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Abstract

Parkinson’s disease (PD) is a gradual neurodegenerative disorder defined by the loss
of dopaminergic neurons and the presence of Lewy bodies in the basal ganglia area.
The main manifestations of PD are motor symptoms, such as bradykinesia (i.e.,
slowness of movement), tremor, rigidity and balance instability, nonetheless non-
motor symptoms, as sleep disorders and dementia, are common too.
Levodopa is the gold standard medication; its effectiveness is remarkable at the
beginning, but it decreases with the progress of the therapy. Besides, motor compli-
cations appear as side-effects of the medication causing dyskinesia (i.e., involuntary
movement) and motor fluctuations.
To reduce the medication drawbacks and optimize the doses of levodopa, periodical
assessments at the hospital are necessary. However, a longitudinal and continuous
monitoring of individuals with late-stage PD would increase the efficacy of the drug
titration.

The use of wearable technologies can help the fulfillment of objective and longitu-
dinal monitoring of motor symptoms and complications in unconstrained environ-
ments.
This work aims to investigate the feasibility of a system able to track the severity
of bradykinesia and motor fluctuations in naturalistic settings based on wearable
sensors and Machine Learning (ML) techniques.
The dataset used for the study is part of the Blue Sky project and includes 25
participants with late-stage PD. The data are gathered during two visits, one in
the laboratory and the other in a simulated apartment, using accelerometer sensors
placed on the wrists and ankles. The tasks belong to standardized and activity of
daily living (ADL) and the clinical scores follow the Unified Parkinson’s Disease
Rating Scale (UPDRS).

The data processing consists in filtering, resting period removal, signal segmentation,
feature extraction, data cleaning, and training of the Random Forest (RF) algorithm.
The signals are filtered to retain the frequency components related to bradykinesia.
After the removal of the rest periods, the continuous signals are segmented into 5s
windows to simplify the analysis.
Once determined the feature set, the predictors are extracted from the windows
and the redundant predictors are discarded applying a proposed method based on
feature correlation and ReliefF. Four movement patterns groups are identified to
reduce the complexity of the bradykinesia estimation.
Data cleaning to discard outliers and improve class separation is implemented before
the training of the RF regressor. The same pipeline is applied to the apartment data
adding a movement pattern classifier before the model estimate.
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The cross-validation (CV) results on the laboratory data are obtained using k-fold
and leave-one-subject-out (LOSO). The performance is measured in terms of root
mean square error (RMSE) for regression tasks; whereas accuracy, specificity, and
sensitivity are used for classification assignments.

The validation results are encouraging, the overall RMSE is 0.5 in regression range
between 0 and 3 with the LOSO CV, and the test results are promising for the lon-
gitudinal monitoring of bradykinesia and motor fluctuations in-home setting during
ADL with a RMSE of 0.89.

In conclusion, this work demonstrates the feasibility of this approach applied in
natural settings despite some limitations, such as the low number of subjects and a
reduced amount of labels. This result can be a starting point for future improvements
in PD severity monitoring.
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Chapter 1

Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders in
the world. Estimates suggest 10 million people are affected by PD worldwide [1];
the amount is going to increase due to the aging progression in developed countries.
This thesis is part of a bigger project, called Blue sky, a result of the collaboration
of Motion Analysis Lab, Harvard Medical School, Spaulding Rehabilitation Hospital,
Pfizer Inc. and, IBM T.J. Watson Research Center.
The Blue Sky project aims to design a telemonitoring system, to estimate the PD
severity using wearable sensors artificial intelligence (AI) methods. Exploiting the
predictions, the clinician could monitor the subject constantly, without needing
an assessment at the hospital. Besides, the gathered information could lead the
physician to a deeper comprehension of the subject state, enabling a personalized
and optimized drug treatment strategy.
According to the goals proposed by the project, the PD assessment would be easier,
available everywhere, without the presence of a clinician, and constant. In addition,
longitudinal monitoring is more suitable to assess the severity of the disease and
adjust the drug treatment.
The main advantage of the implementation of the telemonitoring system would be
addressed to the patients, providing them a quantitative measure of the severity
deleting the subjectivity and bias typical in common clinical assessment, but also
the entire society because this system will reduce the cost of the periodical hospital
assessments.
The project involves two data collections, the first one in the laboratory, while the
second in a simulated apartment. The data has been gathered by inertial mea-
surement units (IMUs) placed on the wrists and the ankles of the subjects, during
activities of daily living (ADL) and standardized tasks. A team of clinicians eval-
uated the performance of the tasks according to the Unified Parkinson’s disease
Rating Scale (UPDRS) in both the settings.

This work focuses on the PD cardinal symptom, the bradykinesia; the definition
of bradykinesia is the progressive slowness of movement during voluntary repetitive
activities [2].
The main aim of the thesis is to design a machine learning (ML) predictive model,
based on the data collected in the laboratory, to estimate the bradykinesia severity
of the subjects in the apartment setting.
During my period spent at the Motion Analysis Lab, Harvard Medical School,
Spaulding Rehabilitation Hospital in Boston (MA, United States), I dealt with the
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Chapter 1. Introduction

signal pre-processing, the feature engineering and feature extraction, the supervised
and unsupervised ML approaches to process the data to build a robust predictive
model and, the testing phase on the data gathered in the simulated apartment.

In the following sections of this chapter, some details about Parkinson’s disease
and motor fluctuation will be explained and a general overview of wearable sensors
and machine learning algorithms will be provided.
The next chapters are set up as follow:

• Chapter 2: state of the art overview, taking into account the major works in
literature published in the last years;

• Chapter 3: material and methods applied to develop the analysis of the data
and the predictive model;

• Chapter 4: reporting the results;

• Chapter 5: discussion and comments on the work;

• Chapter 6: conclusion and future advancements on the themes covered by the
thesis.
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Chapter 1. Introduction

1.1 Parkinson’s Disease

PD is a gradual neurodegenerative disorder. It is the second most frequent after
Alzheimer’s disease among neurodegenerative disorders. It affects, especially, people
from 60 years of age, but the onset of the disorder could be earlier. Its predominance
is 1% in the population over 60 years [3] and around the 4% over 80 years [4].
To quantify with absolute values, there are 7-10 million people affected by PD world-
wide [1]; the overall trend estimate for the future years, according to the constant
aging of the global population is around 14 million by 2040 [5].
This trend explains the significant interest in the field of PD research, also because
there is no definitive treatment for the disease and the real causes of this disorder
are not discovered yet. The majority of PD cases are labeled as idiopathic and only
a few cases have genetic reasons.

1.1.1 Pathophysiology

PD occurs as degeneration of the extra-pyramidal structures in the nervous system.
These structures are responsible for the voluntary movements. The extra-pyramidal
and the pyramidal systems work concurrently, allowing the execution of the volun-
tary movements.
The decline includes a particular region, located in the basal ganglia area, the sub-
stantia nigra (figure 1.1). This anatomical zone is located between the midbrain
and the diencephalon, and has this name because there is a high concentrations of
melanin pigment.
Basal ganglia handle the likelihood of movement taking place, comparing cortical
processing with the overall condition of the nervous system [6].
Basal ganglia have links toward areas in the brain stem and these connections con-
stitute the nigro-striatum motor pathway (figure 1.2).
Motor pathway is divided into two paths: the direct pathway and the indirect path-
way; the substantia nigra plays a fundamental role for the correct working in both
of them. The inputs to the striatum come from only the cortex area.
The direct pathway is managed by the neurotransmitters Gamma-aminobutyric acid
(GABA) and Glutamate; the information streams from the striatum to the globus
pallidus internal segment (GPi) and the substantia nigra reticulata (SNr). After
that, these regions communicate with the thalamus and, this area sends instructions
to the cortex closing the loop.
On the other hand, the indirect pathway proceeds from the striatum to the globus
pallidus external segment (GPe); the GPe sends the stream of information to the
subthalamic nucleus (STN) and, afterwards to the area of the GPi and SNr. From
this region, the path is the same as the direct pathway.
The direct pathway disinhibits the thalamus; instead, the indirect pathway enforces
the regular inhibition of the thalamus. The disinhibition of the thalamus causes
the excitation of the cortex, meanwhile, the inhibition strengthening induces an
inhibition of the cortex.
The decision to use the direct or the indirect pathway is controlled by the substantia
nigra pars compacta (SNc). This area sends information to the striatum by the
neurotransmitter dopamine; the direct pathway is triggered by dopamine, on the
other hand, the indirect path is repressed by dopamine. If the SNc is active the

3



Chapter 1. Introduction

likelihood of movement will be higher; rather if the it is quiet the motion is inhibited
[6].

Figure 1.1: Lateral view representation of the brain. The violet area is the basal
ganglia region, while the orange one is the thalamus. The red circle indicate the
position of the substantia nigra. Adapted from [7].

PD affects the SNc, causing motor and non-motor impairments. Motor issues are
clearly explained by the deficit in dopamine level, which triggers one of the two
pathways.
The first principal neuropathological finding in PD is the loss of neurons in the pars
compacta [2]. The death of these cells is related to a deficit of dopamine in this area,
since the dopamine controls the movements through the nigro-striatum pathway, the
lack of this neurotransmitter causes not only the deterioration of the motion actions
but also cognitive problems. It is estimated that a subject affected loses 50 % to
70 % of the entire neurons of the SNc during his life [4].
The second neuropathological finding is the presence of protein deposits formed by
α-synuclein inside the brain cells called Lewy bodies. The Lewy bodies move the
other cellular structures from the correct position and their distribution inside the
brain tissue is strictly correlated to the expression and the severity of the clinical
symptoms. The Lewy bodies are a clear mark of PD; in fact, the diagnosis of
PD could be confirmed only during the autopsy by histopathological analysis [2].
If during the examination Lewy bodies are found in the brain tissue the clinical
diagnosis will be proved (figure 1.3). This procedure is considered the standard
gauge of judgment for the PD diagnosis.

1.1.2 Symptoms

PD symptoms are both motor and cognitive and they are caused by the lack of
dopamine in the SNc and by the loss of neural cells.
The hallmark symptoms are motors because they are the first to appear and they
induce a significant reduction of quality of life in people affected by PD.
All the symptoms occur gradually and not altogether; as the disease progresses the
severity increases and new symptoms arise.

4
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Figure 1.2: Illustration of the basal ganglia, or basal nuclei connections. The cor-
tex controls the striatum using the neurotransmitter glutamate and the striatum
has two different paths to tune the cortex actions. The direct pathway involves
the striatum, the regions of globus pallidus internal (GPi) and the substantia ni-
gra reticulata (SNr); the indirect pathway includes the globus pallidus external
(GPe), the subthalamic nuclues (STN) and the area of GPi and SNr. The sub-
stantia nigra compacta (SNc) manages which of the two paths would modulate
the cortex. This information is carried by the neurotransmitter dopamine towards
the striatum [6]. Retrieved from [6].

Figure 1.3: Histopathological image of the neuronal tissue with the presence
of the Lewy bodies. The protein agglomerates are marked by black arrows to
distinguish them from the other tissues; the presence of the Lewy bodies confirms
the clinical diagnosis of PD in autopsy.

In table 1.1 the principal symptoms are listed and in the next sections, each symptom
will be described more.
The cardinal symptoms of PD are bradykinesia, tremor, and rigidity; nonetheless,
they are taken into account for the clinical diagnosis.
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Table 1.1: Motor and non-motor symptoms in Parkinson’s disease.

Motor Symptoms Cognitive Symptoms

Bradykinesia Sleep
Tremor at rest Cognition
Rigidity Dementia
Postural Instability Mood Disturbance
Freezing of Gait Psychosis
Hypokinesia Confusion
Akinesia

Bradykinesia

Bradykinesia is one of the cardinal symptoms of PD, and it is also the most important
clinical sign to diagnose the disorder itself.
The clinical definition of bradykinesia is the progressive slowness of movement and
decrease of range of motion during repetitive voluntary movements. Indeed, bradyki-
nesia affects the daily activity of the patients hampering the planning and the success
of the motions.
The main impairments related to bradykinesia are the decline of automatic move-
ments (i.e., arm swings during walking), difficulty to start movements, general slow-
ness, and abnormal stiffness or diminished facial expression [8]. This manifestation
alters the fine motor control [2] as well, for example using kitchen tools, buttoning
clothes, or writing.
Bradykinesia is the hallmark sign of basal ganglia degeneration, especially this man-
ifestation is the consequence of the reduced dopaminergic function in the SNc. This
symptom may affect only one limb, one-half of the body or even the entire body.
According to the features of bradykinesia, the typical tasks for the assessment are
repetitive movements, such as finger tapping, finger to nose and alternating hand
movement, which consists of a sequence of pronation and supination of the hands.
Those tasks allow the clinician to evaluate the severity of the symptom and the
overall state of the disorder.

Tremor

Tremor is the most distinctive symptom of PD. It appears during rest with a peri-
odical tremor of the distal part of the limbs. Generally, tremor affects mostly the
upper part of the body, but it could manifest in the legs too.
The main characteristic of this symptom is the frequency of the periodical involun-
tary movements; the values are estimated between 4 Hz to 6 Hz [2]. A secondary
aspect is the absence of tremor during voluntary movements and sleep.
Tremor has a fast onset and could change the severity quickly. To estimate the
severity of this symptom, the physician should observe the patient during resting
periods monitoring the amplitude and the frequency of the manifestation.

6



Chapter 1. Introduction

Rigidity

Rigidity is one of the hallmark symptom of PD together with bradykinesia and
tremor. Rigidity is defined as stiffness of the limbs and joints; this manifestation
decreases the range of motion and may cause pain.
Rigidity could not affect only the limbs, but the trunk and the face too. A huge
issue of rigidity is the repercussion on the quality of the sleep [8].

Other Motor Symptoms

The other motor symptoms are not less important, but they are less frequent because
they occur in the late-stage of the disorder.
Postural instability is the most dangerous symptom because it could cause the sub-
ject to fall during walking. The postural instability is due to rigidity and loss of
promptness; this means less balancing control while upright posture by the subject.
Another cause of falling is the freezing of gait; it could be described as a motor
block. The freezing occurs mostly during walk, but it could manifest in the upper
part of the body too.
Hypokinesia and akinesia are manifestations quite similar to bradykinesia, never-
theless the former has referred to the inability to perform movements, the latter is
the incapacity to start voluntary movement. Those two symptoms are a clear mark
of degeneration of SNc; besides, they appear in the late stage of the disease when
the loss of dopaminergic neurons is important.

Cognitive Symptoms

Despite these symptoms seem to be on the background compared to motor ones,
their incidence of occurrence in PD patients is around 40% [4], and they can not
underestimate.
The majority of these symptoms appear in the late stage; for example, sleep dis-
orders are related to a specific motor manifestation, the rigidity. Other cognition
dysfunction could be dementia, depression, and mood disturbance, but the real
reasons are not well-known [2] by researches and clinicians.

1.1.3 Diagnosis

Up to now, there is no exhaustive analysis for the diagnosis of PD, and it is based
essentially on clinical features.
The clinical features are, at first glance, the motor symptoms, because they are the
most noticeable signs in people with PD; besides, other considerations are necessary
about the response of the medication and the exclusion criteria. The real challenge
in PD diagnosis is to recognize the disorder in the early stages, but this could be
tough because some symptoms are in common with other diseases [2].
To diagnose PD, the subject must manifest bradykinesia and at least another hall-
mark between tremor and rigidity; then, the subject must have at least two sup-
portive criteria and the absence of all the exclusion criteria [9]. In table 1.2 the
exclusion and the supportive criteria for the diagnosis of PD are shown.
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Table 1.2: Diagnostic criteria of the Parkinson’s disease; they include the exclu-
sion and the supportive criteria. Adapted from [4].

