-Ovest,» 28 Dicembre 2018. [Online]. Available: http://www.otinordovest.it/progetti/traforo_di_sicurezza_del_frejus. [Consultato il giorno 8 Settembre 2019].
- [6] P. P. Riviera, E. Choorackal e E. Santagata, *Performance evaluation of innovative and sustainable pavement solutions for road tunnels*, Torino, 2019.
- [7] CNR, Bollettino ufficiale, Norme tecniche, Roma: CNR, 1995.
- [8] SHELL, BISAR 3.0 User Manual, SHELL, 1998.
- [9] H. Theyse e M. Muthen, «Pavement analysis and design software (PADS) based on the South African Mechanistic-empirical design method,» CSIR, Pretoria.
- [10] M. Michael, Guide to pavement technology part 2: pavement structural design, Sydney: Austroads Ltd., 2017.
- [11] Austroads 2015b, The influence of multiple-axle group loads on flexible pavement design, Sydney: Austroads, AP-R486-15.
- [12] SITAF, Regolamento di circolazione del traforo autostradale del Frejus, Bardonecchia: SITAF, 2018.
- [13] ISO, ISO 14040, ISO, 2006.
- [14] M. Pasetto, E. Pasquini, G. Giacomello e A. Baliello, *Life-Cycle Assessment of road pavements containig marginal materials: comparative analysis based on a real case study*, Padova, 2015.
- [15] Regione Piemonte, Prezzi di riferimento per opere e lavori pubblici nella Regione Piemonte Prezzario Regione Piemonte 2019, Torino, 2019.
- [16] ANAS, Elenco prezzi costi elementari, Roma: ANAS, 2017.
- [17] ANAS, Elenco prezzi Nuove costruzioni, manutenzione straordinaria, Roma: ANAS, 2018.
- [18] D. Manu, A guide on the basic principles of Life-Cycle Cost Analysis (LCCA) of pavements, Bruxelles: EUPAVE, 2018.
- [19] Università della California, Pavement Life-Cycle Assessment Tool for Environmental and Economic Effects (PaLATE), Berkeley, 2003.

Allegati

Allegato A

	Ę	50 - 200- 1000			
			GG	CG	CS
Fase 1	Conglomerato	α		17,4	17,4
		β		3,4	3,4
		SF	Tabella 5.3	2,2225	2,2225
		$\epsilon_{t \text{ bottom}}$ (µstrain)		62,91	52,09
		Nf		3,83E+08	1,01E+09
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	1,89	1,89	1,89
		$\epsilon_{t \text{ bottom}}$ (µstrain)	19,53	28,68	168,20
		Neff	7,52E+06	6,18E+06	6,16E+05
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	121,5	119	346,7
		Npd	2,85E+12	3,50E+12	7,95E+07
Fase 2	Conglomerato	α	17,4	17,4	17,4
		β	3,4	3,4	3,4
		SF	2,2225	2,2225	2,2225
		$\varepsilon_{t \text{ bottom}}$ (µstrain)	310,40	196,40	192,60
		Nf	1,09E+05	1,13E+06	1,25E+06
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	214,8	226,7	203,29
		σ₃ (kPa)	26,96	23,11	0
		F	1,12	1,14	0,69
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	2,54E+06	2,89E+06	1,88E+05
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	139,8	139,9	448,5
		Npd	7,00E+11	6,95E+11	6,06E+06
Combinazione	Conglomerato	R11		3,77E+08	1,01E+09
	Fondazione	R21		-	0,00E+00
	Sottofondo	R31		-	7,89E+07
	Conglomerato	F1		339,06	805,98
	Fondazione	F2		-	3,28
	Sottofondo	F3		-	13,12
	Conglomerato	AR1	Tabella 5.10	1,11E+06	1,25E+06
	Fondazione	AR2		-	0,00E+00
	Sottofondo	AR3		-	6,01E+06
	Conglomerato	L1		-	1,01E+09
	Fondazione	L2		-	8,04E+05
	Sottofondo	L3	i	-	8,55E+07
	Vita pavimentazione			7,29E+06	8,04E+05

	50	0 - 300- 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	17,4	17,4	17,4
		β	3,4	3,4	3,4
		SF	2,2225	2,2225	2,2225
		$\epsilon_{t bottom}$ (µstrain)	179,60	62,79	50,52
		Nf	1,78E+06	3,87E+08	1,18E+09
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	3,65	3,65	3,65
		$\epsilon_{t \text{ bottom}}$ (µstrain)	15,17	20,66	109,70
		Neff	1,54E+07	1,36E+07	3,12E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	84,27	79,92	230,4
		Npd	1,10E+14	1,88E+14	4,73E+09
Fase 2	Conglomerato	α	17,4	17,4	17,4
		β	3,4	3,4	3,4
		SF	2,2225	2,2225	2,2225
		$\epsilon_{t \text{ bottom}}$ (µstrain)	320,40	199,80	188,80
		Nf	9,23E+04	1,03E+06	1,38E+06
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	158	164,4	153,19
		σ ₃ (kPa)	10,74	8,199	0
		F	1,06	1,11	0,91
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	1,75E+06	2,32E+06	7,26E+05
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	99,77	96,25	307,8
		Npd	2,04E+13	2,92E+13	2,61E+08
Combinazione	Conglomerato	R11	0	3,73E+08	1,17E+09
	Fondazione	R21	1,36E+07	-	0,00E+00
	Sottofondo	R31	1,10E+14	-	4,73E+09
	Conglomerato	F1	19,34	373,82	851,24
	Fondazione	F2	8,81	-	4,30
	Sottofondo	F3	5,41	-	18,11
	Conglomerato	AR1	0	9,98E+05	1,38E+06
	Fondazione	AR2	1,55E+06	-	0,00E+00
	Sottofondo	AR3	2,04E+13	-	2,61E+08
	Conglomerato	L1	1,78E+06	-	1,18E+09
	Fondazione	L2	1,70E+07	-	3,85E+06
	Sottofondo	L3	1,31E+14	-	4,99E+09
	Vita pavimentazione		1,78E+06	1,46E+07	3,85E+06

	50) - 400- 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	17,4	17,4	17,4
		β	3,4	3,4	3,4
		SF	2,2225	2,2225	2,2225
		$\epsilon_{t \text{ bottom}}$ (µstrain)	179,10	62,59	51,36
		Nf	1,81E+06	3,93E+08	1,08E+09
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	7,03	7,03	7,03
		$\epsilon_{t \text{ bottom}} \text{ (}\mu\text{strain)}$	11,30	14,90	75,63
		Neff	3,14E+07	2,88E+07	1,06E+07
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	62,99	59,6	167,9
		Npd	2,03E+15	3,53E+15	1,12E+11
Fase 2	Conglomerato	α	17,4	17,4	17,4
		β	3,4	3,4	3,4
		SF	2,2225	2,2225	2,2225
		$\epsilon_{t \text{ bottom}}$ (µstrain)	323,00	200,10	188,70
		Nf	8,85E+04	1,03E+06	1,39E+06
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	122,3	125,7	119,422
		σ₃ (kPa)	4,182	2,569	0
		F	1,14	1,22	1,17
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	2,74E+06	4,58E+06	3,42E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	75,58	72,75	230
		Npd	3,28E+14	4,80E+14	4,82E+09
Combinazione	Conglomerato	R11	0	3,64E+08	1,07E+09
	Fondazione	R21	2,96E+07	-	-
	Sottofondo	R31	2,03E+15	-	-
	Conglomerato	F1	20,45	382,91	780,23
	Fondazione	F2	11,47	-	-
	Sottofondo	F3	6,19	-	-
	Conglomerato	AR1	0	9,51E+05	1,37E+06
	Fondazione	AR2	2,58E+06	-	-
	Sottofondo	AR3	3,28E+14	-	-
	Conglomerato	L1	1,81E+06	-	-
	Fondazione	L2	3,40E+07	-	-
	Sottofondo	L3	2,36E+15	-	-
	Vita pavimentazione		1,81E+06	2,98E+07	1,19E+07

	10	0 - 200 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	4,6675	4,6675	4,6675
		$\epsilon_{tbottom}(\mu strain)$	162,60	86,64	90,17
		Nf	1,30E+06	2,61E+07	2,15E+07
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	1,89	1,89	1,89
		$\epsilon_{t bottom}$ (µstrain)	16,72	24,99	130,60
		Neff	7,83E+06	6,57E+06	1,15E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	90,74	89,23	263,7
		Npd	5,27E+13	6,24E+13	1,23E+09
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	4,6675	4,6675	4,6675
		$\varepsilon_{t bottom}$ (µstrain)	227,50	168,90	183,30
		Nf	2,62E+05	1,08E+06	7,34E+05
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	132,2	143,9	131,07
		σ ₃ (kPa)	22,94	17,98	0
		F	1,81	1,69	1,07
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	1,53E+08	7,45E+07	1,83E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	102,2	103	324,9
		Npd	1,61E+13	1,48E+13	1,52E+08
Combinazione	Conglomerato	R11	0	1,95E+07	2,04E+07
	Fondazione	R21	6,53E+06	-	-
	Sottofondo	R31	5,27E+13	-	-
	Conglomerato	F1	4,95	24,04	29,34
	Fondazione	F2	0,05	-	-
	Sottofondo	F3	3,28	-	-
	Conglomerato	AR1	0	8,11E+05	6,95E+05
	Fondazione	AR2	1,28E+08	-	-
	Sottofondo	AR3	1,61E+13	-	-
	Conglomerato	L1	1,30E+06	-	-
	Fondazione	L2	1,35E+08	-	-
	Sottofondo	L3	6,88E+13	-	-
	Vita pavimentazione		1,30E+06	7,38E+06	1,84E+06

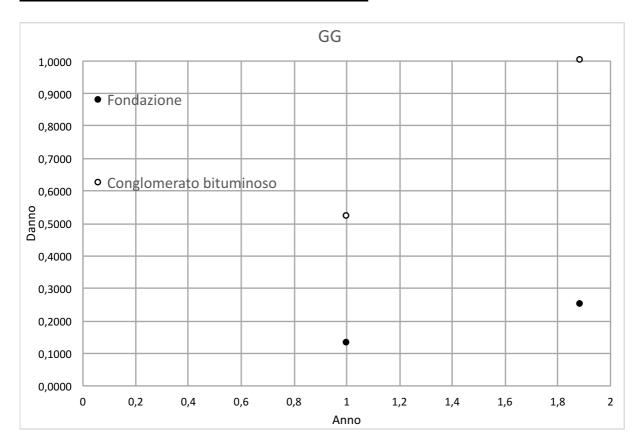
	100	0 - 300 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	4,6675	4,6675	4,6675
		$\epsilon_{t \text{ bottom}}$ (µstrain)	166,40	86,98	83,95
		Nf	1,16E+06	2,56E+07	3,03E+07
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	3,65	3,65	3,65
		$\epsilon_{t \text{ bottom}}$ (µstrain)	12,50	17,57	87,58
		Neff	1,60E+07	1,43E+07	4,50E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	67,74	66,16	189,1
		Npd	9,81E+14	1,24E+15	3,41E+10
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	4,6675	4,6675	4,6675
		$\epsilon_{t \text{ bottom}}$ (µstrain)	238,00	174,00	177,60
		Nf	2,12E+05	9,41E+05	8,53E+05
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	104,7	112,4	103,97
		σ₃ (kPa)	12,26	8,704	0
		F	1,75	1,69	1,35
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	1,06E+08	7,52E+07	9,73E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	78,3	78 <i>,</i> 55	245,9
		Npd	2,30E+14	2,23E+14	2,47E+09
Combinazione	Conglomerato	R11	0	1,13E+07	2,58E+07
	Fondazione	R21	1,49E+07	-	-
	Sottofondo	R31	9,81E+14	-	-
	Conglomerato	F1	5,50	27,18	35,48
	Fondazione	F2	0,15	-	-
	Sottofondo	F3	4,26	-	-
	Conglomerato	AR1	0	4,14E+05	7,26E+05
	Fondazione	AR2	9,85E+07	-	-
	Sottofondo	AR3	2,30E+14	-	-
	Conglomerato	L1	1,16E+06	-	-
	Fondazione	L2	1,15E+08	-	-
	Sottofondo	L3	1,21E+15	-	-
	Vita pavimentazione		1,16E+06	1,47E+07	5,23E+06

	10	0 - 400 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	4,6675	4,6675	4,6675
		$\epsilon_{t \text{ bottom}}$ (µstrain)	167,80	87,02	82,39
		Nf	1,12E+06	2,55E+07	3,31E+07
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	7,03	7,03	7,03
		$\epsilon_{t \text{ bottom}}$ (µstrain)	9,42	12,74	61,91
		Neff	3,23E+07	2,99E+07	1,33E+07
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	51,16	49,53	139,2
		Npd	1,62E+16	2,25E+16	7,30E+11
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	4,6675	4,6675	4,6675
		$\epsilon_{t \text{ bottom}}$ (µstrain)	242,90	176,00	175,40
		Nf	1,92E+05	8,91E+05	9,06E+05
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	91,38	94,73	85,75
		σ ₃ (kPa)	7,59	4,74	0
		F	1,74	1,77	1,63
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	1,01E+08	1,21E+08	5,42E+07
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	60,29	59,97	187,1
		Npd	3,14E+15	3,32E+15	3,80E+10
Combinazione	Conglomerato	R11	0,00E+00	0,00E+00	1,98E+07
	Fondazione	R21	3,11E+07	4,37E+06	-
	Sottofondo	R31	1,62E+16	2,25E+16	-
	Conglomerato	F1	5,82	28,64	36,56
	Fondazione	F2	0,32	0,25	-
	Sottofondo	F3	5,17	6,77	-
	Conglomerato	AR1	0,00E+00	0,00E+00	5,43E+05
	Fondazione	AR2	9,79E+07		
	Sottofondo	AR3	3,14E+15		
	Conglomerato	L1	1,12E+06	<u> </u>	
	Fondazione	L2	1,30E+08		
	Sottofondo	L3	1,94E+16		
	Vita pavimentazione		1,12E+06	2,55E+07	1,38E+07

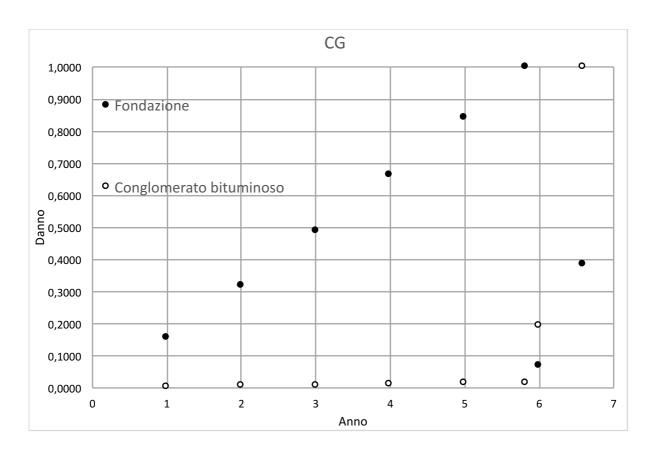
	15	0 - 200 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	7,1125	7,1125	7,1125
		$\epsilon_{t \text{ bottom}}$ (µstrain)	119,10	70,61	79,54
		Nf	8,72E+06	1,05E+08	5,97E+07
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	1,89	1,89	1,89
		$\epsilon_{t \text{ bottom}}$ (µstrain)	13,66	21,01	102,20
		Neff	8,17E+06	7,02E+06	1,83E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	72,12	74,16	214,2
		Npd	5,24E+14	3,97E+14	9,81E+09
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	7,1125	7,1125	7,1125
		$\epsilon_{t \text{ bottom}}$ (µstrain)	156,30	122,30	138,80
		Nf	2,39E+06	7,69E+06	4,21E+06
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	93,92	103,50	93,68
		σ₃ (kPa)	19,45	15,13	0
		F	2,49	2,27	1,49
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	9,35E+09	2,51E+09	2,36E+07
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	78,43	82,06	249,70
		Npd	2,27E+14	1,44E+14	2,12E+09
Combinazione	Conglomerato	R11	5,47E+05	9,82E+07	5,78E+07
	Fondazione	R21	-	-	-
	Sottofondo	R31	-	-	-
	Conglomerato	F1	3,65	13,69	14,18
	Fondazione	F2	-	-	-
	Sottofondo	F3	-	-	-
	Conglomerato	AR1	1,50E+05	7,17E+06	4,08E+06
	Fondazione	AR2	-	-	-
	Sottofondo	AR3	-	-	-
	Conglomerato	L1	-	-	-
	Fondazione	L2	-	-	-
	Sottofondo	L3	-	-	-
	Vita pavimentazione		8,32E+06	1,42E+07	5,91E+06

	15	0 - 300 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	7,1125	7,1125	7,1125
		$\epsilon_{t \text{ bottom}}$ (µstrain)	122,70	71,05	72,88
		Nf	7,57E+06	1,02E+08	9,05E+07
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	3,65	3,65	3,65
		$\epsilon_{t \text{ bottom}} \text{ (}\mu\text{strain)}$	10,11	14,81	70,84
		Neff	1,66E+07	1,50E+07	5,94E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	54,18	55,03	156,1
		Npd	9,15E+15	7,83E+15	2,32E+11
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	7,1125	7,1125	7,1125
		$\epsilon_{t \text{ bottom}}$ (µstrain)	164,20	126,50	134,00
		Nf	1,89E+06	6,55E+06	4,97E+06
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	81,51	87,51	76,95
		σ ₃ (kPa)	12,95	9,40	0
		F	2,39	2,28	1,82
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	4,99E+09	2,57E+09	1,66E+08
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	60,48	62,85	192,80
		Npd	3,05E+15	2,07E+15	2,81E+10
Combinazione	Conglomerato	R11	0,00E+00	8,72E+07	8,46E+07
	Fondazione	R21	9,01E+06	-	-
	Sottofondo	R31	9,15E+15	-	-
	Conglomerato	F1	4,01	15,61	18,19
	Fondazione	F2	0,00	-	-
	Sottofondo	F3	3,00	-	-
	Conglomerato	AR1	0,00E+00	5,58E+06	4,65E+06
	Fondazione	AR2	2,71E+09	-	-
	Sottofondo	AR3	3,05E+15	-	-
	Conglomerato	L1	7,57E+06	-	-
	Fondazione	L2	2,73E+09	-	-
	Sottofondo	L3	1,22E+16	-	-
	Vita pavimentazione		7,57E+06	2,06E+07	1,06E+07

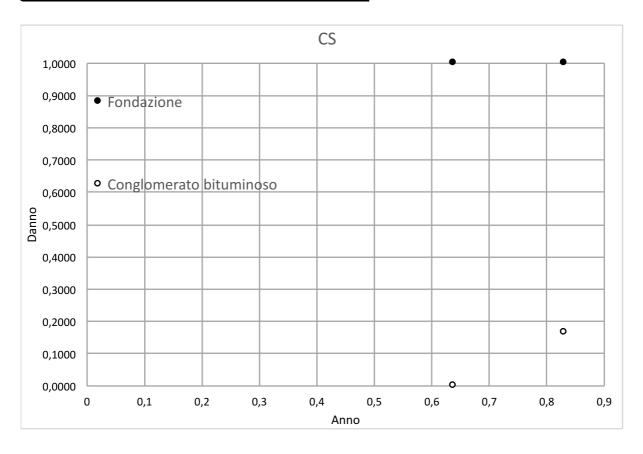
	15	0 - 400 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	7,1125	7,1125	7,1125
		$\epsilon_{\text{t bottom}} (\mu \text{strain})$	124,30	71,19	70,40
		Nf	7,12E+06	1,01E+08	1,07E+08
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	7,03	7,03	7,03
		$\epsilon_{t \text{ bottom}}$ (µstrain)	7,72	10,88	51,42
		Neff	3,31E+07	3,08E+07	1,58E+07
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	41,63	41,69	116,9
		Npd	1,28E+17	1,26E+17	4,19E+12
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	7,1125	7,1125	7,1125
		$\epsilon_{t \text{ bottom}}$ (µstrain)	168,40	128,60	131,70
		Nf	1,68E+06	6,05E+06	5,40E+06
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	69,1	74,44	66,40
		σ ₃ (kPa)	7,98	5,31	0
		F	2,40	2,33	2,11
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	5,51E+09	3,63E+09	9,39E+08
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	47,51	48,83	150,50
		Npd	3,41E+16	2,59E+16	3,35E+11
Combinazione	Conglomerato	R11	0,00E+00	7,04E+07	9,09E+07
	Fondazione	R21	2,59E+07	-	-
	Sottofondo	R31	1,28E+17	-	-
	Conglomerato	F1	4,25	16,72	19,75
	Fondazione	F2	0,01	-	-
	Sottofondo	F3	3,75	-	-
	Conglomerato	AR1	0,00E+00	4,21E+06	4,60E+06
	Fondazione	AR2	4,32E+09	-	-
	Sottofondo	AR3	3,41E+16	-	-
	Conglomerato	L1	7,12E+06	-	-
	Fondazione	L2	4,35E+09	-	-
	Sottofondo	L3	1,62E+17	-	-
	Vita pavimentazione		7,12E+06	3,50E+07	2,04E+07

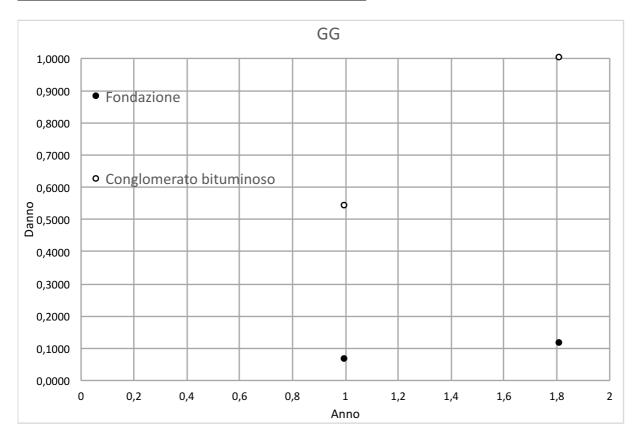

	20	00 - 200 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α		15,935	15,935
		β		3,3455	3,3455
		SF	Tabella 5.1	9,5575	9,5575
		$\epsilon_{t \text{ bottom}}$ (µstrain)		54,12	64,35
		Nf		5,02E+08	2,20E+08
	Fondazione	С		6,72	6,72
		d		7,49	7,49
		SF	Tabella 5.5	1,89	1,89
		$\epsilon_{t \text{ bottom}}$ (µstrain)		17,68	81,48
		Neff		7,41E+06	2,58E+06
	Sottofondo	а		33,3	33,3
		εν _{top} (μstrain)	Tabella 5.7	61,84	174,9
		Npd		2,44E+15	7,45E+10
Fase 2	Conglomerato	α		15,935	15,935
		β		3,3455	3,3455
		SF	Tabella 5.2	9,5575	9,5575
		$\epsilon_{t \text{ bottom}}$ (µstrain)		88,80	104,00
		Nf		4,74E+07	2,24E+07
	Fondazione	Ø-term	Tabella 5.6	4,02	4,02
		C-term		140	140
		σ_1 (kPa)		79,26	71,13
		σ₃ (kPa)		12,90	0
		F		2,89	1,97
		α		2,605122	2,605122
		β		3,480098	3,480098
		N		1,03E+11	4,05E+08
	Sottofondo	а		33,3	33,3
		εν _{top} (μstrain)	Tabella 5.8	65,93	194,70
		Npd		1,29E+15	2,55E+10
Combinazione	Conglomerato	R11		4,94E+08	2,17E+08
	Fondazione	R21		-	-
	Sottofondo	R31		-	-
	Conglomerato	F1		10,58	9,84
	Fondazione	F2		-	-
	Sottofondo	F3		-	-
	Conglomerato	AR1	Tabella 5.9	4,67E+07	2,21E+07
	Fondazione	AR2		-	-
	Sottofondo	AR3		-	-
	Conglomerato	L1		-	-
	Fondazione	L2		-	-
	Sottofondo	L3		-	-
	Vita pavimentazione			5,42E+07	2,47E+07

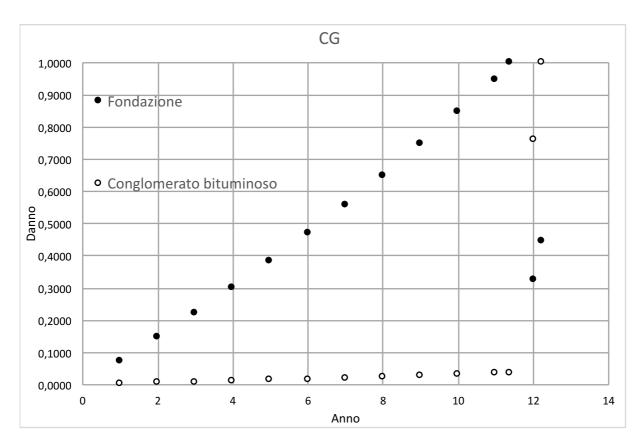
	20	0 - 300 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	9,5575	9,5575	9,5575
		$\epsilon_{t \text{ bottom}}$ (µstrain)	89,90	54,54	58,38
		Nf	4,47E+07	4,84E+08	3,50E+08
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	3,65	3,65	3,65
		$\epsilon_{t \text{ bottom}}$ (µstrain)	8,34	12,59	58,22
		Neff	1,70E+07	1,55E+07	7,31E+06
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	44,06	46,25	130,1
		Npd	7,24E+16	4,46E+16	1,44E+12
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	9,5575	9,5575	9,5575
		$\epsilon_{t bottom}$ (µstrain)	117,00	92,17	100,30
		Nf	1,28E+07	3,97E+07	2,66E+07
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	63,06	69,48	60,56
		σ₃ (kPa)	11,39	8,45	0
		F	3,07	2,85	2,31
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	2,92E+11	8,07E+10	3,18E+09
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	47,8	50,94	153,30
		Npd	3,20E+16	1,70E+16	2,78E+11
Combinazione	Conglomerato	R11	2,77E+07	4,68E+08	3,42E+08
	Fondazione	R21	-	-	-
	Sottofondo	R31	-	-	-
	Conglomerato	F1	3,51	12,17	13,17
	Fondazione	F2	-	-	-
	Sottofondo	F3	-	-	-
	Conglomerato	AR1	7,91E+06	3,85E+07	2,60E+07
	Fondazione	AR2	-	-	-
	Sottofondo	AR3	-	-	-
	Conglomerato	L1	-	-	-
	Fondazione	L2	-	-	-
	Sottofondo	L3	-	-	-
	Vita pavimentazione		2,49E+07	5,40E+07	3,33E+07

