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Abstract 

Objective: 

The goal of this Master Thesis is to design a Computer-Aided Diagnosis (CADx) 

system for breast mass-like lesion classification in Dedicated Breast CT (DBCT) 

images, using a quantitative radiomics approach based on newly developed shape 

and margin imaging biomarkers and a multi-layer perceptron artificial neural 

network (ANN). The clinical motivation behind it is to reduce the number of negative 

and unnecessary breast biopsies, which constitutes more than 70% of the overall 

biopsies performed. This project was carried out at the Advanced X-ray 

Tomographic Imaging (AXTI) Laboratory, Department of Radiology and Nuclear 

Medicine, Radboud University Medical Center (Nijmegen, The Netherlands).  

 

Methods: 

A traditional radiomic pipeline was implemented. Therefore, starting from DBCT 

images and their manual segmentation, the main phases performed were the image 

cropping to obtain the patches containing the breast lesions, the data augmentation 

process to increase the number of available patches, the feature extraction based on 

shape and margin descriptors, and the implementation of the Machine Learning 

(ML) diagnostic model for the classification of benign and malignant breast masses.  

The images used in this study were acquired with the new DBCT imaging modality 

and consisted of 74 breast lesions (54 benign and 20 malignant). 

As concerns the breast masses analysis, this work was focused on the development, 

validation, and implementation of new descriptors that quantify the tumor 

properties in terms of morphology (shape and contour) and margin appearance 

(border heterogeneity and infiltration degree). The final feature set contained 158 

features, some of which were already included in previously published studies, 

others were newly designed and proposed in this thesis. 

As regards the classification task, this work involved a study related to the ANN 

architecture in terms of the number of hidden layers and neurons (ANN tuning), the 

number of features to consider (feature selection), and the number of samples to be 

used during the network training (dataset balancing) in order to correctly predict 

the breast lesion diagnosis. 
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Results: 

The final ANN model resulted in a sensitivity of 0.79, a specificity of 0.90, an F1-

Score of 0.79, an accuracy of 0.86, and an AUCROC of 0.91. It contained 56 input 

features (feature selection using Random Forest), two hidden layers of 10 neurons 

each with a hyperbolic tangent sigmoid activation function, and one output layer 

with a logistic sigmoid one. The dataset used for its training was balanced by 

undersampling the class of benign lesions (majority class). In particular, dataset 

balancing made it possible to significantly increase the classification performance, 

compared to ANN models based on the initial imbalanced dataset (benign to 

malignant ratio of 3:1). Instead, feature selection showed that its contribution was 

minimal both in the presence of imbalanced and balanced datasets, so it did not 

constitute a critical step, underlying the importance of these features in the 

discrimination between benign and malignant masses. 

 

Conclusion: 

The inclusion of radiomic features that assess morphology, margin and peritumoral 

compartments of breast lesions in the development of a CADx system for DBCT 

could provide high classification performance. Therefore, their combination with 

the well-known and traditional texture features could lead to a radiomic analysis 

aimed at quantifying all most distinctive characteristics of breast masses, resulting 

in a significant diagnostic decision support. 
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1 Introduction 

1.1 Breast Cancer 

1.1.1 Epidemiology 

Breast cancer was the second most common cancer type worldwide, affecting more 

than 2 million people (11.6% of the total number of new cancer cases), and the fifth 

most common cause of cancer death with a total of 627000 cases (6.6%) in 2018.  

By analyzing only women, breast cancer was the most common type of cancer 

(25.4%) and the leading cause of cancer death worldwide (15%) in 2018 [1].  

 

Breast cancer survival rate ranges widely because the worldwide situation shows 

how it varies from over 85% in developed and high-income countries to around 

40% in underdeveloped and low-income ones [2].  

These statistics demonstrate the importance of early detection programs started in 

the major world countries to prevent women from having late-stage cancers, more 

difficult to be treated.  

Considering the United States scenario [3], it has been shown that the 5-year 

Relative Survival Rate (RSR), which describes the percentage of people who are alive 

at least 5 years after the diagnosis, is around 90% for women with invasive breast 

cancer (62% of diagnosed cases). This parameter varies greatly with the stage of 

cancer: it drops to 85% and 27% if cancer has spread to a nearby region (e.g. lymph 

nodes, stage III) or metastasized to a distant part of the body (e.g. liver, stage IV), 

respectively [4]. Therefore, these statistics further underline the importance of 

efficient screening and diagnosis programs to determine in a reliable and fast way 

which type of cancer a person has. 

 

 

Figure 1. Incidence and Mortality of cancer in the world in 2018. It shows that breast cancer is the 

second most occurring cancer worldwide, but it is the fifth cancer in terms of deaths (ranking behind 

lung, colorectum, stomach and liver). Retrieved from [1]. 
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1.1.2 Breast Tumor Types 

Breast cancer indicates a group of diseases that occur when abnormal cells of the 

breast grow out of control and excess as compared to surrounding healthy tissues: 

this lump of cancer cells can subsequently increase in number (unchecked 

reproduction), spreading to the other healthy areas of the breast (and, at worst, of 

the body). The build-up of these mammary cells raised irregularly due to the 

alteration of their cellular vitality, involves the birth of a mass of tissue which is 

called neoplasm or tumor. 

 

Figure 2 shows the anatomy of the breast, that is composed of different types of 

tissue: 

• Glandular tissue, which comprehends the lobules and ducts; 

• Fibrous tissue, which is the main element of ligaments (and of scar tissues); 

• Adipose (or Fatty) tissue, which is the least dense and fills in the spaces 

between the two previously mentioned tissues. 

 

One of the distinguishing characteristics of the breast is the density, which is 

described as the quantity of fibrous and glandular tissue present within the breast 

volume. The Breast Imaging-Reporting and Data System (BI-RADS), a guide that 

provides standardized terminology and assessment categories in breast imaging, 

contains a section dedicated to “Breast Composition Categories”: this classification 

in four categories (Fatty, Scattered fibroglandular density, Heterogeneously dense, 

Extremely dense) is really important because breast density affects the quality of 

the image, and the detection and diagnosis processes. Indeed, as will be discussed 

below, breast density has a masking effect on tumors, which in most cases are 

located in the fibroglandular component (i.e. lobules and duct walls) [5]. Moreover, 

breast density is related to the risk of developing breast cancer because the more 

glandular tissue the patient has, the more likely cancer will develop [6]. 