Exclusion Criteria

History of repeated strokes
Supranuclear gaze palsy
History of repeated head injury
Cerebellar signs
History of definite encephalitis
Early severe autonomic involvement
Oculogyric crises
Early severe dementia with disturbances of memory, language and praxis
Neuroleptic treatment at the onset of symptoms
Babinski’s sign
More than one affected relative
Presence of cerebral tumour or communicating hydrocephalus on CT scan
Sustained remission
Negative response to large doses of levodopa (if malabsorption excluded)
Strictly unilateral features after 3 years
Supportive Criteria

Unilateral onset
Rest tremor present
Progressive disorder
Persistent asymmetry affecting side on onset most
Excellent response to levodopa (70 % to 100 %)
Severe levodopa-induced chorea
Levodopa responce for 5 years or more
Clinical course of 10 years or more

1.1.4 Etiology

The origin of PD is not yet understood for the most analyzed cases. For this reason,
PD is defined as idiopathic disorder. Other causes rely on genetic risk factors, but
only for 5% of the PD population, the genetic cause could have been related [9].
The main genetic source is given by the LRRK 2 gene; this gene encodes the protein
dardarin, which is correlated with the asymmetric onset and frequent tremor. A
second gene mutation regards the SNCA gene; this gene is related to the synthesis
of the protein α-synuclein, which generates the protein agglomerates, called Lewy
bodies, in the brain cells. The overexpression of this gene leads to an increased
production of the protein and a high likelihood to develop Lewy bodies.
Finally, another cause for PD is in mitochondrial genetics. One of the reasons of
the brain cells’ death is the high oxidative damage sensitivity of the SNc. A mi-
tochondrial dysfunction leads to oxidative phosphorylation defect in PD, hence to
the death of the brain cells [4]. A mutation in the PINK 1, that synthesizes the
mitochondrial complex may lead to the failure in the antioxidative mechanism.
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The onset of PD may be associated with environmental factors [3]. According to
epidemiological studies, a correlation between the risk of PD and the exposure to pes-
ticides, herbicides, and heavy metals are discovered. These factors lead to dopamine
depletion in case of herbicides exposure and increased oxidative stress if heavy metals
concentrations are high in the SNc [3].

1.1.5 Treatments

The main goal of the PD treatment is to mitigate the symptoms, especially during
the initial stages of the disorder. In this way, the subject is allowed to carry out
daily activities without or with reduced impairments. Besides, the treatment must
be tolerated by the subject and must trigger the less amount of side-effects.
The gold standard medication is the levodopa (L-dopa), a precursor of the dopamine.
This drug is very effective at the beginning of the treatment and, reduces the severity
of the symptoms. However, only 5 % to 10 % of the L-dopa intake can pass through
the blood-brain barrier (BBB) and, turned into dopamine, ready to be absorbed by
the dopaminergic neurons, by using the DOPA-decarboxylase. The remaining part
goes into other districts causing side-effects such as nausea, dyskinesia and joints’
rigidity.
The long-term treatment with L-dopa complicates the state of the patient adding
new issues, such as dyskinesia, sudden involuntary movements caused by an excessive
dose of L-dopa and the motor fluctuations. Motor fluctuations refer to different
states of the subject before and after the medication intake. In those states, the
subject could experience the total absence or a reduced presence of the symptoms
otherwise a significant severity. Besides, the motor fluctuations features are related
to the dose of medication and, the disorder duration [4].

1.1.6 Clinical assessment

Up to now, the gold standard to assess PD is the clinical assessment according to
the Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS). The clinical assessment typically takes place at the hospital led by a
neurologist, and it is based on the MDS-UPDRS protocol (figure 1.4). Besides,
the overall outcome is the ensemble of the subject’s feelings and, the clinician’s
judgments.
The judgment of the neurologist is a score given to each task of the protocol between
0-4; score 0 means absence of the impairment, on the other hand, score 4 suggests
an important hampering to perform the assigned task.
The clinical assessment could not be considered a perfect prediction of the severity
of the disease, because due to quantitative measures, the outcome is a general idea
of the subject’s status [5].
The MDS-UPDRS protocol attempts to span all the aspects of the disease’s clinical
manifestations; in fact, it has four sections divided as follows:

• Part I: assessment of non-motor symptoms during daily living;

• Part II: examination of motor aspects in daily living;
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• Part III: motor examination, assessing the hallmarks motor symptoms using
standardized tasks. For example, the bradykinesia assessment has performed
using finger-to-nose movements and alternating hand movements (pronation-
supination of the hands);

• Part IV: assessment of motor complications due to drug treatment.

Figure 1.4: The MDS-UPDRS covers all the points for the PD assessment.
The score for each item is between 0-4. The part I takes into account the non-
motor symptoms in daily living, while the part II assesses the motor complication
during activities daily living; the part III is the motor examination, where the
major motor symptoms are assessed by standardized tasks and finally the part IV
consists in observe the therapy drawbacks and the motor fluctuations. Retrieved
from [10].

However, thanks to an important advancement in the technological field new forms
of assessment have risen. The most popular technologies to assess quantitatively
the PD severity are accelerometer, gyroscopes and magnetometer sensors [5]; these
tools allow to get objective measurement, improving the repeatability and the overall
accuracy of the examination.

1.2 Motor Fluctuations

Motor fluctuation is not a real symptom of PD, but it is defined as motor compli-
cation. It is related to the medication treatment because the gold standard drug is
L-dopa, and as time progress the side-effects become significant as the PD symp-
toms. Studies observed subjects experienced motor complications after 5 years of
L-dopa therapy with an incidence of 40% [11].
Motor fluctuation describes the alternation of the patient’s status along before,
during and after the medication intake [12]. The states of the fluctuation are OFF,
wearing ON, ON and, wearing OFF (figure 1.5).
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• OFF state: it occurs when the subject is no under the effect of the medication;
this means the patient experiences the common PD motor symptoms;

• Transition to ON: it is the transition phase between the state OFF and ON;
it corresponds to the medication intake.

• ON state: it is the timing when the drug is working, increasing the dopamine
level in the substantia nigra. During this period, the subject has a heavy
reduction or the disappearance of the symptoms’ severity.

• Wearing OFF: it is the transition between the ON and the OFF states. This
state is also known as end-of-dose deterioration. Over this phase, the motor
symptom severity increases meaning that the level of dopamine is lower and
the control for the motor pathway becomes harder.

Figure 1.5: Motor fluctuation cycle illustration. The state before the medication
intake (red triangle) is defined OFF; after the transition, the level of dopamine in
the substantia nigra is high, this state is called ON. At the end of the drug effect,
the wearing OFF transition takes place till a new state OFF period. Retrieved
from [13].

This fluctuation between OFF and ON states causes movement impairments during
the daily living of the patients. These oscillations could have avoided optimizing
and personalizing the medication treatment.
Another drawback of L-dopa is the onset of a motor complication during the ON
phase. This side-effect is called dyskinesia and its definition is a sudden and invol-
untary movement that could affect a single limb or the whole body [11].
The real cause of the dyskinesia onset is still unknown, however, a plausible ex-
planation might be the continuous fluctuation of dopamine level due to the several
medication intake during the day. The physiological reason relies on the reduced
quantity of medication that passes through the BBB; all the remaining dose goes in
other areas where it is converted into dopamine; this causes the involuntary choreic
movements.
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1.3 Wearable sensors

Wearable sensors have been a success since their appearance in the market. Thanks
to technological progress into miniaturization of the Micro-electromechanical sys-
tems (MEMS), it was possible to condense different sensors on a single device.
Wearable sensor purposes are various, from the health tracking of normal people to
the monitoring of individuals with motor impairments.
Typically, wearable sensors consist of accelerometer, gyroscope, and magnetometer
and they are capable to communicate with other devices, such as smartphones,
tablets, and computers using wireless communication, like Bluetooth.
The reason why they are so popular is the movements are not obstructed by wires
and their low weight. Besides, these devices are easy to use because they do not
need a particular setup to work properly.
Since in this work, the exploited sensors are accelerometers a deeper discussion about
these kinds of sensors in terms of working principle and design will be presented in
the next section.

1.3.1 Accelerometer sensor

The accelerometer sensor is a device that allows to measure the body’s acceleration
by a moving proof mass. In general, the system consists of a seismic mass, a spring
and a damper (figure 1.6). The sensor exploits the mass inertia during a movement,
hence the displacement of the proof mass is measured, respect to the fixed device’s
structure, and this quantity corresponds to a given acceleration using the second
Newton law equation 1.1

Figure 1.6: The accelerometer sensor is modeled as a mass, spring, damper
system. According to this model the mass could move due to external forces;
the displacement of the mass between the reference system origin is measured to
derive the acceleration values.

m
d2x

dt2
+ c

dx

dt
+ kx = mg, (1.1)

where x is the displacement, m is the mass, c is the damping coefficient of the
damper, k is the elastic constant of the spring and g is the gravitational acceleration.
The mechanical displacement is converted into an electrical quantity by a transducer;
the common transducers used in accelerometer sensors are:
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• Piezoelectric crystals: this device has the characteristic of generating a
∆V as a result of a ∆x, where V and x are the voltage and the displacement
respectively;

• Piezoresistive: the displacement is detected by the resistivity changing of
the semiconductor device;

• Capacitive: the gap between the two plates of a capacitor is inversely pro-
portional to the capacitance value C (equation 1.2)

C =
ε0εrA

x
, (1.2)

where ε0 is the vacuum permittivity, εr is the relative permittivity of the
medium, A is the overlapping surface area of the capacitor’s plates and x is
the displacement between the two plates.

The focus is on the capacitive accelerometer sensors because the OPAL device has
inside this type of technology.

Capacitive accelerometer sensor

The reason why this kind of technology is the most popular is that the measurement
accuracy and the stability are significant; besides, the power dissipation is negligi-
ble compared with the other fabrication methods and this sensor has a very low
sensitivity to noise and temperature fluctuations.
The sensor consists of a proof mass, equipped with fingers, anchored to the fixed
structure of the device by two springs. On the two sides of the proof mass, there
are other fingers, such as the proof mass, but these are fixed. The overall layout is
presented in figure 1.7.
The design of the sensor is due to generate a greater capacitance variation, because
with this architecture there are many capacitors in parallel configuration; if the
capacitors are in parallel, the system is equivalent to another one with a single
capacitor with a capacitance value equal to the sum of all the capacitance values of
the previous system.
When the system is moving with a non-zero acceleration, the proof mass is moving
too, causing a variation of the displacement among the moving and the fixed fingers.
This displacement modifies the capacitance value of the system, and according to
the equations 1.1 and 1.2, the acceleration value can be estimated.
Obviously, the description of the device is only for one axis; to build a triaxial
accelerometer is necessary to replicate the same structure on the other two axes.

1.4 Machine Learning algorithms

Machine Learning (ML) is part of the artificial intelligence (AI) field, which is the
field where computer systems are designed with the ability to learn from experience
like humans do.
Two definitions outline the ML field:

"Field of study that gives computers the ability to learn without being
explicitly programmed" (A. Samuel, 1959)
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Figure 1.7: Representation of the capacitive accelerometer design. The seismic
mass (proof mass), in the middle, is anchored to the fixed silicon substrate; the
anchor could be treated as a spring and a damper. On the two side of the seismic
mass there are two fixed structures with fingers, these fingers are on the proof
mass too. When the seismic mass is moving the distance among the fixed and
the moving fingers changes according to the amount of acceleration given to the
system.

"A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E". (T. Mitchell, 1988)

The first definition is the informal one, on the other hand, the second statement
describes the basic approach to deal with a problem using ML. To summarize the
idea of ML, its goal is to design a mathematical model for a specific task, with the
capability to predict the output of new data according to the knowledge previously
learned or find structures or patterns inside data. There are different ML approaches
according to the task and the kind of available data and the main method of ML
are supervised learning and unsupervised learning.

1.4.1 Supervised Learning

The supervised learning is used when the dataset is labeled. A label could be a
certain class, a discrete number or a continuous number; regarding the nature of the
labels, different approaches could have exploited.
The final purpose of supervised learning is to predict the output according to the
experience learned by the data. Usually, the experience of the mathematical model
is given by the training set; instead, the new predictions are on new data, which
constitutes the test set (figure 1.8).
The training set could be depicted as an m×n input matrix called X and an m× 1
output array called Y .
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Figure 1.8: Supervised learning approach illustration. The training data and
the labels form the experience for the mathematical model. After the learning
phase the model is ready to predict the output of new data.

X is the ensemble of all the instances of the sample; each element has represented
as a feature array; the feature array locates the element in the feature space. Each
row of the matrix X is an instance and each column of the matrix X is a variable.
Each element has a label; the ensemble of the labels constitutes the output array Y .
The value of Y could be discrete, continuous or categorical.
In mathematical terms, the input matrix and the outputs could have summarized
as:

D =

{
(x(i), y(i))

}m

i=1

, (1.3)

where x(i) is the ith sample and x(i) = x
(i)
1 , ..., x

(i)
n .

Finally, the mathematical expression to explain the goal of supervised learning is:

Y = f(X) + ε, (1.4)

where Y is the output, X the input matrix, f is the model and ε is the intrinsic
error of the model. According to the nature of the output Y , supervised learning
has divided as classification and regression.

Classification

Classification refers to when the output Y has discrete values, such as 0, 1, 2, ...n, or
when the outputs are categorical. In this case, the goal of the learning algorithm is
to find the proper boundaries among the classes in order to allocate new data points
to the correct membership class.
An example of classification task could be to recognize if a mass is tumoral or not,
according to some characteristics, like the size and the shape; this particular case
belongs to the binary classification tasks because the model has to identify if a new
instance belongs to a class or another one.
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Figure 1.9: Unsupervised learning approach illustration. The input data are
processed by the machine learning algorithm; the outcome of the model is how
the data have been grouped according to their features.

Another example is to predict the weather, sunny cloudy or rainy, exploiting infor-
mation like the temperature and the humidity. This task belongs to the multiclass
classification because the learning algorithm has to deal with more than two classes.

Regression

Regression is suitable when the outputs Y are continuous values between a defined
range.
The task of the learning algorithm is to fit the training data using a linear or non-
linear function in order to predict the output values of new data.
An example of a regression problem is to predict houses’ prices using some features
such as the location and the number of rooms. Clearly, this is a regression because
the prices are continuous values.

1.4.2 Unsupervised Learning

Unsupervised learning differs from the supervised by the lack of the output array.
Hence, according to equation 1.5, the design of a dataset for unsupervised learning
is:

D =

{
(x(i))

}m

i=1

(1.5)

The purpose of unsupervised learning is to find out patterns and structures inside the
gathered data to extract knowledge. There are two main approaches in unsupervised
learning: clustering and dimensionality reduction.
Clustering aims to split into group the input data according to the characteristics
of the instances.
On the other hand, dimensionality reduction attempts to represent the elements in
the dataset in a lower dimension without losing information.
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1.5 Conclusions

The aim of this work is to monitor the bradykinesia severity and the motor fluctua-
tion in people with PD, exploiting wearable sensors and ML techniques, supervised
and unsupervised, to design a model able to predict the motor impairment caused
by bradykinesia during the daily life.
The supervised learning methods aim to predict the severity of bradykinesia symp-
tom and the motor fluctuation too, exploiting features extracted by the accelerom-
eter signals using a regression learning algorithm.
On the other hand, unsupervised approaches are primarily used to understand how
the data have placed in the feature space and what are the relationships among the
data.

In the next chapter, an explanation of the related work on the bradykinesia predic-
tion will be presented, listing some of the main works published.
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State of the Art

The need to reduce as much as possible the L-dopa drawbacks has carried out
feasibility and reliability studies for automatic assessment systems for individuals
with PD, monitoring objectively and continuously to optimize the drug titration
[14].
Usually, the clinical examinations are periodical and take place at the hospital;
during the visit, the neurologist estimates the patient’s status in a limited time
frame and counts on the subject’s diary, where motor complications manifestations
are reported [15].
At a glance, it may perceive the limits of the clinical assessment, which is marked
by a subjective evaluation and not long enough.

