
Politecnico di Torino
Master of Science in Civil Engineering

Academic Year 2018/2019

Bayesian inference of structural model parameters
in an uncertainty quantification framework

MSc thesis

Supervisors: Candidate:
Prof. Rosario Ceravolo Alessio Faraci
Ph.D. Gaetano Miraglia
Ass. Prof. Giuseppe Abbiati

December 2019

.

If you torture the data long enough,
it will confess to anything.

Ronald H. Coase

.

A mio padre,

fondamenta sulle quali ho gettato

i miei principi di uomo.

A mia madre,

la sola al mondo che sa,

del mio cuore,

ciò che è stato sempre.

Abstract

In structural engineering, modeling fulfills a key role to simulate the behaviour of
structures, but even very detailed models may fail to represent critical mechanisms.
The uniqueness and uncertainties associated with civil structures make the predic-
tion of the actual mechanical characteristics and the structural performance, a
difficult task. Reliable estimates require calibration of system parameters based on
measured experimental response data. To date, several different approaches have
been adopted in literature. Generally, these ones try to minimize the difference
between the model output and the experimental data. However, inverse problems
(such as the estimate of mechanical parameters) when treated deterministically,
are typically ill-conditioned and often ill-posed, since the values of parameters
used to predict the structural behaviour are uncertain owing to simplifying and
approximate assumptions on model. As consequence, these modeling uncertainties
suggest that a single optimal parameter vector is not sufficient to specify the struc-
tural model, but rather a family of all plausible values of the model parameters
consistent with observations needs to be identified.

A common accepted approach to deal with model uncertainties and experimen-
tal errors is to consider the identification problem from a statistical perspective.
In the last decade, Bayesian model updating techniques became the standard tool
for the identification of nonlinear dynamical systems. These techniques provide a
robust and rigorous framework due to their ability to account model uncertainties
and other sources of errors intrinsic in any system identification method as result
of noise-measurements, as well as the partial model capacity to replicate the real
physics of the system of interest.

This understanding has resulted in the need to model a discrepancy term to
connect model prediction to the observations. The goal of this thesis work is to
provide a fuller treatment of the posterior uncertainty linked to the discrepancy.
Specifically, the Bayesian inference has been applied to the system identification
of nonlinear systems not only to provide the most plausible model parameters and
their probability distribution in uncertainty framework, but also to estimate the
probability of the model discrepancy, i.e. a probabilistic estimate of the influence of
the effects of measurement error and model inaccuracy on the prediction of system
parameters. This Bayesian approach is illustrated first for parameters estimation of
a basic nonlinear model using simulated data, and then applied to an experimental
case study for the system identification of a planar masonry facade system with the
application of the hybrid simulation/testing procedure for seismic response history.

The effectiveness of the proposed Bayesian inference of system identification in
uncertainty framework lies in providing probabilistic information of the estimated
parameters and on their error, which can be useful at the moment of making
decisions with respect to the selection of parameters and/or the assessment of
mathematical models that simulate the nonlinear behaviour experienced by the
system.

Keywords: Bayesian inference, uncertainty quantification, surrogate modelling,
polynomial chaos expansion, Kriging, hybrid simulations.

Contents

1 Introduction 1
1.1 Structural Identification . 1

1.1.1 Type of model employed in St-Id 2
1.1.2 Structural Identification stages 3
1.1.3 St-Id of nonlinear hysteretic systems 7

2 Bayesian inference for model calibration 11
2.1 Inverse problems . 11
2.2 Bayesian inference . 12

2.2.1 Predictions . 14
2.3 Bayesian inference for model calibration 15

2.3.1 Inverse solution . 17
2.3.2 Model predictions . 17

2.4 Markov Chain Monte Carlo simulations 18
2.4.1 Affine invariant ensemble algorithm (AIES) 19
2.4.2 Convergence of MCMC simulations 20

2.5 Surrogate modeling . 20
2.5.1 Polynomial chaos expansions 21
2.5.2 Kriging . 22
2.5.3 Surrogate modelling for stochastic dynamical systems . . . 24
2.5.4 Nonlinear Autoregressive with eXogenous input model . . . 24
2.5.5 PC-NARX . 26
2.5.6 Kriging-NARX . 30

3 Model validation and numerical benchmarks 31
3.1 Bouc-Wen-Baber-Noori model of hysteresis 31
3.2 Model validation . 33
3.3 Simulation of experimental record data 35
3.4 Calibration not accounting discrepancy 36
3.5 Calibration accounting random variable discrepancy 39

3.5.1 Reference model . 40
3.5.2 NARX model . 44
3.5.3 PC-NARX and Kriging-NARX surrogate models 45
3.5.4 Bayesian inversion using PC-NARX metamodel 48
3.5.5 Bayesian inversion with Kriging-NARX 51

9

4 Hybrid simulation tests of the masonry facade case study 55
4.1 Hybrid simulations . 55

4.1.1 Architecture of the hybrid simulator 56
4.2 Description of the case study . 58

4.2.1 Materials . 58
4.2.2 Hybrid simulations . 60

5 NARX model for the masonry facade case study 69
5.1 Cohesive Zone Models for mortar joints in masonry 69
5.2 FE model parameterization . 71
5.3 NARX model . 76

83

Bibliography 113

List of Tables

3.1 Bouc-Wen-Baber-Noori parameters 36
3.2 BWBN parameters ranges . 37
3.3 BWBN identified parameters . 37
3.4 Prior distributions of the BWBN model parameters 39
3.5 Posterior marginals . 43
3.6 Posterior marginals (PC-NARX) 48
3.7 Posterior marginals (Kriging-NARX) 51

4.1 Material specifications of clay brick Swiss K-Modul 15/19 [28] . . . 59
4.2 Compression test results of clay bricks [28] 60
4.3 Test results of mortar samples [28] 60
4.4 Compression test results of masonry specimens [28] 62
4.5 Material properties [28] . 62
4.6 Test program [53] . 64

5.1 McGarry model parameter distributions 72

List of Figures

2.1 Computation of LARS-based PC-NARX model, [40] 29

3.1 SDF Bouc-Wen model of hysteresis 31
3.2 Montenegro (1979) ground motion record 35
3.3 Model validation . 35
3.4 Simulated experimental data . 36
3.5 Pattern Search algorithm . 38
3.6 Interior Point algorithm . 38
3.7 Linear regressions for prior moments estimates 39
3.8 Prior samples . 41
3.9 Trace plots and acceptance rate of the chains 42
3.10 Posterior samples . 43
3.11 Model response . 44
3.12 NARX free-run-reconstruction of the entire ED 45
3.13 NARX free-run-reconstruction for the experiment k = 2 46
3.14 NARX coefficients cross-validation PCEs vs Kriging 46
3.15 PC-NARX - Kriging-NARX validation 47
3.16 PC-NARX and Kriging-NARX prediction on validation set 47
3.17 Trace plots and acceptance rate of the chains (PC-NARX) 49
3.18 Posterior samples (PC-NARX) . 50
3.19 Model response (PC-NARX) . 50
3.20 Trace plots and acceptance rate of the chains 52
3.21 fig: Posterior samples (Kriging-NARX) 53
3.22 Model response (Kriging-NARX) 53

4.1 Hybrid Simulation loop [28] . 56
4.2 Architecture of the hybrid simulator [28] 57
4.3 Masonry wall . 59
4.4 Bending and compressive strength testing [28] 61
4.5 Test setup for compression test of masonry specimens [28] 61
4.6 Architecture of the PSD-HS setup [28] 63
4.7 Test setup for DIC analysis [28] . 63
4.8 1979 Montenegro earthquake . 64
4.9 Restoring forces hysteresis loops measured during Test #5 65
4.10 Displacement responses during Test #5 66
4.11 Von Mises strain field measured via DIC during Test #5 67
4.12 Overview of the wall specimen after Test #5 68

13

5.1 Validation implementation . 72
5.2 FE discretization . 73
5.3 Model parameterization . 74
5.4 Model parameterization on filtered data-set 75
5.5 NARX(k) free-run-reconstruction of the entire ED 77
5.6 NARX(l) free-run-reconstruction of the entire ED 78
5.7 NARX(m) free-run-reconstruction of the entire ED 78
5.8 NARX(

k) free-run-reconstruction of N44 in x-direction 79
5.9 NARX(

l) free-run-reconstruction of N44 in y-direction 79
5.10 NARX(

m) free-run-reconstruction of N55 in y-direction 79

Chapter 1

Introduction

Nowadays civil engineers are routinely using finite element (FE) models to simulate
the behaviour of structures for practical applications. However, there are several
examples that show even very detailed models may miss critical mechanisms. The
uniqueness and uncertainties associated with civil structures render their actual
mechanical characteristics and performance parameters extremely difficult to pre-
dict. Reliable estimates of the performance and vulnerability of structural systems
require calibration and validation based on actual observations and measured ex-
perimental data. This understanding has resulted in the need to improve model
predictions using experimental response data, and has fueled on the development
of Structural Identification (St-Id).

There are several scenarios, which may justify the identification of a field-
calibrated analytical model for simulating an actual structure: (1) design and
verification; (2) documentation of as-is structural characteristics as baseline for as-
sessing any future changes due to aging and deterioration; (3) evaluation of possible
causes and mitigation of deterioration, damage, and/or other types of performance
deficiencies; (4) health and performance monitoring for maintenance management;
(5) structural intervention, modification, retrofit or hardening.

The aim of St-Id is to bridge the gap between the model and the real system.
As direct consequence, St-Id has the potential to reduce the need for excessive
conservatism in the face of uncertainty, and to expand the assessment of structural
performance.

From this prospective, St-Id has attracted the attention of numerous researchers
worldwide over the last several decades. It is the goal of this section to benchmark
and provide an overview of these developments, which constitute the current state-
of-the-art.

1.1 Structural Identification

According to [16], Structural Identification (St-Id) can be defined as: “the paramet-

ric correlation of structural response characteristics predicted by a mathematical

model with analogous quantities derived from experimental measurements”.
St-Id has its origins in systems engineering during the late 1950’s. The ad-

vent of the computer permitted extensive simulation and evaluation of systems
and components. These advances contributed to the development of the system

1

Chapter 1 1.1. Structural Identification

identification (Sys-Id) concept, defined as the estimation of a system based on the
correlation of inputs and outputs. St-Id is a transformation and application of
Sys-Id to civil structural systems.

The concept of parameter identifiability is defined as the ability to determine
the unknown parameters of a system from input-output measurements. This is
known as the identification problem. Properly speaking, the goal of the identifi-
cation problem is to make precise for other purposes, such as prediction, design,
control etc., a certain given incomplete mathematical description of the system by
employing appropriate a priori and experimental information [24].

Clearly, the identification problem is an inverse problem and, as such, is asso-
ciated with a number of difficulties of an analytical and numerical nature.

1.1.1 Type of model employed in St-Id

The following sections provide a description of St-Id research and developments by
the type of model employed.

Physics-Based Models

Physics-based (PB) models are formulated to explicitly address the boundary and
continuity conditions, equilibrium and kinematics of the constructed system of
interest. In PB approaches the identified model can be used to explicitly simulate
behaviour under various critical loading conditions. Such models can diagnose the
causes of changes in behaviour as well as identify how such changes may impact
the performance of the overall system. While several researchers have investigated
the use of nonlinear models [24], [74], [5], [48], [49], [34], [75], currently the most
commonly employed PB St-Id approach relies on linear matrix structural analysis
or FE models. In general terms PB models can be considered predictive as they
rely heavily on the generalized laws of statics, mechanics, dynamics, etc. This
basis, which does not require response data from the constructed system, allows
such models to be useful in a priori sense.

Non-Physics-Based Models

Researchers have also investigated the use of many different types of non-physics-
based (NPB) models for St-Id, including Artificial Neural Networks (ANNs) [66],
[47], [12], [56], wavelet decomposition [30], [35], [55], auto-regressive moving aver-
age vector (ARMAV) models [4], [10], [72], state space models [7], [38], [3], [23],
[27], [58], and Empirical Mode Decomposition (EMD) in conjunction with the
Hilbert-Huang Transform. The main advantage of these techniques is that they
are data-driven, i.e., the construction of NPB models is solely dependent on the
data provided. NPB models are descriptive in nature. They are not based on
specific generalized laws but are derived principally from various means of data
modeling, reduction and interpretation. As such, these models are not appropriate
for a priori use. However, once NPB models are trained through the use of response
data, they may be considered predictive as they are then capable of estimating fu-
ture response through forecasting identified patterns and thus identifying when the

2

1.1. Structural Identification Chapter 1

system has changed. This data driven nature makes them attractive for modeling
complex phenomena, automation, real-time St-Id, continuous monitoring, and min-
imizing errors due to user interaction. But it is equally important to recognize that
they can only identify whether a change in behaviour that corresponds to the data
recording process has occurred and cannot (in the absence of PB techniques) iden-
tify the cause of the change of its affect on overall performance. More importantly,
until many decades of data with sufficient density and bandwidth is captured and
analyzed, it will not be possible to definitively identify and differentiate between
“normal” and “abnormal”. Mitigation of measurement errors remains a significant
and often unrecognized problem.

1.1.2 Structural Identification stages

Following [16], St-Id of Constructed Systems can be organized in six steps:

STEP 1 - Objectives, Observation and Conceptualization

The first step of St-Id involves becoming familiar with the issue that is driving the
application as well as the structure itself.

Our current knowledge on behaviour and performance of constructed systems
is greatly incomplete. It follows that in order to properly guide a St-Id application
it is critical that potential uncertainties have to be identified at the first stage.
If the structure is not properly conceptualized in its current state it is likely that
some potentially significant behaviour mechanisms that have uncertainty associated
with them may be under appreciated. This may lead to poor model construction
and/or incomplete experimental design, which will in turn influence each step of
the process. In such cases, the St-Id will at best result in inconclusive results.

The data, information and knowledge that are available about a system that
will be identified would serve as important constraints and drivers for the analytical
modeling, measurements and controlled experiments, and model-calibration.

STEP 2 - A Priori Modeling

The development of an a priori model within the structural identification process
serves to help conceptualize a structure, identify key structural responses that will
aid in the selection of appropriate experimental approaches. The effect of model-
ing assumptions should be examined through the comparison of several modeling
approaches and through sensitivity analyses. Depending on the objectives of the
St-Id, the a priori model may also serve as the model calibrated through parameter
identification.

Most a priori models are based on assumptions of linearity and stationarity
because, in the absence of response data from the specific constructed system,
it is difficult to justify the complications associated with nonlinear constitutive
relations.

The most pertinent distinction between the numerous PB modeling approaches
lies in its ability to identify key mechanism and provide an expected range of
response to allow an efficient and robust experimental program to be designed and
carried out. (Structural Models, Finite Element Models)

3

Chapter 1 1.1. Structural Identification

The most common PB models employed as a priori models are:

STEP 3 - Experimentation

A fundamental component of the Structural Identification (St-Id) process is the ex-
perimental process leading to “data” in various forms and at various levels of refine-
ment, that are used in the analysis tools to decode the performance of a structure.
St-Id uses the results from static and dynamic measurements as a first step towards
developing more reliable conceptual or numerical models. These models are used
to evaluate and predict structural performance, and to support operational and
maintenance decisions. From this prospective, experimental methods and tech-
nologies serve as the quantitative link to the constructed system of interest. As
such, this step is indispensable. The fundamental challenge in experimenting with
actual constructed systems is to acquire the most meaningful data, and minimize
the uncertainty inherent in the data to facilitate its effective interpretation. This
challenge requires more than the minimization of random and bias errors caused
by the sensors themselves, which can be mitigated by employing established best
practices for both sensor calibration and installation.

STEP 4 - Data processing and data interpretation

Unfortunately, in contrast with many other engineering areas, sensors in structural
engineering rarely measure causes directly; causes must be inferred from measured
effects. Even when causes can be measured in complex structures, it will never
be possible to measure directly every possible phenomenon of interest at every
location. Thus, without appropriate methods for data interpretation, structural
identification cannot provide useful engineering support.

Step 4 of the St-Id process involves the processing and interpretation of data.
In general terms data processing activities aim to make the acquired data more
appropriate for interpretation. This is typically achieved through cleansing the
data of blatant and subtle errors, improving the quality of the data, and then
compressing and/or transforming the data to better support interpretation.

The second stage of Step 4 is concerned with data interpretation. There are
two main types of data interpretation and they are distinguished by the use or
absence of a physics-based behaviour model.

Non-parametric models are defined as non-physics-based numerical models that
in some cases allow data condensation and reconstruction using a limited num-
ber of parameters. This approach does not require the development and use of
a behaviour model of the structure. Therefore, they are much less onerous to
implement. Consequently, they have potential to be used on a large number of
structures. For this type of model, the structural identification process is generally
a parametric curve-fit of mathematical functions to the measured data. Although
the functions reproduce to a certain level of accuracy the measured data, the pa-
rameters themselves do not have any direct physical interpretation. The primary
goal of this approach is to detect anomalies in behaviour. Anomalies are detected
as a difference in measurements with respect to measurements recorded during an
initial period. More specifically, this approach involves examining changes over a
certain period during the life of a structure. The methodology is data driven in the

4

1.1. Structural Identification Chapter 1

sense that the evolution of the data is estimated without information of physical
processes. So the second stage of Step 4, direct data interpretation, involves fitting
mathematical models (also referred to as a non- physics-based model), such as Ar-
tificial Neural Networks, Auto-Regressive Models, state space models etc., to the
processed data. These models are not formulated with any consideration of the un-
derlying physics of the constructed system, rather they aim to accurately capture
and replicate the patterns associated with the data. In this manner, they are most
concerned about identifying when the constructed system behaviour has changed
rather than identifying the underlying cause of the change. This approach has ad-
vantages of require minimal user interaction and being able to address large data
sets, and, as a result, is a powerful tool for continuous monitoring of structures.

Examples of the data-driven models include autoregressive models (AR) (and
variants such as ARMA, ARX and ARMAX models) and the rational polynomial
model. The following paragraphs focus on techniques used for direct data process-
ing and interpretation (without the need for physics-based or parametric models),
and on methods applied to constructed systems. The following approaches are
organized by their primary function: anomaly detection and data processing, data
reduction and representation, and feature extraction.

Data Reduction and Representation. Since it is difficult to characterize data
in a high dimensional space, it is often necessary to extract low dimensional fea-
tures for data analysis. Anomaly detection and data processing may be further
augmented by a variety of frequency, time, and time-frequency approaches that
enable data to be reduced by a fixed number of parameters. This enables the dom-
inant modes or components to be easily recognized and thus aids in data storage
and signal reconstruction, particularly in the reduction of noise. Many of these
methods, and the compact representations they offer, further allow the dynamics
of the system to be characterized, including potential damage.

Autoregressive Methods. In light of the aforementioned resolution issues, fea-
ture extraction is often conducted strictly in the time domain using a set of al-
gebraic and temporal relationships among outputs, and in some cases inputs, of
systems. Such relationships are useful for predicting values of sensor measurements
from measurements of other sensors. Predicted values are then compared with the
measured values from those sensors. A temporal redundancy is obtained observing
how the differential or difference relationships among different sensor outputs and
inputs evolve with the time. A simple relationship for characterizing a system is
a polynomial mapping between system inputs (when available) and outputs. One
such representation referred to as an autoregressive-moving average with noise,
characterizes the system as a weighted polynomial of past outputs (autoregressive
- AR) and past and present inputs (moving averages - MA). The output is a linear
combination of the input history and the past outputs. The input series is a causal
moving average (MA) feed-through process, and the series involving weighted past
output values is an autoregressive (AR) process. AR (single and multi-variate),
ARMA and ARX representations have all been used to represent measured re-
sponses of structures. In situations where the behaviour of the structure varies,
it is possible to calculate coefficients incrementally. This approach is also useful

5

Chapter 1 1.1. Structural Identification

for assessing whether significant information regarding new events can be obtained
through observing the autoregressive model. Through observing changes in coef-
ficients, unusual events such as sudden foundation settlement, ground movement,
excessive traffic loading and failure of post-tensioning cables, can be revealed. In
fact, evaluations of the model coefficients and residual errors against baseline val-
ues for the structure are also capable of detecting anomalies associated with even
minor levels of damage.

Data Mining. Data mining is a field of research concerned with finding patterns
in data for both understanding and prediction purposes. Data mining algorithms
are especially useful when dealing with amounts of data that are so considerable
that human processing is infeasible. This is often the situation in structural identi-
fication tasks, as visualizing distributions of models in multi-dimensional parameter
spaces is difficult for engineers without suitable computing tools.

Feature Selection and Extraction. Feature selection is a method used to re-
duce the number of features (parameters) in order to facilitate data interpretation.
Irrelevant features may have negative effects on a prediction task. Moreover, the
computational complexity of a classification algorithm may suffer from excessive
dimensionality caused by several features. When a data set has too many irrele-
vant variables and only a few examples, over-fitting is likely to occur. In addition,
data are usually better characterized using fewer variables. Feature selection is an
effective method for supporting system identification since it identifies parameters
that explain predictions of candidate models.

STEP 5 - Calibration of Models

Step 5 of the St-Id process involves the selection and calibration of physics-based
models. These models, in contrast to the non-physics-based models used for direct
data interpretation, are formulated to explicitly recognize the underlying physics of
the constructed system. Owing to the uncertainties, it is clear that simply develop-
ing a finite element model with typical engineering assumptions and idealizations
may not be sufficient. Rather it is recommended that several different modeling
strategies be employed and compared to ensure the model selected for calibration
is appropriate. The model calibration process typically involves optimizing a set
of model parameters to minimize the difference between the initial model and the
experimental results. Approaches to this model calibration (also known as model
updating) can be classified based on how they select the parameters to identify, the
formulation of their objective functions (to minimize), the optimization approach
they employ (e.g., gradient-based or non-gradient-based), and whether or not they
explicitly address uncertainties, among others.

Once the model form and space has been determined, an appropriate technique
must be selected to identify the parameters of that model. Once structural param-
eters have been identified from experimental data, they can be used to calibrate
numerical models so that their response predictions correlate well with the mea-
sured response of the physical system. Differences between in-situ and predicted
structural parameters and responses may arise from simplifications employed in

6

1.1. Structural Identification Chapter 1

the modeling process, e.g., in the representations of the boundary and support
conditions, connectivity between various structural elements, unknown material
properties and constitutive relationships (particularly those associated with soil
and concrete), and energy dissipation (damping) mechanisms as well as measure-
ment errors. The calibration process involves selecting a small number of model
parameters that have uncertainty so their values cannot be known a priori. Once
these parameters are selected, various procedures are used to find their values for
which the measurements best match the model predictions. This process then
naturally enables updating the analytical models such that they more accurately
predict the observed response of the in situ structural system. However, despite
the advances in finite element modeling, model calibrations of full-scale structures
can easily be in error by as much as 50%, indicating that validation of a particu-
lar behaviour model is a non-trivial exercise [16]. This process can be particularly
challenging due to the degree of freedom mismatch, as the number of response mea-
surement locations is significantly less than the number of degrees of freedom in the
finite element model. This mismatch often makes it difficult to precisely identify
the portions of the model that cause the discrepancies between measured and pre-
dicted response. No matter the approach used, the result of a successful calibration
effort is a model suitable to provide owners and managers of that infrastructure
with the information necessary for decision making related to rehabilitation and
maintenance. A calibrated model enables a more pro-active maintenance that can
be substantially more economical than delayed responses to deterioration.

STEP 6 - Models for Decision-Making

The use of the models developed and calibrated (physics-based) or trained (non-
physics-based) through the St-Id process is essential to influence the decision-
making process. Properly leveraging a calibrated analytical model through scenario
analysis, parametric studies, or what-if simulations, in order to influence decisions
is related to improving the performance of a design at different limit-states, or to
evaluating the future performances of an existing as-constructed system, influenc-
ing decisions is a crucial part of the St-Id process. In the future, especially as an
increasing portion of civil engineering expenditures relate to renewal of existing
constructed systems, simulation-based management of our constructed environ-
ment will be essential, and will rely on reliable applications of St-Id.

1.1.3 St-Id of nonlinear hysteretic systems

The phenomenon of hysteresis is displayed in many systems of engineering inter-
est. Examples include systems in structural dynamics being stressed beyond their
elastic limit (nonlinear hysteretic behaviour is seen commonly in structures ex-
periencing strong ground earthquake excitation), aircraft structures subjected to
acoustic or aerodynamic loads [5]. Because of the hysteretic nature of the restoring
force in such situations (hysteresis is a highly nonlinear phenomenon), the nonlin-
ear force cannot be expressed in the form of an algebraic function involving the
instantaneous values of the state variables of the system.

Hysteresis is typical of a class of functions which are multi-valued. Conse-
quently, much effort has been devoted by numerous researchers to develop models

7

Chapter 1 1.1. Structural Identification

of hysteretic restoring forces and techniques to identify such systems. The iden-
tification of hysteretic-type nonlinearities is of great importance in the design of
earthquake-resistant structures.

Early notions on identification of nonlinear hysteretic systems are contained in
[5]: in 1982, Andronikou et al. presented the application of an adaptive random
search algorithm to the identification of parameters in single-degree-of-freedom
(SDOF) systems containing hysteretic nonlinearities through which the hysteretic
restoring force was represented by a bilinear model with three unknown param-
eters identified using sinusoidal inputs. In the same year, S. F. Masri et al. [45]
presented a non-parametric identification technique for chain-like multidegree-of-
freedom nonlinear dynamic systems that used information about the state vari-
ables of nonlinear systems to express the system characteristics in terms of two-
dimensional orthogonal functions to identify dynamic systems with arbitrary non-
linearities.

Benedettini et al. [7] investigated nonparametric models defined by two different
descriptions: the first, in which the restoring force is a function of displacement
and velocity; and the second, in which the incremental force is a function of force
and velocity. It is shown in their work the ability of the second variable space
to better reproduce the behaviour of hysteretic oscillators. The approximation of
the real restoring function is done in terms of orthogonal (Chebyshev) polynomials
and nonorthogonal polynomials by assuming as state variables the force itself and
velocity; while mixed parametric and nonparametric model were used in the case
of important hardening and viscous damping.

S. F. Masri et al. [46] extended this approach by proposing a polynomial base
approximation of the restoring force as a function of velocity, displacement and the
excitation.

In the frame of nonparametric approaches, Pei et al. [58] used a special type of
neural network, which showed good performances in the identification of hysteretic
systems.

When a structural system subject to earthquake loading exhibits degradation
or behaves as time variant, we must consider instantaneous and possibly online
estimation techniques to perform a nonlinear identification. On-line identification
of degrading and pinching hysteretic systems is quite a challenging problem because
of its complexity. The method generally followed for the on-line identification of
hysteretic systems under arbitrary dynamic environments is the use of adaptive
estimation approaches [20], [19], [64]. The availability of such an identification
approach is crucial for the on-line control and monitoring of nonlinear structural
systems to be actively controlled. A recently developed technique, the unscented
Kalman filter (UKF) which is capable of handling any functional nonlinearity, is
applied in [71], [21] and [37], to the on-line parametric system identification of
hysteretic differential models with degradation and pinching. Simulation results
show that the UKF is efficient and effective for the real-time state estimation and
parameter identification of highly nonlinear hysteretic systems.

A technique for the structural identification of hysteretic oscillators that are
characterized by degradation in stiffness has been proposed in [17] in which it is
considered the possibility to replace the expression of the time derivative of the
restoring force with a polynomial approximation, characterized by time-varying

8

1.1. Structural Identification Chapter 1

coefficients. The instantaneous estimation, based on optimization techniques, is
made possible through the temporal localization of frequency components, i.e., the
representation in the joint time–frequency domain.

A classification of the identification methods for nonlinear systems can be done
also on the domain in which the identification is performed: frequency, time, or joint
time-frequency domain, e.g. in 2012, Bursi et al. [14] consider the instantaneous-
based identification technique applied to nonlinear systems, which relies on a time-
frequency approach. The entailing formulation determines model parameters that
minimize an error function between time-frequency representations of measured
and simulated signals, respectively. To identify the hysteretic behaviour of a non-
linear steel-concrete composite structure, authors combine the instantaneous-based
identification technique with a parametric method to provide instantaneous esti-
mates of parameters. The instantaneous estimate of the parameters can be then
used to check the consistency of a given model by assessing the stability of the
parameters value in time [18].

As aforementioned hysteresis and nonlinear behaviour have been the subject of
numerous previous studies, including the development of models for bilinear hys-
teresis, yielding structures, degrading systems and other hysteretic systems and
structures. Many models have been used for capturing nonlinear dynamical sys-
tems, including single-valued models, distributed element models, modal models.

Several different approaches have been adopted for identification of nonlin-
ear systems. The approaches include stochastic linearization techniques, Bayesian
models [36], nonparametric methods using polynomial basis functions, enhanced
response sensitivity approach [39], optimization algorithms and neural networks.
The Bouc–Wen, in particular, has seen its parameters estimated via nonlinear opti-
mization schemes, Bayesian state estimate with bootstrap filters, adaptive on-line
methods, and applications of the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) [15], [37]. Recent developments in nonlinear identification
include the use of state-space models, auto-regressive (AR) models, nonlinear re-
gression models and cellular automata nested neural networks.

Within the realm of nonlinear identification, on-line identification schemes are
of paramount importance because they allow for the incorporation of flexible con-
troller strategies that adapt with the structure, as structures that behave nonlin-
early may only exhibit their governing response properties when excited by strong
motions. While there have been several developments in on-line nonlinear identifi-
cation, one of more versatile methods involves the use of adaptive neural networks.
Specifically, an adaptive approach that utilizes Volterra/Wiener neural networks
(VWNNs) has been shown to be a highly effective estimator of nonlinear responses.
The Volterra/Wiener neural network (VWNN) has been shown to be an effective
tool for on-line estimation of nonlinear restoring forces and responses. However,
the power of the VWNN for on-line identification has not been fully harnessed due
to the high sensitivity of its parameters. A probabilistic approach in examining the
effects of the VWNN’s parameters on the robustness and stability of its estimation
capabilities is presented in [12].