 

 

Figure 2. Anatomy of the breast. Retrieved from [7]. 



Chapter 1.  Introduction 

3 

The main point to be stressed is that breast tumors can be of two types, “benign” or 

“malignant”. 

 

The benign tumors are non-invasive and non-cancerous, but they should be 

monitored because if they grew or modified their shape, it would be necessary to 

surgically remove them before they cause pain or complications.  

Types of benign breast masses include cysts, fibroadenomas, and central intraductal 

papillomas (or atypical papillomas).  

The cysts are fluid-filled sacs which can cause pain, but do not increase the cancer 

risks: about 25% of all breast masses belong to this class [8]. 

The most common benign breast tumor is the fibroadenoma, which appears as a 

round and well-defined shape lump and does not usually cause tenderness: the 

name put together the fibrous and glandular nature of its tissue composition. 

Lastly, atypical papillomas are small growths that develop in the breast ducts and 

consist of a mix of glandular and fibrovascular tissues. Their name refers to their 

central position, as they grow in the proximity of the nipple. 

 

Malignant tumors, or cancers, can damage the surrounding healthy tissues. When 

dealing with breast cancers, one of the common practices is to analyze the 

aggressiveness stage of the tumor, defining its grade on a low (well-differentiated), 

intermediate (moderately differentiate), high (poorly differentiated) scale [9]. 

They can be divided into two large families: non-invasive and invasive.  

Among the first group, there is the Ductal Carcinoma in Situ (DCIS), which is found 

in the duct cells and is not so spread through the other parts of the breast. It is 

considered an early-stage cancer lesion, and, in some cases, it eventually proceeds 

to the next invasive cancer stage [10].  

Among the second group, there are the Invasive Ductal Carcinoma (IDC) and the 

Invasive Lobular Carcinoma (ILC). The former is the infiltrating ductal carcinoma 

and, differently from DCIS, spreads to the rest of the breast and of the body: it 

represents around 80% of all breast cancers. The latter is less common than 

previous cancer (around 10%) and develops from the lobule cells where the milk is 

produced [8]. Aside from the types previously described, breast cancer can manifest 

in additional neoplastic forms, whose prevalence is significantly lower and, 

therefore, whose description goes beyond the scope of this thesis. 
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1.1.3 Main Differences between Benign and Malignant Masses 

Benign and malignant breast mass-like tumors exhibit a set of morphological 

connotations from whose analysis and characterization it is possible to try to 

distinguish them and assess their degree of malignancy. In particular, four different 

morphological aspects can be investigated: shape, boundary irregularities, degree 

of spiculation and degree of infiltration in the tumor periphery.  

Indeed, the BI-RADS guide uses these descriptors as qualitative criteria for breast 

masses examination, subdividing them into categories to standardize the 

vocabulary and to improve the communication for all those involved in the 

detection, diagnosis, and treatment of these lesions (e.g. radiologists, pathologists). 

 

 

Figure 3. Mammography and Ultrasound chapters of the ACR BI-RADS Fifth Edition guide that show 

how shape and margin are two of the descriptors used for describing and classifying solid breast 

masses. Retrieved from [11]. 

 

Regarding benign masses, they are usually characterized by oval or round 

conformation and a well-defined and circumscribed shape. Their contour is usually 

regular, without spicule and lobes. The degree of infiltration into surrounding 

tissues is low or very-low by virtues of its non-aggressive nature. 

 

On the other hand, malignant tumors usually turn out to be irregular in their profile 

with ill-defined, star-shaped, and lobulated boundaries. These masses are inclined 

to damage surrounding tissues, thus they are characterized by a high degree of 

infiltration which results in inhomogeneous margins and a great number of spicule 

and concavities [12]. 
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1.2  Current Breast Diagnostic Imaging Modalities 

The process of detecting breast cancer usually begins with an examination carried 

out by the doctor, who checks both breasts (and the lymph nodes next to them) to 

identify by touch any masses or abnormalities. 

Different imaging modalities based on different physical techniques can be used for 

breast cancer detection and diagnosis. The most common methods are Digital 

Mammography, Digital Breast Tomosynthesis (DBT), Breast Ultrasound (US) and 

Breast Magnetic Resonance Imaging (MRI).  

The procedures, which most of breast cancer prevention and treatment centers 

usually provide, include Mammography for screening, DBT, Breast MRI and Breast 

US for evaluating abnormalities, and the biopsy for laboratory testing suspicious 

masses identified in the previous steps [13]. 

 

In particular, breast biopsy involves the removal of a small breast tissue sample to 

conduct a histological study and is essential to determine the nature of any possible 

lesion or suspected area in the breast. However, although the goal is to intervene 

only if the masses could be cancer, the number of negative biopsies (i.e. low-risk 

benign tumors), corresponds to approximately 75% of the total [14]. These numbers 

lead to several downsides both for the patient who perceives discomfort and pain 

and may have problems at the biopsy site (e.g. bleeding or infection), and for the 

National Health Services that will have to cover higher healthcare costs. Part of this 

condition can be attributed to the previously mentioned breast diagnostic imaging 

modalities, which present both positive aspects and criticalities to achieve the 

purpose for which they are part of the clinical routine.  

 

1.2.1 Mammography 

2D Full Field Digital Mammography (FFDM) is the most commonly used technique 

for breast cancer detection. Although the technologies available for prevention and 

diagnosis are numerous, today it represents the gold standard of breast cancer 

screening [15]: the enrolment in these screening programs has the advantage of 

reducing breast cancer mortality rate by 40% [16].   

It is an x-ray imaging technology that consists of projecting a ray beam that passes 

through the breast compressed between two plastic plates and reaches a detector 

on the opposite side. From the intensity measurement of these rays, it is possible to 

distinguish the different tissues present inside the breast and detect possible lesions 

(cysts, fibroadenomas, calcifications). 

The energy of the X-rays used in mammography ranges from 17.5 keV to 22.7 keV, 

depending on the anode material (typically Molybdenum or Rhodium), and is lower 

than those used for bone radiography (up to 70 keV if tungsten anode) [17]. 