The chance of a long-term telemonitoring has been achieved with the introduction
of the wearable sensors, which allow the collection of data without obstructing the
subject’s movements [14, 16, 17].
The remotely monitoring could be applied to every PD motor symptom, but a
focus on bradykinesia and motor fluctuations tracking will be discussed. The most
common wearable sensors used in this field are IMUs, in particular accelerometers
and gyroscopes. These sensors can record the acceleration along three orthogonal
axes and the angular velocity around the same orthogonal axes, during any kind of
motion.
The first published works about the prediction of PD symptoms using IMUs ex-
ploited the UPDRS-III movement tasks because these specific movements can high-
light the manifestation and the severity of the motor symptom; besides, these motor
tasks are very simple to perform and to analyze due to their intrinsic periodicity
[18].
Other authors started using ADL to predict and monitor the severity of bradykine-
sia and motor fluctuations at the hospital [19]; the idea is to transfer this analysis to
unconstrained settings to be able to track the symptoms remotely and get a better
awareness of the patient’s state.

After the first published works, other authors investigated different data collection
setups, attempting various motor tasks, sensors in diversified areas of the body, and
different environments like laboratory and patient’s home.
For what concerns the motor tasks, they may be standardized, proposed by UPDRS
and ADL, extracted by the common daily activity.
The standardized tasks for bradykinesia are finger-to-nose, finger tapping, repeated
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hand movement, and alternating hand movement. These tasks are exploited to
discriminate motor fluctuations status and bradykinesia severity [20, 21, 22].
On the other hand, ADL are less used because are not so clear to detect the PD
symptoms. ADL are mainly used to design system for home monitoring, without
forcing the subject to perform particular movement during the day.
Depending on the setting of the investigation, the type of sensors chances. Usually,
in laboratory assessments, the trend is to use accelerometers, gyroscope or together
as well; while, in unconstrained settings and long-term monitoring the choice is
the accelerometer sensors because they are the most efficient in terms of power
consumptions ensuring a long battery life, despite the small dimensions of the device.
The number of sensors is defined by the examination setting as well. In laboratory
investigations, the tendency is to use a huge number of sensors such as a body area
network on the subjects’ body made of 17 sensors [23] or place sensors on the fingers
using for examples gloves [24]. Otherwise, the trend in naturalistic environment
analysis is to use one sensor for each limb [25] or only one sensor place on the waist
[26].

The final results of these works are various according to the setups described before.
The most implement ML [18] or Deep Learning (DL) [27] pipelines to obtain predic-
tions, usually continuous using regression algorithms, of the bradykinesia severity
using as true labels the UPDRS scores [28] or a longitudinal classification of the
patient’s motor state [25]. Others prefer to generate severity indices based on the
extracted features from the gathered signals [29, 23] proving that these indices are
highly correlated to the UPDRS scores.

Patel et al. [18] in 2009 used a uniaxial accelerometer sensor place on the limbs to
gather data during standardized tasks for bradykinesia and dyskinesia monitoring.
The data collection took place in the laboratory investigating the motor fluctuations
as well, gathering the data in OFF and ON states. The motor tasks were scored
by clinicians according to UPDRS and the scores were used as true labels for the
learning algorithm.
This study introduced the signal analysis into windows, proving the optimal window
length is 5s and proposing invariant features respect to the motor tasks.
The results of this investigation are interesting getting 2.2 % estimation error for
bradykinesia prediction using a support vector machine (SVM) and suggesting the
extension of this analysis to ADL.

Cancela et al. [19] in 2010 used wearable accelerometers on the limbs, trunk, and
belt, during ADL for bradykinesia monitoring.
The data collection was in the laboratory and the ADL included walking, drinking
and opening and closing a door. The final result of the analysis, using different
learning algorithms, is between 70 % and 86 % of accuracy.
This work introduced the concept of the classifier outcome post-processing, adjusting
the estimates avoiding that they can not change rapidly because the bradykinesia
has a very slow dynamic.

Tzallas et al. [30] in 2014 designed a system, called PERFORM, for motor symptoms
monitoring using accelerometers placed in the limbs and an embedded sensor with
accelerometer and gyroscope in the waist.
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The system consists of the gathering, storing and analyzing the data; the main pur-
pose of this device is to link the clinician and the patient for more precise monitoring.
The collection of the data is at the patients’ home and the activities are ADL. The
bradykinesia severity estimation reached 74.5 % of accuracy using SVM classifier.

Hammerla et al. [25] in 2015 proposed a double data collection, the first one was in
the laboratory, and the second was in an unconstrained environment for one week.
The investigation exploited DL using as data accelerometer signals gathered from
the wrists.
Nevertheless, the goal of this investigation was to monitor the motor fluctuations
attempting to predict the state of the subjects into four classes: ON state, OFF
state, asleep, dyskinesia.
They used the laboratory data as a training set for the DL algorithm and the test
was on the long-term data in the unconstrained setting.
The result of the investigation was a longitudinal track of subjects during the week
of data recording and the overall classification performance was 0.6 in terms of F1
score.

Eskofier et al. [27] in 2016 investigated the feasibility of bradykinesia detection using
a Convolutional Neural Network (CNN) and accelerometer sensors placed in the two
wrists during standardized tasks.
The study compared traditional expert-defined pipelines with DL techniques. The
prediction of the symptom was barely its presence or absence; this aspect may be
considered as a limit but the main purpose was the comparison of the two ap-
proaches.
The result of CNN was encouraging reaching 90 % of accuracy.

Sama et al. [31] in 2017 assessed bradykinesia severity exploiting the only gait and
using a unique triaxial accelerometer placed on the waist.
The assessment and the data collection were in the laboratory, however, the promis-
ing result suggested to extend this approach to the unconstrained environment.
Using the recorded data, they extracted the fluidity index highly correlated to the
UPDRS scores during walking. Despite the system architecture was extremely sim-
ple, the detection of bradykinesia reached 90 % of accuracy thanks to the analysis of
gait, which is the best ADL to monitor bradykinesia because it is a repetitive and
periodical movement.

Daneault et al. [28] in 2017 investigates the minimum number of accelerometer
sensors to estimate accurately bradykinesia during standardized tasks and walking.
The data collection was partitioned into three visits, the first two in the laboratory
and the last at the patient’s home. The total number of sensors was 8, two for
each limb; however, the best results for alternating hand movement was in terms of
RMSE 0.5 using only one sensor for each upper limb.
The RMSE for the walking was 0.6. The results are expressed as error because they
design a regressor model to predict the bradykinesia severity using as true labels the
UPDRS scores.

Pulliam et al. [32] in 2017 investigated all the PD motor symptoms, tremor, bradyki-
nesia and dyskinesia, and motor fluctuation as well.
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The sensors are accelerometers and gyroscopes placed on the wrists and ankles
during standardized and ADL tasks, such as dressing, eating, hygiene, and laundry.
The data collection was setup in a simulated apartment studying the progression
from the state OFF to the state ON.
The rating scale was the UPDRS to estimate the activities during the recording
period. For the severity estimation, a regressor model was used. The results of
bradykinesia prediction were expressed as area under the receiver operating curve
(AUROC) is 0.82.

Predict bradykinesia and motor fluctuation is not an easy task in the laboratory and
nonetheless in unconstrained settings. Even more accurate studies are proposed in
literature attempting to reduce the limitations of the previous works or designing
more reliable systems for the long-term monitoring of the motor symptoms. Over
the years, some concepts have been exploited as the windowing introduced by [18]
or the assessment only during ADL [19].
In this work, some of these concepts will be used following the previous investiga-
tions; however new ideas will be proposed for the analysis of the data.

In the next chapter, the materials and the method of the work will be explained
following the followed processing pipeline.
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Material and Methods

This chapter describes the processing pipeline for the gathering and the analysis of
the data aimed at the accomplishment set by the Blue Sky project.
The Blue Sky project has the objective to monitor continuously the motor symptom
severity and the motor fluctuations in PD subjects in natural environments such as
the patient’s home, by using data collected by wearable sensors and ML algorithms.
The derived prediction will be useful for the clinicians to personalized the medication
strategy attempting to decrease the side-effects of the medication and the severity
of the PD symptoms and reducing the lack of objectivity during the assessment.

The project begins with a data collection in two settings, laboratory, and apartment.
The data gathering took place at the Spaulding Rehabilitation Hospital, Boston, MA,
United States, involving clinicians and engineers.
The data collection is justified by the fact that amount of wearable sensors data
recorded in laboratory or during clinical visits is significant; on the contrary data
collected in a natural environment, such as an apartment, are not so typical.
After the data collection, the data have been processed by using the software Mat-
lab, Mathworks, Natick, MA, United States; in particular, the signal processing
and the ML algorithms toolboxes. The analysis aims to build a predictive model for
bradykinesia and motor fluctuations to assess the symptom severity in the apart-
ment.
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3.1 Protocol and Data collection

The participants involved in the Blue Sky project are 25; the subjects’ age range is
from 42 to 80 and the age average and standard deviation are 66.1 ± 8.2.
Each subject in the study has a diagnosis of PD conforming to the UK Parkinson’s
Disease Society Brain Bank Criteria and must be able to perceive the wearing off
states and attest an improvement of the condition after the medication intake.
The exclusion criteria are the presence of other neurological disease and an implanted
medical device, for example, the Deep Brain Stimulation (DBS).
The data are gathered using IMUs called OPAL, designed by APDM, Inc. which
embed accelerometer, gyroscope, and magnetometer. The sensor positions are on
the two ankle and the two wrists of the subject. This layout will be the same both
for the laboratory and the apartment data collections.
The protocol consists of two different visits:

• Visit 1: the environment is the laboratory; the subject has to perform tasks
belonging to the ADL category (table 3.1). During the visit, a clinician has to
evaluate the severity of the PD symptoms at each task according to the UP-
DRS score; in particular, the score is given according to the worst movement
during each task. The visit is long enough to allow the subject to experience
OFF and ON states, hence motor fluctuations too.
Due to the length of the entire examination, it is divided into 5 sessions. During
the main sessions (1, 3 and, 5) speech tasks, tasks belonging to MDS-UPDRS
part III and scripted activity of daily living (SADL) tasks are performed; on
the other hand, during the session between the main ones (2 and 4), there are
only the MDS-UPDRS part III tasks (figure 3.1).
During the first session, the subject must be in OFF state and at the beginning
of the second session, the patient has to take a dose of medication.
The gathered data will be used as the training set for the predictive models.
This choice is justified by an accurate measurement in a constrained environ-
ment, like the laboratory, under the eye of clinicians.

• Visit 2: the setting is a simulated apartment; the subject has to execute
SADL and there is no default order of the tasks; hence, he could achieve them
randomly. The list of these tasks is in table 3.2
During the visit the patient is alone in the apartment, indeed the entire as-
sessment is videotaped to allow the clinician to evaluate the symptom severity.
Besides, every hour the subject has to submit a motor state self-report using
a tablet application (figure 3.2).
Finally, the data gathered by the sensors will be used as the test set for the
predictive models, to verify if it is possible to assess the bradykinesia severity
and to monitor the motor fluctuation in natural environments.

3.1.1 Sensors

The exploited sensors for the study are the OPALs, designed by APDM, Inc. (figure
3.3).
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Table 3.1: Tasks included in the protocol of the laboratory data collection. Most
of them belong to the scripted activity of daily living (SADL); although there are
standard tasks to assess the bradykinesia severity; in this case the alternative
hand movement.

Laboratory tasks
n Task Type

1 Button a lab coat SADL
2 Carry a book (out and back 10m) and place it on a table SADL
3 Carry a suitcase (out and back 10m) and hold 90s up with forearm at 90◦ SADL
4 Eat with a spoon 2x SADL
5 On the table, folding a piece of paper in half 4x SADL
6 Open and close a door SADL
7 Pour a cup of water and take two drinks SADL
8 Put on and removing jewelry SADL
9 Use a remote control SADL
10 Shake 5x, open bottle, drink and close SADL
11 Tie a shoe SADL
12 Write elelelel (cursive) 10x SADL
13 Write a sentence SADL
14 Zip a zipper SADL
15 Alternating Hand Movement UPDRS

Figure 3.1: Description of the visit 1, including all the 5 sessions. The medica-
tion intake is after the first session; every 30 minutes there are 3 minutes of resting
and the standardized tasks for bradykinesia are performed. On the right side, a
picture of a subject during the laboratory assessment; the sensors exploited for
this study are in the two ankles and in the two wrists of the subject.

The sensor is similar to a wristwatch, good to fit around the limbs or waist using
strips; the device is an IMU, hence the system embeds a tri-axial accelerometer, a
gyroscope, and a magnetometer.
In the Blue Sky project, the OPALs are placed ON the two ankles and the two
wrists of the subjects; Besides, two additional OPALs are placed on the back and
the sternum of the subject (figure 3.4).
The choice of wearable devices is due to allow to not hamper the movements of the
subjects making the analysis closer to the reality, indeed as without the recording
devices. Besides, other advantages of the wearable device are the increase spread in
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Table 3.2: Tasks included in the protocol of the apartment data collection and
all of them belong to the SADL. These tasks are different respect to the laboratory
ones and they attempt to mimic a typical day spent at home.

Apartment tasks
n Task Type

1 Walk around every room of the apartment SADL
2 Put together and taking nuts and bolts SADL
3 Carry grocery bags, unload them and place the grocery in the fridge SADL
4 Clean the kitchen using dustpan and broom SADL
5 Prepare a snack and eating it SADL
6 Get in and out in the bed SADL
7 Make the bed SADL
8 Fold some clothes SADL
9 Brush teeth SADL
10 Prepare the meal SADL
11 Set the table SADL
12 Load the dishwasher SADL
13 Clean the table and the kitchen SADL

Figure 3.2: Description of the visit 2 in the simulated apartment. The assess-
ment consists on a unique session of 5 hours. The subject has to achieve semi
scripted ADL randomly. The monitoring of the subject is by using cameras and
the sensors layout is the same of the laboratory examination. On the right side,
a picture of a subject while he is closing a shutter and holding a holding a plate.

the market, the low purchase price, the low maintenance cost, and the high measure
reliability reached for the monitoring of human activity recognition (HAR) [17].
For the motor fluctuation monitoring, it is decided to exploit only the accelerometer
sensors and the signals gathered from the limbs. The main advantage is that the data
can be collected continuously and for a long period of time, allowing a longitudinal
monitoring of the PD symptoms [14] without frequent recharging times. Therefore,
no large batteries are required and the subjects are not forced to charge the sensors
daily.
Secondly, the degree of the measurement accuracy is higher compared to the gy-
roscopes and magnetometers; for example, the magnetometers could record wrong
data if near electromagnetic sources.
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Figure 3.3: Representation of the OPAL sensor. The display helps the user
to control the battery state and if the sensor is linked to the network. Inside
the OPAL there are an accelerometer sensor, a gyroscope and a magnetometer.
Retrieved from [33].

Figure 3.4: Scheme of the sensor positions during the data collection. The
OPAL sensors are six and they are placed on the two wrists, the two ankles,
the sternum and the lumbar. For the analysis of bradykinesia only the gathered
signals from the limbs are used. Retrieved from [33].

In table 3.3 are listed the most important specifications of the OPAL device; for
simplicity, only the features of the accelerometer sensor are reported.

3.2 Signal pre-processing

From the continuous raw data acquired by the sensors to the actual data, used
for the further analysis, some processing is needed, to handle in a better way the
information gathered by the accelerometer signals.
The pre-processing steps in the next sections are the same for both the examina-
tions. They mainly consist of filtering stage and segmentation step. Before that, a
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Table 3.3: Technical specifications of the OPAL device. For clarity only the
accelerometer specifications have been reported [33]. In the entries with two
quantities the first one is referred to the normal accelerometer and the second one
to the accelerometer to falls detection.

