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Summary

Cardiovascular disease is the leading cause of death. For the prevention and treat-
ment of such phatologies, continuous patient monitoring is necessary. The development
of miniaturized, minimally invasive and wearable devices within a Body Area Network is
the breakthrough of the state-of-the-art technologies.

Accurate and continuous monitoring allows pathological subjects to live in safe condi-
tions, without restrictions of lifestyle.

As blood pressure plays a key role among many factors affecting the cardiovascular
system, increasingly accurate techniques, such as the photopletismography, allow its mon-
itoring. The Pulse Tranit Time is a physiological parameter derived from calculations on
ECG and PPG signals.

The aim of this study is to develop an algorithm capable of accurately calculating the
PTT, using two wearable devices with BLE connection within a BAN. One device was
used to acquire the single channel ECG signal, the other one on the wrist to acquire the
PPG signal with a green LED. Through an algorithm of motion and noise detection, the
study of the PTT was carried out only in absence of motion contributions. To ensure
the synchronization of BAN devices, a simple and innovative synchronization algorithm
based on the study of the accelerometric signals morphology was proposed. The PTT was
calculated on the synchronized signals using three PPG different references points, such
as the foot, the peak and the maximum slope point.

The results were compared with the ones obtained from a single device capable of
acquire the ECG signal and the finger PPG one, at the same time.

The results show that, despite the PTT computation algorithm providing positive
results, it is necessary to increase the level of accuracy of the synchronization algorithm
and device to ensure a proper evaluation of the PTT within the BAN.
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Chapter 1

Aim of the project

The evolution of demographic dynamics and the variation in the health needs of the
population require an organizational redesign services network. Given the growing number
of elderly and chronic diseases, it needs to provide increasingly advanced devices, able to
monitor patients constantly, without hinder or limit their normal lifestyle [24].

Chronic diseases are becoming the most common cause of disability and death. A
chronic disorder is a psychological or physical health condition that causes functional
restrictions with a negative impact on the quality of life. Examples include hypertension,
cancer, stroke, diabetes, respiratory diseases, arthritis, heart and oral disease [25].

Hypertension plays an influential role in this area and in the formation of ischemic
heart and cerebrovascular disease, like renal and cardiac failure [26]. Treating hypertension
allows to reduce the strokes of 40% and the possibility of heart attacks of 15%. Even if
there are different strategies for treating the problem of hypertension, which aim to prevent
cardiovascular disease (CVD), hypertension remains a problem even now [27].

For this reason, in recent decades, biomedical engineering has encouraged the devel-
opment of simple and reliable devices.

Great interest has been shown in wearable systems to monitor the risk of acute events.
By continuously monitoring, wearable devices allow to detect chronic diseases characterised
by large latency. These devices permit over longer periods of time, several weeks or months,
to monitor patients: detects signals, interpret the data and every medical condition that
will benefit in some shape, way or form the person’s health.

Using multiple sensors, one can control several aspects of the patient by means of
wireless connections and send the information to a personal server [28]. Technological
innovation can contribute to the reorganization of health care, in particular by supporting
the shift of the focus of health care from the hospital to the entire territory. This is
possible through innovative care models focused on the citizen and facilitating access to
services in the territory. The objective is to assure assistance by ensuring the continuity of
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1.1. Telemedicine Chapter 1. Aim of the project

care. Telemedicine aims to bring the service of the doctor directly to the patient’s home,
without the doctor leaving his office and without the patient himself being forced to move.
The treatment of chronic diseases through wearable devices and remote monitoring can
be a priority area for the application of Telemedicine models [24].

The aim of this project is to use wearable and synchronized devices in order to calculate
the Pulse Transit Time (PTT), i.e. the time needed for the Pulse Pressure (PP) wave to
propagate through an arterial vessel [29].

Results obtained using only one device are compared with those obtained by two
devices synchronized among them.

It has been demonstrated that PTT is one of the most promising parameters for
calculating blood pressure (BP), as measured with a catheter implanted in the artery
[30]. The future objective will be to obtain reliable blood pressure results: the proposed
method, using wearable devices, supplies a promising alternative for a continuous measure
of blood pressure.

1.1 Telemedicine

Telemedicine is a way of providing health care services using Information and Commu-
nication Technologies (ICT), related to wired and wireless integrated telecommunications
systems.

In non ambulatory situations, where the patient live far from the medicine, telemedicine
involves the secure transmission of medical information and data in form of images, texts,
sounds.

It promotes the prevention, the diagnosis and the treatment of patients. However, these
systems do not replace the traditional healthcare service in the doctor-patient relationship,
but improve their effectiveness and efficiency.

Telemedicine may be used for several purposes. The problem of people classified at
risk is that they must undergo constant monitoring of certain vital parameters in order to
reduce the risk of complication onset. Telemedicine systems provide the management of
their vital parameter allowing to conduct a normal life.

The patients can acquire their data and then record and transmit them by telephone
to a computer/modem system. Alternatively, this option can be replaced by an automated
acquisition: continuous data can be submitted in real time or in store-and-forward mode,
in which the delay between the acquisition of the data and the advice is planned without
impairing the treatment [31].

In addition, it offers services that aim to transfer diagnostic information without any
commitment by the patient. A complete diagnostic process is difficult to perform through
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1.1. Telemedicine Chapter 1. Aim of the project

the exclusive use of the telemedicine tools, but it can be a complement for the process of
diagnosis and treatment.

Furthermore, telemedicine is also used for teleconsultation. The patient can be treated
through services aimed at making therapeutic choices and assessing the prognostic progress
[24].

Telesurgery is another application: it consists of giving the assistance by specialists in a
surgical procedure. Normally, audio and video connection are used to provide assistance.
Another option is Telepresence Surgery, which guides robotic arms to perform remote
surgical procedures [31].

1.1.1 Components of telemedicine systems

Telecommunications infrastructures play a fundamental role in Telemedicine services.
They transmit data and ensure the communication between the User, the Medical Center
and the Service center. The Medical Center receives health information from the User and
transmits the service results. The Service Centre cover the function of managing the in-
formation system like telephones, computers or tablets, maintaining of biomedical devices
in remote sites like patient’s home for acquiring, processing signals and communication
between patients and doctors or other health professionals [24].

Figure 1.1: Components of a telemedicine system [1]

When the telemedicine service was used for the first time, its applications needed of
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1.1. Telemedicine Chapter 1. Aim of the project

wired communications technologies. An exemple are the integrated services digital network
(ISDN) or plain old telephone network (POTN) .

Normally, wireless telemedicine systems consist of:

• wearable/implantable medical devices;

• wireless communications networks.

The proliferation of radio frequency (RF) and microwave techniques over the last decades
has given new wireless and broadband solutions [32]. Some examples are given below:

• Wireless personal area networks (WPAN) allows a last metre connection by the
introduction of IrDA, RFID, Bluetooth, ZigBee and ultra-wide band [33];

• Wireless local area networks (WLANs) is the standard to provide moderate-to
high-speed data communications within a medium range (30m to 100m). They are
commonly used in their 802.11a, 802.11b, and 802.11g versions to provide wireless
connectivity for local telemedicine services.

IEEE 802.11b operates in the 2.4 GHz band and accommodates data rates of up
to 11 Mb/s, whereas 802.11g, based on orthogonal frequency-division multiplexing
(OFDM), uses frequencies in the same band of the previous case but is characterized
by a data rates of up to 54 Mb/s.

IEEE 802.11a operates in the 5 GHz band with data rates of up to 54 Mb/s.

Limitations of WLANs are his coverage area and mobility;

• Wireless metropolitan area networks (WMANs) is the standard to provide In-
ternet access over a long range outdoor environment. The success of open-standard-
based Wi-Fi WLANs has enebled to develop IEEE802.16 and IEEE802.20, which
are capable of cover longer distances with better quality-of-service (QoS) support
than Wi-Fi.

IEEE802.16, more commonly known as WiMAX, is a WMAN technology able to
provide backhaul connection to WLAN hotspots [33].

The IEEE 802.16/WiMAX is the standard to provide broadband wireless services
requiring high-rate transmission and strict QoS requirements in both indoor and
outdoor environments. The integrated network of IEEE 802.11/WLAN and IEEE
802.16/WiMAX can bring a synergetic improvement to the telemedicine services on
coverage, data rates, and QoS provisioning to mobile users.

To increase the coverage area of a WLAN network, it can be integrated with the
WiMAX one. This can improve the availability of the health services.
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However, to integrated the WiMAX network in the WLAN one, many challenging
problems such as QoS support, radio resource management, scheduling, connection
admission control, and handover management have to be addressed [32];

• third-generation (3G) cellular networks allow the provision of faster data transfer
rates thus enabling the development of telemedicine systems that require high data
transfer rates and are currently only feasible on wired communication networks [33].
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Chapter 2

Physiological background

2.1 Heart physiology

The heart is a muscle organ placed on the inspiratory diaphragm muscle. Anatomically
and functionally, the heart is divided into right and left portions, separated by a longi-
tudinal wall called septum. Within these two areas, a further wall divides the upper and
lower portions, forming a total of four cavities with different sizes, the atria and ventricles.
They are separated respectively by the interatrial and interventricular septa. The atria
have the function of collecting blood, but also to perform a modest pumping action. This
facilitates the blood moving into the left ventricle from the left atrium, which distributes
blood into the rest of the body [34].

The myocardium consists of striated muscle cells. The contact between nearby cells
with very low electrical resistance allows the passage of ions, so that the electrical impulse
can propagate from fiber to fiber, enabling muscle contraction of the atria and ventricles.
The heart works as two intermittent pumps that support the circulation of the blood.
To do this, the two pumps must remain synchronised [34]. Cardiac contraction is called
systole, while the release phase is called diastole.

The action potential is an event supported by ionic currents that depolarize and
repolarize the cell [34]:

• the repolarization phase is generated by a progressive reduction of the passage
inside the cell of Sodium and Calcium ions and by an output current of positive
charges (K+ ions) that make the inside of the cell negative. This generates the
formation of the resting potential, in which the amount of K+ ions inside the cell is
lower than that of Na+ ions outside;

• the depolarization phase is characterized by an inversion of polarization and there-
fore by a massive entry of positive charges inside the cell. Calcium ions go into the
cell generating an action potential.
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2.1. Heart physiology Chapter 2. Physiological background

The impulse from the sinoatrial node (SA), located on the outer wall of the right atrium,
reaches the atrioventricular node (AV) located above the plane of the tricuspid valve,
where conduction slows down. The contraction of the atria occurs before the ventricular
one and it allows the atrium to fill the left ventricular chamber. From the AV node, the His
beam originates running along the wall of the interventricular septum. Reaching the distal
portions, it gives rise to two branches, the right branch and the left one. These branches
spread into the peripheral system of conduction (Purkinje fibers) which allows the almost
simultaneous transmission of the pulse (depolarization waves) to the endocardium of the
two ventricles [34].

The heart cycle is the period defining the time interval between a systole and the next
one. It consists of four phases [34]:

• ventricular filling: the blood reaches the ventricles because the Atrioventricular
valves between the atria and the ventricles are open. Since the heart is relaxed,
the diastolic phase occurs. The increase of the ventricular volume at the end of
the filling phase determines the closure of the valves, marking the beginning of the
systolic phase;

• isovolumetric contraction: in this phase all the valves are closed. The pressure
inside the ventricle rises rapidly due to isometric contraction. When the value of the
ventricular pressure exceeds that of the aorta, the semi-moon valves open;

• ejection: with the opening of the semi-moon valves, the blood is expelled from the
contracting ventricle. Ventricular pressure continues to rise (because it continues to
contract) while volume decreases rapidly;

• iso-volumetric release: once the aortic valve is closed, the pressure inside the
ventricular chamber decreases.

Figure 2.1: Representation of heart cycle [2]
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The cardiovascular system, consisting of the heart and blood vessels, is in charge of
releasing nutrients and oxygen to the body cells. Body vessels con be distinguished in [35]:

• arteries: vessels that transport nutrients from the heart to the tissues;

• veins: vessels that transport nutrients from the tissues to the heart.

There are two types of blood circulation [35]:

• the systemic circulation connects the heart to all tissues of the body. The blood
moves along the arteries, according to decreasing diameters. In the capillary network,
it gives oxygen and nutrients to the tissues. Recharging itself with waste substances
and carbon dioxide, the blood reach the right ventricle through the veins;

Figure 2.2: Circulatory system [3]

• The pulmonary circulation connects the heart to the lungs. The blood rich
in carbon dioxide moves from the right ventricle to the pulmonary artery. Latter
branches out into smaller vessels to form a network around the pulmonary vesicles.
Here, the blood recharges with oxygen, releasing carbon dioxide.
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2.1.1 Electrocardiogram

The electrocardiogram (ECG) is the recording and reproduction of the electrical and
chemical activity of the cardiac muscle fibres. The electrical potential is transmitted
around the body and can be detected on the skin [36]. This non-invasive measurement
is obtained by using ten electrodes at specific points in the human body: six of these are
placed on the chest, the rest on each limb. The obtained recording represents the various
phases of depolarization and repolarization of the heart muscle fibers during the cardiac
cycle [37].

The ECG can provide information useful to establish the condition of the patient,
based on the analysis on the intervals it is composed of. Specifically, it is formed by the
following waves and segments [38]:

Figure 2.3: Pattern of electrical activity in the heart [4]

• the P wave is a deflection wave that represents the depolarization phase of the atria;

• the QRS complex is generated after atrial depolarization and consists of 3 waves
constituting the ventricular depolarization;

– the Q wave is usually thin and small and is related both to the depolarization
of the interventricular septum and to the respiration. They give information
about the myocardial infarction;
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– the R wave is the largest because it reflects the depolarization activity of a
large portion of the ventricle;

– the S wave is generated by the final action of ventricle depolarization [36].

• the T wave represents the repolarization of the ventricle, from the epicardium to
the endocardium [34];

• the PR interval is the time measured between the first deflection of the P wave
and those of the QRS complex;

• the ST segment is the portion between the end of the QRS complex and the
beginning of T wave. It defines the interval between the ventricular depolarization
and the repolarization [36].

2.1.2 Cardiovascular variability

The variability of the time period between consecutive heartbeats reflects the healthy
functioning of the heart activity. Its fluctuations are not purely random episodes, but they
are related to several influencing factors that may be external or internal to the subject
(i.e diseases or stress).

Factors influencing the spontaneous cardiac variability are the activity of the sym-
pathetic and parasympathetic nervous system in addition to the pressure interactions of
respiratory activity. Chronotropy, namely the variation in the regular heart rate coming
from the nervous system, can be evaluated in two different ways [5]:

• heart rate (HR) measured in beats per minute (bpm). This is an estimate normal-
ized over time, i.e in 60 seconds. By using several heart rate values, it is possible to
obtain a final value defined in a specific time interval. It is a measure easily feasible
as it occurs through the palpation of an artery;

• R-R interval (RRI), as the distance in milliseconds between two consecutive R-
peaks of the cardiac cycle. The inverse of this measure corresponds to the HR, even
if the changes in the R-R range do not correspond with those in the HR. In fact, the
variability with which the interval of time between two heartbeats changes, is not
known in the case of HR.

2.1.3 Blood pressure

The blood flowing inside their vessels generates a pressure on the walls proportional
to the force that the heart uses to pump the blood into the vessels, which is called blood
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Figure 2.4: Relationship between HR and RRI [5]

pressure. Depending on the type of vessel in which it is measured, this is called venous
pressure or arterial pressure. The tone of the venous pressure is lower than the arterial
one, since in this tract the blood does not receive the cardiac thrust. For this reason, the
measurement of venous pressure is carried out only in the case of particular pathologies
[39].

Venous pressure

The measurement of the central venous pressure is generally performed in the vena
cava. Its value fluctuates in the range of 8-12 mmHg.

Many factors influence the estimation of the venous pressure, such as the cardiac
output, the variation of the position during the measurement, the transition from erect to
supine position, renal failure or even dilation of the arteries.

This measurement can be used as an estimate of the pressure at the right atrium of the
heart. It is influenced by the functioning of different organs and therefore is a reference of
the hemodynamic state of the patient.