Despite the advantages in terms of mortality rate reduction of early detected 

cancers, several negative aspects should be emphasized.  
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Indeed, this technique has proven itself unfit for dense breasts, and other 

complementary tests such as DBT, US, and MRI are necessary, especially for young 

women who have more glandular tissue (high density) than adipose one [18]. 

Moreover, breast compression involves problems both for patient comfort and 

structure overlapping that can hide abnormal masses under dense healthy tissues.  

In particular, the pressure that is applied during the examination is an important 

issue because it may lead to a reduction of sensitivity or specificity if it is too high or 

too low, respectively [19]. 

 

 

Figure 4. Illustration of a screening mammography exam. The standard exam consists of a bilateral 

mammogram in two views, which are the craniocaudal (CC) and the mediolateral oblique (MLO). The 

sketch here reported represents the configuration to obtain the CC projection. Retrieved from [20]. 

 

1.2.2 Digital Breast Tomosynthesis (DBT) 

Digital Breast Tomosynthesis (DBT), also called 3D Mammography, is the evolution 

of the digital 2D mammography and is configured as an imaging technique that 

generates pseudo-three-dimensional images by acquiring several 2D projections of 

the breast over a limited angular range (typically 10°-50°) [21]. 

Its acquisition technology and its implementation in clinical practice can partially 

solve the problems related to the superimposition of overlapping tissues because it 

produces a pseudo-3D breast reconstruction. 
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Figure 5. Schematic representation of DBT operating principle. The system acquires a limited number 

of projections over a certain angular range (e.g. 15 projections over 15°) to get information from 

multiple points, which however do not cover the whole breast volume. Retrieved from [22]. 

 

Clinical studies have demonstrated that DBT increases the sensitivity and specificity 

currently achieved in mammographic screening tests, especially in the case of dense 

breasts (40% reduction in the false-positive recall) [23]. 

Moreover, DBT only provides for slightly higher levels of radiation than 

mammography because it acquires more but low-dose exposures of the compressed 

breast. However, it is not yet the standard in breast cancer screening, but there are 

current clinical studies that are investigating the feasibility of implementing DBT 

protocols in screening programs [22, 23]. In particular, DBT data would be used to 

reconstruct not only the pseudo-3D breast volume but also the 2D images used in 

the screening examination to reduce patient exposure [24]. 

 

1.2.3 Breast Ultrasound (US) 

Breast US is a simple, safe and non-invasive diagnostic exam since it is based on the 

emission and reception of low-frequency and high-intensity sound waves, which do 

not cause damage to the organism. The US emitted by the probe are reflected 

differently depending on the type of tissue, creating a grayscale image that makes it 

possible to identify potential abnormalities inside the breast, distinguishing them 

between those filled with fluid (e.g. cysts) and those that are solid (e.g. 

fibroadenomas, or cancerous masses).  
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Breast US is not a stand-alone screening test but an examination that completes the 

mammography in all those cases where its performances are not adequate and the 

lesions cannot be detected with a proper level of confidence: indeed, sensitivity and 

specificity of breast US are higher than mammography in young women and those 

with dense breasts [25]. 

Therefore, both imaging modalities are used in most screening programs: for 

instance, the Food and Drug Administration (FDA) approved the Automated Whole 

Breast US (AWBUS) as a supplemental tool for screening women with extremely 

dense breast tissue [26]. 

Breast US cannot be adopted as the only screening modality due to its high false-

positive and false-negative rates, associated with the need for more staff training, 

additional studies and integration into current PACS [26, 27]. 

 

 

Figure 6. Simple representation of the breast US exam. The image obtained is called sonogram and is 

useful for assessing whether the mass is solid (e.g. fibroadenoma) or filled with fluid (e.g. cyst). 

Retrieved from [9]. 

 

1.2.4 Breast Magnetic Resonance Imaging (MRI) 

Nuclear magnetic resonance (NMR) is a multi-planar diagnostic technique that 

provides detailed images of organs and body structures using magnetic fields and 

radio waves, without exposing the patient to any type of ionizing radiation. In 

particular, the patient is immersed in a high static magnetic field (0.5-3 T), which 

orients the axis of H+ protons in the patient body fluids along the field itself. Then, 

radio waves with an appropriate frequency (i.e. Larmor frequency) are generated to 

make protons resonate and provide them with energy. Due to temporary 

deformations of the nuclei, the H+ atoms emit signals, which differ according to the 

composition of each tissue where they are, and are detected by coils positioned on 

the breast. 
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In the case of breast MRI, it is necessary the use of contrast agents to temporarily 

change the tissue properties and discriminate structures with similar magnetic 

behavior: this imaging modality is known as Contrast-Enhanced Magnetic 

Resonance Imaging (CE-MRI). 

The images obtained from the recorded signals are characterized by more attention 

to the soft tissues, and, in the case of breast imaging, this allows them to reach very 

high sensitivity values (more than 90% if CE-MRI) even with dense breast [28]. 

Instead, its low-moderate specificity (which ranges from 50% to 80%) results in 

problems for lesion characterization and discrimination, which, therefore, would 

cause a high number of unnecessary breast biopsies and follow-ups if it replaced 

mammography as a screening tool [28, 29]. For this reason, breast MRI is usually 

performed after a positive biopsy to obtain more information about cancer and its 

body spread. It is also used for screening with mammography for those women at 

high risk of cancer contraction (e.g. genetic mutations, family history of breast 

cancer) [30]. 

Several breast MRI limitations can be mentioned: equipment complexity, high cost 

(approximately ten times of mammography), time-consuming exam, non-negligible 

toxic component of the currently used intravenous contrast medium (i.e. 

Gadolinium) [31]. Nevertheless, it is configured as an imaging modality that has 

shown its value in breast cancer assessment both in terms of detection and staging. 

 

 

Figure 7. Drawing representing the execution of a breast MRI. Before performing this diagnostic 

exam, a contrast medium (typically Gadolinium) is injected intravenously to help differentiate the 

structure components of the breast. Retrieved from [32]. 
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1.3 Dedicated Breast Computed Tomography (DBCT)  

Dedicated Breast Computed Tomography (DBCT), also known as 3D Breast CT, is a 

new breast imaging modality (the first commercial prototype was available from 

2006 [33]), which aims to improve breast cancer detection and diagnosis.  