9

Chapter 2

Bayesian inference for model

calibration

This chapter covers the core of this thesis work. It concerns the theory behind sta-
tistical approaches towards inverse problems are dealt with, focusing on one of the
most accepted probabilistic approaches for uncertainty quantification (UQ): the
Bayesian inference method. The benefits of this method are its rigorous treatment
of uncertainties by the explicit use of probability for representing, propagating and
updating uncertainty on model parameters, and its reliability in inverse problems.
Of course, the theory developed is based on Bayes’s theorem and conditional prob-
abilities. In this framework, the a priori information is the probability distribution
of the model variables over the “model space”. This distribution captures the epis-
temic uncertainty of the unknowns before the data are analyzed. Section 2.2
explains how this a priori probability distribution is updated into an a posteriori

probability distribution by combining the prior knowledge and the evidence of ac-
tual observations to capture the remaining uncertainty once the data have been
processed. Whereas in Section 2.3 it is pointed out how to apply Bayesian in-
ference in the context of model calibration, and how the practical computation of
this posterior distribution generally requires the use of sampling methods. For this
purpose, Monte Carlo sampling algorithms are employed and discussed in Section
2.4. As well it is called attention to their low convergence rate jointly to computa-
tional prohibitive time-consuming issues (Section 2.4.2). These constitute crucial
issues that need to be managed. To this aim, finally, in Section 2.5 surrogate
models based on Polynomial Chaos Expansions (PCE) and Kriging (Gaussian Pro-
cess) are introduced jointly with Nonlinear Autoregressive with eXogenous input
models (NARX) for stochastic dynamical systems.

2.1 Inverse problems

Physical theories usually model the laws governing the real world as systems of
differential equations in order to let us to make predictions on the outcome. A
typical feature of these sets of equations is causality : forward conditions depend
on the previous ones [33]. This class of problems constitutes the so called forward

11

Chapter 2 2.2. Bayesian inference

problems or direct problems. On the contrary, an inverse problem arises, as seen
in Chapter 1, when the actual result of some experimental measurement data
is indirectly used to infer the values of the unknown parameters describing the
system, whose values cannot be directly measured. Thus, the aim is to propagate
evidence about acquired data backwards to get an insight on the model parameters
[67]. It is clear from that as this class of problems is endowed with non-causality

which remarkably contributes to their instability [33].
While direct problems have a unique solution, inverse problems do not. Because

of this, any available a priori information about model parameters, as well as the
representation of the data uncertainties, play a role of great significance.

Deterministic parameter estimations of a numerical model find a set of optimal
parameters that best fit the observed data. They are nothing but optimization
problems of minimizing the discrepancy between computed and measured data.
However, such approaches bump into some common problems; indeed they are:
prone to be ill-posed and ill-conditioned, extremely susceptible to errors, and af-
fected by uniqueness and stability issues [22]. These factors coupled with the un-
certainty derived from the acquisition of data measurements, result in uncertainty
on model prediction. Accounting for these uncertainties is crucial and necessary,
and naturally leads to consider the problem from a probabilistic perspective.

The philosophy behind probabilistic methods is to restate the inverse problem
purely in the statistical form: the objective is to acquire knowledge, assess the
uncertainty, and draw conclusions about the quantities that cannot be observed
starting from data at hand and available prior informations. This procedure leads
to remove the ill-posedness by extending the solution in the wider space of proba-
bility distributions. As consequence, the solution of an inverse problem produces
not a single estimate of the unknowns but a probability distribution from which
producing estimates that have, evidently, different probabilities. Quoting Kaipio
and Somersalo [33]: “the proper question to ask is not: what is the value of this

variable? But rather: what is our information about this variable?”.
The advantage of applying an uncertainty quantification (UQ) framework is

that allows assessing both the effect of uncertainty on the model parameters and
the uncertainties on derived quantities, e.g. response predictions, and evaluating
the robustness of the model against uncertainty.

2.2 Bayesian inference

Bayesian inference is “the process of fitting a probability model to a set of data and

summarizing the result by a probability distribution on the parameters of the model

and on unobserved quantities such as predictions for new observations”, Gelman
et al. [26]. In the context of Bayesian statistics, all model parameters are supposed
being random variables. This randomness describes, by means of joint probability
distributions, the degree of uncertainty related to their realizations, namely the a

priori information. This a priori probability is then updated into an a posteriori

probability distribution (i.e. a conditional probability distribution of the unknown
quantities), by combining the prior knowledge and evidence of actual observations
using Bayes’s theorem and conditional probabilities. With this in mind, the so-

12

2.2. Bayesian inference Chapter 2

lution of an inverse problem coincides with the posterior probability distribution,
i.e. the probability distribution associated to a certain variable of interest, when all
available informations have been included in the model. This posterior distribution
reflects the degree of confidence, or belief, about that quantity once measurement
has been performed.

As general notation, let Y = {y1, ..., yN}| denote the observed data set. This
one is supposed to be made of independent realizations of a random vector Y ,
where the yi variables are called the random outcomes with probability density
function (PDF) ⇡(y). The shape of the latter, in parametric statistical models, is
assumed being parameterized. Let then ✓ = {✓1, ..., ✓M} denote the vector of these
unknown parameters (or hyperparameters) of interest. Therefore:

Y ⇠ ⇡(y|✓) (2.1)

generally these symbols represent multivariate quantities.
The inference goal is to estimate the hyperparameters ✓ of the PDF above

from the observed data. These ones are modeled as a random vector following the
prior distribution ⇡(✓) which reflects the grade of knowledge about ✓ before any
observation of Y :

⇥ ⇠ ⇡(✓) (2.2)

Bayesian statistics draws conclusions making probability statements about the pa-
rameters ✓ given y, using Bayes’ theorem

1:

⇡(✓|y) =
⇡(✓)⇡(y|✓)

⇡(y)
(2.3)

where the posterior distribution ⇡(✓|y) of the hyperparameters is obtained by
conditioning the joint probability distribution, i.e. the product between the prior
⇡(✓) and the sampling distribution (or data distribution) ⇡(y|✓), with the known
value of the data ⇡(y). The latter is given by the sum over all possible values of ✓:

⇡(y) =
X

✓

⇡(✓)⇡(y|✓) (2.4)

or, if ✓ is continuous, by the integral:

⇡(y) =

Z
⇡(✓)⇡(y|✓) d✓ (2.5)

1〈 Bayes’ theorem gives the probability that some hypothesis, say H, is true given an event
E. To calculate this, the prior probability before got the event E, i.e. the probability of the
hypothesis was true P(H), needs to be multiplied by the probability of the event given the
hypothesis true P(E|H), and divided by the total probability of the event occurring P(E), i.e.:

P(H|E) =
P(H)P(E|H)

P(E) 〉.

13

Chapter 2 2.2. Bayesian inference

Considering now the fact that, for a fixed y, ⇡(y) does not depend on ✓, an
equivalent form of equation (2.3) can be written omitting the factor ⇡(y):

⇡(✓|y) / ⇡(✓)⇡(y|✓) (2.6)

where ⇡(y|✓) is taken here as function of ✓ and not of y.

Once chosen a subjective model for the prior probability distribution, Bayes’
rule (2.6) states that the data y affects the posterior inference only through the term
⇡(y|✓). When this term is taken as function of ✓ for independent realizations of y,
is called the likelihood function L, a function that simply expresses the probability
of observing the data Y given ✓:

L(✓; Y) :=
NY

i=1

⇡(yi|✓) (2.7)

In this way Bayesian inference obeys to the likelihood principle: for a given sample
of data, any two probability models ⇡(y|✓) that share the same likelihood, yield
the same inference for ✓ [26].

Substituting equation (2.7) in (2.3):

⇡(✓|Y) =
⇡(✓) L(✓; Y)

Z
(2.8)

where Z stands for a normalizing factor, named evidence or marginal likelihood,
that ensures that this distribution integrates to 1, and is defined by the integral:

Z =

Z

D✓
⇡(✓) L(✓; Y) d✓ (2.9)

This simply equation (2.8) represents the core of Bayesian inference: the posterior
distribution ⇡(✓|Y) contains all the information inferred about the hyperparame-
ters by combining the prior knowledge ⇡(✓) on hyperparameters and the observed
data Y. In this sense, it can be seen as an “update” of the prior knowledge on ✓.

Except for specific distributions of parameters and for particular choices on the
prior for which an analytical solutions exist (conjugate distributions) [26], the prac-
tical computation of posterior distributions requires the use of sampling methods,
i.e. a resolution of the a posteriori probability distribution in terms of “samples”.
For this purpose, Monte Carlo sampling algorithms are employed (Section 2.4).

2.2.1 Predictions

In the UQ framework, it is useful not to uniquely find out the posterior distribu-
tion ⇡(✓|Y), but also to propose the “best distribution” for the assessment of Y by
selecting a point estimator ✓̂0, i.e. a particular value selected from the posterior

14

2.3. Bayesian inference for model calibration Chapter 2

distribution. Common choices of the latter are the posterior mean (mean of equa-
tion (2.8)), and the posterior mode, a.k.a. MAP (i.e. maximum a posteriori, that
is the mode of equation (2.8)). However, following this approach, the estimation
of uncertainty associated to the parameters is neglected [67].

To get through this, and to make inferences about an unknown observation
(predictive inferences), the uncertainty on ✓ can be incorporated into the prior
and posterior assessment of Y by predictive distributions :

⇡
0
pred(y) :=

Z

D✓
⇡(y|✓)⇡(✓) d✓ (2.10)

⇡
00
pred(y

?|Y) :=

Z

D✓
⇡(y?|✓)⇡(✓|Y) d✓ =

1

Z

Z

D✓
⇡(y?|✓) L(✓; Y)⇡(✓) d✓ (2.11)

Equation (2.10) is the prior predictive distribution, that is the marginal distribu-
tion of the unknown but observable y, i.e. before the data Y are considered (prior
because it is not conditional on a previous observation, predictive because it is the
distribution for a quantity that is observable [26]). After the observation of Y, a
prediction of an unknown but observable, say it y?, can be made by the posterior

predictive distribution (2.11), that is conditional on the observed data Y (posterior
because it is conditional on the observed Y, predictive because it is a prediction
for an observable y? [26]).

2.3 Bayesian inference for model calibration

In engineering, analysis of physical systems are performed by means of computa-
tional models. A computational forward model M is usually defined as a function
that maps a set of model input parameters governing the system x to predict
certain output quantities of interest (QoI) ỹ:

M : x 2 D✓ ⇢ RM 7−! ỹ = M(x) 2 RN (2.12)

Computational models are commonly established based on equations governing the
system itself (e.g. mechanics, dynamics), or on numerical methods. In the context
of computational modeling and uncertainty quantification, Bayesian model calibra-

tion aims at identifying the input parameters x of M that allow to recover the
observations Y. Specifically for this thesis work, the final focus is to identify un-
known properties and key components of complex systems, based on their observed
response to controlled external loads in laboratory experiments.

In the statements of Bayesian inverse problems, the lack of knowledge (i.e. the
epistemic uncertainty) on the input parameters, is taken into account by consider-
ing the input parameters as a random vector X ⇠ ⇡(x). The forward model is a
mathematical representation of the real system. As a matter of principle, all mod-
els are always simplifications of the real world. As consequence, a discrepancy term

shall be introduced to connect model predictions ỹ = M(x) to the experimental

15

Chapter 2 2.3. Bayesian inference for model calibration

observations Y [67], i.e.:

y = M(x) + " (2.13)

In this discrepancy term are gathered the effects of measurement error on y 2 Y
and model inaccuracy. In general case, whatever distribution can be used to model
", but for the sake of simplicity the assumption of a simple additive Gaussian

discrepancy with mean null and residual covariance matrix ⌃ has been made in
this work, i.e.:

" ⇠ N ("|0,⌃) (2.14)

Assuming ⌃ perfectly known (i.e. assuming a discrepancy term with known pa-
rameters) is essentially unrealistic because " is a quantity not known a priori in
many practical situations [67]. By parametrizing the residual covariance matrix
this issue can be overcome. Namely ⌃ = ⌃(x"), where its parameters x" are
additional unknowns to infer jointly with the input parameters xM of M.

Again, to keep things simple, a diagonal covariance matrix with unknown resid-
ual variances σ2 is assumed, specifically ⌃ = σ

2I. This results in reducing the
discrepancy parameter vector to a single scalar, i.e. x" ⌘ σ

2. This assumption
leads in setting the parameter vector as x = (xM,σ

2).

Assuming then a prior distribution ⇡(σ2) for the unknown variance, and the
uncertain model and the discrepancy as priorly independent, the joint prior distri-
bution can be drawn out:

⇡(x) = ⇡(xM)⇡(σ2) (2.15)

With this in mind a particular measurement point yi 2 Y is a realization of a
Gaussian distribution with mean value M(x) and variance σ2. In this way the
likelihood function reads:

L(xM,σ
2; Y) = N (y|M(x),σ2) (2.16)

specifically:

L(xM,σ
2; Y) =

NY

i=1

1p
(2⇡σ2)N

e
− 1

2σ2

%
yi−M(xM)

&|%
yi−M(xM)

&
(2.17)

In this way the posterior distribution can be computed as:

⇡(xM,σ
2|Y) =

1

Z
⇡(xM)⇡(σ2) L(xM,σ

2; Y) (2.18)

that summarizes the updated information about the unknowns x = (xM,σ
2) after

conditioning on the observation Y. Finally the marginals of individual forward
model inputs ⇡(xM,i|Y) and of the residual variance ⇡(σ2|Y) can be elicited.

16

2.3. Bayesian inference for model calibration Chapter 2

The marginal of a specific parameter xi (with i 2 {1, ..., M}) can be computed by
integration over the other components:

⇡(xi|Y) =

Z

Dx⇠i

⇡(x|Y) dx⇠i (2.19)

where x⇠i refers to the parameter vector x excluding the i-th parameter xi.

2.3.1 Inverse solution

The posterior distribution (3.26) computed in Section 2.3 is characterized through
its first statistical moments. The posterior mean vector can be considered as a point

estimate of the unknown parameters:

E [X|Y] =

Z

Dx

x ⇡(x|Y) dx (2.20)

whereas the uncertainty estimate can be quantified through the posterior covari-

ance matrix :

Cov [x|Y] =

Z

Dx

%
x − E [X|Y]

&%
x − E [X|Y]

&|
⇡(x|Y) dx (2.21)

More generally, ⇡(x|Y) can be seen also as an intermediate quantity used for com-
puting the conditional expectation of a certain QoI (e.g. analytical functions,
secondary models), let say h : DX ! R. The conditional expectation of h(X)
under ⇡(x|Y) is defined by the integral:

E [X|Y] =

Z

Dx

h(x)⇡(x|Y) dx (2.22)

2.3.2 Model predictions

Predictive distributions (2.10) and (2.11) (Section 2.2.1) can be now computed,
in lights of Section 2.3, to assess the predictive capabilities of the computational
model:

⇡
0
pred(y) =

Z

Dx

L(x; y)⇡(x) dx =

Z

Dx

L(xM,σ
2; Y)⇡(xM)⇡(σ2) dx (2.23)

⇡
00
pred(y

?|Y) =

Z

Dx

L(x; y)⇡(x|Y) dx =

Z

Dx

L(xM,σ
2; Y)⇡(xM,σ

2|Y) dx (2.24)

The integral of equation (2.23) is not in practice computed explicitly, indeed sam-
ples from this distribution can be obtained by sampling first x according to its
prior (3.24), then sampling Y conditioned on model M(x):

17

Chapter 2 2.4. Markov Chain Monte Carlo simulations

Y ⇠ M(y|M(x),σ2) (2.25)

in other words, this corresponds to sampling a realization of the discrepancy "

according to (3.23) and adding it to M(x). The same concept can be applied to
the posterior predictive: a sample from the posterior predictive distribution is ob-
tained by sampling first x according to the posterior (3.26), then evaluating M(x)
and adding an independently sampled discrepancy term " by drawing it from (3.23).

2.4 Markov Chain Monte Carlo simulations

The posterior distribution (3.26) computed in Section 2.3, here rewritten for the
sake of simplicity:

⇡(xM,σ
2|Y) =

1

Z
⇡(xM)⇡(σ2) L(xM,σ

2; Y) (2.26)

do not have a closed solution. The reason why lies on evaluating the normalizing
factor Z integral:

Z =

Z

DX

⇡(xM)⇡(σ2) L(xM,σ
2; Y) dx (2.27)

A common approach to get around this obstacle relies on Monte Carlo (MC)
stochastic integration technique. The former usually has to resort to Markov chain

Monte Carlo (MCMC) simulations, a powerful tool based on repeated simulations
of the model M, which allows the representation of an integral as an expectation.
In this way, the posterior is explored by realizing appropriate Markov chains over
the prior support. The obtained sample can be used then to empirically estimate
output statistics by drawing samples from the posterior [60].

The idea behind MCMC algorithms is to set up over the support DX of the
prior, a Markov chain (X(1)

, X(2)
, ...) with an invariant distribution that equals the

posterior distribution of interest [67]. Specifically, a Markov chain can be defined
by its transition kernel K (i.e. the density of the transition probability) from step t

to the successive one t + 1, namely K(x(t+1)|x(t)). Hence, if K fulfills the so-called
“detailed balance condition”:

⇡(x(t)|Y)K(x(t+1)|x(t)) = ⇡(x(t+1)|Y)K(x(t)|x(t+1)) (2.28)

the posterior distribution ⇡ is the invariant distribution of the Markov chain and
the reversibility of the chain is guaranteed (i.e. the probability to move from x(t)

to x(t+1) is equal to the probability to move from x(t+1) to x(t)) [60].

The posterior distribution, finally, is obtained by integrating (2.28) over dx(t):

⇡(x(t+1)|Y) =

Z

Dx

⇡(x(t)|Y)K(x(t+1)|x(t)) dx(t) (2.29)

18

2.4. Markov Chain Monte Carlo simulations Chapter 2

A Markov chain constructed this way can be used to approximate the expectation
of a certain QoI h(X) as the iteration average of the T +1 generated sample points
x(t) [67]:

E [h(X)|Y] =

Z

DX

h(x)⇡(x|Y) dx ⇡ 1

T

TX

t=1

h(x(t)) (2.30)

2.4.1 Affine invariant ensemble algorithm (AIES)

The construction of a Markov kernel K that satisfies (2.28) is based on an easy
principle: sampling candidates from a proposal distribution and then accept/reject
them through some decision criteria. Almost all MCMC sampling methods (based
on the original Metropolis-Hastings (MH) algorithm), share a common problem-
feature: to reach high performance, these algorithms typically need a considerable
amount of tuning of their parameters. Goodman and Weare [29] proposed a MCMC
method, known as the affine invariant ensemble algorithm (AIES), that alleviates
this problem and whose performance is unaffected by affine transformations of the
the target distribution [67].

The AIES algorithm runs an ensemble of C walkers, i.e. an ensemble of C

Markov chains {X1, ..., XC}, simultaneously. The locations xi of the Markov chain
are updated walker by walker. In each update a random conjugate walker, let say
x(t)

j (with j 6= i), is selected form the set of walkers. By generating proposals of a
new candidate according to the stretch move:

x(⇤)
i = x(t)

i + Z(x(t)
j − x(t)

i) (2.31)

the affine invariance property is achieved. Z is computed as:

Z ⇠ p(z) =

8
><

>:

1
p

z

⇣
2
p

a− 2p
a

⌘ z 2
h

1
a , a

i
,

0 z /2
h

1
a , a

i
.

(2.32)

This implies sampling from p(z) defined by the tuning parameter a > 1. An evident
advantage of this algorithm is the presence of only a single scalar tuning parameter
which is often set to a = 2 in many practical applications [29].

Then the candidate x
(⇤) is accepted as the new location of the i-th walker with

probability:

↵

⇣
x(⇤)

i , x(t)
i , z

⌘
= min

(
1, z

M−1⇡(x(⇤)
i |Y)

⇡(x(t)
i |Y)

)
(2.33)

At the end, repeating this for all C chains, the resulting chains fulfill the balance

condition (2.28) and the sample generated by the walkers can be combined to
estimate expectations (2.30) under the posterior distribution, i.e. the algorithm
produces chains of sample points that will follow the posterior distribution.

19

Chapter 2 2.5. Surrogate modeling

2.4.2 Convergence of MCMC simulations

MCMC simulations are theoretically simple, robust, computationally effortless and
well-suited for parallel processing [40]. However, the low convergence rate (propor-
tional to 1/

p
N where N is the number of numerical simulations [40]) and the

the lack of a convergence criterion represent a critical issue for these algorithms.
Indeed, a large number of forward model runs are typically required. This may be
prohibitive, especially in earthquake engineering, where even a single model sim-
ulation can be computationally expensive. Owing to this, one is forced to make
decisions, in practice, based on a finite number of sample points. Thus conduct-
ing a proper MCMC simulation may result not an easy task or even not feasible.
For this reason in Section 2.5, surrogate modelling for the representation of the
computational model response at low computational cost is introduced.

2.5 Surrogate modeling

Monte Carlo simulations are powerful tools for propagating uncertainties. Never-
theless, the low convergence rate, as seen in Section 2.4.2, constitutes a crucial
issue that needs to be managed. In earthquake engineering each nonlinear anal-
ysis of the systems (i.e. each model evaluation) under earthquake excitation, is
computationally quite expensive. Notwithstanding the current computing capac-
ity, carrying out a proper MCS may lead, for practical applications, to prohibitive
time-consuming issues. With this in mind, surrogate modelling, a.k.a. metamod-

elling, allows one to construct approximate models that emulate the behaviour of
the whole simulation at low computational expenses. Important classes of surro-
gate models are based on PCE (Polynomial Chaos Expansions) (Section 2.5.1)
and on Kriging (Gaussian Process models) (Section 2.5.2). Applications in the
field of earthquake engineering have been introduced recently, some examples can
be found in literature in [31], [41], [62], [40].

Formally, a metamodel M̃ is an approximation of the original computational model:

M̃(X) ⇡ M(X) (2.34)

Specifically, the process to build a surrogate model consists of three stages [40]:

1. creation of an experimental design (ED), i.e. a set of N random realizations of
the model parameters X = {x(i)

, i = 1, ..., N} with their associated response
values obtained by evaluating the computational model M onto X, for fitting
the metamodel from numerical simulations data;

2. the training process, i.e. the identification of the the surrogate model pa-
rameters by means of learning algorithms respectful of specific criteria (e.g.
minimizing error estimators);

3. the validation process, i.e. the validation of the surrogate model by evalu-
ating its accuracy in terms of predicting the random responses using a new
independent validation set of data different from the one used for the training

20

2.5. Surrogate modeling Chapter 2

process [63]. It should be stressed that the surrogate model can be used only
once the validation has been satisfied.

Following, Section 2.5.1 and Section 2.5.2 constitute a brief theoretic sum-
mary of the basic principles behind PCE metamodelling and Kriging metamodelling
respectively. In the view of this thesis work, the final focus is in applying surrogate
modelling to represent the time-dependent stochastic responses of structures under
earthquake excitations. Specifically, in Section 2.5.3 is called attention on the
well-known difficulties that PCE and Kriging exhibit when applied to stochastic
dynamical models [68]. To overcome this challenging issue, the approaches pro-
posed by C. Mai et al. [42] and by Worden et al. [70] have been used. Both of
them are based on the basic idea of combining NARX models with the surrogates
models (Sections 2.5.5, 2.5.6).

2.5.1 Polynomial chaos expansions

The idea is to decompose the forward computational model into polynomial terms
that are orthogonal with respect to a weight function [40]. Hence:

M(X) =
X

↵

y↵ ↵(X) (2.35)

where y↵ are coefficient to be computed, ↵ = (↵1, ...,↵M) are multi-indices that
identify the components of the multivariate polynomials orthonormal basis func-
tions ↵(X) =

QM
i=1

i
↵i

(Xi). However, an infinite series expansion (2.35) cannot
be treated practically. For that, a truncated form with a finite number of terms of
the PCE has to be considered:

M(X) = MPC(X) + " =
X

↵2A
y↵ ↵(X) + " (2.36)

where A is the truncation set of selected multi-indices of multivariate polynomials
and " is the truncation induced residual error.

Following [40], the relevant polynomials to include in the truncation are those
in the subset defined by two schemes:

Scheme 1 - hyperbolic truncation scheme:

A ⌘ AM,p
q =

n
↵ 2 NM : k↵kq =

✓ MX

i=1

↵
q
i

◆1/q

 p

o
(2.37)

Scheme 2 - low-rank truncation scheme:

A ⌘ AM,p
r =

n
↵ 2 NM : k↵k0 =

MX

i=1

↵i>0 r, k↵k1 =
MX

i=1

↵i p

o
(2.38)

where the parameter q 2 (0; 1] governs the hyperbol, p is the maximum degree of
the multivariate polynomials, whereas r is the rank coefficient suggested by C. Mai

21

Chapter 2 2.5. Surrogate modeling

et al. [42] as a small integer value, e.g. r = 2, 3, 4.

The coefficients y↵ of the PCE are computed from a set of model evaluations, the
experimental design (ED), setting up a least-squares minimization problem, i.e.:

ŷ↵ = arg min
y↵

=
1

N

NX

i=1

✓
M(x(i)) −

X

↵

y↵ ↵(x(i))

◆2

(2.39)

Leave-one-out cross-validation error (LOO)

The leave-one-out (LOO) cross-validation error "LOO is an error estimator of the
PCE metamodel based on cross-validation. The latter consists in partitioning the
Experimental Design (ED) in two complementary subsets so that one is used to
train the model, while the other is used to validate its prediction.

Practically only one sample constitutes the validation set (for this reason the
term LOO). Hence, leaving one point x(i) out, a PCE model MPC\i(·) from the
remaining ED X\x(i) = {x(i)

, i = 1, ..., N} can be built.

The LOO error is defined as:

ErrLOO =
1

N

NX

i=1

✓
M(x(i)) − MPC\i(x(i))

◆2

(2.40)

Whereas the relative leave-one-out cross-validation LOO error is obtained by:

"LOO =
ErrLOO

V ar[Y]
=

PN
i=1

⇣
M(x(i)) − MPC\i(x(i))

⌘2

PN
i=1

⇣
M(x(i)) − µ̂Y

⌘2 (2.41)

2.5.2 Kriging

Kriging (a.k.a. Gaussian Process (GP) modeling) is a stochastic interpolation
method in which the computational model M(X) is assumed being a realization
of a Gaussian process:

M(X)K = β
|f(x) + σ

2
Z(x,!) (2.42)

where β|f(x) is the GP trend (i.e. its mean value), σ2 is the GP constant variance,
whereas Z(X,!) is the GP zero-mean unit-variance. In the definition (2.42) the
probability space is represented by ! = !

%
R(✓)

&
which depends on the correlation

function R (a function that describes the correlation between two sample points
x, x0) and its hyperparameters ✓ [67].

22

2.5. Surrogate modeling Chapter 2

The process to build a Kriging metamodel consists of 5 stages:

1. selection of a basis f(x) for the Kriging trend (e.g. polynomials, arbitrary
specified function);

2. selection of a correlation function (or kernel) R = R(x, x0
,✓) that describes,

depending on the distance between the input points, how similar observations
and new points are (e.g. linear, exponential, Gaussian correlation families);

3. computing ✓ hyperparameters setting up an optimization problem on the
selected estimation method;

4. computing the Gaussian Process variance σ2;

5. computing the remaining Kriging unknown parameters (e.g. β coefficients).

Cross-validation estimation

The cross-validation (CV) estimation method (a.k.a. K-fold-cross-validation) is
based on the partitioning of the whole set of observations (i.e., the observations
related to the experimental design (ED)) D =

7
(x(i)

, y
(i)), i = 1, ..., N

, into K

mutually exclusive subsets Dk:

D =
K[

k=1

Dk; and Di \ Di = ;, 8(i, j) 2 {1, ..., K} (2.43)

Once the model has been estimated using all the subsets of the ED except for the
k-th one, the latter is obtained by the prediction of the model. Specifically, when
K is chosen equal to N , i.e. when the number of the subsets is equal to the number
of observations and the number of elements in Dk is one, the estimation is called
leave-one-out (LOO) cross validation.

The cross-validation error of the k-th set reads:

"CV,k =
X

(x(i),y(i))2Dk

⇣
y

(i) − µŶ \Dk
(x(i);β,σ

2✓,σ2
n)
⌘2

(2.44)

while the overall cross-validation error is:

"CV
%
β,σ

2
,✓,σ2

n; Y
&

=
1

N

KX

k=1

"CV,k (2.45)

At this point, the idea is to set up an optimization problem that minimizes the
cross-validation error to find the set of Kriging parameters:

✓̂, σ̂2 = arg min
✓,σ2

"CV
%
✓,σ2; Y

&
(2.46)

23

Chapter 2 2.5. Surrogate modeling

A posteriori estimation and LOO cross-validation error

Once Kriging metamodel is built, its predictive accuracy can be assessed by the
relative leave-one-out LOO cross-validation error. As seen in Section 2.5.1, the
Experimental Design (ED) is partitioned into two complementary subsets: one
used to train the model, one used to validate its prediction. Hence:

"LOO =

PN
i=1

⇣
M(x(i)) − MK\i(x(i))

⌘2

PN
i=1

⇣
M(x(i)) − µ̂Y

⌘2 (2.47)

2.5.3 Surrogate modelling for stochastic dynamical systems

As earlier mentioned, the focus of this thesis work relies on stochastic dynamical
systems. The random output response of those systems is also a time-dependent
quantity:

y(t, ⇠) = M(t, ⇠) (2.48)

where t is the time variable and ⇠ = {⇠1, ..., ⇠M} is the random vector of the M

uncertain parameters of the system obtained by realizations of a random variable
⌅ ⇠ ⇡(⇠).