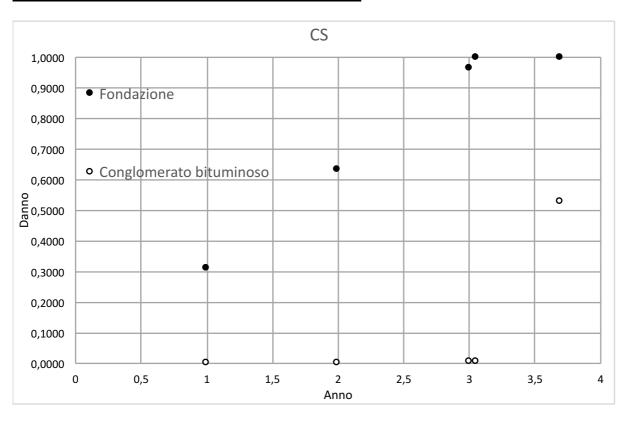

	20	0 - 400 - 1000			
			GG	CG	CS
Fase 1	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	9,5575	9,5575	9,5575
		$\epsilon_{t \text{ bottom}}$ (µstrain)	91,35	54,71	55,80
		Nf	4,15E+07	4,77E+08	4,34E+08
	Fondazione	С	6,72	6,72	6,72
		d	7,49	7,49	7,49
		SF	7,03	7,03	7,03
		$\epsilon_{t \text{ bottom}}$ (µstrain)	6,42	9,36	43,29
		Neff	3,37E+07	3,16E+07	1,80E+07
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	34,37	35,48	99,2
		Npd	8,67E+17	6,31E+17	2,16E+13
Fase 2	Conglomerato	α	15,935	15,935	15,935
		β	3,3455	3,3455	3,3455
		SF	9,5575	9,5575	9,5575
		$\epsilon_{t bottom}$ (µstrain)	120,50	93,93	98,36
		Nf	1,11E+07	3,63E+07	2,92E+07
	Fondazione	Ø-term	3,37	4,02	4,02
		C-term	120	140	140
		σ_1 (kPa)	53,68	59,32	52,39
		σ₃ (kPa)	7,47	5,18	0
		F	3,14	2,97	2,67
		α	2,605122	2,605122	2,605122
		β	3,480098	3,480098	3,480098
		N	4,63E+11	1,65E+11	2,77E+10
	Sottofondo	а	33,3	33,3	33,3
		εν _{top} (μstrain)	38,13	40,19	122,20
		Npd	3,07E+17	1,81E+17	2,69E+12
Combinazione	Conglomerato	R11	7,79E+06	4,45E+08	4,16E+08
	Fondazione	R21	-	-	-
	Sottofondo	R31	-	-	-
	Conglomerato	F1	3,74	13,12	14,88
	Fondazione	F2	-	-	-
	Sottofondo	F3	-	-	-
	Conglomerato	AR1	2,08E+06	3,39E+07	2,79E+07
	Fondazione	AR2	-	-	-
	Sottofondo	AR3	-	-	-
	Conglomerato	L1	-	-	-
	Fondazione	L2	-	-	-
	Sottofondo	L3	-	-	-
	Vita pavimentazione		3,58E+07	6,55E+07	4,60E+07

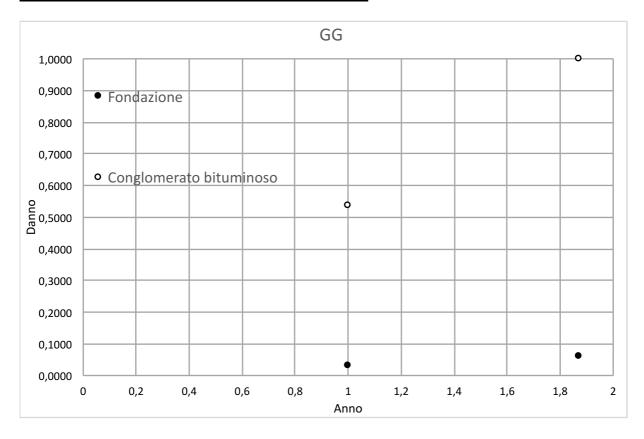
Allegato B

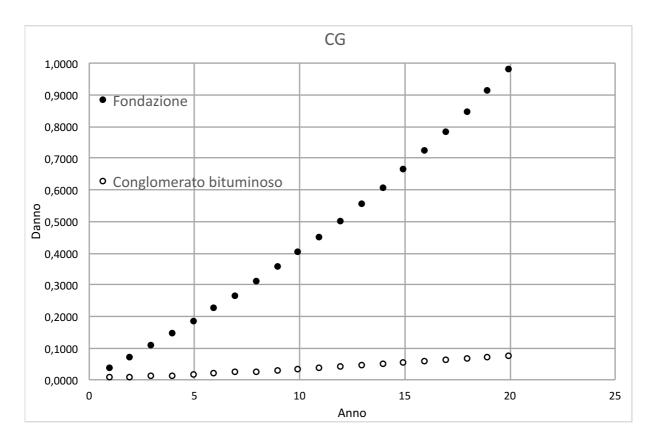

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,13	0,52
	1,9	0,25	1,00

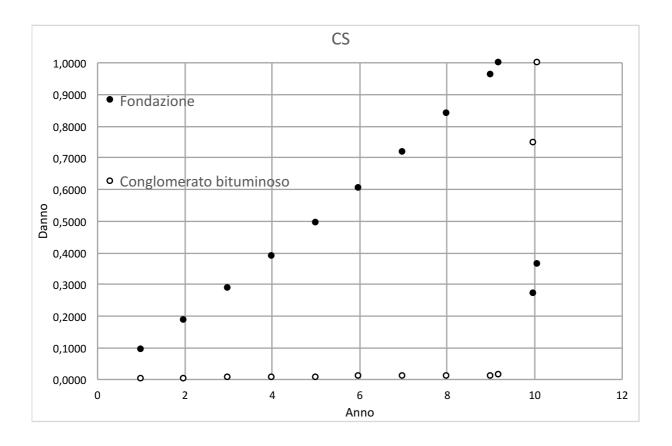

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,16	0,00
	2	0,32	0,01
	3	0,49	0,01
	4	0,66	0,01
	5	0,84	0,01
Fase 2	5,8	1,00	0,02
	6	0,07	0,19
	6,6	0,38	1,00

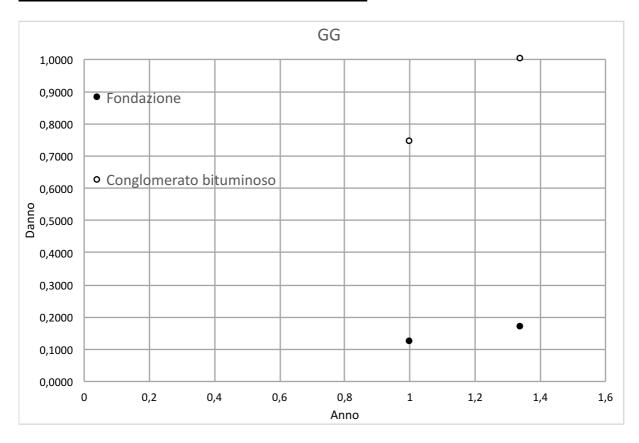

CS	Anni	Danno_f	Danno_c
Fase 1	0,6	1	0,0007
Fase 2	0,8	1	0,17

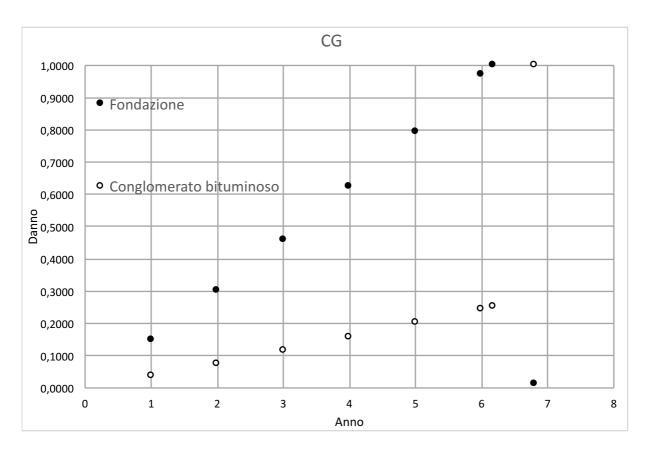

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,54
	1,8	0,12	1,00

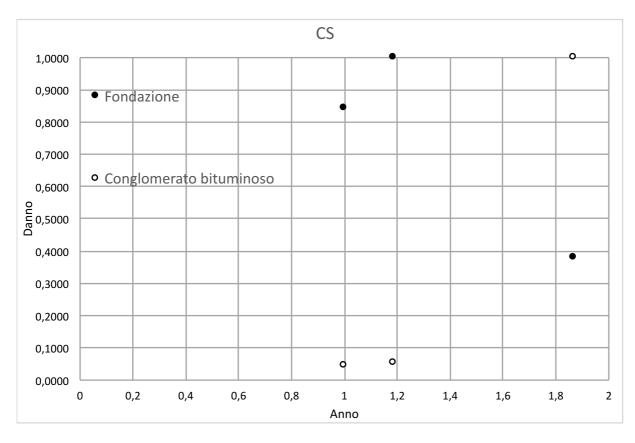

Anni	Danno_f	Danno_c
1	0,07	0,003
2	0,14	0,005
3	0,22	0,008
4	0,30	0,01
5	0,38	0,01
6	0,47	0,02
7	0,56	0,02
8	0,65	0,02
9	0,75	0,03
10	0,85	0,03
11	0,95	0,03
11,4	1	0,04
12	0,32	0,76
12,2	0,45	1
	1 2 3 4 5 6 7 8 9 10 11 11,4 12	1 0,07 2 0,14 3 0,22 4 0,30 5 0,38 6 0,47 7 0,56 8 0,65 9 0,75 10 0,85 11 0,95 11,4 1 12 0,32

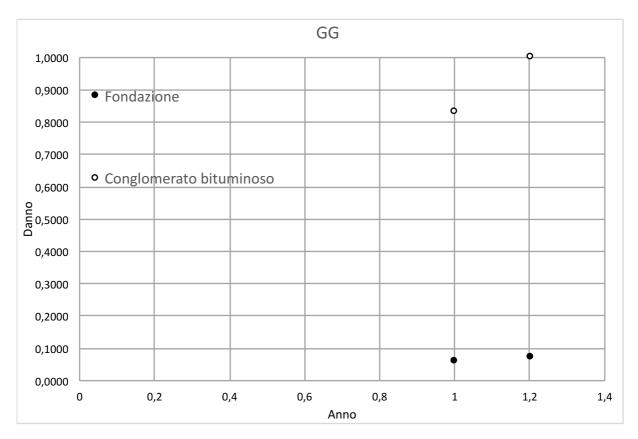

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,31	0,0008
	2	0,63	0,0017
	3	0,96	0,0026
Fase 2	3,1	1,00	0,0027
	3,7	1,00	0,53

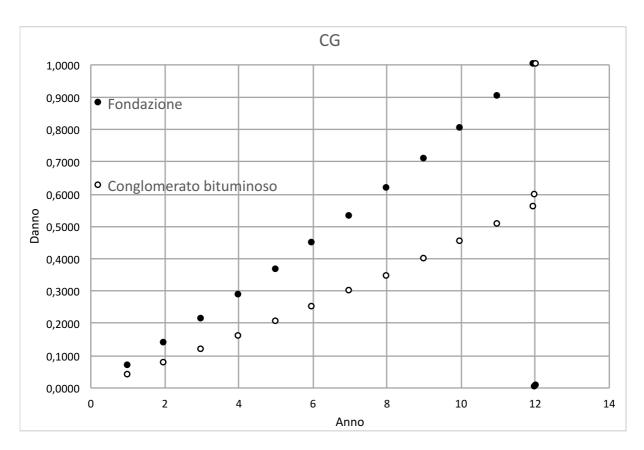

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,53
	1,9	0,06	1,00

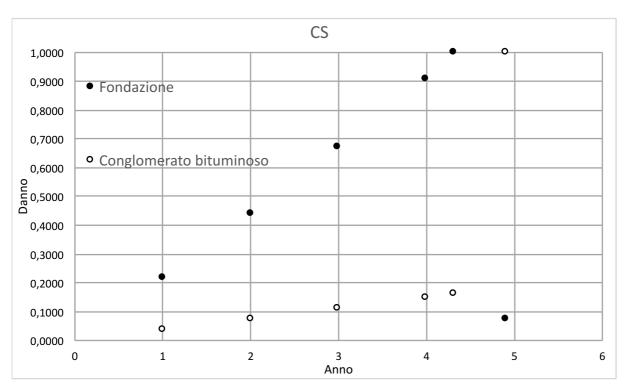

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,002
	2	0,07	0,005
	3	0,10	0,008
	4	0,14	0,010
	5	0,18	0,013
	6	0,22	0,016
	7	0,26	0,019
	8	0,31	0,023
	9	0,35	0,026
	10	0,40	0,029
	11	0,45	0,033
	12	0,50	0,037
	13	0,55	0,040
	14	0,60	0,044
	15	0,66	0,048
	16	0,72	0,053
	17	0,78	0,057
	18	0,84	0,062
	19	0,91	0,067
	20	0,98	0,072

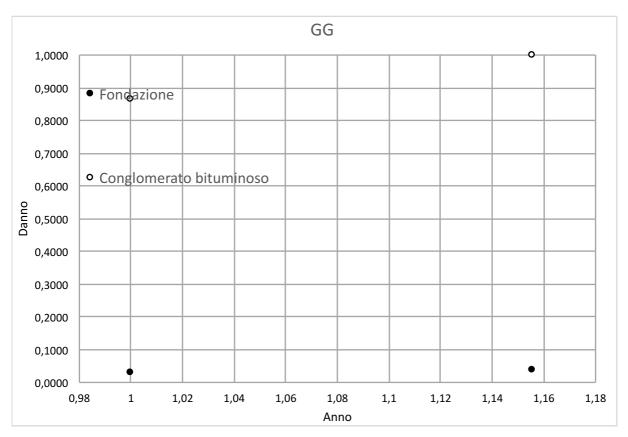

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,09	0,00
	2	0,19	0,00
	3	0,29	0,00
	4	0,39	0,00
	5	0,49	0,01
	6	0,60	0,01
	7	0,72	0,01
	8	0,84	0,01
	9	0,96	0,01
Fase 2	9,2	1,00	0,01
	10	0,27	0,74
	10,1	0,36	1,00

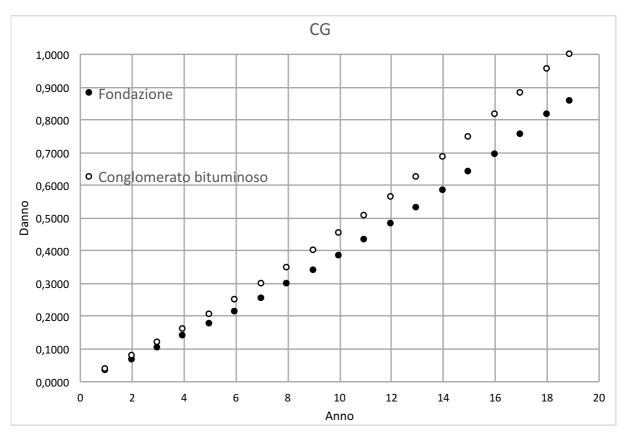

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,12	0,74
	1,3	0,17	1,00

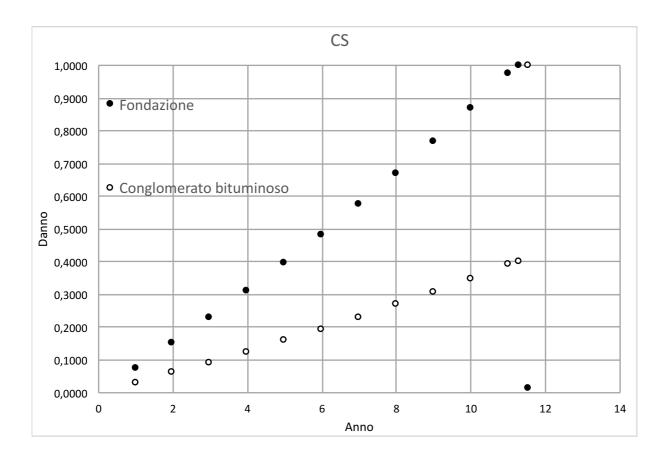

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,15	0,04
	2	0,30	0,08
	3	0,46	0,12
	4	0,62	0,16
	5	0,79	0,20
	6	0,97	0,24
Fase 2	6,2	1,00	0,25
	6,8	0,01	1,00

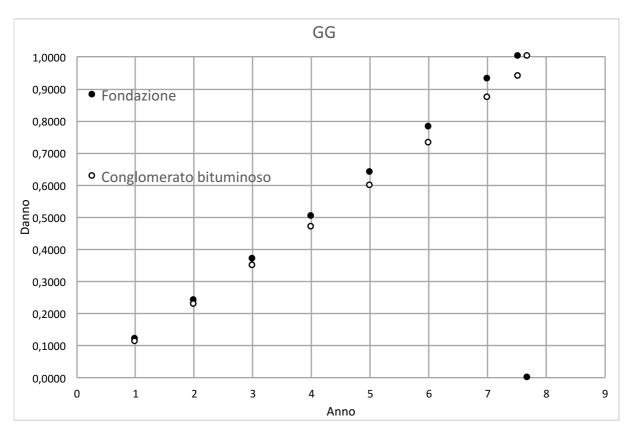

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,84	0,04
Fase 2	1,2	1,00	0,05
	1,9	0,38	1,00

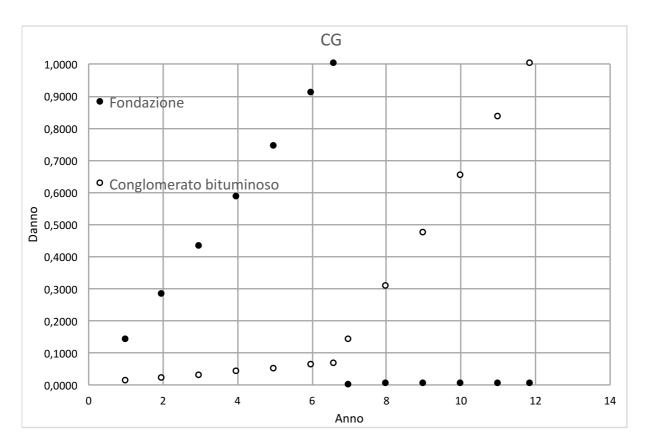

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,83
	1,2	0,07	1,00

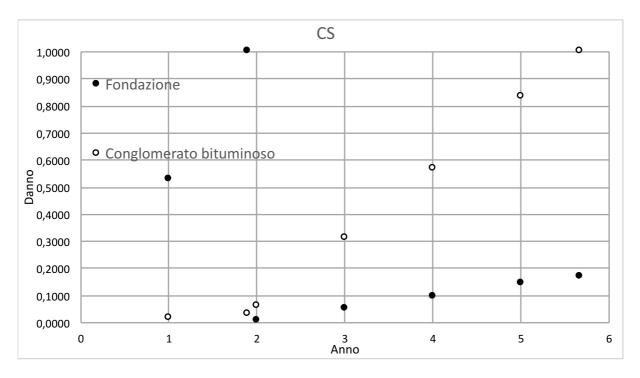

	1	1	1
CG	Anni	Danno_f	Danno_c
Fase 1	1	0,07	0,04
	2	0,14	0,08
	3	0,21	0,12
	4	0,29	0,16
	5	0,36	0,20
	6	0,45	0,25
	7	0,53	0,30
	8	0,62	0,35
	9	0,71	0,40
	10	0,80	0,45
	11	0,90	0,50
Fase 2	11,97	1,00	0,56
	12	0,0005	0,60
	12,04	0,0050	1,00

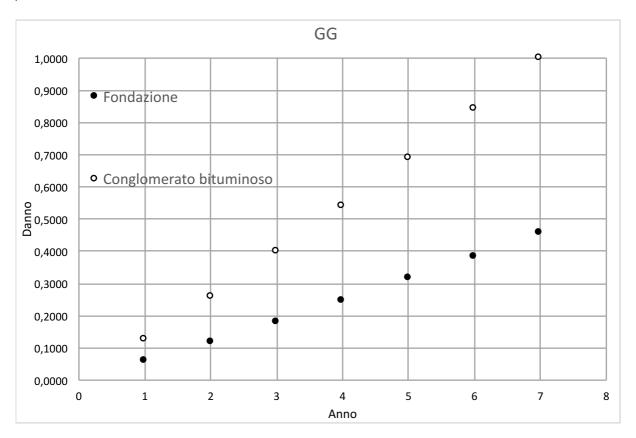

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,21	0,04
	2	0,44	0,07
	3	0,67	0,11
	4	0,91	0,15
Fase 2	4,3	1,00	0,16
	4,9	0,07	1,00

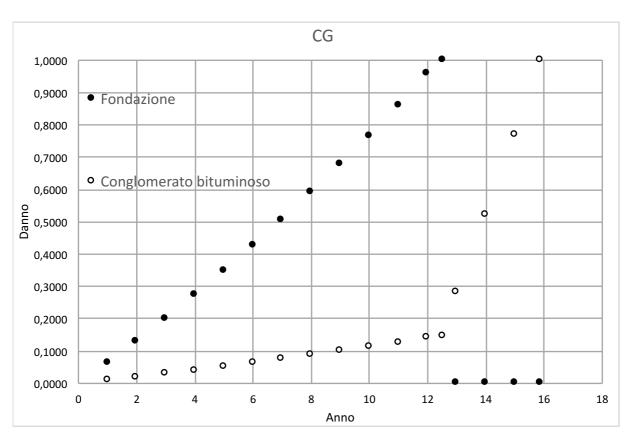

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,87
	1,2	0,03	1,00

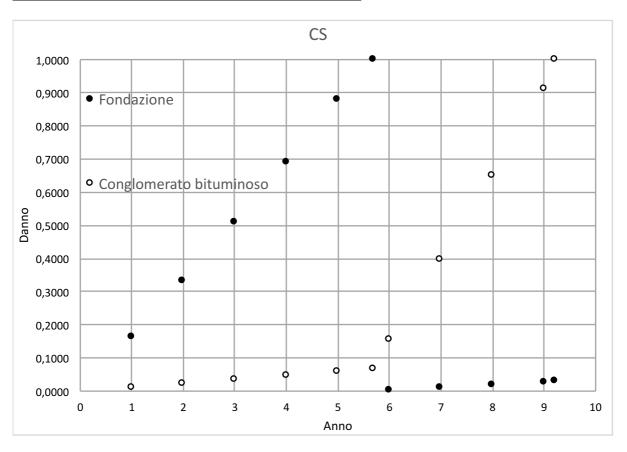

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,04
	2	0,07	0,08
	3	0,10	0,12
	4	0,14	0,16
	5	0,17	0,20
	6	0,21	0,25
	7	0,25	0,30
	8	0,30	0,35
	9	0,34	0,40
	10	0,38	0,45
	11	0,43	0,51
	12	0,48	0,56
	13	0,53	0,62
	14	0,58	0,68
	15	0,64	0,75
	16	0,69	0,81
	17	0,75	0,88
	18	0,81	0,95
	18,9	0,85	1,00

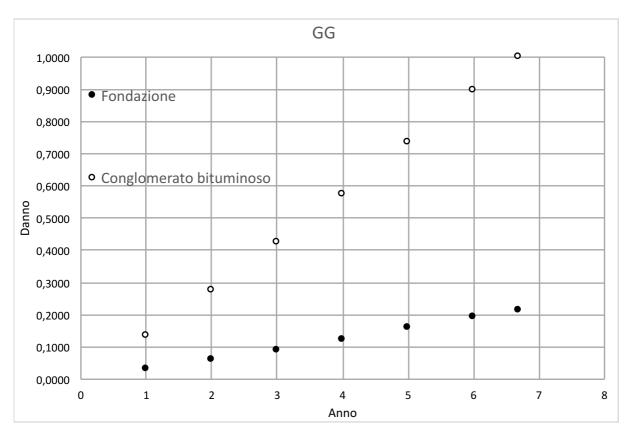

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,07	0,03
	2	0,15	0,06
	3	0,23	0,09
	4	0,31	0,12
	5	0,39	0,16
	6	0,48	0,19
	7	0,57	0,23
	8	0,67	0,27
	9	0,77	0,31
	10	0,87	0,35
	11	0,97	0,39
Fase 2	11,3	1,00	0,40
	11,5	0,01	1,00

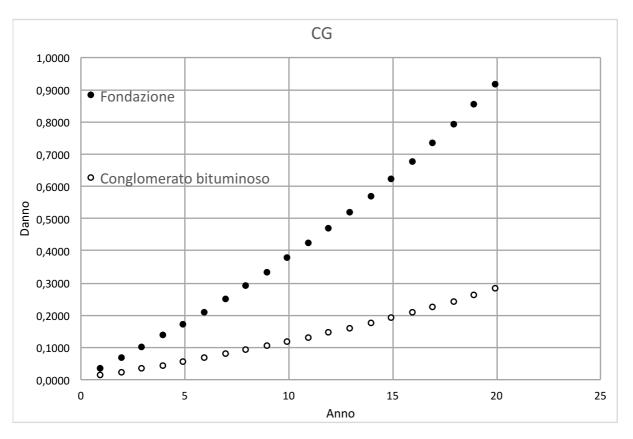

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,12	0,11
	2	0,24	0,23
	3	0,37	0,35
	4	0,50	0,47
	5	0,64	0,60
	6	0,78	0,73
	7	0,93	0,87
Fase 2	7,5	1,00	0,94
	7,7	0,00002	1,00

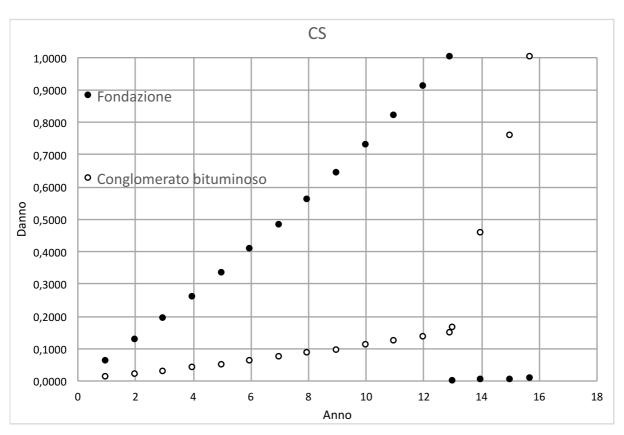

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,14	0,009
	2	0,28	0,019
	3	0,43	0,029
	4	0,58	0,039
	5	0,74	0,050
	6	0,91	0,061
Fase 2	6,6	1,00	0,067
	7	0,0002	0,141
	8	0,0007	0,304
	9	0,001	0,474
	10	0,002	0,649
	11	0,002	0,832
	11,9	0,003	1,000


CS	Anni	Danno_f	Danno_c
Fase 1	1	0,53	0,02
Fase 2	1,9	1,00	0,03
	2	0,006	0,06
	3	0,05	0,31
	4	0,10	0,57
	5	0,14	0,83
	5,7	0,17	1,00

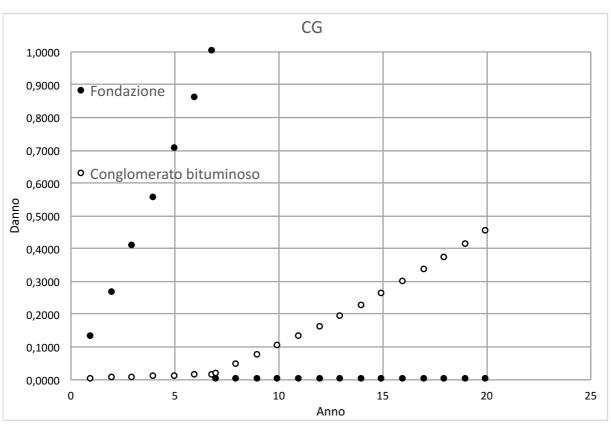

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,13
	2	0,12	0,26
	3	0,18	0,40
	4	0,25	0,54
	5	0,31	0,69
	6	0,39	0,84
	6,98	0,46	1,00