Indeed, DBCT is not yet implemented in daily clinical practice, but the numerous 

researches carried out in the centers that own this system (3 in the United States, 3 

in China, 1 in Qatar, 1 in Thailand, 1 in The Netherlands) want to demonstrate the 

high technological level of this imaging method, which allows overcoming the main 

criticalities of other conventional breast diagnostic imaging techniques. 

 

DBCT is a computed tomographic system that provides a true high-quality 3D 

morphological image of the breast. The operating mechanism is based on the 

collection of several x-ray beams taken from different angles (angular sampling) to 

reconstruct the spatial distribution of the linear coefficient µ. Starting from this 

distribution map, the 3D visualization of the breast internal structures is 

reconstructed retrospectively, typically using a Filtered Backpropagation algorithm. 

Differently from DBT, DBCT gantry realizes a relative fast full rotation around the 

pendant breast on a horizontal plane (Figure 8), and its x-ray source and detector 

acquire 30 projection images per second (typically 300 frames over 10 seconds of 

acquisition sequence) [34]. 

 

 

Figure 8. Representative illustration of the DBCT structure. Both the x-ray source and detector 

motion plan and the patient's position can be observed. The patient is lying prone on the table with 

the scanned breast inside the hole in a pending configuration. Retrieved from [35]. 

 

Many of the DBCT advantages can be found in the new acquisition method and the 

breast geometric configuration. From a technical point of view, DBCT is the first true 

fully 3D breast imaging technique that enables uniquely and decisively to overcome 

the tissue superimposition issue that occurs during mammography (and partially 

DBT) [36, 37]. Moreover, the breast is not compressed because it is positioned inside 

the table aperture (like Breast MRI), favoring both image quality and patient 
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comfort. On the one hand, the complete 3D reconstruction from the chest to the 

nipple allows a detailed lesion visualization in all types of breast (size and density) 

[38], on the other hand the examination does not ask the patient for breast 

compression, and, compared to mammography and DBT, is significantly more 

comfortable and less disturbing [35]. 

 

Another advantage not to be underestimated is its spatial resolution because its 

isotropic voxel size can go below 300 µm [34, 39]: DBCT identifies itself as the 

highest definition tomographic technique when compared with conventional breast 

imaging methods as DBT (typically 0.1 mm x 0.1 mm x 1 mm [40]) or breast MRI 

(typically 0.7 mm x 0.7 mm x 1.3 mm [41]). In the near future, DBCT can find its 

space for its use in the clinical routine by the greater resolution that will allow 

obtaining a greater detection and diagnosis accuracy than that of the imaging 

techniques currently adopted. Furthermore, thanks to the dedicated application to 

breast, x-ray tube and additional filtrations are designed to meet the specific 

contrast requirements of breast tissues, thus maximizing the resulting image 

contrast. 

 

 

Figure 9. Coronal (A), sagittal (B) and axial (C) DBCT images of the same breast that visualize a cyst 

(marked by the red circle). It presents the typical distinctive features of a benign tumor by its round 

shape and well-defined margins. These projections show the high spatial detail that can be obtained 

with this imaging modality: it can improve the discrimination of the different breast lesions. They are 

part of the dataset used in this study. Figure courtesy of Marco Caballo and Ioannis Sechopoulos.  

 

As regards the radiation dose level, it has been shown that it is possible to obtain an 

average glandular dose (AGD) comparable to that of a conventional 2-view 

screening mammography, even if its level increases if adopted for diagnosis or 

women with large or dense breast (but always below the diagnostic mammography 

levels) [42, 43].  
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Moreover, DBCT radiation dose distribution is more uniform than mammography 

[44, 45], and its quantity can be decreased with an optimization of the acquisition 

process, both hardware (i.e. detectors) and software (i.e. imaging reconstruction). 

 

Obviously, emphasizing its role as a new breast imaging modality and considering 

the numerous real projections (between 300 and 500 per scanned breast), the 

amount of data available to radiologists requires not only a longer reading and 

interpretation time than that of the other techniques (primarily, mammography and 

DBT) but also a training to understand the importance of visualizing and evaluating 

the different lesions in their true high resolution 3D nature. This aspect can raise 

questions about the actual adoption of DBCT in the breast cancer assessment 

process (especially in the screening routine), but surely makes this imaging 

technique an additional useful diagnostic tool to be used in parallel or in place of 

DBT, breast US, and breast MRI. For this purpose, Computer-Aided Detection (CADe) 

and Computer-Aided Diagnosis (CADx) systems could be beneficial because they 

will exploit DBCT to its full potential, and support the radiologists in reading these 

new medical images, and making better and more complete clinical decisions. 

In particular, the extraction of quantitative biomarkers from these radiographic 

images, also called Radiomics (which will be discussed in Chapter 2), provides an 

opportunity for breast tumor recognition and assessment, especially considering 

the high spatial and contrast resolution of DBCT images. The combination of the 

radiomics approach with the modern and advanced machine learning (ML) 

techniques applied also in digital radiology constitutes an important breakthrough-

point for the detection and diagnosis of breast mass-like lesions. 

 

 

Figure 10. Two coronal DBCT patches of the same breast containing two different cysts (benign 

tumors) manually segmented. These patches are part of the dataset used in this study. Figure 

courtesy of Marco Caballo and Ioannis Sechopoulos. 

 

  

 B
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1.4 Thesis Content 

1.4.1 Objective of the Study and Motivation 

The goal of this thesis is to design a Computer-Aided Diagnosis (CADx) system for 

breast mass-like lesion classification in Dedicated Breast CT (DBCT) images using a 

quantitative radiomics approach and a multi-layer perceptron artificial neural 

network (ANN). 

 

As concerns the breast tumor characterization, this work was focused on the design, 

development, validation, and implementation of new descriptors that quantify the 

tumor properties in terms of morphology (i.e. shape and contour) and margin 

appearance (i.e. sharpness and infiltration degree). This choice was linked to the 

interest of evaluating all those features that, in most research studies, are not taken 

into consideration (at least not to a large extent) since many of the previously 

published studies only include the well-known and traditional texture features. 

 

With regard to the classification task, this work involved a study related to the ANN 

architecture in terms of number of hidden layers and hidden neurons (Neural 

Network tuning), the number of features to consider (feature selection), and the 

number of samples to be used during the network training (dataset balancing) in 

order to correctly discriminate benign and malignant masses. 