The central venous pressure is measured by means of a catheter which, through the
jugular vein, is positioned inside the vena cava, near the atrium.

Pressure transducers and amplifiers are used to convert the signal. Alternatively, the
ultrasound machine can also be used. By studying the response of the fluid with the
ultrasound, it is possible to measure the diameter of the lower vena cava thus making an
estimate of the pressure [40].
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Arterial pressure

The blood pressure depends on the blood flow at a given time: an increase in blood
volume causes an increase in blood pressure. Since the blood is introduced from the heart
into the large arteries during systole, the arteries will contain more blood in the systolic
period than in the diastolic one.

Therefore, four arterial pressure values can be distinguished, all resulting from the same
periodic phenomenon. Each one, however, depends on specific hemodynamic parameters
[41]:

Figure 2.5: Representation in time of arterial blood pressure [6]

• Mean pressure (MBP), is the pressure that a continuous and non pulsatile flow
system would have, to keep the blood flow constant. It depends on cardiac output
and vascular resistance, which in turn are determined by vessel size and by the
number of small arteries and arterioles.

• Diastolic pressure (DBP), also called minimum pressure. It is generated when the
heart is not contracted but released. Its value is always lower than the systolic one
[39]. The hemodynamic parameters that influence this measure are the peripheral
resistance to the sliding generated by the small arterioles, the rigidity of the arteries
and the duration of the diastolic phase [23].

• Systolic pressure, also called maximum pressure, is generated by the flow of
oxygen-rich blood into the vessels during the contraction phase of the heart. It de-
pends on the left ventricular ejection rate, vascular resistance, peripheral reflection
waves. Indeed, if the cardiac output increases, the systolic blood pressure augments
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contrary to the diastolic one, which does not undergo significant variations. An in-
crease in peripheral resistance leads to an increase in the systolic pressure, but also
to a more marked increase in the diastolic one. The decrease in arterial compliance
increases systolic pressure due to two mechanisms: the decrease in the damping ca-
pacity of the systolic wave as a result of the more rigid arterial walls, and the earlier
arrival of peripheral reflection waves that are added to the incident wave generated
by the left ventricle. Changes in the characteristics of the reflected waves (amplitude
of the reflected wave and location of the reflection site) cause some modifications of
the arterial pressure, especially in the central arteries [23].

• Pulse pressure represents the aortic pressure pulse during systole. In fact, the
aorta undergoes a great variation in pressure during the ejection phase, due to the
high blood flow that passes through its vessel walls [42]. Pulsatory pressure, also
called differential pressure, is defined as the variation of blood pressure values around
the mean pressure value. It can be measured as the difference between systolic and
diastolic pressures [43]. The pulse pressure is mainly influenced by the viscoelastic
properties of the wall of arteries with more or less large diameters. When the blood
flow is constant, there is a reduction in the viscoelastic properties of the wall of the
large arteries, causing an increase in systolic pressure and a decrease in the diastolic
one, so the non-variation of the mean pressure and the increase of the pulse pressure
[23].

Systolic (mmHg) Diastolic (mmHg)
normal below 120 below 80
elevated 120-129 below 80

high BP (stage 1) 130-139 80-89
high BP (stage 2) 140 or higher 90 or higher
hypertensive crisis above 180 above 120

Table 2.1: Blood pressure categories defined by American Heart Association [23]

With the terms hypertension and hypotension, it refers to chronic medical conditions
dictated by an abnormal variation in blood pressure. The problem of hypotension occurs
with an excessive decrease in blood pressure. In contrast, hypertension is caused by an
excessive increase in blood pressure, which in addition to encourage the appearance of
certain risk factors such as heart attack, heart failure and stroke, causes a high decrease
in life expectancy. Hypertension can only be diagnosed by repeated blood pressure mea-
surements. Following diagnosis, medication and frequent blood pressure monitoring can
help to prevent the insurgence of this type of episodes [44].
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2.2 Photoplethysmography

The term Photoplethysmography was coined by the Hertzman team in 1930. It refers
to an optical and non-invasive plethysmographic technique used to obtain measurements
of blood volume fluctuations within the arterial vessels [45].

In fact, the volume of blood inside the tissues depends on the pulsatile nature of the
circulatory system, influenced by the alternation of the four phases of the cardiac cycle.
[15].

The study of arterial volumetric blood pulsations has great clinical potential. Recently,
the PPG signal, thanks to its simplicity and non-invasiveness, is seen as a potential al-
ternative for the measurement of BP. The versatility of the small PPG sensors make it
easy to use for the detection of many cardiovascular diseases as well as for the study of
peripheral microcirculation [13].

The PPG signal has a morphology apparently similar to the arterial pressure pulse
wave but considering the two signals the same leads to errors, as explained below.

2.2.1 PPG sensor

The characteristics of the PPG signal are related to the mode of light diffusion into
the tissues, as well as to the part of the body chosen to collect the signal [15].

The PPG sensor consists of two main components:

• light source. PPG devices use the semiconductor technology, such as LEDs (Light-
Emitting Diodes). LEDs are electronic devices, or diodes, transforming electrical
energy into light energy. Characterized by a narrow emission band, LEDs illuminate
the tissues with a specific wavelength. They operate in long term, generally more
than 105 hours. A low LED intensity and non-ionizing radiation is usually chosen,
to minimize tissue heating, with subsequent cell death [9];

• photodetector to capture the light emitted by the irradiated tissues and to measure
the variations in its intensity [45]. The photodetector converts light energy into
electrical current. Its spectral characteristics are chosen in combination with those
of the light source [9].

2.2.2 Physical principles

Generally, the light radiation interacts with the tissues in three different ways:

• the reflection, generated when the light wave interacts with a body characterized
by a different refraction coefficient, so the wave will be re-emitted. There are different
types of reflection:
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– the specular reflection occurs if the wavelength of the radiation is smaller than
the discontinuities of the surface and the reflected angle forms an angle with
the normal to the surface equal to the incident one;

– diffuse scattering occurs when the beam is broken down and re-emitted in sev-
eral directions.

Figure 2.6: Types of reflection [7]

• absorption of incident wave energy. It generates an increase of the molecules ki-
netic and thermal energy. As a result, absorption depends on the frequency of the
wave. In particular, each substance has specific absorption spectra that can be used
quantitatively for analytical investigations of tissue composition.

• refraction, namely the deviation of the light wave path. It takes place when the
light passes in one medium in which its propagation speed changes.

Depending on the arrangement of the light source and the detector, two possible device
configurations can be chosen:

• transmission mode;

• reflectance mode.

In transmission mode, the light source is in the diametrically opposite position of
the detector.

The LED light is emitted and cross the absorbent tissues with skin pigments, bones,
venous and arterial blood. Subsequently, the detector captures the light transmitted
through the tissues between the two devices, filters it and converts it [9].

This mode is susceptible to the presence of specific environmental factors, such as low
ambient temperature [45].

Parts of the body suitable for this type of analysis are limited, because they must be
as transparent as possible to allow the passage of the light. Usually fingertips, earlobes or
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other areas with a reduced thickness are chosen [9]. However, the advantage of this mode
is that a mathematical law enables to analyze the interaction between light and tissues,
since the light path inside the medium is a known parameter [46].

Figure 2.7: Disposition of the PPG sensor, according to the arrangement of detector
and light source [7]

In reflection mode the detector and the LED are arranged side by side and the
detected light is the one that has been reflected from the tissues and vessels. Also in this
case, the light will be filtered and converted.

An opaque schield is generally placed between the two optoelectronic elements to avoid
artifacts generated by the light emitted directly from the source [45]. This mode, unlike
the first, can be applied to thicker areas of the body, such as wrist, forehead, limbs and
chest [15].

Using a device that can be placed centrally on the body can be an advantage for people
suffering from peripheral vasoconstriction. Some disadvantages are the high sensitivity to
movement between the probe and the tissues in addition to the presence of detected light
from ambient sources. Moreover, it is impossible to know the path of light inside the
tissues, which makes it difficult to apply mathematical laws to interpret the results [46].

2.2.3 Influencing factors

Reflected or transmitted light provides information on the variation in the amount
of blood in the microvascular tissue system, useful for studying the performance of the
vascular system. The amount of light that is usually studied does not coincide with the
incident one, but it oscillates between 1 and 5% of the initial radiation. It is difficult to
distinguish the light absorption by blood from that caused by other anatomical components

17



2.2. Photoplethysmography Chapter 2. Physiological background

such as skin and tissues [47]. Reflected or transmitted light is influenced by many factors
such as [48]:

• properties of the skin: skin structure and composition, blood oxygen saturation,
temperature and blood flow variation;

• number of red blood cells in circulation, orientation and agglomeration;

• speed of contraction and dilation of arterioles and their capillaries .

The structure of the skin can be represented through a medium divided into six lay-
ers. The first layer is the epidermis, which contains dead or dehydrated cells, without
melanosomes and without blood. This layer produces a minimum dispersion of light, in
fact it contributes for just 6% of the total reflectance: the epidermis acts mainly as an
absorbent medium [49].It has a wide absorption band, around 275nm due to aromatic
chromatophores.

The dermis, on the other hand, is the underlying layer which includes elastic collagen
fibres and blood vessels of various sizes, sebaceous and sweat glands and hair follicles. It
is divided into four layers, each of them with different blood concentration: the capillary
rings with a thickness of 150 − 200µm, the upper plexus with a thickness of 80µm, the
reticular dermis with a thickness of 1400 − 3000µm and the deep plexus. The dermis
receives oxygenated blood from the arterial compartment, while the venules collect the
returning deoxygenated blood. Its attenuation coefficients are typically lower and mainly
influenced by collagen fibres that increase the scattering.

The deepest layer is the subcutaneous one, also called hypodermis, which includes fat,
connective tissue and pulsating arteries [8].

The substances that influencing most the optical properties are water and melanin
(i.e the pigment responsible for the colour of the skin). In fact, in presence of light, the
transmittance of the dark sinks can vary by up to three orders of magnitude.

In addition to melanin and water, there are also other substances which affect the
absorption spectrum of this layer, including hemoglobin, fibrous proteins, collagen, fat,
bilirubin and carotene.

The measurement of non-absorbed light, i.e. reflected or transmitted light, can be used
to estimate the amount of blood volume in the tissues, since they are inversely related to
each other [50].

Due to the complicated structure of the skin, studying its behavior through mathemat-
ical laws implies making some simplifications: the thin layer of the epidermis is generally
omitted. The skin, in this case, is considered as a single homogeneous layer and therefore
the behavior can be studied with the theory of photon diffusion on a one-dimensional
model [49].
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Figure 2.8: Schematic representation of skin structure [8]

Beer-Lambert’s law correlates biological behaviour with physical results and can be
employed to explain the theory of diffusion of light radiation [47]. This law relates the
intensity of the incident light beam with the emitted one by the material, which decreases
exponentially increasing its thickness. The result is influenced in the first analysis by the
wavelength of the incident light; other influencing factors are the path travelled by the
light and the composition of the tissues. As explained in (2.1), considering λ as the
wavelength of the light, by increasing the light emitted by the photo-emitter Iin(λ), the
light transmitted Iout(λ) by the tissue and the reflected light will increase [9]:

Iout(λ) = Iin(λ)e−µad (2.1)

where µ is the absorbtion coefficient of the tissue. In addition to the common elements
present in the skin, the transmitted light is influenced by the properties of the blood in
the vessels. Oxygen and glucose, for example, greatly influence the response to irradi-
ation. The presence of glucose decreases the refractive coefficient of the tissue, causing
the reduction of the light absorption and an increment in the amount of light that passes
through the tissue [9]. Oxygenated or deoxygenated haemoglobin in the blood influences
the absorption of light according to the wavelength that is used.

Consequently, the absorption spectrum of the tissues has a fundamental influence on
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Figure 2.9: Absorption spectrum of the oxygenated and deoxygenated hemoglobin [9]

the choice of the wavelength of the light source [9].
The chosen wavelength of the light must be within the so-called optical windows of

the skin, i.e. in the frequency band in which the various pigments of the tissue absorb a
small amount of light and in contrast, most of it is absorbed by the blood. This promotes
the penetration of the radiation in depth, allowing to accurately monitor changes in the
volume of blood.

Light with long wavelength, such as infrared or red, is absorbed in small quantities by
the tissues and can penetrate deep. In contrast, short wavelengths such as blue or green
one are easily absorbed, especially by melanin, so they cannot penetrate deep into the
tissue, but they are mainly used for surface tissue analysis.

The light that goes deep into the tissues is more affected by artifacts such as movement.
It has been shown that the signal obtained with blue light has SNR comparable to the
green light one. Additionally, since blue light manages to penetrate into the tissues less
than the green one, it reflects the characteristics only of small and superficial vessels [51].

Water, which is the most abundant element in human tissues, absorbs mainly in ul-
traviolet. In its absorption spectrum there is a window that allows the passage of light
with wavelengths in red and infrared [9]. Also for this reason, red and infrared are used
in many applications.

Recently, new applications using green light have been explored. The wavelength
of green light is absorbed abundantly, more than the red one, by both oxygenated and
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deoxygenated hemoglobin, improving the quality of the acquired signal. Moreover, its low
penetrating capacity into the tissues reduces the presence of motion artifacts in the signal
acquisition, increasing its SNR [9].

Both photon diffusion theory and in vivo results show an increase in modulation using
green light compared to the red or infrared one. The improvement is greater when the
fractional volume of blood into the skin is smaller. The signal obtained with green light,
due to reduced penetration into the tissues, represents the blood pulsation in the dermis
layer. The red and infrared light, on the other hand, are also affected by the pulsation
of the blood found in the subcutaneous tissue, as well as in the dermis, and the two
contributions are not even separable [49].

2.2.4 PPG signal morphology

The waveform of the PPG signal consists of two components: AC and DC.
The AC component is attributed to the pulsatile behavior of the cardiovascular system

and synchronous cardiac variations in blood volume at each heartbeat [47]. This compo-

Figure 2.10: Components of PPG signal [10]

nent is superimposed to the DC one, which represents the continuous component linked
to the average volume of blood. The latter changes slowly over time and is influenced by
breathing, vasomotor activity, sympathetic nervous system activity, vasoconstrictor waves
as well as thermoregulation [9].

The first part of the waveform is called anacrotic phase or systolic tract and is
obtained by the passage of blood from the aortic root to the peripheral site on which the
sensor is placed. The second part, the catacrotic phase, includes the diastolic tract and
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is obtained by the transmission of pressure from the ventricle, along the aorta, to the lower
part of the body [50]. The features of the signal are:

Figure 2.11: Typical waveform of PPG signal [11]

• systolic peak: obtained when the pressure pulse reaches the peripheral site from
the left ventricle;

• diastolic peak: generated when the pressure wave through the arteries and reaches
the lower part of the body;

• systolic-diastolic peak-to-peak time (SDPPT): measured as the interval time
between the systolic peak and the diastolic one [52];

• dicrotic notch: located at the diastolic tract, it is generated in the instant of closing
of the aortic valve [47]. This episode causes a retrograde flow and an increase of the
blood volume in the arteries for a short time [11]. Its amplitude varies with the
elasticity of the arterial vessels and depends on the pressure wave that is reflected
in the peripheral arteries [15];

• pulse width: defined like the width of the signal obtained considering the time
distance of the two points of the PPG signal with a value equal to half of the systolic
peak. This point relates more precisely the PPG signal with the resistance of the
vascular system than the peak reached in the systolic phase;

• pulse area: defined as the total area underlying the PPG signal curve. The Inflec-
tion Point area (IPA) is an indicator of the resistance of peripheral vessels and is
obtained by the ratio of the two areas underlying the curve separated by the dichrotic
notch;
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• peak to peak interval: time interval between two systolic peaks of the PPG signal.
This value corresponds to the duration of the cardiac cycle and is comparable to the
RRI of the ECG signal;

• pulse interval: measures the distance between the start and end point of the PPG
signal. This is a time interval related to some parameters of the heart system but
the precise relationship is not yet known [11].

2.2.5 Comparison with ABP signal

Since the ABP and PPG signals are generated from the same source, i.e. the heart, it
is expected that the two signals have the same morphology.

A first difference is related to the site where the signal is acquired. In fact there are
differences between the arterial pulse pressure wave acquired distally or in proximity to
the heart.