CG	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,01
	2	0,13	0,02
	3	0,20	0,03
	4	0,27	0,04
	5	0,35	0,05
	6	0,43	0,06
	7	0,51	0,07
	8	0,59	0,09
	9	0,68	0,10
	10	0,77	0,11
	11	0,86	0,13
	12	0,96	0,14
Fase 2	12,5	1,00	0,15
	13	0,0003	0,28
	14	0,0009	0,52
	15	0,0016	0,77
	15,9	0,0022	1,00

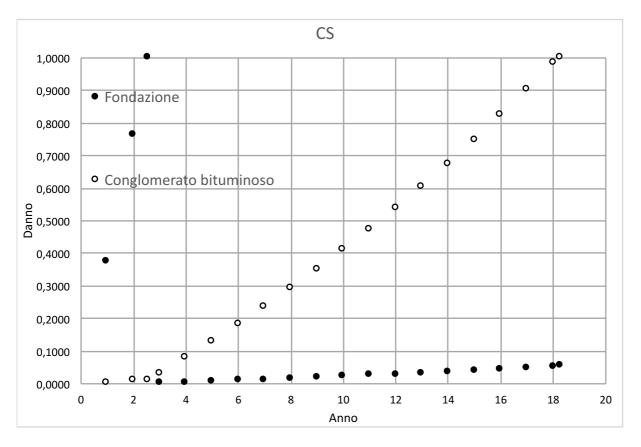

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,16	0,01
	2	0,33	0,02
	3	0,51	0,03
	4	0,69	0,05
	5	0,88	0,06
Fase 2	5,7	1,00	0,07
	6	0,003	0,16
	7	0,010	0,40
	8	0,018	0,65
	9	0,025	0,91
	9,2	0,028	1,00


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,14
	2	0,06	0,28
	3	0,09	0,42
	4	0,12	0,58
	5	0,16	0,73
	6	0,19	0,90
	6,7	0,22	1,00

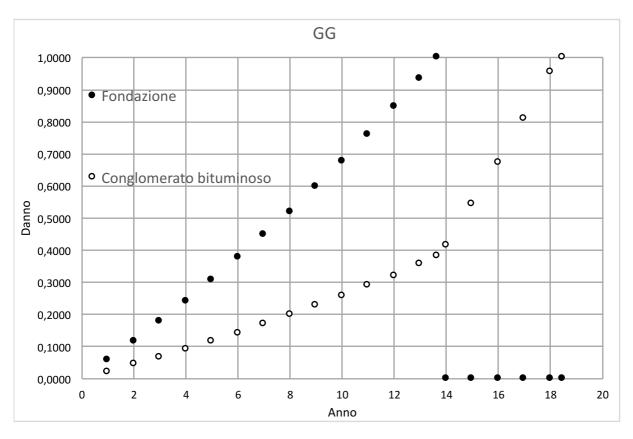
CG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,01
	2	0,06	0,02
	3	0,10	0,03
	4	0,13	0,04
	5	0,17	0,05
	6	0,21	0,06
	7	0,25	0,08
	8	0,29	0,09
	9	0,33	0,10
	10	0,37	0,11
	11	0,42	0,13
	12	0,47	0,14
	13	0,51	0,16
	14	0,57	0,17
	15	0,62	0,19
	16	0,67	0,21
	17	0,73	0,22
	18	0,79	0,24
	19	0,85	0,26
	20	0,91	0,28

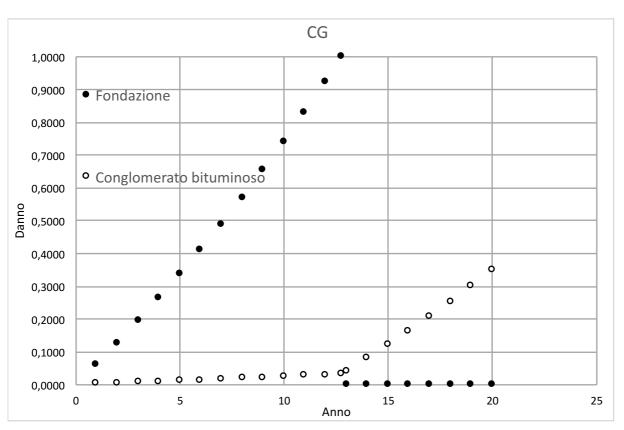


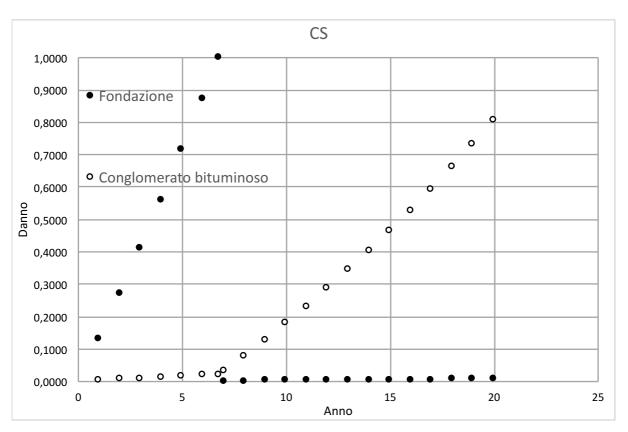
CS	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,01
	2	0,12	0,02
	3	0,19	0,03
	4	0,26	0,04
	5	0,33	0,05
	6	0,40	0,06
	7	0,48	0,07
	8	0,56	0,08
	9	0,64	0,10
	10	0,73	0,11
	11	0,82	0,12
	12	0,91	0,13
Fase 2	12,9	1,00	0,15
	13	0,0001	0,16
	14	0,002	0,45
	15	0,003	0,76
	15,7	0,005	1,00

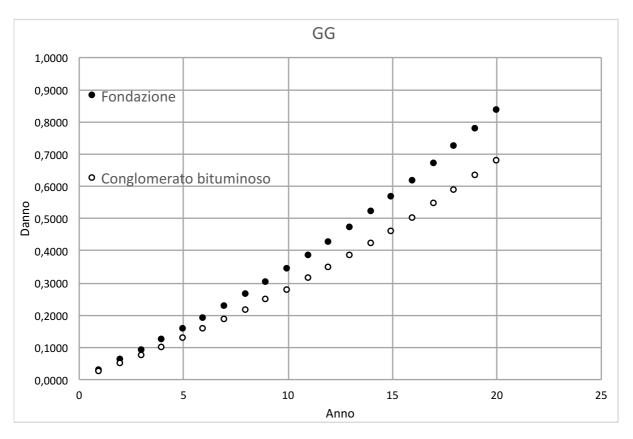


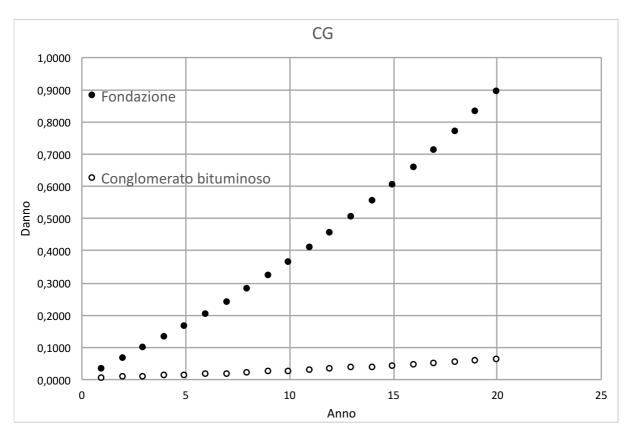
GG	Anni	Danno_f	Danno_c	
V	Vedi tabella 5.15 e grafico 5.1			

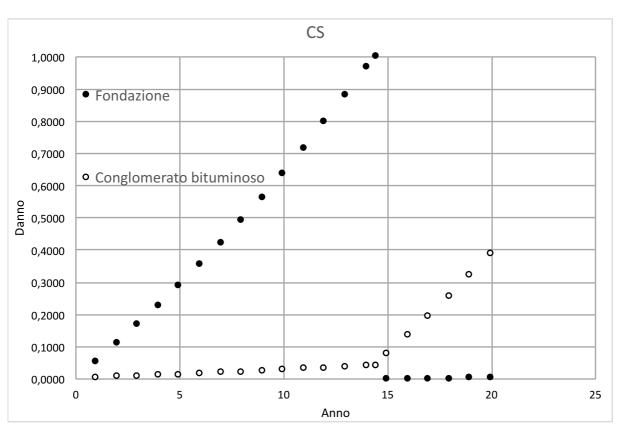

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,13	0,002
	2	0,27	0,004
	3	0,41	0,006
	4	0,55	0,008
	5	0,70	0,01
	6	0,86	0,01
Fase 2	6,8	1,00	0,01
	7	0,000002	0,02
	8	0,000014	0,04
	9	0,000027	0,07
	10	0,000040	0,10
	11	0,000053	0,13
	12	0,000068	0,16
	13	0,000082	0,19
	14	0,000097	0,23
	15	0,00011	0,26
	16	0,00013	0,30
	17	0,00015	0,33
	18	0,00016	0,37
	19	0,00018	0,41
	20	0,00020	0,45


CS	Anni	Danno_f	Danno_c
Fase 1	1	0,37	0,004
	2	0,76	0,009
Fase 2	2,6	1,00	0,01
	3	0,001	0,03
	4	0,004	0,08
	5	0,007	0,13
	6	0,009	0,18
	7	0,01	0,24
	8	0,02	0,29
	9	0,02	0,35
	10	0,02	0,41
	11	0,03	0,47
	12	0,03	0,54
	13	0,03	0,61
	14	0,04	0,68
	15	0,04	0,75
	16	0,04	0,82
	17	0,05	0,90
	18	0,05	0,98
	18,3	0,05	1,00


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,02
	2	0,12	0,04
	3	0,18	0,07
	4	0,24	0,09
	5	0,31	0,12
	6	0,38	0,14
	7	0,45	0,17
	8	0,52	0,20
	9	0,60	0,23
	10	0,68	0,26
	11	0,76	0,29
	12	0,84	0,32
	13	0,93	0,35
Fase 2	13,7	1,00	0,38
	14	0,000001	0,41
	15	0,000007	0,54
	16	0,000013	0,67
	17	0,000019	0,81
	18	0,000025	0,95
	18,4	0,000027	1,00


CG	Anni	Danno_f	Danno_c
Fase 1	1	0,06	0,002
	2	0,13	0,004
	3	0,19	0,006
	4	0,26	0,008
	5	0,34	0,01
	6	0,41	0,01
	7	0,49	0,02
	8	0,57	0,02
	9	0,65	0,02
	10	0,74	0,02
	11	0,83	0,03
	12	0,92	0,03
Fase 2	12,7	1,00	0,03
	13	0,000004	0,04
	14	0,000023	0,08
	15	0,000043	0,12
	16	0,000064	0,16
	17	0,000086	0,21
	18	0,0001	0,25
	19	0,0001	0,30
	20	0,0002	0,35


CS	Anni	Danno_f	Danno_c
Fase 1	1	0,13	0,003
	2	0,27	0,006
	3	0,41	0,009
	4	0,56	0,01
	5	0,71	0,01
	6	0,87	0,02
Fase 2	6,7	1,00	0,02
	7	0,0001	0,03
	8	0,0005	0,08
	9	0,0009	0,13
	10	0,001	0,18
	11	0,002	0,23
	12	0,002	0,29
	13	0,003	0,34
	14	0,003	0,40
	15	0,004	0,46
	16	0,004	0,53
	17	0,005	0,59
	18	0,005	0,66
	19	0,006	0,73
	20	0,007	0,81


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,02
	2	0,06	0,05
	3	0,09	0,07
	4	0,12	0,10
	5	0,15	0,13
	6	0,19	0,15
	7	0,23	0,18
	8	0,26	0,21
	9	0,30	0,24
	10	0,34	0,28
	11	0,38	0,31
	12	0,43	0,35
	13	0,47	0,38
	14	0,52	0,42
	15	0,57	0,46
	16	0,62	0,50
	17	0,67	0,54
	18	0,72	0,59
	19	0,78	0,63
	20	0,84	0,68

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,03	0,002
	2	0,06	0,004
	3	0,10	0,006
	4	0,13	0,009
	5	0,17	0,01
	6	0,20	0,01
	7	0,24	0,02
	8	0,28	0,02
	9	0,32	0,02
	10	0,36	0,02
	11	0,41	0,03
	12	0,45	0,03
	13	0,50	0,03
	14	0,55	0,04
	15	0,60	0,04
	16	0,66	0,04
	17	0,71	0,05
	18	0,77	0,05
	19	0,83	0,05
	20	0,89	0,06

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,05	0,002
	2	0,11	0,005
	3	0,17	0,007
	4	0,23	0,009
	5	0,29	0,01
	6	0,35	0,01
	7	0,42	0,02
	8	0,49	0,02
	9	0,56	0,02
	10	0,64	0,03
	11	0,71	0,03
	12	0,80	0,03
	13	0,88	0,04
	14	0,97	0,04
Fase 2	14,5	1,00	0,04
	15	0,00004	0,08
	16	0,00010	0,13
	17	0,0002	0,19
	18	0,0002	0,26
	19	0,0003	0,32
	20	0,0004	0,39

Allegato C

			GG, 50	0 - 200 - 1000		
Def	ormazione BISAR [μstra	ain]		266,90		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	133,45	3,80E+07	2,48E-01
			50	166,81	1,25E+07	2,74E-02
			60	200,18	5,00E+06	5,56E-01
			80	266,90	1,19E+06	9,35E-01
			90	300,26	6,59E+05	4,26E-01
			100	333,63	3,89E+05	2,16E+00
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	266,90	5,94E+05	1,51E+01
			200	333,63	1,95E+05	1,11E+01
		Totali				3,06E+01
Def	ormazione BISAR [μstra	in]		22,14		·
	Fondazione	SADT	Carico	·	N	d
			40	11,07	1,04E+14	9,08E-08
			50	13,84	7,14E+12	4,78E-08
			60	16,61	8,01E+11	3,47E-06
			80	22,14	2,54E+10	4,38E-05
			90	24,91	6,17E+09	4,55E-05
			100	27,68	1,74E+09	4,83E-04
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	22,14	1,27E+10	7,08E-04
			200	27,68	8,71E+08	2,48E-03
		Totali		·	,	3,76E-03
Def	ormazione BISAR [µstra	inl		-	1	,
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	_
			60	-	-	_
			80	-	-	_
			90	-	-	_
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	_
		Totali				-
Con	glomerato (Fase 1) [HV	AGl			8,37E+05	
I	Fondazione [HVAG]				6,80E+09	
Def	ormazione BISAR [µstra	inl		129,80	0,002:03	
	ottofondo (Fase 1) [ESA			123,00	8,65E+12	
					0,0JL+1Z	
	glomerato (Fase 2) [HV				-	
	ormazione BISAR [μstra			-		
So	ottofondo (Fase 2) [ESA	i I			-	
	Ns [ESA]				-	
	Na [ESA]				-	
Vi	ta pavimentazione [ESA	\]			1,09E+06	

			CG, 50	- 200 - 1000		
Def	ormazione BISAR [µstra	ain]		109,60		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	54,80	3,25E+09	2,90E-03
			50	68,50	1,07E+09	3,20E-04
			60	82,20	4,29E+08	6,49E-03
			80	109,60	1,02E+08	1,09E-02
			90	123,30	5,64E+07	4,97E-03
			100	137,00	3,33E+07	2,53E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	109,60	5,08E+07	1,77E-01
			200	137,00	1,67E+07	1,30E-01
		Totali				3,57E-01
Def	ormazione BISAR [µstra	ain]		31,85		-
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	15,93	1,32E+12	7,13E-06
			50	19,91	9,09E+10	,
			60	23,89	1,02E+10	2,73E-04
			80	31,85	3,23E+08	
			90	35,83	7,85E+07	
			100	39,81	2,22E+07	
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	31,85	1,61E+08	5,56E-02
			200	39,81	1,11E+07	1,95E-01
		Totali		·	,	2,95E-01
Def	ormazione BISAR [µstra	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Con	glomerato (Fase 1) [HV	I			7,17E+07	
	Fondazione [HVAG]	,			8,66E+07	
Def	ormazione BISAR [µstra	inl		127,40	-,	
	ottofondo (Fase 1) [ESA			121,770	9,86E+12	
	glomerato (Fase 2) [HV				J,00LT1Z	
					_	
	ormazione BISAR [µstra			<u>-</u>		
50	ottofondo (Fase 2) [ESA	NJ			-	
	Ns [ESA]				-	
_	Na [ESA]				-	
Vi	ta pavimentazione [ES/	4]			9,31E+07	

			CS, 50	- 200 - 1000		
Def	ormazione BISAR [µstra	in]		97,89		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [μstrain]	N	d
			40	48,95	5,73E+09	1,65E-03
			50	61,18	1,88E+09	1,82E-04
			60	73,42	7,54E+08	3,69E-03
			80	97,89	1,79E+08	6,20E-03
			90	110,13	9,93E+07	2,83E-03
			100	122,36	5,86E+07	1,44E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	97,89	8,95E+07	1,00E-01
			200	122,36	2,93E+07	7,36E-02
		Totali				2,03E-01
Def	 ormazione BISAR [μstrai	in]		180,20		,
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	90,10	1,23E+03	7,67E+03
			50	112,63	8,45E+01	
			60	135,15	9,47E+00	-
			80	180,20	3,00E-01	3,70E+06
İ			90	202,73	7,30E-02	3,84E+06
			100	225,25	2,06E-02	
		TADT	Carico	Deformazione critica [N	d
			160	180,20	1,50E-01	5,98E+07
			200	225,25	1,03E-02	2,09E+08
		Totali				3,18E+08
Def	ormazione BISAR [µstrai	in]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	Ŭ		40	-	-	_
			50	-	-	_
			60	-	-	-
			80	-	-	-
			90	-	-	_
			100	-	-	-
		TADT	Carico	Deformazione critica [N	d
			160	-	-	_
			200	-	-	-
		Totali				-
Con					1,26E+08	
	Fondazione [HVAG]				8,05E-02	
l Def	ormazione BISAR [µstra	inl		369,40	-,	
	ottofondo (Fase 1) [ESA]			303,10	5,72E+09	
	glomerato (Fase 2) [HVA	•				
	ormazione BISAR [µstrai					
				-		
50	ottofondo (Fase 2) [ESA]				-	
	Ns [ESA]				-	
	Na [ESA]				-	
٧/i٠	ta pavimentazione [ESA	1			1,05E-01	

			GG, 50	0 - 300 - 1000		
Defo	ormazione BISAR [µstra	nin]	,	268,50		
Fase 1	Conglomerato	SADT	Carico	·	N	d
	<u> </u>		40	134,25	3,69E+07	2,56E-01
			50	167,81	1,21E+07	2,83E-02
			60	201,38	4,86E+06	5,73E-01
			80	268,50	1,15E+06	1
			90	302,06	6,40E+05	4,39E-01
			100	335,63	3,78E+05	1
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	268,50	5,76E+05	1,56E+01
			200	335,63	1,89E+05	1,14E+01
		Totali				3,15E+01
Defo	ormazione BISAR [µstra	in]		16,46		·
	Fondazione	SADT	Carico	·	N	d
			40	8,23	3,64E+15	2,59E-09
			50	10,29	2,50E+14	1,36E-09
			60	12,35	2,81E+13	9,90E-08
			80	16,46	8,89E+11	1,25E-06
			90	18,52	2,16E+11	1,30E-06
			100	20,58	6,11E+10	1,38E-05
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	16,46	4,45E+11	2,02E-05
			200	20,58	3,06E+10	7,06E-05
		Totali				1,07E-04
Defo	ormazione BISAR [µstra	nin]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [HV	AG]			8,12E+05	
	Fondazione [HVAG]				2,38E+11	
Defo	ormazione BISAR [µstra	nin]		89,56		
	ttofondo (Fase 1) [ESA			·	1,16E+14	
	glomerato (Fase 2) [HV				-	
	ormazione BISAR [µstra			-		
	ttofondo (Fase 2) [ESA				_	
	Ns [ESA]	'J			_	
	Na [ESA]				_	
\ /:±		<u> </u>			1 06E+00	
VIT	a pavimentazione [ESA	١]			1,06E+06	

			CG, 50	- 300 - 1000		
Defo	rmazione BISAR [μstra	ain]		109,30		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	54,65	3,30E+09	2,86E-0
			50	68,31	1,08E+09	3,16E-0
			60	81,98	4,34E+08	6,40E-03
			80	109,30	1,03E+08	-
			90	122,96	5,72E+07	4,90E-03
			100	136,63	3,38E+07	2,49E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	109,30	5,16E+07	
			200	136,63	1,69E+07	1,28E-0
		Totali				3,52E-0
Defo	rmazione BISAR [μstra	ain]		22,15		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	11,08	1,03E+14	9,13E-0
			50	13,84	7,10E+12	4,81E-0
			60	16,61	7,96E+11	3,49E-0
			80	22,15	2,52E+10	4,40E-0
			90	24,92	6,14E+09	4,57E-0
			100	27,69	1,73E+09	4,86E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	22,15	1,26E+10	7,12E-0
			200	27,69	8,67E+08	2,49E-03
		Totali				3,78E-03
Defo	rmazione BISAR [μstra	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [μstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [HV	AG]			7,26E+07	
	Fondazione [HVAG]				6,76E+09	
Defo	ormazione BISAR [µstra	ain]		84,92		
	ttofondo (Fase 1) [ESA			·	1,69E+14	
	lomerato (Fase 2) [HV				-	
	ormazione BISAR [µstra			-		
	ttofondo (Fase 2) [ESΑ				_	
	Ns [ESA]	ני			_	
					-	
\ /:±	Na [ESA]	<u> </u> ^1			0.445.07	
Vita	a pavimentazione [ES/	٦]			9,44E+07	

D-f-	ermaziona DICAD Frest	rain¹	<i>cs, so</i>	0 - 300 - 1000		
	ormazione BISAR [μstɪ		6	96,38	N.	.1
Fase 1	Conglomerato	SADT	Carico	-1 -	N	d
			40	48,19	6,19E+09	1,52E-0
			50	60,24	2,03E+09	1,68E-0
			60	72,29	8,15E+08	3,41E-0
			80	96,38	1,93E+08	5,74E-0
			90	108,43	1,07E+08	2,61E-0
		TADT	100	120,48	6,34E+07	1,33E-0
		TADT	Carico	Deformazione critica [μstrain]	N	d
		+	160	96,38	9,67E+07	9,28E-0
		- :	200	120,48	3,17E+07	6,81E-0
		Totali				1,88E-0
Deto	ormazione BISAR [μstɪ			115,00		
	Fondazione	SADT	Carico	-, -	N	d
			40	57,50	2,69E+05	
			50	71,88	1,85E+04	
			60	86,25	2,08E+03	
			80	115,00	6,57E+01	
			90	129,38	1,60E+01	
			100	143,75	4,52E+00	1,86E+0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	115,00	3,29E+01	
			200	143,75	2,26E+00	9,56E+0
		Totali				1,45E+C
Defo	rmazione BISAR [μstι	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
		TADT	Carico 160	Deformazione critica [µstrain]	N -	d -
		TADT		Deformazione critica [μstrain]	N - -	d - -
		TADT	160	Deformazione critica [µstrain]	N - -	d - -
Cong	lomerato (Fase 1) [H	Totali	160	Deformazione critica [μstrain]	N 1,36E+08	d - - -
Cong	lomerato (Fase 1) [H' Fondazione [HVAG]	Totali	160	Deformazione critica [µstrain]	-	d - -
	Fondazione [HVAG]	Totali /AG]	160	-	- - 1,36E+08	- -
Defo	Fondazione [HVAG] ormazione BISAR [μstι	Totali VAG]	160	Deformazione critica [µstrain] - - 243,10	- - 1,36E+08 1,76E+01	d - -
Defo So	Fondazione [HVAG] ormazione BISAR [µsti ttofondo (Fase 1) [ES	Totali /AG] rain]	160	-	- - 1,36E+08	
Defo So Cong	Fondazione [HVAG] ormazione BISAR [μstr ttofondo (Fase 1) [ES clomerato (Fase 2) [H	Totali VAG] rain] A]	160	-	- - 1,36E+08 1,76E+01	d - -
Defo So Cong Defo	Fondazione [HVAG] ormazione BISAR [μstr ttofondo (Fase 1) [ES clomerato (Fase 2) [H ormazione BISAR [μstr	Totali VAG] rain] A] VAG] rain]	160	-	- - 1,36E+08 1,76E+01	
Defo So Cong Defo	Fondazione [HVAG] ormazione BISAR [µstr ttofondo (Fase 1) [ES domerato (Fase 2) [H' ormazione BISAR [µstr ttofondo (Fase 2) [ES	Totali VAG] rain] A] VAG] rain]	160	-	- - 1,36E+08 1,76E+01	
Defo So Cong Defo	Fondazione [HVAG] ormazione BISAR [μstr ttofondo (Fase 1) [ES clomerato (Fase 2) [H ormazione BISAR [μstr ttofondo (Fase 2) [ES Ns [ESA]	Totali VAG] rain] A] VAG] rain]	160	-	- - 1,36E+08 1,76E+01	
Defo So Cong Defo	Fondazione [HVAG] ormazione BISAR [µstr ttofondo (Fase 1) [ES domerato (Fase 2) [H' ormazione BISAR [µstr ttofondo (Fase 2) [ES	Totali VAG] rain] A] VAG] rain]	160	-	- - 1,36E+08 1,76E+01	

			GG, 50	0 - 400 - 1000		
Def	formazione BISAR [μstra	ain]		268,00		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	134,00	3,72E+07	2,53E-01
			50	167,50	1,22E+07	2,80E-02
			60	201,00	4,90E+06	5,67E-01
			80	268,00	1,16E+06	9,54E-01
			90	301,50	6,46E+05	4,35E-01
			100	335,00	3,81E+05	2,21E+00
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	268,00	5,82E+05	1,54E+01
			200	335,00	1,91E+05	1,13E+01
		Totali				3,12E+01
Def	formazione BISAR [μstra	in]		11,96		·
	Fondazione	SADT	Carico	·	N	d
			40	5,98	1,68E+17	5,60E-11
			50	7,48	1,16E+16	2,95E-11
			60	8,97	1,30E+15	2,14E-09
			80	11,96	4,11E+13	2,70E-08
			90	13,46	9,99E+12	2,81E-08
			100	14,95	2,82E+12	2,98E-07
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	11,96	2,05E+13	4,37E-07
			200	14,95	1,41E+12	1,53E-06
		Totali		,	,	2,32E-06
Def	formazione BISAR [μstra	ainl		<u>-</u>		, .
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	<u> </u>		40	-	-	_
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	_
			200	-	-	-
		Totali				_
Con	glomerato (Fase 1) [HV				8,20E+05	
	Fondazione [HVAG]	/.c _j			1,10E+13	
Dof	formazione BISAR [µstra	l vinl		65,86	1,101113	
	ottofondo (Fase 1) [ESA			03,00	9,99E+14	
	· · · · · · ·				<i>5,</i> 55E+14	
	glomerato (Fase 2) [HV				-	
	formazione BISAR [μstra			-		
S	ottofondo (Fase 2) [ESA	\]			-	
	Ns [ESA]				-	
	Na [ESA]				-	
V	ita pavimentazione [ESA	١]			1,07E+06	