 

The clinical motivation of this work is to reduce the number of negative and 

unnecessary breast biopsies, which constitutes more than 70% of the overall 

biopsies performed [Section 1.2]. Therefore, the purpose is to develop a radiomic-

based classification algorithm operating on DBCT images, which provides help to 

make decisions about breast tumor diagnosis. 
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1.4.2 Thesis Outline 

This thesis describes the work carried out at the Advanced X-ray Tomographic 

Imaging (AXTI) Laboratory, Department of Radiology and Nuclear Medicine, 

Radboud University Medical Center (Nijmegen, The Netherlands), during the period 

March 2019 - September 2019, and is divided into the following five chapters.  

 

Chapter 1 (Introduction) outlines the context in which the project was defined. In 

particular, breast cancer, the current imaging breast diagnostic imaging methods 

used, the DBCT imaging modality adopted in this work, and the purpose and 

motivations behind it. 

 

Chapter 2 (Radiomics) illustrates an in-depth study on the radiomics approach, 

introducing its definition and peculiarities, and showing what has been achieved so 

far in the previous research studies applied to oncological imaging with a particular 

focus on breast cancer. 

 

Chapter 3 (Materials and Methods) shows the proposed radiomic pipeline, the image 

dataset available for this study, the developed and validated features, and the 

adopted machine learning classification model. 

 

Chapter 4 (Results) reports the results obtained at the end of the training and the 

evaluation processes for selecting the best ANN classification model based on the 

developed shape and margin radiomic descriptors. 

 

Chapter 5 (Conclusions) delineates the final observations on the potential outcomes 

arising from the developed system, the possible future works that could be 

performed, and the main constraints of this study. 
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2 Radiomics 

2.1 Definition and Workflow 

Innovation in the field of diagnostic imaging does not only happen in the 

technological evolution of imaging equipment and the optimization of acquisition 

procedures, but also the development of medical image analysis methods. 

This is the context of Radiomics, a discipline that aims to extract mineable 

information from medical images. Indeed, medical images are nowadays no longer 

considered only as visually perceived information, but constitute a source of data 

that can be extracted and quantitatively analyzed to assist physicians and 

radiologists in their clinical decisions [46]. Radiomics assumes that a quantitative 

analysis of the target region (i.e. the region of the image with prognostic value) 

through a set of texture and morphological features can provide useful data to guide 

the clinician not only towards a correct detection and diagnosis, but also, if the case, 

towards predictive factors for response to treatment. Therefore, these radiomic data 

can be extracted from images, and subsequently used for the development of 

mathematical models that may potentially improve all areas of research and clinical 

application related to oncological imaging. 

Radiomics can be seen as an evolution of the traditional CADe and CADx systems 

(which date back to the 1980s), but has two innovative aspects [47]: 

• it considers a very high number of features (hundreds or even thousands), 

while CAD systems typically include less than a dozen features; 

• its investigation aims at focusing on many cancer-related applications, such 

as detection, diagnosis, survival prediction, cancer staging, often combining 

image-based information with patient data and genomic expression (in this 

latter case, it is commonly referred to as radiogenomics). As opposed to this, 

CAD systems are usually used only for detection and diagnosis. 

 

The radiomics workflow can be articulated in four main steps [48], which are 

described as follows: 
 

1. Acquisition and reconstruction of high-quality biomedical images obtained 

through the different imaging modalities (usually 3D imaging, such as MRI or 

CT). 
 

2. Segmentation of the prognostic region (e.g. the tumor) by an experienced 

radiologist or by automatic or semi-automatic software. 
 

3. Feature extraction starting from the segmented regions of interest (ROIs). 

Different categories of features used within the radiomics context refer to the 

pixel intensities, the texture patterns, the geometric shape, the contour 
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irregularities, and the interaction of the lesion with the surrounding tissues 

(e.g. infiltration). 
 

4. Development of the predictive (or prognostic) model starting from the 

features considered useful and influential for the final goal (e.g. diagnosis, 

survival prediction) through a feature selection process that removes all 

those redundant and non-relevant variables. 

 

 

Figure 11. Example of a quantitative radiomics pipeline. In this case, the breast is the target organ 

and the images acquired are dedicated breast CT (DBCT). Here, the final goal is breast tumor 

diagnosis, i.e. classifying the masses as benign or malignant. Retrieved from [49]. 

 

Going more into detail about the feature extraction step, we can identify some types 

of features, which have different names depending on the state-of-the-art studies 

taken into consideration.  

By referring to the work of Kumar et al. [50], the three main types of radiomic 

features are those based on intensity, texture, and shape. 

Intensity-based features, traditionally called first-order statistics, are the simplest to 

implement. Indeed, they describe the ROI in statistical terms, extracting the most 

common first-order statistical descriptors from the set of intensity values of the 

pixels belonging to the segmented region. Among them, mean, standard deviation 

(STD), median, maximum, minimum, entropy can be listed. In some studies, 

intensity-based features are considered as closely related to texture-based ones, 

which are traditionally used in most of the radiomic pipelines found in the literature. 

Texture-based features, also known as second-order statistics, statistically describe 

the spatial relationships between the various pixels within the ROI. Several groups 

of features can be included in this category [39], and are briefly described below: 
 

• The aforementioned first-order statistics features, which are based on the 

intensity values distribution of individual pixels without reference to their 

mutual relationships. 
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• Haralick features [51], which describe the inter-relationships between 

neighboring pixels. In particular, they are extracted starting from the Grey-

Level Co-occurrence Matrix (GLCM), which computes the number of 

occurrences of pixel pairs with specific values and specific spatial 

relationships (Figure 12). More GLCMs at different angles (e.g. 0°, 45°, 90°, 

135°) are usually calculated to consider a higher number of adjacency spatial 

relationships. Several descriptors (e.g. contrast, energy, correlation) are 

extracted from each of these matrixes, and, finally, their average returns the 

single final values. 
 

• Run-length features (or Galloway features) [52], which assess the 

homogeneity of the ROI for each grey-level. Similarly to Haralick descriptors, 

they are extracted from an appropriate matrix called Grey-Level Run Length 

Matrix (GLRLM), which considers the length of consecutive pixels having the 

same intensity along a certain angle (Figure 12). Different descriptors, such 

as run percentage and grey-level and run-length non-uniformity, are then 

calculated from these representations. 
 