OPAL specifications
Specifications Accelerometers

Axes 3 axes
Range ±16g, ±200g
Noise 120µg/

√
Hz, 120mg/

√
Hz

Sampling Rate 20Hz to 128Hz
Bandwidth 50Hz
Resolution 14 bits, 17.5 bits
Battery Life 12h (Synchronous Logging) to 16h (Asynchronous Logging)
Internal Storage 8Gb

resampling of the signals is performed, reducing the sampling frequency from 128Hz
to 32Hz since the upper-frequency band of accelerometer signals during ADL is be-
low 10Hz [34, 35]. Another reason to justify the resampling is to reduce the amount
of information in terms of bytes for the storage of the data.

3.2.1 Filtering stage

The filtering step is one of the critical stages for the detection of bradykinesia,
exploiting only accelerometer signals. The frequency band for the analysis depends
on the type of movements performed by the subjects.
Patel et al. used a frequency band between 1 Hz to 3 Hz, but the recorded tasks
were standardized according to the MDS-UPDRS [18]. Other authors, who exploited
ADL tasks for the detection of bradykinesia, used a frequency band between 0.5 Hz
to 3 Hz [36].
The differences of band relies on the distinct tasks among the standardized and ADL
because the first one must be performed as fast as possible so the frequency content
will be a little bit higher respect to daily activities, which are executed with another
speed.
The choice of the frequency band for the project is between 0.5 Hz to 3 Hz follow-
ing the main works in this field. The lower frequency cutoff is set to remove the
direct components (DC) inside the signals, like the gravitational acceleration and
the gross body orientations. The higher frequency cutoff, instead, is to filter out the
components related to the tremor; this symptom has a frequency content from 4 Hz
to 6 Hz [2]. Besides, the choice of this frequency band is justified by the nature of
the ADL, which is between 1 Hz to 4 Hz [37, 38].
According to the frequency band under investigation, when a movement is affected
by bradykinesia the frequency content in the higher frequency should decrease and
shift toward the lowest components.
The filtering stage is the same both for the laboratory signals and the apartment
data.
To keep low the filter order, instead of designing a bandpass filter, the filter was
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split into a highpass (HP), with the cutoff frequency set at 0.5 Hz and a lowpass
(LP) with cutoff equal to 3 Hz.
Since the processing is offline, the type of filter is infinite impulse response (IIR)
and zero-phase digital filtering has implemented to avoid the phase distortion effect
of the filter.
The HP filter and the LP filter are Chebyshev type I and type II respectively. Since
the type II is preferred due to the absence of the ripple in the pass band, the type
I can better mitigate the low frequency component despite the ripple in the pass
band. For this reason the HP filter is a Chebyshev type I.
In table 3.4 are listed the design characteristics of the two filters and in figure 3.5(a)
and 3.5(b) are illustrated the magnitude and the phase of the filters.

Table 3.4: The specification of the filters. The specifications are a trade-off
between a good attenuation of the not interesting aspects of the signals and a low
order to reduce as much as possible the artifact of the filter transitory.

Filter specifications
HP filter LP filter

Type Chebyshev type I Chebyshev type II
Order 9 16
Passband frequency 0.4 Hz 2.8 Hz
Stopband frequency 0.6 Hz 3.2 Hz
Passband attenuation 1 dB 1 dB
Stopband attenuation 60 dB 60 dB
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Figure 3.5: On the left side the magnitude of the HP filter is illustrated. On the
right side is represented the magnitude of the LP filter. Both the filters comply
with the design specifications.

3.2.2 Signal segmentation

The following step, after the filtering, is the segmentation of the filtered continuous
signals, gathered in the laboratory, using the temporal markers, recorded to indicate
the starting and the ending point of each task.
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Afterward the detection of a task, the labeling process is performed; each task has
paired with the clinical scores, which evaluate bradykinesia, tremor, and dyskinesia
severity. All the signals without a severity score related to bradykinesia are discarded
and the bradykinesia severity scores 3 and 4 are merged because the collected sample
is too little for the score 4.
Of course, the labeling step has been done only for the gathered data in the labora-
tory because from this data the training set will be generated.
At the end of these processes, the total number of tasks with a bradykinesia score
associated is 2093.
Figure 3.6 illustrates the distribution of the score, for each patient during the labo-
ratory data collection. Besides, the distribution is split into upper limbs and lower
limbs sensors. The bradykinesia severity 0 is dominant; also, in the upper limbs the
smaller sample is score 1, and in the lower limbs the less depicted class is the 3.
Since the samples belonging to class 3 in the lower limbs are only two, these sam-
ples have been relabelled as score 2. This choice reflects on the prediction in the
apartment data because for the lower limbs the model could predict a severity score
between the range 0 to 2.
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Upper limbs

Subj 3

Subj 4

Subj 5

Subj 6

Subj 7

Subj 8

Subj 9

Subj 1
0

Subj 1
1

Subj 1
2

Subj 1
3

Subj 1
4

Subj 1
5

Subj 1
6

Subj 1
7

Subj 1
8

Subj 1
9

Subj 2
0

Subj 2
1

Subj 2
2

Subj 2
3

Subj 2
4

Subj 2
5

Subj 2
6

Subj 2
7

0

50

100

N
u

m
b

e
r 

o
f 

T
a
s
k
s

Lower Limbs

Subj 3

Subj 4

Subj 5

Subj 6

Subj 7

Subj 8

Subj 9

Subj 1
0

Subj 1
1

Subj 1
2

Subj 1
3

Subj 1
4

Subj 1
5

Subj 1
6

Subj 1
7

Subj 1
8

Subj 1
9

Subj 2
0

Subj 2
1

Subj 2
2

Subj 2
3

Subj 2
4

Subj 2
5

Subj 2
6

Subj 2
7

0

50

100

N
u

m
b

e
r 

o
f 

T
a
s
k
s

Bradykinesia 0

Bradykinesia 1

Bradykinesia 2

Bradykinesia 3

Figure 3.6: Representation of the score distribution for each subject involved
in the laboratory data collection. There are two distribution, at the top for the
upper limbs and the bottom for the lower limbs. The distribution shows a clear
unbalance toward the bradykinesia score 0, low representation of score 1 in the
upper limbs, and a low sample size for class 3 in the lower limbs tasks.

3.3 Movement detection

The movement detection is an important step for the prediction of bradykinesia
because only during a movement, or an action it is possible to detect the symptom.
For the implementation and the analysis are used the laboratory signals; later, the
results will be applied to the data gathered in the apartment.
According to the signals gathered during the data collection, a movement is a result
of fast acceleration variations due to acceleration and deceleration of the limb to
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execute the motion.
Following this physical principle, to detect a movement inside a task, the analysis
of the accelerometer signals amplitude and the range is necessary.
To decrease the noise during this analysis, instead of using the filtered data, the
envelope of the magnitude is taken into account.
The extraction of the envelope of each task consists of two steps:

1. Compute the magnitude signal from the three channels according to the fol-
lowing formula:

‖a‖ =
√
a2x + a2y + a2z, (3.1)

where ax, ay, and az are the three channels of the accelerometer sensor.

2. Extract the envelope of the magnitude signal, using an LP filter with a cutoff
frequency equal to 0.5 Hz. The type of the filter is Chebyshev II and the order
is 5; the choice of the attenuation is 40 dB.

After the extraction of the envelope, a thresholding on the envelope signal is per-
formed to detect movements inside each task. The threshold value is based on a
multiple of the noise root mean square (RMS)

RMS =

√√√√ 1

n

n∑
i=1

x2i (3.2)

of the accelerometer sensor; the information of the noise of the sensor is in table
3.3 and retrieved in the sensor datasheet [33]. To optimize this phase of the process
different multiplication factor of the noise level has been attempted; in particular,
the attempts are from 15 to 50 in steps of 5. Another optimization around the
previous optimal value is executed in steps of 1.

The results are compared with the recorded labels during the data collection, which
provide the information if inside a task a movement is present or not.
Since the optimization phase is on the laboratory signals, to detect the movement
in the apartment data the best threshold value will be used according to the results
on the laboratory data.
In the apartment setting, since the signals are continuous and not divided into tasks,
the envelope will be extracted in the same way as described before and the threshold
based on the RMS value of the sensor noise is chosen according to the results of the
optimization.

3.4 Windowing

The next step of the processing pipeline, after the movement detection, is the win-
dowing.
The movement detection could be considered as a data cleaning because the resting
periods are not useful for the study of bradykinesia.
In this phase, all the detected movements will be divided into fixed temporal win-
dows; these windows will be the basic element for further analysis in this work.
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According to several published works on bradykinesia severity analysis using IMU
signals during ADL, the most used window’s length is 5s [36]. This period is used
also to estimate the bradykinesia severity during MSD-UPDRS standardized tasks.
To get a greater number of windows, a 50% overlap among consecutive windows is
applied. This strategy has been widely used in many works both for standardized
tasks and ADL [18, 19, 36].
At the end of this procedure, the basic elements of the dataset is a 5s window, where
a movement has been detected.
The windowing is applied to the laboratory and the apartment data; for what con-
cern the laboratory data, after the windowing, each window is associated with the
label given to the task that the window belongs.
The window labeling could be regarded as a limit of the analysis because there is no
availability of the severity score for each movement performed inside a task. This
limit introduces a mislabeling problem that could be handled using data cleaning
techniques, to polish the laboratory dataset and get a good training set.

3.5 Feature extraction

The feature extraction is done on the 5s windows. At the end, each 5s windows will
be represented by a feature array, which will create the feature matrix.
The feature extraction process is the same for the signal windows belonging to the
laboratory and the apartment. The computed features derive from the accelerometer
signals, but also the velocity, the position, and the jerk signals will be exploited in
this phase. The first two quantities are respectively the integration and the double
integration of the accelerometer signals. On the other hand, the jerk is the derivative
of the accelerometer signals.
Since the accelerometer data consists of a triplet of numbers, matching the three
channels; also the signals resulting from the accelerometer signals consist of three
components for each time step.
At the beginning, the feature set is chosen according to previous studies in bradyki-
nesia severity prediction [18, 36]; the derived feature set from these works could be
categorized into three groups:

• time domain features;

• frequency domain features;

• segment velocity features.

Besides, other features are added according to other works in motor fluctuations
analysis and HAR [13, 39, 40, 41], attempting to recognize the bradykinesia severity
more accurately.
Finally, the last feature does not come from the sensor signals but it is a piece of
information gathered by the clinician or by the subject. This feature is called time
since medication intake and measures the temporal distance from the time of the
medication intake and the current window.
During the laboratory data collection, this information is gathered by the clinicians,
instead, during the apartment assessment, this data is collected according to the
videotapes or the subject diary.
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3.5.1 Time domain features

The time-domain features are statistical features computed on the temporal signals.
All the time domain features exploited are listed with the corresponding signals.

• Arithmetic mean: it is defined as

x̄ =
1

n

n∑
i=1

xi, (3.3)

where xi is the single element of the array x and n is the length for the
array. This feature is computed for ‖a‖, ‖v‖, ‖x‖, and ‖j‖ that correspond
to acceleration magnitude, velocity magnitude, position magnitude, and jerk
magnitude.

• Root mean square (RMS): it is defined by equation 3.32. This feature is
extracted from ‖a‖, ‖v‖, ‖x‖, ‖j‖, and the three channels of the accelerometer
sensor ax, ay, and az.

• Standard deviation: it is defined as

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2, (3.4)

The magnitude of the four exploited signals is the input to computed this
feature.

• Range: it is defined as

r = max(x)−min(x), (3.5)

where max finds the largest value of x and min finds the smaller value of x.
The range is extracted from ‖a‖, ‖v‖, ‖x‖, ‖j‖, and the three channels of the
accelerometer sensor ax, ay, and az.

• Entropy: it is defined as

S = −
n∑

i=1

P (xi) lnP (xi), (3.6)

where P is the probability mass function of the discrete variable x. The
entropy is extracted from ‖a‖, ‖v‖, ‖x‖, ‖j‖, and the three channels of the
accelerometer sensor ax, ay, and az.

• Cross-correlation peak and lag: the cross-correlation function of two ran-
dom sequences is defined as

Rxy(m) =

{∑N−m−1
n=0 xn+my

∗
n, m ≥ 0,

R∗yx(−m), m < 0
(3.7)

In this case the two sequences are all the combination among the three channels
of the accelerometer sensor; axay, axaz, and ayaz. After the estimation of the
cross-correlation the maximum value of Rxy and the corresponding lag time
value are extracted.
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3.5.2 Frequency domain features

The frequency-domain features are features that derive from the frequency repre-
sentation of the signals. The power spectral density (PSD) is extracted from the
accelerometer signals: according to this quantity, some shape and statistical features
are considered.
In this project, the PSD is estimated using the periodogram technique, which con-
sists of square magnitude computing of the Discrete-Time Fourier Transform of the
signal auto-correlation function (DTFT).
Obviously, for each channel, an estimate of the PSD could be computed. During
the explanation of the frequency domain features the term PSDi, with i = x, y, z,
will refer to the power spectral density of a single channel; on the other hand, the
term PSD will refer to the sum of the three spectral density estimations.

• Dominant frequency amplitude: it is defined as

PSDmax = max(PSD) (3.8)

This quantity is the peak value of the PSD computed by a 5s windows signal.

• Dominant frequency: it is defined as the frequency related to the peak value
of the PSD.

• Power sum: it is defined as

ptot =
n∑

i=1

PSDi (3.9)

This value is the total power contained in the accelerometer signals in the
frequency range 0 Hz to 16 Hz.

• Standard deviation: it is defined as equation 3.4; in this case, the input
signal is the PSD.

• Skewness: it is defined as

s =
1
n

∑n
i=1(xi − x̄)3

σ3
(3.10)

This feature carries the information of the amount of asymmetry of the PSD
distribution.

• Kurtosis: it is defined as

k =
1
n

∑n
i=1(xi − x̄)4

σ4
(3.11)

This feature is extracted from the PSD and gives the information about the
shape of the PSD distribution.

• Entropy: it is defined as 3.6; the input signals to extract this feature are
PSDx, PSDy, PSDz.

• Energy around the peak: it is defined as the energy contained in the peak
of the PSD, considering the width of the peak 0.5Hz.
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• Energy ratio: it is the ratio between the energy associated to the peak of
the PSD and the total energy contained in the PSD.

• Energy ratio without peak: it is the ratio between the energy associated
to the peak of the PSD and the total energy contained in the PSD without
the energy included in the peak.

• Ratio max peak mean: it is the ratio between the PSD peak value and the
arithmetic mean of the PSD.

3.5.3 Segment velocity features

The segment velocity features are extracted from the segment velocity signals. These
signals are the magnitude of the windowed accelerometer signals derivative; basically,
they are an estimation of the velocity during a 5s window.
These kinds of signals are derived from two accelerometer signals; accelerometer
signals bandpass filtered between 3 Hz to 8 Hz and 0.5 Hz to 3 Hz. The extracted
velocity from the first ones is called segment velocity and the others are called
segment velocity no tremor.

• Max: it is defined as the maximum value of the sequence. This feature is
computed for the segment velocity and the segment velocity without tremor.

• Arithmetic mean: it is defined as equation 3.3; it is extracted from the
segment velocity and the segment velocity without tremor.

• Standard deviation: it is defined as equation 3.4; it is extracted from the
segment velocity and the segment velocity without tremor.

• Entropy: it is defined as equation 3.6; it is extracted from the segment ve-
locity and the segment velocity without tremor.

• Movement percentage: it is the percentage of the signal, which is above the
movement threshold. The movement threshold value is 0.05m/s. This feature
is extracted from the segment velocity without tremor.