In this context, it has been observed by C. Mai et al. [42] that the accuracy
of the polynomial chaos representation of the response y(t, ⇠) (time-frozen PCEs)
degenerates quickly in time. Thus leads to inaccurate metamodels. To maintain
the accuracy, higher-degree polynomials or different, larger and more complicated
types of basis functions shall be considered in the updating of the expansion, that
means to assign to PCEs the role of catching the dynamics of the system repre-
senting the increasing non-linearity of the response with respect to the uncertain
parameters [40]. However, PCEs just fail this task due to the simple fact that are
a tool deigned for propagating uncertainties and not to catch the dynamics. As
consequence, is more effective to separate the problem, i.e. using PCEs to repre-
sent the uncertainties-related part of the problem, while using a different tool to
capture the dynamic part. For this specific purpose, Spiridonakos and E. Chatzi
[65] proposed a numerical approach that combines PCEs and non-linear autore-
gressive with exogenous input (NARX) models. Specifically, NARX models are
used to mimic the dynamics of the system, while PCEs are used to deal with the
uncertainties. Later, an evolution of such approach based on LARS algorithm was
proposed by C. Mai et al. [42]. The latter is presented in the following sections,
and then applied in Chapter 3 for numerical benchmarks, and in Chapter 5 for
a real case study.

2.5.4 Nonlinear Autoregressive with eXogenous input model

Let consider a generic dynamical system subjected to a time-dependent input ex-
citation x(t). Let y(t) be its time-history response, and let M be a mathematical

24

2.5. Surrogate modeling Chapter 2

model that relates the input-output signals. So that:

y(t) = M
%
x(t)

&
(2.49)

The essence of the nonlinear autoregressive with exogenous input (NARX) models
is that past outputs are included in the expansion of the model M. More specifi-
cally, NARX models allow to build the latter using the observed data of the input
and output signals. So that, the output quantity y(t) can be represented, at a
certain instant of time t, as an expansion of its past values and values of the input
excitation at the current or previous instants [8]:

y(t) = M
%
x(t)

&
= F

%
z(t)

&
+ "(t) (2.50)

where F(·) is the NARX model, namely some nonlinear function to be identified,
"(t) ⇠ N

%
0,σ

2
"(t)

&
is the residual error of the NARX model, and z(t) is the vector

of current and past values, i.e.:

z(t) =
7
x(t), ..., x(t − nx), y(t − 1), ..., y(t − ny)

 | (2.51)

where nx, ny stand for the maximum input and output time lags, respectively.
Generally, just a restricted number of time lags ahead of the present time instant t

is sufficient to catch the dynamics, since the cause-consequence tends to fade away
as time evolves [8].

NARX system identification can be conceptualized into three major steps:

1. basis function selection, i.e. choosing a basis function to construct the map-
ping F(·) (e.g. polynomial, wavelet, neural networks);

2. structure detection, i.e. determining relevant NARX terms to include in the
model;

3. parameter estimation, i.e. computing the model coefficients by least square
minimization.

To keep things simple, and following a popular trend noticed in the literature,
polynomial basis function have been used in this work to construct the mapping
F(·). So that:

y(t) =

ngX

i=1

#igi
%
z(t)

&
+ "(t) (2.52)

where ng is the number of the polynomial NARX model terms gi
%
z(t)

&
, and #i are

coefficients to estimate. It should be stressed that structure detection is crucial,
especially for systems involving nonlinearities. Indeed, as noticed in [8], including
spurious terms in the NARX may lead to numerical and computational issues. That
means that polynomial expansions can be ill-conditioned as a result of the explosion
of the terms involved. The aforementioned problem can be avoided exclusively if
only significant model terms are included in the model. To this aim, C. Mai et al.
[42] suggest the use of orthogonal least squares algorithm and its derivatives for

25

Chapter 2 2.5. Surrogate modeling

structure selection. Following their work, a structure detection approach based on
least angle regressions (LARS) [25] is herein briefly mentioned and then used.

Least angle regression (LAR)

The least angle regression (LAR) is an efficient algorithm aimed at selecting those
predictors (in this context the basis polynomials gi) among a larger set of candi-
dates, that have the greatest impact on the NARX model response.

Following [9], the original LAR algorithm run is itemized below:

» initialize the coefficients #0, ...,#ng = 0;
» initialize the residual equal to the vector of observations Y;
» detect the gi most correlated with the initial residual;
» move #j from 0 toward the least-square coefficient of the current residual on

gj , until some other predictor gk has as much correlation with the current
residual as does gj ;

» move jointly {#j ,#k}| in the direction defined by their joint least-square
coefficient of the current residual on {gj , gk}, until some other predictor gl

has as much correlation with the current residual;
» keep on the iterations until m ⌘ min(ng, N −1) predictors have been entered.

2.5.5 PC-NARX

PC-NARX models combines PCEs and NARX models to overcame the aforemen-
tioned issues related to stochastic dynamic systems (Section 2.5.3). The basic
idea is just to split the uncertainties-related part of the problem from the dynamic
one. This can be achieved let the PCEs to propagate uncertainty, while the NARX
model to capture the time-dependent nonlinearity. In this way, the time-dependent
output quantity y(t, ⇠) = M(t, ⇠) can be expressed by means of a NARX model
whose coefficients are only function of the randomness of the input parameters,
whereas the basis are only time-dependent quantity, i.e.:

y(t, ⇠) =

ngX

i=1

#i(⇠)gi
%
z(t)

&
+ "g(t, ⇠) (2.53)

where ng is the number of the NARX model terms gi
%
z(t)

&
, z(t) is the vector

of current and past values, nx, ny are the maximum input and output time lags,
"g(t) ⇠ N

%
0,σ

2
"(t)

&
is the residual error. #i(⇠), that are now functions of the

uncertain input parameters ⇠, are represented by means of PCEs:

#i(⇠) =

n X

j=1

#i,j j(⇠) + "i (2.54)

where "i is the truncation error of the expansion. Finally, substituting equation
(2.54) in (2.53) the PC-NARX model is obtained:

26

2.5. Surrogate modeling Chapter 2

y(t, ⇠) =

ngX

i=1

n X

j=1

#i,j j(⇠)gi
%
z(t)

&
+ "(t, ⇠) (2.55)

where "(t, ⇠) is the total error due to NARX and PCE truncations.

Least angle regression-based approach

The process to build a PC-NARX model consists into two-phases approach [40]
and is herein described and schematised in Figure 2.1:

PHASE 1: selection of the NARX model

• STEP 1.1: define the full NARX model by specifying type and properties
of the basis functions, maximum input/output time lags nx, ny and/or the
nonlinear behaviour involved in the system;

• STEP 1.2: selection of some candidate NARX models, i.e. NARX models
containing only a subset of the full NARX terms using LARS algorithm.
This is done for each k-experiment of the ED. Specifically, the recorded data
y(t, ⇠) used for training the NARX model can be written as:

y(t, ⇠) = ŷ(t, ⇠k) + "(t, ⇠) (2.56)

where ŷ(t, ⇠k) is the one-step-ahed NARX prediction (2.57) and "(t, ⇠) is its
residual.

ŷ(t, ⇠k) =

ngX

i=1

#i(⇠k)gi(ẑ(t, ⇠k)) (2.57)

in which:

ẑ(t, ⇠k) =
7
x(t, ⇠k), ..., x(t − nx, ⇠k), y(t − 1, ⇠k), ..., y(t − ny, ⇠k)

 | (2.58)

Let now denote φ(t) = {gi(ẑ(t, ⇠k), i = 1, ..., ng)}| and #(⇠k) = {#i(⇠k), i =
1, ..., ng}|, so that equation (2.56) becomes:

y(t, ⇠) = φ|(t)#(⇠k) + "(t, ⇠) (2.59)

Assembling then all time instants in the k-th experiment, one obtains:

8
><

>:

y(1, ⇠k)
...

y(T, ⇠k)

9
>=

>;
=

8
><

>:

φ|(1)
...

φ|(T)

9
>=

>;
#(⇠k) +

8
><

>:

"(1, ⇠k)
...

"(T, ⇠k)

9
>=

>;
(2.60)

27

Chapter 2 2.5. Surrogate modeling

or in matrix notations:

yk = Φk + #(⇠k) + "k (2.61)

where yk [T ⇥ 1] is the output time-series vector, Φk [T ⇥ng] is the informa-

tion matrix whose row contain the evaluations of NARX terms φ(t), whereas
"k is the residual vector. Equation (2.61) represents a linear regression prob-
lem, for which the relevant NARX terms among the NARX candidate ones
φ(t) can be selected using LARS algorithm;

• STEP 1.3: computing NARX coefficients by ordinary least-squares (OLS)
(2.62) for each experiment of the ED and for each candidate NARX model:

#(⇠k) = arg min
#

("|k"k) =
⇥
Φ|

kΦk

⇤−1
Φ|

kyk (2.62)

Then, for each experiment, the free-run reconstruction of the response (2.63)
can be obtained using only the excitation time series x(t) and the response
initial condition y0.

y̌(t, ⇠k) =

ngX

i=1

#i(⇠k)gi(ž(t, ⇠k)) (2.63)

in which:

ž(t, ⇠k) =
7
x(t, ⇠k), ..., x(t − nx, ⇠k), y̌(t − 1, ⇠k), ..., y̌(t − ny, ⇠k)

 | (2.64)

It should be stressed that the response (2.63) differs from the (2.57) one due
to the fact that in the computation of ž(t, ⇠k) it is not more used the recorded
data but its free-reconstruction.
For each experiment k, the relative error reads:

"k =

PT
t=1

%
y(t, ⇠k) − y̌(t, ⇠k)

&2
PT

t=1

%
y(t, ⇠k) − ȳ(t, ⇠k)

&2 (2.65)

where ȳ(t, ⇠k) is the mean value of the response time series y(t, ⇠k).

• STEP 1.4: selection of the NARX model among the candidate NARX models
with the smallest mean error over the entire ED:

"̄ =
1

K

KX

k=1

"k (2.66)

PHASE 2: using the obtained NARX coefficients # with the corresponding sample
set ⇠ of the random input parameters to train the PC expansions.

28

2.5. Surrogate modeling Chapter 2
128 Chapter 5. PC-NARX model

Phase 1 Selection of candidate terms for the NARX model
Selection of experiment #i exhibiting strong nonlinearitySelection of the corresponding sparse NARX model by LARS
Computation of NARX coefficients for each experiment by OLSComputation of reconstruction error for each experimentSelection of the most appropriate NARX model

Accuracy satisfaction
Build PCEs of the NARX coefficientsPhase 2

Step 1.1
Step 1.2
Step 1.3
Step 1.4

No
Yes

Figure 5.1 – Computation of LARS-based PC-NARX model

5.2.3 Validation of the surrogate model

The PC-NARX model is computed using an ED of limited size. The validation process
is conducted with a validation set of large size which is independent of the ED. A large
number, e.g. nval = 104, of input parameters and excitations is generated. One uses
the numerical solver to obtain the response time histories sampled at the discrete time
instants t = 1, . . . , T . Then the PC-NARX model (Eq. (5.18)) is used to predict the time
dependent responses for the excitations and uncertain parameters of the validation set.
The accuracy of the computed PC-NARX model is validated by comparing its predictions
with the actual responses in terms of the relative errors and the evolutionary statistics of

Figure 2.1: Computation of LARS-based PC-NARX model, [40]

PC-NARX prediction

The so built PC-NARX metamodel can be used for a generic realization ⇠0 of the
input parameters to predict the response y(t, ⇠0). The time history of the system
can be recursively given the input excitation x(t) and the initial conditions y0:

y̌(t, ⇠0) =

ngX

i=1

n X

j=1

#i,j j(⇠
0)gi
%
z(t, ⇠0)

&
(2.67)

in which:

ž(t, ⇠
0
k) =

7
x(t, ⇠

0
k), ..., x(t − nx, ⇠

0
k), y̌(t − 1, ⇠

0
k), ..., y̌(t − ny, ⇠

0
k)
 | (2.68)

29

Chapter 2 2.5. Surrogate modeling

PC-NARX validation

Once built the metamodel, a validation process has to be conducted to validate
the PC-NARX surrogate. To this aim, a realization of lager size independent val-
idation set of model input parameters realizations is used (e.g. nval = 1e

4) to
computing the actual model responses and its predictions by PC-NARX surrogate.
The accuracy of the computed PC-NARX model is validated by comparing them
in terms of the relative errors:

For i-th prediction, the relative error is:

"val,i =

PT
t=1

%
y(t, ⇠i) − y̌(t, ⇠i)

&2
PT

t=1

%
y(t, ⇠i) − ȳ(t, ⇠i)

&2 (2.69)

While the overall mean value of the relative errors is:

"̄val =
1

nval

nvalX

i=1

"val,i (2.70)

2.5.6 Kriging-NARX

Whole seen in Section 2.5.5 for the PC-NARX models, can be rearranged without
loss of generality also for the Kriging metamodel, leading to Kriging-NARX models.
Although this time the #i(⇠) parameters of equation (2.53) are assumed being a
realization of a Gaussian process, i.e.:

#i(⇠) = β
|
i fi(⇠) + σ

2
i Z(⇠,!i) (2.71)

So that, substituting equation (2.71) in (2.53) the Kriging-NARX model can be
obtained:

y(t, ⇠) =

ngX

i=1

⇣
β
|
i fi(⇠) + σ

2
i Z(⇠,!i)

⌘
gi
%
z(t)

&
+ "(t, ⇠) (2.72)

30

Chapter 3

Model validation and numerical

benchmarks

In this chapter, the structural dynamic problem of hysteretic systems’ response is
formulated for a simple inelastic structure with a Single-Degree-of-Freedom (SDF).
The Bouc-Wen-Baber-Noori (BWBN) model of hysteresis is presented briefly in
Section 3.1 and then validated considering earthquake-induced ground motion
as external excitation in Section 3.2. Afterwards the same model has been used
to generate simulated experimental data (Section 3.3) from which calibration of
the system parameters has been carried out taking into account first none model for
the discrepancy (Section 3.4), secondly an additive Gaussian model discrepancy
(Section 3.5).

3.1 Bouc-Wen-Baber-Noori model of hysteresis

The Bouc–Wen model of hysteresis (Figure 3.1) is widely used in structural en-
gineering. The model was proposed by Bouc [11], and thereafter modified by Wen
[69].

c

ki

Bouc −Wen

m p(t)

u(t)
Figure 3.1: SDF Bouc-Wen model of hysteresis

The differential equation governing the motion of the structure is:

m ü(t) + c u̇(t) + fr
%
u(t), z(t)

&
= p(t) (3.1)

31

Chapter 3 3.1. Bouc-Wen-Baber-Noori model of hysteresis

where m is the mass of the system, c is the viscous linear damping coefficient,
u(t) is the displacement, fr(u, z) is the restoring force, and p(t) is the external
excitation

%
in the case of ground motion p(t) is the effective earthquake force:

peff (t) = −m üg(t)
&
. The overdots represents the derivative with respect to time,

hence ü(t) and u̇(t) represent the velocity and the acceleration respectively.
According to the Bouc–Wen model, the restoring force is given by the following

expression:

fr(u, z) = f
el
r (u, z) + f

h
r (u, z) = ↵ ki u(t) + (1 − ↵) ki z(t) (3.2)

where f
el
r (u, z) represents the elastic component whereas f

h
r (u, z) is the hysteretic

component (which depends on the past history of stresses and strains), ki is the
initial stiffness of the system, ↵ is the ratio between the final stiffness and initial
one (↵ = ku/ki), z(t) is the hysteretic displacement defined by the next differential
equation:

ż(t) = A u̇(t) −
h
β |u̇(t)||z(t)|N−1

z(t) + γ u̇(t) |z(t)|N
i

(3.3)

where the parameters A, β, γ and N control the hysteresis shape.

Later, in 1985, Baber and Noori [6] modified the model including additional
parameters which enhance the capacity of the model to represent hysteretic shapes,
the so called Bouc–Wen–Baber–Noori hysteresis model. Such changes reads:

ż(t) = h(z)
A(") u̇(t) − ⌫(")

h
β |u̇(t)||z(t)|N−1

z(t) + γ u̇(t) |z(t)|N
i

⌘(")
(3.4)

where the parameters β, γ and N control the shape of the cycles, and the additional
parameters A("), ⌘(") and ⌫(") are degradation functions taking in account the
stiffness and strength degradation. Those degradation functions are expressed in
terms of the dissipated hysteretic energy "h(t):

A(") = A0(") − δA "
h(t) (3.5a)

⌫(") = ⌫0(") + δ⌫ "
h(t) (3.5b)

⌘(") = ⌘0(") + δ⌘ "
h(t) (3.5c)

where the constant values of A0, ⌫0, ⌘0 are usually set to unity. Whereas the values
δA, δ⌫ , δ⌘ are constant terms which specify the amount of stiffness and strength
degradation. Therefore a value of δA = δ⌫ = δ⌘ = 0 represents no degradation, in
contrast a value of δA = δ⌫ = δ⌘ 6= 0 involves the degradation phenomenon.

32

3.2. Model validation Chapter 3

The dissipated hysteretic energy "h(t) is given by:

"
h(t) =

Z u(t)

u(0)
f

h
r (u, z) du = (1 − ↵) ki

Z t

0
z(⌧) u̇(⌧) d⌧ (3.6)

whereas the total dissipated energy of the system "tot(t) is the sum of the previous
one and the elastic energy of the system "

el(t), i.e.:

"
el(t) =

Z u(t)

u(0)
f

el
r (u, z) du = ↵ ki

Z t

0
u(⌧) u̇(⌧) d⌧ (3.7)

"tot(t) = "
el(t) + "

h(t) (3.8)

The last function, h(z), in equation (3.4), is the pinching function. The pinching
state refers to a mild increase in the system’s stiffness in points close to the origin in
the hysteretic graph, followed by an abrupt increase in the stiffness. It is modeled
by the following equation:

h(z) = 1 − ⇣1(") exp

✓
−
??z(t) sign

%
u̇(t)

&
− q zu

??2

⇣
2
2 (")

◆
(3.9)

where zu is the last value of z(t) which can be computed by:

zu =

1

⌫(") (β + γ)

A1/N

(3.10)

and the values of ⇣1(") and ⇣2(") are given by:

⇣1(") = ⇣0
%
1 − exp(−p "(t))

&
; ⇣2(") =

%
 + δ "(t)

&%
λ+ ⇣1(")

&
(3.11)

where p is a constant which controls the initial change in the slope, ⇣0 is a measure
of the total slip, contributes to the pinching behaviour, δ is a specified constant
which measures the dispersion rate of the pinching phenomenon, and λ controls
the variation of the parameters ⇣1(") and ⇣2("). If the pinching function is chosen
equal to unity, its effect is neglected.

3.2 Model validation

The Bouc-Wen-Baber-Noori model of hysteresis has been implemented in Matlab®

[50], [59] with the purpose, in a first moment, to simulate experimental response
data record of the system itself. The motion equation (3.1) presented in Sec-
tion 3.1 has been normalized respect to the system mass:

ü(t) + 2 ⇠ !n u̇(t) + ↵!
2
n u(t) + (1 − ↵)!2

n z(t) = −üg(t) (3.12)

where ⇠ is the damping ratio, !n is the natural vibration frequency of the system,
and üg(t) is the ground excitation.

33

Chapter 3 3.2. Model validation

Likewise equation (3.2) modifies in:

f
⇤
r (u, z) = f

⇤el
r (u, z) + f

⇤h
r (u, z) = ↵!

2
n u(t) + (1 − ↵)!2

n z(t) (3.13)

where the star symbol (⇤), from now on, denotes that the specific quantity is nor-
malized respect to the system mass. And finally:

"
⇤h(t) = (1 − ↵)!2

n

Z t

0
z(⌧) u̇(⌧) d⌧ (3.14)

"
⇤el(t) = ↵!

2
n

Z t

0
u(⌧) u̇(⌧) d⌧ (3.15)

"
⇤
tot(t) = "

⇤el(t) + "
⇤h(t) (3.16)

Equation (3.12) is solved using a state-space formulation:

{ẋ(t)} = F
%
{x(t)}

&
(3.17)

where the state-vector and its first derivative are defined as follow:

{x} =

8
>>>><

>>>>:

x1

x2

x3

x4

x5

9
>>>>=

>>>>;

=

8
>>>><

>>>>:

u

u̇

z

"
⇤h

"
⇤el

9
>>>>=

>>>>;

; {ẋ} =

8
>>>><

>>>>:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

9
>>>>=

>>>>;

=

8
>>>><

>>>>:

u̇

ü

ż

"̇
⇤h

"̇
⇤el

9
>>>>=

>>>>;

(3.18)

Substituting equation (3.18) in (3.17), the following system of five first order nonlin-
ear ODEs is found and solved numerically with the explicit Runge-Kutta iterative
method of integration using the Matlab solver ode45 with relative error tolerance
set to 1 ⇥ 10−3:

8
>>>>>>><

>>>>>>>:

ẋ1 = x2

ẋ2 = −üg − 2 ⇠ !n x2 − ↵!
2
n x1 − (1 − ↵)!2

n x3

ẋ3 = h(z) ⌘−1
n

A x2 − ⌫

h
β |x2||x3|N−1

x3 + γ x2 |x3|N
io

ẋ4 = (1 − ↵)!2
n x3 x2

ẋ5 = ↵!
2
n x1 x2

(3.19)

In order to validate the code, the response of the BWBN model in linear field
(obtained setting all parameters null save for N = 100) has been compared with
the response of an equivalent linear SDF system whose response has been calculated
using the Duhamel’s integral:

u(t) =

Z t

0
p(⌧) h(t − ⌧) d⌧ (3.20)

34

3.3. Simulation of experimental record data Chapter 3

where h(t − ⌧) is the impulse response function (IRF) defined as:

h(t − ⌧) =
1

m!d
exp
%
−⇠ !n (t − ⌧)

&
sin
%
!d (t − ⌧)

&
(3.21)

A record of the Montenegro earthquake (1979) was selected from the PEER Ground
Motion Database (PEER, 2019), as seismic excitation (Figure 3.2). The Peak
Ground Acceleration (PGA) measures 3.59 m/s

2.

0 5 10 15 20 25 30 35 40 45
-4

-2

0

2

4

Figure 3.2: Montenegro (1979) ground motion record

0 10 20 30 40

-5

0

5

-5 0 5

-600

-400

-200

0

200

400

600

Figure 3.3: Model validation

In Figure 3.3 the response of the two system and the restoring force of the
linearized BWBN one are plotted. It is clear as the response history matches per-
fectly and as the restoring force has a linear-elastic pattern, so that the model
validation can be hold to be satisfied.

3.3 Simulation of experimental record data

The same record of the Montenegro earthquake shown in Section 3.2 (Figure
3.2) has been used as input excitation to simulate the response of a nonlinear SDF
BWBN system with a system mass of m = 12000 kg, in order to get a simulated
experimental record measurement. The initial stiffness ki of the system has been
calibrated with the objective of obtaining a plausible system frequency for a ma-
sonry structure of approximately 4 Hz. A damping ratio of ⇠ = 3% was adopted.
Finally, the remaining BWBN parameters used to generate the simulated record
are presented in Table 3.1.

35

Chapter 3 3.4. Calibration not accounting discrepancy

Table 3.1: Bouc-Wen-Baber-Noori parameters

ki [kN/mm] β [mm
−1] γ N δA δ⌫ δ⌘ h(z)

7.6 63 ⇥ 10−3 63 ⇥ 10−3 1 0 2.43 6.5 1

In Figure 3.4 are plotted the results of the simulated data.

0 10 20 30 40

-15

-10

-5

0

5

10

15

0 10 20 30 40

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-20 -15 -10 -5 0 5 10 15 20
-60

-40

-20

0

20

40

60

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 3.4: Simulated experimental data

These results constitutes the experimental observation used in Section 3.4,
3.5 for numerical benchmarks.

3.4 Calibration not accounting discrepancy

In this section optimization algorithms are used to deal with the inverse problem
of model parameters calibration. These algorithms are often the tools used to
handle problems characterized by a large number of parameters of very complex
systems. Regardless the specific algorithm chosen, all these methods present two
disadvantages at least: one related to the precision of the results, indeed different
trials in the estimation of parameters may lead to different results in the values of
the updated parameters [53], and one, more substantial, that is the lack of a model
for the discrepancy. These factors lead to a not reliable value of the parameters
identified.

Following, the calibration of the BWBN system is treated making use of sim-
ulated experimental data obtained in Section 3.3. None degrading or pinching
effects are included in the model of hysteresis used for the calibration of the pa-
rameters (i.e δA = δ⌫ = δ⌘ = 0 and h(z) = 1). This specific assumption is done to
replicate what recursively happens in real experimental practice. Due to this choice

36

3.4. Calibration not accounting discrepancy Chapter 3

a discrepancy between measured data and model arises. For that, none model has
been introduced.

The system of equations (3.19) has been solved searching the result in a sub-
domain of the parameters defined by the following constraints:

Table 3.2: BWBN parameters ranges

Parameters Support

ki (kN/mm) [4.27, 11.85]
β (1/mm) [55, 65] ⇥ 10−3

γ [−β, β]
↵ [0, 1]

The support on model parameters ki was selected to limit the range of variation
of the BWBN system frequency about f = 3 ÷ 5 Hz, whereas the inequality con-
straint on γ has been set to ensure the BIBO (Bounded Input–Bounded Output)
stability [32]. Two optimization algorithms have been used for the identification of
parameters: (a) Pattern Search, and (b) Interior Point. Both algorithms share the
following objective function to be minimized:

J = kvexp(t) − vk(t)k2 (3.22)

where vexp(t) is the experimental record as generated in Section 3.3, whereas
vk(t) is the k-response-evaluation computed by the algorithm.

Once identified the parameters (Table 3.3), a nonlinear analysis was run. In
the next page, in Figure 3.5 and Figure 3.6 are compared the results of the
identified response with the experimental data. It can be clearly seen as both
algorithms replicate quite satisfactorily the system velocity response, however they
miss in capturing the actual hysteretic behavior. This can be explained by the fact
that stating the problem in these terms means to be “blind” to uncertainties and
model discrepancies; in other words, the randomness nature of the event jointly
to the incapability of the model to represent the real uncertain world is neglected.
So that, conducting such a calibration, none information can be provided on the
inaccuracy of the model prediction.

Table 3.3: BWBN identified parameters

Parameters Identified value True value
Pattern Search Interior Point

ki 4 5.00 7.6
β 65⇥10−3 57⇥10−3 65⇥10−3

γ −0.023 0 −0.051
↵ 0 0.5 0.459

37

Chapter 3 3.4. Calibration not accounting discrepancy

-10 0 10
-50

0

50

-10 0 10
-60

-40

-20

0

20

40

60

-10 0 10
-60

-40

-20

0

20

40

60

0 5 10 15 20 25 30 35 40 45

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 3.5: Pattern Search algorithm

-10 0 10
-50

0

50

-10 -5 0 5 10

-60

-40

-20

0

20

40

60

-10 0 10

-60

-40

-20

0

20

40

60

0 5 10 15 20 25 30 35 40 45
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 3.6: Interior Point algorithm

38

3.5. Calibration accounting random variable discrepancy Chapter 3

3.5 Calibration accounting random variable discrepancy

The numerical case of study of the model calibration of the Bouc-Wen-Baber-
Noori system is now dealt with accounting model uncertainty by using a Bayesian
approach. In the view of Bayesian inverse problems, the lack of knowledge on
the input parameters is taken into account by considering them as realizations of
random vectors. Specifically, deterministic values are used for the following pa-
rameters of the BWBN model: m = 12000 kg, ⇠ = 3%, A = 1, N = 1. The
remaining one are considered independent random variables with associated dis-
tributions given in Table 3.4, which constitute the vector of uncertain model
parameters xM = {ki,β, γ

?
,↵}.

Table 3.4: Prior distributions of the BWBN model parameters

Parameter Distribution Support Mean Standard deviation

ki (kN/mm) Gaussian [4.27, 11.85] 7.42 0.1
β (1/mm) Uniform [55, 65] ⇥ 10−3 60 ⇥ 10−3 2.8 ⇥ 10−3

γ
? Uniform [−1, 1] 0 5.7 ⇥ 10−1

↵ Lognormal [0, 1] 0.063 0.01

The first moments of the prior PDFs of model parameters ki and ↵, namely
µki = 7.42 and µ↵ = 0.063, have been selected by two linear regressions on the
experimental restoring force curve (Figure 3.7).

-15 -10 -5 0 5 10 15
-50

0

50

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-1

-0.5

0

0.5

1

-15 -10 -5 0 5 10 15
-50

0

50

11 11.5 12 12.5 13 13.5 14
45

45.5

46

46.5

47

47.5

48

Figure 3.7: Linear regressions for prior moments estimates

It is worth to underly that in Table 3.4 a new random variable γ? was introduced
in order to guarantee the BIBO stability. Indeed, assuming as prior knowledge on

39

Chapter 3 3.5. Calibration accounting random variable discrepancy

the parameter γ the required BIBO stability condition, i.e. γ being uniformly dis-
tributed between the bounds: −β γ β, the conditional distribution ⇡(γ|β) has
to be uniform. This can be achieved by transforming the input variables, namely
removing the parameter γ and introducing an auxiliary variable γ? ⇠ U(−1, 1).
So that, for a joint realization of the parameters β and γ

?, the actual parameter
reads: γ = γ

?
β.

As seen in Chapter 2, all computational models are always simplifications of
the real world. As consequence, a discrepancy term has been introduced to connect
the Bouc-Wen-Baber-Noori model response to the experimental observations. For
the sake of simplicity the assumption of a simple additive Gaussian discrepancy
with mean null and residual diagonal covariance matrix ⌃ = σ

2I with unknown
residual variances σ2 has been made, i.e.:

" ⇠ N (0,⌃ = σ
2I) (3.23)

To infer σ2, a uniform prior distribution was instead assumed:

⇡(σ2) ⇠ U
%
0, max|v|2

&
(3.24)

whose standard deviation was set equal to the maximum of the absolute value over
the time of the experimental observation v.