• Structural and Pattern features [53], which analyze the composition of the 

ROI architecture and the local intensity variations. Hessian, Fractal, and Laws 

features are part of this texture-based category. 
 

• Gabor features [54], which provide an analysis of the frequency content 

within the ROI in specific and localized portions. Two-dimensional Gaussian 

kernels modulated by a sinusoidal plane wave are convoluted with the input 

image along many different orientations at different frequencies. Finally, the 

mean and standard deviation are calculated to have single values for each 

ROI. 

 

 

Figure 12. Simple examples of the construction process of a GLCM (A) and of a GLRLM (B), from which 

Haralick and Galloway features are extracted, respectively. Retrieved from [55] and [56]. 
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Instead, shape features are based on the segmentation mask of the lesion and try to 

quantify region morphology and contour irregularities. These are usually 

incorporated in radiomic pipelines, but often refer to simple measurements (e.g. 

area, perimeter, eccentricity) [57]. Moreover, the inclusion of these descriptors in 

previously proposed studies is lower than intensity-based and texture-based 

features. In particular, some investigators came up with the development of few 

novel descriptors, but, only in some works, these newly developed features founded 

an application in diagnostic pipelines. That is why designing additional, more 

complex, robust shape features to include in radiomic pipelines, holds considerable 

relevance. It will be further investigated and described in Chapter 3 (Materials and 

Methods) since they constitute an essential part of this thesis. 

 

For the sake of clarity, the radiomics approach can be applied directly to 3D images 

obtained from tomographic imaging techniques. Therefore, it is possible to extract 

features that directly quantify the characteristics in this dimensionality, but the 

implementation difficulties and the high computational cost required in the case of 

many 3D radiomic descriptors have led to the prevalent use of 2D radiomic features 

in the vast majority of works. To investigate similarities and differences, studies 

have been carried out to compare the results achieved with both methods, 

discovering that the 2D radiomics performance is comparable or better than in 3D 

(Figure 13), with the advantage of a simpler mathematical formulation [58]. 

 

 

Figure 13. Receiving Operating Characteristic (ROC) curves obtained from the application of 2D and 

3D radiomic descriptors on a validation set of CT images. These curves, usually created by plotting 

the sensitivity against the specificity (or parameters derived from them), constitute a useful tool for 

evaluating the performance of a binary classifier. In this case, they show how the 2D radiomic model 

behaves slightly better than the 3D one. Therefore, 2D features are preferable, even considering the 

lower development effort and the lower computational cost. Retrieved from [58]. 
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2.2 Radiomics in Oncological Imaging 

Radiomics has found its application in all areas where medical imaging plays a 

fundamental role in the detection, diagnosis, and prognosis of cancer. The main use 

and successes have occurred in the studies related to the most frequently diagnosed 

cancers: in particular, radiomics has achieved satisfactory performance in lung, 

breast, prostate and liver imaging.  

Putting aside the breast cancer state-of-the-art that will be shown in Section 2.3, 

some interesting radiomics studies focused on the other cancers that have been a 

starting point for this thesis approach are described below. 

 

Zhang et al. [59] developed a prediction model of non-small lung cancer cell 

recurrence based on lung CT images. They included several radiomic descriptors, 

which can be subdivided in intensity and texture features, then applied different 

methods of feature reduction. This process is useful not only to eliminate 

descriptors that are simply noise or are redundant compared to more highly 

predictive variables but also to avoid overfitting when machine learning (described 

in Chapter 3) is used for outcome prediction based on the extracted and selected 

radiomic features. Indeed, overfitting occurs more easily when the number of 

features is much higher than the available dataset size, as it often happens in medical 

studies. Furthermore, they also analyzed different ML models, including Random 

Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). The AUC 

values were adopted to compare the different combinations obtainable from the 

feature selection FS and classification methods: the RF combined with a previous 

Principal Component Analysis (PCA) feature selection and a dataset balancing with 

oversampling of the minority class led to an AUC of 0.79, a value usually considered 

satisfactory for cancer recurrence prediction problems. 

Aerts et al. [60] conducted the first extensive clinical radiomics implementation 

model for survival prediction in the case of lung and head-neck cancer based on CT 

images of 1019 patients. Their initial features were 440 and belonged to the three 

categories abovementioned (i.e. intensity, texture, shape). They studied the stability 

and prognostic performances of all features, obtaining promising results that led to 

a deeper analysis of the clinical impact of this approach (Figure 14). 

Griethuysen et al. [61] carried out a study always based on lung CT images, which 

led to the development of a classification model of lung nodules. Their dataset 

consisted of 429 distinct lesions, and their features set included 1120 radiomic 

features, belonging to the groups of first-order, textures, shape, and higher-order 

(e.g. wavelet) features. After performing a stability study to preserve only the most 

stable, the classification results showed significant differences between the group of 

benign and malignant lesions. 
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Vignati et al. [62] carried out a study to evaluate the possibility of a radiomics 

approach applied to T2-weighted and diffusion-weighted MRI images for the 

evaluation of prostate cancer aggressiveness (Gleason score). Their interest was to 

demonstrate that texture features could help in defining the cancer stage and, based 

on this, the following tailored treatment. The adoption of these two imaging 

methods on 45 patients made it possible to reach AUC values above 0.92. 

Wibmer et al. [63] performed a study of 147 patients to show the potential for 

detection and cancer grading of the Haralick features on T2-weighted and diffusion-

weighted MRI images. Their work analyzed the associations between the texture-

based descriptors and the cancer Gleason score and concluded that these features 

could be useful for adding more information in the decision-making process about 

the cancer progression. 

 

Finally, Zhou et al. [64] developed a CT-based live cancer recurrence prediction 

model. The work was based on a retrospective analysis of 215 patients, and 21 

texture-based features were implemented. In particular, they showed that the 

addition of radiomics to the current clinical model provides superior performance 

in the early recurrence discrimination with a sensitivity of 82% and a specificity of 

70%. Therefore, radiomics demonstrated to be an approach with high prognostic 

abilities and of great utility in opting for the best treatment. 

 

 

Figure 14. Example of lung cancer CT images (A). Representation of a radiomics pipeline that starts 

from image acquisition and tumor segmentation, then followed by feature extraction and data 

analysis (B). Retrieved from [60]. 