The waveform of arterial pressure is influenced by multiple contributions such as ven-
tricular contraction, velocity of flow and reflection [12].

Figure 2.12: Comparison between two different gathering sites of BP wave [12]

The velocity at which blood flow changes along the vessels is influenced by their elas-
ticity. The vessels are very elastic in correspondence of the proximal zone to the heart,
becoming more rigid distally. This heterogeneity is caused by the different histological
structure of the wall as well as by the different molecules and cells.

The reflection of the wave, on the other hand, is generated when the blood flow reaches
the branch points of the vessels. A pressure wave is progressively attenuated as it spreads
along the viscoelastic tube, with an exponential decay along the tube, caused by the
variation of the velocity. On the other hand, the pressure in a viscoelastic tube with
numerous branches, is affected by the reflection and it undergoes amplifications.

In elastic vessels, since the velocity of the blood flow is lower, the pressure wave un-
dergoes a slow reflection and goes back to the aortic root, in the diastolic phase. If, on
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the other hand, the arteries have greater rigidity, the blood flow velocity is higher and the
reflected wave returns to the central arteries more quickly, causing an increase in systolic
pressure.

Figure 2.13: Comparison between ABP and PPG signal [13]

The contribution of reflection changes the morphology of the signal collected at the
arteries from the recorded near the heart. In the aorta for example, the reflection is
negligible as it is less rigid.

Aortic pressure can also be measured at the radial artery using a transfer function, or
in carotid artery.

The difference between ABP and PPG is related also to the different technique used
to acquire the signal. The aortic pressure wave can be acquired using a non-invasive
technique, which uses a pencil type probe with a built-in transducer [12]. The acquisition
of the PPG signal is different, as already explained. The contribution of absorption and
reflection of the light generated by the different tissues is added.

2.2.6 Applications

The photopletimographic signal is one of the most valuable signals for physiological
and health monitoring.

In fact, it is used in various clinical fields [53]:

• monitoring of certain parameters. It is advantageous not only for routine health
monitoring but also to support the clinical diagnosis of certain conditions, e.g. car-
diorespiratory problems. Applications such as heart rate, blood pressure, cardiac
output and pulse oximeter are listed below;
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• vascular assessments e.g. (arterial compliance and disease, endothelial function,
vasospastic conditions, venous assessment);

• autonomic function e.g. (thermoregulation and vasomotor function, orthostatic
intolerance, neurology assessments, heart rate variability and blood pressure).

Heart rate

The PPG signal can be used to gather heart rate information. The intensity of the
light, detected and converted into an electrical signal to obtain the PPG signal, changes
with the variation of blood in the tissues whom depends by the frequency coinciding with
that of the heartbeats. Since the AC pulsatile component of the PPG signal has the
periodicity of the heart rhythm, the heart rate can be estimated precisely through the
PPG signal [53].

The estimation of this parameter can be used to evaluate an numerous set of useful
information in the clinical field [9]. Heart rate monitoring through photopletismographic
techniques can be an advantageous solution to replace the common techniques that employ
the ECG signal, thanks to the versatility of the devices used. This allows monitoring even
during physical activity, helpful for example to adjust the training load of the exercises
[53]. Robust algorithms are needed to detect and remove noise, otherwise the reliability
of heart rate estimation will be worsened [9].

Cardiac output

The cardiac output refers to the amount of oxygenated blood that is pumped in one
minute from the heart. It is a parameter that greatly influences one person’s health, as
it impacts the distribution of nutrients in the body through systemic circulation and the
removal of waste nutrients.

Generally, mean values are 5L/min for healthy people, 30 L/min for athletes after
training and about 2L/min with heart problems [48].

Mathematically, it is defined as [9]:

OC = SV × HR (2.2)

where HR is the heart rate, and SV is the stroke volume. The SV is related to the reflected
waveform because of the pressure that can be measured by it:

SV =
s

dP

dt × Z
(2.3)

where dP is the pressure that goes from the end of the diastole to the end of the
systole. The Z parameter corresponds to the impedance in the aorta.
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Pulse oximetry

Pulse oximetry is one of the most significant applications of the PPG signal. The pulse
oximeter provides information about the oxygen saturation level of arterial blood.

The device can work in both transmission and reflection mode.
More traditional techniques use red and infrared LEDs to illuminate the tissues [4]: the

AC amplitude of the detected signal varies as with oxygen level in the hemoglobin. Oxy-
genated (HbO2) and deoxygenated (Hb) hemoglobin behave differently. The oxygenated
blood transmits red light and absorbs the infrared one, the deoxygenated one acts in the
opposite way [53].

From the ratio of the AC and DC components, it is possible to estimate the level of
oxygen saturation of the blood in the arteries [53].

2.3 Pulse transit time

The study of the pulse transit time is one of the most recent approaches to evaluate
the arterial tree functionality [54]. The PTT measures the time required by the pressure
pulse to spread into peripheral arterial blood vessels.

Therefore, it begin in the time point when the arterial pulse pressure wave is detected
in the aortic valve, marking the beginning of the systolic phase. It ends when the pulse
pressure wave is detected in the distal part of the vessel.

There are several ways to calculate the PTT:

• I-PTT denotes the time delay between the proximal BF waveform and the temporal
BP [14];

• PPG-PTT measures the time interval between two characteristic points of two
PPG signals. The time delay can be estimated by using two photopletismographs
positioned on two different peripheral points, like wrist joint and little finger. It is
calculated as the time interval between two peaks of the detected pressure waves
[55];

• PAT is the time delay between the R-peak of the ECG signal and a characteristic
point of the PPG signal taken distally to the heart [14]. An electrocardiograph and
photopletismograph are required.

The third measure is the most common technique, although it requires an approxima-
tion of the estimated time. Measuring the PTT from the time point when the R peak
appears in the ECG signal,includes a delay that causes variations of the PTT compared
to the true value.
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Figure 2.14: Representation of different PTT types [14]

This error is due to the pre-ejection period (PEP), which is the interval beginning
with the onset of the QRS complex in the ECG signal and ending with the beginning
of the blood ejection from the heart [56]. PEP is the time employed by the heart to
convert the electrical signal into a mechanical contraction that open the aortic valve. This
delay varies from subject to subject and is influenced by age, stress and physical activity.
The measurement of the PEP can be done by acquiring an additional signal. Usually
cardiographic impedance (ICG) or phonocardiogram (PCG) are used [57].

In order to measure the true PTT, a first acquisition should be made at the radix of
aorta although this requires sophisticated instruments such as phonocardiograph, ultra-
sounds or MRI [58].

This is one of the reasons why PEP is usually included in the calculation of PTT,
considering the PAT and the PTT values to be equal.

The influence of the error in the PTT calculation is related to different factors:

• distance between the heart and the arterial site where the signal is acquired. The
error decreases if the distance is large [59];

• heart rate. The error increases among patients with low HR [15].

Some studies show that the MAP, SBP and DBP values are less related to the PAC value
than to the PTT one, while others state that the PAC value is well connected to the
SBP value because it depends on both ventricular contraction and vascular functions [59].
Three different points can be taken as reference in the PPG signal, so three different PTT
values can be obtained [15]:
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• PTT-peak: distance between the R-peak of the ECG signal and the peak of the
PPG signal in the same beat;

• PTT-middle: distance between the R-peak of the ECG signal and the maximum
slope point of the PPG signal in the same beat;

• PTT-foot: distance between the R-peak of the ECG signal and the minimum of
the PPG signal in the same beat.

Figure 2.15: Representation of the PTT different references [15]

The reliability of the estimate varies with the reference point taken on the PPG signal.
Although the peak of the PPG signal is a theoretically good indicator of the SBP, in real
cases this correlation leads to errors, due to the different instrumentation used to detect
the ECG and the PPG signals. PPG peaks are distorted compared to the real ones, due
to the reflection that the pressure wave undergoes in the arteries [59].

The distance between the two point in which the signal is acquired is called pulse
transit distance (PTD) [55]. Instead, the velocity of the blood flow covering the PTD
in a time interval equal to the PTT is the pulse wave velocity (PWV):

PWV = PTD

PTT
(2.4)

In common ambulatory techniques, it is preferable to replace the PWV with the PTT, as
the first one depends on the unknown distance, varying from one person to another [58].

The pulse transmission time depends on several parameters [15]:
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• rigidity of the arterial wall;

• age of the subject;

• vascular remodeling and arteriosclerosis;

• ambient temperature;

• posture and stress.

2.3.1 Blood pressure computing

Recenlty, great attention to the PTT has been devoted due to the positive result
achieved in many applications calculating the BP. The relationship between PTT and BP
can be demonstrated by the Moens-Korteweg and Bramwell-Hills laws, which correlate
the PWV, and therefore the PTT, with the elasticity of the vessels.

It is assumed that a volume V of blood subjected to a pressure P, generates a flow Q.
The volume of the arteries in which the blood flow moves has an internal ray R, an area
A and a wall thickness h, as shown in figure 2.16.

Figure 2.16: Geometrical representation of a blood volume moving along an artery
[16]

Starting with the Mass Conservation law:

Qin − Qout = dV

dt
(2.5)

Q − (Q + dQ) = d(Adx)
dt

(2.6)

−dQ = dA

dt
dx (2.7)

dQ

dx
+ dA

dt
= 0 (2.8)

By imposing Newton’s law on the conservation of the moment, considering the force applied
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by the blood flow: Ø
Fx = max (2.9)!

P − (P + dP )
"
A − τ2πRdx = max (2.10)!

P − (P + dP )
"
A − τ2πRdx = ρAdx

dV

dt
(2.11)

−dP

dx
A − τ2πR = ρA

dV

dt
(2.12)

where m and ρ are the mass and density of the blood flow respectively, a its acceleration.
It is assumed that the cross section of the artery does not change and the wall shear stress
is negligible:

−dP

dx
A = ρ

dAV

dt
(2.13)

−dP

dx
A = ρ

dQ

dt
(2.14)

dQ

dt
= −A

ρ

dP

dx
(2.15)

The arterial compliance CA is given by the ratio between the variation of the area and
the variation of the pressure. Considering that CA does not change :

dA

dt
+ dQ

dx
= 0 (2.16)

dAdP

dPdt
+ dQ

dx
= 0 (2.17)

CA
dP

dt
+ dQ

dx
= 0 (2.18)

CA
∂2P

∂2t
+ ∂2Q

∂x∂t
= 0 (2.19)

Supposing that ∂2Q
∂x∂t= - A∂2P

ρ∂x2 and replacing this expression in the previous one:

∂2P

∂2t
= A∂2P

ρCA∂x2 (2.20)

According to the proposed model, a pressure wave P(x,t) with speed c =
ñ

A
ρCA

cross the
arterial vessel with the following equation:

∂2P

∂2t
= c2 ∂2P

∂x2 (2.21)

The previous equation is called Bramwell-Hill equation.

30



2.3. Pulse transit time Chapter 2. Physiological background

The arterial compliance is defined as:

CA
dA

dP
= πR2

dP
= 2πR

dR

dP
(2.22)

The law of conservation of the moment is applied with the contribution of all tangential
efforts, as shown in figure 2.17:

Figure 2.17: Biomechanical model of the arterial wall [16]

Ø
Fθ = 0 (2.23)

P2Rdx − 2σθhdx = 0 (2.24)

σθ = PR

h
(2.25)

where σθ is the shear stress. The previous equation is the Laplace law. By differentiating:Ø
Fθ = 0 (2.26)

dσθ = RdP

h
+ PdR

h
− PRdh

h2 (2.27)

Assuming the arterial wall does not change its size and that h is negligible compared to
R:

π(R + h)2 − πR2 = γ (2.28)

h(2R + h) = γÍ (2.29)

hR = γÍÍ (2.30)

drh = −rdh (2.31)
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where γ is a costant value. It is possible to obtain the Laplace law in a differentiated form:

dσθ = RdP

h
+ 2PdR

h
(2.32)

At this point, it can be inserted the Young’s module Einc, which describes the stress on
the wall of the arteries in presence of the strain:

Einc = dσtθ
dÔ

= dσθ
dR
R

(2.33)

Einc = R2dP

hdR
+ 2PR

h
(2.34)

Einc = R2dP

hdR
+ 2σθ (2.35)

Assuming negligible the second term of the equation (2.35):

Einc = R2dP

hdR
(2.36)

By inserting Young’s modulus Einc into the modified Bramwell-Hill equation, one obtains
the Moens-Korteweg equation [16]:

c = PWV =
ó

hEinc

2ρR
(2.37)

in which c or PWV is the pulse wave velocity. Blood pressure can be correlated to the
PTT through different mathematical laws. Some of them are explained below.

Logarithmic model

In 2010 Shiram developed the logarithmic PTT-BP model based on the Moens-Korteweg
equation [60]. He assumed that the elasticity of the vessels changes in function of the pres-
sure with an exponential law:

E = E0eγP (2.38)

where γ is a coefficient in the range 0.016 − 0.018 mmHg−1, E0 is the elastic modulus
when the pressure is zero. Considering d as the pulse wave distance:

c = PWV = d

PTT
(2.39)
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The blood pressure measured in mmHg turns out to be:

BP = − 2
γ

ln PTT +
ln 2rρL2

hE0

α
(2.40)

In order to evaluate the correlation between PTT and BP, it is assumed that all the
variables in the equation are constant [61]:

BP = −A ln PTT + B (2.41)

The values of A and B are obtained experimentally through a regression analysis between
the reference value of BP and the PTT one [59]. The calculated pressure in this case is
the MBP.

Proportional linear model

Assuming small variations of the PTT in the range where BP can change, it is possible
to relate the PTT and the blood pressure through a linear relationship [61]:

BP = A · PTT + B (2.42)

Some studies [62] state that the heart rate is a contribution to consider in addition to the
stiffness index of the ASI arteries. It has been shown that the correlation with the heart
rate is not always yields by an improvement: under normal conditions the correlation is
positive, but when the pressure undergoes acute changes related to the activity of the
baroreceptors then the HR is negatively correlated.

Arterial stiffness is considered constant in short time intervals, therefore it affects the
frequency with which the calibration must be carried out, and can be estimated with the
ASI [59].

Inverse square model

In this case it is assumed that the vessels are rigid pipes and their section A is constant.
The algorithm has been elaborated by Fung et al. who demonstrated the relationship
between PTT and BP studying the potential and kinetic energy of the pressure wave.
Considering also the relationship between BP and force F exerted on the blood:

F · d = 1
2mv2 + mgh (2.43)

F = BP · A (2.44)
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in which d the distance measured between the two sites on which the PTT is calculated,
m the mass of the blood, A the cross section of the arteries and h the height difference
between the two points. In this way, the pressure formula is [60]:

BP = A

PTT 2 + B (2.45)

where B is the coefficient estimated through the correlation between PTT and BP mea-
sured with cuff-based techniques, ρ is the blood density (1035 kg

m3 ), A = ρ
1.4(

0.6h
df )2 , h the

height and df the distance factor [61].
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Chapter 3

State of the art

Several methods can be adopted for the evaluation of the blood pressure. Generally,
they are divided into [44]:

• invasive methods;

• noninvasive methods.

3.1 Invasive methods

The BP monitoring with invasive techniques (IBP) is used only for patient in critical
conditions or during surgery. Generally, it is avoided in case of chronic hypertension
treatment. The goal of measuring intra-arterial blood pressure is to obtain a beat-to-beat
record of the blood pressure of the patient, suffering from rapid changes in blood pressure
which therefore be kept under control. The technique provides accurate measurements
of BP at low pressures (e.g shocked patients) and in people not suitable for non-invasive
monitoring of BP, for example obese patients.

The catheter is inserted into a suitable artery, generally the radial artery because it is
superficial and easily accessible. The pressure wave is then displayed on the monitor and
finally analyzed. An intra-arterial monitoring system is made up of:

• measuring apparatus, which encompasses a cannula placed into the artery and
connected to tubing. The latter contains a column of saline which conducts the
pressure wave to the transducer.