Under this assumption the likelihood function is set as a Gaussian distribution
with unknown variance and mean value equal to the norm 2 squared of the differ-
ence between the model prediction M(xM) and the observation v, in accordance
with the objective function assumed in Section 3.4 (eq. (3.22)):

L(xM,σ
2; V) =

NY

i=1

1p
(2⇡σ2)N

e
− 1

2σ2

%
vi−M(xM)

&|%
vi−M(xM)

&
(3.25)

In this way the posterior distribution can be computed as:

⇡(xM,σ
2|V) =

1

Z
⇡(xM)⇡(σ2) L(xM,σ

2; V) (3.26)

that summarizes the updated information about the unknowns x = {xM,σ
2} after

conditioning on the observation V .
In the following sections Bayesian inversion was carried out first using the ref-

erence computational model MBW (x) for representing the velocity time-histories
v(t) of the BWBN model, then using surrogate models.

3.5.1 Reference model

Markov Chain Monte Carlo simulations have been conducted using Matlab-based
Uncertainty Quantification framework UQLab-V1.3-113® [44] with 100 chains,

40

3.5. Calibration accounting random variable discrepancy Chapter 3

700 steps and AIES solver algorithm. The number of the BWBN forward model
MBW (x) calls in MCMC was 70000, that means solving, for each model evaluation,
the system of ODEs (3.19) with the Matlab solver ode45 (explicit Runge-Kutta
method with relative error tolerance 1 ⇥ 10−3), for a total duration of about 33
hours. Latin hypercube sampling (LHS) method was used to get model parameters
prior distributions (Table 3.4), which are shown in Figure 3.8.

Figure 3.8: Prior samples

The evolutions of the Markov chains are plotted in Figure 3.9 for each model
parameter x = {ki,β, γ

?
,↵,σ

2}; these give valuable insights about convergence
of the chains. Indeed, it can be clearly seen as 700 steps are sufficient to reach
the steady state. So that, samples generated by the chains follow the posterior
distributions. However, the sample points generated by the AIES MCMC algorithm
before convergence, can pollute the estimate of posterior properties, therefore they
have been post-processed carrying out the burn-in of the first half of sample points
(in other words their contribution was discarded). Furthermore, in the same figure,
the acceptance rate ra of the chains is reported. This parameter can be seen as
an indicator of a badly tuned algorithm [67]. In practical applications ra close to
one indicates that the proposal distribution does not sufficiently explore the target
distribution, while ra close to zero indicates rather that the proposed candidate
points are in low probability regions; the optimal acceptance rate is shown to
approach ra = 0.23 [61]. With this evidence, it can be concluded that in our case
the quality of the generated MCMC chains can be judged satisfactory.

41

Chapter 3 3.5. Calibration accounting random variable discrepancy

Figure 3.9: Trace plots and acceptance rate of the chains

42

3.5. Calibration accounting random variable discrepancy Chapter 3

Table 3.5 reports the result of the Bayesian inversion analysis: mean and standard
deviation of the posterior, 5%−95% quantiles of the distribution, MAP point esti-
mate. Whereas the posterior distributions of the calibrated parameter are plotted
in Figure 3.10.

Table 3.5: Posterior marginals

Parameter Mean Standard deviation (0.05-0.95) Quant. MAP

ki 4.5 0.18 ⇥ 10−1 (4.4 - 4.5) 4.4
β 65 ⇥ 10−3 0.36 ⇥ 10−3 (64 - 65) ⇥10−3 64 ⇥ 10−3

γ
? −0.38 0.25 (−0.42 - −0.34) −0.40
↵ 0.035 0.53 ⇥ 10−2 (0.027 - 0.044) 0.031
σ

2 2 ⇥ 10−4 4.7⇥10−6 (1.9 -2.1) ⇥10−4 2 ⇥ 10−4

Figure 3.10: Posterior samples

The maximum a posteriori value (MAP) can be considered the most probable pa-
rameter value following calibration. This value has been used as a best-fit param-
eter. The model response prediction using MAP as point estimate of the posterior
distributions is plotted in Figure 3.11. It can be clearly seen as the inferred re-
sponse reproduces quite accurately the experimental record. Actually, we should
not dwell upon this specific prediction, rather upon its confidence intervals. The
latters tell us how uncertainties on model input propagate through the model.
From the inspection of Figure 3.11 can be concluded that uncertainties on the

43

Chapter 3 3.5. Calibration accounting random variable discrepancy

input parameters produce higher uncertainty of the response prediction in the lower
amplitude regions rather than in the peak values ones. However, this is a satisfy-
ing result in earthquake engineering, where we are more interested in predicting
maximum response quantities.

0 5 10 15 20 25 30 35 40 45
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.11: Model response

As mentioned at the beginning of the section, the number of forward model
calls in MCMC simulations was 70000. This lead to a total analysis duration of
about 33 hours. It is worth underlining that the system considered previously,
has only a single degree of freedom. Dealing with actual structures means taking
into account thousand/million DOFs. As consequence, it appears clear from that
the need of surrogate modelling which, at lower computational cost, approximate
accurately the original expensive computational model.

3.5.2 NARX model

To build the NARX model for representing the velocity time-histories v(t) of the
BWBN system, as first 1000 samples of the input parameters were generated by
LHS and 1000 corresponding model simulations were conducted. These data con-
stitute the Experimental Design.

Then a NARX model structure with absolute terms was chosen based on their
effectiveness in capturing the hysteretic behaviour of nonlinear systems [65], and
whose basis terms are defined by:

gi(t) = x(t − k)l|v(t − 1)|m (3.27)

gi(t) = v(t − j)l|v(t − 1)|m (3.28)

with l = 0, 1, m = 0, 1, k = 0, ..., nx, j = 1, ..., ny, and nx = 4, ny = 4. So that the
initial full NARX model contains totally 19 terms.

44

3.5. Calibration accounting random variable discrepancy Chapter 3

Next, the candidate NARX models were computed. For this purpose, LARS
was applied to the initial full NARX model for each experiment of the ED, to select
the most relevant terms. This lead to have 40 NARX candidates in total. OLS (eq.
(2.62)) was used then to determine the NARX coefficients #i for all the simulations.
Subsequent to the evaluation of the accuracy of the NARX candidates (eq. (2.62)),
the most appropriate NARX model with a mean relative error of "̄ = 7.74 ⇥ 10−3

over 1000 experiment, was selected among the candidates. This contains 10 model
terms, namely: x(t), x(t − 1), x(t − 3), x(t − 4), x(t)|v(t − 1)|, x(t − 3)|v(t − 1)|,
v(t − 1), v(t − 4), v(t − 1)|v(t − 1)|, v(t − 4)|v(t − 1)|.

Figure 3.12 depicts the cross-validation plot of the velocities (resp. maximal
velocity) predicted by the NARX model against the reference values obtained with
the numerical solver. Note that the the accuracy is high for the prediction peak
values.

Figure 3.12: NARX free-run-reconstruction of the entire ED

In Figure 3.13, as an example, is plotted the NARX prediction for the k = 2
experiment of the ED.

3.5.3 PC-NARX and Kriging-NARX surrogate models

Once detected the NARX model, its coefficients computed on the ED have been
used to train both PCEs and Kriging metamodels. Specifically, the #i(x) coeffi-
cients have been represented by sparse adaptive PCEs with degree up to p = 21,
maximum interaction order r = 2 and truncation parameter q = 1. Jointly,
the NARX coefficients have been represented by GP with hyperbolic truncation
scheme, constant trend, ellipsoidal Matern-5/2 correlation, using Hybrid Genetic
optimization Algorithm (HGA) to compute the hyperparameters. The PCEs of
the NARX coefficient have LOO errors smaller than "LOO = 9.766⇥10−3, whereas
a value of "LOO = 4.391 ⇥ 10−3 is reached with the Kriging.

45

Chapter 3 3.5. Calibration accounting random variable discrepancy

0 5 10 15 20 25 30 35 40 45
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.13: NARX free-run-reconstruction for the experiment k = 2

Figure 3.14 depicts the estimate of the NARX coefficient by the PC expansions
versus the #i value of the ED, in order to evaluate the accuracy of the surrogate.
As a check, the Kriging’s estimate is also superposed. It should be not surprising
that the cross-validation of the latter is exact, due to the fact that GP assumes
as estimate on ED the same ED value. In contrast, it can be clearly seen as the
PCEs spread some degree of uncertainty. Hence, Kriging works fine for numerical
surrogates that are not affected by accidental errors, whereas PCEs are more adapt
to mimic actual models which are affected by experimental errors.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.14: NARX coefficients cross-validation PCEs vs Kriging

Successively, the two surrogates PC-NARX and Kriging-NARX have been used
for predicting the velocity response over a validation set of size 104, with a mean
relative error respectively of: "̄val = 9.655 ⇥ 10−3 and "̄val = 9.002 ⇥ 10−3. The

46

3.5. Calibration accounting random variable discrepancy Chapter 3

Figure 3.15: PC-NARX - Kriging-NARX validation

0 5 10 15 20 25 30 35 40 45

-0.15
-0.1
-0.05

0
0.05
0.1
0.15

0 5 10 15 20 25 30 35 40 45

-10

-5

0

5

10

0 5 10 15 20 25 30 35 40 45

-0.15
-0.1
-0.05

0
0.05
0.1
0.15

0 5 10 15 20 25 30 35 40 45

-10

-5

0

5

10

Figure 3.16: PC-NARX and Kriging-NARX prediction on validation set

displacement time history was then obtained by integration. Cross-validation plots
are reported in Figure 3.15. It is evident from its observation as Kriging-NARX
is a bit more accurate than the PC-NARX in the prediction.

As an example, Figure 3.16 depicts two specific velocity and displacement tra-
jectories for a realization of the BWBN parameters onto the validation sets. Note
that the velocity trajectories are perfectly predicted by both surrogates. Despite
the high accuracy of the PC-NARX and Kriging-NARX models for the velocity,
the displacements obtained by integration might exhibit some slight discrepancies
with respect to the actual responses. The inaccuracies occur when the peak values
of the velocity are not well predicted, as result the error is accumulated in time
through integration. This is due to the fact that the different response quantities
might experience their largest variabilities at different instants of time. A possible
solution to cut off the error accumulation consists in applying an high pass filter
to the velocity response and then integrating to obtain the displacements time

47

Chapter 3 3.5. Calibration accounting random variable discrepancy

history. However, it should be stressed that with such approach, due to the filter
processing, potential permanent displacements cannot be captured.

3.5.4 Bayesian inversion using PC-NARX metamodel

The same MCMC simulations, as seen in Section 3.5.1, with 100 chains and
700 steps, have been conducted using the surrogate PC-NARX model, for a total
metamodel calls of 70000 and a total duration of about 55 minutes.

The evolutions of the Markov chains are plotted in Figure 3.17 for each model
parameter x = {ki,β, γ

?
,↵,σ

2}. As for the reference model, 700 steps are sufficient
to reach the steady state even though not unique-value convergence was reached.
So that, samples generated by the chains follow multimodal posterior distribu-
tions. A plausible cause of this may consist in the systematic propagation of the
error of the PC-NARX metamodel prediction through the Markov chains. Indeed,
comparing Figure 3.9 with Figure 3.17, it can be clearly seen how each model
parameter distribution, except for ⇡(β), matches quite well the one obtained using
the reference model excluding for the additional modes. Much more uncertainty
arises instead in the calibration of β, this may be ascribed at its sensibility, i.e. on
how and how much this specific parameter influence the system response.

To the estimate of the posterior samples, as before, a burn-in of the first half
of sample points was carried out (Figure 3.18). Table 3.6 reports the result
of the Bayesian inversion analysis: mean and standard deviation of the posterior,
5% − 95% quantiles of the distribution, MAP point estimate.

Table 3.6: Posterior marginals (PC-NARX)

Parameter Mean Standard deviation (0.05-0.95) Quant. MAP

ki 4.6 0.11 (4.4 - 4.7) 4.5
β 61 ⇥ 10−3 0.17 ⇥ 10−2 (58 - 63) ⇥10−3 63 ⇥ 10−3

γ
? −0.14 0.19 (−0.35 - −0.089) −0.33
↵ 0.043 0.98 ⇥ 10−2 (0.03 - 0.058) 0.052
σ

2 2 ⇥ 10−4 5.1⇥10−6 (2 -2.2) ⇥10−4 2 ⇥ 10−4

Finally, the model response prediction using MAP as point estimate of the
posterior distributions is used to fit the observations (Figure 3.19). The accuracy
of the model response prediction using the PC-NARX surrogate is comparable to
the one of the reference model. Although more uncertainties are introduced by the
surrogates, its time-computation benefit is remarkable (about 30 times faster).

.
.

48

3.5. Calibration accounting random variable discrepancy Chapter 3

Figure 3.17: Trace plots and acceptance rate of the chains (PC-NARX)

49

Chapter 3 3.5. Calibration accounting random variable discrepancy

Figure 3.18: Posterior samples (PC-NARX)

0 5 10 15 20 25 30 35 40 45
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.19: Model response (PC-NARX)

50

3.5. Calibration accounting random variable discrepancy Chapter 3

3.5.5 Bayesian inversion with Kriging-NARX

The same MCMC simulations with 100 chains and 700 steps, have been conducted
using also the Kriging-NARX surrogate model, for a total metamodel calls of 70000
and a total duration of about 18 hours.

The evolutions of the Markov chains are plotted in Figure 3.20 for each model
parameter x = {ki,β, γ

?
,↵,σ

2}. As for the reference model and for the PC-NARX
surrogate, 700 steps are sufficient to reach the steady state. However, in contrast
with the inference by means of the PC-NARX metamodel, samples generated by
the chains follow now unimodal posterior distributions. It is evident from that
how the Kriging-NARX surrogate not affects the inference analysis propagating
prediction errors through the Markov chains.

To the estimate of the posterior samples a burn-in of the first half of sample
points also in this case was carried out (Figure 3.21). Table 3.7 reports the result
of the Bayesian inversion analysis: mean and standard deviation of the posterior,
5% − 95% quantiles of the distribution, MAP point estimate.

Table 3.7: Posterior marginals (Kriging-NARX)

Parameter Mean Standard deviation (0.05-0.95) Quant. MAP

ki 4.5 0.01 (4.48 - 4.51) 4.5
β 64 ⇥ 10−3 0.25 ⇥ 10−3 (63.6 - 64.2) ⇥10−3 64 ⇥ 10−3

γ
? −0.22 0.014 (−0.25 - −0.2) −0.23
↵ 0.023 0.25 ⇥ 10−2 (0.019 - 0.027) 0.023
σ

2 1.9 ⇥ 10−4 3.9⇥10−6 (1.8 - 1.95) ⇥10−4 2 ⇥ 10−4

Finally, the model response prediction using MAP as point estimate of the
posterior distributions is used to fit the observations (Figure 3.22).

Summary

In this chapter the model calibration of the nonlinear hysteretic SDF Bouc-Wen-
Baber-Noori system subjected to ground motion excitation was treated. It was
shown first as deterministic approaches cannot furnish a complete overview on the
model and its parameters and on propagation of uncertainties, then how stochastic
approaches succeed reach to this aim. Moreover it was shown how conducting a
proper Bayesian inference may result time and computationally expansive (remem-
ber that the total analysis duration of the reference model was about 33 hours).
To get time improvements polynomial chaos expansions and Kriging metamod-
els were introduced coupled with non-linear autoregressive with exogenous input
models (PC-NARX and Kriging-NARX). As result, it was pointed out how the
accuracy of this metamodels in the model response prediction is comparable to
the one of the mathematical physical model with a significant time-computation
improvement (of about 30 and 2 times fast for PCE-NARX and Kriging-NARX
respectively).

51

Chapter 3 3.5. Calibration accounting random variable discrepancy

Figure 3.20: Trace plots and acceptance rate of the chains

52

3.5. Calibration accounting random variable discrepancy Chapter 3

Figure 3.21: fig: Posterior samples (Kriging-NARX)

0 5 10 15 20 25 30 35 40 45
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 3.22: Model response (Kriging-NARX)

53

Chapter 4

Hybrid simulation tests of the

masonry facade case study

This chapter deals with the case study description. In detail, Section 4.1 in-
troduces the Hybrid Simulation methodology and the architecture of the hybrid
simulators. Section 4.2 concerns the description of the framework built at ETH
Zürich to perform the pseudo-dynamic hybrid-simulations on the masonry facade
system. Furthermore, the experimental testing campaign results are shown. The
latters constitutes the data that will be used in Chapter 5 for the model calibra-
tion.

4.1 Hybrid simulations

Hybrid simulations (HS) are testing methods used to emulate structures’ time-
history responses under dynamic loads by combining numerical techniques and
experimental procedures. The benefit of conducting such a simulation relies into
the fact that it allows to split a system into a Physical Subdomain (PS) and a Nu-
merical Subdomain (NS) which are parallelized and coupled after each time step (in
this sense they are “hybrid”) [53]. Specifically, the seismic excitation is transferred
experimentally via hydraulic actuators directly to the tested specimen, while the
numerical analysis is performed by means of numerical models solved using time
integration algorithms. So that, HS generally allows the sub-structuring of the
system of interest into a well-known part modelled numerically, and a strongly
nonlinear one tested by a physical experimental setup. Thus carrying experimen-
tal tests prevents modelling inaccuracies, whereas the numerical analysis leads to
a less extensive testing setup for simulations [28].

As first, the structure is discretized with a certain amount of degrees of freedom
(DOFs). In the experimental test setup, each DOF is controlled by a servo-actuator.
Stiffness parameters of the structure are detected from the physical specimen, while
the inertia forces are modelled numerically [28].

When the response of the physical setup is assumed being independent of the
rate of loading, the implementation of a pseudo-dynamic Hybrid Simulation at
an extended time scale is practicable. This testing procedure contributes to less

55

Chapter 4 4.1. Hybrid simulations

control tracking errors and less destabilizing impacts of experimental substructure
with the actuators [2].

The system’s equations of motion expressed in the state-space form for each
subdomain (experimental and analytical) are then solved by a partitioned time
integration algorithm [1] adopting a dual assembly scheme of the modified PH
method [13]. Precisely, the displacements computed for each DOF, are imposed
on the sub-structures. The corresponding actuators regulate the displacements
of the PS in a quasi-static manner. Once displacements have been imposed on
the structure, the static restoring forces of the PS are measured via load cells
included in the servo-actuators, while the restoring forces of the NS are calculated
numerically. Both obtained restoring forces are introduced in the equations of
motion to be solved in the integration scheme during the next time step. The
newly computed displacements are again imposed on the structure, repeating the
Hybrid Simulation loop [28] (Figure 4.1).

It is worth to underlying that the simulation time step used in the time inte-
gration algorithm differs from the one used for the controller (that corresponds to
the specimen-clock-time in the experimental setup). Their ratio is defined by the
parameter λ, whose value is usually set about 50 ÷ 200 [54].

Experimental setup &
Numerical model

Restoring forces
NS & PS

Displacements
NS & PS

Coupled equations
of motion

Seismic
excitation

Measurement of restoring
forces of PS & calculation
of restoring forces of NS

Imposing displacements
to NS & PS

Introduction of restoring
forces into

Computing of the
displacements for NS & PS

1

Figure 4.1: Hybrid Simulation loop [28]

4.1.1 Architecture of the hybrid simulator

The main components of a Hybrid Simulation are the experimental equipment, the
computational apparatus (controller, host and real-time computers), the hydraulic
units for actuator control and the measurement devices (e.g. digital image corre-
lation (DIC) and linear variable displacement transducers (LVDT)). Figure 4.1
depicts the architecture of the hybrid simulator.

56

4.1. Hybrid simulations Chapter 4

Hydraulic jack Load cell

Actuator

Physical test
specimen LVDT

INOVA

Controller and
computer

LasersHydraulic
pump

Host computer DIC
Computer for
computations

and data
acquisition

INDEL real-time

Figure 4.2: Architecture of the hybrid simulator [28]

Host computer

The host computer is used to build a Hybrid Simulation software (based on Matlab
Simulink) and to handle the real-time computer. The Simulink model consists of
three blocks: the input block acquires the data from the sensors, i.e. the restoring
forces measured on the test specimen by the load cells in the actuators; the acquired
data is then sent to the block containing the hybrid simulator algorithm which
computes the new displacements to impose on the structure; from those the third
block automatically generates C code to broadcast to the real-time computer.

INDEL real-time computer

The embedded real-time operating system of the INDEL real-time computer exe-
cutes the host broadcasted tasks within a deterministic time scheduling [28] and
transmits the commands to the controller. Simultaneously data acquisition from
all the sensors and triggers and from the digital camera for the digital image cor-
relation (DIC).

INOVA controller and computer

The real-time computer transmits displacement command at each time step of the
simulation to the INOVA real-time controller system which manages the servo-
controlled actuators. Simultaneously the controller sends force feedback to the
real-time computer using the EtherCAT communication [28].

57

Chapter 4 4.2. Description of the case study

Actuator force measurement

As well as applying a certain force, the servo-hydraulic actuators are also able to
send a force feedback to the controller through the load cells included.

Actuator displacement measurement

Two devices are used to measure the displacement of the actuator: the actuator
internal sensor and an external laser. For vertical actuators, the displacements are
measured via the internal sensor while the laser devices are just used to check the
measurements.

Digital image correlation

Digital image correlation (DIC) is an optical measurement technique for capturing,
tracking and measuring deformations and strains on the specimen surface compar-
ing processed images of the specimen surface at different instants of time.

Linear variable displacement transducers

Linear variable displacements transducers (LVDTs) are mounted to the specimen
surface in order to punctual monitor its deformations.

4.2 Description of the case study

In this section the case study of a planar masonry wall subjected to hybrid test
is introduced. The facade system (Figure 4.3) is a two storey wall structure of
2.7 ⇥ 5.2 ⇥ 0.15 m size, with two openings located one at the ground floor and one
at the upper floor, respectively a door and a window.

The upper sub-structure of the facade was simulated numerically (NS), whereas
the lower portion was tested in the laboratory (PS). To this aim an HS framework
was built at ETH Zürich to perform PSD-HS of the system. As shown in Fig-
ure 4.3, in order to to guarantee a rigid interface between NS and PS, a steel
beam assumed infinitely stiff, connects the tested specimen to the servo-controlled
actuators which impose distributed boundary conditions. Indeed, the PS is sub-
jected to vertical loading due to self-weight and the loads arising from upper storey
masses. The static vertical stress applied on the substructure amounts to 10% of
the masonry’s final compressive strength.

4.2.1 Materials

The physical subdomain was made of calibrated Swiss K-Modul 5/19 clay bricks
(type B according to SIA 266:2015) and standard cement mortar. The brick’s
nominal dimensions are 0.29 ⇥ 0.15 ⇥ 0.19 m with a minimum norm characteristic
compressive strength of fbk,min = 28 MPa. Table 4.1 and Table 4.2 [28] list
further specifications and the results of the compression test performed according
to SIA 266:2015 and SN EN 771-1:2011, respectively.

58

4.2. Description of the case study Chapter 4

Figure 4.3: Masonry wall

Table 4.1: Material specifications of clay brick Swiss K-Modul 15/19 [28]

Clay brick Swiss K-Modul 15/19

Length 290 mm

Width 150 mm

Height 290 mm

Void ratio 25 − 55 %
Rate of water absorption < 3.5 kg

m2min
Gross bulk density NPD

Compressive strength fb 28 MPa
Bond strength 0.16 MPa
Water vapor permeability µ 4

The cement mortar characteristic bending and compressive strengths are deter-
mined according to SN EN 196-1:2016 through bending and compressive testing
performed on six cuboid mortar specimens of 40 ⇥ 40 ⇥ 160 mm size and a storage
time age of 62 days. Specifically, three samples (K1, K2 & K3) were stored in a
climate room (constant air humidity at 95%), the others (S1, S2 & S3) were kept
at the making site (laboratory) where the masonry walls for the Hybrid Simulation
were built and stored. The setups used for the tests are shown in Figure 4.4 [28],
while the test results of the samples stored in the climate room (K) and at the
making site (S) are shown in Table 4.3 [28].

According to SN EN 1052-1:1998, compression test on three masonry specimens
built and stored at the making site of 0.59 ⇥ 0.15 m

2 nominal cross-section and 1
m height and with a bed joint thickness of approximately 10 mm, were performed
in order to determine the compressive strength and the modulus of elasticity of the

59

Chapter 4 4.2. Description of the case study

Table 4.2: Compression test results of clay bricks [28]

Sample Fmax [kN] fbk [MPa]

1 985.0 22.7
2 1195.9 27.1
3 1194.0 27.1
4 760.9 17.4
5 871.1 19.9
6 1099.9 25.1
7 1123.9 25.7
8 1001.7 23.2
9 1185.8 27.1
10 1108.4 25.5

Average 1052.7 24.1
Std. deviation 3.3

Table 4.3: Test results of mortar samples [28]

Sample fmq [MPa] fm [MPa]

K1 4.71 15.36
14.17

K2 4.77 15.48
17.12

K3 4.42 15.25
14.27

Average 4.63 14.90
Std. dev. 0.19 0.63

Sample fmq [MPa] fm [MPa]

S1 1.09 2.73
2.65

S2 0.96 2.86
2.95

S3 1.12 2.65
2.43

Average 1.06 2.77
Std. dev. 0.09 0.13

masonry used for the Hybrid Simulation tests. The test was conducted in force
control mode until failure, with a ramp rate of 27 kN/min [28]. The displacements
on the specimen surface were measured to determine the strains arising during the
compression test by one horizontal and two vertical linear variable displacement
transducers (LVDTs) mounted on each side of the specimen. The test setup is rep-
resented in Figure 4.5, whereas the results of the compression test are summarized
in Table 4.4. Finally, Table 4.5 presents a summary of all material properties.

4.2.2 Hybrid simulations

The PSD-HS architecture setup used in the case study is shown in Figure 4.6.
In detail, a steel beam interfaces three servo-hydraulic actuators of 1 MN capacity
each to the wall specimen, while 11 LVDTs are used to measure three types of
displacements: sliding, uplift and vertical deformations. Furthermore, during the
tests, a DIC system (NIKON D810 digital camera - 50 mm lens) acquires the
in-plane displacements of the wall surface prior painted with a random speckle

60

4.2. Description of the case study Chapter 4

Figure 4.4: Bending and compressive strength testing [28]

Test setup:
1) steel beam
2) masonry specimen
3) wood fibre layer

LVDT positions:
a) SL or NL
b) SM or NM
c) SR or NR

1)

2)

3)

1)

3)

a) c)

b)

x

y

Fmax fxk Ex

kN MPa GPa
460.47 5.20 4.51
421.89 4.77 4.01
482.69 5.45 4.10
455.02 5.14 4.21

Figure 4.5: Test setup for compression test of masonry specimens [28]

61

Chapter 4 4.2. Description of the case study

Table 4.4: Compression test results of masonry specimens [28]

Specimens Fmax [kN] fxk [MPa] Exk [GPa]

R1 460.47 5.20 4.51
R2 421.89 4.77 4.01
R3 482.69 5.45 4.10

Average 455.02 5.14 4.21

Table 4.5: Material properties [28]

Material fmq [MPa] fbk [MPa] Exk [MPa]

Brick − 24.1 −
Mortar (K) 4.63 14.9 −
Mortar (S) 1.06 2.77 −
Masonry − 5.14 4.21

pattern, shooting planar black & white pictures every 2 sec (Figure 4.7).
In order to perform PSD-HS of the system, the actuator setup was interfaced

to an INDEL GIN-SAM4 real-time computer via Ether CAT. Before starting the
PSD-HS experiment, a vertical load ramp was imposed to the specimen up to
208 kN corresponding to the nominal vertical load. Then, the INDEL GIN-SAM4
real-time computer executes the time integration algorithm, sends actuator dis-
placement commands to the INOVA controller and reads corresponding feedback
forces measured with loads cells at each time step of the simulation [53]. Detailed
description of the time integration algorithm used in this testing campaign can be
found in [13] and [57].

In Table 4.6 the experimental test campaign of the six Hybrid Simulations is
summarized. A record of the Montenegro earthquake (1979) was selected from the
PEER Ground Motion Database (PEER, 2018), as seismic excitation and scaled to
different values of PGA (Figure 4.8). The so determined accelerograms were fed
into the equations of motion as seismic excitation, thus defining the displacement
path of the horizontal actuator (horizontal loading under displacement control
conditions).

The first two experiments, Test #1a and #1b, were conducted considering a
small value of PGA to guarantee a linear response of the PS. The difference between
these two tests was in the testing time scale. They were carried out in order to
chose which was the best suited prototype structure to prevent dynamic instability
due to experimental errors. So that, all following experiments were conducted on
SM1 structures (4-DoFs NS and a λ = 200) [53]. During Test #2 a linear response
was observed, while slightly nonlinear responses characterized Tests #3 and #4
although damage accumulation was very small. Detailed description of the tests
can be found in [53]. The focus of this thesis work relies on Test #5 specifically,
which was stopped earlier (after approximately 2.5 s of simulation time, i.e. 500 s

62

4.2. Description of the case study Chapter 4

Figure 4.6: Architecture of the PSD-HS setup [28]

mm

Figure 4.7: Test setup for DIC analysis [28]

63

Chapter 4 4.2. Description of the case study

Hybrid simulation techniques in the structural analysis and testing of architectural heritage

134

masonry facade was subjected to a nominal vertical load of 208 kN, that
corresponds to 10% of the compressive strength of masonry uniformly distributed
over a cross section of 2.7x0.15 m. A record of the Montenegro earthquake (1979)
was selected from the PEER Ground Motion Database (PEER), (P.PEERC, 2013),
as seismic excitation and scaled to different values of Peak Ground Acceleration
(PGA).

Figure 74 depicts both the selected seismic record and related acceleration
response spectrum. In order to support the design of the experimental campaign
and the derivation of both substructure matrices, two FE models of the masonry
facade, namely Reference Model (RM) -1 and -2, were implemented in Matlab
based on 4-node plate elements, (Matlab, 2010).

(a) (b)

Figure 74: The 1979 Montenegro earthquake: (a) ground motion record scaled
to 6.36 m/s2 PGA; and (b) corresponding acceleration response spectrum for 3.00 %
viscous damping.