 

  

 

B
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2.3 Radiomics in Breast Cancer Imaging 

One of the main fields where radiomics is achieving growing success and where 

progress in terms of image processing is tangible is breast cancer imaging. 

In literature, it is possible to find studies that adopt all the different imaging methods 

described so far. The project goals are more directed towards the detection and 

diagnosis of tumors, but there are also works where the possibility of providing 

support to doctors in defining treatment strategies or understanding the role of the 

radiomic approach in the prediction of recurrence-free survival is evaluated. 

 

Many of the studies are based on digital mammography images since mammography 

is the preferred exam for screening and also serves in the subsequent phase of 

diagnosis, which makes it possible to have many available images. 

Mao et al. [65] carried out a study that involved 173 patients and aimed at defining 

the ML algorithm that could correctly classify benign and malignant masses. Four 

different algorithms were built, including SVM, Logistic Regression (LR), K-Nearest 

Neighbor (KNN), and Bayes Classification. At the end of the feature selection 

process, each ML model contained a total of 51 radiomic features (intensity, texture, 

shape). The LR classification model showed the best results in terms of accuracy, 

sensitivity, and specificity (0.89, 0.87, and 0.9, respectively), higher than those 

achieved by radiologists. 

Another interesting work is that of Li et al. [66], which compared the current clinical 

flow and a radiomics approach for the prediction of invasive carcinoma from DCIS 

lesions, starting from mammography images acquired from 250 patients. All types 

of features were included in the initial feature set, but texture-based and 

morphology features were those mainly extracted (Figure 15). Five different feature 

selection approaches and seven types of classifiers were combined, and the final 

statistical analysis showed how the radiomic descriptors could complement the 

current clinical characteristics to identify invasive cancer starting from DCIS. 

Another point of this study to be underlined is that the features most present at the 

end of the feature selection process and those that provided for greater predictive 

value were the morphological radiomic ones. 

 

Chan et al. [67] used DBT images for the characterization of tumors, making a 

comparison between different ML methodologies applied both to the acquired 

projective views and to the DBT reconstructed slices. The peculiarity of the feature 

set was the strong presence of features that analyze the spiculation of the lesions. 

The Linear Discriminant Analysis (LDA) classifier with a stepwise feature selection 

was adopted. This study showed that the DBT slice-based approach had higher 

performance since the AUC ranged from 0.87 to 0.93, against a range from 0.78 to 

0.84 of the acquired projections data. Therefore, the authors concluded that it is 

worth building diagnostic models starting from the DBT pseudo-3D volumes. 
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Moreover, it is possible to identify some works that have used US images.  

In particular, Lee et al. [68] developed a radiomics model that allows diagnosing 

starting from the application of texture features in US imaging. Their dataset 

included 901 lesions between fibroadenomas and triple-negative breast cancer 

(TNBC). The final AUC value was 0.84 on the validation set, a satisfactory outcome 

considering that these two types of tumors are difficult to distinguish via simplistic 

visual perception. 

Nugroho et al. [69] also constructed a classifier for breast nodules diagnosis based 

on the adoption of only features related to the margins of the lesions. Indeed, the 

interesting aspect of this study was to consider only features (even developed from 

scratch) that would analyze only the outermost portions and the relationship with 

the surrounding environment of the breast lesions. By implementing a NN, they 

achieved an accuracy of 0.95, a sensitivity of 0.93, a specificity of 0.96, and an AUC 

of 0.99, which led them to the conclusion that this margin-based approach could 

certainly be valuable for aiding the radiologists. 

 

As regards MRI imaging, Huang et al. [70] focused on the prediction of breast cancer 

recurrence-free survival using radiomic descriptors applied to 113 patient PET and 

MRI images. The features were mainly texture-based, and several ML algorithms 

were tested. The results enabled them to assert the usefulness of their models, 

reaching a maximum of 0.75 in the AUC values. Considering that the survival 

prediction is a remarkably difficult task, an AUC value above 0.7 is often judged quite 

good because not even a radiologist can say anything about the cancer stage by only 

looking at the images. 

Xiong et al. [71] wanted to investigate the issue of predicting breast cancers that are 

insensitive to certain drugs, so it concerned the cancer treatment area. This study 

involved a total of 125 patients who did an MRI exam before undergoing 

neoadjuvant chemotherapy. More than 1900 variables were previously extracted, 

only to be reduced by feature selection. An LR classifier was constructed by 

combining selected descriptors and clinical risk factors: this combined model 

showed higher performance than the simpler clinical one. In particular, it reached 

0.93 of accuracy and 0.93 of AUC against 0.87 and 0.79, respectively. 

 

Finally, a brief analysis of all those works that adopted the same imaging technique 

as this thesis can be provided. Most of the DBCT-based studies include detection and 

diagnosis applications. 

In particular, Reiser et al. [72] developed an automatic detection method to include 

in a CADe. They had 132 cases in their dataset, balanced between benign and malign 

masses. Unlike most of the works, they implemented a series of 3D shape-based and 

margin-based features and adopted an LDA classifier. They reached a sensitivity of 

0.84, but they also evaluated the algorithm performance in the case of different 

breast densities: as expected, results get worse if the breast has a greater density, 
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given the high masking effect of glandular tissue on breast masses (AUC of 0.76 

compared to 0.86 for the lower density group). 

Ray et al. [73] designed a CADx that can automatically segment mass-like lesions and 

implements a NN for the classification task. The model input consisted of the data 

obtained from the extraction of six texture-based and eight morphology features. 

They created different NNs that used all the features or only the morphological ones 

or only the texture ones. They found that the AUC values were 0.80, 0.74, and 0.64, 

corresponding with all, separated morphological and separated texture-based 

feature sets, respectively. It is a further demonstration of how useful biomarkers 

concerning the shape and contour of the lesions could be for breast cancer diagnosis. 

The results achieved in these two DBCT studies are representative of how an 

imaging technique with less than ten years of research and development has 

achieved highly performing results, which are comparable with those obtained with 

other well-consolidated imaging modalities, despite the lower number of DBCT 

images available. This suggests that the full 3D nature of DBCT, together with the 

high resolution and contrast capabilities, may help achieve further insights in breast 

cancer characterization, especially when combined with state-of-the-art radiomic-

based image analysis algorithms. 