			CG, 50	- 400 - 1000		
	rmazione BISAR [μstr			109,00		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [μstrain]	N	d
			40	54,50	3,34E+09	
			50	68,13	1,10E+09	
			60	81,75	4,40E+08	·
			80	109,00	1,05E+08	
			90	122,63	5,80E+07	4,84E-0
			100	136,25	3,43E+07	2,46E-0
		TADT		Deformazione critica [μstrain]	N	d
			160	109,00	5,23E+07	
			200	136,25	1,71E+07	1,26E-0
		Totali				3,47E-0
Defo	rmazione BISAR [μstr	ain]		15,64		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	7,82	6,73E+15	1,40E-0
			50	9,78	4,62E+14	7,39E-1
			60	11,73	5,18E+13	5,36E-0
			80	15,64	1,64E+12	6,76E-0
			90	17,60	4,00E+11	7,02E-0
			100	19,55	1,13E+11	7,46E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	15,64	8,21E+11	1,09E-0
			200	19,55	5,64E+10	3,83E-0
		Totali				5,81E-0
Defo	rmazione BISAR [μstr	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	1	-
			50	-	1	-
			60	-	-	-
			80	-	-	-
			90	-	1	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [HV	/AG]			7,36E+07	
	Fondazione [HVAG]				4,40E+11	
Defo	ormazione BISAR [µstr	ain]		62,30		
	ttofondo (Fase 1) [ESA			,	1,47E+15	
	lomerato (Fase 2) [HV				-	
	rmazione BISAR [µstr			_		L
	ttofondo (Fase 2) [ESA			-	_	
30	, , , -	^ <u>]</u>			-	
	Ns [ESA]				-	
	Na [ESA]				-	
Vita	a pavimentazione [ES.	AJ			9,57E+07	

			CS, 50	- 400 - 1000		
Def	ormazione BISAR [μstra	nin]		97,37		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	48,69	5,88E+09	1,60E-03
			50	60,86	1,93E+09	1,77E-04
			60	73,03	7,74E+08	3,59E-03
			80	97,37	1,84E+08	6,04E-03
			90	109,54	1,02E+08	2,75E-03
			100	121,71	6,02E+07	1,40E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	97,37	9,19E+07	9,77E-02
			200	121,71	3,01E+07	7,17E-02
		Totali				1,98E-01
Def	ormazione BISAR [μstra	nin]		78,21		
	Fondazione	SADT	Carico	Deformazione critica [ustrain]	N	d
			40	39,11	2,75E+07	3,43E-01
			50	48,88	1,89E+06	1,81E-01
			60	58,66	2,12E+05	1,31E+01
			80	78,21	6,72E+03	1,65E+02
			90	87,99	1,63E+03	1,72E+02
			100	97,76	4,62E+02	1,82E+03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	78,21	3,36E+03	2,67E+03
			200	97,76	2,31E+02	
		Totali		·		1,42E+04
Def	formazione BISAR [μstra	in]		-		•
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [N	d
	<u> </u>		40	-	-	_
			50	-	-	-
			60	-	-	-
			80	-	-	_
			90	-	-	_
			100	-	-	-
		TADT	Carico	Deformazione critica [N	d
			160	-	-	_
			200	-	-	-
		Totali				-
Con	glomerato (Fase 1) [HV				1,29E+08	
	Fondazione [HVAG]	,			1,80E+03	
Dof	Formazione BISAR [µstra	l		174,80	1,001103	
	ottofondo (Fase 1) [ESA			1/4,00	1,08E+12	
	, , , ,				1,00E+12	
	glomerato (Fase 2) [HV				-	
	formazione BISAR [µstra			-		
S	ottofondo (Fase 2) [ESA	J			-	
	Ns [ESA]				-	
	Na [ESA]				-	
V	ita pavimentazione [ESA	\]			2,34E+03	

			GG, 10	0 - 200 - 1000		
Def	ormazione BISAR [μstra	ain]	, -	204,20		
Fase 1	Conglomerato	SADT	Carico	·	N	d
	<u> </u>		40	102,10	1,45E+08	6,50E-02
			50	127,63	4,75E+07	7,19E-03
			60	153,15	1,91E+07	1,46E-01
			80	204,20	4,53E+06	2,45E-01
			90	229,73	2,51E+06	1,12E-01
			100	255,25	1,48E+06	5,67E-01
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	204,20	2,26E+06	3,96E+00
			200	255,25	7,42E+05	2,91E+00
		Totali				8,01E+00
Def	ormazione BISAR [μstra	ain]		18,19		
	Fondazione	SADT	Carico	·	N	d
			40	9,10	1,10E+15	8,59E-09
			50	11,37	7,55E+13	4,53E-09
			60	13,64	8,46E+12	3,29E-07
			80	18,19	2,68E+11	4,14E-06
			90	20,46	6,52E+10	4,30E-06
			100	22,74	1,84E+10	4,57E-05
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	18,19	1,34E+11	6,70E-05
			200	22,74	9,21E+09	2,34E-04
		Totali				3,56E-04
Def	ormazione BISAR [μstra	ain]		-		-
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	=
			100	-	-	=
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Con	glomerato (Fase 1) [HV	AG]			3,19E+06	
	Fondazione [HVAG]				7,19E+10	
 Def	ormazione BISAR [µstra	inl		96,64		
	ottofondo (Fase 1) [ESA			,	6,82E+13	
	glomerato (Fase 2) [HV				-	
	ormazione BISAR [μstra			_		
				<u>-</u>	_	
30	ottofondo (Fase 2) [ESA	\ <u>]</u>			-	
	Ns [ESA]				-	
	Na [ESA]				-	
Vi	ta pavimentazione [ESA	4]			4,15E+06	

			CG, 100	0 - 200 - 1000		
Defo	rmazione BISAR [µstra	ain]		114,60		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	57,30	2,60E+09	3,62E-03
			50	71,63	8,53E+08	4,00E-04
			60	85,95	3,43E+08	8,11E-03
			80	114,60	8,14E+07	1,36E-0
			90	128,93	4,52E+07	6,21E-03
			100	143,25	2,67E+07	3,16E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	114,60	4,07E+07	2,21E-0
			200	143,25	1,33E+07	1,62E-0
		Totali				4,46E-0
Defo	rmazione BISAR [µstra	ain]		26,99		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	13,50	9,64E+12	9,78E-0
			50	16,87	6,63E+11	5,15E-0
			60	20,24	7,43E+10	3,74E-0!
			80	26,99	2,35E+09	4,71E-0
			90	30,36	5,73E+08	4,90E-0
			100	33,74	1,62E+08	5,20E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	26,99	1,18E+09	7,63E-03
			200	33,74	8,09E+07	2,67E-02
		Totali				4,05E-02
Defo	rmazione BISAR [µstra	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	1	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	1	-
			200	-		-
		Totali				-
Cong	lomerato (Fase 1) [HV	AG]			5,73E+07	
	Fondazione [HVAG]				6,31E+08	
Defo	rmazione BISAR [µstra	ainl		95,45		
	ttofondo (Fase 1) [ESA			,	7,44E+13	
	lomerato (Fase 2) [HV				-,	
	rmazione BISAR [µstra			_		
	ttofondo (Fase 2) [ESA			<u>-</u>	_	
301 T	, , , , ,	\ <u>]</u>			-	
	Ns [ESA]				-	
	Na [ESA]	<u> </u>			7 455 05	
Vita	a pavimentazione [ES/	Ά]			7,45E+07	

			CS, 10	0 - 200 - 1000		
Defo	ormazione BISAR [µstra	ain]		118,30		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	59,15	2,22E+09	4,24E-03
			50	73,94	7,28E+08	4,69E-04
			60	88,73	2,93E+08	9,51E-03
			80	118,30	6,94E+07	1,60E-02
			90	133,09	3,85E+07	7,28E-03
			100	147,88	2,27E+07	3,70E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	118,30	3,47E+07	2,59E-01
			200	147,88	1,14E+07	1,90E-01
		Totali				5,23E-01
Defo	ormazione BISAR [µstra	ain]		137,70		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	68,85	3,10E+04	3,04E+02
			50	86,06	2,13E+03	1,60E+02
			60	103,28	2,39E+02	1,16E+04
			80	137,70	7,57E+00	1,47E+05
			90	154,91	1,84E+00	1,52E+0
			100	172,13	5,20E-01	1,62E+0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	137,70	3,78E+00	2,37E+06
			200	172,13	2,60E-01	8,30E+06
		Totali				1,26E+07
Defo	ormazione BISAR [µstra	ainl		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cons	glomerato (Fase 1) [HV	'AG1			4,89E+07	
	Fondazione [HVAG]				2,03E+00	
Defo	ormazione BISAR [µstra	l ainl		279,60	2,032.00	
	ottofondo (Fase 1) [ESA			273,00	4,02E+10	
					+,UZLT1U	
	glomerato (Fase 2) [HV				-	
	ormazione BISAR [µstra			-		
Sc	ottofondo (Fase 2) [ESA	\]			-	
	Ns [ESA]				-	
	Na [ESA]				-	
	ta pavimentazione [ES/	۸1	Ī		2,64E+00	

			GG, 10	0 - 300 - 1000		
Def	ormazione BISAR [µstra	ain]		208,30		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	104,15	1,31E+08	7,18E-02
			50	130,19	4,30E+07	7,94E-03
			60	156,23	1,73E+07	1,61E-01
			80	208,30	4,10E+06	2,71E-01
			90	234,34	2,28E+06	1,23E-01
			100	260,38	1,34E+06	6,26E-01
		TADT	Carico	Deformazione critica [N	d
			160	208,30	2,05E+06	4,38E+00
			200	260,38	6,72E+05	3,21E+00
		Totali				8,85E+00
Def	ormazione BISAR [µstra	in]		13,24		·
	Fondazione	SADT	Carico	·	N	d
			40	6,62	4,97E+16	1,90E-10
			50	8,28	3,41E+15	1,00E-10
			60	9,93	3,83E+14	7,27E-09
			80	13,24	1,21E+13	9,16E-08
			90	14,90	2,95E+12	9,51E-08
			100	16,55	8,33E+11	1,01E-06
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	13,24	6,06E+12	1,48E-06
			200	16,55	4,17E+11	5,18E-06
		Totali		·	·	7,87E-06
Def	ormazione BISAR [µstra	inl		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	_
			50	-	-	-
			60	-	-	-
			80	-	-	_
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Con	glomerato (Fase 1) [HV				2,89E+06	
	Fondazione [HVAG]	<u> </u>			3,25E+12	
Def	ormazione BISAR [µstra	inl		70,93	-,	
	ottofondo (Fase 1) [ESA			, 0,55	5,94E+14	
	glomerato (Fase 2) [HV					
	ormazione BISAR [µstra				_	
				<u>-</u>		
50	ottofondo (Fase 2) [ESA	i I			-	
	Ns [ESA]				-	
	Na [ESA]	<u> </u>			-	
Vi	ta pavimentazione [ESA	۱]			3,76E+06	

			CG, 100	0 - 300 - 1000		
Defo	ormazione BISAR [µstra	ain]		115,00		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	57,50	2,56E+09	3,68E-03
			50	71,88	8,38E+08	4,07E-04
			60	86,25	3,37E+08	8,25E-03
			80	115,00	8,00E+07	1,39E-02
			90	129,38	4,44E+07	6,32E-03
			100	143,75	2,62E+07	3,21E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	115,00	4,00E+07	2,25E-02
			200	143,75	1,31E+07	1,65E-0
		Totali				4,54E-0
Def	ormazione BISAR [μstra	ain]		18,53		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	9,27	8,79E+14	1,07E-08
			50	11,58	6,04E+13	5,65E-09
			60	13,90	6,78E+12	4,10E-07
			80	18,53	2,15E+11	5,17E-06
			90	20,85	5,22E+10	5,37E-06
			100	23,16	1,48E+10	5,70E-05
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	18,53	1,07E+11	8,36E-05
			200	23,16	7,38E+09	2,93E-04
		Totali				4,44E-04
Def	ormazione BISAR [µstra	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT		Deformazione critica [µstrain]	N	d
			160	-	-	-
1		•			1 - 1	_
			200	-		
		Totali	200	-		-
Cong	glomerato (Fase 1) [HV	I	200	-	5,63E+07	-
	Fondazione [HVAG]	AG]	200	-	5,63E+07 5,76E+10	-
Defo	Fondazione [HVAG] ormazione BISAR [µstra	AG] ain]	200	69,49	5,76E+10	-
Defo	Fondazione [HVAG]	AG] ain]	200	69,49		-
Defo Sc	Fondazione [HVAG] ormazione BISAR [µstra	AG] ain]	200	69,49	5,76E+10	-
Defo Sc Cong	Fondazione [HVAG] ormazione BISAR [µstra ottofondo (Fase 1) [ESA	AG] ain] AG]	200	69,49	5,76E+10	-
Defo Sc Cong Defo	Fondazione [HVAG] ormazione BISAR [µstra ottofondo (Fase 1) [ESA glomerato (Fase 2) [HV	AG] ain] AG] AG]	200	69,49	5,76E+10	5 5 5
Defo Sc Cong Defo	Fondazione [HVAG] ormazione BISAR [µstra ottofondo (Fase 1) [ESA glomerato (Fase 2) [HV ormazione BISAR [µstra	AG] ain] AG] AG]	200	69,49	5,76E+10	3 5 5
Defo Sc Cong Defo	Fondazione [HVAG] ormazione BISAR [µstra ottofondo (Fase 1) [ESA glomerato (Fase 2) [HV ormazione BISAR [µstra ottofondo (Fase 2) [ESA	AG] ain] AG] AG]	200	69,49	5,76E+10	

			CS, 100	0 - 300 - 1000		
Defo	ormazione BISAR [μstr	ain]		111,90		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	55,95	2,93E+09	3,21E-03
			50	69,94	9,61E+08	3,55E-04
			60	83,93	3,86E+08	7,20E-03
			80	111,90	9,17E+07	1,21E-02
			90	125,89	5,09E+07	
			100	139,88	3,00E+07	2,80E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	111,90	4,58E+07	1,96E-01
			200	139,88	1,50E+07	1,44E-01
		Totali		,	,	3,96E-01
Defo	ormazione BISAR [µstr			90,89		
1	Fondazione	SADT	Carico	,	N	d
	Tonadzione	37 (2)	40	45,45	4,53E+06	
			50	56,81	3,12E+05	
		1	60	68,17	3,49E+04	
		1	80	90,89	1,11E+03	
		1	90	102,25	2,69E+02	-
		1	100	113,61	7,61E+01	
		TADT		Deformazione critica [µstrain]	7,01L+01 N	d
		IADI	160	90,89	5,53E+02	<u>.</u>
			200	113,61	3,80E+01	
		Totali	200	113,01	3,801+01	
Defe	DICAD [8,62E+04
	ormazione BISAR [μstr	T -	6	Potencial and the following	N.I	.1
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
		1	40	-	-	-
		1	50	-	-	-
		1	60	-	-	-
		1	80	-	-	-
		1	90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
		1	160	-	-	-
		<u> </u>	200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [H\	/AG]			6,46E+07	
	Fondazione [HVAG]				2,97E+02	
Defo	ormazione BISAR [μstr	ain]		197,60		
So	ttofondo (Fase 1) [ES/	A]			4,56E+11	
Cong	lomerato (Fase 2) [H\	/AG]			-	
	ormazione BISAR [µstr			-		
	ttofondo (Fase 2) [ES/				-	
1	Ns [ESA]	İ			_	
	Na [ESA]	 			_	
\		<u>Ι</u> Λ1			2 065+02	
VIT	a pavimentazione [ES	^]			3,86E+02	

			GG, 10	0 - 400 - 1000		
Def	formazione BISAR [μstra	ain]		209,70		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	104,85	1,27E+08	7,43E-02
			50	131,06	4,16E+07	8,21E-03
			60	157,28	1,67E+07	1,66E-01
			80	209,70	3,97E+06	2,80E-01
			90	235,91	2,20E+06	1,27E-01
			100	262,13	1,30E+06	6,48E-01
		TADT	Carico	Deformazione critica [N	d
			160	209,70	1,98E+06	4,53E+00
			200	262,13	6,50E+05	
		Totali				9,15E+00
Def	formazione BISAR [μstra	in]		9,82		
	Fondazione	SADT	Carico	,	N	d
			40	4,91	1,78E+18	5,29E-12
			50	6,14	1,23E+17	2,79E-12
			60	7,37	1,37E+16	2,02E-10
			80	9,82	4,35E+14	2,55E-09
			90	11,05	1,06E+14	2,65E-09
			100	12,28	2,99E+13	2,81E-08
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	9,82	2,18E+14	4,12E-08
			200	12,28	1,50E+13	1,44E-07
		Totali		,	,	2,19E-07
Def	formazione BISAR [μstra			<u>-</u>		,
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	<u> </u>		40	-	-	_
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Con	glomerato (Fase 1) [HV				2,79E+06	
	Fondazione [HVAG]	/ (O)			1,17E+14	
Dof	formazione BISAR [µstra	l nin¹		52,95	±,±/∟⊤±4	
				32,33	1 60E : 1E	
	ottofondo (Fase 1) [ESA				4,60E+15	
	iglomerato (Fase 2) [HV				-	
	formazione BISAR [μstra			-		
S	ottofondo (Fase 2) [ESA	\]			-	
	Ns [ESA]				-	
	Na [ESA]				-	
V	ita pavimentazione [ESA	A]			3,63E+06	

			CG, 100	0 - 400 - 1000		
Defo	ormazione BISAR [µstr	ain]		115,00		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	57,50	2,56E+09	3,68E-03
			50	71,88	8,38E+08	4,07E-04
			60	86,25	3,37E+08	8,25E-03
			80	115,00	8,00E+07	1,39E-02
			90	129,38	4,44E+07	6,32E-03
			100	143,75	2,62E+07	3,21E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	115,00	4,00E+07	2,25E-0
			200	143,75	1,31E+07	1,65E-0
		Totali				4,54E-0
Defo	ormazione BISAR [µstr	ain]		13,23		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	6,62	5,01E+16	1,88E-10
			50	8,27	3,44E+15	9,92E-1
			60	9,92	3,86E+14	7,20E-09
			80	13,23	1,22E+13	9,07E-08
			90	14,88	2,98E+12	9,42E-08
			100	16,54	8,41E+11	1,00E-06
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	13,23	6,12E+12	1,47E-06
			200	16,54	4,20E+11	5,14E-06
		Totali				7,80E-06
Defo	ormazione BISAR [µstr	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cone	glomerato (Fase 1) [HV	ı			5,63E+07	
	Fondazione [HVAG]				3,28E+12	
Defo	ormazione BISAR [µstr	ı ainl		51,37	2,202.12	
	ottofondo (Fase 1) [ESA			31,37	5,69E+15	
					J,UJLT13	
	glomerato (Fase 2) [HV				-	
	ormazione BISAR [µstr			-		
So	ottofondo (Fase 2) [ESA	۸ <u>]</u> آ			-	
	Ns [ESA]				-	
	Na [ESA]				-	
\ /:±	a pavimentazione [ESA	Δ1			7,32E+07	

D-t-	rmaziona DICAD [+	rain1	C3, 10.	0 - 400 - 1000 L 110 20		
	rmazione BISAR [μst		C- :	110,30	N 1	.1
Fase 1	Conglomerato	SADT	Carico		N 2.455.00	d
			40	55,15	3,15E+09	2,99E-03
			50	68,94	1,03E+09	3,31E-0
			60	82,73	4,15E+08	
			80	110,30	9,85E+07	
			90	124,09	5,47E+07	5,13E-0
		TART	100	137,88	3,23E+07	2,61E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	110,30	4,93E+07	1,82E-0
			200	137,88	1,61E+07	1,34E-0
		Totali				3,68E-0
Defo	rmazione BISAR [μst			63,59		
	Fondazione	SADT	Carico		N	d
			40	31,80	3,30E+08	
		_	50	39,74	2,26E+07	1,51E-0
		_	60	47,69	2,54E+06	•
			80	63,59	8,05E+04	•
			90	71,54	1,96E+04	•
			100	79,49	5,53E+03	1,52E+0
		TADT	Carico	Deformazione critica [μstrain]	N	d
			160	63,59	4,02E+04	-
			200	79,49	2,76E+03	7,81E+0
	_	Totali				1,19E+0
Defo	rmazione BISAR [μst	rain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	_	_	
			60		_	-
			80	-	-	-
				- -	-	- - -
			80	- -	-	- - -
		TADT	80 90	- - - Deformazione critica [µstrain]	- - - N	- - - d
		TADT	80 90 100	Deformazione critica [µstrain]	- - - N	- - - d
		TADT	80 90 100 Carico	- - - Deformazione critica [µstrain] - -	- - N -	- - - d -
		TADT	80 90 100 Carico 160	Deformazione critica [µstrain]	- - - N	- - - d - -
Cong	lomerato (Fase 1) [H'	Totali	80 90 100 Carico 160	Deformazione critica [µstrain]	- - N - - - - 6,94E+07	- - - d - -
Cong	lomerato (Fase 1) [H' Fondazione [HVAG]	Totali	80 90 100 Carico 160	- - - Deformazione critica [μstrain] - -	-	- - - d - -
	Fondazione [HVAG]	Totali VAG]	80 90 100 Carico 160	-	- - 6,94E+07	- - - d - -
Defo	Fondazione [HVAG] rmazione BISAR [μst	Totali VAG] rain]	80 90 100 Carico 160	- Deformazione critica [- - Deformazione critica [- - - 143,80	- - 6,94E+07 2,16E+04	- - - d - -
Defo So	Fondazione [HVAG] rmazione BISAR [μst ttofondo (Fase 1) [ES	Totali VAG] rain]	80 90 100 Carico 160	-	- - 6,94E+07	- - - d - -
Defo Sof Cong	Fondazione [HVAG] rmazione BISAR [μst ttofondo (Fase 1) [ES lomerato (Fase 2) [H	Totali VAG] rain] A]	80 90 100 Carico 160	-	- - 6,94E+07 2,16E+04	- - d -
Defo Sor Cong Defo	Fondazione [HVAG] rmazione BISAR [μst ttofondo (Fase 1) [ES lomerato (Fase 2) [H' rmazione BISAR [μst	Totali VAG] rain] A] VAG] rain]	80 90 100 Carico 160	-	- - 6,94E+07 2,16E+04	- - - d - -
Defo Sor Cong Defo	Fondazione [HVAG] rmazione BISAR [µstr ttofondo (Fase 1) [ES lomerato (Fase 2) [H' rmazione BISAR [µstr ttofondo (Fase 2) [ES	Totali VAG] rain] A] VAG] rain]	80 90 100 Carico 160	-	- - 6,94E+07 2,16E+04	- - - d - -
Defo Sor Cong Defo	Fondazione [HVAG] rmazione BISAR [μstr ttofondo (Fase 1) [ES lomerato (Fase 2) [H' rmazione BISAR [μstr ttofondo (Fase 2) [ES Ns [ESA]	Totali VAG] rain] A] VAG] rain]	80 90 100 Carico 160	-	- - 6,94E+07 2,16E+04	- - - d - -
Defo Sor Cong Defo	Fondazione [HVAG] rmazione BISAR [µstr ttofondo (Fase 1) [ES lomerato (Fase 2) [H' rmazione BISAR [µstr ttofondo (Fase 2) [ES	Totali VAG] rain] A] VAG] rain]	80 90 100 Carico 160	-	- - 6,94E+07 2,16E+04	- - - d - -

			GG,	150 - 200 - 1000		
De	formazione BISAR [μstra	nin]		138,10		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40			
			50			
			60	Tabella :	E //1	
			80	i abelia :	3.41	
			90			
			100			
		TADT	Carico	Deformazione critica [µstrain]	Ν	d
			160	Tabella	F 41	
			200	Tabella :	5.41	
		Totali				Tabella 5.41
De	formazione BISAR [μstra	in]		14,56		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40		-	
			50			
			60	T .1	F 42	
			80	Tabella	5.42	
			90			
			100			
		TADT	Carico	Deformazione critica [N	d
			160			
			200	Tabella	5.42	
		Totali				Tabella 5.42
De	formazione BISAR [µstra	<u> </u>		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	331.8.3.1.3.4.3	<u> </u>	40	-	-	-
			50	<u>-</u>	-	_
			60	_		_
			80	<u>-</u>	_	_
			90	-	-	_
			100	_	_	-
		TADT	Carico	Deformazione critica [N	d
			160	-	-	-
			200	_	_	-
		Totali				_
Car	nglomerato (Fase 1) [HV					_
		٦٠١			Tabella 5.43	
D .	Fondazione [HVAG]			75 75		
	formazione BISAR [μstra			75,75	T-1-11 5 40	
	Sottofondo (Fase 1) [ESA				Tabella 5.43	
	nglomerato (Fase 2) [HV				-	
	formazione BISAR [μstra			-		
S	ottofondo (Fase 2) [ESA	.]			-	
	Ns [ESA]				-	
	Na [ESA]				-	

		CG,	150 - 2	00 - 1000		
	Deformazione BISAR [μstrain]			83,83		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [N	d
			40	41,92	1,24E+10	7,58E-04
			50	52,39	4,07E+09	8,38E-05
			60	62,87	1,64E+09	1,70E-03
			80	83,83	3,88E+08	2,86E-03
			90	94,31	2,16E+08	
			100	104,79	1,27E+08	6,61E-03
		TADT	Carico	Deformazione critica [μstrain]	N	d
			160	83,83	1,94E+08	
			200	104,79	6,36E+07	3,39E-02
		Totali				9,34E-02
	Deformazione BISAR [μstrain]			22,32		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	11,16	9,42E+13	1,00E-07
			50	13,95	6,48E+12	5,27E-08
			60	16,74	7,26E+11	3,83E-06
			80	22,32	2,30E+10	
			90	25,11	5,60E+09	
			100	27,90	1,58E+09	
		TADT	Carico	Deformazione critica [μstrain]	N	d
			160	22,32	1,15E+10	
			200	27,90	7,91E+08	
		Totali				4,15E-03
	Deformazione BISAR [µstrain]			-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [μstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali			0 7 1 7 7	-
	Conglomerato (Fase 1) [HVAG]				2,74E+08	
	Fondazione [HVAG]				6,17E+09	
	Deformazione BISAR [μstrain]			78,38	-	
	Sottofondo (Fase 1) [ESA]				2,95E+14	
	Conglomerato (Fase 2) [HVAG]				-	
	Deformazione BISAR [μstrain]			-		
	Sottofondo (Fase 2) [ESA]				-	
	Ns [ESA]				-	
	Na [ESA]				-	
	Vita pavimentazione [ESA]				3,56E+08	

		CS,	150 - 2	00 - 1000		
	Deformazione BISAR [μstrain]			92,96		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	46,48	7,41E+09	1,27E-03
			50	58,10	2,43E+09	1,41E-04
			60	69,72	9,76E+08	2,85E-03
			80	92,96	2,32E+08	4,79E-03
			90	104,58	1,29E+08	2,18E-03
			100	116,20	7,59E+07	1,11E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	92,96	1,16E+08	7,75E-02
			200	116,20	3,80E+07	5,69E-02
		Totali				1,57E-01
	Deformazione BISAR [μstrain]			106,60		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	53,30	6,69E+05	1,41E+01
			50	66,63	4,60E+04	7,43E+00
			60	79,95	5,16E+03	5,39E+02
			80	106,60	1,63E+02	6,79E+03
			90	119,93	3,97E+01	7,06E+03
			100	133,25	1,12E+01	7,50E+04
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	106,60	8,17E+01	1,10E+05
			200	133,25	5,61E+00	3,85E+05
		Totali				5,84E+05
	Deformazione BISAR [μstrain]			-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [μstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [μstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
	Conglomerato (Fase 1) [HVAG]				1,63E+08	
	Fondazione [HVAG]				4,38E+01	
	Deformazione BISAR [μstrain]			224,80		
	Sottofondo (Fase 1) [ESA]				1,85E+11	
	Conglomerato (Fase 2) [HVAG]				-	
	Deformazione BISAR [μstrain]			-		
	Sottofondo (Fase 2) [ESA]				-	
	Ns [ESA]				-	
	Na [ESA]				_	
	Vita pavimentazione [ESA]				5,69E+01	
					2,002.01	