In detail, RM1 represents the idealized masonry facade while RM2 describes

its hybrid model, which is characterized by a rigid interface between NS and PS.
Both FE models are characterized by 468 DoFs but additional 2-nodes rigid beam
elements enforce rigid behaviour at both substructure interfaces in RM2, as
depicted in Figure 75.

Table 19 compares modal frequencies of RM1 and RM2 while Table 20
reports MAC values calculated for each pairs of corresponding deformational
shapes, (Allemang & Brown, 1982). As can be appreciated, modal characteristics
are almost unaltered up to mode 4. In order to testify that this was sufficient for
preserving the seismic response of RM1, Figure 76 compares displacement
response histories of RM1 and RM2 measured at Node 111 along X and Y
directions. Time history analyses were performed with the Newmark algorithm,
(Newmark, 1959), considering 3.00 % equivalent viscous damping and 1 msec
time step. Accordingly, mass and stiffness matrices of both PS and NS were
derived from RM2 as explained in the following section.

Table 19: Comparison of modal frequencies.

Mode fRM1 [Hz] fRM2 [Hz]

Figure 4.8: 1979 Montenegro earthquake

Table 4.6: Test program [53]

ID PGA [m/s
2] λ Prototype structure freq. b.w. [Hz]

#1a 0.45 500 SM2 (7-DoFs NS) 0 ÷ 0.55
#1b 0.45 200 SM2 (7-DoFs NS) 0 ÷ 1.38
#2 1.82 200 SM1 (4-DoFs NS) 0 ÷ 0.56
#3 3.18 200 SM1 (4-DoFs NS) 0 ÷ 0.56
#4 3.18 200 SM1 (4-DoFs NS) 0 ÷ 0.56
#5 6.36 200 SM1 (4-DoFs NS) 0 ÷ 0.56

of wall-clock time) than the duration of the ground motion owing to the collapse
of the wall specimen.

Figure 4.9 depicts the hysteresis loops of the horizontal and vertical restoring
forces measured by the actuators. Five milestones (T1, T2, T3, T4, T5) are pointed
out on the figure referring to specific evolution of the specimen collapse. While
in Figure 4.10 are shown the displacements recorded during the collapse test.
It is worth to underlying as well that all plots refer to simulation time, which
corresponds to wall-clock time divided by testing time scale.

For each milestone, Figure 4.11 depicts the Von Mises strain field measured
via DIC. At T1 (about 1.2 s), von Mises strain concentrates at the lower mortar
joint of the left wall bay and along a diagonal path following the mortar joints of
the upper left part of the wall starting from the upper left corner of the opening.
Such von Mises strain concentrations indicate joint opening, which allows relative
rocking between wall subparts. Between T1 and T2 (about 1.45 s), the wall expe-
rience horizontal loading reversal, the lower left mortar joint closes and von Mises
strain concentrations arise at both the lower and the upper levels of the thinner
right wall bay. At T3 (about 1.75 s), remarkable von Mises strain concentrations
are visible on both left and right lower mortar joints as well as along a diagonal
path that connects the upper left corner of the opening to the upper mortar joint.
At this point, joint opening allows relative rocking of three facade blocks namely,
left and right bays and the spandrel. Suddenly, at T4 (about 2.2 s), the thinner
wall bay spits at the level of the upper mortar joint and detaches from the spandrel,

64

4.2. Description of the case study Chapter 4

(a) Vertical south actuators (b) Vertical north actuators

(c) Horizontal south actuators

Figure 4.9: Restoring forces hysteresis loops measured during Test #5

which starts uplifting. The right edge of the spandrel rotates in clock-wise between
T4 and T5 (about 2.4s) and impacts the thinner wall bay, which crashes under
compressive load as testified by the large diagonal crack visible at the end of the
experiment. The test stops immediately afterwards [53].

Finally, Figure 4.12 shows the specimen after Test #5 and a close-up view on
critical regions where damage concentrated.

65

Chapter 4 4.2. Description of the case study

(a) Horizontal displacement (b) Vertical displacement

(c) LVDT displacements (SS-SN) (d) LVDT displacements (UN1-UN2)

(e) LVDT displacements (US1-US2) (f) LVDT displacements (VN-VS-VM)

Figure 4.10: Displacement responses during Test #5

66

4.2. Description of the case study Chapter 4

(a) Milestone T1 (b) Milestone T2

(c) Milestone T3 (d) Milestone T4

(e) Milestone T5

Figure 4.11: Von Mises strain field measured via DIC during Test #5

67

Chapter 4 4.2. Description of the case study

Gaetano Miraglia

149

(b) (c)

(d) (e)

Figure 87: Von Mises strain field in [mm/mm] measured via DIC during Test #5
at milestones: (a) T1; (b) T2; (c) T3; (d) T4; and (e) T5.

Figure 88: Overview of the wall specimen after Test #5: front view (upper left),

right wall bay (upper right), left wall bay (bottom left) and bottom left corner
(bottom right).

Figure 4.12: Overview of the wall specimen after Test #5

68

Chapter 5

NARX model for the masonry

facade case study

Despite the high generality of surrogate modelling and Bayesian inversion, when
such techniques are applied to data coming from experimental tests, additional
effort in the posedness of the problem is needed. For this reason this chapter fo-
cuses on the definition of best regressors suitable for the case study introduced
in Chapter 4. In Section 5.1 an holonomic model for mortar joints is briefly
introduced theoretically. Then the FE model of the masonry structure and its
parameterization is presented pointing out how model parameters variability influ-
ence the model response (Section 5.2). Finally, in Section 5.3 a set of NARX
basis terms are proposed as best regressor suitable for the underlying problem.

5.1 Cohesive Zone Models for mortar joints in masonry

Cohesive Zone (CZ) models are useful tools to describe mixed-mode separation and
mixed-mode over-closure phenomena in structural systems. A typical separation/
over-closure that need to be described when working with civil structures is the
cracks opening and closure. Despite that every type of building can experience
fracture mechanisms in its components, masonry structures are very incline to this
type of nonlinear phenomenon. In recent years several researchers [52], proposed
the use of holonomic relationships (i.e. laws that express the stress field as function
of jump of displacements) for mortar joints reduced to interfaces. In their paper,
Milani and Bertolesi [52], make use of an improved version of the potential-based
model (i.e. that admits potential function) proposed by Xu-Needleman [73], to
describe the behaviour of mortar joints under mixed-mode (i.e. related to mode
1 and mode 2 of fracture) loading conditions. In this work the authors used a
linear elastic law in over-closure. Despite the powerful of potential-based models,
such as the Xu-Needleman model, it is demonstrated that derivation of traction-
separation relationships from a potential function can result in non-physical repul-
sive normal tractions and instantaneous negative incremental energy dissipation
under displacement controlled monotonic mixed-mode separation when the work
of tangential separation exceeds the work of normal separation [51]. For this rea-
son, three non-potential CZ models, named NP1, NP2 and SMC, have been derived

69

Chapter 5 5.1. Cohesive Zone Models for mortar joints in masonry

and implemented in a Finite Elements (FE) framework in the two papers, [51] and
[43]. The NP1 model has been proposed to fully eliminate the problem of repulsive
normal tractions. However, using this model a reduction in the total work is ob-
tained for small values of separations when an interface first undergoes pure normal
separation and then a complete tangential separation. This unphysical behaviour
is due to a rapid decrease in tangential work as the separation increases from 0.
Another minor drawback of the NP1 model is that it uses different forms to de-
scribe mode I and mode II separation (mode I has a linear term in the exponent,
while mode II has a quadratic term in the exponent), thus no model parameters can
be chosen so that identical mode I and mode II traction-separation relationships
are obtained, making the model inappropriate to describe the wide range of be-
haviours that may be encountered when working with real materials. To overcome
this limitation the NP2 was proposed. NP2 introduces two additional coupling
parameters, ↵ and β, that weight the mixed-mode coupling terms in the traction-
separation/over-closure laws. Despite this modification, the NP2 model provide
unphysical behaviours for high values of separations. In fact, in this case the total
work needed to separate two surfaces is not monotonic and after a monotonic in-
crease it start to decrease to reach a horizontal asymptote as the separation tend
to infinity. Despite the problems in separation, the NP2 model provides a phys-
ical realistic mixed-mode over-closure representation (such as NP1), maintaining
greater generality than NP1. The third CZ model, named SMC overcomes the
problems of both NP1 and NP2 in separation, providing a physical representations
of the traction-separation phenomenon. However, the model cannot be used in
over-closure as it provides identical traction-separation behaviour in over-closure
and in separation, so that the closure phenomenon is not penalized, and unphysical
interpenetrations can occur. In the paper, [51], it is suggested that in cases where
both separation and over-closure may be encountered the SMC model could be
used in separation with the NP2 formulation being used in over-closure. For the
authors this scheme is computationally attractive as the NP2 and SMC CZ models
have an identical form of the mode II traction-separation relationship. In addition
NP2, if used just in over-closure, can cover a wide range of behaviours than NP1
maintaining at the same time a physical meaning. For the present study, the NP2
and SMC laws have been implemented in a home-made FE software developed in
Matlab. The laws (written in terms of force and displacement instead of stress
and displacement), are used to define a bar element with two Degree of Freedoms
(DoFs) for each node, i.e. the axial and tangential displacement of the bar. The
NP2 model is used in over-closure, while the SMC model is used in separation. It
is worth mentioning that the two models provide the same initial (i.e. when no
separation, over-closure or sliding occur) tangent stiffness. The tangent stiffness
has been derived analytically and implemented with the traction-separation/over-
closure laws in the FE software. The implemented laws are reported hereinafter:

- NP2 if ∆n < 0:

Tn(∆n, ∆t) = σmax exp(1)

✓
∆n

δn

◆
exp

✓
− ∆n

δn

◆
exp

↵

s
∆2

t

δ
2
t

!
(5.1)

70

5.2. FE model parameterization Chapter 5

Tn(∆n, ∆t) = ⌧max exp(1)

✓
∆t

δt

◆
exp

−

s
∆2

t

δ
2
t

!
exp

✓
− β

∆n

δn

◆
(5.2)

- SMC if ∆n > 0:

Tn(∆n, ∆t) = σmax exp(1)

✓
∆n

δn

◆
exp

−

s
∆2

n

δ2n
+

∆2
t

δ
2
t

!
(5.3)

Tn(∆n, ∆t) = ⌧max exp(1)

✓
∆t

δt

◆
exp

−

s
∆2

n

δ2n
+

∆2
t

δ
2
t

!
(5.4)

where:

• σmax is the tensile stress strength without sliding, unit of [force/area];

• ⌧max is the shear stress strength without separation, unit of [force/area];

• δn = φn/(σmax exp(1)) is the characteristic length for separation, unit of
[length];

• δt = φt/(⌧max (0.5 exp(1))0.5) is the characteristic length for separation, unit
of [length];

• φn is the work of separation, unit of [force/length];

• φt is the work of sliding, unit of [force/length];

• ↵ = β =
p

2 − 1 are dimensionless coupling parameters imposed at this
specific value to ensure identical normal and tangential components of the
traction vector for 45 mixed-mode separation.

The laws have been multiplied for the area, A, of the bar element to obtain
a force-displacement domain: N = Tn A, T = Tt A. The FE implementation has
been validated by comparing the results of a benchmark FE analysis with the ref-
erence values obtained from the paper [51]. For the validation, a unit area of the
bar has been used. The reference values have been calculated with the WebPlot-
Digitizer application (https://automeris.io/WebPlotDigitizer/). The results of the
validation are reported Figure 5.1.

5.2 FE model parameterization

The PS of the case study described in Chapter 4 has been modeled in a home-
made FE software developed in Matlab. Its discretization (Figure 5.2) has been
accurately selected to best-reproduce the crack patterns experimented in the lab-
oratory tests. Specifically, it is constitutes by 15 linear plane-brick elements, 34
nonlinear beam-mortar elements following the laws seen in Section 5.1, and 7
beam-steel elements to model the steel beam used in the laboratory tests, for a
total of DOF of 120.

In order to calibrate the model, a preliminary parameterization was carried
out. Namely, the horizontal and vertical displacement response of two nodes of

71

https://automeris.io/WebPlotDigitizer/

Chapter 5 5.2. FE model parameterization

Figure 5.1: Validation implementation

the structure (N44 and N55) have been evaluated. These two nodes corresponds
to the monitored points in the experimental setup, whose responses were recorded
in the laboratory. The model parameterization turned out to be necessary for two
reasons mainly: first, in order to get, as much as possible, prior informations on
how the response of the system changes in function of the parameters; secondly, to
get insight on numerical instability arising in the FE time-history response output.
The latter is experimented on the divergence of the nodes displacements at different
instant of time when changing the input parameters (the experimental divergence
occurs at t = 2.41 sec, see Figure 4.10). To handle these, a data-set of size
1 ⇥ 104 has been constructed using LHS. The McGarry model parameters, which
constitute the vector of uncertain parameters xM = {φn,σmax,φt, ⌧max}, are con-
sidered independent random variables with associated uniform distributions given
in Table 5.1. In detail, the support on σmax has been chosen on the evidence of
experimental tests results (Section 4.2.1), while the support on ⌧max was chosen
based on reasonable values of engineering interest found in literature. Finally, big-
ger supports have been set to the model parameters φn and φt respectively, due to
the lack of a consistent knowledge on their actual values.

Table 5.1: McGarry model parameter distributions

Parameter Distribution Support

φn (N/m) Uniform [1, 10] ⇥ 103

σmax (N/m
2) Uniform [0.87, 1.23] ⇥ 106

φt (N/m) Uniform [0.5, 8] ⇥ 103

⌧max (N/m
2) Uniform [0.3, 3.7] ⇥ 106

72

5.2. FE model parameterization Chapter 5

1 2

34

5

8

6

7

9 10

1112

13 14

1516

17 18

20 19

4241

44 43 52 49 56 55

5453

40 39

3837

32 31

36 35

33 34

28 27

25 26 29 30

484746

24 23

21 22

45

Figure 5.2: FE discretization

Each realization of the data-set corresponds to a FE forward model call that
means running the nonlinear dynamical analysis through Newmark method with
a tolerance of " = 1 ⇥ 10−10 and iterations limit set to 20. The results are plotted
below in function of the parameters and the instant of time when instability occurs.
Figure 5.3 (e) clearly shows how the numerical instability occurs systematically
for low values of the resistance parameters, namely for σmax < 1 ⇥ 106 N/m2 and
⌧max < 1.5⇥106 N/m2. Noted that, a filter on these parameters was applied on the
data-set in order to get insight on how they affect the instability issue. The results
of this filtering are shown in Figure 5.4. Particularly, Figure 5.4 (e) shown how
the instability disappears when σmax > 1⇥ 106 N/m2 and ⌧max > 1.5⇥ 106 N/m2.
In addition, some conclusion on parameters φn and φt values can be achieved by
the examination of Figure 5.4 (a). Note that exceeding values of φn, specifically
φn < 3.2 ⇥ 103 and φn > 6.8 ⇥ 103, affect the stability of the model markedly. On
the contrary, the parameter φt appears affecting the stability noway.

The parameterization required 10⇥4 FE forward model call. Each single FE
call is time-computationally quite expensive and requires about 40 sec for run. The
computation of a such huge data-set, was possible parallelizing the forward model
calls on multi-clusters service furnished by HPC@Polito [59]. The total time-cost
necessary to build the aforementioned data-set was approximately of some days.
In the view of a future calibration of the model parameters within the exposed
Bayesian paradigm, it appears clear as conducting a proper Bayesian inference re-
sults not feasible using the FEM as the forward model. Indeed the total forward
model calls of a MCMC simulation are significantly huger. With this in mind the
aim of next final section is to find a proper basis for the NARX model for the case
study.

73

Chapter 5 5.2. FE model parameterization

Chapter 5 5.2. FE model parameterization

(a) (b)

(c) (d)

LHS and 1000 corresponding model simulations were conducted. These data con-
stitute the Experimental Design.

Then a NARX model structure with absolute terms was chosen based on their
effectiveness in capturing the hysteretic behaviour of nonlinear systems [65], and
whose basis terms are defined by:

gi(t) = x(t − k)l|v(t − 1)|m (5.5)

gi(t) = v(t − j)l|v(t − 1)|m (5.6)

with l = 0, 1, m = 0, 1, k = 0, ..., nx, j = 1, ..., ny, and nx = 4, ny = 4. So that the
initial full NARX model contains totally 19 terms.

Next, the candidate NARX models were computed. For this purpose, LARS
was applied to the initial full NARX model for each experiment of the ED, to select
the most relevant terms. This lead to have 40 NARX candidates in total. OLS (eq.
(2.62)) was used then to determine the NARX coefficients #i for all the simulations.
Subsequent to the evaluation of the accuracy of the NARX candidates (eq. (2.62)),

76

5.2. FE model parameterization Chapter 5

(e) (f)

Figure 5.3: Model parameterization

(a) (b)

the most appropriate NARX model with a mean relative error of "̄ = 7.74 ⇥ 10−3

over 1000 experiment, was selected among the candidates. This contains 10 model
terms, namely: x(t), x(t−1), x(t−3), x(t−4), x(t)|v(t−1)|, x(t−3)|v(t−1)|, v(t−
1), v(t − 4), v(t − 1)|v(t − 1)|, v(t − 4)|v(t − 1)|.

Figure 5.5 depicts the cross-validation plot of the velocities (resp. maximal
velocity) predicted by the NARX model against the reference values obtained with
the numerical solver. Note that the the accuracy is high for the prediction peak
values.

In Figure 5.6, as an example, is plotted the NARX prediction for the k = 2
experiment of the ED.

5.2.2 PC-NARX and Kriging-NARX surrogate models

Once detected the NARX model, its coefficients computed on the ED have been
used to train both PCEs and Kriging metamodels. Specifically, the #i(x) coeffi-
cients have been represented by sparse adaptive PCEs with degree up to p = 21,

77

Figure 5.3: Model parameterization

74

5.2. FE model parameterization Chapter 5

5.2. FE model parameterization Chapter 5

(e) (f)

Figure 5.3: Model parameterization

(a) (b)

the most appropriate NARX model with a mean relative error of "̄ = 7.74 ⇥ 10−3

over 1000 experiment, was selected among the candidates. This contains 10 model
terms, namely: x(t), x(t−1), x(t−3), x(t−4), x(t)|v(t−1)|, x(t−3)|v(t−1)|, v(t−
1), v(t − 4), v(t − 1)|v(t − 1)|, v(t − 4)|v(t − 1)|.

Figure 5.5 depicts the cross-validation plot of the velocities (resp. maximal
velocity) predicted by the NARX model against the reference values obtained with
the numerical solver. Note that the the accuracy is high for the prediction peak
values.

In Figure 5.6, as an example, is plotted the NARX prediction for the k = 2
experiment of the ED.

5.2.2 PC-NARX and Kriging-NARX surrogate models

Once detected the NARX model, its coefficients computed on the ED have been
used to train both PCEs and Kriging metamodels. Specifically, the #i(x) coeffi-
cients have been represented by sparse adaptive PCEs with degree up to p = 21,

77

Chapter 5 5.2. FE model parameterization

(c) (d)

(e) (f)

Figure 5.4: Model parameterization on filtered data-set

maximum interaction order r = 2 and truncation parameter q = 1. Jointly,
the NARX coefficients have been represented by GP with hyperbolic truncation
scheme, constant trend, ellipsoidal Matern-5/2 correlation, using Hybrid Genetic
optimization Algorithm (HGA) to compute the hyperparameters. The PCEs of
the NARX coefficient have LOO errors smaller than "LOO = 9.766⇥10−3, whereas
a value of "LOO = 4.391 ⇥ 10−3 is reached with the Kriging.

Figure 5.7 depicts the estimate of the NARX coefficient by the PC expansions
versus the #i value of the ED, in order to evaluate the accuracy of the surrogate.
As a check, the Kriging’s estimate is also superposed. It should be not surprising
that the cross-validation of the latter is exact, due to the fact that GP assumes
as estimate on ED the same ED value. In contrast, it can be clearly seen as the
PCEs spread some degree of uncertainty. Hence, Kriging works fine for numerical
surrogates that are not affected by accidental errors, whereas PCEs are more adapt
to mimic actual models which are affected by experimental errors.

Successively, the two surrogates PC-NARX and Kriging-NARX have been used
for predicting the velocity response over a validation set of size 104, with a mean

78

Figure 5.4: Model parameterization on filtered data-set

75

Chapter 5 5.3. NARX model

5.3 NARX model

As seen in Chapter 2, NARX models allow to build the the expansion of the
model M using the observed data of the input and output signals (2.50). The goal
is now to find a NARX model for each monitored node (N44 and N55) of the case
study structure. This time, the nonlinear function to be identified F(·), is chosen
as function of:

z(t) =
7
x(t), ..., x(t − nx), y

(j)(t − 1), ..., y(j)(t − ny)
 | (5.5)

where the index j = {k, l, m} stands for j-th node response. So that, the existing
correlation in the response between nodes can be taken into account. In detail, k

refers to the response of the node N44 in x direction, m refers to the response of
the node N44 in y direction, while m refers to the response of the node N55 in y

direction.
To keep things simple, also in this case polynomial basis function have been

used to construct the mapping F(·):

y
(j)(t) =

n
(j)
gX

i=1

#
(j)
i g

(j)
i

%
z(t)

&
+ "

(j)(t) (5.6)

To build each NARX model for representing the displacement time-histories u(t)
and v(t) of the masonry system, first 1500 samples of the input parameters were
generated by LHS and 1500 corresponding FE model simulations were conducted.
These data-set was then reduced rejecting all realization that generated a tinst 6
2.36 sec. The so built data-set of size 200 constitutes the Experimental Design
used to select the NARX models.

For this purpose NARX model structures based on Prony’s series were adopted.
These series were chosen for their capacity to represent damped complex exponen-
tials or sinusoids. In detail, the basis terms are defined by:

gi(t) = x(t − k)l (5.7)

gi(t) = e
x(t−k) (5.8)

gi(t) = y
(j)(t − j); (5.9)

gi(t) = x(t − k) e
y(j)(t−1) |y(j)(t − j)|; (5.10)

gi(t) = y
(j)(t − j) e

t x(t−k)
sin(2⇡ y

(j)(t − j) t + ⌧); (5.11)

gi(t) = x(t − k) e
2σmax t

cos(2⇡ t + ⌧); (5.12)

with l = 0, 1, 2, k = 0, ..., nx, j = 1, ..., ny, and nx = 10, ny = 5. So that the initial
full NARX model contains totally 59 terms.

Next, the candidate NARX models were computed. For this purpose, LARS
was applied to the initial full NARX model for each experiment of the ED, to select
the most relevant terms for each node. This lead to have 313 NARX candidates in

76

5.3. NARX model Chapter 5

total. OLS (eq. (2.62)) was used then to determine the NARX coefficients #(j)
i for

all the simulations. Subsequent to the evaluation of the accuracy of each NARX
candidates (eq. (2.62)), the most appropriates NARX models with mean relative
error of "̄(k) = 1.28 ⇥ 10−1, "̄(l) = 1.79 ⇥ 10−1, "̄(m) = 7.87 ⇥ 10−1 over 200 experi-
ment, were selected among the candidates.

Figure 5.5, 5.6, 5.7 depicts the cross-validation plots of the displacements
predicted by the NARX models against the values obtained with the FEM.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5.5: NARX(k) free-run-reconstruction of the entire ED

In Figure 5.8, 5.9, 5.10, as an example, are plotted the NARX predictions
for three experiments of the ED (k = 129, k = 132, k = 211).

77

Chapter 5 5.3. NARX model

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 5.6: NARX(l) free-run-reconstruction of the entire ED

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 5.7: NARX(m) free-run-reconstruction of the entire ED

78

5.3. NARX model Chapter 5

0 0.5 1 1.5 2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 5.8: NARX(
k) free-run-reconstruction of N44 in x-direction

0 0.5 1 1.5 2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 5.9: NARX(
l) free-run-reconstruction of N44 in y-direction

0 0.5 1 1.5 2
-0.05

0

0.05

Figure 5.10: NARX(
m) free-run-reconstruction of N55 in y-direction

79

Chapter 5 5.3. NARX model

80

Conclusions and outlooks

The present thesis aimed at developing a Bayesian based approach to solve struc-
tural systems with uncertain governing parameters subject to stochastic seismic ex-
citations. The proposed method allows to rigorously deal with model uncertainties
and experimental errors intrinsic in any system identification method considering
the problem from a statistical perspective.

The capability of the proposed Bayesian model inversion in uncertainty frame-
work lies in providing probabilistic information of the estimated parameters and
on their error, which can be useful at the moment of making decisions with respect
to the selection of parameters and/or the assessment of mathematical models that
simulate the nonlinear behaviour experienced by the system.

However, it was shown as the effectiveness of a Bayesian approach applied
to earthquake engineering runs into time and computationally expansive issues.
To overcame these difficulties surrogate modeling technique have been introduced
to deal with structural systems with uncertain governing parameters subject to
stochastic seismic excitations. This is a challenging task because one has to deal
at once with two tough problems: nonlinear dynamics and uncertainty quantifi-
cation. In the approach followed, the two aspects are treated separately. The
increasingly strong nonlinearity in dynamics is taken into account by NARX mod-
els, namely by techniques able representing future responses as functions of its
past values. Whereas the consideration of uncertainties is taken into account by
surrogate models, specifically through high-degree polynomial chaos expansions
(PCEs) and Gaussian process. The effectiveness of the proposed methods were
demonstrated with numerical benchmark on nonlinear system.

Despite the high generality of surrogate modelling and Bayesian inversion, when
such techniques are applied to data coming from experimental tests, additional ef-
fort in the posedness of the problem is needed. Indeed, the uncertainties associated
with civil structures make the prediction of the actual mechanical characteristics
a difficult task. For this reason, the aim of this thesis relies in the definition of
the best NARX regressor suitable to the case study of a masonry wall subjected
to dynamical.

To conclude, dealing with stochastically dynamical system is not an easy task.
To get reliable estimates and insight on structural systems behaviour require ad-
ditional effort.

81

.

Appendix

Matlab® scripts

BoucWenClass.m
1 classdef BoucWenClass
2 % Bouc−Wen−Baber−Noori SDF system class
3 %
4 % .Earthquake = sub−class containing earthquake data
5 % .Parameters = sub−class containing system's parameters data
6 % .u = displacement response of the system
7 % .v = velocity response of the system
8 % .z = hysteretic displacement response of the system
9 % .eps = dissipated hysteretic energy of the system

10 % .fr = hysteretic restoring force of the system
11 %
12 % See also EarthquakeClass, ParametersClass, BWBN_accelerogram,
13 % BWBN_linearValidation, BWBN_solve, BWBN_saveExperimentalData,
14 % BWBN_print, BWBN_plot.
15
16 properties
17 Earthquake
18 Parameters
19 u
20 v
21 z
22 eps
23 fr
24 end
25
26 methods
27 %% DEFINE SUB−CLASSESs
28 function obj = BoucWenClass
29 obj.Earthquake = EarthquakeClass;
30 obj.Parameters = ParametersClass;
31 end
32 %% PLOT ACCELEROGRAM
33 function BWBN_accelerogram(obj,~)
34 % BWBN_accelerogram plot the input accelerogram.
35 %
36 % If .Earthquake.filter == 'YES' plots the filtered accelerogram.
37 %
38 % BWBN_accelerogram(obj) plot the accelerogram.
39 % BWBN_accelerogram(obj,'save') plot and save the accelerogram.
40 %
41 % See also BoucWenClass
42
43 % Plot accelerogram
44 % Figure properties
45 fig = figure;
46 fig.Position = [0, 0, 800, 450];
47 fig.PaperUnits = 'points';
48 fig.PaperSize = [800, 450];
49 fig.PaperPositionMode = 'manual';
50 fig.PaperPosition = [0, 0, 800, 450];
51 % Plot data
52 p1 = plot(obj.Earthquake.time,obj.Earthquake.ag);
53 % Plot properties
54 p1.Color = '#0072BD';
55 p1.LineWidth = 0.5;
56 p1.LineStyle = '−';
57 % Axes properties
58 ax = gca;
59 ax.FontSize = 15;
60 % X axis Limits
61 ax.XLim = [obj.Earthquake.time(1), obj.Earthquake.time(end)];
62 % Y axis limits
63 ax.YLim =...