A flushing system is connected at the other end of the arterial line, which supplies
a slow but continuous flushing of the system. Furthermore, through the manual
setting up of the flush valve, a quick flush can be provided;

• the transducer, that acquires a physical quantity at the input and yields an elec-
trical quantity at the output. It must be calibrated to the atmospheric pressure. It
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consists of a flexible diaphragm electrically charged;

• the monitor to show the input signal properly amplified and filtered. Moreover,
allows to display the signal in real time as well as the calculation of the blood pressure
[63].

The numerous disadvantages of the technique are listed below [63]:

• limited use due to the need of the electrical supply;

• infections generated by the arterial cannula;

• possible formation of thrombus which causes the occlusion of the arteries. This risk
is limited if the arterial vessel is chosen appropriately and if the catheter is kept in
contact with a saline solution.

3.2 Non-invasive methods

3.2.1 Auscultatory method

The auscultatory method for measuring blood pressure is the most common to date.
Until now, two instruments are used to measure blood pressure:

• the sphygmomanometer;

• the stethoscope.

The first consists of an inflatable cuff connected both to the pressure gauge and to the
pump regulated by a valve for inflating the cuff.

The brachial artery is occluded by the cuff positioned at the upper portion of the arm.
This artery is easily accessible and it is located at the same level as the heart, eliminating
the hydrostatic component of the pressure that would cause an altered detection.

The cuff is inflated until it reaches a pressure higher than the systolic one, stopping
the blood flow downstream of the cuff [44]. The stethoscope is placed on the antecubital
fossa of the elbow and then the pressure inside the cuff is reduced by means of the valve.

In this way, the pulsatile blood flow is restored and sounds are detected through the
stethoscope. The sounds are generated by the combination of the turbulent blood flow
and the oscillations of the arterial wall [44].

The physicist Korotkoff was the first one to study this method and he divided the
detected sounds into five phases [64]:

• step 1: it corresponds to the appearance of a palpable pulse. Sounds are clear and
repetitive. The pressure measured in correspondence of these sounds is the systolic
one;
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• step 2: the sounds become less intense and more durable, with the presence of slight
noise;

• step 3: the sounds become louder and clearer. Together with step 2, this phase has
no physiological significance;

• step 4: the sounds become softer and less distinct from each other;

• step 5: it corresponds to the last audible sound. The pressure that can be evaluated
when this sound appears is the diastolic one.

Among the sphygmomanometers available, the most commonly used is mercury based. It
is the most reliable instrument, although in recent years it has been replaced by other
devices to limit the use of this toxic substance.

The mercury sphygmomanometer consists of a cloth cuff covering an air chamber con-
nected to the pump and a mercury column. Next to the latter, a graduated scale shows
the different pressure values expressed in mmHg [65].

Figure 3.1: Mercury sphygmomanometer [17]

The aneroid sphygmomanometer is another type of manual pressure measuring system.
It is also equipped with a cuff that can be inflated by means of a pump.

The pressure measured is obtained through a mechanical system which expands as the
pressure increases and a clock manometer with a mobile needle, instead of the mercury
column. The latter has a graduated scale in mmHg and is connected by tubes to the pump
used to inflate the cuff. These systems do not maintain stability over time, therefore they
must be calibrated periodically [64].

New sphygmomanometers, called hybrids, combine the best features of classic aus-
cultatory devices with those of electronic devices. An electronic pressure gauge replaces
the mercury column. An observer listens the Korotkoff sounds when the cuff is deflated,
through a button it unlocks the digital display to correlate the values of systolic and
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diastolic pressure on the display to the pressure value corresponding to the time of the
sound hearing. This system reduces the errors that can occur when reading with other
auscultatory instruments [64].

3.2.2 Oscillometric method

The oscillometric method is performed in the same way as the auscultation one, with
the advantage that it avoids the errors that can be made by reading the pressure data in
the first method [66].

Instead of the stethoscope used to listen to the Korotkoff sounds, a pressure sensor
inside the inflatable cuff is used to detect the pressure. The oscillations that the pressure
undergoes are recorded over time. Then the signal is filtered and evaluated.

The cuff is wrapped around the patient’s wrist or biceps and it is inflated to a pressure
that exceeds the systolic one through a pump. This allows to transmit the cuff pressure
to the wall of the arteries, causing a decrease in his lumen until the complete occlusion.

Subsequently, the cuff is deflated by decreasing the pressure until it reaches a pressure
lower than the diastolic one. This causes an increase of the arterial lumen until it opens
completely [67].

The method is based on the observation made in 1876 by Marey who showed that
the point of maximum oscillation of the pressure wave, during the gradual insufflation,
corresponds to the mean intra-arterial pressure.

The cuff pressure oscillations begin above systolic pressure and increase in amplitude
as cuff pressure decreases to the mean blood pressure, which corresponds to the maximum
oscillation [68]. So SBP and DBP can be estimated with appropriate derived algorithms.

Therefore, the pressure estimation is not a direct estimation, but it is the result of
calculations made on the envelope of the oscillations [66]. The maximum amplitude al-
gorithm is often used to estimate systolic and diastolic pressure values. The maximum
oscillation point is used to divide the envelope into ascending and descending phases. Sub-
sequently, experimentally processed fractions of the peak amplitude are used to find the
points corresponding to the systolic pressure on the ascending phase of the envelope and
the points corresponding to the diastolic one on the descending phase.

The characteristic ratios are obtained experimentally by measuring the cuff oscillation
amplitude divided by the cuff’s maximum oscillation amplitude [68].

An advantage of the method is the versatility with which the instruments can be
inserted, replaced and removed on the body.

Unfavourable points are the influence of artifacts, as well as the rigidity of the arteries
that causes a low-frequency vibration. Estimating pressure by means of the oscillometric
method in elderly people, for example, with rigid arterial walls, can yield a significantly
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underestimated pressure result.

3.2.3 Tonometric method

The technique of the tonometry is applied to superficial arteries located near bone
structures, generally the radial or carotid arteries because they are easily accessible and
with a large diameter [69].

When an artery is compressed on a surface and flattened, it is subject to pulsations
that are proportional to those generated by blood pressure.

The tonometer is a device consisting of several pressure transducers with a frequency
response larger than 50 Hz. The transducers consist of piezoresistive crystals [70]. This
pressure sensor is placed near the right wrist, in correspondence with the superficial artery
to be studied.

By applying a constant pressure to the inner tube, the sensor is pressed onto the artery
to flatten it. The pressure exerted by the tonometer should be [71];

• limited, so as not to occlude the artery and not to change the intra-arterial pressure;

• intense, until it equals the pressure that the blood exerts on the wall, without the
intervention of the tension forces of the wall .

The intra-arterial pressure measurement is made at the compressed section, because the
circumferential tension in the flattened arterial wall acting transcutaneously at the trans-
ducer is negligible [69]. It is necessary to calibrate the sensor and the pressure measurement

Figure 3.2: Principle of work of arterial applanation tonometry [16]

by means of a reference method, which is usually the oscillometric method referred to the
pressure recorded on the arm [71]. Calibration must be done for each patient and this
limits the use of the instrument which is generally avoided for routine patient analysis [70].
Calibration is usually done by estimating two coefficients: gain and offset. In this way
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the SBP and DBP values will be comparable with those measured with the oscillometric
technique of reference.

In addition to the problem of calibration, two other critical points of the technique are
[69]:

• the positioning of the sensor. To have an accurate measurement of pressure is neces-
sary to position the transducers accurately on the artery. For this reason, automatic
positioning system of the sensor, which automatically determines the best position,
is usually necessary;

• sensitivity to movement. The sensor must be fixed to the wrist and the immobility
of the patient is required.

.

3.2.4 Volume clamp measurement

This method was introduced in 1969 by Penaz. A small headser, with a photoplethys-
mograph inside it, is placed on the finger of the hand [16]. The cuff surrounding the arteries
of the finger generates back pressure which dynamically adapts to the entire cardiac cycle
one so as to maintain a constant diameter. The technique consists of two distinct phases:

Figure 3.3: Volume clamp device [18]

• calibration. During this phase, the pressure that the cuff should exert at the be-
ginning is defined, so as not to constrain the width of the PPG signal. In fact,
if the pressure exerted exceeds the positive transmural pressure, then the artery
would stretch too much, decreasing the amplitude of the true pulsations. On the
other hand, if the pressure exerted by the cuff is lower than the negative transmural
pressure, the artery collapses, thus reducing pulsatility [16].

To calibrate the cuff and choose the correct pressure to be applied, the setpoint
volume must be defined. Among the calibration software, the one that allows a
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good estimate of pressure is Physiocal, developed by Wesseling et al. It consists of
a software able to analyzes the trend of the plethysmographic signal in a short time
interval where it is sure that the pressure is not affected by other factors. A set of
criteria allows determining the ideal volume that should be guaranteed in the artery.
In order to follow the alterations of the physiological states of the vascularization,
the calibration is automatically repeated at regular intervals [72];

• measurement. The artery is clamped from the cuff to allow maximum pulsatility.
The variation of blood volume on the finger, is detected by the photoplethysmograph.
Latter is able to predict the increase in volume during the systolic phase, through
the light detected. The detected signal is proportional to the diameter of the vessel,
which expands in the systolic phase, allowing the passage of a larger volume of
blood. The information is sent to a servo-controller system which regulates the
pressure of the cuff. This prevents the variation in volume to which the artery is
subjected, so as to constantly maintain the volume of blood inside. Only when the
artery is maintained at its setpoint volume, there is no tension in the wall and the
pressure inside the vessel is equal to the external pressure exerted. For this reason,
the pressure on the cuff must vary in order to keep the volume in the artery at
the setpoint value. During the vascular discharge state, the continuous pressure
changes in the cuff to impede diameter variation correspond directly to the mean
blood pressure [72].

3.2.5 Wearable devices

Wearable technology includes all miniature electronical devices, which can be worn or
used as accessories for measuring constantly or frequently the arterial pressure.

In 2019, the use of wearable devices for health purposes was estimated among 15% of
the adult population.

In addition to the minimal invasiveness of the device and its simple accessibility, using
the Internet connection and low-consumption integrated circuits to download signals, data
and parameters collected in sophisticated data processing platforms are further advantages
of wearable technology [73].

Wearable devices are useful for both ambulatory and home monitoring. Among the
forms of home monitoring, two are the most widely used:

• tonometric technique;

• pulse wave velocity analysis.

The tonometric one works according to the principles explained in section 4, but it proceeds
autonomously. In addition, a monitor optionally connected to the watch, shows the data
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obtained. Otherwise, the signal can be sent via Bluetooth connection to a smartphone,
which processes it through a specific App.

A first example is the smartwatch of HealthSTATS Technologies, the BPro. It consists
of a small piston positioned on the radial artery that works by exerting a constant pressure
to obstruct the venous return and to compress the surrounding median nerve.

The smartwatch requires calibration prior to the analysis phase, by measuring the
pressure with an already validated oscillometric technique [74].

The pulsing signal in the artery is sampled with a frequency of 60 to 200 Hz so that the
original arterial waveform can be reconstructed. Each recording is saved to calculate its
mean pressure as well as different coefficients and indices. Through these, by evaluating
the variation of the pressure waveform compared to the first one, the new systolic and
diastolic pressure [74] are estimated.

Figure 3.4: BPro smartwatch, HealthSTATS [19]

The smartwatch repeats pressure measurement frequently, about 96 times in 24 hours
autonomously, about 15 minutes [73].

Tests have been made to compare the results obtained with the pressure limits set by
the AAMI standards (Association for the Advancement of Medical Instrumentation) and
the ESH protocol (European Society of Hypertension). In particular, the former requires
a mean difference of 5 mmHg from the blood pressure measured using the auscultatory
method, while the second requires that most of the tests give a result that differs of 5
mmHg at most from the measures reached by the reference auscultatory method.

The device matches these standards in the non-clinical field [73].
Another example is the Omron model, called the HeartGuide, the only model that
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has received FDA approval until now. It measures blood pressure on the wrist continuously
using tonometric technique [75].

Figure 3.5: HeartGuide smartwatch, Omron [20]

The signals are sent to the connected application that estimates the corresponding
pressure value, as well as other vital parameters. The watch also has an accelerometer
and it acquires the PPG signal as well as calculating the Heart Rate [20].

The HeartGuide watch processes the results in specific ranges:

• systolic pressure from 60 to 230 mmHg;

• diastolic pressure from 40 to 160 mmHg;

• heart rate range: 40-180 bpm;

• pressure accuracy: ± 3 mmHg of display reading;

• HR accuracy: ± 5 % of display reading.

Great interest has been shown recently in blood pressure measuring using the PTT or the
PWV values. These promising techniques yet achieved FDA approval for the calculation
of the pressure.

An example is the Heartisans model, the Heartisans Blood pressure watch. In
addition to measuring the heart rate and to the monitoring of the physical activity, it
uses an electrocardiographic and plethysmographic system to assess the changes that the
pressure undergoes over time.

The watch requires a calibration, by means of an already validated device. In this way,
the watch can estimate the variations that the systolic and diastolic pressure undergo over
time through an estimate of the PTT value.

PTT value is evaluated through the plethysmographic sensor positioned on the body as
well as through electrodes for electrocardiographic acquisitions. The device must be kept
close to the chest for 20 seconds. The data packets are sent via Bluetooth synchronization
to a custom application that allows processing.
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Figure 3.6: Heartisans blood pressure watch

Another smartwatch is the CareUp, by Farasha. With the aim to find solutions that
prevent cardiovascular problems, the French company produces small medical devices and
it uses artificial intelligence algorithms [76]. The latest smartwatch produced consists of
two green light PPG sensors: one positioned at the beak of the device so as to acquire the
signal at the wrist, and one at the front to pick up the signal on the finger.

For the calculation of the SBP and DBP, the algorithm needs of:

• calculation of the delay between the two PPG signals;

• calculation of heart rate through the PPG detected on the finger;

• calibration parameters evaluated for each patient.

The results are compared with the results of the standard sphygmomanometer tech-
nique as shown in the table 3.1

SBP DBP
ē -1.52 0.39
σe 9.45 4.93
p 0.6338 0.7249

Table 3.1: Mean error, standard deviation error and p-value of the results of the
CareUp device

Since no significant differences were found, the watch was considered a valid alternative
for measuring pressure [77].

Also Samsung has developed a wearable model, the Samsung Galaxy watch, which can
give a continuous estimate of the blood pressure variation during the day and night. [78].

It is composed of accelerometers, barometers, gyroscopes, sensors for the measurement
of heart rate as well as sensors used to collect the PPG signal. Samsung does not give
other technical information about the technical functioning of the device [79].
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In addition to the use of measuring devices, the development of the new technology has
allowed the continuous monitoring of the blood pressure using smartphones and special
processing applications. These techniques do not allow continuous monitoring, but are
very comfortable and non-intrusive. This is possible by exploiting the sensors that common
smartphones have. An example is the SISMO application [60].
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Chapter 4

Hardware design

The aim of the STMicroelectronics is to create new devices for continuously moni-
toring the patient’s health, without limiting the life of the user. This is the reason why
STMicroelectronics created the Bio2Bit NewMove (B2BNM), designed with miniaturized
dimensions.

It is a wearable and wireless electronic device, able to acquire costantly and transmit
signals to an external device using the Bluetooth Low Energy connection.

Figure 4.1: Representation of the B2BNM device.

The device has been developed to monitor the patient during the different phases of
sleep as well as to assess any disorder. Due to its small size and large number of compo-
nents, it can replace large and uncomfortable sensors which otherwise would positioned
on the patient.

Combining the use of optical and environmental sensors, as well as algorithms under
study, B2BNM is able to make continuous measurements of heart rate, PTT, to detect
cardiac anomalies, to calculate the SpO2 or the amount of glucose in the blood.

In figure 4.2 are shown the different features of the B2BNM, instead the device main
features, as shown in 4.3, are described in the following list:
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Figure 4.2: Representation of the inside B2BNM device.

• STM32L4Rxx Microcontroller. It is part of the STM32L4 microcontrollers fam-
ily, which operate using the Arm Cortex-M4 32-bit RISC core, with a frequency of
up to 120 MHz. The main components of the device are the fast 12-bit ADC and
the two-channel DAC, allowing the comunication with both analog and digital in-
terfaces. It is required a supply voltage in the range of 1.71V to 3.6V in addition to
being timed by two external crystals oscillating in the range of 4 to 48MHz.