			GG, 15	0 - 300 - 1000		
Defo	ormazione BISAR [μstr	ain]		141,80		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	70,90	8,98E+08	1,05E-02
			50	88,63	2,94E+08	1,16E-03
			60	106,35	1,18E+08	2,35E-02
			80	141,80	2,81E+07	3,96E-02
			90	159,53	1,56E+07	1,80E-02
			100	177,25	9,19E+06	9,15E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	141,80	1,40E+07	6,40E-01
			200	177,25	4,60E+06	4,70E-01
		Totali				1,29E+00
Defo	rmazione BISAR [μstr	ain]		10,57		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	5,29	7,41E+17	1,27E-11
			50	6,61	5,09E+16	6,71E-12
			60	7,93	5,71E+15	4,87E-10
			80	10,57	1,81E+14	6,14E-09
			90	11,89	4,40E+13	6,37E-09
			100	13,21	1,24E+13	6,77E-08
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	10,57	9,04E+13	9,93E-08
			200	13,21	6,21E+12	3,47E-07
		Totali				5,27E-07
Defo	ormazione BISAR [µstr	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [H\				1,98E+07	
	Fondazione [HVAG]				4,85E+13	
l Defo	ormazione BISAR [µstr	ainl		56,18	·, · 	
	ttofondo (Fase 1) [ES			30,10	3,04E+15	
	lomerato (Fase 2) [H\				-	
					-	
	ormazione BISAR [µstr			<u>-</u>		
501	ttofondo (Fase 2) [ES	4 <u>]</u>			-	
	Ns [ESA]				-	
	Na [ESA]				-	
Vita	a pavimentazione [ES	A]			2,57E+07	

			CG, 150	0 - 300 - 1000		
Defo	rmazione BISAR [μstr	ain]		84,29		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	42,15	1,21E+10	7,79E-04
			50	52,68	3,96E+09	8,62E-0
			60	63,22	1,59E+09	1,75E-03
			80	84,29	3,78E+08	2,94E-03
			90	94,83	2,10E+08	1,34E-03
			100	105,36	1,24E+08	6,79E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	84,29	1,89E+08	4,75E-0
			200	105,36	6,19E+07	3,49E-0
		Totali				9,60E-0
Defo	rmazione BISAR [μstr	ain]		15,46		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	7,73	7,73E+15	1,22E-0
			50	9,66	5,31E+14	6,43E-10
			60	11,60	5,96E+13	4,67E-0
			80	15,46	1,89E+12	5,88E-0
			90	17,39	4,59E+11	6,11E-0
			100	19,33	1,30E+11	6,49E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	15,46	9,43E+11	9,51E-0
			200	19,33	6,48E+10	3,33E-0
		Totali				5,05E-05
Defo	rmazione BISAR [μstr	ain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [H\				2,66E+08	
	Fondazione [HVAG]				5,06E+11	
 Defo	rmazione BISAR [µstr	ainl		57,31	-,	
	ttofondo (Fase 1) [ES			37,31	2,64E+15	
	, , , ,				2,04LT13	
	lomerato (Fase 2) [H				-	
	rmazione BISAR [μstr			-		
So	ttofondo (Fase 2) [ES.	A]			-	
	Ns [ESA]	1			-	
	Na [ESA]				-	
	a pavimentazione [ES			·	3,46E+08	

			CS, 150	0 - 300 - 1000		
Defo	ormazione BISAR [µstr	ain]		86,15		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	43,08	1,08E+10	8,69E-04
			50	53,84	3,55E+09	9,61E-05
			60	64,61	1,43E+09	1,95E-03
			80	86,15	3,39E+08	3,27E-03
			90	96,92	1,88E+08	1,49E-03
			100	107,69	1,11E+08	7,58E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	86,15	1,69E+08	5,30E-02
			200	107,69	5,55E+07	3,89E-02
		Totali				1,07E-01
Defo	ormazione BISAR [µstr	ain]		73,00		-
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	36,50	6,29E+07	1,50E-01
			50	45,63	4,32E+06	
			60	54,75	4,85E+05	
			80	73,00	1,54E+04	
			90	82,13	3,74E+03	
			100	91,25	1,06E+03	
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	73,00	7,68E+03	1,17E+03
			200	91,25	5,28E+02	
		Totali		·	,	6,21E+03
Defo	ormazione BISAR [μstr	ainl		-	<u> </u>	,
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	_
			90	-	-	-
			100	-	-	_
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				_
Cons	glomerato (Fase 1) [H\				2,39E+08	
	Fondazione [HVAG]	T			4,12E+03	
Dofe	ormazione BISAR [µstr	l ainl		161,90	4,121103	
				101,90	1 0/15 : 12	
	ottofondo (Fase 1) [ES/				1,84E+12	
	glomerato (Fase 2) [H\				-	
	ormazione BISAR [µstr			-		
Sc	ottofondo (Fase 2) [ES/	4]			-	
	Ns [ESA]				-	
	Na [ESA]				-	
\/it	ta pavimentazione [ES	A]			5,35E+03	

			GG, 15	0 - 400 - 1000		
Def	ormazione BISAR [μstra	ain]		143,40		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	71,70	8,49E+08	1,11E-02
			50	89,63	2,78E+08	1,23E-03
			60	107,55	1,12E+08	2,49E-02
			80	143,40	2,65E+07	4,18E-02
			90	161,33	1,47E+07	1,91E-02
			100	179,25	8,69E+06	9,68E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	143,40	1,33E+07	6,77E-01
			200	179,25	4,35E+06	4,97E-01
		Totali				1,37E+00
Def	formazione BISAR [μstra	in]		7,98		·
	Fondazione	SADT	Carico	·	N	d
			40	3,99	2,18E+19	4,33E-13
			50	4,98	1,50E+18	2,28E-13
			60	5,98	1,68E+17	1,66E-11
			80	7,98	5,31E+15	2,09E-10
			90	8,97	1,29E+15	2,17E-10
			100	9,97	3,65E+14	2,30E-09
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	7,98	2,66E+15	3,38E-09
			200	9,97	1,83E+14	1,18E-08
		Totali		,	,	1,79E-08
Def	ormazione BISAR [μstra			<u>-</u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	<u> </u>		40	-	-	_
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	_
			200	-	-	-
		Totali				_
Con	glomerato (Fase 1) [HV				1,87E+07	
	Fondazione [HVAG]	/.c _j			1,43E+15	
Dof	Formazione BISAR [µstra	l		42,79	1,732113	
	ottofondo (Fase 1) [ESA			44,/3	2 04E+16	
	· · · · · ·				2,04E+16	
	glomerato (Fase 2) [HV				-	
	formazione BISAR [μstra			-		
S	ottofondo (Fase 2) [ESA	\]			-	
	Ns [ESA]				-	
	Na [ESA]				-	
V	ita pavimentazione [ESA	4]			2,43E+07	

			CG, 150	0 - 400 - 1000		
Defo	rmazione BISAR [μstι	rain]		84,44		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	42,22	1,20E+10	7,86E-04
			50	52,78	3,93E+09	8,69E-0
			60	63,33	1,58E+09	1,76E-03
			80	84,44	3,75E+08	2,96E-03
			90	95,00	2,08E+08	1,35E-03
			100	105,55	1,23E+08	6,85E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	84,44	1,87E+08	4,79E-0
			200	105,55	6,14E+07	3,52E-0
		Totali				9,69E-0
Defo	rmazione BISAR [µstɪ	rain]		11,22		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	5,61	3,62E+17	2,60E-1
			50	7,01	2,49E+16	1,37E-1
			60	8,42	2,79E+15	9,97E-1
			80	11,22	8,84E+13	1,26E-08
			90	12,62	2,15E+13	1,30E-0
			100	14,03	6,07E+12	1,39E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	11,22	4,42E+13	2,03E-0
			200	14,03	3,04E+12	7,11E-07
		Totali				1,08E-06
Defo	rmazione BISAR [μstι	rain]		-		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	-	-	-
			50	-	-	-
			60	-	-	-
			80	-	-	-
			90	-	-	-
			100	-	-	-
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [H			1	2,64E+08	
	Fondazione [HVAG]				2,37E+13	
l Defo	rmazione BISAR [µsti	rainl		42,97	_,_,_	
	ttofondo (Fase 1) [ES			72,51	1,99E+16	
	, , , , ,				1,33L+10	
	lomerato (Fase 2) [H				-	
	rmazione BISAR [μsti			-		
Sof	ttofondo (Fase 2) [ES	A]			-	
	Ns [ESA]				-	
I	Na [ESA]				-	
	a pavimentazione [ES				3,43E+08	

			CS, 150	0 - 400 - 1000	Γ	
1	rmazione BISAR [μstr			83,64		
Fase 1	Conglomerato	SADT	Carico	-, -	N	d
			40	41,82	1,26E+10	7,50E-0
			50	52,28	4,12E+09	8,29E-0
			60	62,73	1,66E+09	1,68E-0
			80	83,64	3,93E+08	2,82E-0
			90	94,10	2,18E+08	1,29E-0
			100	104,55	1,29E+08	6,54E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	83,64	1,96E+08	4,57E-0
			200	104,55	6,44E+07	3,35E-0
		Totali				9,24E-0
Defo	rmazione BISAR [μstr	ain]		52,57		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
İ			40	26,29	3,23E+09	2,92E-0
			50	32,86	2,22E+08	1,54E-0
			60	39,43	2,49E+07	
	-		80	52,57	7,90E+05	
	-		90	59,14	1,92E+05	
			100	65,71	5,43E+04	
		TADT	Carico	Deformazione critica [µstrain]	N	d
		1	160	52,57	3,95E+05	2.27E+0
			200	65,71	2,71E+04	
		Totali		33,. 2		1,21E+0
Defo	rmazione BISAR [μstr			-		1,212.0
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
1 430 2	Conglomerato	JADI	40		_	
			50			
			60	<u> </u>		
			80	-	_	_
			90	-	<u>-</u>	
				-	<u>-</u>	
		TADT	100	Poformanion a mitiga (contrain)	- NI	- -
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-	-	-
			200	-	-	-
		Totali				-
Cong	lomerato (Fase 1) [H\	VAG]			2,77E+08	
	Fondazione [HVAG]				2,12E+05	
Defo	rmazione BISAR [μstr	rain]		120,10		
So	ttofondo (Fase 1) [ES	A]			1,49E+13	
Cong	lomerato (Fase 2) [H\	VAG]			-	
Cong	rmazione BISAR [µstr	ain]		-		
	iiiiazione bisak justi			 		
Defo					-	
Defo	ttofondo (Fase 2) [ES				-	
Defo	ttofondo (Fase 2) [ES. Ns [ESA]				-	
Defo So	ttofondo (Fase 2) [ES	A]			- - - 2,75E+05	

			GG.	200 - 200 - 1000		
Def	formazione BISAR [μstra	ain]		96,44		
Fase 1	Conglomerato	SADT	Carico	·	N	d
			40	<u> </u>		
			50			
			60			
			80	Tabella .	5.27	
			90			
			100			
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	-, -		
			200	Tabella !	5.28	
		Totali				Tabella 5.36
Det	L formazione BISAR [μstra			11,88		rasena sise
50	Fondazione	SADT	Carico	·	N	d
	. Stradzione	3, 15 1	40	2 5.5. mazione orialea [potram]	14	<u> </u>
			50			
			60			
			80	Tabella !	5.31	
			90			
			100			
		TADT		Deformazione critica [µstrain]	N	d
		17.01	160			ч
			200	Tabella	5.32	
		Totali	200			Tahella 5 38
Det	formazione BISAR lustra	Totali	200	121 90		Tabella 5.38
T	formazione BISAR [µstra	in]		121,90 Deformazione critica (ustrain)	N	
Det	formazione BISAR [μstra Conglomerato		Carico	121,90 Deformazione critica [µstrain]	N	Tabella 5.38
T		in]	Carico 40	·	N	
T		in]	Carico 40 50	Deformazione critica [µstrain]		
T		in]	Carico 40 50 60	·		
T		in]	Carico 40 50 60 80	Deformazione critica [µstrain]		
T		in]	Carico 40 50 60 80 90	Deformazione critica [µstrain]		
T		SADT	Carico 40 50 60 80 90	Deformazione critica [µstrain] Tabella	5.29	
T		in]	Carico 40 50 60 80 90	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain]	5.29 N	d
T		SADT	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella	5.29 N	d
T		SADT	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain]	5.29 N	d
Fase 2	Conglomerato	SADT TADT Totali	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain]	5.29 N 5.30	d
Fase 2	Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato Conglomerato	SADT TADT Totali	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain]	5.29 N	d
Fase 2	Conglomerato Co	TADT Totali	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain] Tabella	5.29 N 5.30	d
Co	Conglomerato Co	TADT Totali Fin]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain]	5.29 N 5.30 Tabella 5.39	d
Coo	Conglomerato Co	TADT Totali [SA]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain] Tabella	5.29 N 5.30 Tabella 5.39	d
Co Det	Conglomerato Co	TADT Totali in] in] in] in] in]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [Tabella Deformazione critica [Tabella Tabella 60,46	5.29 N 5.30 Tabella 5.39	d
Co Def	Conglomerato Co	TADT Totali SA] ain] in]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [µstrain] Tabella Deformazione critica [µstrain] Tabella	5.29 N 5.30 Tabella 5.39 Tabella 5.33	d
Co Def	Conglomerato Conglomerato Conglomerato Conglomerato (Fase 1) [ESE Fondazione [ESA] Formazione BISAR [µstra Cottofondo (Fase 1) [ESA Conglomerato (Fase 2) [ESA Conglomerato (Fase 2) [ESA Cottofondo (Fase 2) [ESA	TADT Totali SA] ain] in]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [Tabella Deformazione critica [Tabella Tabella 60,46	5.29 N 5.30 Tabella 5.39	d
Co Def	Conglomerato Co	TADT Totali SA] ain] in]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [Tabella Deformazione critica [Tabella Tabella 60,46	5.29 N 5.30 Tabella 5.39 Tabella 5.33	d
Co Def S Co	Conglomerato Conglomerato Conglomerato Conglomerato (Fase 1) [ESE Fondazione [ESA] Formazione BISAR [µstra Cottofondo (Fase 1) [ESA Conglomerato (Fase 2) [ESA Conglomerato (Fase 2) [ESA Cottofondo (Fase 2) [ESA	TADT Totali SA] ain] in] in]	Carico 40 50 60 80 90 100 Carico	Deformazione critica [Tabella Deformazione critica [Tabella Tabella 60,46	N 5.30 Tabella 5.39 Tabella 5.33 Tabella 5.33	d

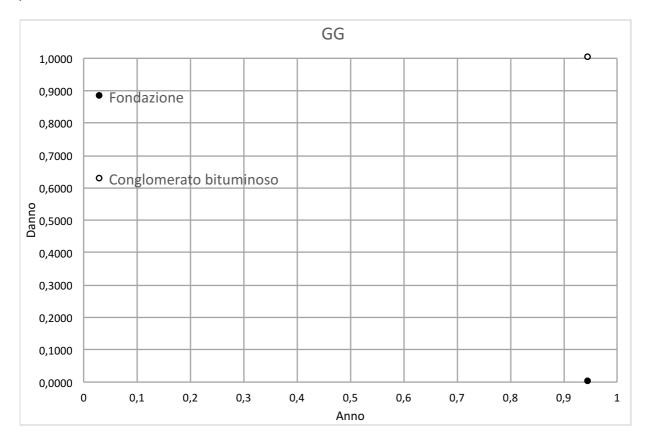
		CG	i, 200 - 2	200 - 1000		
	Deformazione BISAR [µstrain]			60,81		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [N	d
	-		40	30,41	6,19E+10	1,52E-04
			50	38,01	2,03E+10	1,68E-05
			60	45,61	8,15E+09	3,41E-04
			80	60,81	1,93E+09	5,74E-04
			90	68,41	1,07E+09	2,61E-04
			100	76,01	6,34E+08	1,33E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	60,81	9,67E+08	9,28E-03
			200	76,01	3,17E+08	6,81E-03
		Totali				1,88E-02
	Deformazione BISAR [μstrain]			18,56		•
	Fondazione	SADT	Carico	·	N	d
<u></u>			40	9,28	8,62E+14	1,09E-08
			50	11,60	5,93E+13	5,76E-09
			60	13,92	6,65E+12	4,18E-07
			80	18,56	2,11E+11	5,27E-06
			90	20,88	5,12E+10	5,48E-06
			100	23,20	1,45E+10	5,82E-05
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	18,56	1,05E+11	8,53E-05
			200	23,20	7,23E+09	2,98E-04
		Totali				4,15E-03
	Deformazione BISAR [µstrain]			98,42		.,
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	33.18.3.1.3.	<u> </u>	40	49,21	5,57E+09	1,69E-03
			50	61,51	1,83E+09	1,87E-04
			60	73,82	7,34E+08	3,79E-03
			80	98,42	1,74E+08	6,37E-03
			90	110,72	9,66E+07	2,90E-03
			100	123,03	5,71E+07	1,47E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	98,42	8,71E+07	1,03E-01
			200	123,03	2,85E+07	7,57E-02
		Totali		,	, -	2,08E-01
	Conglomerato (Fase 1) [ESA]	2.5011			1,77E+09	_,
	Fondazione [ESA]				7,34E+10	
	Deformazione BISAR [µstrain]			64,77	/,UTLTIU	
				U4,//	1 125:15	
	Sottofondo (Fase 1) [ESA]				1,12E+15	
	Conglomerato (Fase 2) [ESA]				1,60E+08	
	Deformazione BISAR [µstrain]			68,79		
	Sottofondo (Fase 2) [ESA]				7,37E+14	
	Ns [ESA]				7,37E+14	
	Na [ESA]				No calcolo	
	Vita pavimentazione [ESA]				1,77E+09	

			CS, 20	00 - 200 - 1000		
Defo	rmazione BISAR [µstrain	ո]	,	71,21		
Fase 1		SADT	Carico	•	N	d
	-		40	35,61	2,81E+10	3,35E-04
			50	44,51	9,21E+09	3,71E-05
			60	53,41	3,70E+09	7,51E-04
			80	71,21	8,78E+08	1,26E-03
			90	80,11	4,87E+08	5,76E-04
			100	89,01	2,88E+08	2,92E-03
	Т	ΓADT	Carico	Deformazione critica [µstrain]	N	d
			160	71,21	4,39E+08	2,04E-02
			200	89,01	1,44E+08	1,50E-02
	Т	otali				4,13E-02
Defo	rmazione BISAR [µstrain	1]		84,37		
		SADT	Carico	Deformazione critica [µstrain]	N	d
			40	42,19	1,11E+07	8,51E-01
			50	52,73	7,61E+05	4,49E-01
			60	63,28	8,54E+04	3,26E+01
			80	84,37	2,70E+03	4,10E+02
			90	94,92	6,58E+02	4,26E+02
			100	105,46	1,86E+02	4,53E+03
	Т	ΓADT	Carico	Deformazione critica [µstrain]	N	d
			160	84,37	1,35E+03	6,64E+03
			200	105,46	9,29E+01	2,32E+04
	Т	otali				3,53E+04
Defo	rmazione BISAR [µstrain	n]		113,90		
Fase 2	Conglomerato S	SADT	Carico	Deformazione critica [N	d
			40	56,95	2,68E+09	3,51E-03
			50	71,19	8,80E+08	3,88E-04
			60	85,43	3,54E+08	7,87E-03
			80	113,90	8,39E+07	1,32E-02
			90	128,14	4,66E+07	6,03E-03
			100	142,38	2,75E+07	3,06E-02
	Т	ΓADT	Carico	Deformazione critica [µstrain]	N	d
			160	113,90	4,19E+07	2,14E-01
			200	142,38	1,37E+07	1,57E-01
	Т	otali				0,43
Con	glomerato (Fase 1) [ESA]			Tabella F 40	
	Fondazione [ESA]				Tabella 5.40	
Defo	rmazione BISAR [µstrain	n]		182,20		
	ttofondo (Fase 1) [ESA]	-		,	8,06E+11	
	glomerato (Fase 2) [ESA]]			Tabella 5.40	
	rmazione BISAR [µstrain	_		202,40	3 3 3 10	
	ttofondo (Fase 2) [ESA]	.1		202,70	3,86E+11	
301	Ns [ESA]				J,UULTII	
					Tabella 5.40	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Na [ESA]				7.005.07	
Vita	a pavimentazione [ESA]				7,68E+07	

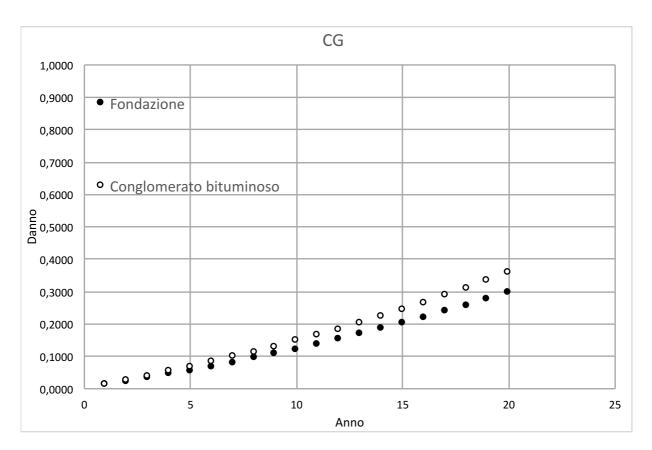
			GG, 20	0 - 300 - 1000		
Defo	rmazione BISAR [μstra	in]		99,45		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	49,73	5,29E+09	1,78E-03
			50	62,16	1,73E+09	1,97E-0
			60	74,59	6,97E+08	3,99E-0
			80	99,45	1,65E+08	6,71E-0
			90	111,88	9,17E+07	3,06E-0
			100	124,31	5,42E+07	1,55E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	99,45	8,27E+07	1,09E-0
			200	124,31	2,71E+07	7,97E-0
		Totali				2,20E-0
Defo	rmazione BISAR [μstra	in]		8,65		
	Fondazione	SADT	Carico	Deformazione critica [N	d
			40	4,32	8,26E+18	1,14E-1
			50	5,40	5,67E+17	6,02E-1
			60	6,48	6,36E+16	4,37E-1
			80	8,65	2,02E+15	5,51E-1
			90	9,73	4,90E+14	5,72E-1
			100	10,81	1,39E+14	6,07E-0
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	8,65	1,01E+15	8,91E-0
			200	10,81	6,93E+13	3,12E-0
		Totali				4,73E-0
Defo	rmazione BISAR [μstra	nin]		127,80		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [N	d
			40	63,90	1,51E+09	6,25E-0
			50	79,88	4,95E+08	6,90E-0
			60	95,85	1,99E+08	1,40E-0
			80	127,80	4,72E+07	2,35E-0
			90	143,78	2,62E+07	1,07E-0
			100	159,75	1,55E+07	5,44E-0
		TADT	Carico	Deformazione critica [N	d
			160	127,80	2,36E+07	3,81E-0
			200	159,75	7,73E+06	2,79E-0
		Totali				4,90E-0
Con	glomerato (Fase 1) [ES				1,51E+08	
I	Fondazione [ESA]				7,03E+14	
I Defo	ormazione BISAR [µstra	inl		45,38	.,	
	ttofondo (Fase 1) [ESA			73,30	1,35E+16	
	glomerato (Fase 2) [ES	-			6,78E+07	
	prmazione BISAR [µstra			<i>1</i> 0.15	0,70LTU/	
				49,15	7 755.45	
	ttofondo (Fase 2) [ESA	. <u>J</u>			7,75E+15	
	Ns [ESA]				8,05E+15	
	Na [ESA]				No calcolo	
Vit	a pavimentazione [ESA	\]			1,51E+08	

			CG, 20	0 - 300 - 1000		1
Def	formazione BISAR [μstr	ain]		61,24		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	30,62	5,98E+10	1,58E-04
			50	38,28	1,96E+10	1,74E-05
			60	45,93	7,87E+09	3,53E-04
			80	61,24	1,87E+09	5,94E-04
			90	68,90	1,04E+09	2,71E-04
			100	76,55	6,12E+08	1,38E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	61,24	9,34E+08	9,61E-03
			200	76,55	3,06E+08	7,06E-03
		Totali				1,94E-02
Def		ainl		13,03		,
	Fondazione	SADT	Carico	·	N	d
	. 51144210116	1	40	6,52	6,02E+16	
		+	50	8,14	4,13E+15	8,26E-11
			60	9,77	4,64E+14	•
			80	13,03	1,47E+13	7,56E-08
		+	90	14,66	3,57E+12	7,85E-08
		+	100	16,29	1,01E+12	8,34E-07
		TADT	Carico	Deformazione critica [µstrain]	1,01L+12 N	d
		IADI	160	13,03	7,34E+12	1,22E-06
			200	·	5,05E+11	-
		Takali	200	16,29	3,U3E+11	4,28E-06
		Totali		101.00		6,49E-06
T	formazione BISAR [μstr	T -		101,90		
Fase 2	Conglomerato	SADT		Deformazione critica [μstrain]	N	d
			40	50,95	4,68E+09	-
			50	63,69	1,53E+09	2,22E-04
			60	76,43	6,17E+08	
			80	101,90	1,46E+08	7,58E-03
			90	114,64	8,12E+07	3,45E-03
			100	127,38	4,80E+07	1,75E-02
		TADT	Carico	Deformazione critica [μstrain]	N	d
			160	101,90	7,32E+07	1,23E-01
			200	127,38	2,40E+07	9,00E-02
		Totali				0,25
Со	nglomerato (Fase 1) [E	SA]			1,71E+09	
	Fondazione [ESA]				5,12E+12	
Def	formazione BISAR [μstr	ain]		47,86		
	ottofondo (Fase 1) [ES			·	9,34E+15	
	nglomerato (Fase 2) [E	-			1,34E+08	
	formazione BISAR [µstr			52,56	1,571100	
				32,30	/ OFF: 1F	
5	ottofondo (Fase 2) [ES.	A)			4,85E+15	
	Ns [ESA]				4,85E+15	
	Na [ESA] ita pavimentazione [ES				No calcolo 1,71E+09	