83

Matlab® scripts

64 [− (max(abs(obj.Earthquake.ag)) + 0.15 * ...
65 max(abs(obj.Earthquake.ag))),...
66 (max(abs(obj.Earthquake.ag)) + 0.15 * ...
67 max(abs(obj.Earthquake.ag)))];
68 % Grid and Minorgrid
69 ax.XGrid = 'on';
70 ax.YGrid = 'on';
71 ax.XMinorGrid = 'on';
72 ax.YMinorGrid = 'on';
73 % X label
74 ax.XLabel.String = 't $[s]$';
75 ax.XLabel.Interpreter = 'latex';
76 ax.XLabel.FontSize = 26;
77 % Y label
78 ax.YLabel.String = 'a_g $[m/s^2]$';
79 ax.YLabel.Interpreter = 'latex';
80 ax.YLabel.FontSize = 26;
81 % Title
82 title(sprintf('%s ground motion record',obj.Earthquake.name))
83 ax.Title.Interpreter = 'latex';
84 ax.Title.FontSize = 26;
85 % Legend
86 if strcmp(obj.Earthquake.filter,'YES') == 1
87 legend('$a_g(t)$')
88 else
89 legend('$a_g(t)$')
90 end
91 ax.Legend.Interpreter = 'latex';
92 ax.Legend.FontSize = 18;
93 % Save graph
94 if nargin > 1
95 FigureName = sprintf('%s ground motion record', ...
96 obj.Earthquake.name);
97 for i = 1 : length(FigureName)
98 if FigureName(i) ==' '
99 FigureName(i) ='_';
100 end
101 end
102 saveas(fig, fullfile('..', 'Matlab', 'Figures','pdf', ...
103 FigureName),'pdf');
104 saveas(fig, fullfile('..', 'Matlab', 'Figures','fig', ...
105 FigureName),'fig');
106 saveas(fig, fullfile('..', 'Matlab', 'Figures','tif', ...
107 FigureName),'tiffn');
108 saveas(fig, fullfile('..', 'Matlab', 'Figures','png', ...
109 FigureName),'png');
110 end
111 end
112 %% SYSTEM LINEAR VALIDATION IN ELASTIC FIELD
113 function BWBN_linearValidation (obj,~)
114 % BWBN_linearValidation validates the Bouc−Wen−Baber−Noori system in
115 % linear field.
116 %
117 % BWBN_linearValidation(obj) prints and plots the result.
118 % BWBN_linearValidation(obj,'save') prints, plots and saves the result.
119 %
120 % See also BoucWenClass
121
122 % Display status
123 fprintf('Bouc−Wen−Baber−Noori system validation: ');
124 % Solve Bouc−Wen−Baber−Noori ODEs system in linear field
125 [~,x] = ode45(@(t,x)solveODE(t,x,obj,'L'),obj.Earthquake.time,...
126 [0 , 0 , 0 , 0, 0]);
127 uLinear = x(:,1);

84

Matlab® scripts

128 zLinear = x(:,3);
129 frLinear = (obj.Parameters.alpha * obj.Parameters.w0^2 * uLinear +...
130 (1−obj.Parameters.alpha) * obj.Parameters.w0^2 * zLinear) *...
131 obj.Parameters.mass * 1e−5;
132 % Solve equivalent linear SDF system with convolution
133 ht = (1 / obj.Parameters.wd) * (exp(− obj.Parameters.zita *...
134
135 obj.Parameters.w0 * obj.Earthquake.time)) .*...
136 sin(obj.Parameters.wd * obj.Earthquake.time);
137 uConv = conv(ht, − obj.Earthquake.ag * 1000) * obj.Earthquake.ts;
138 tConv = 0 : obj.Earthquake.ts : (length(uConv) − 1) * ...
139 obj.Earthquake.ts;
140 toll = 2; % [mm]
141 valid = ones(length(uLinear), 1);
142 for i = 1 : length(uLinear)
143 if abs(uConv(i) − uLinear(i)) <= toll
144 valid(i) = 0;
145 end
146 end
147 % Display validation
148 if sum(valid) == 0
149 fprintf('YES\n');
150 else
151 fprintf('NO\n');
152 end
153 % Plot linear validation
154 % Figure properties
155 fig = figure;
156 fig.Position = [0, 0, 1400, 375];
157 fig.PaperUnits = 'points';
158 fig.PaperSize = [1400, 375];
159 fig.PaperPosition = [0, 0, 1400, 375];
160 fig.PaperPositionMode = 'manual';
161 % Plot convolution
162 ax1 = subplot(1,2,1);
163 p1 = plot(obj.Earthquake.time,uLinear);
164 hold on
165 p2 = plot(tConv,uConv);
166 % Plot properties
167 p1.Color = '#0072BD';
168 p1.LineWidth = 0.75;
169 p1.LineStyle = '−';
170 p2.Color = '#D95319';
171 p2.LineWidth = 0.75;
172 p2.LineStyle = '−−';
173 % Axes properties
174 ax1.FontSize = 18;
175 % X axis limits
176 ax1.XLim = [obj.Earthquake.time(1),obj.Earthquake.time(end)];
177 % Y axis limits
178 Ymax = max(max(abs(uConv)), max(abs(uLinear)));
179 ax1.YLim = [− Ymax − 0.15 * Ymax, Ymax + 0.15 * Ymax];
180 % Grid and Minorgrid
181 ax1.XGrid = 'on';
182 ax1.YGrid = 'on';
183 ax1.XMinorGrid = 'on';
184 ax1.YMinorGrid = 'on';
185 % X label
186 ax1.XLabel.String = 't $[s]$';
187 ax1.XLabel.Interpreter = 'latex';
188 ax1.XLabel.FontSize = 30;
189 % Y label
190 ax1.YLabel.String = '$u(t)$ $[mm]$';
191 ax1.YLabel.Interpreter = 'latex';

85

Matlab® scripts

192 ax1.YLabel.FontSize = 30;
193 % Title
194 title(sprintf('Model validation'));
195 ax1.Title.Interpreter = 'latex';
196 ax1.Title.FontSize = 30;
197 % Legend
198 legend('$u_{BWBN}(t)$','$u_{conv}(t)$');
199 ax1.Legend.Interpreter = 'latex';
200 ax1.Legend.FontSize = 20;
201 % Plot restoring force
202 ax2 = subplot(1,2,2);
203 XMax = max(abs(uLinear));
204 xleft = − (XMax + 0.15 * XMax);
205 xright = xleft * − 1;
206 ybottom = − (max(abs(frLinear)) + 0.15 * max(abs(frLinear)));
207 ytop = ybottom * − 1;
208 xaxis_center = [xleft, xright];
209 yaxis_center = [ybottom, ytop];
210 null_axis = [0, 0];
211 p1 = plot(xaxis_center, null_axis);
212 hold on
213 p2 = plot(null_axis, yaxis_center);
214 hold on
215 p3 = plot(uLinear, frLinear);
216 % Plot properties
217 p1.LineWidth = 0.5;
218 p1.LineStyle = '−';
219 p2.LineWidth = 0.5;
220 p2.LineStyle = '−';
221 p1.Color = 'k';
222 p2.Color = 'k';
223 p3.Color = '#0072BD';
224 p3.LineWidth = 0.5;
225 p3.LineStyle = '−';
226 % Axes properties
227 ax2.FontSize = 18;
228 % X axis limits
229 ax2.XLim = xaxis_center;
230 % Y axis limits
231 ax2.YLim = yaxis_center;
232 % Grid and Minorgrid
233 ax2.XGrid = 'on';
234 ax2.YGrid = 'on';
235 ax2.XMinorGrid = 'on';
236 ax2.YMinorGrid = 'on';
237 % X label
238 ax2.XLabel.String = '$u(t)$ $[mm]$';
239 ax2.XLabel.Interpreter = 'latex';
240 ax2.XLabel.FontSize = 30;
241 % Y label
242 ax2.YLabel.String = '$f_r(u,z)$ $[kN]$';
243 ax2.YLabel.Interpreter = 'latex';
244 ax2.YLabel.FontSize = 30;
245 % Title
246 title(sprintf('Restoring force'));
247 ax2.Title.Interpreter = 'latex';
248 ax2.Title.FontSize = 30;
249 % Legend
250 legend(p3,'$f_r(u,z)$');
251 ax2.Legend.Interpreter = 'latex';
252 ax2.Legend.Location = 'southeast';
253 ax2.Legend.FontSize = 20;
254 % Save graph
255 if nargin > 1

86

Matlab® scripts

256 FigureName = sprintf('Model validation');
257 for i=1:length(FigureName)
258 if FigureName(i)==' '
259 FigureName(i)='_';
260 end
261 end
262 saveas(fig, fullfile('..', 'Matlab', 'Figures','pdf', ...
263 FigureName),'pdf');
264 saveas(fig, fullfile('..', 'Matlab', 'Figures','fig', ...
265 FigureName),'fig');
266 saveas(fig, fullfile('..', 'Matlab', 'Figures','tif', ...
267 FigureName),'tiffn');
268 saveas(fig, fullfile('..', 'Matlab', 'Figures','png', ...
269 FigureName),'png');
270 end
271 end
272 %% SOLVE ODEs SYSTEM WITH ode45
273 function obj = BWBN_solve(obj,~)
274 % BWBN_solve solve the ODEs system of the Bouc−Wen−Baber−Noori
275 % system with Matlab solver ode45 for initial condition at rest.
276 %
277 % obj = BWBN_solve(obj) solve the ODEs system.
278 % obj = BWBN_solve(obj,'verbose') solve the ODEs system & display info.
279 %
280 % OUTPUT: .u = system displacement [mm]
281 % .v = system velocity [m/s]
282 % .z = system hysteretic displacement [mm]
283 % .fr = restoring force [kN]
284 % .el = elastic component [kN]
285 % .hys = hysteretic component [kN]
286 % .tot = total restoring force [kN]
287 % .eps = system energy [J/kg]
288 % .el = elastic energy [J/kg]
289 % .hys = hysteretic dissipated energy [J/kg]
290 % .tot = total energy [J/kg]
291 %
292 % See also BoucWenClass
293
294 % Display info 1 (verbose mode)
295 if nargin > 1
296 % ODEs status
297 fprintf('Solving Bouc−Wen−Baber−Noori SDF system...\n');
298 ticStart = tic;
299 end
300 % Solving ODEs and get results
301 [~,x] = ode45(@(t,x)solveODE(t,x,obj),obj.Earthquake.time,...
302 [0 , 0 , 0 , 0, 0]);
303 % Getting u from state−vector x
304 obj.u = x(:,1)';
305 % Getting v from state−vector x and change [mm/s] to [m/s]
306 obj.v = x(:,2)' * 1e−3;
307 % Getting z from state−vector x
308 obj.z = x(:,3)';
309 % Getting hysteretic normalized energy from state−vector x
310 obj.eps.hys = x(:,4)';
311 % Getting elastic normalized energy from state−vector x
312 obj.eps.el = x(:,5)';
313 % Computing total normalized energy
314 obj.eps.tot = obj.eps.el + obj.eps.hys;
315 % Computing hysteretic restoring force
316 obj.fr.hys = 1e−6 * (1 − obj.Parameters.alpha) * ...
317 obj.Parameters.w0^2 * obj.z * obj.Parameters.mass;
318 % Computing elastic restoring force
319 obj.fr.el = 1e−6 * obj.Parameters.alpha * ...

87

Matlab® scripts

320 obj.Parameters.w0^2 * obj.u * obj.Parameters.mass;
321 % Computing elastic restoring force
322 obj.fr.tot = obj.fr.el + obj.fr.hys;
323
324 % Display info 2 (verbose mode)
325 if nargin > 1
326 t = toc(ticStart);
327 fprintf('ode45 solving time: %.2f sec\n',t);
328 end
329 end
330 %% SAVE SIMULATED EXPERIMENTAL DATA
331 function BWBN_saveExperimentalData(obj)
332 % BWBN_saveExperimentalData saves Bouc−Wen−Baber−Noori system responces
333 % to simulate experimental data record.
334 %
335 % BWBN_saveExperimentalData(obj) save data record in '/Matlab/Output'.
336 %
337 % See also BoucWenClass
338
339 % Save simulated experimental displacements
340 fileID = fopen(fullfile('..', 'Matlab', 'Output', ...
341 'u_experimental.txt'), 'w');
342 fprintf(fileID,'%.10f\n', obj.u);
343 fclose(fileID);
344 % Save simulated experimental velocity
345 fileID = fopen(fullfile('..', 'Matlab', 'Output', ...
346 'v_experimental.txt'), 'w');
347 fprintf(fileID,'%.10f\n', obj.v);
348 fclose(fileID);
349 % Save simulated experimental total restoring force
350 fileID = fopen(fullfile('..', 'Matlab', 'Output', ...
351 'fr_tot_experimental.txt'), 'w');
352 fprintf(fileID,'%.10f\n', obj.fr.tot);
353 fclose(fileID);
354 % Display status
355 fprintf('Simulated experimental record data saved.\n');
356 end
357 %% PRINT BOUC−WEN−BABER−NOORI SYSTEM PROPERTIES
358 function BWBN_print(obj)
359 % BWBN_print print on command window earthquake and Bouc−Wen−Baber−Noori
360 % system properties.
361 %
362 % BWBN_print(obj) print info.
363 %
364 % See also BoucWenClass
365
366 % Earthquake info
367 fprintf('\nEARTHQUAKE INFO:\n')
368 fprintf([' Name: %s\n PGA: %.2f m/s^2\n ts: %.2f sec\n '...
369 'fs: %.0f Hz\n Duration: %.2f sec\n\n'], ...
370 obj.Earthquake.name, obj.Earthquake.PGA, ...
371 obj.Earthquake.ts, ...
372 obj.Earthquake.fs, obj.Earthquake.time(end));
373 % Properties
374 fprintf('BOUC−WEN−BABER−NOORI PROPERTIES:\n')
375 fprintf([' m: %.2f kg\n ki: %.2e kN/mm\n f: %.2f Hz\n '...
376 'T: %.2f sec\n \x3C9_n: %.2f rad/sec\n \x3C9_d: %.2f '...
377 'rad/sec\n \x3B6: %.0f %%\n c: %.2e kg/sec\n\n'],...
378 obj.Parameters.mass, obj.Parameters.ki,...
379 obj.Parameters.frequency, obj.Parameters.T, ...
380 obj.Parameters.w0, obj.Parameters.wd, ...
381 obj.Parameters.zita * 100, obj.Parameters.c)
382 % Parameters
383 fprintf('BOUC−WEN−BABER−NOORI PARAMETERS:\n')

88

Matlab® scripts

384 if isempty(obj.Parameters.hz) ~= 1
385 fprintf([' \x3B1: %.3f\n ki: %.2e kN/mm\n \x3B2: %.2e\n '...
386 '\x3B3: %.2e\n n: %.1f\n \x3B4_\x3B7: %.2f\n '...
387 '\x3B4_A: %.2f\n \x3B4_\x3BD: %.2f \n hz: %.0f\n\n'],...
388 obj.Parameters.alpha, obj.Parameters.ki, ...
389 obj.Parameters.beta, obj.Parameters.gamma,...
390 obj.Parameters.N, obj.Parameters.delta_eta, ...
391 obj.Parameters.delta_A, obj.Parameters.delta_nu, ...
392 obj.Parameters.hz)
393 else
394 fprintf([' \x3B1: %.2f\n ki: %.2e kN/mm\n \x3B2: %.2f\n '...
395 '\x3B3: %.2f\n n: %.3f\n \x3B4_\x3B7: %.2f\n '...
396 '\x3B4_A: %.2f\n \x3B4_\x3BD: %.2f \n p: %.2f \n'...
397 ' \x3B6_0: %.2f \n \x3C8_0: %.2f \n \x3B4'...
398 '\x3C8_0: %.2f \n \x3BB: %.2f \n q: %.2f\n\n'],...
399 obj.Parameters.alpha, obj.Parameters.ki,...
400 obj.Parameters.beta, obj.Parameters.gamma, ...
401 obj.Parameters.N, obj.Parameters.delta_eta, ...
402 obj.Parameters.delta_A, obj.Parameters.delta_nu,...
403 obj.Parameters.p, obj.Parameters.z0,...
404 obj.Parameters.psi0, obj.Parameters.delta_psi0,...
405 obj.Parameters.lambda, obj.Parameters.q)
406 end
407 % Dissipated Energy
408 if isempty(obj.eps.tot) ~= 1
409 fprintf('DISSIPATED ENERGY:\n')
410 fprintf(' \x3B5_hys: %.2e J/kg\n\n',obj.eps.tot(end))
411 end
412 end
413 %% PLOT BOUC−WEN−BABER−NOORI SYSTEM RESPONSE
414 function BWBN_plot(obj,~)
415 % BWBN_plot plot Bouc−Wen−Baber−Noori system response.
416 %
417 % BWBN_plot(obj) plots:
418 % (a) system displacement
419 % (b) system velocity
420 % (c) hysteretic restoring force
421 % (d) dissipated energy.
422 %
423 % BWBN_plot(obj,'save') save the plot in '/Matlab/Figures'.
424
425 % Plot system response
426 % Figure properties
427 fig = figure;
428 fig.Position = [0, 0, 1400, 750];
429 fig.PaperUnits = 'points';
430 fig.PaperSize = [1400, 750];
431 fig.PaperPositionMode = 'manual';
432 fig.PaperPosition = [0, 0, 1400, 750];
433 % Plot displacement
434 ax1 = subplot(2,2,1);
435 p1 = plot(obj.Earthquake.time,obj.u);
436 % Plot properties
437 p1.Color = '#0072BD';
438 p1.LineWidth = 0.75;
439 p1.LineStyle = '−';
440 % Axes properties
441 ax1.FontSize = 18;
442 % X axis limits
443 ax1.XLim = [obj.Earthquake.time(1) obj.Earthquake.time(end)];
444 % Y axis limits
445 ax1.YLim = [−(max(abs(obj.u))+0.3*max(abs(obj.u))), ...
446 (max(abs(obj.u))+0.3*max(abs(obj.u)))];
447 % Grid and Minorgrid

89

Matlab® scripts

448 ax1.XGrid = 'on';
449 ax1.YGrid = 'on';
450 ax1.XMinorGrid = 'on';
451 ax1.YMinorGrid = 'on';
452 % X label
453 ax1.XLabel.Interpreter = 'latex';
454 ax1.XLabel.String = 't $[s]$';
455 ax1.XLabel.FontSize = 30;
456 % Y label
457 ax1.YLabel.Interpreter = 'latex';
458 ax1.YLabel.String = '$u(t)$ $[mm]$';
459 ax1.YLabel.FontSize = 30;
460 % Title
461 title(sprintf('Displacements'));
462 ax1.Title.Interpreter = 'latex';
463 ax1.Title.FontSize = 30;
464 % Legend
465 legend('$u(t)$');
466 ax1.Legend.Interpreter = 'latex';
467 ax1.Legend.FontSize = 20;
468 ax1.Legend.EdgeColor = [0.55 0.55 0.55];
469 % Plot velocity
470 ax2 = subplot(2,2,2);
471 p2 = plot(obj.Earthquake.time,obj.v);
472 % Plot properties
473 p2.Color = '#D95319';
474 p2.LineWidth = 0.75;
475 p2.LineStyle = '−';
476 % Axes properties
477 ax2.FontSize = 18;
478 % X axis limits
479 ax2.XLim = [obj.Earthquake.time(1) obj.Earthquake.time(end)];
480 % Y axis limits
481 ax2.YLim = [−(max(abs(obj.v))+0.3*max(abs(obj.v))), ...
482 (max(abs(obj.v))+0.3*max(abs(obj.v)))];
483 % Grid and Minorgrid
484 ax2.XGrid = 'on';
485 ax2.YGrid = 'on';
486 ax2.XMinorGrid = 'on';
487 ax2.YMinorGrid = 'on';
488 % X label
489 ax2.XLabel.Interpreter = 'latex';
490 ax2.XLabel.String = 't $[s]$';
491 ax2.XLabel.FontSize = 30;
492 % Y label
493 ax2.YLabel.Interpreter = 'latex';
494 ax2.YLabel.String = '$v(t)$ $[m/s]$';
495 ax2.YLabel.FontSize = 30;
496 % Title
497 title(sprintf('Velocity'));
498 ax2.Title.Interpreter = 'latex';
499 ax2.Title.FontSize = 30;
500 % Legend
501 legend('$v(t)$');
502 ax2.Legend.Interpreter = 'latex';
503 ax2.Legend.FontSize = 20;
504 ax2.Legend.EdgeColor = [0.55 0.55 0.55];
505 % Plot total restoring force
506 ax3 = subplot(2,2,3);
507 XMax = max(abs(obj.u));
508 xleft = −(XMax+0.15*XMax);
509 xright = − 1 * xleft;
510 ybottom = − max(abs(obj.fr.tot));
511 ytop = ybottom*−1;

90

Matlab® scripts

512 xaxis_center = [xleft+0.3*xleft, xright+0.3*xright];
513 yaxis_center = [ybottom+0.3*ybottom, ytop+0.3*ytop];
514 null_axis = [0, 0];
515 p1 = plot(xaxis_center,null_axis);
516 hold on
517 p2 = plot(null_axis,yaxis_center);
518 hold on
519 p3 = plot(obj.u, obj.fr.tot);
520 % Plot properties
521 p1.Color = 'k';
522 p2.Color = 'k';
523 p1.LineWidth = 0.5;
524 p1.LineStyle = '−';
525 p2.LineWidth = 0.5;
526 p2.LineStyle = '−';
527 p3.Color = '#A2142F';
528 p3.LineWidth = 0.5;
529 p3.LineStyle = '−';
530 % Axes properties
531 ax3.FontSize = 18;
532 % X axis
533 ax3.XLim = xaxis_center;
534 % Y axis
535 ax3.YLim = yaxis_center;
536 % Grid and Minorgrid
537 ax3.XGrid = 'on';
538 ax3.YGrid = 'on';
539 ax3.XMinorGrid = 'on';
540 ax3.YMinorGrid = 'on';
541 % X label
542 ax3.XLabel.String = '$u(t)$ $[mm]$';
543 ax3.XLabel.Interpreter = 'latex';
544 ax3.XLabel.FontSize = 30;
545 % Y label
546 ax3.YLabel.Interpreter = 'latex';
547 ax3.YLabel.String = '$f_r(u,z)$ $[kN]$';
548 ax3.YLabel.FontSize = 30;
549 % Title
550 title(sprintf('Restoring force'));
551 ax3.Title.Interpreter = 'latex';
552 ax3.Title.FontSize = 30;
553 % Legend
554 legend(p3,'$f_r(u,z)$');
555 ax3.Legend.Interpreter = 'latex';
556 ax3.Legend.Location = 'southeast';
557 ax3.Legend.FontSize = 20;
558 % Plot hysteretic dissipated energy
559 ax4 = subplot(2,2,4);
560 p1 = plot(obj.Earthquake.time, obj.eps.tot);
561 % Plot properties
562 p1.Color = '#7E2F8E';
563 p1.LineWidth = 0.75;
564 p1.LineStyle = '−';
565 % Axes properties
566 ax4.FontSize = 18;
567 % X axis limits
568 ax4.XLim = [obj.Earthquake.time(1) obj.Earthquake.time(end)];
569 % Y axis limits
570 ax4.YLim = [obj.eps.tot(1),...
571 (max(abs(obj.eps.tot))+0.15*max(abs(obj.eps.tot)))];
572 % Grid and Minorgrid
573 ax4.XGrid = 'on';
574 ax4.YGrid = 'on';
575 ax4.XMinorGrid = 'on';

91

Matlab® scripts

576 ax4.YMinorGrid = 'on';
577 % X label
578 ax4.XLabel.Interpreter = 'latex';
579 ax4.XLabel.String = 't $[s]$';
580 ax4.XLabel.FontSize = 30;
581 % Y label
582 ax4.YLabel.Interpreter = 'latex';
583 ax4.YLabel.String = 'ε_{tot}(t) $[J/kg]$';
584 ax4.YLabel.FontSize = 30;
585 % Title
586 title(sprintf('Dissipated energy'));
587 ax4.Title.Interpreter = 'latex';
588 ax4.Title.FontSize = 30;
589 % Legend
590 legend('$\varepsilon_{tot}(t)$');
591 ax4.Legend.Interpreter = 'latex';
592 ax4.Legend.Location = 'southeast';
593 ax4.Legend.FontSize = 20;
594 % Saving graph
595 if nargin > 1
596 FigureName = sprintf('Results');
597 for i=1:length(FigureName)
598 if FigureName(i)==' '
599 FigureName(i)='_';
600 end
601 end
602 saveas(fig, fullfile('..', 'Matlab', 'Figures','pdf', ...
603 FigureName),'pdf');
604 saveas(fig, fullfile('..', 'Matlab', 'Figures','fig', ...
605 FigureName),'fig');
606 saveas(fig, fullfile('..', 'Matlab', 'Figures','tif', ...
607 FigureName),'tiffn');
608 saveas(fig, fullfile('..', 'Matlab', 'Figures','png', ...
609 FigureName),'png');
610 end
611 end
612 %% IDENTIFICATION OF PARAMETERS − PATTERN SEARCH ALGORITHM
613 function obj = BWBN_PatternSearch(obj,lb,ub,randSet,u_experimental,...
614 fr_experimental)
615 % BWBN_PatternSearch identify Bouc−Wen−Baber−Noori system parameters
616 % by Pattern Search algorithm.
617 %
618 % BWBN_PatternSearch(obj,lb,ub,randSet,u_experimental)
619 % lb = scrtucture containig low bounds of parameters
620 % lb = scrtucture containig low bounds of parameters
621 % ub = scrtucture containig upper bounds of parameters
622 % u_experimental = experimental displacement record
623 % fr_experimental = experimental restoring force record
624 %
625 % See also BoucWenClass
626
627 global J_opt
628 % Lower bound conditions
629 LB = [lb.ki; lb.beta; lb.gamma; lb.alpha];
630 % Upper bound conditions
631 UB = [ub.ki; ub.beta; ub.gamma; ub.alpha];
632 % 1st set of random parameters
633 p0 = [randSet.ki; randSet.beta; randSet.gamma; randSet.alpha];
634 % Correlation matrix A
635 A = [0 0 0 0;
636 0 −1 −1 0;
637 0 −1 1 0;
638 0 0 0 0];
639 % Vector b

92

Matlab® scripts

640 b = [0 0 0 0]';
641 % Solving patternsearch algorithm
642 %options = optimoptions('patternsearch','MaxIterations',1);
643 [p_opt,J_opt(1)] = patternsearch(@(p)objectivefunction(p,obj,...
644 u_experimental, 'PATTERN SEARCH'),...
645 p0,A,b,[],[],LB,UB,[]);%,options);
646 % Getting identified parameters
647 obj.Parameters.ki = p_opt(1);
648 obj.Parameters.beta = p_opt(2);
649 obj.Parameters.gamma = p_opt(3);
650 obj.Parameters.alpha = p_opt(4);
651 obj.Parameters.delta_eta = 0;
652 % Printing results on Command Window
653 clc
654 fprintf(' PATTERN SEARCH ALGORITHM \n\n')
655 fprintf(' Optimal parameters:\n\n');
656 fprintf([' ki = %.0f \n \x3B2 = %.3e \n \x3B3 = %.3e \n \x3B1'...
657 ' = %.3f \n J = %.4f\n \n '], obj.Parameters.ki, ...
658 obj.Parameters.beta, obj.Parameters.gamma, ...
659 obj.Parameters.alpha, J_opt(1))
660 % Saving results in a .txt file
661 fileID = fopen(fullfile('..', 'Matlab', 'Output',...
662 'PatternSearch.txt'), 'w');
663 fprintf(fileID,'PATTERN SEARCH − Optimal parameters:\n\n');
664 fprintf(fileID,['ki = %.0f\n\nbeta = %.3f\n\ngamma',...
665 ' = %.3f\n\nalpha = %.3f\n\nJ = %.4f\n \n '],...
666 obj.Parameters.ki, obj.Parameters.beta, ...
667 obj.Parameters.gamma, obj.Parameters.alpha, J_opt(1));
668 fclose(fileID);
669 % Solving BWBN with identified parameters by Pattern Search
670 obj = BWBN_solve(obj,'verobose');
671 clc
672 % Plot Pattern Search results
673 % Figure properties
674 fig = figure;
675 fig.Position = [0, 0, 1130, 630];
676 fig.PaperUnits = 'points';
677 fig.PaperSize = [1130, 630];
678 fig.PaperPositionMode = 'manual';
679 fig.PaperPosition = [0, 0, 1130, 630];
680 % Plot experimental restoring force
681 ax1 = subplot(2,3,1);
682 XMax = max(abs(u_experimental));
683 xleft = − (XMax + 0.15 * XMax);
684 xright = xleft * −1;
685 YMax = max(abs(fr_experimental));
686 ybottom = − (YMax + 0.15 * YMax);
687 ytop = ybottom * −1;
688 xaxis_center = [xleft, xright];
689 yaxis_center = [ybottom, ytop];
690 null_axis = [0, 0];
691 p1 = plot(xaxis_center,null_axis);
692 hold on
693 p2 = plot(null_axis,yaxis_center);
694 hold on
695 p3 = plot(u_experimental,fr_experimental);
696 % Plot properties
697 p1.Color = 'k';
698 p2.Color = 'k';
699 p1.LineWidth = 0.5;
700 p1.LineStyle = '−';
701 p2.LineWidth = 0.5;
702 p2.LineStyle = '−';
703 p3.Color = '#0072BD';

93

Matlab® scripts

704 p3.LineWidth = 0.5;
705 p3.LineStyle = '−';
706 % Axes properties
707 ax1.FontSize = 14;
708 % X axis
709 ax1.XLim = xaxis_center;
710 % Y axis
711 ax1.YLim = yaxis_center;
712 % Grid and Minorgrid
713 ax1.XGrid = 'on';
714 ax1.YGrid = 'on';
715 ax1.XMinorGrid = 'on';
716 ax1.YMinorGrid = 'on';
717 % X label
718 ax1.XLabel.String = '$u(t)$ $[mm]$';
719 ax1.XLabel.Interpreter = 'latex';
720 ax1.XLabel.FontSize = 23;
721 % Y label
722 ax1.YLabel.String = '$f_r(u,z)$ $[kN]$';
723 ax1.YLabel.Interpreter = 'latex';
724 ax1.YLabel.FontSize = 23;
725 % Title
726 title(sprintf('Experimental'));
727 ax1.Title.Interpreter = 'latex';
728 ax1.Title.FontSize = 23;
729 % Legend
730 legend(p3,'$f_r(u,z)_{exp}$');
731 ax1.Legend.Interpreter = 'latex';
732 ax1.Legend.Location = 'southeast';
733 ax1.Legend.FontSize = 17;
734 % Plot restoring force algorithm
735 ax2 = subplot(2,3,2);
736 XMax = max(abs(obj.u));
737 xleft = −(XMax+0.15*XMax);
738 xright = xleft*−1;
739 YMax = max(abs(obj.fr.tot));
740 ybottom = −(YMax+0.15*YMax);
741 ytop = ybottom*−1;
742 xaxis_center = [xleft, xright];
743 yaxis_center = [ybottom, ytop];
744 null_axis = [0, 0];
745 p1 = plot(xaxis_center,null_axis);
746 hold on
747 p2 = plot(null_axis,yaxis_center);
748 hold on
749 p3 = plot(obj.u, obj.fr.tot);
750 % Plot properties
751 p1.Color = 'k';
752 p2.Color = 'k';
753 p1.LineWidth = 0.5;
754 p1.LineStyle = '−';
755 p2.LineWidth = 0.5;
756 p2.LineStyle = '−';
757 p3.Color = '#A2142F';
758 p3.LineWidth = 0.5;
759 p3.LineStyle = '−';
760 % Axes properties
761 ax2.FontSize = 14;
762 % X axis
763 ax2.XLim = xaxis_center;
764 % Y axis
765 ax2.YLim = yaxis_center;
766 % Grid and Minorgrid
767 ax2.XGrid = 'on';