• Bluetooth Low energy BlueNRG-234. It is a chip with a single mode system, i.e.
standalone, powered by a low-power battery. The advantage of the connection with
BLE compared to a normal Bluetooth connection is the saving of the module power,
remaining in sleep mode constantly except during the connection. The BlueNRG-
234 is able to be interface both analog sensors, using the 10-bit ADC, and digital
sensors.

• litium battery. It provides the supply voltage of the device. A gas gauge control
and evaluates the state of charge of the battery, estimating how much power it can
still provide. Through an USB input, it is possible to interface the device with an
external computer to supply the power battery, as well as to transfer data or charge
the firmware.

• LSM6DSM Inertial sensor. It is a system containing a digital triaxial accelerom-
eter and a 3D digital gyroscope enabling always-on low-power features. The main
features are:
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Figure 4.3: Schematic representation of the B2B-NM device main features

– power consumption: 0.4mA in combo normal mode and 0.65mA in combo
high-performance mode;

– analog supply voltage: 1.71 V to 3.6 V;

– package size: 2.5 x 3 x 0.83 mm;

– fullscale: ±2g;

– sensitivity 0.061 mg
LSB .

• Analog Devices AD8233 front end. The chip integrates an entire signal condi-
tioning system to obtain the ECG signal. Its analog architecture allows to extract,
to amplify and to filter small bio-potentials deteriorated by motion artifacts. For
this reason, in the cip there are two high pass filters combined with an instrumenta-
tion amplifier to increase the gain. Low-pass filters are inserted to eliminate other
types of noise, such as the electronic one. Thanks to this analog front-end, it is pos-
sible to connect 2 or 3 electrodes to the analog-to-digital converter without further
components and with an high level of quality and reliability. The main features are:

– supply current: 50 µA;

– single supply voltage: 1.7V to 3.5V ;

– peak to peak voltage noise: 8.5µV ;

– package size: 4 x 4 x 0.75 mm.
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• PLCC-6 package of triple LEDs. It is a silicone resin package, with higher contrast
by a black surface. The device consists of three LEDs with different colors, i.e. red,
green and blue.

RED GREEN BLUE
Wavelength (nm) 625 528 470

Operating temperature (C) -40 to 110 -40 to 110 -40 to 110
Surge current (mA) 100 300 300
Reverse voltage (V) 12 5 5

Table 4.1: Parameters of the Triple LEDs

• BPW34 Photodiode. It detects light with a wavelength between 400 to 1100 nm.
The device is covered by a plastic package. The characteristic parameters are:

– operating temperature: -40 to 110 C;

– reverse voltage: 32 V;

– spectral sensitivity: 80 NA
Ix (to room temperature);

• ADPD105 Analog Devices. It consists of a photometric front end capable of
communicating with the LEDs, with a 14-bit ADC and a 20-bit accumulator. The
task of the accumulator is to stimulate the LEDs to receive and measure the optical
response in a range between 1,8 and 2 V. The system is able to detect the environment
interference and reject it. It requires a supply voltage of 1.7V to 1.9V.

4.1 Body Area Network Setup

The aim of this project is to test the use of two devices in a Body Area Network (BAN)
for the measurement of the PTT. Results are compared with those obtained through
traditional techniques, i.e using a single device capable of acquiring both the ECG and
PPG signal simultaneously.

For this reason, two B2BNMs positioned in two different parts of the body are used.
In fact, the measurement of the PTT in a BAN requires the use of two devices located in
two different positions. The method is based on the processing of ECG and PPG signals
and requires the transmission of data to a base station using the BLE connection.

The first device, called in this work wrist B2BNM, was placed on the left wrist. The
device and its case are kept fixed in the same position for the duration of the acquisition.
For this reason, a silicone coating and an elastic band were also used to secure it, as shown
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Figure 4.4: Body area network setup

in figure 4.5. The PPG sensor of the B2BNM with his green LED was used to acquire the
PPG signal.

An accelerometric signal was also recorded using the accelerometer positioned in the
B2BNM so as to have the reference axis Z agrees with that of the gravity acceleration.

The second device, called finger B2BNM, was used to acquire one lead ECG signal. The
future development of the BAN expected the positioning of this second device, through
an elastic band, on the thorax. During the test phase, however, a different configuration

Figure 4.5: Wrist B2BNM and his case

was used. Unlike the previous device, two cables were welded in order to allow, through
the use of two disposable electrodes, the acquisition of the signal. The electrodes (Euro
ECG electrodes, Fiab) consist of an Ag/AgCl sensor, solid gel and a stainless steel clip.

The device, on the other hand, was mainteined firm on the left hand of the patients in
order to acquire the PPG signal on the finger. Also in this case, the signal was acquired
using only the green LED. Unlike the previous case, the finger B2BNM was packed ex-
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clusively with its ADS case, as shown in figure 4.6. In addition, another accelerometric
signal was acquired.

Figure 4.6: B2BNM with an ADS case

It was decided to proceed in this way, so as to acquire a second PPG signal with the
same device as the ECG. It is a configuration that was adopted only to validate the results
of the BAN and the alterations that the measurement of the PTT undergoes in this new
system, compared to one already tested in several experimental works.

Each device communicates through a BLE connection with a reference computer.
Therefore, the acquisition system consists of two piconets: the first piconet is constituted
by a PC which acts as master, and by the finger B2BNM as slave.

The second piconet consists of a second computer, the master, and of the wrist B2BNM
which acts as slave.

4.2 Graphical User Interface

Devices interface with computers using the Bio2BitWinApp. It is a graphical interface
(GUI) that allows the user to connect and synchronize the computer with the desired
device.

The application provides information about the charge status of the device, alerting
the user when the available charge is low.

The acquisition parameters can be setted, i.e. the signals to acquire and the sampling
frequency to use. The application is able to manage the incoming packets of the ECG
signal up to 3 channels, 4 PPG signals, signals acquired with accelerometer, magnetometer
and gyroscope.

With a button it can manage the start of the acquisition, the streaming display of the
waveforms, as well as the interruption of the acquisition. The signals thus obtained, before
being processed, were transformed into a readable format by the Matlab c¥ software, used
for the development of the code.
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Figure 4.7: Bio2bitWinApp GUI

4.3 Test development

For the validation of the algorithm, the results obtained with the signals acquired from
8 subjects were analysed.

Signal acquisition lasts five minutes at most. During the acquisition, each computer
was synchronized to the same time server, through the NTP communication (Network
Time Protocol), so as to have a temporal reference between the two masters as similar as
possible.

The NTP protocol regulates and enables the exchange of packets between the com-
puter and the server used. Each of them contain information that allows to estimate and
compensate systematic errors in the clock of the system hardware.

Moreover, the patient was allowed to adopt the most comfortable position and to make
small movements, so as to test the algorithm from all points of view.
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The Algorithm Structure

The implemented algorithm consists of a preprocessing phase that follows the acquisi-
tion of the sample signal as well as its synchronization relative to a common timestamp.

The algorithm is made so as to process one sample at a time. Only the calculation of
some parameters is made on group of samples, accumulated for 3 seconds each time.

So the algorithm provides the results almost in real time, with a short delay of about
two seconds. In fact, the analysis of the signal is done as soon as the buffer, able to store
the data for three seconds, is filled. After the first 3 seconds of acquisition, the samples
corresponding to with the first two seconds stored are gradually updated with the new
samples acquired. At the end of each data update, the buffer is processed.

The PTT calculation is carried out only for the acquired signal parts where the imple-
mented Motion Detection and Noise Detection algorithms detect the absence of motion
artifacts or noise. Both acquired PPG signals are processed in the same way. PTT is
calculated with both finger PPG-ECG and wrist PPG-ECG signals.

In addition, the cardiac variability was estimated.
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Figure 5.1: Block diagram of the algorithm
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5.1 Synchronization

The synchronization process of the ECG and wrist PPG signals is divided into two
phases:

• preliminary estimation of the time offset between the timestamps of the two devices;

• realigning of the timestamps. In this way, the pi data packet of the finger B2BNM
can be associated with the pj data packet of the wrist B2BNM.

The first step is repeated for each acquisition, before starting signal processing.
Within a generic piconet, when the signal packets arrives to the master, it is associate

with the timestamps that does not correspond with the instants of time in which the
data is acquired. Indeed, adapting to the master receiving timestamps, to each signal
corresponds the master arrival timestamps.

In this way, the time corresponding to each sample is delayed by ∆terr. This delay
depends on the communication protocol between master and slave [80], in addition to the
used type of device.

Generally, the aim of Bluetooth synchronization is to know the ∆terr of each master-
slave connection, removing it.

Figure 5.2: Representation of a message synchronization between master and slave
[21]

Among the different synchronization protocols, initially it was decided to synchronize
the two B2BNM using Cristian’s algorithm, explained below.

The idea was to determine the offset between the clock of the master and the clock of
the slave. In this way, the master, knowing its own timestamps can synchronize the two
clocks.

As shown in figure 5.2, the master sends a mrequest message to the slave, on which is
printed the timestamp T1 of the time in which the message is sent. It is received at the
time T2 from the slave: it stores the timestamp T2 in a new mreplay message. The mreplay

message is sent by the slave and received by the master at the time T3.
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Considering the times T1, T3 defined by the master and T2 defined by the slave, the
total time (Tround) for the exchange of this messages is:

Tround = T3 − T1 (5.1)

Moreover, assuming Dmin as the lowest time delay of mrequest to move, then the real time
T2 can change between (T2 + Dmin) and (T2 + Tround − Dmin).

For this reason, the maximum error Ô that can be made considering the times T1, T2

and T3 is:

Ô = ±
A

Tround
2 − Dmin

B
(5.2)

With these assumptions, Cristian’s theory considers that when the client asks the time
to the server, this latter responds with its time tserver. The client synchronizes his clock
adding a little delay to the server clock, as (tserver + t round

2
), where t round

2
is the minimum

delay between the time read T1 and T2. Therefore the offset O that the master adds to
his timestamps is:

O = (T1 − T2 + T3 − T2)
2 = T1 − T2 + (T3 − T1)

2 (5.3)

Figure 5.3: Representation of the round-trip time and slave’s clock offset compared
to the master one

The use of Cristian’s algorithm involves several assumptions such as:

• to consider the transmission time of the messages mrequest and mreply identical;

• to consider the time taken by each B2BNM to read the incoming message mrequest

and to write the new time T2 null.

Since high accuracy in offset estimation is necessary, it was decided to proceed differently.
In this application, it is not relevant to know the absolute time in which the signal is
acquired, but the difference between the offsets of the two piconets, i.e:

o = ∆terri − ∆terrj (5.4)
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Adding this offset to the B2BNM timestamps, whose data transmission is slower, allows
to have the same timestamps between the two B2BNMs, although not coincident with the
exact time of signal collection.

A passive synchronization was made, without using the communication packets be-
tween the two devices connected in Bluetooth. The offset o was estimated analyzing the
signals acquired [81]. Passive synchronization is advantageous because it does not require
the use of any particular hardware or Bluetooth protocol. As long as it is applicable, it is
necessary to observe events in the external environment that overlap the normal tracks of
the sensors of the two B2BNMs in the same way.

The signal taken as reference is the accelerometric one of each B2BNM.

Figure 5.4: Representation of the two accelerometric signals acquired simultaneously
by the two B2BNM

Since the accelerometer instantly converts the mechanical stimulus into the signal, it
is expected that by generating a short and intense pulse on the device, it reacts with
a rapid change in the acceleration, at the same time as the action is performed. Using
two accelerometers synchronized with each other, the action must be displayed in the two
tracks at the same instant of time.

Without synchronization, the overlap between the accelerometric traces is missing.
These are translated between them. The only delay that causes the non-overlapping
of the two tracks is caused by the Bluetooth communication and it coincides with the
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difference o between the offsets produced by the two Bluetooth of the devices.
Compensating this offset, the B2BNMs timestemps do not coincide with the time

instant in which the signals are acquired: the two timestamps are traslated in a different
way from the originals one, but they are identicals to each other.

Figure 5.4 shows two signals acquired simultaneously with the accelerometers of the
two B2BNM. As can be seen, the impulse produced by both devices changes the normal
trend of the accelerometer trace, in absence of movement.

In this figure, it was decided to use the time reference axis in ms to minimize the
approximations of subsequent measurements.

The delay between the two acquisition was estimated by calculating the average of the
time interval between some corresponding peaks of the two accelerometric signals.

Since the sampling frequency set is 128 Hz, the maximum error that can be made in
the study of the time offset is ±15.6ms, considering the Nyquist frequency.

For each acquisition, after evaluating the time offset, the signals are synchronized. The
synchronization consists in the compensation of the time offset, i.e. in the sum of the offset
to the timestamps of the B2BNM with a slower Bluetooth communication, as can be seen
in figure 5.5.

5.2 Preprocessing

The acquired signals do not include only the component of the signal in the band of
interest. Both the acquisitions of the ECG and PPG signals, as well as the accelerations,
include components of noise and motion artifacts that degrade their quality, in addition
to the information that can be obtained.

For this reason, a preprocessing algorithm was developed to remove signal components
beyond the bands of interest.

The preprocess is divided into three phases:

• filtering;

• removal of the transitory signal generated by the filter;

• removal of the time delay in the filtered signal.

A FIR filter was implemented to filter the signal and to remove the components which
degrade the information in the band of interest.

The FIR (Finite Duration Impulse Response) filter is a linear time-invariant system
(LTI) consisting of a sequence of N + 1 coefficients and N order. Considering the raw
sample x(n), the filtered one y(n) is obtained from the convolution sum equation with the
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Figure 5.5: Representation of the two accelerometric realigned signals acquired simul-
taneously by the two B2BNM

transfer function of the filter h. Since the output depends only on the input signal, the
FIR is a non recursive filter, as shown below:

y(n) =
NØ
k=0

h(k)x(n − k) (5.5)

(5.6)

Each sample y(n) of the filtered signal is obtained by considering N + 1 multipliers, N
adding blocks and N delay blocks, as shown in figure 5.6.

There are several reasons why it was chosen to work with the FIR filter rather than
the IIR (Infinite Impulse Response) one.

Both types of filters delay the filtered signal in time with respect to the raw one, but
the advantage of the FIR filter compared to the IIR one is its linear behavior, with a
symmetrical or anti-symmetrical phase.

A linear phase filter is characterized by a phase that depends linearly on the frequency.
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Figure 5.6: Flow graph of a linear-phase FIR filter [22]

Considering a FIR filter, its symmetrical impulse response h(k) is:

h(k) = h(N − k) (5.7)

where k is the position sample which varies from 0 to the order N. Its frequency response
H(f) is instead:

H(f) =
NØ
k=0

h(k)e−j2πfk (5.8)

H(f) = h(0) + h(1)e−j2πf + ... + h(N − 1)e−j2(N−1)πf + h(N)e−j2Nπf = (5.9)

= e−jNπf
5
h(N/2) + (h(0)ejNπf + h(N)e−jNπf ) + (h(1)ej(N−2)πf+

+h(N − 1)e−j(N−2)πf ) + ...

6

Considering the symmetry of the filter transfer function, h(0) = h(N) and h(1) = h(N −1).
For this reason the equation 5.9 can be written as:

H(f) = e−jNπf
5
h(N

2 ) + 2h(0) cos(Nπf) + 2h(1)cos((N − 2)πf)
6

= (5.10)

= e−jNπf
C
h(N

2 ) +
(N−1)/2Ø
n=0

2h(n)cos((N − 2)πf)
6

where the first term defines the filter phase response φ:

φ(f) =
; −Nπf ifHa(f) ≥ 0

−Nf + π ifHa(f) < 0
(5.11)
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where Ha is the term in square brackets.
From equation 5.11, it can be seen that the filter phase response is a linear function

of the frequency and N. In addition, with an anti-symmetrical filter the phase response is
rotated of π, becoming negative.

Consequently, in the time domain the delay is equal to N
2 samples.

The IIR filters cause non-linear distortion in the signal phase. It generates a delay in
the filtered signal which is different for each frequency component.