• Intense movement percentage: it is the percentage of the signal, which is
above the threshold of intense movement. The threshold movement value is
0.75m/s. This feature is extracted from the segment velocity without tremor.

• Arithmetic mean when movement: it is the arithmetic mean (equation
3.3) of the signal above the movement threshold. This feature is computed
only for the segment velocity without tremor.

Besides, other four features have been extracted exploiting the first four features in
the list. These new features are the respective ratio between segment velocity no
tremor and segment velocity.
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3.5.4 Additional features

Attempting to depict in a better way the main clinical features of bradykinesia other
features are added to the feature set, after an analysis of the literature and a study
on the gathered signals.
All the proposed features belong to the category of the time domain features.
These new features will be explained showing their mathematical definition and the
choice reason.

• Signal magnitude area (SMA) [41]: it is defined as

SMA =
n∑

i=1

|ax|+
n∑

i=1

|ay|+
n∑

i=1

|az| (3.12)

This quantity carries the information of the total energy of the signal bringing
together the three channels. The reason of its selection relies on the loss of
energy experiencing a more severe bradykinesia manifestation. According to
this, the quantity should decrease when the severity of the symptom increases.
Besides, the SMA shows how intense is a movement during a certain period
of time. In this case this factor at the beginning of the equation is omitted
because this features is computed in a fixed window’s length. This feature is
extract only from the accelerometer signals.

• Auto-correlation range [13]: it is defined as

rrange = range(Rxx) (3.13)

where Rxx is the auto-correlation function defined by equation 3.7 and range
is the mathematical operation defined by equation 3.5.
This feature gives the information of the modulation of the movement accord-
ing to the work of Patel et al. [13].
This feature is extract only from the three channels of the accelerometer sensor.

• Mean absolute deviation (MAD) [39]: it is defined as

MAD =

√√√√ 1

n− 1

n∑
i=1

|xi − x̄| (3.14)

It is a different dispersion or variability measure respect to the standard devi-
ation. The main difference is due to the absolute value instead of the square
to compute the dispersion measure.
The change of the variability along the signal is a sign of increased severity of
bradykinesia. This feature is computed from ‖a‖, ‖v‖, ‖x‖, ‖j‖, and the three
channels of the accelerometer sensor ax, ay, and az.

• Median absolute deviation (MEAD): it is defined as

MEAD = median(|xi − x̃|) (3.15)

where x̃ is the median of the signal. The median is the value that split in two
halves, the higher and the lower, the data sample. Similarly to the MAD, this
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quantity is a dispersion measure, but is it more robust respect to the MAD
because the median is less sensitive to outlier values.
This feature is extracted from ‖a‖ and the three channels of the accelerometer
sensor ax, ay, and az.

• Inter-quartile range (IQR) [40]: it is defined as

IQR = Q3 −Q1 (3.16)

where Q3 is the third quartile, which is the middle value between the median
value and the maximum value in a data sample, and Q1 is the first quartile,
defined as the middle value between the minimum value and the median value
in a data sample.
This measure is a spread indicator and it is more robust to outlier respect to
the standard deviation.
This feature is computed from ‖a‖, ‖v‖, ‖x‖, ‖j‖, and the three channels of
the accelerometer sensor ax, ay, and az.

• Inter-quartile mean (IQM): it is defined as

IQM =
1

n

n∑
i=1

xi, with x ∈ [Q1, Q3] (3.17)

This value carries the information of central tendency of a data distribution,
which shows the typical value of the data sample ignoring the outlier values.
This feature is computed only from ‖a‖.

• Mid-hinge: it is defined as

midhinge =
Q1 +Q3

2
(3.18)

This measure gives the information about the location of the data distribution
or the shift of the distribution.
This feature is computed only from ‖a‖.

• Zero crossing rate: it is defined as

zerocrossing =
zX

t
(3.19)

where zX is the number of zero crossing of the signal and t is the observation
time of the signal; in this case the observation time corresponds to the win-
dow’s length.
The zero crossing rate is a measure of fundamental frequency. If the bradyki-
nesia score is severe the zero crossing rate value should be low respect to a
bradykinetic movement scored with a less severity.
This feature is computed from the three channels of the accelerometer sensor
ax, ay, and az.

• Range signal mean: it is defined as the arithmetic mean (equation 3.3) of
the range signal. The range signal is a new signal obtained from the three
channels of the accelerometer sensor; this signal is obtained sliding a window

36



Chapter 3. Material and Methods

on the accelerometer signal and computing the range (equation 3.5) of this
small portion of signal. In this way a new signal is extracted containing the
information of the range variation along the 5s window of signal. The length
of the sliding window is 0.5s; this choice is due to have a good time resolution
to follow the trend of the range over the accelerometer signal.

• Range signal standard deviation: it is defined as the standard deviation
(equation 3.4) of the range signal.

At the end of this step, the total number of features extracted from the acceleration,
velocity, position, and jerk signals is 96. Besides, to the feature set the time since
medication intake is added even if it is not possible to extract this information from
the gathered signals.

3.6 Laboratory dataset analysis

After the feature extraction, the feature matrix is ready for the analysis, to under-
stand how the instances, 5s windows during movements, are placed in the feature
space and to observe how the bradykinesia severities are separated among each other,
or whether another information is predominant.
According to the outcome of this analysis, the proper solution will be implemented
to maximize the results in the bradykinesia severity prediction.
To visualize the multi-dimensional dataset in a 2D or 3D scatter plot a dimen-
sionality reduction method is necessary to summarize all the information in all the
features into two or three dimensions. There are many techniques for dimensionality
reduction: the most common are Principal Component Analysis (PCA), Sammon
mapping and t- distributed Stochastic Neighbor Embedding (t-SNE). The choice of
the analysis is the t-SNE because maintains the relative position of the data points
that they have in the non-reduced feature space, retaining the greater part of the
original information. This is an important advantage to other techniques like PCA.
The main hypothesis of PCA is the information is in the variance of the data; this
method project the data points maximizing the variance among the data.
The analysis of the data using t-SNE projections is conducted only for the laboratory
dataset.

3.6.1 t-distribution Stochastic Neighbor Embedding

t-distribution Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensional-
ity reduction algorithm belonging to unsupervised learning.
This method was proposed by van der Maaten and Hinton [42] in 2008 as an im-
proved method of the traditional projection approach called Stochastic Neighbor
Embedding (SNE) by Hinton and Roweis [43]. The main goal of this technique is to
project high-dimensional data into a low-dimensional space, typically two or three
dimensions, retaining most of the original information and preserving the original
clustering, the distances among near points, in the reduced space.
The steps of this technique are the following [42, 44]:

1. Compute the similarity matrix of the high-dimensional data points; this ma-
trix is designed computing firstly the conditional probability (equation 3.20)
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the joint probability (equation 3.21) of the data points using a Gaussian dis-
tribution.

pi|j =
exp(−‖xi − xj‖2/2σ2)∑
k 6=l exp(−‖xk − xl‖2/2σ2)

(3.20)

pij =
pj|i + pi|j

2n
(3.21)

2. Generate random points in the reduced space.

3. Calculate the similarity matrix for the low-dimensional data as for the high-
dimensional one, but using a Student t-distribution for the joint probability
(equation 3.22).

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

(3.22)

4. The low-dimensional point positions are updated iteratively, minimizing the
Kullback-Leibler (equation 3.23) divergence between the two probability dis-
tribution, respectively the Gaussian for the high-dimensional space and the
t-distribution for the low-dimensional one.

KL(P‖Q) =
∑
i

∑
j

pijlog
pij
qij

(3.23)

At the end of the process, equation 3.23 is minimized and the similarity matrix of
the low-dimensional points should be similar to the high-dimensional data.

3.6.2 Data visualization

Using the feature matrix extracted by the 5s windows of the gathered accelerometer
sensors different projections are computed to observe how the data points are located
in the feature space.
The first observation is about the movements that involve the lower and upper
limbs; since the type of motion are extremely different between these body area,
also the kind of signals should be different. In figure 3.7 the t-SNE projection shows
the instances marked according to the sensor position. It is clear that for further
analysis different approaches should be implemented for these two body areas.
Secondly, it is interesting to see how the same projection looks like marking the
points according to the bradykinesia score. In figure 3.8 it is possible to note that
the different classes are cumbersome overlapped among each other. This means the
complexity of the problem is high and it could be reduced splitting the main problem
into subproblems with a low degree of complexity.
Since the tasks of the protocol are various in terms of range of motion and repeata-
bility, the massive variability in figure 3.8 could be due to these reasons.
In figure 3.9 the projection is marked in accordance with the tasks; it is noted,
although very distinct, that the tasks are grouped into clusters. Under this infor-
mation in figure 3.10 is reported the same projection marking the possible clusters.
Based on the nature of the movements involved during the data collection in the
laboratory the decision was to split the range of tasks into four clusters:

• Lower limbs: in this particular case, the only available movement is walking;
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Figure 3.7: Visualization by t-SNE of the laboratory feature matrix reduced
from 97 features into three dimensions. The instances are marked based on the
sensor positions; the gathered data from the ankle sensors are called lower limbs,
instead, the collected data from the wrist sensors are called upper limbs. In
accordance with the nature of the movements, the data belonging from the two
body areas are well separated, suggesting distinct analysis for them.

Figure 3.8: t-SNE projection of the laboratory feature matrix marking the
data points according to the bradykinesia severities. It is possible to note that
the variability among the classes is significant and a clear separation among the
different scores is not noticeable.

• Upper limbs during walking: this movement is associated with the swing
of the arms during walking;

• Upper fine movements: these exercises have a low range of motion and the
specific tasks involving this movement category are using a remote control,
writing a sentence, and writing the word "elelelel";
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Figure 3.9: Representation of the t-SNE projection of the laboratory feature
matrix, where the data points are colored based on the task’s membership. It
should be noted there is a pattern according to the task typology; in fact, in the
bottom left the instances belong to walking tasks, in the middle, where the density
of the point is higher, the samples are associated to gross movement tasks, and
at the top of the projection the points are part of activity, such as writing, hence
fine movement tasks.

• Upper gross movements: this category covers the wide range movements
and some examples in the task list are open and close a door, eating, put
clothes on and off.

As specified by the projections a good way to analyze the instances is to split
the entire laboratory dataset into four subsets; this approach might put aside the
variability introduced by the different task nature and have a better focus on the
bradykinesia severity. Besides, it is reasonable to consider that inside each subset
the movements are invariant respect to the task typology (figure 3.11).
Finally, looking at the figure 3.12 it is noticeable, although the variability carried by
the different tasks is removed or partially mitigated, there is still divergence among
the severity scores. To get respectable results in the apartment data it is reasonable
to clean the data collected in the laboratory to have a neat training set for the
learning algorithm.

In agreement with the projections of the laboratory data points, the choice of split-
ting the dataset into subsets is followed (figure 3.13). In further analysis like the
data cleaning and the bradykinesia severity estimation, each subset is considered
separately.
This setting will be used for the apartment analysis too using different trained
models for the different typology of samples collected in the natural environment.
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Figure 3.10: t-SNE projection of the laboratory data points, where each point
is marked based on the membership to the task cluster. The clusters have been
determined according to the main characteristics of the tasks which constitute the
data collection protocol. The clearness of the projection means that the manual
clustering is acceptable. This data pattern suggests splitting the dataset into four
subsets to reduce the complexity of the problem.

Figure 3.11: t-SNE projection of the points belonging to the gross movement
cluster. The instances are marked according to the task typology. As it is possible
to notice, the movement inside the tasks could be regarded as invariant respect to
the category of the task, because there is no significant distinction in the proposed
projection.

3.7 Laboratory dataset cleaning

Following the extracted information by the t-SNE projections, even if partitioning
the entire laboratory dataset, there is a significant variability among the bradykine-
sia severity in each subset.
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Figure 3.12: t-SNE projection of the points belonging to the gross movement
cluster. The data points are labeled following the bradykinesia severity score. As
it is clear, there is still overlap among the classes and a cleaning step is necessary
to build a robust training set.

Figure 3.13: Laboratory dataset partitioning driven by the information collected
analyzing the projections. The walking movements are analyzed in the lower and
upper limbs, instead, the other movements involving the upper limbs are divided
into fine and gross motions.

This behavior is the result of labeling errors and how the labels match with the 5s
windows.
Assess bradykinesia severity is not an easy task during standardize movements and
besides, along with ADL motions. Some errors have occurred during labeling be-
cause the scores are given according to the worst severity over the entire task. This
means if the task was long enough a chance of severity could have happened causing
a mislabeling error, pairing the labels with the windows, because all the movements
inside the tasks have been scored as the worst severity score experienced by the
subject.
This reason justifies the intention to clean the laboratory dataset. The cleaning is
partitioned into two different phases:
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1. Redundant feature removal: high correlated features are one of the main
issues in ML problem because the information carried by these variables is just
repeated;

2. Data cleaning: removing data points in accordance with their location in the
feature space and the membership class using only the feature selected after
the irrelevant features removal.

The data cleaning is performed for each dataset partitions adjusting the parameters
for every partitions.

3.7.1 Redundant feature removal

The main reason to remove high correlated features, or redundant features, is to
decrease the chances of overfitting during the training of the learning algorithm,
feeding it with noise data points. Besides, redundant features could lead to low
prediction accuracy.
To recognize and then discard redundant features an approach that merges feature
importance and correlation among variables is proposed.
In accordance with this method, the final outcome is a feature subset with a high
capability to predict the bradykinesia severity and a low correlation among each
other features.
The proposed method consists of the following steps:

1. Compute the feature importance using the ReliefF algorithm and rank the
variables according to its outcome. In this case the algorithm computes the
quality of the features using as target values the bradykinesia severity scores;

2. Calculate the linear correlation value among each pair of features using Pear-
son’s linear correlation coefficient [44] (equation 3.24);

ρ(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

j=1(yi − ȳ)2
(3.24)

3. Check, for each pair of features, if the correlation coefficient is higher than
the fixed threshold; if this control is true the less important feature will be
discarded.

At the end of this procedure, a feature subset with relevant and low correlated
features is generated. The size of this subset is not fixed because depends on the
correlation threshold value.
The parameter k of the ReliefF algorithm is set to 20 to have enough data points
to estimate the feature importance of the predictors.
The correlation threshold value is 0.95 because the aim is to remove only redundant
features.
Since this method to remove redundant features is proposed in this work in the result
chapter a validation using other feature selection methods is presented to prove that
this method is comparable to other already implemented approaches.
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ReliefF algorithm

ReliefF is a supervised learning algorithm to estimate the relevancy of the features
in a feature matrix. It is defined as supervised because the estimation is according
to the labels of the data points, which form the rows of the feature matrix.
This method proposed by Konorenko et al., in 1997 [45] is an improvement of the
method called Relief suggested by Kira and Rendel [46] in 1992.
Using all the instances in the input dataset to ReliefF, the algorithm looking at
the neighbor of each point establishes if a feature is important or not following this
criterion:

"The algorithm penalizes the predictors that give different values to neigh-
bors of the same class and rewards predictors that give different values
to neighbors of different classes." [44]

The only parameter to set before running the ReliefF is the size of the neighborhood
or the number of nearest neighbors.
Based on [45] increasing the number of nearest neighbors the reliability of the im-
portance estimation rises.
The pseudocode of ReliefF algorithm is the following [47]:

1. Input : training set D =

{
(x(i), y(i))

}m

i=1

;

2. Output : the vector W of feature importance estimates;

3. set all weights W [A] := 0;

4. for i := 1 to m do begin

(a) randomly select an instance Ri;

(b) find k nearest hits Hj;

(c) for each class C 6= class(Ri) do

i. from class C find k nearest misses Mi(C);

5. for A := 1 to a do

(a) W [A] := W [A]−
k∑

j=1

diff(A,Ri, Hj)

m · k
+

∑
C 6=class(Ri)

P (C)
1−P (class(Ri))

k∑
j=i

diff(A,Ri,Mj(C))

m · k
;

3.7.2 Data cleaning

The main reason to delete noisy data points is to not compromise the ability to
design a proper predictive model.
The applied method in this work is a revised approach used by Lee at al. [48] in 2015
solving the same problem about the mislabeling data points due to the windowing
of the task.
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Lee used a clustering technique called Expectation-Maximization (EM) clustering
algorithm to recognize the data point correctly labeled. In this work, the procedure
is quite similar except for the clustering algorithm; in this case, instead of using EM
the clustering algorithm employed is k-means. This choice is because the main aim
is to remove points according to the place in the feature space and the k-means uses
the distances in the feature space to perform the clustering.
The outcome of the k-means is compared to the labels of the instances; the re-
tained points are those that are clusterized in the corresponding cluster to the right
bradykinesia severity or in the adjacent clusters. Based on this approach of data
cleaning, the points surrounded by many instances of a far class are removed (figure
3.14).