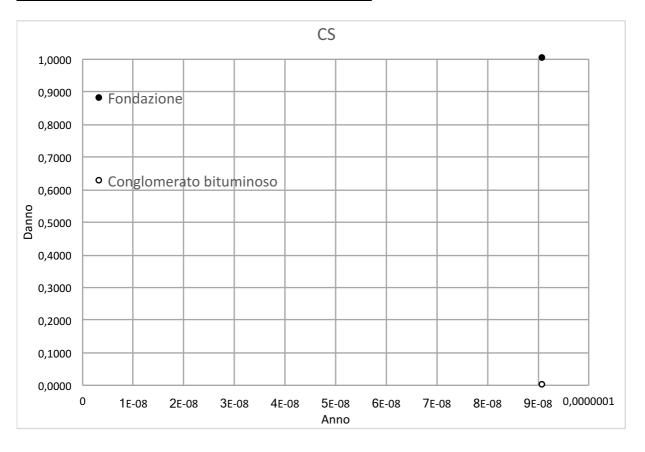
			CS, 200	0 - 300 - 1000		
Defo	rmazione BISAR [µstra	in]	, ,	65,12		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
	Ü		40	32,56	4,39E+10	2,15E-04
			50	40,70	1,44E+10	2,37E-05
			60	48,84	5,79E+09	4,80E-04
			80	65,12	1,37E+09	8,08E-04
			90	73,26	7,62E+08	3,68E-04
			100	81,40	4,50E+08	1,87E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	65,12	6,87E+08	1,31E-02
			200	81,40	2,25E+08	9,59E-03
		Totali				2,64E-02
Defo	rmazione BISAR [µstra	in]		59,70		
	Fondazione	SADT	Carico	Deformazione critica [N	d
			40	29,85	7,03E+08	1,34E-02
			50	37,31	4,83E+07	7,07E-03
			60	44,78	5,42E+06	5,13E-01
			80	59,70	1,72E+05	6,47E+00
			90	67,16	4,18E+04	6,72E+00
			100	74,63	1,18E+04	7,14E+01
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	59,70	8,58E+04	1,05E+02
			200	74,63	5,90E+03	3,66E+02
		Totali				5,56E+02
Defo	rmazione BISAR [µstra	in]		110,10		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	55,05	3,18E+09	2,96E-03
			50	68,81	1,04E+09	3,28E-04
			60	82,58	4,19E+08	6,64E-03
			80	110,10	9,94E+07	1,12E-02
			90	123,86	5,52E+07	5,08E-03
			100	137,63	3,26E+07	2,58E-02
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	110,10	4,97E+07	1,81E-01
			200	137,63	1,63E+07	1,33E-01
		Totali				3,65E-01
Con	glomerato (Fase 1) [ES	A]			1,26E+09	
	Fondazione [ESA]				5,98E+04	
Defo	rmazione BISAR [μstra	in]		134,10		
Sot	ttofondo (Fase 1) [ESA]			6,89E+12	
Con	glomerato (Fase 2) [ES	A]			9,10E+07	
	rmazione BISAR [µstra			157,90		
	ttofondo (Fase 2) [ESA	_		,	2,19E+12	
1	Ns [ESA]				2,19E+12	
	Na [ESA]				9,11E+07	
\/i+-	a pavimentazione [ESA	.1			9,11E+07	
VIL	a pavimentazione [ESA	۱J			3,11E+U/	

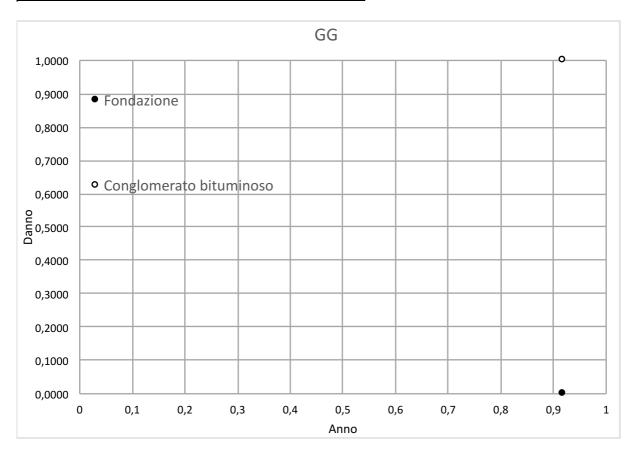

			GG, 20	00 - 400 - 1000		
Defo	rmazione BISAR [μstra	in]		162,70		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	81,35	4,51E+08	2,09E-02
			50	101,69	1,48E+08	2,31E-03
			60	122,03	5,94E+07	4,68E-02
			80	162,70	1,41E+07	7,87E-02
			90	183,04	7,83E+06	3,58E-02
			100	203,38	4,62E+06	1,82E-01
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	162,70	7,05E+06	1,27E+00
			200	203,38	2,31E+06	9,34E-01
		Totali				2,57E+00
Defo	rmazione BISAR [µstra	nin]		7,35		
	Fondazione	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	3,68	5,79E+19	1,63E-13
			50	4,59	3,98E+18	8,59E-14
			60	5,51	4,46E+17	6,23E-12
			80	7,35	1,41E+16	7,86E-11
			90	8,27	3,44E+15	8,16E-11
			100	9,19	9,71E+14	8,67E-10
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	7,35	7,06E+15	1,27E-09
			200	9,19	4,85E+14	4,45E-09
		Totali				6,75E-09
Defo	rmazione BISAR [µstra	nin]		204,60		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [N	d
			40	102,30	1,44E+08	6,57E-02
			50	127,88	4,70E+07	7,26E-03
			60	153,45	1,89E+07	1,47E-01
			80	204,60	4,49E+06	2,47E-01
			90	230,18	2,49E+06	1,13E-01
			100	255,75	1,47E+06	5,73E-01
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	204,60	2,24E+06	4,00E+00
			200	255,75	7,35E+05	2,94E+00
		Totali				5,15E+00
Con	glomerato (Fase 1) [ES	[A]			1,29E+07	
	Fondazione [ESA]				4,92E+15	
 Defo	rmazione BISAR [µstra	nin1		40,02	,	
	ttofondo (Fase 1) [ESA			,	3,27E+16	
	glomerato (Fase 2) [ES	-			6,45E+06	
	rmazione BISAR [µstra			43,97	σ, ¬ σ∟+σσ	
				43,37	1 605 : 16	
501	ttofondo (Fase 2) [ESA	·]			1,69E+16	
	Ns [ESA]				1,93E+16	
	Na [ESA]	<u> </u>			No calcolo	
Vita	a pavimentazione [ES <i>F</i>	A]			1,29E+07	

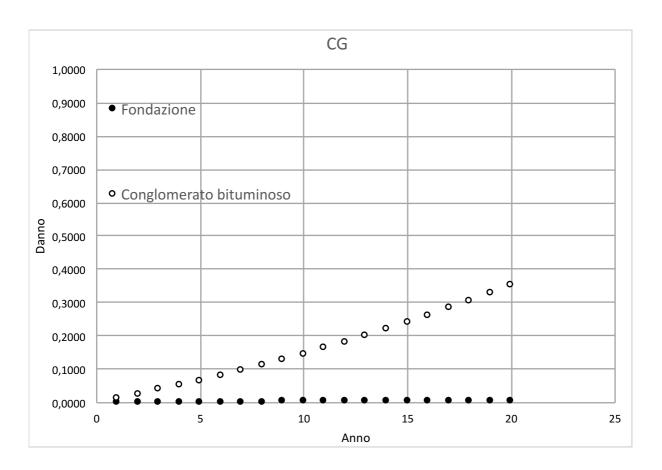
D ~ 1	formaziona DICAD [+	rainl	20, 20	00 - 400 - 1000		
	formazione BISAR [μst	T -	Ca ::: 1 1	61,42	N I	_I
Fase 1	Conglomerato	SADT	Carico		N	d
			40	30,71	5,89E+10	1,60E-04
			50	38,39	1,93E+10	1,77E-05
			60	46,07	7,75E+09	3,59E-04
			80	61,42	1,84E+09	6,03E-04
			90	69,10	1,02E+09	2,75E-04
		TADT	100	76,78	6,03E+08	1,40E-03
		TADT	Carico	Deformazione critica [μstrain]	N 205 : 00	d
			160	61,42	9,20E+08	9,76E-03
		-	200	76,78	3,01E+08	7,16E-03
		Totali				1,97E-02
Det	formazione BISAR [μst			9,61		
	Fondazione	SADT		-, -	N	d
			40	4,81	2,32E+18	4,07E-12
			50	6,01	1,59E+17	2,15E-12
			60	7,21	1,79E+16	1,56E-10
			80	9,61	5,66E+14	1,96E-09
			90	10,81	1,38E+14	2,04E-09
			100	12,02	3,89E+13	2,17E-08
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	9,61	2,83E+14	3,17E-08
			200	12,02	1,94E+13	1,11E-07
		Totali				1,69E-07
Def	formazione BISAR [μst			166,40		
Fase 2	Conglomerato	SADT	Carico	Deformazione critica [N	d
			40	83,20	4,03E+08	2,34E-02
			50	104,00	1,32E+08	2,58E-03
			60	124,80	5,31E+07	5,23E-02
			80	166,40	1,26E+07	8,80E-02
			90	187,20	7,00E+06	4,01E-02
			50	·		1
			100	208,00	4,13E+06	2,04E-01
		TADT		·		2,04E-01 d
		TADT	100	208,00	4,13E+06	2,04E-01 d
		TADT	100 Carico	208,00 Deformazione critica [µstrain]	4,13E+06 N	2,04E-01 d 1,42E+00
		TADT	100 Carico 160	208,00 Deformazione critica [μstrain] 166,40	4,13E+06 N 6,30E+06	2,04E-01 d 1,42E+00 1,05E+00
Co	nglomerato (Fase 1) [E	Totali	100 Carico 160	208,00 Deformazione critica [μstrain] 166,40	4,13E+06 N 6,30E+06	2,04E-01 d 1,42E+00 1,05E+00
Co	nglomerato (Fase 1) [E Fondazione [ESA]	Totali	100 Carico 160	208,00 Deformazione critica [μstrain] 166,40	4,13E+06 N 6,30E+06 2,07E+06	2,04E-01 d 1,42E+00 1,05E+00
		Totali [SA]	100 Carico 160	208,00 Deformazione critica [μstrain] 166,40	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09	2,04E-01 d 1,42E+00 1,05E+00
Def	Fondazione [ESA] formazione BISAR [μst	Totali (SA] (rain]	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14	2,04E-01 d 1,42E+00 1,05E+00
Det S	Fondazione [ESA] formazione BISAR [µst ottofondo (Fase 1) [ES	Totali (SA] (rain]	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14 6,32E+16	2,04E-01 d 1,42E+00 1,05E+00
Det S Co	Fondazione [ESA] formazione BISAR [μst ottofondo (Fase 1) [ES nglomerato (Fase 2) [E	Totali SA] rain] A]	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00 36,42	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14	2,04E-01 d 1,42E+00 1,05E+00
Def S Co	Fondazione [ESA] formazione BISAR [μst ottofondo (Fase 1) [ES nglomerato (Fase 2) [E formazione BISAR [μst	Totali (SA) (rain) (SA) (SA) (rain)	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14 6,32E+16 1,15E+07	2,04E-01 d 1,42E+00 1,05E+00
Def S Co	Fondazione [ESA] formazione BISAR [µstrottofondo (Fase 1) [ES nglomerato (Fase 2) [Eformazione BISAR [µstrottofondo (Fase 2) [ES	Totali (SA) (rain) (SA) (SA) (rain)	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00 36,42	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14 6,32E+16 1,15E+07	2,04E-01 d 1,42E+00 1,05E+00
Def S Co	Fondazione [ESA] formazione BISAR [µstrottofondo (Fase 1) [ES] nglomerato (Fase 2) [Esformazione BISAR [µstrottofondo (Fase 2) [ES] Ns [ESA]	Totali (SA) (rain) (SA) (SA) (rain)	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00 36,42	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14 6,32E+16 1,15E+07 1,02E+16 1,04E+16	2,04E-01 d 1,42E+00 1,05E+00
Def S Co Def	Fondazione [ESA] formazione BISAR [µstrottofondo (Fase 1) [ES nglomerato (Fase 2) [Eformazione BISAR [µstrottofondo (Fase 2) [ES	Totali (SA) (Fain) (SA) (Fain) (Fain) (Fain) (Fain)	100 Carico 160	208,00 Deformazione critica [µstrain] 166,40 208,00 36,42	4,13E+06 N 6,30E+06 2,07E+06 1,69E+09 1,97E+14 6,32E+16 1,15E+07	2,04E-01

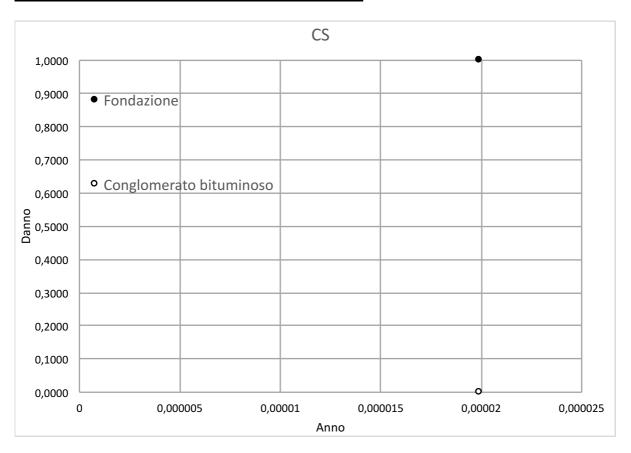

			CS, 200	0 - 400 - 1000		
Def	ormazione BISAR [µstra	ain]		62,51		
Fase 1	Conglomerato	SADT	Carico	Deformazione critica [µstrain]	N	d
			40	31,26	5,39E+10	1,75E-04
			50	39,07	1,77E+10	1,93E-05
			60	46,88	7,10E+09	3,92E-04
			80	62,51	1,69E+09	6,59E-04
			90	70,32	9,35E+08	3,00E-04
			100	78,14	5,52E+08	1,52E-03
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	62,51	8,43E+08	1,07E-02
			200	78,14	2,76E+08	7,82E-03
		Totali				2,15E-02
Def	ormazione BISAR [μstra	in]		44,10		,
	Fondazione	SADT	Carico	,	N	d
			40	22,05	2,66E+10	3,54E-04
			50	27,56	1,83E+09	1,87E-04
			60	33,08	2,05E+08	1,35E-02
			80	44,10	6,50E+06	
			90	49,61	1,58E+06	1,77E-01
			100	55,13	4,47E+05	1,88E+00
		TADT	Carico	Deformazione critica [µstrain]	N	d
			160	44,10	3,25E+06	2,76E+00
			200	55,13	2,23E+05	9,66E+00
		Totali		,	,	1,47E+01
Def	ormazione BISAR [µstra	i ainl		171,20		,
Fase 2	Conglomerato	SADT	Carico	,	N	d
			40	85,60	3,50E+08	
			50	107,00	1,15E+08	
			60	128,40	4,61E+07	
			80	171,20	1,09E+07	1,01E-01
			90	192,60	6,07E+06	
			100	214,00	3,58E+06	2,35E-01
		TADT	Carico	Deformazione critica [N	d
			160	171,20	5,47E+06	1,64E+00
			200	214,00	1,79E+06	1,20E+00
		Totali				3,32E+00
Coi	nglomerato (Fase 1) [ES				1,54E+09	
T	Fondazione [ESA]	<u>, </u>			2,27E+06	
Def	ormazione BISAR [µstra	inl		101,50	_,_,	
	ottofondo (Fase 1) [ESA			101,50	4,84E+13	
	nglomerato (Fase 1) [ESA				1,00E+07	
	· · · · · ·			142.40	1,00E+07	
	ormazione BISAR [μstra			142,40	4 505 46	
So	ottofondo (Fase 2) [ESA	i I			4,52E+12	
	Ns [ESA]				4,52E+12	
	Na [ESA]	<u> </u>			1,23E+07	
Vi	ta pavimentazione [ESA	۸]			1,23E+07	

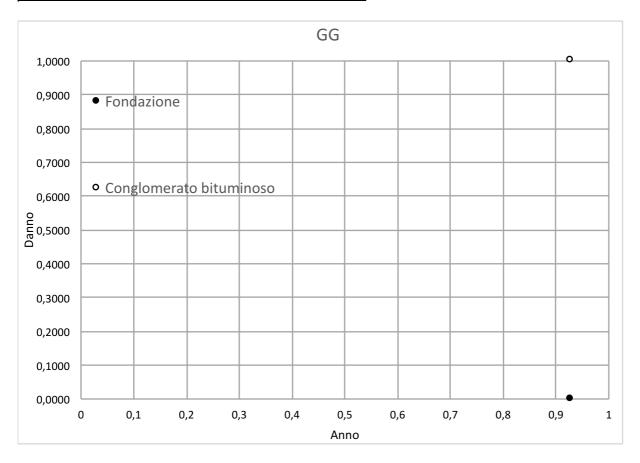
Allegato D

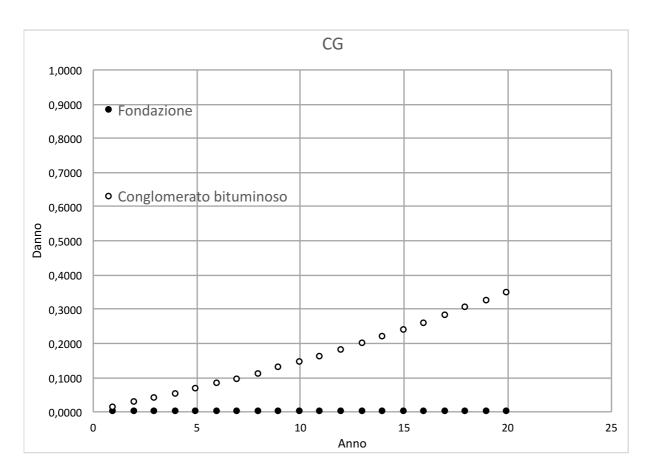

GG	Anni	Danno_f	Danno_c
Fase 1	0,9	0,0001	1

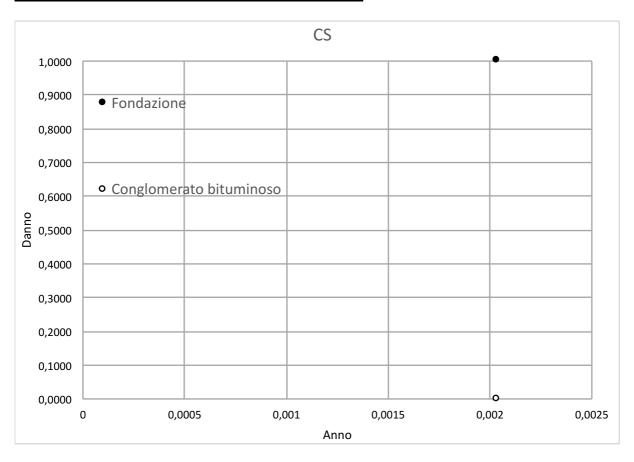

	Anni	Danna f	Danna
CG	Anni	Danno_f	Danno_c
Fase 1	1	0,01	0,01
	2	0,02	0,03
	3	0,03	0,04
	4	0,04	0,05
	5	0,06	0,07
	6	0,07	0,08
	7	0,08	0,10
	8	0,09	0,11
	9	0,11	0,13
	10	0,12	0,15
	11	0,14	0,16
	12	0,15	0,18
	13	0,17	0,20
	14	0,18	0,22
	15	0,20	0,24
	16	0,22	0,26
	17	0,24	0,29
	18	0,26	0,31
	19	0,28	0,33
	20	0,30	0,36

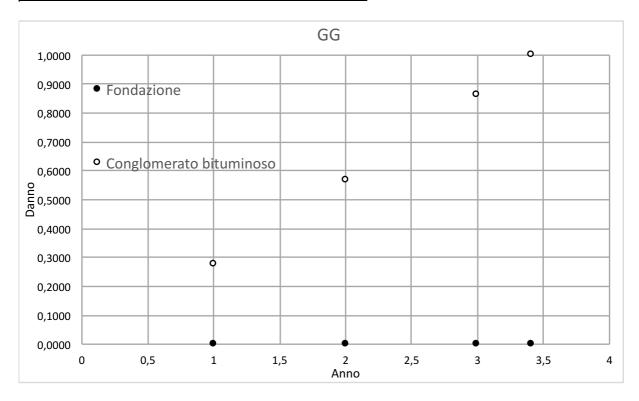

CS	Anni	Danno_f	Danno_c
Fase 1	0,0000001	1	0,000000001

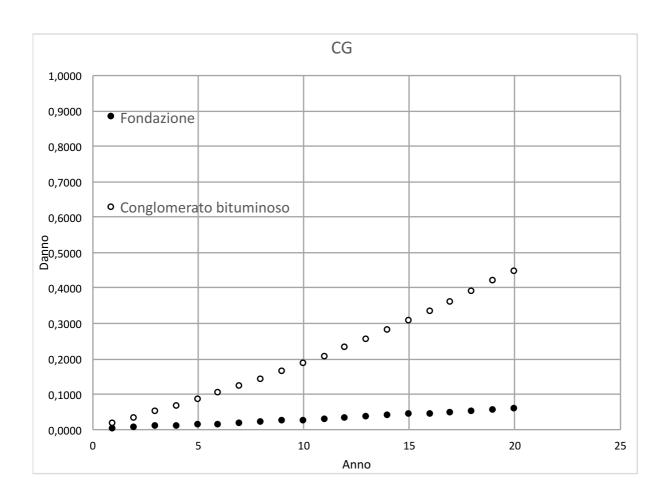

GG	Anni	Danno_f	Danno_c
Fase 1	0,9	0,000003	1,00

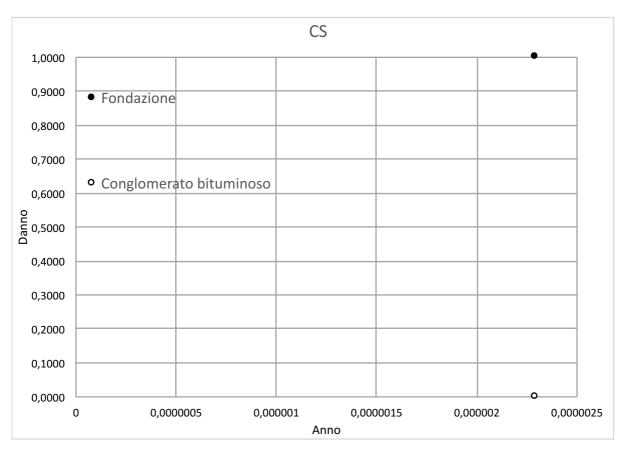

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,0002	0,01
	2	0,0004	0,02
	3	0,0006	0,04
	4	0,0008	0,05
	5	0,001	0,07
	6	0,001	0,08
	7	0,001	0,10
	8	0,002	0,11
	9	0,002	0,13
	10	0,002	0,14
	11	0,003	0,16
	12	0,003	0,18
	13	0,003	0,20
	14	0,003	0,22
	15	0,004	0,24
	16	0,004	0,26
	17	0,004	0,28
	18	0,005	0,31
	19	0,005	0,33
	20	0,005	0,35

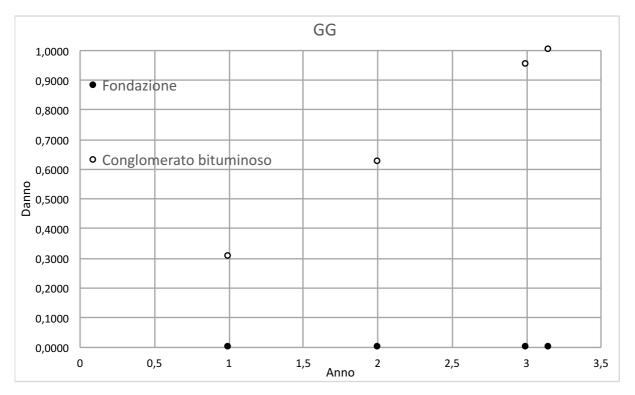

CS	Anni	Danno_f	Danno_c
Fase 1	0,00002	1,00	0,0000001

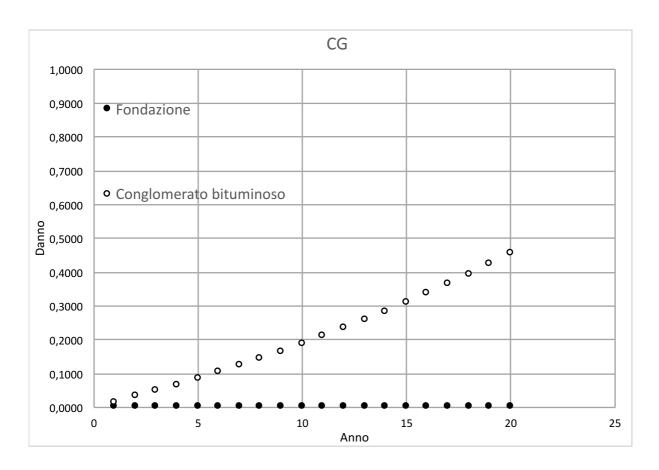

GG	Anni	Danno_f	Danno_c
Fase 1	0,9	0,0000001	1,00

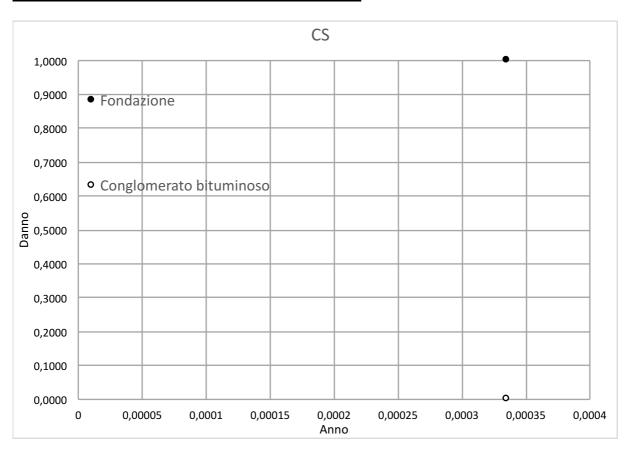

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,000003	0,012003
	2	0,000006	0,024460
	3	0,000009	0,037387
	4	0,000012	0,050803
	5	0,000016	0,064725
	6	0,000019	0,079174
	7	0,000023	0,094168
	8	0,000027	0,109729
	9	0,000031	0,125878
	10	0,000035	0,142636
	11	0,000039	0,160028
	12	0,000043	0,178078
	13	0,000048	0,196809
	14	0,000053	0,216247
	15	0,000057	0,236420
	16	0,000063	0,257356
	17	0,000068	0,279082
	18	0,000073	0,301629
	19	0,000079	0,324447
	20	0,000084	0,347265

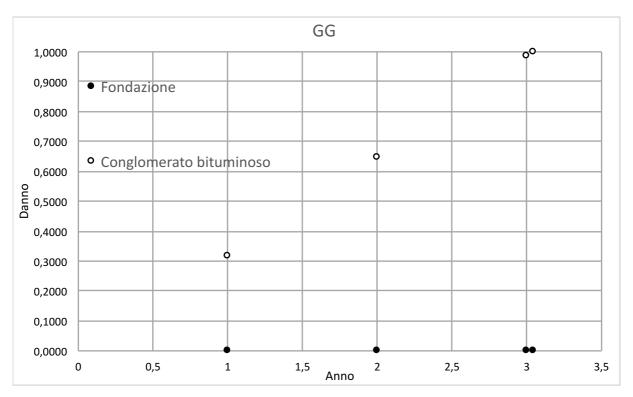

CS	Anni	Danno_f	Danno_c
Fase 1	0,002	1,00	0,00001

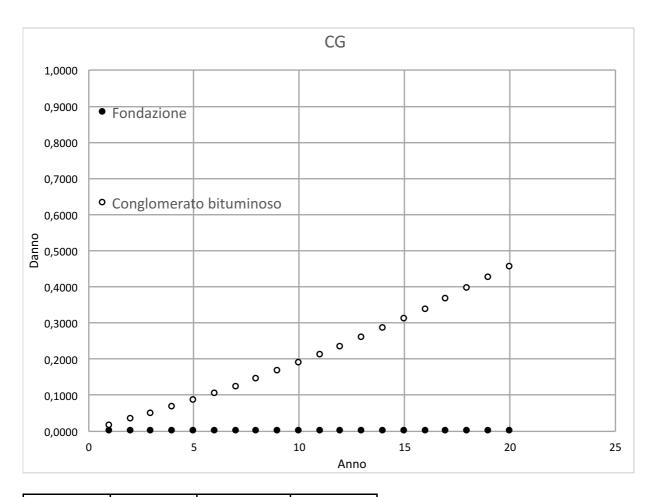

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,00002	0,28
	2	0,00004	0,56
	3	0,00006	0,86
	3,4	0,00006	1,00