Although the problem can be solved applying forward and backward filter to eliminate
any phase shift, the employment of the IIR filter is not recommended in real-time signal
processing. The reason is that the computation time taken by a filter to perform a forward
and backward filtering of the signal is greater, causing an excessive delay in the filtered
signal.

The choice of an IIR filter is a valid compromise in off-line signal elaborations, since
it can give a stable response even with a lower number of coefficients than the FIR filter.
The advantages are both in the reduced computation time and in the reduced memory
occupation.

Figure ?? shows the block diagram of the preprocessing phase, which follows the syn-
chronization one. Each stage of the block is repeated for each sample of the acquired
signal, considering for each type of signal (e.g ECG, PPG and acceleration) its own trans-
fer function. Since the impulse response of the filter goes to zero only after exhausting
the initial transient of N samples, each sample belonging to the first N filtered is not
considered in the following steps.

Indeed, it is chosen to proceed with the removal of the delay produced by the filter in
order to reduce the error that could be made for the estimation of the PTT at the end of
the signal processing.

The filtered signal is gradually realigned with respect to its initial time reference: the
first N

2 samples of the filtered signals are removed since they do not coincide with the firsts
N
2 filtered samples of the raw signal.
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Figure 5.7: Block diagram of the pre-processing phase
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5.2.1 PPG signal filtering

The presence of noise superimposed on to the PPG signal alters its morphology, being
characterized by a low amplitude. The PPG signal band ranges from 0.01 Hz to almost 3
Hz [82].

Four distinct signal bands can be identified:

• high frequencies (0.15 Hz-0.5Hz), influenced by parasympathetic nervous system
activity and by the respiration;

• medium frequencies (0.04 Hz-0.15Hz);

• low frequencies (0.01 Hz-0.04 Hz) influenced by the activity of the sympathetic
and parasympathetic system;

• heart rate (0.5 Hz - 3 Hz).

Sources of noise degrading the PPG signal are:

• electromagnetic interference. The electronic instrumentation used to record the
signal, such as cables and probes, generates an electromagnetic interference signal
with a sinusoidal component at 50 Hz that overlaps the PPG signal [83]. It is
generally removed with a low-pass filter;

• movement artifact. It is still a problem and it is hardly removed. It includes both
the voluntary movement that the involuntary one, i.e. the movement caused by the
sensor’s poor adhesion to the tissues, altering the light detected [82]. This artifact
has a frequency band from 0.05 Hz to 8 Hz, overlapping with that of the PPG signal.

For this reason, its contribution cannot be removed with a common filter that ex-
cludes the components over the band of interest.

Generally sophisticated techniques, such as the Adaptive filter or the Wavelet trans-
form are employed.

• baseline shift. Components characterized by a frequency less than 0.4 Hz cause
a slow change in the baseline. Since they give only information about temperature
regulation, respiratory activity and nervous system activity, in this case they can be
removed using an high pass filter [84].

To remove these components, it was decided to filter the PPG signal using a bandpass
filter with cut-off frequencies of 0.5 Hz and 6 Hz, with a margin of 3Hz from the upper
end of the maximum frequency of the PPG signal. The order of the filter has been chosen
after several tests.
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Figure 5.8: Band-Pass filter transfer function used for filtering the PPG signals

Ideally, a filter transfer function with vertical slopes in correspondence of the bandwith
frequencies is desirable. In reality, a transfer function with high slope is acceptable.

In this case, the absence of the signal at frequencies lower than 0.5 Hz is expected,
in reality it is tested that a FIR filter with moderate order is unable achieve this, having
chosen stopband frequencies close to those of the bandwidth frequencies.

Through the Matlab Toolbox it has been estimated that 300 is the ideal order to remove
most frequency components below 0.5 Hz. Given the high computation complexity of such
a filter, the results of the PTT obtained by filtering the signal through filters with different
order were compared.

Finally, it was evaluated that 100 is a good compromise between computational cost,
RAM occupation in the microcontroller and results accuracy. In fact, the presence of the
continuous component superimposed on the signal, besides adding an offset, does not alter
its useful information.

In figure 5.9 the raw signal and the filtered one are shown. It was decided to represent
the signal trend as a function of the samples. In this way, it is easy to appreciate the
presence of the transient signal of 100 samples in the filtered signal, as well as the delay
of 50 samples compared to the raw one.

In addition, in figure 5.14 the raw signal is shown compared to the filtered and realigned
one. As well as to removing the delay introduced by the filter transfer function, the first
100 samples were removed in the filtered signal. In fact, the information carried out to
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the first 100 samples, being distorted, is not useful for subsequent analysis.

Figure 5.9: Representation of the raw and filtered delayed PPG signal

Figure 5.10: Representation of the raw and realigned filtered PPG signal

5.2.2 ECG signal filtering

The ECG signal consists of the superimposition of several waves with different fre-
quencies [85]:

• P wave (0.67Hz - 5Hz);

• T wave (1 Hz - 7 Hz);

• R wave (5 Hz - 15 Hz).
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Since in the implemented algorithm the ECG signal is used to detect only the R-peaks,
it was decided to filter the signal using a bandpass filter with 5 Hz and 15 Hz as cut-off
frequencies and order of 100.

Figure 5.11: Band-Pass filter transfer function used for filtering the ECG signal

The noise sources that degrade the ECG signal are:

• network interference. It overlaps with sinusoidal trend at 50 Hz to the acquired
signal. The amplitude of the electromagnetic sinusoid is generally equal to 50% of
the peak-to-peak amplitude of the ECG signal, affecting the signal amplitude of
about 25 mV. As for the previous signal, network interference can be removed with
a low-pass filter [86];

• muscle contraction. It affects the quality of the ECG signal in a range between
low frequencies and 10.000 Hz [86]. It is a source of noise which creates problems
especially when the signal is acquired during physical exercise. Unlike other noise
sources, it is a type of noise that has the same band as the PQRST complex. It
cannot be removed with common filtering techniques, but techniques based on the
morphology of the acquired signal are recommended [87].

• baseline wander. It is a noise generated at frequencies close to 0.5 Hz, which
causes the shifting of the signal compared with the normal horizontal line. Generally,
this artifact is caused by the patient’s breathing. In addition, the high impedence
between skin and electrode can also improve this arctefact. It can be removed
through an high pass filter [87].
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• movement of the electrodes, caused by the stretching of the skin that modifies
the impedance between the skin and the electrode. This also occurs in the same
band as the signal, from 1 to 10 Hz. This artifacts are characterized by wide waves
that are often exchanged with the complex QRS. In this case, an adaptative filter
can be implemented [87].

Figure 5.12: Representation of the raw and filtered delayed finger PPG signals

In figure 5.12 are shown the raw and the delayed and filtered ECG signals, with
transients extending over 100 samples. In figure 5.13, the elimination of the delay and of
the transient at the same samples are shown.
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Figure 5.13: Representation of the raw and realigned filtered ECG signals

5.2.3 Accelerometric signal filtering

The accelerometric signal filtering was obtained employing a band-pass filter with 101
coefficients. The cut-off frequencies were chosen according to the analyses made on the

Figure 5.14: Power Spectral Density of the raw acceleration signal

power spectrum of the raw accelerometric signals. They were characterised by an higher
spectral power in the frequency range from continuous to 15 Hz.

The chosen cut-off frequency also coincides with the upper end of the band-pass filter
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Figure 5.15: Band-Pass filter transfer function used for filtering the accelerometric
signal

used for the ECG signal, so as to consider all the motion artifacts that could affect the
acquired signals.

5.3 Motion detection

To avoid inaccurate results, causing false alarms, it was decided to calculate the pa-
rameters listed above only in absence of noise. There are two types of motion sources:

• patient or sensor movement, causing a change in the path of the light emitted and
detected;

• variation in the internal arrangement of the tissues (e.g. due to the opening and
closing of the hand as well as the movement of the fingers);

The first one can be easily detected by analyzing the accelerometric signal [88]. The second
type, since it does not change the arrangement of the acceleration, can be hardly detected
through the accelerometer [89].

In the first case, it was decided to acquire five accelerometric signals to analyze them.
The signal acquisition was initially done in steady state. Secondly, movements in both

directions were introduced, as shown by the signal in figure 5.16.
For each accelerometric signal, obtained considering the contributions of the three

axes (X, Y, Z), an index of statistical dispersion like the root mean square (RMS) was
calculated.
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Figure 5.16: Example of acceleration signal acquired for the evaluation of the threshold
of motion detection

The RMS value estimates the variability of the data compared to their average value.
It gives information related to their dispersion. RMS value in steady state are compared
with these in movement state.

A low RMS value represents the invariance of the position during the acquisition. A
threshold close to the mean RMS of the signals in movement state is chosen.

Subject RMS steady state RMS motion state
1 9807.4 10129.1
2 9705.5 10106
3 9834.3 10316.1
4 9856.4 10216.9
5 9938.7 10523.4

Table 5.1: RMS values of the acceleration signals

In table 5.1, the RMS values in both configurations are shown. The value of 10100
was chosen.

If the acceleration RMS value of the buffer was less than the threshold chosen, the
buffer was considered free of artifacts.
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5.4 Noise detection

Unlike the previous case, the aim of the noise detection algorithm is to identify the
presence of the noise on the signal, caused by artifacts undetected by the accelerometer.
In this case it is chosen to proceed by calculating some parameters depending on the
morphology of the signal waveform, in this case the PPG one. The parameters are the
following:

• kurtosis (K), used to evaluate how the samples of the signal are distributed around
the mean value. The distribution can be more or less flat, or with lot of peaks. K is
defined as:

K = E(x − µ)4

σ4 (5.12)

where µ and σ are respectively the mean of the signal x and the standard deviation,
instead E(x − µ) represents the expected value of the quantity x − µ;

• Shannon entropy (Se) defines how much the probability density function of the sig-
nal deviates from the uniform distribution. It provides a measure of the uncertainty
of the signal. Se is defined as:

Se = −
NØ
n=1

x[n]2 ln x[n]2 (5.13)

where x is the signal and N the total number of samples on the signal;

• Skewness (S), whose value is used to get an idea of the symmetry of the distribution
of PPG signal points. S is defined as:

S = 1
N

NØ
i=1

(xi − µx
σ

)3 (5.14)

where µx is the empirical measure of the mean and σ the empirical value of the standard
deviation xi and N is the number of samples in the PPG signal.

As in the previus case, the thresholds were searched acquiring five PPG signals, in
steady and noisy state. The values of K, S and Se were calculated in the two parts of the
signal, as shown in table 5.2.
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Subject Se s.s Se m.s K s.s K m.s S s.s S m.s
1 4·10+13 1.54·10+12 1.3 2.4 -0.19 0.8417
2 1.34·10+13 1.07·10+12 2.39 2.6259 -0.1995 0.6977
3 8.59·10+13 1.48·10+13 2.27 2.92 -0.1995 0.6977
4 2.91·10+13 1.12·10+12 2.49 1.86 -0.1162 0.1
5 9.82·10+12 1.33·10+9 2.106 2.96 -0.0334 0.6627

Table 5.2: Se, S and K values of the finger PPG signal in steady and motion state

The values shown in table 5.2 are relative to the analyses made on the finger, even if
those obtained from the signal acquired on the wrist were of the same order of magnitude.

The idea was to compare the threshold values of S, Se and K for each PPG buffer to
the corresponding threshold. In this way, the decision rules are evaluated.

Kurtosis decision rule states that:

DKi =
; 1 ifKi ≤ KTh

0 ifKi ≥ KTh

Signals with a lower Kurtosis value than the threshold are considered free of artifacts,
since they maintains an amplitude and a width more or less constant over time. If the
estimated value exceeds the reference one, it means that the signal assumes an altered
morphology compared to the normal one.

Shannon’s entropy decision rule states that:

DSei =
; 1 ifSei ≥ SeTh

0 ifSei ≤ SeTh

The buffer of the PPG signal is corrupted by noise if its entropy is below the threshold. In
fact, Se in information theory represents the amount of information carried by the signal.
So the entropy is a measure of its complexity. In this case the obtained entropy values
were negative. So their absolute value was considered.

Skewness decision rule states that:

DSi =
; 1 ifSi ≤ STh

0 ifSi ≥ STh

in fact a high value of S in absolute value indicates the asymmetry of the signal, instead
a value close to zero a more regular distribution around the central peak.

The idea was to consider the signal actually corrupted by noise if both decision rules
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gave positive results [90]:

FDi =
; 1 ifDKi + DSei + DSi = 3

0 ifDKi + DSei + DSi Ó= 3

It was evaluated that even an ideal threshold of Se and S caused the exclusion from
subsequent processing of PPG waves that had a correct morphology.

In order to avoid the exclusion of too many points, it was decided to take as reference
only the value of K, whose chosen threshold was 3.5. In fact, in this way, the results
obtained yielded a good compromise between correctly excluded and real peaks

5.5 R-Peaks research

As for the extraction of the R-peaks, it was implemented the algorithm that Pan and
Tompkins proposed in 1985 for the detection of the QRS complex.

The algorithm is based on the analysis of the QRS complex slope, on their amplitude
and duration.

A first preprocessing phase is employed to eliminate signal components that degrade
the QRS complex.

Subsequently, values of the signal obtained at the previous step are compared with the
chosen threshold, which is not constant for the whole signal but changes for each ECG
signal buffer, adapting to specific values of each buffer [91].

The proposed algorithm differs from the Pan-Tomkins one as for the chosen mode of
the threshold selection, having achieved satisfactory results.

The different phases of the preprocess are described below:

• differentiation. The first derivative of the signal is calculated to obtain information
about the variation of the signal and about the slope of the rising and leading edges
of the QRS complex [92];

• squaring. Each sample of the differentiated signal is squared, according to the
following formula:

Y (mT ) = [X(mT )]2 (5.15)

where T is the sampling period, Y (mT ) is the sample squared and X(mT ) is the
sample differentiated.

This non-linear signal amplification allows to obtain only positive values. It gives
more emphasis to signal components that have high frequency [93];

74



5.5. R-Peaks research Chapter 5. The Algorithm Structure

• moving integration. A moving average filter has been implemented, obtaining the
following signal output:

Z(mT ) = 1
M

#
Y (mt − (M − 1)T ) + Y (mT − (M − 2)T ) + ... + Y (mT )] (5.16)

where M is the order of the filter transfer function and Z(mT ) is the filter output.

Figure 5.17: Representation of moving integration waveform (MIW) with different
length of the moving window

Also in this case the time delay introduced by the filter is deleted. This integration
step allows to obtain information about the waveform of the entire QRS complex:
the moving average smoothes the signal, reducing the QRS complex peaks in a single
one.

The choice of the M value influences the detection of the peaks: as shown in figure
5.17 high values of M are correlated with large integration windows that include not
only the samples of the QRS complex but also those of the T wave. On the other
hand, small values of M generate narrow windows, producing more peaks for each
QRS complex. The value of M should be large enough to create windows that include
the entire QRS complex, so that its extremes coincide with those of the integrated
signal.
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Several experimental tests were conducted, and finally, as shown in the figure 5.19,
it was considered that better results were obtained using a 7 coefficient integration
window.

Figure 5.18: Representation of the preprocess phases for R-Peaks research

After the signal preprocessing phase, for each MIW rectangular windows are created,
with a value different from 0 when the integrated signal has a value higher than the chosen
threshold, 0 if lower. As shown in figure 5.19, the window created subtends the entire QRS
complex rescaled with respect to its maximum value.

The threshold was chosen experimentally, after some tests, and corresponds to 10% of
the maximum value of each ECG signal buffer, thus adapting to the variation that the
signal undergoes over time.

In this way, the position of each R-peak corresponds to the position of the maximum
value subtended to each window.

In figure 5.18 the different phases of the algorithm are shown.
Once the peaks in each buffer are selected, it is verified that each peak is at least 43

samples far from the previous one.
Since a sampling frequency of 128 Hz is chosen, the minimum distance chosen allows

to have a maximum of 180 bmp, which is the physiological maximum value [94]. If this
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Figure 5.19: Representation of the fiducial window with differentes sizes

limit is not respected, the current peak is excluded.

5.6 PPG peaks and valley research

The algorithm of the PPG-peaks and valleys research is partly inspired by the one
described in the work [95] and influenced by the study of the signal morphology. The same
algorithm is used to detect the peaks and valleys of the finger and wrist PPG signals.