Figure 3.14: Scheme of the approach to remove noisy data points. The subset of
data is processed using the k-means clustering algorithm. The clustering outcome
is exploited to remove points that are between non-consecutive classes.

The final result is the decreasing of the overlap among the bradykinesia scores,
keeping a partial overlap between adjacent classes.
Since the k-means algorithm needs initialization to start the clustering process,
usually it is random, in this case the initialization corresponds to the centroids of
the bradykinesia severities. In addition, the choice of k is based on the number of
bradykinesia classes in each subset.

K-means clustering algorithm

K-means is an unsupervised learning algorithm, which partitions a dataset into k
clusters according to the distance between the instances and the cluster centroids.
A centroid is described as a representative point of a cluster; usually, the centroid
is the arithmetic mean of all the points that belong to the cluster.
The algorithm is iterative and converges to the final solution step by step assigning
the points to the proper cluster. K-means algorithm needs two initialization to run:

• The number of clusters k ; usually this value is defined by the user.

• The centroids used for the first iteration; the algorithm picks randomly k
points from the input data points or the centroids could be another input for
the algorithm forced by the user.

The steps of the k-means algorithm are the following [49, 44]:
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1. Select k centroids randomly from the input instances;

2. Compute the distance between each point and each centroid;

3. Assign each instance to the cluster with the nearest centroid;

4. Update the value of the centroids;

5. Iterate from 2. to 4. till a stop condition is reached.

The outcome of this algorithm is k clusters, where the intra-cluster variability, or
inner spread, is minimized and the inter-cluster variability is maximized. Ideally,
the final clusters should have a low spread and far from each other.

3.8 Data Balancing

The last phase, before the training of the learning algorithm and the evaluation of
the performance in the two settings, is the balancing of the cleaned subsets to reduce
the bias towards the majority class during the training of the models.
In accordance with figure 3.6 the dataset of the laboratory is clear imbalanced to
the bradykinesia severity 0. This pattern is similar looking at the cleaned subsets
too.
To solve this issue there are many techniques to balance a dataset; the most common
are based on undersampling the majority class or oversampling the minority classes
creating synthetic samples.
Obviously, there are pros and cons for both the approaches because the undersam-
pling allows to use only real data but some information is lost; on the other hand,
the oversampling retains all the information of the dataset but generating synthetic
instances which do not have a link with the reality.
Analyzing the advantages and the drawbacks of these approaches the choice is to
oversample the minority classes to not get rid of important information retained by
the majority class.
The used technique is called Adaptive Synthetic (ADASYN) sampling [50]. This
method is an improvement of another approach called Synthetic Minority Over-
sampling Technique (SMOTE) proposed by [51].

3.8.1 Synthetic Minority Over-sampling Technique

SMOTE [51] oversamples the minority class points generating synthetic instances of
k nearest class neighbors [52].
After the detection of the nearest class neighbors, q points are randomly picked; the
artificial instances are generated along the segments that link the selected points via
linear interpolation.
The number q is decided based on the amount of the desired oversampling.

3.8.2 Adaptive Synthetic sampling

ADASYN [50] is an extension of SMOTE, synthetizing minority points near the
boundary between two classes, rather than in the interior of the minority class as
SMOTE does.
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Figure 3.15: Example of SMOTE applied in a dataset, where the crosses are
the majority class and the dots are the minority class. The artificial instances lie
on the lines that link the real data points of the same class. Retrieved from [52].

The basic idea of this technique is not to decide apriori the number of artificial
samples to generate but set this parameter according to the density distribution of
the k nearest neighbor of each minority instance.
This strategy ensures to increase the samples in the proximity of the boundaries and
enhance the ability to learn from those samples [50].
The steps of the ADASYN algorithm are the following [50]:

1. Input D with m samples; each row of D is {xi, yi} and ms is the number of
minority instances and ml is the size of the majority class.

2. Compute the degree of class imbalance as

d =
ms

ml

, (3.25)

where d ∈ (0, 1].

3. if d < dth, where dth is the threshold for the maximum degree of class imbalance
ratio:

(a) Compute the amount of synthetic points needed (G):

G = (ml −ms)β (3.26)

where β ∈ [0, 1] is factor to set the level of balance at the end of the
process.

(b) ∀xi ∈ minorityclass, find k nearest neighbor and calculate ri defined as:

ri =
∆i

k
with i = 1, ...,ms, (3.27)

where ∆i are the number of xi ∈ majorityclass, so ri ∈ [0, 1].

(c) Normalize ri as
r̂i =

ri∑ms

i=1 ri
(3.28)

where now r̂i is a density distribution.
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(d) Compute the number of artificial (gi) instances to be generated for each
xi ∈ minorityclass:

gi = r̂iG (3.29)

(e) ∀xi ∈ minorityclass generate gi synthetic data points (si):

si = xi + λ(xzi − xi), (3.30)

where xzi is a random data sample that belongs to the xi k nearest neigh-
bor and λ ∈ [0, 1] is a random number.

3.9 Learning Algorithm

Predict bradykinesia is not an easy task, hence a robust learning algorithm is nec-
essary. A proper learning algorithm should not overfit and should generalize while
new data points are processed.
Besides, in contrast to the most works in literature, which usually consider the
bradykinesia severity prediction as a classification task, in this work a different ap-
proach is applied. In this work, the bradykinesia severity is handled as a continuous
variable between 0 to 3 despite the gathered clinical labels are discrete.
This idea, about considering the problem as a regression task, relies on the notion
that discrete bradykinesia scores can not catch the little shades that people with
PD experience.
The MDS-UPDRS score is discrete to help the clinician during the assessment; more-
over, in some cases, the physicians have troubles for the decisions also with only 5
categories of severity.

According to all these considerations, the choice of the regressor learning algorithm
is the Random Forest (RF), which has a good resilience to overfitting, a few numbers
of tunable parameters and it does not require data normalization.
The tuning of the parameters, numbers of trees and minimum leaf size, is done using
the out-of-bag (OOB) error which is a sort of validation of the model exploiting the
OOB samples.
Using the RF model, the prediction of bradykinesia is performed both for the labo-
ratory data and for the apartment ones. To achieve this task using the laboratory
data two cross-validation (CV) approaches are used. These CV methods are the
k-fold and the leave-one-subject-out (LOSO).
Regarding the bradykinesia severity estimation using in the apartment setting four
RF have been trained, one for each subset of tasks, using the laboratory data.

Finally, to evaluate the performance both in the environments some measures are
used. First of all, since the estimation is a regression task the root mean square error
(RMSE) and the mean absolute error (MAE) are used to measure the quadratic and
the absolute distance between the estimates and the clinical scores.
In addition, some metrics used in classification are adopted, rounding to the nearest
integer value the continuous estimates and comparing them with the clinical scores.
These measures are the accuracy, the specificity, the sensitivity, and the F1 score.
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3.9.1 Random Forest

Random Forest (RF) is an ensemble learning algorithm used for regression and
classification tasks. It is defined ensemble because it is made up of independent
trees.
A tree is a flowchart composed of a root, the starting point, internal nodes, where
a decision is performed, branches, they are the outcome if the nodes and leaves,
which are the outcome of the tree. Typically, trees are binary, it means that each
decision node can have only two branches. The process of decision, regression or
classification is a specific path over the tree flowchart.
Although the trees tend to overfit and to have a low generalization level for unseen
instances, they can catch complex structures inside the data samples; for this reason,
trees are the basic elements of the RF.
Besides, to improve the prediction accuracy, RF exploits the bagging technique to
generate independent trees applying the "Wisdom of Crowds" concept [53], which
states:

"the collective knowledge of a diverse and independent body of people
typically exceeds the knowledge of any single individual, and can be har-
nessed by voting." [54]

Bagging attempts to reduce the high variance of the single trees averaging the out-
comes of them to have a more robust prediction.
Another point of strength of the RF is that, during the creation of each node of each
tree, only a subset of features picked randomly is used to decide the best feature
for the split. This approach allows to design not only independent trees, but also
uncorrelated ones.
The final advantage of the RF is the number of parameters to tune are few com-
pared to other learning algorithms, and the tune could be very slight getting good
performance.

Bagging

To generate independent trees the RF generates a number of subsets equal to the
number of weak learners. In this way, each tree has its training set for learning
allowing to capture different characteristics from the data.
To generate each subset a random sampling with replacement is performed using all
the instances in the training set of the RF. Sampling with replacement means that
each example could be picked more than once for the same subset.
Exploiting the bagging every tree has a different perception of the dataset catching
different information and following the concept of the Wisdom of Crowds.
Besides, another feature of the bagging method is that for each tree some samples
will be not picked; these samples are called out-of-bag (OOB) samples because they
are not in the subset of a particular tree.
These special examples are fundamental to validate the trained RF estimating the
OOB error because the OOB samples are unseen instances for a specific tree.

Random Forest algorithm

The pseudocode of the regression RF is the following [54]:
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1. for n = 1 to N , with N as the number of weak learners:

(a) Generate the subset S sampling with replacement the dataset D.
(b) Grow a random-forest tree Tn to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the
minimum node size lmin is reached.
i. Select randomly m features from the total number of features M .
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tn}N1 .

After the training phase the prediction of a new instances the following:

f̂RF =
1

N

N∑
n=1

Tn(x) (3.31)

3.9.2 Cross-validation approaches

CV is a validation method to exploit efficiently the available data for the testing
phase. CV validates the learning method and not the learning model.
The CV test a partition of the dataset using the remaining one as a training set.
The two most used CV approaches are k-fold and leave-one-out (LOO).

• k-fold consists of partitioning the dataset into k subsets; iteratively one of
the k subsets is the test set and the others are the training set (figure 3.16).
The value of k could be chosen according to the amount of available data.
Increasing the value of k the result is enlarging the training set and decreasing
the size of the test set.

• Leave-one-out (LOO) is a particular case of the k-fold when the value of k
is equal to the number of data points in the dataset.
A different version of the LOO is the LOSO cross-validation. This method
works leaving as a test set not a single example, but the entire examples that
belong to a specific subject. The other subjects’ instances are used to train
the learning algorithm.
The main advantage of the LOSO is the removal of the subject bias because
all the instances of the are the test set.

3.9.3 Performance measures

To measure the quality of the estimates during a validation or a testing phase some
performance measures were implemented both for regression and classification tasks.

Regression

Since the true output values in regression tasks are continuous the best way to
estimate the quality of the model output is to measure the distance between the
true values and the predictions and compute the average to get a single value.
The two common measures for regression tasks are:
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Figure 3.16: k-fold cross-validation concept illustration. Each row represents
an iteration of the CV; in blue, there are the subsets labeled ad training set and
in orange, the subset defined as test set for the ith iteration. At the end of the
CV, each subset is tested getting the outcome, that could be compared to the real
outputs of the instances.

• Root mean square error (RMSE): it is defined as

RMSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.32)

where yi is the real value for the ith instance and ŷi is the correspondent
predicted value.
A derived measure from the RMSE is the mean square error (MSE) which is
the square of the RMSE.
RMSE penalizes large errors because the distance between them is squared;
lower is this value and better is the quality of the estimation.

• Mean absolute error (MAE): it is defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.33)

This indicator calculates the absolute error between the real values and the
prediction without penalizing large errors.

Classification

Since the labels in classification tasks are discrete or categorical, the performance
measure relies on the concept of confusion matrix, which express graphically the
prediction performance. Moreover using the entries of the confusion matrix some
values could be extracted.
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The confusion matrix is a square matrix (n × n), where n is the number of classes
of the problem. The columns of the confusion matrix corresponds to the predicted
values and the rows to the real values.
According to this layout, the principal diagonal of the matrix corresponds to the
hits, meaning that the estimation is the same as the true label; outside the principal
diagonal there are the misses, meaning that the prediction differs to the true label.

Figure 3.17: Confusion matrix representation of a binary problem. Along the
rows are the true labels, on the other hand along the columns are the predicted
scores.

In binary classification problem, the confusion matrix is 2× 2 and each element has
a specific name (figure 3.17):

• True negative (TN): number of negative cases correctly identified;

• False positive (FP): number of negative cases identified as positive;

• False negative (FN): number of positive cases identified as negative;

• True positive (TP): number of positive cases correctly identified.

This notation could be generalized to multi-classification problems.
Combining this information it is possible to extract some performance measure:

• Accuracy: it is defined as

accuracy =
TP + TN

TP + TN + FP + FN
. (3.34)

In other words, it is the sum of the principal diagonal divided by the number
of the predictions. This is the measure of correct prediction respect to the
entire tested samples.

• Specificity: it is defined as

specificity =
TN

TN + FP
(3.35)

It measures the amount of negative samples that are correctly classified.
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• Sensitivity or recall: it is defined as

sensitivity =
TP

TP + FN
. (3.36)

It is an indicator of the percentage of positive samples correctly recognized by
the classifier.

• Precision: it is defined as

precision =
TP

TP + FP
. (3.37)

It is the proportion of the positive samples recognized as positive against the
number of positive prediction of the classifier.

• F1 score: it is defined as

F1 score =
2TP

2TP + FP + FN
. (3.38)

It is the harmonic mean between precision and recall.

3.10 Apartment data analysis

The final purpose of this work is to predict the severity of bradykinesia and the
motor fluctuations in community settings, like the patient’s home.
Following the choices used for the laboratory data analysis, it is necessary to design
a processing pipeline for the accelerometer signals gathered in the apartment.
The pipeline reviews the analysis done using the laboratory data; the main difference
is in the movement patterns recognition, because in the laboratory there are labels
to define them, instead in the apartment this information is not available.
The flowchart of the apartment analysis from the raw data to the final bradykinesia
prediction is shown in figure 3.18. The first block is the filtering stage, the movement
versus rest detection and the windowing of the movements. The second block is the
feature extraction and it is the same as described in section 3.5.
The remaining part of the pipeline is inspired to figure 3.13. Firstly, it is necessary
to know if the patient is walking or not. If the subject is walking the partition
between upper and lower limbs is according to the sensor location. Based on this
information, the sample is processed to the properly trained model, returning the
bradykinesia severity prediction.
If the subject is not walking, the movement involves only the upper limbs, but it is
necessary to know if the motion pattern is fine or gross. To know that a classifier
to recognize fine versus gross movement is implemented. According to the outcome
of the classifier, the sample is processed by the correct trained regressor model.

To decide if the subject is walking the assumption is that all the movements in the
lower limbs are walking. To recognize the swing of the arms, it is necessary to know
the starting and the ending time stamps of the walking movement.
The learning algorithm for this classification task is RF. It is trained using the data
gathered in the laboratory and as targets, the labels associated with gross or fine
movement.
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Figure 3.18: Illustration of the processing pipeline for the apartment signals.
The starting inputs are the raw accelerometer signals. After the signal processing
and the feature extraction the first split partitions the samples during walking
and during motions that involve only the upper limbs. The branch of the walking
samples is further partitioned according to the sensor position. The other instance
branch has a split based on the outcome of the classifier to recognize if the pattern
of movement belongs to gross or fine movement. The final part is the bradykinesia
severity estimation using one of the four trained regressor RF.