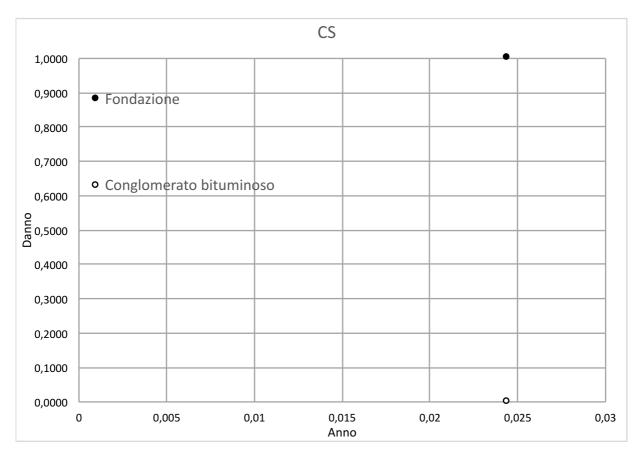

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,002	0,02
	2	0,004	0,03
	3	0,006	0,05
	4	0,009	0,07
	5	0,01	0,08
	6	0,01	0,10
	7	0,02	0,12
	8	0,02	0,14
	9	0,02	0,16
	10	0,02	0,18
	11	0,03	0,21
	12	0,03	0,23
	13	0,03	0,25
	14	0,04	0,28
	15	0,04	0,30
	16	0,04	0,33
	17	0,05	0,36
	18	0,05	0,39
	19	0,06	0,42
	20	0,06	0,45


CS	Anni	Danno_f	Danno_c
Fase 1	0,000002	1,00	0,00000004

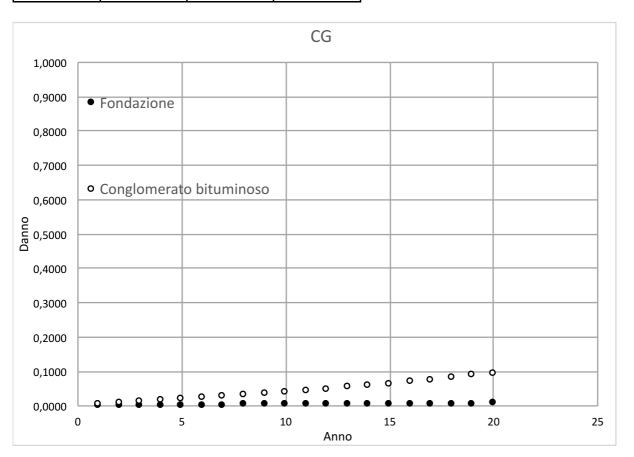

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,0000004	0,31
	2	0,0000008	0,62
	3	0,0000012	0,95
	3,1	0,0000013	1,00


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,00002	0,02
	2	0,00005	0,03
	3	0,00007	0,05
	4	0,00009	0,07
	5	0,0001	0,08
	6	0,0001	0,10
	7	0,0002	0,12
	8	0,0002	0,14
	9	0,0002	0,16
	10	0,0003	0,19
	11	0,0003	0,21
	12	0,0003	0,23
	13	0,0004	0,26
	14	0,0004	0,28
	15	0,0004	0,31
	16	0,0005	0,34
	17	0,0005	0,36
	18	0,0006	0,39
	19	0,0006	0,42
	20	0,0006	0,45

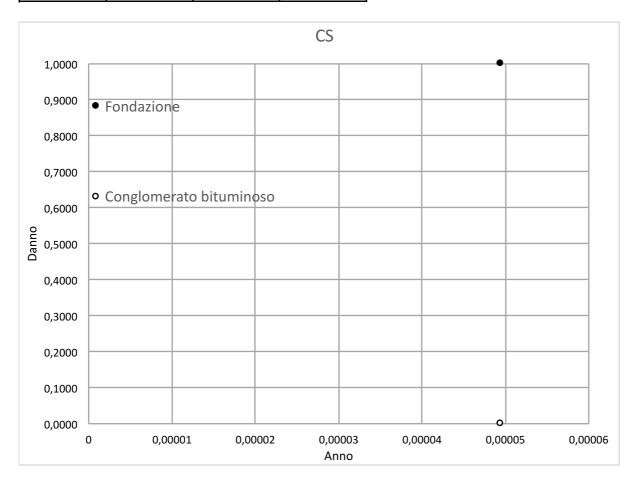

CS	Anni	Danno_f	Danno_c
Fase 1	0,0003	1,00	0,000005


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,00000011	0,32
	2	0,00000011	0,64
	3	0,000000012	0,99
	3,04	0,00000012	1,00

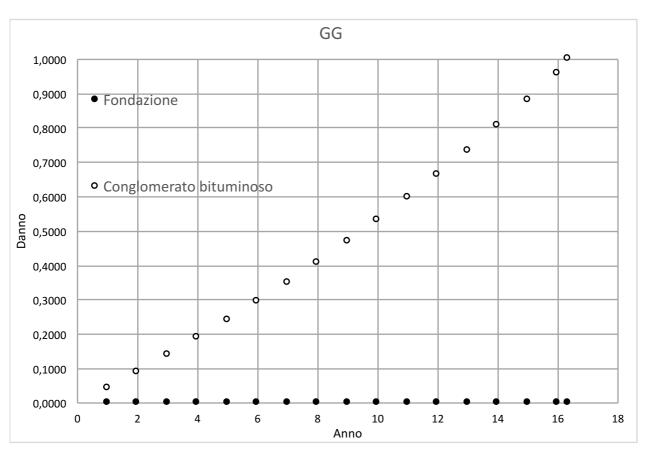
CG	Anni	Danno_f	Danno_c
Fase 1	1	0,0000004	
rase 1			0,02
	2	0,0000008	0,03
	3	0,000001	0,05
	4	0,000002	0,07
	5	0,000002	0,08
	6	0,000003	0,10
	7	0,000003	0,12
	8	0,000004	0,14
	9	0,000004	0,16
	10	0,000005	0,19
	11	0,000005	0,21
	12	0,000006	0,23
	13	0,000006	0,26
	14	0,000007	0,28
	15	0,000008	0,31
	16	0,000008	0,34
	17	0,000009	0,36
	18	0,000010	0,39
	19	0,00001	0,42
	20	0,00001	0,45

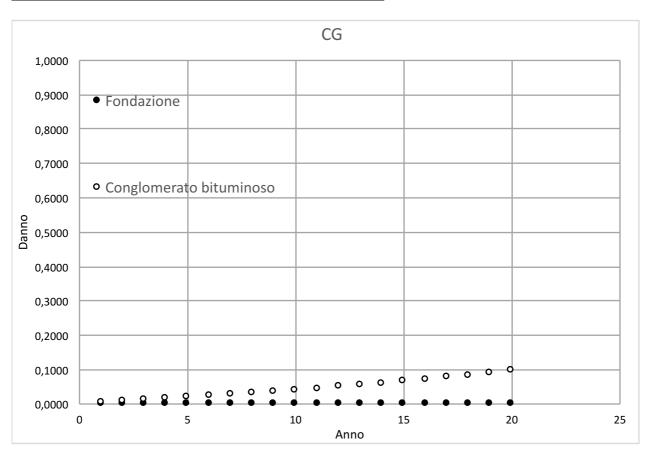


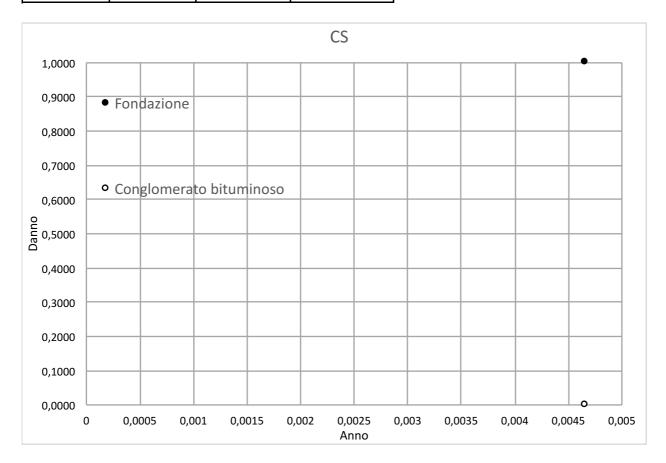
CS	Anni	Danno_f	Danno_c
Fase 1	0,02	1,00	0,0003

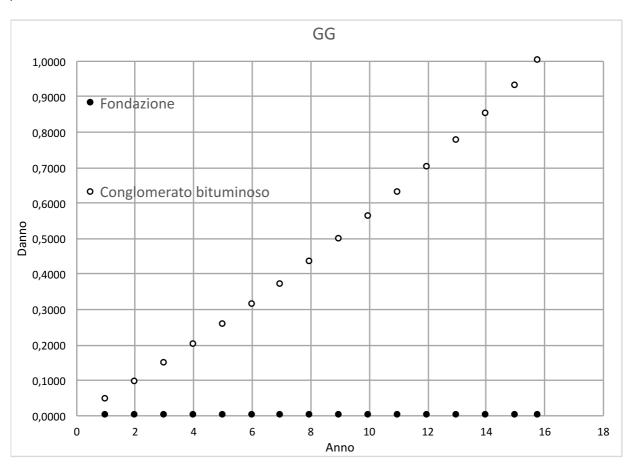


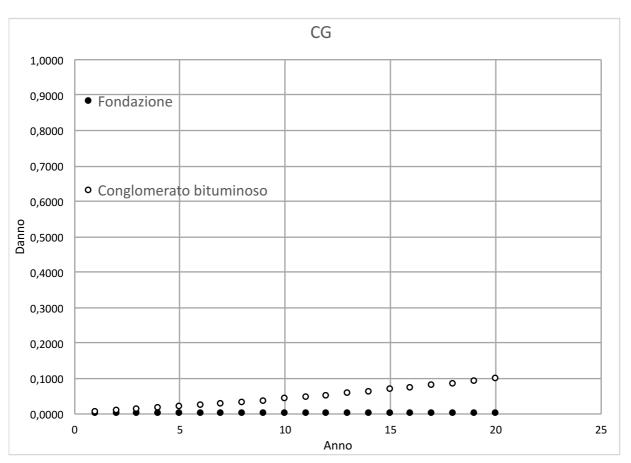
GG	Anni	Danno_f	Danno_c
Fase 1	Vedi Tabella 5.45 e Grafici 5.5 e 5.6		ici 5.5 e 5.6

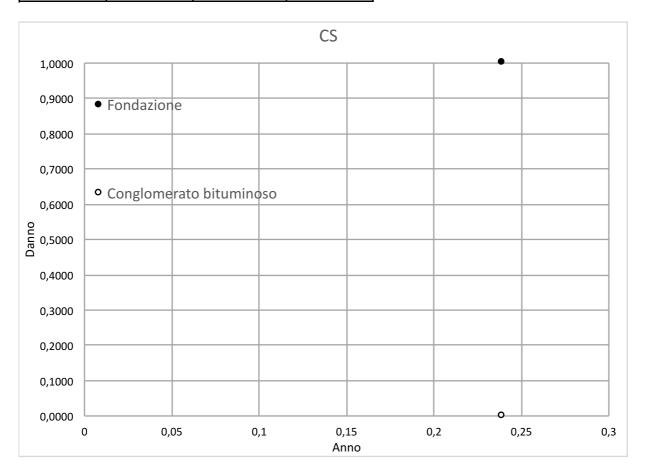

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,0002	0,003
1 436 1	2	0,0002	0,003
	3		
		0,0006	0,01
	4	0,0009	0,01
	5	0,001	0,02
	6	0,001	0,02
	7	0,002	0,03
	8	0,002	0,03
	9	0,002	0,03
	10	0,002	0,04
	11	0,003	0,04
	12	0,003	0,05
	13	0,003	0,05
	14	0,004	0,06
	15	0,004	0,06
	16	0,004	0,07
	17	0,005	0,08
	18	0,005	0,08
	19	0,006	0,09
	20	0,006	0,09

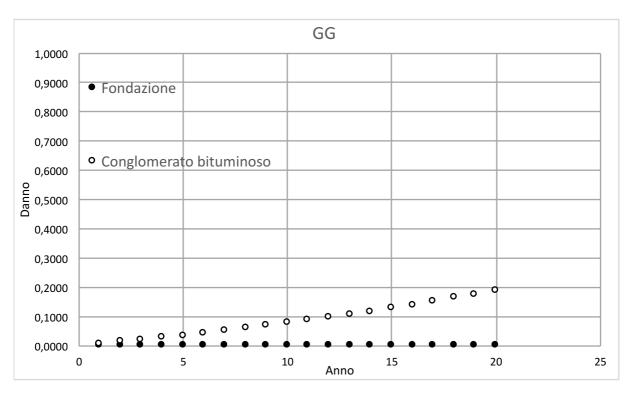

CS	Anni	Danno_f	Danno_c
Fase 1	0,00005	1	0,0000003

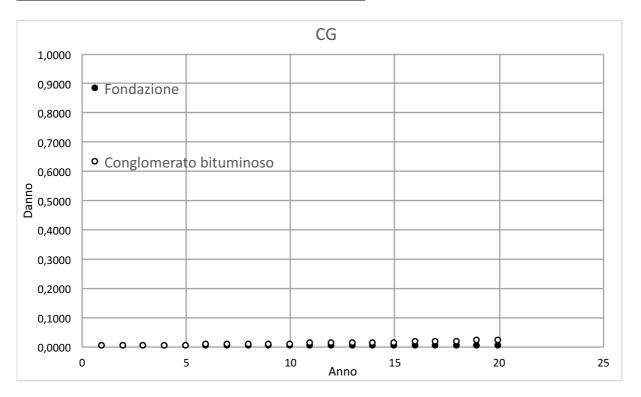

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,00000003	0,04
	2	0,00000005	0,09
	3	0,00000008	0,14
	4	0,0000001	0,19
	5	0,0000001	0,24
	6	0,0000002	0,30
	7	0,0000002	0,35
	8	0,0000002	0,41
	9	0,0000003	0,47
	10	0,0000003	0,53
	11	0,0000004	0,60
	12	0,0000004	0,66
	13	0,0000004	0,73
	14	0,0000005	0,81
	15	0,0000005	0,88
	16	0,0000006	0,96
	16,3	0,0000006	1,00

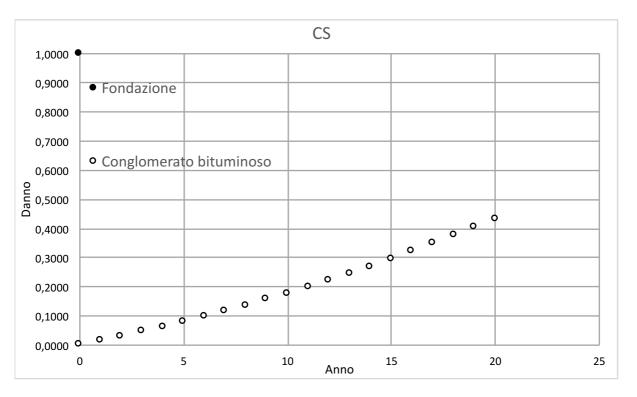

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,000003	0,003
	2	0,000005	0,007
	3	0,000008	0,01
	4	0,00001	0,01
	5	0,00001	0,02
	6	0,00002	0,02
	7	0,00002	0,03
	8	0,00002	0,03
	9	0,00003	0,03
	10	0,00003	0,04
	11	0,00003	0,04
	12	0,00004	0,05
	13	0,00004	0,05
	14	0,00005	0,06
	15	0,00005	0,07
	16	0,00005	0,07
	17	0,00006	0,08
	18	0,00006	0,08
	19	0,00007	0,09
	20	0,00007	0,10

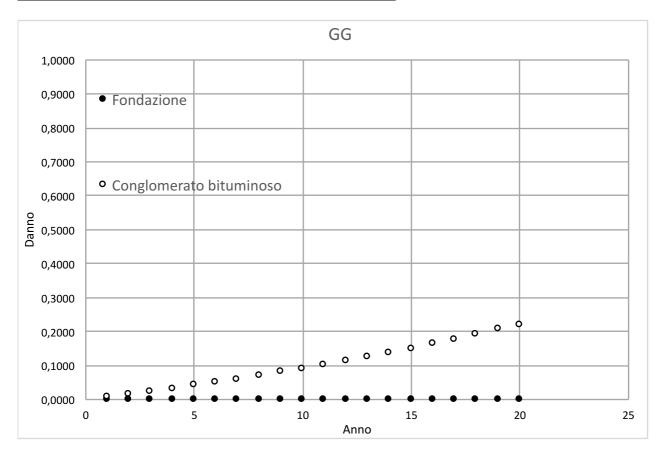

CS	Anni	Danno_f	Danno_c
Fase 1	0,005	1	0,00002

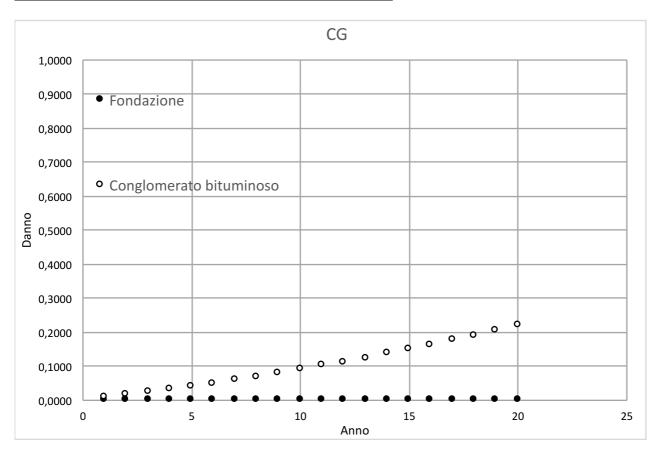

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,000000001	0,05
	2	0,000000002	0,10
	3	0,000000003	0,15
	4	0,000000004	0,20
	5	0,000000005	0,26
	6	0,000000006	0,31
	7	0,000000007	0,37
	8	0,000000008	0,43
	9	0,000000009	0,50
	10	0,000000011	0,56
	11	0,000000012	0,63
	12	0,000000013	0,70
	13	0,000000015	0,78
	14	0,000000016	0,85
	15	0,00000018	0,93
	15,8	0,000000019	1,00

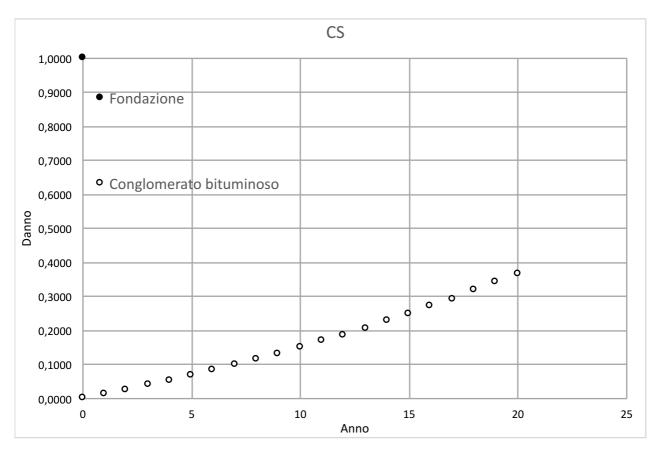

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,00000005	0,003
	2	0,00000011	0,007
	3	0,00000017	0,01
	4	0,00000023	0,01
	5	0,00000029	0,02
	6	0,00000036	0,02
	7	0,00000043	0,03
	8	0,00000050	0,03
	9	0,00000057	0,04
	10	0,00000064	0,04
	11	0,00000072	0,04
	12	0,00000080	0,05
	13	0,00000089	0,05
	14	0,00000098	0,06
	15	0,00000107	0,07
	16	0,00000116	0,07
	17	0,00000126	0,08
	18	0,00000136	0,08
	19	0,00000147	0,09
	20	0,00000157	0,10

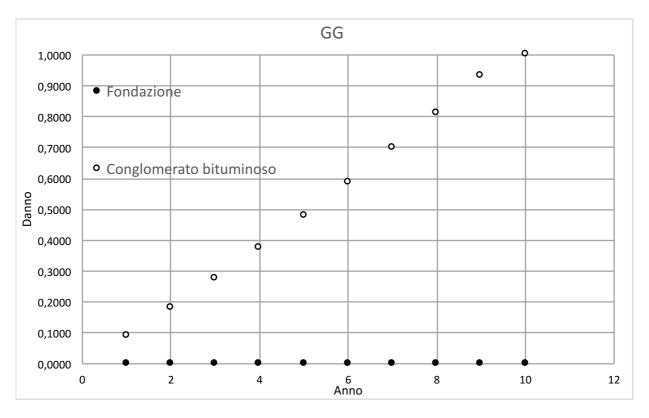

CS	Anni	Danno_f	Danno_c
Fase 1	0,2	1,00	0,001

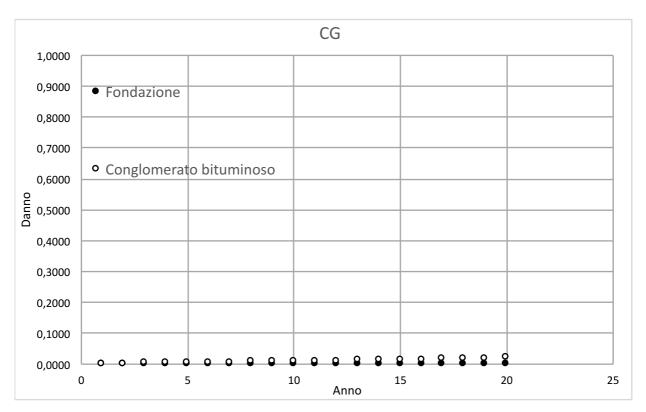

GG	Anni	Danno_f	Danno_c
Fase 1	1	0,0000001	0,007
	2	0,0000002	0,01
	3	0,0000002	0,02
	4	0,0000003	0,03
	5	0,0000004	0,04
	6	0,0000005	0,04
	7	0,0000006	0,05
	8	0,0000007	0,06
	9	0,0000008	0,07
	10	0,0000009	0,08
	11	0,0000010	0,09
	12	0,0000011	0,10
	13	0,0000012	0,11
	14	0,0000013	0,12
	15	0,0000015	0,13
	16	0,0000016	0,14
	17	0,0000017	0,15
	18	0,0000019	0,16
	19	0,0000020	0,18
	20	0,0000021	0,19

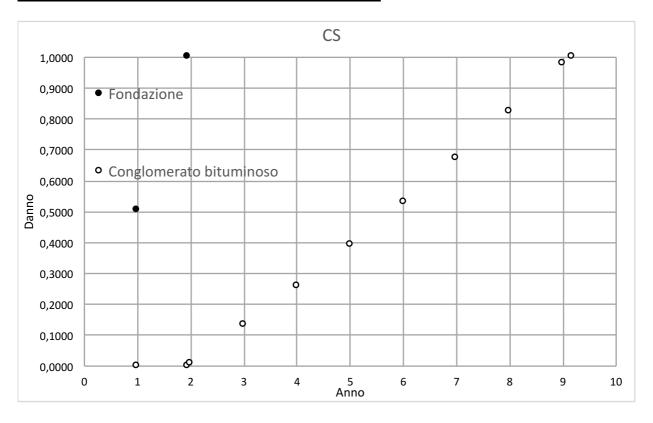

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,00002	0,0006
	2	0,00003	0,001
	3	0,00005	0,002
	4	0,00007	0,003
	5	0,00008	0,003
	6	0,0001	0,004
	7	0,0001	0,005
	8	0,0001	0,006
	9	0,0002	0,007
	10	0,0002	0,008
	11	0,0002	0,009
	12	0,0002	0,010
	13	0,0003	0,01
	14	0,0003	0,01
	15	0,0003	0,01
	16	0,0003	0,01
	17	0,0004	0,02
	18	0,0004	0,02
	19	0,0004	0,02
	20	0,0005	0,02


CS	Anni	Danno_f	Danno_c
Fase 1	0,0008	1,00	0,000001
Fase 2	1		0,01
	2		0,03
	3		0,05
	4		0,06
	5		0,08
	6		0,10
	7		0,12
	8		0,14
	9		0,16
	10		0,18
	11		0,20
	12		0,22
	13		0,25
	14		0,27
	15		0,29
	16		0,32
	17		0,35
	18		0,38
	19		0,40
	20		0,43


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,000000002	0,008
	2	0,000000005	0,02
	3	0,000000007	0,02
	4	0,00000001	0,03
	5	0,00000001	0,04
	6	0,00000002	0,05
	7	0,00000002	0,06
	8	0,00000002	0,07
	9	0,00000002	0,08
	10	0,00000003	0,09
	11	0,00000003	0,10
	12	0,00000004	0,11
	13	0,00000004	0,12
	14	0,00000004	0,14
	15	0,00000005	0,15
	16	0,00000005	0,16
	17	0,00000006	0,18
	18	0,00000006	0,19
	19	0,00000006	0,21
	20	0,00000007	0,22


CG	Anni	Danno_f	Danno_c
Fase 1	1	0,0000003	0,0007
	2	0,0000007	0,001
	3	0,000001	0,002
	4	0,000001	0,003
	5	0,000002	0,004
	6	0,000002	0,004
	7	0,000003	0,005
	8	0,000003	0,006
	9	0,000003	0,007
	10	0,000004	0,008
	11	0,000004	0,009
	12	0,000005	0,010
	13	0,000005	0,01
	14	0,000006	0,01
	15	0,000006	0,01
	16	0,000007	0,01
	17	0,000008	0,02
	18	0,000008	0,02
	19	0,000009	0,02
	20	0,000009	0,02


CS	Anni	Danno_f	Danno_c
Fase 1	0,1	1,00	0,00005
Fase 2	1		0,01
	2		0,03
	3		0,04
	4		0,05
	5		0,07
	6		0,08
	7		0,10
	8		0,11
	9		0,13
	10		0,15
	11		0,17
	12		0,19
	13		0,21
	14		0,23
	15		0,25
	16		0,27
	17		0,29
	18		0,32
	19		0,34
	20		0,36


GG	Anni	Danno_f	Danno_c
Fase 1	1	0,000000003	0,09
	2	0,0000000007	0,18
	3	0,000000011	0,28
	4	0,000000014	0,38
	5	0,000000018	0,48
	6	0,0000000022	0,59
	7	0,0000000027	0,70
	8	0,000000031	0,81
	9	0,000000036	0,93
	10	0,000000037	1,00

CG	Anni	Danno_f	Danno_c
Fase 1	1	0,00000001	0,0007
	2	0,00000002	0,001
	3	0,00000003	0,002
	4	0,00000004	0,003
	5	0,00000005	0,004
	6	0,00000006	0,004
	7	0,00000007	0,005
	8	0,00000008	0,006
	9	0,00000009	0,007
	10	0,00000010	0,008
	11	0,00000011	0,009
	12	0,00000013	0,01
	13	0,00000014	0,01
	14	0,00000015	0,01
	15	0,00000017	0,01
	16	0,00000018	0,01
	17	0,00000020	0,02
	18	0,00000021	0,02
	19	0,00000023	0,02
	20	0,00000025	0,02

CS	Anni	Danno_f	Danno_c
Fase 1	1	0,51	0,0007
	1,9	1,00	0,001
	2		0,009
	3		0,13
	4		0,26
	5		0,39
	6		0,53
	7		0,68
	8		0,82
	9		0,98
	9,2		1,00

Allegato E

TECNO PIEMONTE S.D.A.