During the systolic phase, the amount of light that is transmitted is always lower than
in diastolic phase. Therefore, the resulting wave is inverted with respect to the arterial
pressure waveform. For a simple interpretation of the data, the acquired signal is generally
inverted so as to consider the peak of the signal in corrispondence of the increase in blood
pressure and blood flow. In this case it was decided to proceed with the non-inverted
signal.

The two characteristic points of the signal are the follows:

• PPG peaks, corresponding to the beginning of the systolic part;

• PPG valleys, corresponding to the end of the systolic part.

The algorithm is not applied directly to the entire n-th buffer of the signal but it is
repeated for each PPG buffer sample.

The first step allows to verify that the i-th sample of the buffer SPPG is a valley: the
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Figure 5.20: Representation of a single heartbeat in the PPG signal with his peak
and valley

sample SPPG(i) is defined a valley V (i) in the position i when:

S(i − 1) > S(i) < S(i + 1) (5.17)

For each detected valley, it is verified whether there is at least one peak between the
current valley and the previous one. A sample SPPG(i) is defined a peak P (i) in the
position i when:

S(i − 1) < S(i) > S(i + 1) (5.18)

If several peaks are detected between two valleys, the one with the greatest amplitude in
relation to the i-th valley is considered as the real peak. In this way the correct pair of
points P (i)-V (i) constitute the extremes of the systolic tract of the i-th heartbeat. For
each pair of points P (i)-V (i), the amplitude of the pulse wave is calculated as follow:

V PD(i) = max(||P (i)| − |V (i)||) (5.19)

where VPD is the peak-minimum systolic amplitude. Subsequently a removal of false
peaks and valleys was applied. For each pair of points V (i)-P (i), the V PD(i) is compared
with the reference value, removing the i-th peak and valley if their amplitude is not equal
or higher than the reference one.

This allows to eliminate false peaks and valleys easily detectable in presence of noise
or of the dichrotic notch.

Since the VPD varies for each subject, it was decided to use a reference value which
varies for each heartbeat. It is obtained by multiplying at the i-th heartbeat the VPD(i-1)
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with a costant threshold. The threshold chosen is related to the morphology of the signal.
Physiologically, the morphology of the pressure wave is preserved over time, as also

the properties of the tissues. For this reason, for each subject, the PPG signal has a
morphology that does not change instantaneously over time, but gradually. With these
considerations, for each pair of points P (i)-V (i), the amplitude of the previous peak-
valley V PD(i − 1) is taken as reference amplitude. In particular, the points detected are
considered real peaks and valleys only if the i-th VPD is greater than the 50% of the
previous VPD.

The % of the threshold was chosen experimentally. It was tested that smaller per-
centages increased the number of false peaks and valleys, especially in presence of the
dichrotic notch. On the contrary, higher thresholds decreased the number of true peaks
and valleys detected. The threshold of 50% is a valuable compromise between true and
false detectable peaks.

The choice of the first reference value, at the beginning of the acquisition, is evaluated
as the 50% of corresponding one with the maximum VPD between the first two pairs of
points detected.

The algorithm also includes a re-calibration phase: if no peaks and valleys are recog-
nized for a time interval established a priori, the threshold of the reference value is reduced
to 30% until a new pair of true points are detected. The time interval chosen corresponds
to the maximum physiological distance, which generates 30 bpm.

A further control allows to exclude the selected pairs of peaks and valleys distant from
the previous one of a minimum time interval that allows to have a maximum of 180 bpm,
respecting the physiological limits.

Another reference point was computed for each beat, that is the point to which corre-
sponds the maximum slope of the systolic tract.

5.7 Heart Rate measurement

The heart rate is calculated using both ECG and PPG signals acquired. This is due
to similarity between the point at the end of the sistolic phase of the PPG signal with
the R-peak of the ECG one. As explained in Chapter 2, the heart rate can be calculated
from the measurement of the distance in seconds between successive peaks (RRI). For this
reason, the HR expressed in bpm has been calculated as follows [96]:

HR = 60
RRI

(5.20)
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Figure 5.21: Representation of the detection of the PPG peaks and valleys detection
in the two phases of the PPG peaks and valleys research algorithm

An alternative measurement is to count the number of signal peaks in 60 seconds [97]. In
the same way, the HR is calculated in the PPG signal as follow:

HR = 60
PPI

(5.21)

where PPI is the time distance between two peaks of the signal.
The RRI or PPI interval considered in the algorithm does not correspond with the i-th

interval of the i-th peak of the signal, since the heart rate is processed every 3 seconds.

5.8 PTT computation

The objective of the algorithm is to calculate the PTT on the correctly detected pulse
wave (PW) of the PPG signal. Therefore, the calculation of the PTT is preceded by a
pre-processing phase called ’PW-filter’. Five criteria were drawn up and must be respected
as long as the detected PW is not the result of an artifact and coincides with the same
heartbeat as the i-th R-peak. Only if all the criteria are respected, then the calculation of
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the i-th PTT is carried out.
The criteria applied are as follows:

• the i-th peak of the PW of the PPG signal is included between the i-th peak R and
its next one, i.e.:

tR−peak(i) < tPPG−peak(i) < tR−peak(i + 1) (5.22)

• the i-th valley of the PW of the PPG signal is included between the i-th peak R and
the R peak i+1, i.e.:

tR−peak(i) < tPPG−valley(i) < tR−peak(i + 1) (5.23)

• the i-th PPG-peak (corresponding to the beginning of the systolic phase) of the PW
precedes the i-th PPG-valley (corresponding to the end of the systolic section)

tPPG−peak(i) < tPPG−valley(i) (5.24)

• the maximum slope d of the systolic slope is positive, i.e.:

dmax > 0 (5.25)

• the width of the point at the beginning of the systolic slope is greater than the one
corresponding with the end of the systolic slope:

PPGpeak − PPGvalley > 0 (5.26)

Assuming that the PEP interval is negligible, the PTT was calculated considering each
R-peak of the ECG signal and three reference points in the PPG one. In literature, in fact,
the points that are usually considered are the peaks of the PPG signal, the valleys, and
the points with the maximum slope in the systolic phase. For this reason, it is decided
to repeat the calculations considering both points. So the PTT was calculated in the
following ways:

• distance between R-peak and PPG-valley corresponding to the same heartbeat;

fPTT (i) = tPPG−valley(i) − tRpeak(i) (5.27)

• distance between the R-peak and the PPG-peak of the same heartbeat;

pPTT (i) = tPPG−peak(i) − tRpeak(i) (5.28)
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• distance between the R-peak and the steepest point of the systolic phase correspond-
ing to the same heartbeat.

msPTT (i) = tPPGm.s(i) − tRpeak(i) (5.29)

Figure 5.22: Representation of the ECG and PPG signals corresponding to the same
heartbeats. The image is obtained resizing the two signals for better visualization.

If the criteria are not respected, it was decided to reconfirm the PTT value of the
previous heartbeat. The same confirmation is maded if more than one PPG-peaks or
valleys are detected between two R-peaks, since not significant variations in PTT are
provided between consequtives heartbeats.
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Chapter 6

Results

The algorithm was tested by comparing the results of the signals acquired on 8 patients.
For each acquisition, a statistical study was carried out, in order to define an overall

performance of the implemented algorithm.

6.1 Synchronization

As explained in the previous chapter, the synchronization of the BAN devices was done
by comparing the position of correspondent points for the two accelerometric signal. In
particular, it was decided to evaluate the offset considering for each acquisition the mean
distant time of more corresponding points.

By averaging the time offset among several corresponding points, it is tried to reduce
the weight of this error. In table 6.1 are shown the offsets obtained for each acquisition.
In particular, they were added to the signals acquired by the B2BNM on the finger.

Subject Offset (ms)
1 2031.50
2 2022.67
3 -2414.33
4 6949.00
5 -3221.00
6 7696.00
7 1974.50
8 6701.50

Table 6.1: Results of the synchronization offset
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6.2 Peaks research validation

Since the detection of the peaks greatly influences the course of the following results,
it was decided to proceed by calculating for each acquisition, the confusion matrix relative
to the point that the algorithm was able to detect.

Since an already validated algorithm was not used, the confusion matrix was obtained
through a visual inspection of each signal. Samples were classified as true negatives (TN),
false negatives (FN), true positives (TP) and false positives (FP).

To evaluate the performance of the algorithm, a static test was conducted, by calcu-
lating various statistical indices:

• Sensitivity (SE), i.e. the ability of the test to identify true peaks. Corresponds to
the proportion of real peaks identified as such. It was calculated as:

Sensitivity = TP

TP + FN
(6.1)

• Specificity (SP), i.e. the ability of the algorithm to identify samples that are not
peaks. It corresponds to the proportion of true non-peaks identified as such. It is
calculated as:

Specificity = TN

TN + FP
(6.2)

• Predictive value of the positive test (PPV), i.e. the probability that a peak
identified by the test is a true peak. It is calculated as:

PPV = TP

TP + FP
(6.3)

• Predictive value of the negative test (PNV), i.e. the probability that a non-peak
is really recognized in this way. It is calculated as:

PNV = TN

TN + FN
(6.4)

The results of R-peaks and PPG-peaks validation are shown respectively in figure 6.1,
6.2 and 6.3

The same parameters were not evaluated for the detection of valleys in the PPG signals,
due to the difficult detection by means of visual inspection.
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Figure 6.1: Statistical parameters of the R-peaks algorithm

Figure 6.2: Statistical parameters of the finger PPG-peaks algorithm

Figure 6.3: Statistical parameters of the wrist PPG-peaks algorithm

6.3 Heart Rate validation

The heart rate algorithm was validated by comparing the heart rate trends of wrist
PPG, finger PPG and ECG signals among them. Since it was not used any reference device
or algorithm, it was decided to calculate some parameters of statistical distribution, rather
than the exact error value and accuracy of the algorithm. So, the analysed parameters
are:

• covariance;

86



6.3. Heart Rate validation Chapter 6. Results

• Pearson correlation coefficient.

Figure 6.4: Representation of HR with ECG, wrist PPG and finger PPG signals

Analytically, considered two random variables X and Y, its covariance show how two
variables change together: in particular, the covariance is positive if X and Y move in
the same direction, i.e. they undergo oscillations in agreement. So, it is negative when
two variables X and Y undergo discordant oscillations. There is no covariance if they
change independently from each other, in this case the value of the covariance is 0. It is
computated as:

Cov(X, Y ) = 1
N

NØ
i=1

(xi − X̄)(yi − Ȳ ) (6.5)

where xi and yi are the i-th values of X and Y, instead X̄ and Ȳ are the mean of X and
Y respectively.

Pearson’s correlation coefficient (r) measures the degree of agreement or disagreement
between two data sets. It defines how the variables are linearly correlated and how strong
their relationship is [98]. It is defined as:

ρ(X, Y ) = 1
N − 1

NØ
i=1

(̄xi − X̄)
σX

(̄yi − Ȳ )
σY

(6.6)

where σx and σy are the standard deviations of X and Y the signals respectively.
The r coefficient varies between -1 and 1. If R is equal to 1, it means that the two
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Wrist PPG Finger PPG ECG
Subj. Mean std Range Mean std Range Mean std Range
1 67+7.5 48 to 80 68+9.1 48 to 112 67+8.3 49 to 119
2 57+8.4 46 to 77 57+8.5 47 to 76 76+8.5 47 to 67
3 62+2.3 59 to 67 65+5.6 58 to 83 62+2.1 59 to 67
4 67+2.8 62 to 75 68+3.0 62 to 77 68+8.7 62 to 132
5 70+11.9 61 to 153 67+2.6 62 to 75 68+7.5 62 to 132
6 79+4.8 66 to 88 79+5.0 65 to 88 78+9.4 65 to 152
7 74+3.9 68 to 84 71+11.5 35 to 82 73+4.3 64 to 88
8 81+4.9 71 to 94 81+5.0 69 to 94 82+12 42 to 148

Table 6.2: Mean, standard deviation and range of both ECG, finger and wrist PPG
Heart Rate results

set of variables change perfectly together, while it is equal to -1 if the two data move in
opposite directions. If the coefficient is equal to 0, then they move in random directions.

It was decided to use both parameters in combination. Indeed, the covariance value
only defines if the signals vary together and in which direction, but it does not define its
degree of correlation and how much the change of the signal influences the other one [99].

In particular, the results are computed for each subject considering all the combinations
among the ECG, finger and wrist PPG signals. In figure 6.5 and 6.6, the performance of
the covariance and Pearson Correlation Coefficient are shown.

Figure 6.5: Representation of the HR covariance trend of the Heart rate

The trend of the correlation coefficient is rather variable among the eight acquisitions.
In both cases, as shown by the sign of covariance, the three measurements are correlated
with each other in a directly proportional way.

Generally, better results were obtained from the correlation of the HR computed with
the finger and wrist PPG signals.

In fact, as shown with the specificity values of the R-peaks research algorithm, the
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Figure 6.6: Representation of the HR Pearson correlation coefficients

presence of false detected R-peaks distort the HR measurements.
Others indices were evaluated for the finger and wrist PPG signals. Considering the
anatomy of the two points of acquisition, the smaller amount of tissues overlapped in
areas such as the finger, causes less alteration in the path of the light emitted by the PPG
sensor, so less degradation of the acquired signal.

For this reason, even if the signal acquired in the two zones is generated in the same
way, it is highlighted a non-uniformity quality between the wrist and finger PPG signals.

With the sensitivity and specificity values shown above, it can be prove that the heart
rate obtained with the PPG finger signal is more accurate than the one of the wrist. For
this reason, it was decided to calculate the error of the HR values considering the finger
PPG signal as reference, as well as the accuracy of the results. The error was computed
as:

ei [%] =
3 |yi − xi|

yi

4
· 100 (6.7)

where yi is i-th the sample of the reference signal, in this case the finger one, meanwhile
xi is the i-th sample of the wrist PPG signal. The mean absolute error is calculated as:

MAE [%] = 1
N

NØ
i=1

ei (6.8)

where N is the number of total errors calculated.
In the same way, the accuracy of the HR results was calculated. The accuracy quantifies

the correspondence between the data in question, i.e the heart rate obtained with the wrist
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PPG signal, compared to the reference, in this case the finger one. It was computed as:

ACC [%] = 1
N

NØ
j=1

|yi − |yi − xi||
yi

· 100 (6.9)

Figure 6.7: Representation of the accuracy and mean absolute error of finger and
wrist HR

As done in various scientific works in literature, it was decided to complete the anal-
ysis with the Bland-Altman plot [97]. In figure 6.8 and 6.9, the plots obtained for each
acquisition are shown.

The Bland-Altman plot is a dispersion graph used to compare two quantities of the
same nature, as in this case. It does not give statistical values as solved, but by comparing
the distribution of points in the plan it is possible to draw conclusions on the comparability
of the two measures. The diagram was computed in Matlab c¥ reporting:

• the difference of the two measures on the y-axis. In this case it was considered the
wrist HR menus the finger HR;

• the arithmetic mean of the two measures on the x-axis.

Three horizontal lines are also plotted:

• one obtained from the average of the differences;

• two lateral lines obtained considering the average ±1.96SD. They represent the
limit of the confidence interval.

As can be seen from the B-A plots, the two HR estimates differ on average by 3 bmp
at most, with differences close to 0 in many acquisitions.

Generally, for the acquisitions with significant correlations, it is noticed that the trend
of the points moves around the difference average line, in orange. In these cases, in fact,
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Figure 6.8: Bland-Altman Plot of wrist and finger HR results (acquisitions 1-2-3-4)

even if the confidence interval has more or less wide margins, generally the points do not
appear distributed in the plan in a disorderly manner.

Moreover, at most 3 points are outliers. For acquisitions with low correlation coeffi-
cient, such as 4, 5 and 8, there is a disorganized distribution around the mean line.

However, the number of outliers remains limited. Moreover, in the acquisition 5 and
8, the points are arranged in a symmetrical way, therefore the error committed in the
estimation in this case is not a random error but a systemic one.
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Figure 6.9: Bland-Altman Plot of wrist and finger HR results (acquisitions 5-6-7-8)

6.4 Pulse transit Time Validation

In order to proceed with the PTT validation of the BAN, the PTT values obtained
using only one B2BNM device are taken as reference values. The choice is justifiable for
several reasons.