The optimal number of trees is chosen according to the OOB error and removal of
the redundant features, as in section 3.7.1 is performed before the training phase.
The trained model is validated using the laboratory data using the k-fold and the
LOSO cross-validation.

The performances of bradykinesia severity estimates are extracted comparing the
estimates with the clinical score of the physician looking at the recorded videotapes
of the apartment assessment.
Each clinical score is the overall bradykinesia score over 30s; hence it is necessary
to aggregate the outcomes of the model to be able to do a fair comparison.
For the aggregation of the estimate scores, the median is used following the work of
Pulliam et. al [32], where the median is used to smooth the outputs to build a clear
render of the predicted score trend. Besides, the median operator is robust to the
noisy output and the application of this mathematical operation may be considered
as a post-processing to reduce noise. The aggregation of the predicted scores works
as follow:

1. Detect a clinical score ci;

2. Examine 30s window starting from the timestamp ti of the clinical score ci;

3. Consider all the predicted score ĉ included in the 30s window and computing
the aggregation using the median.

After the aggregation, the estimation errors in terms of RMSE is computed.
Moreover, only for a graphical reason, the raw outputs over the entire apartment
assessment are smoothed using the median filter with a sliding window of 10s min-
imize the filter transient because the outputs are not continuous over the entire
examination.
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3.11 Conclusions

To summarize this chapter all the methods used are to handle the intrinsic com-
plexity in the collected data in the laboratory. After the traditional operation, like
filtering, windowing, and feature design and extraction other processes are necessary.
The distinction among different movement patterns is the key to the analysis.
The idea of the analysis of the laboratory data is replicated for the apartment data,
designing different paths for the movement patterns and building four regressor RF
to estimate the bradykinesia severity in the distinct cases.

In the next chapter, the results obtained in the different parts of the pathway are
shown.

55



Chapter 4

Results

The most significant results obtained during the analysis are shown following the
path of the processing pipeline described in the previous chapter.
For what concerns the results of the bradykinesia severity prediction and the de-
tection of the motor fluctuations, the comparison between two configurations is
proposed. The two setups differ by the feature set, indeed the first one includes the
medication intake information, on the other hand, the second feature set consists of
only variables extracted by the accelerometer signals.
This choice is justified since the medication intake is a strong predictor for the
motor fluctuations, but unfortunately, it can not be gathered using wearable sensors,
however, it could be recorded using a drug manager application. For this reason,
the approach without the medication intake is proposed as well.
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4.1 Filtered signals

The filtering stage is the starting point of the analysis of the accelerometer signals.
The raw signals are filtered to isolate the useful information and discarding the
frequency components related to other PD symptoms.
The signals before and after the filtering are represented in figure 4.1. The raw sig-
nals have a strong DC component due to the orientation of the limbs, and it is clear
to notice some high frequencies especially when the signals are flat. This manifes-
tation is the tremor at resting, which is very easy to recognize using accelerometer
sensors.
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Figure 4.1: Illustration of the raw and filtered signals gathered during the eating
with a spoon ADL. On the left, the raw signals appear noisy; the noise derives
by the orientation of the limbs, and the presence of tremor movements during the
resting periods. On the right, the signals are filtered to reduce the two princi-
pal noise sources. In this way, the analysis is focused only on the bradykinesia
symptom.

On the other hand, the filtered signals fluctuate around the zero line, and the fre-
quency components related to the tremor are significantly attenuated thanks to the
high attenuation of the LP filter.
To check the correctness of the filtering, frequency analysis of the signals is necessary.
Estimating the PSD, it is possible to observe the design of the filters is correct or
not.
The periodograms of the raw and filtered signals are shown in figure 4.2. The fre-
quency components related to the bradykinesia are retained, and the power carried
by the other frequency is almost zero.

4.2 Movement detection validation

For the validation of the motion detector, the entire dataset collected during the
Blue Sky project is exploited to get more reliable results.
The validation consists of attempting different levels of threshold applied to the
envelope of the acceleration magnitude to obtain the best separation between resting
periods and movements.
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Figure 4.2: Representation of the periodograms estimated from the raw and
the filtered signals. On the left, the periodograms of the raw signals are shown.
Most of the power is toward the DC frequency component and going to the high
frequencies the amount of power decrease dramatically. On the right, the peri-
odograms of the filtered signals show that the designed filters accomplished to
attenuate the useless information for the bradykinesia prediction.

Since the threshold is based on the RMS of the sensor noise, which is very low, the
starting point for the validation was 15 times the noise level. The first attempt is
from 15 to 50 times the noise level by steps of 5; afterward, the grid is thickened
between 20 and 25 to find out the best threshold level.
To extract the performance for each threshold level labels collected during the lab-
oratory data collection, which states if in the task there is or not a voluntary move-
ment.
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Figure 4.3: Threshold validation of the movement detector. An investigation
about the best threshold level to separate the resting periods from the movements
is done. An initial grid is explored, once determined the best interval a new denser
grid is used to find the best threshold. A trade-off among the performance measure
is necessary for the final choice.
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The results of the first validation part are shown in figure 4.3. The best results
are between 20 and 25. The best results considering a trade-off among accuracy,
specificity, and sensitivity corresponds to 22 times the noise level.
This value of threshold is used to detect the movements inside the tasks that con-
stitute the bradykinesia dataset. This threshold is suitable for the removal of the
rest periods in the apartment setting as well.
The final result of the movement detection in the laboratory dataset is shown in
figure 4.4(b), while the starting phase is in figure 4.4(a)
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(b) Example of tasks without resting parts

Figure 4.4: An example of signal processing before and after the movement
detection is shown. On the left side, the three channels and the extracted envelope
are illustrated. On the right side, only the movement segments are retained.

4.3 Feature selection validation

Since the method used for the feature selection during this work, is an approach
implemented for this project, it is compared with other feature selection methods
implemented in the software used for the project.
The method used for the comparison are Correlation Feature Selection (CFS) [55],
ReliefF [45], and minimum Redundancy Maximum Relevance (mRMR) algorithm
[56] and the comparison is for each subset of movement patterns.
Since the outcome of the methods is the ranking of the features, to select the right
size of feature subset a ranking approach is exploited.
The ranking approach starts evaluating the most important feature according to the
feature selection algorithm and computes a quality measure; iteratively all the fea-
tures are added according to the ranking and the performance measure is computed.
The best subset is identified according to the best quality measure. In this case, the
quality measure is the RMSE of bradykinesia severity prediction using 10-fold CV
and as learning algorithm the RF.
At the end of this procedure for each subset of movement pattern, a feature subset
for each feature selection method is retrieved.
The sizes of the feature subset are shown in figure 4.5(a). The different bars are the
results of the applied methods. The RMSE for each movement pattern is shown in
figure 4.5(b).
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The results using the proposed method of feature selection outperform the other
methods both for the number selected features and in terms of prediction error.
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Figure 4.5: Validation results of the proposed feature selection method. On
the left side, the number of features selected by the ranking algorithm using the
different feature selection approaches are shown. Compared to the other methods,
the proposed one selects fewer features. On the right side, the RMSE between
the UPDRS score and the predictions using the selected feature subsets is shown.
The proposed method based on feature correlation an ReliefF outperforms the
other approaches making it a reliable feature selection algorithm.

4.4 Data cleaning results

In this section, the principal results of the cleaning will be explained following the
steps described in section 3.7.
In the first part, the feature selection results will be shown, presenting the step-by-
step outcomes only for the gross movement pattern; on the other hand, the final
result of the redundant feature removal will be shown for every movement pattern.
In the second part, the results of the noisy instances will be presented only for the
gross movement pattern, but the others have similar results.

4.4.1 Selected features

Since the first step of the feature selection algorithm proposed in this work is the
estimation of the feature importance, figure 4.6 represents the bar diagram of the
importance for the gross movement cluster of movement patterns. According to the
feature importance, most of the proposed features in section 3.5.4 carry out essential
information for the bradykinesia prediction.
The second result of the procedure is the correlation matrix presented in figure 4.7.
It may be observed that a significant number of features are highly correlated, hence
the removal of those features is necessary. The final result of the redundant feature
removal is in figure 4.8, where the black spots in the correlation matrix means that
the feature is discarded.
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Figure 4.6: Feature importance estimates computed using ReliefF on the gross
movement cluster. The outcome of the algorithm shows as the most important
features to predict the bradykinesia severity is the medication intake, the segment
velocity features, and the entropy. On the other hand, the less important for
the bradykinesia estimates are the cross-correlation time lag and the dominant
frequency.
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Figure 4.7: Feature correlation matrix of the gross movement cluster. Most
features are highly correlated among each other and this justify the removal of the
redundant ones. Meanwhile, a small amount of features are very low correlated
like the energy ratio, the features derived by the channel cross-correlation, the
zero crossing rate and the medication intake.

Besides, a general overview of the results in the different movement patterns is in
figure 4.9, where the features are ranked according to their importance.
The features selected in all the clusters are invariant respect to the movements,
instead, the less selected features depend on the patterns of movement.
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Figure 4.8: Feature correlation matrix of the gross movement pattern after the
removal of redundant predictors. The black squares are the removed features;
in general, there are still some correlation among the features but the retained
features carry out the most information for the bradykinesia estimates.

Figure 4.9: Retained features of the different movement patterns. The move-
ment clusters have some features in common, such as the dominant frequency,
the auto-correlation range, and the zero crossing, but different other features can
detect the bradykinesia only in particular movement patters.

4.4.2 Data cleaning

The results are shown in a qualitative way using t-SNE projections and the numerical
results of this section will be described in section 4.7.1.
Figure 4.10 illustrates the projection of the gross movement cluster before the re-
moval of noisy and outlier data points. It may be noticeable that the class separation
is not significant.
Then, the result of the k-means clustering algorithm is shown in figure 4.11, where
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Figure 4.10: t-SNE projection of the gross movement cluster before the cleaning.
The overlap among the classes is serious and the variability is still high.

the clusters should correspond to the classes of bradykinesia severity.

Figure 4.11: k-means clustering outcome of the gross movement pattern.

Finally, in figure 4.12 the projection after the cleaning is illustrated, showing an
enhancement of the class separation compared to figure 4.10.

4.5 Data Balancing results

The results of the balancing using the ADASYN algorithm are represented in terms
of class size before and after the oversampling of the minority classes. This result is
shown for each cluster of movement patterns in figure 4.13.
The balancing is not perfect because the choice is to have a trade-off among the
classes since generate a significant amount of synthetic data could be lead to errors
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Figure 4.12: Example of the outcome after the data cleaning miming the pro-
cedure proposed by Lee et al. [48]. The projection of the gross movement cluster
after the cleaning step. A clear distinction of the classes and at the same time a
decreasing of the variance are noticeable.
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Figure 4.13: Illustration of the data balancing comparing the distribution of the
classes before and after the application of the ADASYN algorithm. The severity
0 is not oversampled in every cluster, instead the class 1 is the minority one and
the oversampling is significant. The severity 2 is slightly oversampled and the
class 3 is oversampled severely only in the movement pattern upper limb walking.
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during the training phase.
An example of how the synthetic instances are placed in the reduced feature space
is in figure 4.14; the circles show the synthetic points that are generated near the
boundaries of the classes.

Figure 4.14: Projection of the gross movements cluster after the class balancing
using the ADASYN algorithm. The black circles highlight the synthetic instances
generated by the oversampling method; the artificial points are mainly places near
the class boundaries increasing the chances to separate more the bradykinesia
severities.

4.6 Learning algorithm parameters

An important phase of the training is the choice of the learning algorithm parameters
for each movement cluster pattern. The two parameters to tune are the number of
weak learners and the minimum leaf size. For the latter, the choice is to use the
default value of the algorithm equal to 5 because the aim is to minimize the deepness
of the single tree to avoid overfitting.
To decide the optimal number of trees, the OOB samples and the OOB error are
used during the training. For each cluster, the OOB error curve is computed using
a large number of trees, to see at which number of trees the model stops to learn or
to reduce in a significant way the validation error.

Table 4.1: Parameters used for the training of the RF algorithm.

Random Forest parameters
Lower limbs Upper limbs (walking) Fine movements Gross movements

Trees 20 25 25 25
Leaf size 5 5 5 5

In table 4.1 the parameters of each model are shown; besides, in figure 4.15 are
represented the OOB error curves and marked the number of trees chosen.
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Figure 4.15: OOB error curves for each movement pattern. The maximum
number of tree is 50, but the curves become flat after 20 or 25 trees. When
the curves are flat means that the learning algorithms stop to acquire information
from the training data points. The red dots on the OOB curves detect the optimal
number of trees for each pattern.

4.7 Laboratory bradykinesia prediction

The section concerning the results of the laboratory data is partitioned into two
parts; the first is about the results of the bradykinesia severity before and after the
data cleaning, while the second part regards the validation result of the bradyki-
nesia severity for each movement patterns including or not in the feature set the
medication intake variable.
In both cases, two cross-validation methods are used, the k-fold with k equal to 10
and the LOSO.

4.7.1 Bradykinesia prediction after cleaning

The following results are including the medication intake in the feature set. In figure
4.16 it may be noticeable as the regression error decreased after the cleaning step.
This is justified by the removal of noisy points and the resultant increasing of the
class separation allowing the learning algorithm to learn from only reliable instances.

4.7.2 Bradykinesia prediction

The result will be shown for each movement pattern, in terms of confusion matrix
and performance metrics. Since the task is regression, the proper measures should be
RMSE and MAE, but rounding the continuous outcomes to the nearest integer value,
it is possible to generate the confusion matrix and compute the typical classification
performance measures.
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Figure 4.16: Bradykinesia severity prediction results in terms of RMSE before
and after the data cleaning. In both the cross-validation methods the overall
trend is a decrease of the error. The most significant improvement is for the gross
movement subset, indeed the RMSE drops from 1 to 0.4 and from 1.4 to 0.45
using the k-fold and the LOSO respectively.

For the next sections, the results will be shown as follows: a comparison between
the results with and without the medication intake for each cross-validation method
and a table that sums up the performance in each case.

Lower limbs

In figure 4.17 the confusion matrices of the bradykinesia severity prediction in the
lower limbs using the 10-fold CV are shown. The comparison is between the usage
or not of the medication intake feature. The same comparison using the LOSO CV
is proposed in figure 4.18.
The overall performance is listed in table 4.2 for the four cases. According to the
performance measures, there is no significant discrepancy between the two feature
sets suggested.

Table 4.2: Lower limbs performance with and without medication intake pre-
dictor using 10-fold and LOSO cross-validation.

Lower limbs
10-fold LOSO

Medication No medication Medication No medication
RMSE 0.26 0.27 0.30 0.30
MAE 0.10 0.11 0.12 0.12
Accuracy (%) 93.5 94.0 92.4 92.9
Sensitivity (%) 94.8 95.3 94.1 94.4
Specificity (%) 97.6 97.7 97.1 97.1
F1 score (%) 86.1 87.4 85.0 86.0
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Figure 4.17: Confusion matrices of the lower limbs subset using the 10-fold CV.
On the left side the result regards the usage of the medication intake, instead on
the right side the results are without this feature.
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Figure 4.18: Confusion matrices of the lower limbs subset using the LOSO CV.
The results including or not the medication intake are proposed on the left and
right side respectively.

Upper limbs during walking

The confusion matrices of the bradykinesia severity prediction using the upper limbs
during walking are shown in figure 4.19 applying the 10-fold CV; meanwhile, the
results using the LOSO CV are illustrated in figure 4.20. The comparison between
the two feature sets is proposed highlighting as the inclusion of the medication intake
predictor leads to a slight improvement in the bradykinesia severity prediction.
In table 4.3 the prediction error and the other performance measures are summed
up.
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Figure 4.19: Prediction results of the upper limbs during walking subset using
the 10-fold CV.
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Figure 4.20: Confusion matrices of the upper limbs during walking subset using
LOSO CV.