CENTRO PROVE - RICERCHE - AMBIENTE - SERVIZI PER INGEGNERIA AUT. MIN.: INTERNO - SALUTE - SVILUPPO ECONOMICO - ISTRUZIONE UNIVERSITA' E RICERCA INFRASTRUTTURE E TRASPORTI ART. 20 LEGGE 1086/71 - DPR. 380/01 INDAGINI - GEOTECNICA TERRENI E ROCCE - MARCATURA C€ ORGANISMO NOTIFICATO Nº 1372

Committen SITALFA S.p.A.

nag 3 di 12

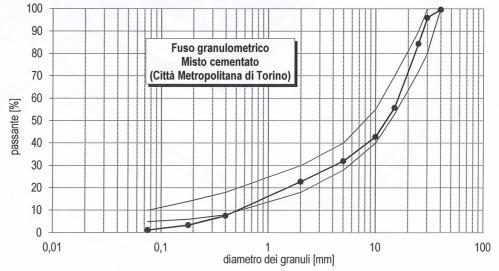
Rapporto di prova n.:	00668/V	del	26/01/2018
Verbale di accettazione	26/GT	del	18/01/2018
Vs. rif.:			

Oggetto:	STUDIO DI CURVA GRANULOMETRICA SU FUSO ASSEGNATO	
Normativa di riferimento:	CNR B.U. n° 23; UNI CEN ISO/TS 17892-12	
Cantiere:	•	
Direttore dei Lavori:	•	

Identificazione del campione

Contrassegno/Cod. prova:	aggregato per misto cementato	Modalità accettazione:	prelevato da ns. tecnici
Provenienza:	Impianto di Salbertrand (TO)	Data prelievo:	18/01/2018
Ubicazione prelievo /WBS:	-	Data prova:	19/01/2018

oontrooogno i	norti			Α	NALISI GRA	ANULOME	TRICA (vagli	/ passanti 9	%)		
contrassegno i	neru	0,075	0,18	0,4	2	5	10	15	25	30	40
sabbione 0/	8	3,1	8,5	19,0	57,0	80,0	100,0	100,0 100,0	100,0	100,0	100,0
pietrisco 8/1	8	0,0	0,0	0,0	0,0	0,0	14,0	79,0	100,0	100,0	100,0
pietrisco 18/3	30	0,0	0,0	0,0	0,0	0,0	0,0 0,0	0,0	61,0	90,1	99,0
la sala la sa	4'								. 0/)		
miscela inei	τι			pro	porzionam	ento inerti	nella misce	a (passant	1 %)		
sabbione 0/8	40%	1,2	3,4	7,6	22,8	32,0	40,0	40,0	40,0	40,0	40,0
pietrisco 8/18	20%	0,0	0,0	0,0	0,0	0,0	2,8	15,8	20,0	20,0	20,0
pietrisco 18/30	40%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	24,4	36,0	39,6


		0,075	0,18	0,4	2	5	10	15	25	30	40
Curva di studio (pas	santi %)	1,2	3,4	7,6	22,8	32,0	42,8	55,8	84,4	96,0	99,6
Euco granulomatrica	min	5	6	8	18	28	40	53	72	80	100
Fuso granulometrico	max	10	14	18	30	40	55	70	90	100	100

LIMITI DI ATTERBERG

(CNR UNI 10014)

Limite plastico: non determinabile

Indice plastico: NON PLASTICO

Sede Amministrativa Statale Valsesia, 20 13035 Lenta (Vc) Tel. +39-0163.885.111 Fax +39-0163.885.028

.002 (d)-

Unità operativa n. 1 Statale Valsesia, 20 13035 Lenta (Vc) Tel. +39-0163.885.111 Fax +39-0163.885.028

Unità operativa n. 2 Via Ponte Romano, 228-230 11027 Saint-Vincent (Ao) Tel. +39-0166.537.780 Fax +39-0166.510.914

Unità locali uffici 13836 Cossato (Bi) - Via Corridoni, 54 00161 Roma - Via De Rossi, 4 tecnopiemonte@tecnopiemonte.com www.tecnopiemonte.com 255

$Allegato\ F$

	Costo	della Full-depth Red	clamation	RAP dal sito alla discarice (trasporto & costi di smaltimento)				
	Costo unitario	€135,80 /m3		Costo unitario	€7,80 /m3	(tassa di trasporto) + trasporto		
	Volume costruzione iniziale [m^3]	0		Volume costruzione iniziale [m^3]	0			
	Volume totale manutenzione [m^3]	19656		Volume totale manutenzione [m^3]	29.359,2			
Anno	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]		
0	0	0	0	0	0	0		
1	0	0	0	0	0	0		
2	0	0	0	0	0	0		
3	3276	135,8	444881	2293,2	7,8	17887		
4	0	0	0	0	0	0		
5	0	0	0	0	0	0		
6	3276	135,8	444881	2293,2	7,8	17887		
7	0	0	0	0	0	0		
8	0	0	0	0	0	0		
9	3276	135,8	444881	2293,2	7,8	17887		
10	0	0	0	0,0	0	0		
11	0	0	0	0	0	0		
12	3276	135,8	444881	2293,2	7,8	17887		
13	0	0	0	0	0	0		
14	0	0	0	0	0	0		
15	3276	135,8	444881	2293,2	7,8	17887		
16	0	0	0	0	0	0		
17	0	0	0	0	0	0		
18	3276	135,8	444881	2293,2	7,8	17887		
19	0	0	0	0	0	0		
20	0	0	0	15.600	7,8	121680		

VAN costruzione iniziale		0€		
VAN manutenzione	€ 2.669.285			
Costo annuale: Costruzione iniziale	€0/anno			
Costo annuale: Manutenzione	€0/anno			
Costo annuale: Totale		€0/anno		

0€							
€	229.002						
€0	,00/anno						
€0	,00/anno						
€0	,00/anno						

Aggrega	ti vergini	Bitu	ıme	RAP dall'impianto di trattamento		
Costo unitario	€26,05 /m3	Costo unitario	€88,71 /m3	Costo unitario	€1,21 /m3	
Volume costruzione iniziale [m^3]	14759,9	Volume costruzione iniziale [m^3]	840,1	Volume costruzione iniziale [m^3]	16924,2	
Volume totale manutenzione 13018,2 [m^3]		Volume totale manutenzione [m^3]	740,97	Volume totale manutenzione [m^3]	5896,8	
Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	
14759,9	384495	840,1	74525	16924,2	20478	
0	0	0	0	0	0	
0	0	0 0		0	0	
2169,7	56521	123,5	10955	982,8	1189	
0	0	0	0	0	0	
0	0	0	0	0	0	
2169,7	56521	123,5	10955	982,8	1189	
0	0	0	0	0	0	
0	0	0	0	0	0	
2169,7	56521	123,5	10955	982,8	1189	
0	0	0	0	0	0	
0	0	0	0	0	0	
2169,7	56521	123,5	10955	982,8	1189	
0	0	0	0	0	0	
0	0	0	0	0	0	
2169,7	56521	123,5	10955	982,8	1189	
0	0	0	0	0	0	
0	0	0	0	0	0	
2169,7	56521	123,5	10955	982,8	1189	
0	0	0	0	0	0	
0 0		0	0	0	0	

VAN	€	723.620
Costo annuale		€0/anno

€	140.256
•	0/anno

€	27.613
€	0/anno

				Spese generali		
RAP dal sito a	lla discarica	Manodopera	Attrezzature	ed utile	Totale	
Costo unitario	€7,80 /m3	[€]	[€]	[€]	Materiali, Manodopera, Attrezzature,	
Volume costruzione iniziale [m^3]	0			24,3%	Spese generali ed utile d'impresa [€]	
Volume totale manutenzione [m^3]	29.359,2					
Volume [m^3]	Costo [€]					
0	0	11060706	8109710	7196683	29615978	
0	0	0	0	0	0	
0	0	0	0	0	0	
2293,2	17887	140878	122885	112453	462768	
0	0	0	0	0	0	
0	0	0	0	0	0	
2293,2	17887	140878	122885	112453	462768	
0	0	0	0	0	0	
0	0	0	0	0	0	
2293,2	17887	140878	122885	112453	462768	
0	0	0	0	0	0	
0	0	0	0	0	0	
2293,2	17887	140878	122885	112453	462768	
0	0	0	0	0	0	
0	0	0	0	0	0	
2293,2	17887	140878	122885	112453	462768	
0	0	0	0	0	0	
0	0	0	0	0	0	
2293,2	17887	140878	122885	112453	462768	
0	0	0	0	0	0	
15.600	121680	0	0	0	121680	

€ 229.002	€ 11.632.019	€	8.608.058	€	7.652.721	€	31.548.213
€0/anno	€855.904/anno	€63	3.396/anno	€50	63.101/anno	€2.3	321.373/anno

Allegato G

	Costo	della Full-depth Red	clamation	RAP dal sito alla discarice (trasporto & costi di smaltimento)				
	Costo unitario	€135,80 /m3		Costo unitario	€7,80 /m3	(tassa di trasporto) + trasporto		
	Volume costruzione iniziale [m^3]	0		Volume costruzione iniziale [m^3]	0			
	Volume totale manutenzione [m^3]	3276		Volume totale manutenzione [m^3]	6.193,2			
Anno	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]		
0	0	0	0	0	0	0		
1	0	0	0	0	0	0		
2	0	0	0	0	0	0		
3	0	0	0	0	0	0		
4	819	135,8	111220	573,3	7,8	4472		
5	0	0	0	0	0	0		
6	0	0	0	0	0	0		
7	0	0	0	0	0	0		
8	819	135,8	111220	573,3	7,8	4472		
9	0	0	0	0	0	0		
10	0	0	0	0	0	0		
11	0	0	0	0	0	0		
12	819	135,8	111220	573,3	7,8	4472		
13	0	0	0	0	0	0		
14	0	0	0	0	0	0		
15	0	0	0	0	0	0		
16	819	135,8	111220	573,3	7,8	4472		
17	0	0	0	0	0	0		
18	0	0	0	0	0	0		
19	0	0	0	0	0	0		
20	0	0	0	3900	7,8	30420		

VAN costruzione iniziale	0€		
VAN manutenzione	€	305.188	
Costo annuale: Costruzione iniziale	€0/anno		
Costo annuale: Manutenzione	€22.456/anno		
Costo annuale: Totale	€22	.456/anno	

	0€
€	26.154
€0	,00/anno
€1.	924/anno
€1.	924/anno

Aggrega	ti vergini	Bitu	ıme		RAP dall'impianto di trattamento		
Costo unitario	€26,05 /m3	Costo unitario	€88,71 /m3	Costo unitario	€1,21 /m3		
Volume costruzione iniziale [m^3]	3689,98	Volume costruzione iniziale [m^3]	210,02	Volume costruzione iniziale [m^3]	14450,5		
Volume totale manutenzione [m^3]	2169,7	Volume totale manutenzione [m^3]	123,5	Volume totale manutenzione [m^3]	982,8		
Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]		
3689,98	96124	210,0	18631	14450,5	17485		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
542,4	14130	30,9	2739	245,7	297		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
542,4	14130	30,9	2739	245,7	297		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
542,4	14130	30,9	2739	245,7	297		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
542,4	14130	30,9	2739	245,7	297		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		

VAN	€	134.897
Costo annuale	€9	.926/anno

€	26.147
€1.9	924/anno

€	18.301
€1.3	347/anno

				Spese generali	
RAP dal sito a	ılla discarica	Manodopera	Attrezzature	ed utile	Totale
Costo unitario	€7,80 /m3	[€]	[€]	[€]	Materiali, Manodopera, Attrezzature,
Volume costruzione iniziale [m^3]	0			24,3%	Spese generali ed utile d'impresa [€]
Volume totale manutenzione [m^3]	6.193,2				
Volume [m^3]	Costo [€]				
0	0	8832058	6475665	5858264	24108084
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	35219	30721	28113	115692
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	35219	30721	28113	115692
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	35219	30721	28113	115692
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	35219	30721	28113	115692
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
3900	30420	0	0	0	30420

€	26.154	€	8.928.700	€	6.559.964	€	5.935.407	€	24.439.426
€1.	924/anno	€65	6.989/anno	€48	32.694/anno	€43	36.738/anno	€1.	798.296/anno

	Costo della Full-depth Reclamation RAP dal sito alla discarice di smaltimer					` .	
	Costo unitario	€135,80 /m3		Costo unitario	€7,80 /m3	(tassa di trasporto) + trasporto	
	Volume costruzione iniziale [m^3]	0		Volume costruzione iniziale [m^3]	0		
	Volume totale manutenzione [m^3]	13104		Volume totale manutenzione [m^3]	24.772,8		
Anno	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	3276	135,8	444881	2293,2	7,8	17887	
5	0	0	0	0	0	0	
6	0	0	0	0	0	0	
7	0	0	0	0	0	0	
8	3276	135,8	444881	2293,2	7,8	17887	
9	0	0	0	0	0	0	
10	0	0	0	0	0	0	
11	0	0	0	0	0	0	
12	3276	135,8	444881	2293,2	7,8	17887	
13	0	0	0	0	0	0	
14	0	0	0	0	0	0	
15	0	0	0	0	0	0	
16	3276	135,8	444881	2293,2	7,8	17887	
17	0	0	0	0	0	0	
18	0	0	0	0	0	0	
19	0	0	0	0	0	0	
20	0	0	0	15600	7,8	121680	

VAN costruzione iniziale	0€
VAN manutenzione	€ 1.220.753
Costo annuale: Costruzione iniziale	€0/anno
Costo annuale: Manutenzione	€89.825/anno
Costo annuale: Totale	€89.825/anno

0€							
€	104.615						
€0	€0,00/anno						
€7.698/anno							
€7.	698/anno						

Aggrega	ti vergini	Bitu	ıme		RAP dall'impianto di trattamento		
Costo unitario	€26,05 /m3	Costo unitario	€88,71 /m3	Costo unitario	€1,21 /m3		
Volume costruzione iniziale [m^3]	14759,9	Volume costruzione iniziale [m^3]	840,1	Volume costruzione iniziale [m^3]	14450,5		
Volume totale manutenzione [m^3]	3719,5	Volume totale manutenzione [m^3]	211,7	Volume totale manutenzione [m^3]	3931,2		
Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]		
14759,90	384495,4	840,1	74525	14450,5	17485		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
542,4	24223,2	52,9	4695	982,8	1189		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
542,4	24223,2	52,9	4695	982,8	1189		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
542,4	24223,2	52,9	4695	982,8	1189		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
542,4	24223,2	52,9	4695	982,8	1189		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		
0	0	0	0	0,0	0		

VAN	€	450.964
Costo annuale	€33	3.183/anno

€	87.408
€6.4	132/anno

€	20.748
€1.5	527/anno

				Spese generali	1
RAP dal sito alla discarica		Manodopera	Attrezzature	ed utile	Totale
Costo unitario	€7,80 /m3	[€]	[€]	[€]	Materiali, Manodopera, Attrezzature,
Volume costruzione iniziale [m^3]	0			24,3%	Spese generali ed utile d'impresa [€]
Volume totale manutenzione [m^3]	24.772,8				
Volume [m^3]	Costo [€]				
0	0	9177857	6729205	6165585	25372778
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	161471	140849	112453	462768
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	161471	140849	112453	462768
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	161471	140849	112453	462768
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	161471	140849	112453	462768
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
15600	121680	0	0	0	121680

₹	104.61	5	€	9.620.935	€	7.115.695	€	6.474.155	€	26.698.145
€	7.698/ann	0	€70	7.925/anno	€52	23.585/anno	€4	76.380/anno	€1.	964.496/anno

Allegato H

	Costo	della Full-depth Red	clamation	RAP dal sito alla discarice (trasporto & costi			
					di smaltimento		
	Costo unitario	€135,80 /m3		Costo unitario	€7,80 /m3	(tassa di trasporto) + trasporto	
	Volume costruzione iniziale [m^3]	0		Volume costruzione iniziale [m^3]	0		
	Volume totale manutenzione [m^3]	2457		Volume totale manutenzione [m^3]	5.619,9		
Anno	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
5	0	0	0	0	0	0	
6	819	136	111220	573,3	7,8	4472	
7	0	0	0	0	0	0	
8	0	0	0	0	0	0	
9	0	0	0	0	0	0	
10	0	0	0	0	0	0	
11	0	0	0	0	0	0	
12	819	136	111220	573,3	7,8	4472	
13	0	0	0	0	0	0	
14	0	0	0	0	0	0	
15	0	0	0	0	0	0	
16	0	0	0	0	0	0	
17	0	0	0	0	0	0	
18	819	136	111220	573,3	7,8	4472	
19	0	0	0	0	0	0	
20	0	0	0	3900	7,8	30420	

VAN costruzione iniziale	0€		
VAN manutenzione	€	212.268	
Costo annuale: Costruzione iniziale	sto annuale: Costruzione iniziale €0/anno		
Costo annuale: Manutenzione	€15	5.619/anno	
Costo annuale: Totale	€15	5.619/anno	

0€				
€	22.418			
€0,00/anno				
€1.650/anno				
€1.0	650/anno			

Aggregati vergini		Bitu	ıme	RAP dall'impianto di trattamento		
Costo unitario	€26,05 /m3	Costo unitario	€88,71 /m3	Costo unitario	€1,21 /m3	
Volume costruzione iniziale [m^3]	3689,98	Volume costruzione iniziale [m^3]	210,02	Volume costruzione iniziale [m^3]	0	
Volume totale manutenzione [m^3]	1627,3	Volume totale manutenzione [m^3]	92,6	Volume totale manutenzione [m^3]	737,1	
Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	
3689,98	96124	210,02	18631	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
542,4	14130	30,9	2739	245,7	297	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
542,4	14130	30,9	2739	245,7	297	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
542,4	14130	30,9	2739	245,7	297	
0	0	0	0	0	0	
0	0	0	0	0	0	

VAN	₩	123.092
Costo annuale	€9	.057/anno

€	23.858
€1.7	756/anno

€	567
€42,	/anno

				Spese generali	1
RAP dal sito a	alla discarica	Manodopera	Attrezzature	ed utile	Totale
Costo unitario	€7,80 /m3	[€]	[€]	[€]	Materiali, Manodopera, Attrezzature,
Volume costruzione iniziale [m^3]	0			24,3%	Spese generali ed utile d'impresa [€]
Volume totale manutenzione [m^3]	5.619,9				
Volume [m^3]	Costo [€]				
0	0	51098	37465	255083	1049724
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	5257	4586	28113	59594
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	35219	30721	28113	115692
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
573,3	4472	35219	30721	28113	115692
0	0	0	0	0	0
3900	30420	0	0	0	30420

€	22.418	€	94.636	€	75.442	€	308.738	€	1.240.075
€1.650/anno €6.963/anno		963/anno	€5.	551/anno	€22	2.717/anno	€9	1.247/anno	

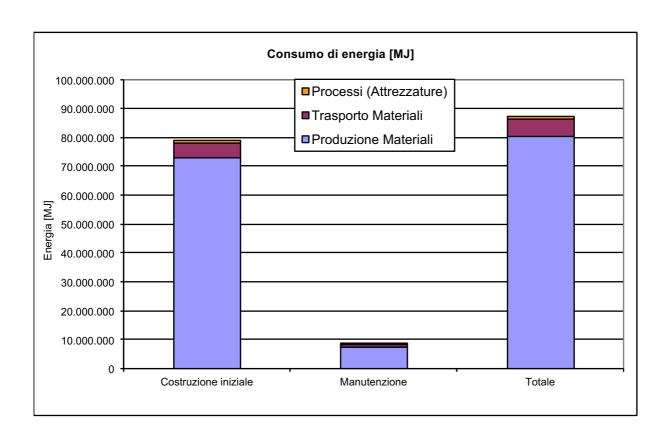
	Costo	della Full-depth Red	clamation	RAP dal sito alla discarice (trasporto & costi di smaltimento)				
	Costo unitario	€135,80 /m3		Costo unitario €7,80 /m3		(tassa di trasporto) + trasporto		
	Volume costruzione iniziale [m^3]	0		Volume costruzione iniziale [m^3]	0			
	Volume totale manutenzione [m^3]	9828		Volume totale manutenzione [m^3]	22.479,6			
Anno	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]	Volume [m^3]	Costo unitario [€/(m^3)]	Costo [€]		
0	0	0	0	0	0	0		
1	0	0	0	0	0	0		
2	0	0	0	0	0	0		
3	0	0	0	0	0	0		
4	0	0	0	0	0	0		
5	0	0	0	0	0	0		
6	3276	135,8	444881	2293,2	7,8	17887		
7	0	0	0	0	0	0		
8	0	0	0	0	0	0		
9	0	0	0	0	0	0		
10	0	0	0	0	0	0		
11	0	0	0	0	0	0		
12	3276	135,8	444881	2293,2	7,8	17887		
13	0	0	0	0	0	0		
14	0	0	0	0	0	0		
15	0	0	0	0	0	0		
16	0	0	0	0	0	0		
17	0	0	0	0	0	0		
18	3276	135,8	444881	2293,2	7,8	17887		
19	0	0	0	0	0	0		
20	0	0	0	15600	7,8	121680		

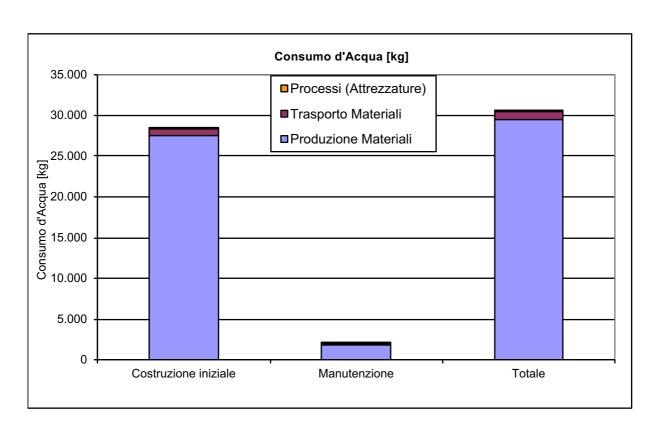
VAN costruzione iniziale		0€		
VAN manutenzione	€	849.073		
Costo annuale: Costruzione iniziale	€0/anno			
Costo annuale: Manutenzione	€62.476/anno			
Costo annuale: Totale	€62	2.476/anno		

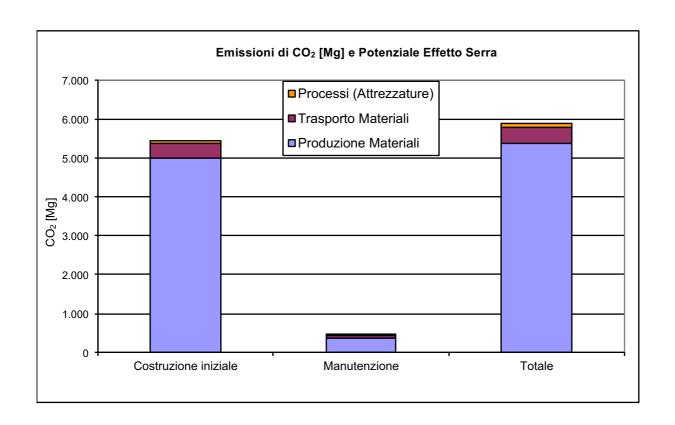
0€					
€ 89.671					
€0,00/anno					
€6.598/anno					
€6.	598/anno				

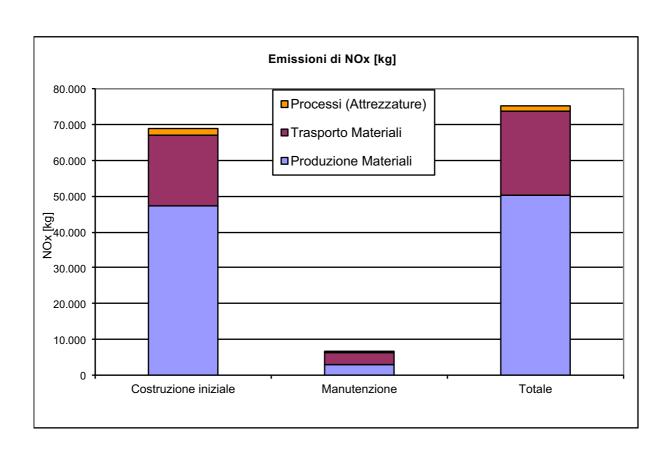
Aggregati vergini		Bitu	ıme	RAP dall'impianto di trattamento		
Costo unitario	€26,05 /m3	Costo unitario	€88,71 /m3	Costo unitario	€1,21 /m3	
Volume costruzione iniziale [m^3]	14759,9	Volume costruzione iniziale [m^3]	840,1	Volume costruzione iniziale [m^3]	0	
Volume totale manutenzione [m^3]	9608,7	Volume totale manutenzione [m^3]	Volume totale Volume totale analytenzione 433,4 mis		2948,4	
Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	Volume [m^3]	Costo [€]	
14759,9	384495	840,1	74525	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0 0		0	
0	0	0,0	0 0		0	
0	0	0,0	0	0	0	
3202,9	83436	144,5	12816	982,8	1189	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
3202,9	83436	144,5	12816	982,8	1189	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	
0	0	0,0	0	0 0		
0	0	0,0	0	0	0	
3202,9	83436	144,5	12816	982,8	1189	
0	0	0,0	0	0	0	
0	0	0,0	0	0	0	

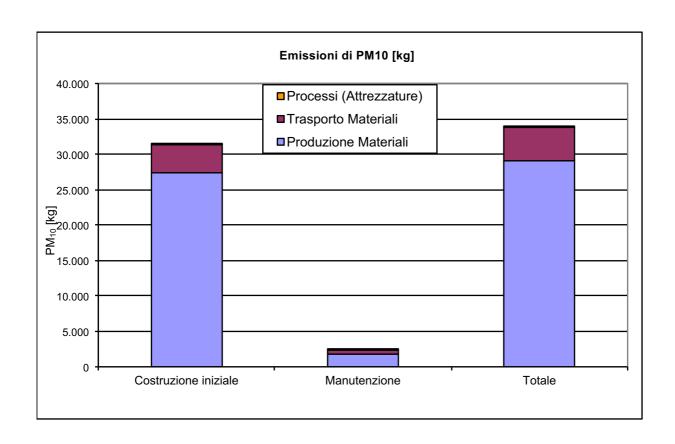
VAN	€	543.735
Costo annuale	€40	0.009/anno


€	98.984
€7.2	283/anno


€	2.270
€16	7/anno


				Spese generali	1
RAP dal sito a	alla discarica	Manodopera	Attrezzature	ed utile	Totale
Costo unitario	€7,80 /m3	[€]	[€]	[€]	Materiali, Manodopera, Attrezzature,
Volume costruzione iniziale [m^3]	0			24,3%	Spese generali ed utile d'impresa [€]
Volume totale manutenzione [m^3]	22.479,6				
Volume [m^3]	Costo [€]				
0	0	404841	296829	562403	2314418
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	18734	16341	16785	167187
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	125509	109479	112453	462768
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
2293,2	17887	125509	109479	112453	462768
0	0	0	0	0	0
15600	121680	0	0	0	121680


€	89.671	€	559.993	€	432.167	€	701.416	€	3.019.560
€6.5	€6.598/anno €41.205/anno		€31	800/anno	€51.611/anno		€222.185/anno		


Allegato I