The ECG and finger PPG signals of reference are acquired from a single device and sent
via Bluetooth to a single computer. For this reason, the data are referred to instant times
that do not correspond to the acquisition instant times. In fact, an offset, corresponding
to the time it takes for Bluetooth to exchange data, is added to the latter. Working with
a single device, the offset is identical for the two signals, so the estimate of the PTT is not
altered by any synchronization delay.

Furthermore, others motivation are considered. As demonstrated above, the specificity
of the finger PPG peaks research algorithm is higher than the obtained one with the wrist
PPG signal.

This allows to consider the finger PPG signal as a good candidate with which to
compare the results. Moreover, considering human physiology, to a pressure pulse wave
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Figure 6.10: Comparison of peak, foot and maximum slope finger PTT

on the finger corresponds one on the wrist, in previous instant. For this reason, a lack of
pressure pulse wave in the wrist is related to a limited quality of the signal.

PTT validation consists of two steps:

• validation of the three methods of the PTT computation;

• validation of the BAN-PTT.

Having used three different reference points on the PPG signal, as shown in figure 6.10,
in the first step of the validation, the results obtained with both methods are compared.
In table 6.3 the mean, standard deviation and range values are shown.

To study the reliability of the results, it was decided to do a statistical analysis. In
particular, more attention was focused on the study of the dispersion and variability of
the data, assessing its adequacy in comparison with the predicted trend influenced by the
physiological cours.

As shown in figure 6.11, the variance of each acquisition is computed, for both of the
approches.

The variance is a statistical indicator that identifies the dispersion of the X variable
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Foot fPTT (ms) Middle ffPTT (ms) Peak fPTT (ms)
Subj. Mean ± std Range Mean ± std Range Mean ± std Range
1 349 ± 38.3 266 to 507 240 ± 13.2 182 to 262 155 ± 12.7 117 to 208
2 374 ± 46.2 267 to 531 234 ± 13.1 155 to 268 150 ± 10.4 98 to 182
3 520 ± 66.5 193 to 623 224 ± 18.9 73 to 253 139 ± 12.9 44 to 119
4 479 ± 27.4 393 to 550 304 ± 10.8 237 to 321 220 ± 9.4 167 to 238
5 361 ± 24.0 276 to 427 263 ± 16.9 170 to 306 176 ± 13.0 112 to 210
6 391 ± 27.2 321 to 550 280 ± 14.2 212 to 306 162 ± 13.9 126 to 218
7 366 ± 17.7 296 to 401 257 ± 12.9 203 to 271 170 ± 12.6 124 to 183
8 336 ± 12.5 320 to 386 240 ± 11.3 222 to 292 153 ± 9.9 133 to 198

Table 6.3: Mean,standard deviation and range of PTT computed in three different
way with ECG and finger PPG signal

values around its mean value. Small values of variance indicate a limited variation of the
values in comparison to the average one. It is calculated as follows:

V = 1
N − 1

NØ
i=1

|Xi − µ|2 (6.10)

where N is the number of samples in X and µ = 1
N

qN
i=1 Xi.

Since changes in PTT over time occur slowly, it is expected to have small PTT varia-
tions in acquisitions of up to 5 minutes.

Figure 6.11: Comparison of peak, foot and maximum slope finger PTT variance

As shown in figure 6.11, the PTT values obtained by considering the foot as the
reference point in the PPG signal have greater variability. This is influenced by the signal
quality. As shown above, detection of the valley in the PPG signal is not always easy to
calculate. In some cases, in fact, the algorithm has not detected correctly all the valleys
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Foot wPTT (ms) Middle wPTT (ms) Peak wPTT (ms)
Subj. Mean ± std Range Mean ± std Range Mean ± std Range
1 461 ± 56.0 329 to 634 274 ± 13.0 208 to 321 189 ± 12.3 145 to 242
2 520 ± 66.5 193 to 623 224 ± 18.9 73 to 253 139 ± 12.9 44 to 119
3 520 ± 66.5 193 to 623 223 ± 18.9 73 to 253 139 ± 12.9 44 to 119
4 579 ± 43.8 469 to 734 354 ± 13 269 to 369 265 ± 12.6 193 to 281
5 516 ± 86.9 105 to 712 296 ± 25.5 68 to 328 199 ± 20.2 46 to 228
6 527 ± 62.9 434 to 703 344 ± 17.9 270 to 373 255 ± 18.1 185 to 281
7 571 ± 40.9 478 to 661 321 ± 14.1 284 to 359 217 ± 13.6 164 to 236
8 517 ± 69.5 388 to 674 308 ± 17.7 231 to 375 217 ± 13.7 147 to 242

Table 6.4: Mean and standard deviation of peak, foot and maximum slope PTT
obtained with two synchronized devices

and in others they are not detected. The error is generated by the presence of the low
frequency components, below 0.5 Hz. In fact, in some cases the bandpass filter was not
able to remove them, as shown in figure 6.12.

Figure 6.12: Representation of detected uncertain PPG feet

The PTT computed with the other two methods gave better results. In fact, the PPG
peaks, as shown with the sensitivity and specificity values, were detected more reliably.
Moreover, the amplitude of the low frequency components compared to the PPG peaks is
negligible, facilitating the capability detection.

Small variability was obtained with the calculation of the PTT through the maximum
slope point of the systolic phase.

These points were detected by differentiating the systolic part of the signal. This
differentiation process consists of a high pass filtering effect on the signal, removing the
remaining low frequency components. In this way, the steepest points in the rising edge
were detected correctly with a higher probability.

As shown in table 6.4 and in figure 6.13, the same variance trend is obtained with the
PTT results of the BAN. In figure 6.14 it is also shown the trend of the BAN-PTT.

For this reason, it was decided to proceed with the evaluation of the results using the
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Figure 6.13: Comparison of peak, foot and maximum slope wrist PTT variance

Figure 6.14: Trend of BAN PTT for each type PTT calculated

last two techniques described.
In the second step of the PTT validation, PTT values of the BAN are compared with

the ones of reference. The used reference is therefore not accurate on to 100%.
After visually inspection, it was highlighted that the only incorrect PTT values ob-

tained using a single device, are related to the incorrect detection of some R-peaks.
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In fact, the majority of the finger PPG peaks were correctly detected. So the incorrect
PTT values related to the false R peak generates same errors both on the estimate of the
wrist PTT and on the finger one. So in this way, the two measurements are comparable.

Also in this case, it was decided not to calculate the error and accuracy of the algorithm
since the values estimates by the BAN and the reference device are not the same. Due to
their anatomical arrangement with respect to the heart, the peak of the signal detected
on the finger is always delayed compared to the one on the wrist.

For this reason, also in this case, a statistical analysis was made to study the distri-
bution of the data. In fact, it is expected that the two PTTs differ in an amount that is
almost constant throughout the acquisition, i.e generated exclusively by the time taken
by the blood flow to move from the wrist to the finger.

The covariance and the Pearson correlation coefficient between the reference PTT
values and the BAN ones are computed. In figure 6.15 are shown the respective trends
calculated for each acquisition.

Figure 6.15: Covariance and Pearson Correlation Coefficient trend of the reference
and BAN PTT

Positive covariance values are reasonable as two directly proportional values are com-
pared. In particular, it should be noted that only for some acquisitions the correlation
assume satisfactory values, close to 1.

For others, on the other hand, the correlation coefficient have decreased, up to become
negative for the third acquisition.

Table 6.5 shows the mean, standard deviation and range values of the difference be-
tween BAN-PTT and the reference one. Both techniques (peak PTT and maximum slope
PTT) give comparable results.
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Also in this case, in addition to the correlation test made using the Pearson coefficient,
the data were compared with each other through the Bland-Altman plot, in order to
visually assess the agreement between the two measurements [100].

In this case, the BA plot disadvantage is the absence of a "Gold Standard" as referance.
So the results are compared with imperfect other. Same situations have already been
addressed in literature, such as in [101].

Subject Mean ± std pPTT (ms) Mean ± std msPTT (ms)
1 35 ± 4.9 34 ± 4.2
2 -10 ± 6.8 14 ± -6.4
3 70 ± 47.6 55 ± 43.5
4 50 ± 4.7 45 ± 5.1
5 33 ± 15.8 24 ± 13.5
6 65 ± 11.9 63 ± 11.6
7 63 ± 15.2 47 ± 12
8 69 ± 17.8 64 ± 14.8

Table 6.5: Mean and standard deviation of the difference between wrist and finger
PTT

For this reason, the BA plot was not studied to evaluate the algorithm error, but to
verify how the difference between the PTT measurements varies along the acquisition.

The scatter plot was also used in order to detect the linear relationship between the
data. So the reference PTT values are shown on the x-axis, instead of those estimated on
the y-axis.

The graphs obtained for each acquisition are shown in figures 6.16, 6.17 and 6.18.
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Figure 6.16: Scatter Plot and Bland-Altman Plot of the acquisition n.1-2-3

With the BA and scatter plots can be observed the non-uniformity of the data cor-
relations. Moreover, the Bland-Altman indicator appears more effective because even in
cases of good correlation, a distribution of points with non-costant difference is shown.

In particular, for high values of r (>0.9), as in the acquisition 1, a lineary correlation
between the data in the scatter plot is evident: the correlation tends to decrease for high
values of PTT.
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Figure 6.17: Scatter Plot and Bland-Altman Plot of the acquisition n.4-5-6

In this case, by comparing the corresponding Bland-Altman diagram, the points move
mainly within the confidence interval. Some outliers exceed the possible range of values.
Moreover, the points are distributed symmetrically around the mean: the errors have a
distribution that is not random, but systematic in absolute value, so the two methods
provide different measurements, as expected, but not randomly variable.

In acquisitions with significant correlation coefficient (0.7-0.9) [102] it is observed a
lower reproducibility of the difference, in fact the points move away from the mean value
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Figure 6.18: Scatter Plot and Bland-Altman Plot of the acquisition n.7-8

in a random way. This implies that the variance of the signal samples does not assume
a constant value inside it. In these conditions, on the other hand, in the scatter plot the
points are not exactly arranged close to the best-fit line. However, the points still move
within the confidence interval.

For correlation values below 0.7, the points of the BA plot are agglomerated in a
restricted region but in a completely random way around the best-fits line.

In any case, the range of values of the confidence interval, with or without good
correlation, does not comply with the expected results.
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Chapter 7

Conclusions

In recent years, there has been a rapid increase in the development of intelligent wear-
able systems, i.e. wearable devices modelled around the human body with the aim of
make the technology as usable and less invasive as possible. Integrated with telemedicine
systems, these mini-devices allow both continuous monitoring of the patient and also a
constant communication with medical staff, useful to keep under control the onset of
diseases.

A promising approach is the use of the devices within a Body Area Network, which
consists of the use of multiple devices located in strategic parts of the patient’s body.
Using wireless connections, the devices are able to acquire signals from several parts of
the body at the same time and to communicate with each others. Without constraining the
patient’s life, they provide measurements with the same accuracy of the old cumbersome
devices.

The aim of the STMicroelectronics is to test the new device, the Bio2Bit New Move,
which can provide feedback on patient health monitoring. Inserted within a BAN, the
B2BNM is able to communicate via Bluetooth Low Energy with other devices in real
time.

The purpose of this work is to test the reliability of the PTT measured using two
B2BNMs within the BAN, comparing the results with the obtained one with a single
device.

The algorithm was developed in order to synchronize the BAN devices and to calculate
the PTT through the ECG signal and the wrist PPG one. Being a preliminary study, the
analysis was made only in steady state conditions.

Among the three implemented PTT techniques, more stable results were obtained by
the maximum slope-PTT and peak-PTT, even if the first gives results comparable to the
literary studies one. In fact, the negligible influence of the low-frequency components in
these cases promotes high specificity value in the PPG-peaks research.
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Instead of the traditional synchronization techniques, it was used an innovative ap-
proach based on the temporal comparison of the acceleration components, corresponding
to similar actions on different signals.

Evaluating the time delay introduced by the Bluetooth connections, the two signals
were synchronized with respect to a common time reference.

The technique used has many advantages. The first one is the possibility to synchro-
nize more devices at the same time reference, without produce any time error for each
device, which would generate a not negligible error inside the BAN . It also requires a
minimum setup, consisting of two accelerometric signals which feel the same event in the
same way. Therefore, any modification to the firmware is necessary. It is also a simple,
inexpensive computationally process, so the synchronization can be repeated frequently
during analysis, keeping devices accurately synchronized with each other.

The only disadvantage is the high precision required in the signal acquisition. In fact,
since the motion frequencies can be detected up to a frequency of 1KHz, it is advisable to
use a high sampling frequency, which cannot be used by all devices.

Since a sampling frequency of 128 Hz was used, synchronization errors of up to 15 ms
were expected. The error, however, in the pre-processing phase, was considered negligible
as it was included in the PTT acceptable error, which is 20 ms at most, as shown in
literature study. In addition, if the offset is calculated using a multipoint averaging process,
the influence of the error decreases.

The reliability of the results was evaluated by comparing, in both cases, the PTT
values with the reference ones, showed in literature studies. The obtained values of finger
PTT have an average value of 244 ±14 ms referred to the PPG point of systolic maximum
slope, comparables with the ones of Kortekaas study (271 ± 28) [103].

Therefore, the algorithm of the PTT calculation gave satisfactory results. The same
can be observed for the wrist PTT values, which average value is 293 ± 17 ms compared
to some scientific works with an average of 266 ms.

Although the PTT ranges are satisfactory, the difference between finger and wrist
PTT is not exactly within the expected values range. Through an in-depth analysis,
it was remarked the variation of the sampling frequency signal along the course of the
acquisition, caused by the loss of signal packets during the Bluetooth data exchange.

It concerns a frequent error when using wireless connections. Missing the signal cover-
age, Handoffs are generated, i.e. operations which guarantee the continuity of the connec-
tion, finding a new connection in new networks. The passage of the network, even if done
in a shortest time possible, causes a loss of signal packets. The variation of the sampling
frequency of the received signal, oscillating between 90 and 200 Hz randomly, besides caus-
ing the loss of useful signal samples, has not allowed an accurate synchronization between
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the BAN devices. The reasons are as follows:

• with lower sampling frequency than expected, as demonstrated above, the error in
the PTT estimation goes beyond the permissible range;

• random loss of samples causes oversynchronization between signal parts without
delay, if acceleration reference points was identified in parts with a lower sampling
rate than expected.

For this reason, even if the difference between the finger and wrist PTT average values
oscillates in the range of possible values, which is at most equal to 80 ms according to
some literature works, the overcompensation of the offset has caused an excessive temporal
translation of the wrist PPG signal compared to the finger one.

Furthermore, only a visual inspection to compare the corresponding parts of the ac-
celeration signals is inaccuracies.

The variable sampling frequency of the signal has considerably decreased the specificity
of the algorithm for the detection of the R-peaks. In fact, by implementing the Pan-
Tomkins algorithm, thresholds were chosen, based on the width of the QRS complex. The
variability of the number of samples between the QRS complex has increased the number
of false detected peaks.

The problem consequently influenced the results of the ECG Heart Rate. On the
contrary, satisfactory results were obtained by comparing the wrist and finger PPG HR,
for which an average error of 3% and an accuracy of 96.5% were obtained.

7.1 Future works

Algorithm improvements can be proposed as future work, such as:

• compensation of the lost signal packets, resampling the intervals with different sam-
pling frequency from the desired one;

• implementation of the adaptive filtering to enable reliable data analysis even during
motion phases;

• usage of other signal sensors, such as gyroscope or red LED light to accurately detect
noise and motion;

• automates the synchronization algorithm using cross-correlation between the ac-
celerometer signals. Cross-correlation, rather than visual inspection, assess the cor-
relation degree between two time signals series. In this way, it can be study the
portions of signals corresponding to the same actions in a more accuratele way. In
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fact, since the same action can have different repercussions on the signals, an esti-
mate that takes into account the trend of a large number of samples rather than
singular points appears more reliable.
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