Fine movements

The results of the bradykinesia severity during fine movement actions are in figure
4.21 using the 10-fold CV, wheres in figure 4.22, there are the bradykinesia prediction
applying the LOSO CV.
In table 4.4 the performances are listed; it may be noticed that during fine move-
ments, the bradykinesia severity prediction does not change whether the medication
intake feature is included or not in the feature matrix.

Gross movements

The confusion matrices related to the bradykinesia estimation during gross move-
ment using 10-fold CV are in figure 4.23, while the results of the prediction applying
LOSO CV are shown in figure 4.24.
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Table 4.3: Upper limbs during walking performance with and without medica-
tion intake predictor using 10-fold and LOSO cross-validation.

Upper limbs walking
k-fold LOSO

Medication No medication Medication No medication
RMSE 0.32 0.38 0.47 0.47
MAE 0.22 0.27 0.35 0.36
Accuracy (%) 89.2 81.7 72.5 70.8
Sensitivity (%) 85.1 76.5 52.4 54.8
Specificity (%) 96.3 93.8 90.4 90.0
F1 score (%) 85.0 74.6 51.9 54.8
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Figure 4.21: Confusion matrices of the upper fine movements applying the 10-
fold CV.
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Figure 4.22: Prediction results of the upper fine movements using the LOSO
CV.
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Table 4.4: Upper fine movement performance with and without medication
intake variable using 10-fold and LOSO cross-validation.

Fine movements
k-fold LOSO

Medication No medication Medication No medication
RMSE 0.33 0.34 0.53 0.54
MAE 0.18 0.20 0.36 0.35
Accuracy (%) 88.5 87.2 70.5 70.7
Sensitivity (%) 86.0 83.0 57.4 56.9
Specificity (%) 96.4 95.9 90.2 90.3
F1 score (%) 83.8 81.5 57.8 57.3

The behavior during the gross movement is different compared to the other move-
ment patterns; using the 10-fold CV the performance is better using the medication
intake information, on the other hand, the LOSO results show that the bradykinesia
estimates are superior without the medication intake variable.
In table 4.5 are summarized the performance obtained in the four conditions.
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Figure 4.23: Prediction results of the upper gross movement subset using the
10-fold CV.

Nevertheless, the discrepancy in the bradykinesia estimates between the usage of
the medication intake feature or not is not so significant; the two approaches will be
carried on for the estimates of bradykinesia severity using the apartment data.
The choice could be justified by the fact that the medication intake is a good predic-
tion for the motor fluctuations and they will be detected in the apartment analysis;
keeping this feature could lead to monitor the fluctuations with a better accuracy.

4.8 Apartment bradykinesia prediction

The results regard the validation of the movement classifier, to recognize if the
movement belongs to fine or gross class and the bradykinesia severity prediction in
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Figure 4.24: Confusion matrices of the upper gross movements applying the
LOSO CV.

Table 4.5: Upper gross movement performance with and without medication
intake feature using 10-fold and LOSO cross-validation.

Gross movements
k-fold LOSO

Medication No medication Medication No medication
RMSE 0.38 0.41 0.45 0.43
MAE 0.27 0.31 0.35 0.34
Accuracy (%) 0.82 78.4 72.5 75.3
Sensitivity (%) 75.1 68.2 61.4 63.6
Specificity (%) 94.3 92.9 90.9 91.7
F1 score (%) 73.9 67.2 61.3 63.2

the apartment setting.
The estimate errors will be presented for each subject and with the two feature sets,
one including the medication intake and the other excluding it.

4.8.1 Movement classifier

Before the training of the RF learning algorithm, the redundant features are removed
following the procedure described in section 3.7.1. The retained features after the
removal are in figure 4.25.
The choice of the number of trees is using the OOB error attempting a range of trees
from 1 to 100. The optimal number is 50 (figure 4.26), while the minimum leaf size
is set to 5 to reduce the tendency to the overfitting. Before the optimization phase
the minority class, fine movements, is oversampled using ADASYN increasing the
instances from 3190 to 12000, which is the same size of the gross movement class.
The validation of the learning algorithm is performed on the laboratory data apply-
ing the 10-fold and LOSO cross-validation methods. The results are shown in terms
of confusion matrices in figure 4.27. In table 4.6 are summarized the performance
measure extracted by the confusion matrices.
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Figure 4.25: Feature importance of the selected variables after the removal of
the redundant ones. The selected feature are 47 and the most significant for the
classification task are the cross-correlation features, the zero crossing rate, and
the dominant frequency.
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Figure 4.26: OOB error curve for the number of trees optimization. The error
decrease significantly till 50 trees, then the curve is almost flat. The red dot shows
the optimal number of weak learners for the model.

4.8.2 Longitudinal bradykinesia prediction

The results for the apartment are in terms of RMSE of the bradykinesia severity
prediction, comparing the outcome of the models with the true labels given by the
clinicians using the collected videotapes of the apartment assessment. Besides, the
results regards the comparison between the two subsets of features: with medication
intake and without.
Figure 4.28 shows the RMSE over the subjects involved in the apartment assessment
in the two configurations of variables.
The overall estimation errors over the entire group of subjects is in table 4.7, where
the error is shown in terms of average and standard deviation over the errors of the
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Figure 4.27: Validation results in terms of confusion matrices of the classifier to
recognize fine and gross movements. On the left side the result is obtained using
the 10-fold CV, while on the right side the results is applying the LOSO CV.

Table 4.6: Validation performance of the classifier for the recognition between
gross and fine movements.

Fine vs. Gross classifier
k-fold LOSO

Accuracy (%) 93.3 91.6
Sensitivity (%) 93.1 91.8
Specificity (%) 94.0 91.2
F1 score (%) 95.6 94.6

different subjects.

Table 4.7: Apartment estimation error in terms of average and standard devia-
tion of the RMSE over the entire group of subjects.

Apartment error
medication intake no medication

RMSE 0.90 ± 0.25 0.89 ± 0.25
MAE 0.65 ± 0.32 0.66 ± 0.32

In accordance with the results, the two configurations lead to the same bradykinesia
severity estimation error, despite the medication intake appears more significant
compared with the other variables.
Finally, an example of each configuration is illustrated in figure 4.29 and figure 4.30,
where the blue line is the raw outcome of the model and the red one is the smoothed
outcome using the median filter.
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Figure 4.28: Apartment estimation error along the subjects. For each patient
involved in the apartment assessment the error in terms of RMSE is shown, com-
paring the results on bradykinesia prediction with two different subset of features,
one including the medication intake and the other excluding it. The results show
that there is no difference between the two conditions.

4.9 Conclusions

To summarize the results chapter the overall result of the prediction of bradykinesia
in the laboratory is 0.5 in terms of RMSE using LOSO; instead, the prediction error
in the apartment is 0.90 using the medication intake variable and 0.89 without the
use of this feature. These results are obtained treating the movement patterns sep-
arately, hence for the apartment analysis a classifier foe the movement recognition,
fine versus gross movements, is implemented with a validation accuracy of 91.6 %
using the LOSO. Other minor results are the optimization of the threshold for mo-
tion detection and the introduction of a method for removing redundant features
based on the ReliefF method and the correlation between features.
Finally, the cleaning of the data, although fruitful for the prediction in the labora-
tory, has not proved efficient for the prediction of bradykinesia in an unconstrained
environment.

In the next chapter, the discussion of the results presented in this chapter are dis-
cussed.
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Chapter 5

Discussion

The purpose of this work is to investigate the feasibility and reliability of a system
able to track the severity of bradykinesia and motor fluctuation in individuals with
PD, using wearable sensors and ML approaches for the analysis and processing of
the data.

The motion detection is one of the fundamental steps of the processing since the
bradykinesia involves slowness of movement. After a quantitative analysis to de-
tect the movement using a threshold on the acceleration magnitude, the optimal
threshold level is 22 times the noise level of the sensor (figure 4.3). These validation
results have limitations related to the quality of the labels that identify if a task is
categorized as rest or voluntary movement. Since the involved subjects have other
symptoms, like dyskinesia it might be possible that a task categorized as rest has
inside an involuntary movement that is detected by the threshold.
Despite these limitations, the overall result of the movement detection is 79 % and
it is suitable for the bradykinesia dataset (figure 4.4).

The analysis of the projections of the instances leads to consider different types
of movements separately, to reduce the variability introduced by the amount of
executed tasks in the laboratory. The result of this analysis is to recognize the
movements into four groups of movement patterns: walking, the swing of the arms
during walking, fine movements and gross movements.
Introducing this partition a limitation occurred about the walking data because in
this cluster the bradykinesia severity scores are from 0 to 2 instead of severity 3.
This restriction causes the inability to predict score greater than 2 in the apartment
setting for what concern the walking task.

For the optimization of the dataset, a method to remove the redundant features is
proposed applying the ReliefF predictor importance coupled with the correlation
among the features. Since this method is proposed in this work, a quantitative val-
idation is performed, comparing it with other feature selection methods. The result
is promising because the proposed method can select a lower number of features
maintaining the prediction error satisfactory (figure 4.5).

Once noted the performance of the proposed method, it is applied to the groups of
movements to retain only the important features.
The outcome after the removal of irrelevant features is in figure 4.9. It is noted that
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some features are invariant respect to the movement patterns, like the dominant fre-
quency, the features extracted by the cross-correlation signals, and the zero-crossing
rates, nonetheless the medication intake being the most important. Other features
are selected only for certain kinds of movement groups meaning that these features
are specific to predict bradykinesia using precise movement patterns. An additional
consideration is about the features added in section 3.5.4, which are retained after
the feature selection, however, the SMA, the MEAD of the acceleration magnitude,
and the midhinge are discarded.

The data cleaning approach is encouraging because it can remove noisy points gen-
erated by the windowing approach for the analysis and the scoring method based on
tasks. The latter is the main limitation of the laboratory analysis leading to have
mislabeled windows.
The results of the cleaning are respectable because the variability is reduced inside
every group of movements, increasing the bradykinesia prediction in the laboratory
setting (figure 4.16).
The reduction of variability allows getting a cleaner training set for the bradykine-
sia severity prediction in the apartment setting and retaining only reliable points
deleting the mislabeled ones.

The unbalancing of the dataset represents a limitation of the work and also a prob-
lem for the design of the predictive model. Before the training of the models, the
oversampling of the minority class instances is necessary. The results of the bal-
ancing in figure 4.13,where class 0 is not oversampled since it is the biggest one;
rather, classes 1 and 3 are the most oversampled, attempting to reduce the degree
of unbalancing.

The training phase led to an optimization of the RF parameters using OOB error
curves and choosing the best number of trees for each model of each movement
pattern.
In figure 4.15, the OOB curves decrease quickly until there is no significant reduc-
tion of the error. In correspondence at the beginning of the plateau, the number of
trees is identified for each model. Table 4.1 summarizes the results obtained for the
optimization phase preceding the training of the models. The optimization phase
reduces the possibility that the learning algorithm overfits the training set instances.

The bradykinesia severity prediction in the laboratory setting is promising since the
cleaning of the data reduced the variability among the classes. The prediction error
in terms of RMSE for all the movement patterns is under 0.5 using the LOSO CV
and the overall RMSE, applying the LOSO, is 0.47 for the two feature configurations,
with medication intake and without it.
The best result belongs to the walking tasks (table 4.2) since the characteristic of
this movement is ideal for bradykinesia detection because this motion is periodical.
Instead, the error of the gross and fine movements is slightly higher (table 4.5 and
table 4.4), the motivations are due to the higher complexity and for the position-
ing of the sensors respectively; since for the recording of fine movements, the best
placement of the sensors should be on the fingers.
Summarizing the performance in the laboratory, the prediction error is satisfactory
considering that the prediction range is between score 0 and score 3. Besides, there
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is no significant difference between the two subsets of features; this may be an ad-
vantage because the medication intake data could not be always available in natural
settings and relying only on the accelerometer sensors does not change the severity
prediction.
Despite this result, the investigation carries on the different feature subsets to under-
stand if in the apartment environment the behavior is the same as in the laboratory
or not.

Regarding the apartment results, variability on the prediction error along the sub-
jects is present (figure 4.28), showing the trained models have difficulties to predict
correctly the bradykinesia severity of some patients, such as subjects 1, 16 and 17.
The overall RMSE over the entire group of subjects is 0.90 and 0.89 for the feature
set with the medication and for the one without it respectively (table 4.7).
Unfortunately, these results are rough estimates, because the true labels in the
apartment setting are very few for each patient over a recording time of more than
5 hours and the scores are given by the clinicians observing videotapes.
The aspect of the videotapes must not be overlooked, because for a clinician it is
tough to score a subject during ADL and more so looking at a videotape, where the
positions of the cameras might influence the perception of the movement quality.
The last aspect to take into account for the interpretation of the apartment re-
sults is the poor quality of the medication intake information during the apartment
assessment because in some cases this information is not available.
It might be thought that the absence of a discrepancy between the two subsets of
features can be attributed to the low accuracy of the medication intake data.
The attempt to monitor the motor fluctuation is challenging and in figure 4.29 and
figure 4.30 the models can detect only small fluctuations, but no the overall trend
described in figure 1.5.
Overall, taking into account the limitations of the work and the degree of freedom
of the subjects during the apartment assessment the results can be considered as
a starting point for further analysis in unconstrained environments. Putting more
efforts to recognize firstly the movement category more accurately, though the per-
formance of the classifier to recognize fine and gross movements is encouraging with
an accuracy of 91.6 % using the LOSO (table 4.6), and then predict the bradykinesia
severity using trained models with more instances that represent better the different
severities could increase the chance to improve the accomplishment in unconstrained
settings.
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Conclusions

Although this work is a first investigation for the prediction of the severity of
bradykinesia in unconstrained environments during ADL and using wearable sen-
sors, the results are promising and offer insights for future improvements.
The prediction accuracy in the simulated apartment is still far from that achieved
during the assessment in the laboratory, due to the difference in movements per-
formed in the two settings, by the different methods of attribution of clinical scores,
and the use of only accelerometer sensors.
This discrepancy can be thinned at first instance by selecting only the tasks most
similar to those performed in the laboratory and increasing the number of clini-
cal scores during the assessment in the apartment to more accurately estimate the
performance of trained models and better comprehension, by the clinician, of the
subject state to titrate the medication accordingly to the patient needs.

Furthermore, in this work, concepts introduced by other authors working in this
field have been adopted and modified, such as the subdivision of motor tasks into
patterns of movements and the method for removing noisy samples collected in the
laboratory.
Nonetheless, a method for removing redundant features has been proposed, prov-
ing how it can be compared to feature selection methods already existing in the
literature.
Overall, this work shows how the proposed and undertaken concepts could represent
a concrete future solution for monitoring the severity of PD symptoms, despite the
limitations and possible improvements regarding unconstrained environments.

The improvements are wide due to the complexity and the intrinsic nature of
bradykinesia and the motor complications related to PD that are difficult to deal
with little data availability and with specifications and constraints associated with
the project to accomplish. In addition, this symptom is not easy to estimate during
ADL and the clinician sometimes finds difficult to assess the subject state.
Nevertheless, future developments offer broad scenarios for improving the work pro-
posed to achieve better reliability of the severity prediction in the community setting
or patient’s home.
New data analysis approaches to increase the class separation among the bradyki-
nesia severities and the use of learning algorithms belonging to the branch of the
DL, that consider the temporal sequences between one movement and another one,
could exploit the information of symptom severity in the past for the next predic-
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tions of the state improving the overall accuracy of the system especially during the
longitudinal assessment during the daily life.
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