94

Matlab® scripts

768 ax2.YGrid = 'on';
769 ax2.XMinorGrid = 'on';
770 ax2.YMinorGrid = 'on';
771 % X label
772 ax2.XLabel.String = '$u(t)$ $[mm]$';
773 ax2.XLabel.Interpreter = 'latex';
774 ax2.XLabel.FontSize = 23;
775 % Y label
776 ax2.YLabel.String = '$f_r(u,z)$ $[kN]$';
777 ax2.YLabel.Interpreter = 'latex';
778 ax2.YLabel.FontSize = 23;
779 % Title
780 title(sprintf('Identified'));
781 ax2.Title.Interpreter = 'latex';
782 ax2.Title.FontSize = 23;
783 % Legend
784 STR = 'PS';
785 str = sprintf('$f_r(u,z)_{%s}$',STR);
786 legend(str);
787 ax2.Legend.Interpreter = 'latex';
788 ax2.Legend.Location = 'southeast';
789 ax2.Legend.FontSize = 17;
790 % Plot suverposition
791 ax3 = subplot(2,3,3);
792 XMax = max([max(abs(u_experimental)), max(abs(obj.u))]);
793 xleft = −(XMax+0.15*XMax);
794 xright = xleft*−1;
795 YMax = max([max(abs(fr_experimental)),max(abs(obj.fr.tot))]);
796 ybottom = −(YMax+0.15*YMax);
797 ytop = ybottom*−1;
798 xaxis_center = [xleft, xright];
799 yaxis_center = [ybottom, ytop];
800 null_axis = [0, 0];
801 p1 = plot(xaxis_center,null_axis);
802 hold on
803 p2 = plot(null_axis,yaxis_center);
804 hold on
805 p3 = plot(u_experimental,fr_experimental);
806 hold on
807 p4 = plot(obj.u, obj.fr.tot);
808 % Plot properties
809 p1.Color = 'k';
810 p2.Color = 'k';
811 p1.LineWidth = 0.5;
812 p1.LineStyle = '−';
813 p2.LineWidth = 0.5;
814 p2.LineStyle = '−';
815 p3.Color = '#0072BD';
816 p3.LineWidth = 0.25;
817 p3.LineStyle = '−';
818 p4.Color = '#A2142F';
819 p4.LineWidth = 0.25;
820 p4.LineStyle = '−−';
821 % Axes properties
822 ax3.FontSize = 14;
823 % X axis
824 ax3.XLim = xaxis_center;
825 % Y axis
826 ax3.YLim = yaxis_center;
827 % Grid and Minorgrid
828 ax3.XGrid = 'on';
829 ax3.YGrid = 'on';
830 ax3.XMinorGrid = 'on';
831 ax3.YMinorGrid = 'on';

95

Matlab® scripts

832 % X label
833 ax3.XLabel.String = '$u(t)$ $[mm]$';
834 ax3.XLabel.Interpreter = 'latex';
835 ax3.XLabel.FontSize = 23;
836 % Y label
837 ax3.YLabel.String = '$f_r(u,z)$ $[kN]$';
838 ax3.YLabel.Interpreter = 'latex';
839 ax3.YLabel.FontSize = 23;
840 % Title
841 title(sprintf('Discrepancy'));
842 ax3.Title.Interpreter = 'latex';
843 ax3.Title.FontSize = 23;
844 % Legend
845 STR = 'PS';
846 str = sprintf('$f_r(u,z)_{%s}$',STR);
847 legend([p3 p4],'$f_r(u,z)_{exp}$',str);
848 ax3.Legend.Interpreter = 'latex';
849 ax3.Legend.Location = 'southeast';
850 ax3.Legend.FontSize = 17;
851 % Plot displacements
852 ax7 = subplot(2,3,[4,6]);
853 p1 = plot(obj.Earthquake.time,u_experimental);
854 hold on
855 p2 = plot(obj.Earthquake.time,obj.u);
856 % Plot properties
857 p1.Color = '#0072BD';
858 p1.LineWidth = 0.75;
859 p1.LineStyle = '−';
860 p2.Color = '#D95319';
861 p2.LineWidth = 0.75;
862 p2.LineStyle = '−−';
863 % Axes properties
864 ax7.FontSize = 14;
865 % X axis limits
866 ax7.XLim = [obj.Earthquake.time(1) obj.Earthquake.time(end)];
867 % Y axis limits
868 YMax = max([max(abs(u_experimental)), max(abs(obj.u))]);
869 ax7.YLim = [−(YMax+0.15*YMax) (YMax+0.15*YMax)];
870 % Grid and Minorgrid
871 ax7.XGrid = 'on';
872 ax7.YGrid = 'on';
873 ax7.XMinorGrid = 'on';
874 ax7.YMinorGrid = 'on';
875 % X label
876 ax7.XLabel.String = 't $[s]$';
877 ax7.XLabel.Interpreter = 'latex';
878 ax7.XLabel.FontSize = 23;
879 % Y label
880 ax7.YLabel.String = '$u(t)$ $[mm]$';
881 ax7.YLabel.Interpreter = 'latex';
882 ax7.YLabel.FontSize = 23;
883 % Title
884 title(sprintf('Displacements'));
885 ax7.Title.Interpreter = 'latex';
886 ax7.Title.FontSize = 23;
887 % Legend
888 STR = 'PS';
889 str = sprintf('$u(t)_{%s}$',STR);
890 legend('$u(t)_{exp}$',str);
891 ax7.Legend.Interpreter = 'latex';
892 ax7.Legend.FontSize = 17;
893 % Saving graph
894 FigureName = sprintf(sprintf('Pattern_Search'));
895 saveas(fig, fullfile('..', 'Matlab', 'Figures','pdf',...

96

Matlab® scripts

896 FigureName),'pdf');
897 saveas(fig, fullfile('..', 'Matlab', 'Figures','fig', ...
898 FigureName),'fig');
899 saveas(fig, fullfile('..', 'Matlab', 'Figures','tif', ...
900 FigureName),'tiffn');
901 saveas(fig, fullfile('..', 'Matlab', 'Figures','png', ...
902 FigureName),'png');
903 end
904 %% IDENTIFICATION OF PARAMETERS − INTERIOR POINT ALGORITHM
905 function obj = BWBN_InteriorPoint(obj,lb,ub,randSet,u_experimental,...
906 fr_experimental)
907 % BWBN_InteriorPoint identify Bouc−Wen−Baber−Noori system parameters
908 % by Interior Point algorithm.
909 %
910 % BWBN_InteriorPoint(obj,lb,ub,randSet,u_experimental)
911 % lb = scrtucture containig low bounds of parameters
912 % lb = scrtucture containig low bounds of parameters
913 % ub = scrtucture containig upper bounds of parameters
914 % u_experimental = experimental displacement record
915 % fr_experimental = experimental restoring force record
916 %
917 % See also BoucWenClass
918
919 global J_opt
920 % Lower bound conditions
921 LB = [lb.ki; lb.beta; lb.gamma; lb.alpha];
922 % Upper bound conditions
923 UB = [ub.ki; ub.beta; ub.gamma; ub.alpha];
924 % 1st set of random parameters
925 p0 = [randSet.ki; randSet.beta; randSet.gamma; randSet.alpha];
926 % Correlation matrix A
927 A = [0 0 0 0;
928 0 −1 −1 0;
929 0 −1 1 0;
930 0 0 0 0];
931 % Vector b
932 b = [0 0 0 0]';
933 % Solving interiorpoint algorithm
934 %options = optimoptions(@fmincon,'Display','iter','MaxIterations',1);
935 [p_opt,J_opt(2)] = fmincon(@(p)objectivefunction(p,obj,...
936 u_experimental,'INTERIOR POINT'),...
937 p0,A,b,[],[],LB,UB,[]);%,options);
938 % Getting identified parameters
939 obj.Parameters.ki = p_opt(1);
940 obj.Parameters.beta = p_opt(2);
941 obj.Parameters.gamma = p_opt(3);
942 obj.Parameters.alpha = p_opt(4);
943 obj.Parameters.delta_eta = 0;
944 % Printing results on Command Window
945 clc
946 fprintf(' INTERIOR POINT ALGORITHM \n\n')
947 fprintf(' Optimal parameters:\n\n');
948 fprintf([' ki = %.0f \n \x3B2 = %.3e \n \x3B3 = %.3e \n \x3B1'...
949 ' = %.3f \n J = %.4f\n \n '], obj.Parameters.ki, ...
950 obj.Parameters.beta, obj.Parameters.gamma, ...
951 obj.Parameters.alpha, J_opt(1))
952 % Saving results in a .txt file
953 fileID = fopen(fullfile('..', 'Matlab', 'Output', ...
954 'InteriorPoint.txt'), 'w');
955 fprintf(fileID,'PATTERN SEARCH − Optimal parameters:\n\n');
956 fprintf(fileID,['ki = %.0f\n\nbeta = %.3f\n\ngamma',...
957 ' = %.3f\n\nalpha = %.3f\n\nJ = %.4f\n \n '],...
958 obj.Parameters.ki, obj.Parameters.beta,...
959 obj.Parameters.gamma, obj.Parameters.alpha, J_opt(1));

97

Matlab® scripts

960 fclose(fileID);
961 % Solving BWBN with identified parameters by Interior Point
962 obj = BWBN_solve(obj,'verobose');
963 clc
964 % Plot Interior Point results
965 % Figure properties
966 fig = figure;
967 fig.Position = [0, 0, 1130, 630];
968 fig.PaperUnits = 'points';
969 fig.PaperSize = [1130, 630];
970 fig.PaperPositionMode = 'manual';
971 fig.PaperPosition = [0, 0, 1130, 630];
972 % Plot experimental restoring force
973 ax1 = subplot(2,3,1);
974 XMax = max(abs(u_experimental));
975 xleft = − (XMax + 0.15 * XMax);
976 xright = xleft * −1;
977 YMax = max(abs(fr_experimental));
978 ybottom = − (YMax + 0.15 * YMax);
979 ytop = ybottom * −1;
980 xaxis_center = [xleft, xright];
981 yaxis_center = [ybottom, ytop];
982 null_axis = [0, 0];
983 p1 = plot(xaxis_center,null_axis);
984 hold on
985 p2 = plot(null_axis,yaxis_center);
986 hold on
987 p3 = plot(u_experimental,fr_experimental);
988 % Plot properties
989 p1.Color = 'k';
990 p2.Color = 'k';
991 p1.LineWidth = 0.5;
992 p1.LineStyle = '−';
993 p2.LineWidth = 0.5;
994 p2.LineStyle = '−';
995 p3.Color = '#0072BD';
996 p3.LineWidth = 0.5;
997 p3.LineStyle = '−';
998 % Axes properties
999 ax1.FontSize = 14;

1000 % X axis
1001 ax1.XLim = xaxis_center;
1002 % Y axis
1003 ax1.YLim = yaxis_center;
1004 % Grid and Minorgrid
1005 ax1.XGrid = 'on';
1006 ax1.YGrid = 'on';
1007 ax1.XMinorGrid = 'on';
1008 ax1.YMinorGrid = 'on';
1009 % X label
1010 ax1.XLabel.String = '$u(t)$ $[mm]$';
1011 ax1.XLabel.Interpreter = 'latex';
1012 ax1.XLabel.FontSize = 23;
1013 % Y label
1014 ax1.YLabel.String = '$f_r(u,z)$ $[kN]$';
1015 ax1.YLabel.Interpreter = 'latex';
1016 ax1.YLabel.FontSize = 23;
1017 % Title
1018 title(sprintf('Experimental'));
1019 ax1.Title.Interpreter = 'latex';
1020 ax1.Title.FontSize = 23;
1021 % Legend
1022 legend(p3,'$f_r(u,z)_{exp}$');
1023 ax1.Legend.Interpreter = 'latex';

98

Matlab® scripts

1024 ax1.Legend.Location = 'southeast';
1025 ax1.Legend.FontSize = 17;
1026 % Plot restoring force algorithm
1027 ax2 = subplot(2,3,2);
1028 XMax = max(abs(obj.u));
1029 xleft = −(XMax+0.15*XMax);
1030 xright = xleft*−1;
1031 YMax = max(abs(obj.fr.tot));
1032 ybottom = −(YMax+0.15*YMax);
1033 ytop = ybottom*−1;
1034 xaxis_center = [xleft, xright];
1035 yaxis_center = [ybottom, ytop];
1036 null_axis = [0, 0];
1037 p1 = plot(xaxis_center,null_axis);
1038 hold on
1039 p2 = plot(null_axis,yaxis_center);
1040 hold on
1041 p3 = plot(obj.u, obj.fr.tot);
1042 % Plot properties
1043 p1.Color = 'k';
1044 p2.Color = 'k';
1045 p1.LineWidth = 0.5;
1046 p1.LineStyle = '−';
1047 p2.LineWidth = 0.5;
1048 p2.LineStyle = '−';
1049 p3.Color = '#A2142F';
1050 p3.LineWidth = 0.5;
1051 p3.LineStyle = '−';
1052 % Axes properties
1053 ax2.FontSize = 14;
1054 % X axis
1055 ax2.XLim = xaxis_center;
1056 % Y axis
1057 ax2.YLim = yaxis_center;
1058 % Grid and Minorgrid
1059 ax2.XGrid = 'on';
1060 ax2.YGrid = 'on';
1061 ax2.XMinorGrid = 'on';
1062 ax2.YMinorGrid = 'on';
1063 % X label
1064 ax2.XLabel.String = '$u(t)$ $[mm]$';
1065 ax2.XLabel.Interpreter = 'latex';
1066 ax2.XLabel.FontSize = 23;
1067 % Y label
1068 ax2.YLabel.String = '$f_r(u,z)$ $[kN]$';
1069 ax2.YLabel.Interpreter = 'latex';
1070 ax2.YLabel.FontSize = 23;
1071 % Title
1072 title(sprintf('Identified'));
1073 ax2.Title.Interpreter = 'latex';
1074 ax2.Title.FontSize = 23;
1075 % Legend
1076 STR = 'IP';
1077 str = sprintf('$f_r(u,z)_{%s}$',STR);
1078 legend(str);
1079 ax2.Legend.Interpreter = 'latex';
1080 ax2.Legend.Location = 'southeast';
1081 ax2.Legend.FontSize = 17;
1082 % Plot suverposition
1083 ax3 = subplot(2,3,3);
1084 XMax = max([max(abs(u_experimental)), max(abs(obj.u))]);
1085 xleft = −(XMax+0.15*XMax);
1086 xright = xleft*−1;
1087 YMax = max([max(abs(fr_experimental)),max(abs(obj.fr.tot))]);

99

Matlab® scripts

1088 ybottom = −(YMax+0.15*YMax);
1089 ytop = ybottom*−1;
1090 xaxis_center = [xleft, xright];
1091 yaxis_center = [ybottom, ytop];
1092 null_axis = [0, 0];
1093 p1 = plot(xaxis_center,null_axis);
1094 hold on
1095 p2 = plot(null_axis,yaxis_center);
1096 hold on
1097 p3 = plot(u_experimental,fr_experimental);
1098 hold on
1099 p4 = plot(obj.u, obj.fr.tot);
1100 % Plot properties
1101 p1.Color = 'k';
1102 p2.Color = 'k';
1103 p1.LineWidth = 0.5;
1104 p1.LineStyle = '−';
1105 p2.LineWidth = 0.5;
1106 p2.LineStyle = '−';
1107 p3.Color = '#0072BD';
1108 p3.LineWidth = 0.25;
1109 p3.LineStyle = '−';
1110 p4.Color = '#A2142F';
1111 p4.LineWidth = 0.25;
1112 p4.LineStyle = '−−';
1113 % Axes properties
1114 ax3.FontSize = 14;
1115 % X axis
1116 ax3.XLim = xaxis_center;
1117 % Y axis
1118 ax3.YLim = yaxis_center;
1119 % Grid and Minorgrid
1120 ax3.XGrid = 'on';
1121 ax3.YGrid = 'on';
1122 ax3.XMinorGrid = 'on';
1123 ax3.YMinorGrid = 'on';
1124 % X label
1125 ax3.XLabel.String = '$u(t)$ $[mm]$';
1126 ax3.XLabel.Interpreter = 'latex';
1127 ax3.XLabel.FontSize = 23;
1128 % Y label
1129 ax3.YLabel.String = '$f_r(u,z)$ $[kN]$';
1130 ax3.YLabel.Interpreter = 'latex';
1131 ax3.YLabel.FontSize = 23;
1132 % Title
1133 title(sprintf('Discrepancy'));
1134 ax3.Title.Interpreter = 'latex';
1135 ax3.Title.FontSize = 23;
1136 % Legend
1137 STR = 'IP';
1138 str = sprintf('$f_r(u,z)_{%s}$',STR);
1139 legend([p3 p4],'$f_r(u,z)_{exp}$',str);
1140 ax3.Legend.Interpreter = 'latex';
1141 ax3.Legend.Location = 'southeast';
1142 ax3.Legend.FontSize = 17;
1143 % Plot displacements
1144 ax7 = subplot(2,3,[4,6]);
1145 p1 = plot(obj.Earthquake.time,u_experimental);
1146 hold on
1147 p2 = plot(obj.Earthquake.time,obj.u);
1148 % Plot properties
1149 p1.Color = '#0072BD';
1150 p1.LineWidth = 0.75;
1151 p1.LineStyle = '−';

100

Matlab® scripts

1152 p2.Color = '#D95319';
1153 p2.LineWidth = 0.75;
1154 p2.LineStyle = '−−';
1155 % Axes properties
1156 ax7.FontSize = 14;
1157 % X axis limits
1158 ax7.XLim = [obj.Earthquake.time(1) obj.Earthquake.time(end)];
1159 % Y axis limits
1160 YMax = max([max(abs(u_experimental)), max(abs(obj.u))]);
1161 ax7.YLim = [−(YMax+0.15*YMax) (YMax+0.15*YMax)];
1162 % Grid and Minorgrid
1163 ax7.XGrid = 'on';
1164 ax7.YGrid = 'on';
1165 ax7.XMinorGrid = 'on';
1166 ax7.YMinorGrid = 'on';
1167 % X label
1168 ax7.XLabel.String = 't $[s]$';
1169 ax7.XLabel.Interpreter = 'latex';
1170 ax7.XLabel.FontSize = 23;
1171 % Y label
1172 ax7.YLabel.String = '$u(t)$ $[mm]$';
1173 ax7.YLabel.Interpreter = 'latex';
1174 ax7.YLabel.FontSize = 23;
1175 % Title
1176 title(sprintf('Displacements'));
1177 ax7.Title.Interpreter = 'latex';
1178 ax7.Title.FontSize = 23;
1179 % Legend
1180 STR = 'IP';
1181 str = sprintf('$u(t)_{%s}$',STR);
1182 legend('$u(t)_{exp}$',str);
1183 ax7.Legend.Interpreter = 'latex';
1184 ax7.Legend.FontSize = 17;
1185 % Saving graph
1186 FigureName = sprintf(sprintf('Interior_Point'));
1187 saveas(fig, fullfile('..', 'Matlab', 'Figures','pdf', ...
1188 FigureName),'pdf');
1189 saveas(fig, fullfile('..', 'Matlab', 'Figures','fig', ...
1190 FigureName),'fig');
1191 saveas(fig, fullfile('..', 'Matlab', 'Figures','tif', ...
1192 FigureName),'tiffn');
1193 saveas(fig, fullfile('..', 'Matlab', 'Figures','png', ...
1194 FigureName),'png');
1195 end
1196 end
1197 end

EarthquakeClass.m
1 classdef EarthquakeClass
2 % Earthquake class
3 %
4 % .name = earthquake name
5 % .record = earthquake record
6 % .ag = ground acceleration
7 % .ts = sampling time
8 % .filter = filter of accelerogrram
9 % .filterParameters = filter parameters

10 % .fs = sampling frequency
11 % .PGA = peak groud acceleration
12 % .time = time window
13 %
14 % See also BoucWenClass, ParametersClass, BWBN_plotFFT.
15

101

Matlab® scripts

16 properties
17 name
18 record
19 ag
20 ts
21 filter
22 filterParameters
23 end
24
25 properties (Dependent)
26 fs
27 PGA
28 time
29 end
30
31 methods
32 % Get fs
33 function f = get.fs(obj)
34 f = 1 / obj.ts;
35 end
36 % Get PGA
37 function pga = get.PGA(obj)
38 pga = max(abs(obj.ag));
39 end
40 % Get time window
41 function t = get.time(obj)
42 t = (0:length(obj.ag)−1).*obj.ts;
43 end
44 % Plot FFT of ag
45 function BWBN_plotFFT(obj,~)
46 % BWBN_plotFFT evaluate the FFT of the input acceletogram.
47 %
48 % BWBN_plotFFT(obj) plot the FFT of the input acceletogram.
49 % BWBN_plotFFT(obj,'save') plot and save the FFT.
50 %
51 % See also EarthquakeClass, BoucWenClass
52
53 Af = fft(obj.ag) * obj.ts;
54 Af = abs(fftshift(Af));
55 NFFT = length(Af);
56 Tf = NFFT/obj.fs;
57 if mod(NFFT,2)==1
58 F = − obj.fs/2 : 1/Tf : obj.fs/2−1/Tf;
59 else
60 F = − obj.fs/2 : 1/Tf : obj.fs/2;
61 end
62 [~, I] = max(Af);
63 fprintf('Frequency of maximum amplitude: %.3f Hz\n',abs(F(I)))
64 % PLOT FFT
65 % Figure properties
66 fig = figure;
67 fig.Position = [0, 0, 800, 450];
68 fig.PaperUnits = 'points';
69 fig.PaperSize = [800, 450];
70 fig.PaperPositionMode = 'manual';
71 fig.PaperPosition = [0, 0, 800, 450];
72 % Plot data
73 plot(F,Af);
74 % Axes properties
75 ax = gca;
76 ax.FontSize = 15;
77 % X axis Limits
78 ax.XLim = [0 50];
79 % Grid and Minorgrid

102

Matlab® scripts

80 ax.XGrid = 'on';
81 ax.YGrid = 'on';
82 ax.XMinorGrid = 'on';
83 ax.YMinorGrid = 'on';
84 % X label
85 ax.XLabel.String = 'f $[Hz]$';
86 ax.XLabel.Interpreter = 'latex';
87 ax.XLabel.FontSize = 26;
88 % Y label
89 ax.YLabel.String = '$A(f)$ $[m/s^2]$';
90 ax.YLabel.Interpreter = 'latex';
91 ax.YLabel.FontSize = 26;
92 % Title
93 title(sprintf('%s FFT', obj.name));
94 ax.Title.Interpreter = 'latex';
95 ax.Title.FontSize = 26;
96 % Legend
97 legend('$A(f)$')
98 ax.Legend.Interpreter = 'latex';
99 ax.Legend.FontSize = 18;
100 % Save graph
101 if nargin > 1
102 fprintf('Saving graph...\n')
103 FigureName = sprintf('FFT %s',obj.name);
104 for i = 1 : length(FigureName)
105 if FigureName(i) ==' '
106 FigureName(i) ='_';
107 end
108 end
109 saveas(fig, fullfile('..', 'Matlab', 'Figures','pdf', ...
110 FigureName),'pdf');
111 saveas(fig, fullfile('..', 'Matlab', 'Figures','fig', ...
112 FigureName),'fig');
113 saveas(fig, fullfile('..', 'Matlab', 'Figures','tif', ...
114 FigureName),'tiffn');
115 saveas(fig, fullfile('..', 'Matlab', 'Figures','png', ...
116 FigureName),'png');
117 end
118 end
119 end
120 end

ParametersClass.m
1 classdef ParametersClass
2 % Bouc−Wen−Baber−Noori system parameters class
3 %
4 % .alpha = sub−class containing earthquake data
5 % .ki = system initial stiffness
6 % .beta = BWBN parameter
7 % .gamma = BWBN parameter
8 % .N = BWBN parameter
9 % .delta_eta = BWBN parameter

10 % .delta_A = BWBN parameter
11 % .delta_nu = BWBN parameter
12 % .hz = BWBN pinching parameter
13 % .p = BWBN pinching parameter
14 % .z0 = BWBN pinching parameter
15 % .psi0 = BWBN pinching parameter
16 % .delta_psi0 = BWBN pinching parameter
17 % .lambda = BWBN pinching parameter
18 % .q = BWBN pinching parameter
19 % .mass = system mass
20 % .zita = system damping ratio

103

Matlab® scripts

21 % .frequency = system natural frequency
22 % .T = system period
23 % .c = system viscous damping
24 % .w0 = system natural pulsation
25 % .wd = system damped pulsation
26 %
27 % See also BoucWenClass, EarthquakeClass.
28
29 properties
30 alpha
31 ki
32 beta
33 gamma
34 N
35 delta_eta
36 delta_A
37 delta_nu
38 hz
39 mass
40 zita
41 end
42
43 properties (Dependent)
44 frequency
45 T
46 c
47 w0
48 wd
49 end
50
51 properties (Hidden)
52 p
53 z0
54 psi0
55 delta_psi0
56 lambda
57 q
58 end
59
60 methods
61 % Get system natural pulsation
62 function w0 = get.w0(obj)
63 w0 = sqrt(obj.ki * 1e6/(obj.mass));
64 end
65 % Get system damped pulsation
66 function wd = get.wd(obj)
67 wd = obj.w0 * sqrt(1−(obj.zita)^2);
68 end
69 % Get system natural frequency
70 function f = get.frequency(obj)
71 f = obj.w0 / (2*pi);
72 end
73 % Get system natural period
74 function period = get.T(obj)
75 period = 1/obj.frequency;
76 end
77 % Get linear viscous damping coefficient
78 function C = get.c(obj)
79 C = obj.zita * 2 * obj.mass * obj.w0;
80 end
81 end
82 end

104

Matlab® scripts

BWBN experimental data.m
1 %% BOUC−WEN−BABER−NOORI SDF SYSTEM 'EXPERIMENTAL DATA' AND MODEL VALIDATION
2
3 % INFO SCRIPT %%%
4 % %
5 % The script simulates and generates 'experimental data' of a hysteretic SDF %
6 % Bouc−Wen−Baber−Noori system with degradation %
7 % %
8 % STRUCTURES %%
9 % %

10 % .Earthquake sub−structure containing earthquake data %
11 % .name = [''] earthquake's name %
12 % .record = [1/g] .txt earthquake record data %
13 % .ts = [sec] earthquake record sampling time %
14 % .filter = [''] 'YES'/'NO' to filter ground motion acc. %
15 % .filterParameters = [−] filter parameters %
16 % .fs = [Hz] sampling frequency %
17 % .ag = [m/s^2] ground motion acceleration %
18 % .PGA = [m/s^2] peak ground acceleration %
19 % .time = [sec] earthquake time window %
20 % %
21 % .Parameters sub−structure containing BWBN parameters %
22 % .alpha = [−] stiffness ratio (ku/ki) %
23 % .ki = [kN/mm] BWBN initial stiffness parameter %
24 % .beta = [−] BWBN parameter %
25 % .gamma = [−] BWBN parameter %
26 % .N = [−] BWBN hardening−softening parameter %
27 % .delta_eta = [−] BWBN stiffness degradation parameter %
28 % .delta_A = [−] BWBN linear variant parameter %
29 % .delta_nu = [−] BWBN strength deterioration parameter %
30 % .hz = [−] BWBN pinching function %
31 % .p = [−] BWBN pinching parameter %
32 % .z0 = [−] BWBN pinching parameter %
33 % .psi0 = [−] BWBN pinching parameter %
34 % .delta_psi0 = [−] BWBN pinching parameter %
35 % .lambda = [−] BWBN pinching parameter %
36 % .q = [−] BWBN pinching parameter %
37 % .frequency = [Hz] system's natural frequency %
38 % .zita = [−] system's damping ratio %
39 % .mass = [kg] system's mass %
40 % .c = [−] system's viscous damping coefficient %
41 % .w0 = [rad/sec] system's natural frequency %
42 % .wd = [rad/sec] system's damping frequency %
43 % %
44 % .u = [mm] displacement response %
45 % .v = [m/s] velocity response %
46 % .z = [mm] hysteretic displacement %
47 % %
48 % .fr restoring force of the BWBN SDF system %
49 % .hys = [kN] restoring force hysteretic component %
50 % .el = [kN] restoring force elastic component %
51 % .tot = [kN] total restoring force of the system %
52 % %
53 % .eps dissipated energy of the BWBN SDF system %
54 % .hys = [J/kg] normalized hysterertic energy %
55 % .el = [J/kg] normalized elastic energy %
56 % .tot = [J/kg] normalized total energy %
57 % %
58 %%%
59
60 % Clear all variables from the workspace, close all figures, and add path
61 clearvars; close all
62 addpath('Input', 'Output', 'Functions', 'Classes', 'Sessions')
63 % Clear command window

105

Matlab® scripts

64 clc; fprintf(['SIMULATION OF EXPERIMENTAL RECORD DATA FOR A '...
65 'NONLINEAR BOUC−WEN−BABER−NOORI SDF SYSTEM:\n\n'])
66
67 %% DEFINING BOUC−WEN−BABER−NOORI SYSTEM CLASS
68 BoucWen = BoucWenClass;
69
70 %% EARTHQUAKE LOAD
71 BoucWen.Earthquake.name = 'Montenegro (1979)';
72 BoucWen.Earthquake.record = load('RSN4451_MONTENE.GRO_BSO000.txt')';
73 BoucWen.Earthquake.ag = BoucWen.Earthquake.record * 9.81;
74 BoucWen.Earthquake.ts = 0.01;
75 % Filtering ground motion acceleration
76 BoucWen.Earthquake.filter = 'YES';
77 % .filterParameters = [WpMax, Rp, Rs, Tuning];
78 BoucWen.Earthquake.filterParameters = [20, 3, 8, 0];
79 if strcmp('YES',BoucWen.Earthquake.filter) == 1
80 BoucWen = EarthquakeFiltering(BoucWen);
81 if BoucWen.Earthquake.filterParameters(end) == 1
82 return
83 end
84 end
85 % Plot Accelerogram
86 BWBN_accelerogram(BoucWen,'save');
87
88 %% SYSTEM'S PARAMETERS
89 BoucWen.Parameters.alpha = 0.05;
90 BoucWen.Parameters.ki = 7.6;
91 BoucWen.Parameters.beta = 63e−3;
92 BoucWen.Parameters.gamma = BoucWen.Parameters.beta * 1;
93 BoucWen.Parameters.N = 1;
94 BoucWen.Parameters.delta_eta = 6.5;
95 BoucWen.Parameters.delta_A = 0;
96 BoucWen.Parameters.delta_nu = 2.3;
97 BoucWen.Parameters.mass = 12000;
98 BoucWen.Parameters.zita = 0.03;
99 % Pinching (.hz == 1 no pinching /.hz == [] pinching)
100 BoucWen.Parameters.hz = 1;
101 % Pinching parameters
102 if isempty(BoucWen.Parameters.hz) == 1
103 BoucWen.Parameters.p = 2;
104 BoucWen.Parameters.z0 = 1;
105 BoucWen.Parameters.psi0 = 0.5;
106 BoucWen.Parameters.delta_psi0 = 0.6;
107 BoucWen.Parameters.lambda = 0.9;
108 BoucWen.Parameters.q = 1;
109 end
110
111 %% MODEL VALIDATION IN LINEAR FIELD
112 BWBN_linearValidation(BoucWen,'save');
113
114 %% EXPERIMENTAL DATA RECORDS SIMULATION
115 % Solve Bouc−Wen−Baber−Noori system with ode45
116 BoucWen = BWBN_solve(BoucWen,'verbose');
117 % Save experimental data simulation
118 BWBN_saveExperimentalData(BoucWen);
119 % Print Bouc−Wen−BAber−Noori system info
120 BWBN_print(BoucWen);
121 % Plot Bouc−Wen−Baber−Noori system response
122 BWBN_plot(BoucWen,'savePlot');
123
124 %% SAVE WORKSPACE
125 save(fullfile('..', 'Matlab', 'Sessions', 'BWBN_experimental_data.mat'));

106

Matlab® scripts

BWBN identification.m
1 %% IDENTIFICATION OF BOUC−WEN−BABER−NOORI SDF SYSTEM'S PARAMETERS WITH PS & IP
2
3 % INFO SCRIPT %%%
4 % %
5 % The script identify the parameters of the hysteretic Bouc−Wen−Baber−Noori %
6 % system using Pattern Search (PS) & Interior Point (IP) algorithms. %
7 % %
8 %%%
9

10 % Clear all variables from the workspace, close all figures, and add path
11 clearvars; close all
12 addpath('Input', 'Output', 'Functions', 'Classes', 'Sessions')
13 % Clear command window
14 clc; fprintf(['IDENTIFICATION OF BOUC−WEN−BABER−NOORI SDF'...
15 'SYSTEM''S PARAMETERS\nWITH PATTERN SEARCH & INTERIOR '...
16 'POINT ALGORITHMS:\n\n']);
17
18 %% DEFINING BOUC WEN SYSTEM CLASS
19 BoucWen = BoucWenClass;
20
21 %% EARTHQUAKE LOAD
22 BoucWen.Earthquake.name = 'Montenegro (1979)';
23 BoucWen.Earthquake.record = load('RSN4451_MONTENE.GRO_BSO000.txt')';
24 BoucWen.Earthquake.ag = BoucWen.Earthquake.record * 9.81;
25 BoucWen.Earthquake.ts = 0.01;
26 % Filtering ground motion acceleration
27 BoucWen.Earthquake.filter = 'YES';
28 % .filterParameters = [WpMax, Rp, Rs, Tuning];
29 BoucWen.Earthquake.filterParameters = [20, 3, 8, 0];
30 if strcmp('YES',BoucWen.Earthquake.filter) == 1
31 BoucWen = EarthquakeFiltering(BoucWen);
32 if BoucWen.Earthquake.filterParameters(end) == 1
33 return
34 end
35 end
36
37 %% SYSTEM'S PARAMETERS
38 BoucWen.Parameters.N = 1;
39 BoucWen.Parameters.delta_eta = 0;
40 BoucWen.Parameters.delta_A = 0;
41 BoucWen.Parameters.delta_nu = 0;
42 BoucWen.Parameters.mass = 12000;
43 BoucWen.Parameters.zita = 0.03;
44 BoucWen.Parameters.hz = 1;
45
46 %% LOAD 'EXPERIMENTAL DATA'
47 u_experimental = load('u_experimental.txt');
48 fr_experimental = load('fr_tot_experimental.txt');
49
50 %% PARAMETERS IDENTIFICATION
51 % Lower bound (lb), upper bound (up) of BWBN parameters
52 % and selection of 1st set of random parameters (randSet)
53 lb.alpha = 0; ub.alpha = 1; randSet.alpha = 0.5;
54 lb.ki = 4.27; ub.ki = 11.85; randSet.ki = 5;
55 lb.beta = 55e−3; ub.beta = 65e−3; randSet.beta = 57e−3;
56 lb.gamma = −randSet.beta; ub.gamma = randSet.beta; randSet.gamma = 0;
57
58 % Pattern Search algorithm to evaluate BWBN system with no degradation
59 BoucWen(1) = BWBN_PatternSearch(BoucWen(1), lb, ub, randSet,...
60 u_experimental, fr_experimental);
61
62 % Interior Point algorithm to evaluate BWBN system with no degradation
63 BoucWen(2) = BWBN_InteriorPoint(BoucWen(1), lb, ub, randSet,...

107

Matlab® scripts

64 u_experimental, fr_experimental);
65
66 %% SAVE
67 save(fullfile('..', 'Matlab', 'Sessions', 'BWBN_identification.mat'));

108

Acknowledgements

Bibliography

[1] Abbiati, G., Bursi, O., Caperan, P., Di Sarno, L., Molina, F., Paolacci, F., & Pegon, P.
(2015). Hybrid simulation of a multi-span rc viaduct with plain bars and sliding bearings.
Earthquake Engineering & Structural Dynamics, 44, 2221–2240.

[2] Abbiati, G., Miraglia, G., Mojsilovic, N., & Stojadinovic, B. (2017). Hybrid simulation
with dynamic substructuring of masonry structures: A numerical study.

[3] Alanqar, A., Durand, H., & Christofides, P. D. (2017). Error-triggered on-line model
identification for model-based feedback control. AIChE Journal, 63 (3), 949–966. doi:10.
1002/aic.15430

[4] Andersen, P., & Kirkegaard, P. (1997). Statistical damage detection of civil engineer-

ing structures using armav models. Presented at the 16th International Modal Analysis
Conference, Santa Barbara, California, USA, February 2-5, 1998 PDF for print: 12 pp.
Denmark: Dept. of Building Technology and Structural Engineering, Aalborg University.

[5] Andronikou, A., Bekey, G., & Masri, S. (1982). Identification of nonlinear hysteretic
systems using random search. IFAC Proceedings Volumes, 15 (4), 331–336. doi:10.1016/
s1474-6670(17)63010-6

[6] Baber, T. T., & Noori, M. N. (1985). Random vibration of degrading, pinching systems.
Journal of Engineering Mechanics, 111 (8), 1010–1026. Retrieved from 10.1061/(ASCE)
0733-9399(1985)111:8(1010)

[7] Benedettini, F., Capecchi, D., & Vestroni, F. (1995). Identification of hysteretic oscillators
under earthquake loading by nonparametric models. Journal of Engineering Mechanics,
121 (5).

[8] Billings, S. (2013). Nonlinear system identification: Narmax methods in the time, fre-

quency, and spatio-temporal domains. Wiley. Retrieved from https://books.google.it/
books?id=SaQ2AAAAQBAJ

[9] Blatman, G., & Sudret, B. (2011). Adaptive sparse polynomial chaos expansion based on
least angle regression. Journal of Computational Physics, 230 (6), 2345–2367. doi:https:
//doi.org/10.1016/j.jcp.2010.12.021

[10] Bodeux, J. B., & Golinval, J. C. (2001). Application of ARMAV models to the identifica-
tion and damage detection of mechanical and civil engineering structures. Smart Materials

and Structures, 10 (3), 479–489. doi:10.1088/0964-1726/10/3/309

[11] Bouc, R. (1969). Modèle mathématique d’hystérésis: Application aux systèmes à un degré
de liberté. Journal Acustica, 24, 16–25.

[12] Brewick, P. T., Masri, S. F., Chassiakos, A. G., & Kosmatopoulos, E. B. (2016). A
probabilistic study of the robustness of an adaptive neural estimation method for hysteretic
internal forces in nonlinear mdof systems. Probabilistic Engineering Mechanics, 45, 140–
156. doi:10.1016/j.probengmech.2016.04.002

[13] Brun, M., Batti, A., Combescure, A., & Gravouil, A. (2014). External coupling software
based on macro- and micro-time scales for explicit/implicit multi-time-step co-computations
in structural dynamics. Finite Elements in Analysis and Design, 86, 101–119. doi:https:

113

https://dx.doi.org/10.1002/aic.15430
https://dx.doi.org/10.1002/aic.15430
https://dx.doi.org/10.1016/s1474-6670(17)63010-6
https://dx.doi.org/10.1016/s1474-6670(17)63010-6
10.1061/(ASCE)0733-9399(1985)111:8(1010)
10.1061/(ASCE)0733-9399(1985)111:8(1010)
https://books.google.it/books?id=SaQ2AAAAQBAJ
https://books.google.it/books?id=SaQ2AAAAQBAJ
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.12.021
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.12.021
https://dx.doi.org/10.1088/0964-1726/10/3/309
https://dx.doi.org/10.1016/j.probengmech.2016.04.002
https://dx.doi.org/https://doi.org/10.1016/j.finel.2014.04.005
https://dx.doi.org/https://doi.org/10.1016/j.finel.2014.04.005
https://dx.doi.org/https://doi.org/10.1016/j.finel.2014.04.005

Bibliography

//doi.org/10.1016/j.finel.2014.04.005

[14] Bursi, O. S., Ceravolo, R., Erlicher, S., & Zanotti Fragonara, L. (2012). Identification of the
hysteretic behaviour of a partial-strength steel-concrete moment-resisting frame structure
subject to pseudodynamic tests. Earthquake Engineering & Structural Dynamics, 41 (14),
1883–1903. doi:10.1002/eqe.2163

[15] Calabrese, A., Strano, S., & Terzo, M. (2018). Adaptive constrained unscented kalman
filtering for real-time nonlinear structural system identification. Structural Control and

Health Monitoring, 25 (2), e2084. doi:10.1002/stc.2084

[16] Catbas, N., Kijewski-Correa, T., & Aktan, A. (2013). Structural identification of con-

structed systems - approaches, methods, and technologies for effective practice of st-id.
doi:10.1061/9780784411971

[17] Ceravolo, R., Demarie, G. V., & Erlicher, S. (2010). Instantaneous identification of de-
grading hysteretic oscillators under earthquake excitation. Structural Health Monitoring,
9 (5), 447–464. doi:10.1177/1475921710368202

[18] Ceravolo, R., Erlicher, S., & Fragonara, L. Z. (2013). Comparison of restoring force models
for the identification of structures with hysteresis and degradation. Journal of Sound and

Vibration, 332 (26), 6982–6999. doi:10.1016/j.jsv.2013.08.019

[19] Chassiakos, A., Masri, S., Smyth, A., & Caughey, T. (1998). On-line identification of
hysteretic systems. Journal of applied mechanics, 65 (1), 194–203.

[20] Chassiakos, A., Masri, S., Smyth, A., & Anderson, J. (1995). Adaptive methods for
identification of hysteretic structures, 2349–2353 vol.3. doi:10.1109/ACC.1995.531392

[21] Chatzi, E. N., Smyth, A. W., & Masri, S. F. (2010). Experimental application of on-
line parametric identification for nonlinear hysteretic systems with model uncertainty.
Structural Safety, 32 (5), 326–337. doi:10.1016/j.strusafe.2010.03.008

[22] Chatzi, E., & Papadimitriou, C. (2016). Identification methods for structural health mon-

itoring. doi:10.1007/978-3-319-32077-9

[23] Chatzis, M., Chatzi, E., & Triantafyllou, S. (2017). A discontinuous extended kalman
filter for non-smooth dynamic problems. Mechanical Systems and Signal Processing, 92,
13–29. doi:10.1016/j.ymssp.2017.01.021

[24] Distefano, N., & Rath, A. (1975). System identification in nonlinear structural seismic
dynamics. Computer Methods in Applied Mechanics and Engineering, 5 (3), 353–372.
doi:10.1016/0045-7825(75)90007-9

[25] Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Ann.

Statist. 32 (2), 407–499. doi:10.1214/009053604000000067

[26] Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis

(2nd ed.). Chapman and Hall/CRC.

[27] Ghobadi, M., Majji, M., & Esfahani, E. T. (2017). Aosid: An analytical solution to the
output-only system identification problem to estimate physical parameters and unknown
input simultaneously. Structural Control and Health Monitoring, 24 (8), e1951. doi:10.
1002/stc.1951

[28] Goerens, E. (2018). Hybrid testing of masonry walls (Doctoral dissertation, ETH Zürich).

[29] Goodman, J., & Weare, J. (2010). Ensemble samplers with affine invariance. Communica-

tions in Applied Mathematics and Computational Science, 5. doi:10.2140/camcos.2010.5.65

[30] Hou, Z., Noori, M., & St. Amand, R. (2000). Wavelet-based approach for structural
damage detection. Journal of Engineering Mechanics-asce - J ENG MECH-ASCE, 126.
doi:10.1061/(ASCE)0733-9399(2000)126:7(677)

[31] Huh, J., & Haldar, A. (2001). Stochastic finite-element-based seismic risk of nonlinear

114

https://dx.doi.org/https://doi.org/10.1016/j.finel.2014.04.005
https://dx.doi.org/https://doi.org/10.1016/j.finel.2014.04.005
https://dx.doi.org/https://doi.org/10.1016/j.finel.2014.04.005
https://dx.doi.org/10.1002/eqe.2163
https://dx.doi.org/10.1002/stc.2084
https://dx.doi.org/10.1061/9780784411971
https://dx.doi.org/10.1177/1475921710368202
https://dx.doi.org/10.1016/j.jsv.2013.08.019
https://dx.doi.org/10.1109/ACC.1995.531392
https://dx.doi.org/10.1016/j.strusafe.2010.03.008
https://dx.doi.org/10.1007/978-3-319-32077-9
https://dx.doi.org/10.1016/j.ymssp.2017.01.021
https://dx.doi.org/10.1016/0045-7825(75)90007-9
https://dx.doi.org/10.1214/009053604000000067
https://dx.doi.org/10.1002/stc.1951
https://dx.doi.org/10.1002/stc.1951
https://dx.doi.org/10.2140/camcos.2010.5.65
https://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)

Bibliography

structures. Journal of Structural Engineering, 127 (3), 323–329. doi:10.1061/(ASCE)
0733-9445(2001)127:3(323)

[32] Ikhouane, F., & Rodellar, J. (2007). Systems with hysteresis: Analysis, identification and

control using the bouc-wen model. doi:10.1002/9780470513200

[33] Kaipio, J., & Somersalo, E. (2005). Statistical and computational inverse problems. doi:10.
1007/b138659

[34] Kapania, R. K., & Park, S. (1997). Parametric identification of nonlinear structural
dynamic systems using time finite element method. AIAA Journal, 35 (4), 719–726.
doi:10.2514/2.163

[35] Kijewski, T., & Kareem, A. (2003). Wavelet transforms for system identification in civil
engineering. Computer-Aided Civil and Infrastructure Engineering, 18 (5), 339–355. doi:10.
1111/1467-8667.t01-1-00312

[36] Kontoroupi, T., & Smyth, A. W. [Andrew W.]. (2017). Online bayesian model assessment
using nonlinear filters. Structural Control and Health Monitoring, 24 (3), e1880. doi:10.
1002/stc.1880

[37] Li, L., & Qin, H. (2018). An ukf-based nonlinear system identification method using
interpolation models and backward integration. Structural Control and Health Monitoring,
25 (4), e2129. doi:10.1002/stc.2129

[38] Liu, Y., Goorts, K., Ashasi-Sorkhabi, A., Mercan, O., & Narasimhan, S. (2016). A state
space-based explicit integration method for real-time hybrid simulation. Structural Control

and Health Monitoring, 23 (4), 641–658. doi:10.1002/stc.1798

[39] Lu, Z.-R., Yao, R., Wang, L., & Liu, J. (2017). Identification of nonlinear hysteretic
parameters by enhanced response sensitivity approach. International Journal of Non-

Linear Mechanics, 96, 1–11. doi:10.1016/j.ijnonlinmec.2017.07.012

[40] Mai, C. V. (2016). Polynomial chaos expansions for uncertain dynamical systems – applica-

tions in earthquake engineering (Doctoral dissertation, ETH Zürich, Zürich, Switzerland).

[41] Mai, C., Konakli, K., & Sudret, B. (2017). Seismic fragility curves for structures using
non-parametric representations. Frontiers of Structural and Civil Engineering, 11 (2), 169–
186. doi:10.1007/s11709-017-0385-y

[42] Mai, C., Spiridonakos, M., Chatzi, E., & Sudret, B. (2016). Surrogate modelling for
stochastic dynamical systems by combining narx models and polynomial chaos expansions.
International Journal for Uncertainty Quantification, 6. doi:10.1615/Int.J.UQ.2016016603

[43] Mairtin, E., Parry, G., Beltz, G., & Mcgarry, P. (2014). Potential-based and non-potential-
based cohesive zone formulations under mixed-mode separation and over-closure–part ii:
Finite element applications. Journal of the Mechanics and Physics of Solids, 63, 363–385.
doi:10.1016/j.jmps.2013.08.019

[44] Marelli, S., & Sudret, B. (2019). Uqlab: A framework for uncertainty quantification in mat-
lab. In Vulnerability, uncertainty, and risk (pp. 2554–2563). doi:10.1061/9780784413609.
257. eprint: https://ascelibrary.org/doi/pdf/10.1061/9780784413609.257

[45] Masri, S. F., Bekey, G. A., Sassi, H., & Caughey, T. K. (1982). Non-parametric identi-
fication of a class of nonlinear multidegree dynamic systems. Earthquake Engineering &

Structural Dynamics, 10 (1), 1–30. doi:10.1002/eqe.4290100102

[46] Masri, S. F., Caffrey, J. P., Caughey, T. K., Smyth, A. W., & Chassiakos, A. G. (2004).
Identification of the state equation in complex non-linear systems. International Journal

of Non-Linear Mechanics, 39 (7), 1111–1127. doi:10.1016/S0020-7462(03)00109-4

[47] Masri, S. F., Nakamura, M., Chassiakos, A. G., & Caughey, T. K. (1996). Neural net-
work approach to detection of changes in structural parameters. Journal of Engineering

Mechanics, 122 (4), 350–360.

115

https://dx.doi.org/10.1061/(ASCE)0733-9445(2001)127:3(323)
https://dx.doi.org/10.1061/(ASCE)0733-9445(2001)127:3(323)
https://dx.doi.org/10.1002/9780470513200
https://dx.doi.org/10.1007/b138659
https://dx.doi.org/10.1007/b138659
https://dx.doi.org/10.2514/2.163
https://dx.doi.org/10.1111/1467-8667.t01-1-00312
https://dx.doi.org/10.1111/1467-8667.t01-1-00312
https://dx.doi.org/10.1002/stc.1880
https://dx.doi.org/10.1002/stc.1880
https://dx.doi.org/10.1002/stc.2129
https://dx.doi.org/10.1002/stc.1798
https://dx.doi.org/10.1016/j.ijnonlinmec.2017.07.012
https://dx.doi.org/10.1007/s11709-017-0385-y
https://dx.doi.org/10.1615/Int.J.UQ.2016016603
https://dx.doi.org/10.1016/j.jmps.2013.08.019
https://dx.doi.org/10.1061/9780784413609.257
https://dx.doi.org/10.1061/9780784413609.257
https://ascelibrary.org/doi/pdf/10.1061/9780784413609.257
https://dx.doi.org/10.1002/eqe.4290100102
https://dx.doi.org/10.1016/S0020-7462(03)00109-4

Bibliography

[48] Masri, S., Miller, R., Saud, A., & Caughey, T. (1987a). Identification of nonlinear vibrating
structures: Part i. Journal of Applied Mechanics, 54. doi:10.1115/1.3173140

[49] Masri, S., Miller, R., Saud, A., & Caughey, T. (1987b). Identification of nonlinear vibrating
structures: Part ii - applications. Journal of Applied Mechanics, 54.

[50] Matlab version 9.7.0.11 (r2019b). (2019). Natick, Massachusetts: The MathWorks Inc.

[51] Mcgarry, P., Mairtin, E., Parry, G., & Beltz, G. (2014). Potential-based and non-potential-
based cohesive zone formulations under mixed-mode separation and over-closure. part
i: Theoretical analysis. Journal of the Mechanics and Physics of Solids, 63, 336–362.
doi:10.1016/j.jmps.2013.08.020

[52] Milani, G., & Bertolesi, E. (2017). Quasi-analytical homogenization approach for the non-
linear analysis of in-plane loaded masonry panels. Construction and Building Materials,
146, 723–743. doi:10.1016/j.conbuildmat.2017.04.008

[53] Miraglia, G. (2019). Hybrid simulation techniques in the structural analysis and testing

of architectural heritage (Doctoral Dissertation, Supervisor Ceravolo, R., Politecnico di
Torino, Doctoral Program in Architectural and Landscape Heritage (31th Cycle)).

[54] Ogrizovic, J., Abbiati, G., Stojadinovic, B., & Frangi, A. (2018). Hybrid simulation of a
two-storey two-bay post-tensioned timber frame. In 6th european conference on earthquake

engineering, thessaloniki.

[55] Patel, S., Chourasia, A., Panigrahi, S., Parashar, J., Parvez, N., & Kumar, M. (2016).
Damage identification of rc structures using wavelet transformation. Procedia Engineering,
144, 336–342. International Conference on Vibration Problems 2015. doi:10.1016/j.proeng.
2016.05.141

[56] Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., & Ni, P. (2018). Structural dam-
age identification based on autoencoder neural networks and deep learning. Engineering

Structures, 172, 13–28. doi:doi.org/10.1016/j.engstruct.2018.05.109

[57] Patterson, M. A., Weinstein, M., & Rao, A. V. (2013). An efficient overloaded method for
computing derivatives of mathematical functions in matlab. ACM Trans. Math. Softw.

39 (3), 17:1–17:36. doi:10.1145/2450153.2450155

[58] Pei, J. S., Smyth, A., & Kosmatopoulos, E. (2004). Analysis and modification of volterra
/ wiener neural networks for the adaptive identification of non-linear hysteretic dynamic
systems. Journal of Sound and Vibration, 275 (3), 693–718. doi:10.1016/j.jsv.2003.06.005

[59] Risorse di calcolo fornite da HPC@polito, progetto di Academic Computing del Diparti-
mento di Automatica e Informatica presso il Politecnico di Torino. (n.d.).

[60] Robert, C., & Casella, G. (2004). Monte carlo statistical methods. Springer Texts in
Statistics. Springer New York.

[61] Roberts, G. O., Gelman, A., & Gilks, W. R. (1997). Weak convergence and optimal scaling
of random walk metropolis algorithms. The Annals of Applied Probability, 7 (1), 110–120.
Retrieved from http://www.jstor.org/stable/2245134

[62] Saha, S. K., Sepahvand, K., Matsagar, V. A., Jain, A. K., & Marburg, S. (2016). Fragility
analysis of base-isolated liquid storage tanks under random sinusoidal base excitation using
generalized polynomial chaos expansion–based simulation. Journal of Structural

Engineering, 142 (10), 04016059. Retrieved from 10.1061/(ASCE)ST.1943-541X.0001518

[63] Simpson, T., Poplinski, J., Koch, P. N., & Allen, J. (2001). Metamodels for computer-
based engineering design: Survey and recommendations. Engineering with Computers,
17 (2), 129–150. doi:10.1007/PL00007198

[64] Smyth, A. W. [A. W.], Masri, S. F., Chassiakos, A. G., & Caughey, T. K. (1999). On-line
parametric identification of mdof nonlinear hysteretic systems. Journal of Engineering

Mechanics, 125 (2), 133–142.

116

https://dx.doi.org/10.1115/1.3173140
https://dx.doi.org/10.1016/j.jmps.2013.08.020
https://dx.doi.org/10.1016/j.conbuildmat.2017.04.008
https://dx.doi.org/10.1016/j.proeng.2016.05.141
https://dx.doi.org/10.1016/j.proeng.2016.05.141
https://dx.doi.org/doi.org/10.1016/j.engstruct.2018.05.109
https://dx.doi.org/10.1145/2450153.2450155
https://dx.doi.org/10.1016/j.jsv.2003.06.005
http://www.jstor.org/stable/2245134
10.1061/(ASCE)ST.1943-541X.0001518
https://dx.doi.org/10.1007/PL00007198

Bibliography

[65] Spiridonakos, M., & Chatzi, E. (2015). Metamodeling of nonlinear structural systems
with parametric uncertainty subject to stochastic dynamic excitation. Earthquakes and

Structures, 8, 915–934. doi:10.12989/eas.2015.8.4.915

[66] Tsou, P., & Shen, M.-H. H. (1994). Structural damage detection and identification using
neural networks. AIAA Journal, 32 (1), 176–183. doi:10.2514/3.11964

[67] Wagner, P.-R., Nagel, J., Marelli, S., & Sudret, B. (2019). UQLab user manual - Bayesian

inversion for model calibration and validation. Chair of Risk, Safety and Uncertainty
Quantification, ETH Zurich, Switzerland. Report # UQLab-V1.3-113.

[68] Wan, X., & Karniadakis, G. (2006). Long-term behavior of polynomial chaos in stochastic
flow simulations. Computer Methods in Applied Mechanics and Engineering, 195, 5582–
5596. doi:10.1016/j.cma.2005.10.016

[69] Wen, Y.-K. (1976). Method for random vibration of hysteretic systems. Journal of Engi-

neering Mechanics Division ASCE, 102 (2), 249–263.

[70] Worden, K., Becker, W., Rogers, T., & Cross, E. (2018). On the confidence bounds of gaus-
sian process narx models and their higher-order frequency response functions. Mechanical

Systems and Signal Processing, 104, 188–223. doi:10.1016/j.ymssp.2017.09.032

[71] Wu, M., & Smyth, A. (2008). Real-time parameter estimation for degrading and pinching
hysteretic models. International Journal of Non-Linear Mechanics, 43 (9), 822–833. doi:10.
1016/j.ijnonlinmec.2008.05.010

[72] Xiuli, D., & Fengquan, W. (2010). Modal identification based on gaussian continuous
time autoregressive moving average model. Journal of Sound and Vibration, 329 (20),
4294–4312. doi:10.1016/j.jsv.2010.04.018

[73] Xu, X., & Needleman, A. (1999). Void nucleation by inclusion debonding in a crystal
matrix. Modelling and Simulation in Materials Science and Engineering, 1, 111. doi:10.
1088/0965-0393/1/2/001

[74] Yun, C.-B., & Shinozuka, M. (1980). Identification of nonlinear structural dynamic sys-
tems. Journal of Structural Mechanics, 8 (2), 187–203. doi:10.1080/03601218008907359

[75] Zhang, H., Foliente, G. C., Yang, Y., & Ma, F. (2002). Parameter identification of inelastic
structures under dynamic loads. Earthquake Engineering & Structural Dynamics, 31 (5),
1113–1130. doi:10.1002/eqe.151

117

https://dx.doi.org/10.12989/eas.2015.8.4.915
https://dx.doi.org/10.2514/3.11964
https://dx.doi.org/10.1016/j.cma.2005.10.016
https://dx.doi.org/10.1016/j.ymssp.2017.09.032
https://dx.doi.org/10.1016/j.ijnonlinmec.2008.05.010
https://dx.doi.org/10.1016/j.ijnonlinmec.2008.05.010
https://dx.doi.org/10.1016/j.jsv.2010.04.018
https://dx.doi.org/10.1088/0965-0393/1/2/001
https://dx.doi.org/10.1088/0965-0393/1/2/001
https://dx.doi.org/10.1080/03601218008907359
https://dx.doi.org/10.1002/eqe.151

	Introduction
	Structural Identification
	Type of model employed in St-Id
	Structural Identification stages
	St-Id of nonlinear hysteretic systems

	Bayesian inference for model calibration
	Inverse problems
	Bayesian inference
	Predictions

	Bayesian inference for model calibration
	Inverse solution
	Model predictions

	Markov Chain Monte Carlo simulations
	Affine invariant ensemble algorithm (AIES)
	Convergence of MCMC simulations

	Surrogate modeling
	Polynomial chaos expansions
	Kriging
	Surrogate modelling for stochastic dynamical systems
	Nonlinear Autoregressive with eXogenous input model
	PC-NARX
	Kriging-NARX

	Model validation and numerical benchmarks
	Bouc-Wen-Baber-Noori model of hysteresis
	Model validation
	Simulation of experimental record data
	Calibration not accounting discrepancy
	Calibration accounting random variable discrepancy
	Reference model
	NARX model
	PC-NARX and Kriging-NARX surrogate models
	Bayesian inversion using PC-NARX metamodel
	Bayesian inversion with Kriging-NARX

	Hybrid simulation tests of the masonry facade case study
	Hybrid simulations
	Architecture of the hybrid simulator

	Description of the case study
	Materials
	Hybrid simulations

	NARX model for the masonry facade case study
	Cohesive Zone Models for mortar joints in masonry
	FE model parameterization
	NARX model

	Bibliography