 

 

Figure 15. Representation of the workflow followed by Li et al. to extract the features from 

mammography images. They adopted different types of radiomic descriptors. In particular, there are 

the first-order statistics features, which refer to the gray-level intensity distribution, the texture-

based features, calculated starting from the GLCM and GLRLM matrixes, the morphological features, 

extracted from the segmentation mask of the lesion, and the higher-order features, whose 

description is not part of this thesis. Retrieved from [66]. 
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From a comprehensive analysis of the various breast cancer studies analyzed, it is 

clear that most of them have implemented texture features, and only a small group 

has chosen to develop and implement features related to morphology and margins. 

Even in this case, most of the previous works reported the use of a limited number 

of either shape, or margin descriptors, usually not investigating their combined use 

in a wider clinical context, nor expanding the implementation to multiple 

descriptors. Therefore, the goal of this thesis work is to give more insights about 

shape and margin radiomic descriptors, developing novel features, and evaluating 

their diagnostic power on a clinical image dataset acquired with DBCT. The intention 

is to perform a study that not only describes the technical and mathematical aspects 

of these features, but also investigates their diagnostic capabilities on a real patient-

basis, to understand whether these descriptors can help ameliorate diagnostic 

imaging protocols, in addition to the already well-consolidated textural information, 

or patient-related data.  

Besides, the combination of a new imaging modality (i.e. DBCT) and a radiomics 

approach that includes multiple types of features could lead to the design of a CADx 

system with even higher diagnostic potential to support radiologists in their 

decisions, and to eventually help reduce the number of unnecessary biopsies that 

many patients with benign tumors nowadays undergo. 
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3 Materials and Methods 

The dataset used and the methods developed and implemented in this study are 

explained in this chapter. The project pipeline with the main operational steps is 

shown in Figure 16. All the six macroblocks that constitute the radiomic pipeline 

will be exhaustively described below. 

 

 

Figure 16. Pipeline of the project. All the operational phases performed are described on the left side, 

while representative images of each step are illustrated on the right side. 
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3.1 Image Collection and Annotation 

The images used in this study were acquired with the new DBCT imaging modality. 

The system installed at Radboud University Medical Center is a technology of the 

Koning Corporation (West Henrietta, NY), a manufacturing company that sells only 

DBCT systems [44, 45]. It is necessary to specify the manufacturer because their 

device has different technical characteristics than those of other DBCT systems 

present in other research centers. This system has an x-ray tube (tungsten target, 

aluminum filter) set to a voltage of 49 kV for all scans with a current ranging from 

12 mA to 100 mA according to patient breast size and composition. The average 

glandular dose for a medium composition and size breast is 8.5 mGy [44]. Regarding 

the spatial resolution of the DBCT images, the nominal pixel size of the detector is 

0.194 mm, while the size of the reconstructed voxel after the application of a Filtered 

Backpropagation (FBP) algorithm projection is 0.273 mm3 and is isotropic, 

differently from what happens for DBT and MRI. For each breast, an average of 300 

projections is acquired for each complete DBCT scan, obtained from a whole 360° 

rotation of the source and detector around the patient breast for a total duration of 

10 seconds. All images were taken by radiographers appropriately instructed about 

the functioning of this new breast diagnosis imaging methodology, while an 

experienced breast radiologist with in-depth knowledge of DBCT and all breast 

imaging techniques identified the lesions. 

 

The dataset used in this study consisted of 74 breast masses, obtained from 57 

patients over 50 years of age, in which suspected lesions were detected during the 

mammography screening examination, and who accepted by written informed 

consent to undergo this additional imaging modality and make their images 

available for research purposes. These lesions were 20 malignant and 54 benign.  

In particular, among the malignant ones, 7 IDC, 7 DCIS, 1 adenocarcinoma, and 5 

combinations of types of cancer are identified, while, among the benign ones, there 

were 46 cysts, 4 fibroadenomas, 3 lymph nodes, and 1 atypical papilloma.  

The diagnosis of these masses was obtained by US examination concerning the 46 

cysts, while a biopsy was performed for all solid masses to determine their 

malignant or benign nature. For each lesion, manual annotation was performed by 

an image analysis scientist under the supervision of a radiologist expert in DBCT, 

and both raw and annotated mass images were made available for this study. All the 

original DBCT files were in TIFF format and contained the acquired breast volume 

as a stack of 2D coronal slices, from the chest to the nipple. Accordingly, the 

segmentation of each suspicious lesion was performed in the coronal plane, 

considering all the slices in which part of the mass being analyzed was present. 

Therefore, for each candidate, two volumes were available, one relating to the 

original output image at the end of the FBP reconstruction, and one relating to the 

manual annotation process, which presented the binary mask with only the pixels 

belonging to the identified lesion.  
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Figure 17. Examples of six different breast lesions belonging to the original dataset. These image 

patches were extracted from the DBCT coronal slices, and each contained a different mass. In 

particular, the first three (A, B, C) are malignant and show the typical traits with an irregular shape, 

a spiculated contour, and a blurred margin. Instead, the last three (D, E, F) represent benign cysts 

and are characterized by regular shape, well-defined contours, and sharp margins. Figure courtesy 

of Marco Caballo and Ioannis Sechopoulos. 

 

In addition to the original dataset of real breast masses, a group of phantoms was 

generated to show the results of the analysis carried out on the various developed 

shape and margin descriptors, which will be described in Section 3.3.  

In particular, the aim was to closely simulate the remarkable features of the benign 

and malignant tumors to build a solid and relevant phantom study (Figure 18). 

Therefore, they were both binary masks and grey-scale figures to be able to evaluate 

both the shape and margin features, which in real lesions analyze the segmentation 

mask and the grey-scale peritumoral regions of the mass, respectively. 

 

 

Figure 18. Examples of four binary phantoms manually generated for the analysis of the newly 

developed shape descriptors. Regular and round (A), elliptical (B), high spiculated (C), and irregular 

(D) shapes are illustrated. These phantoms show different degrees of mass irregularity and simulate 

the common morphological characteristics of benign (A, B) and malignant (C, D) breast lesions. 

 

  

 B C  
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3.2 Image Cropping and Data Augmentation 

All the processes of image processing, function development, and data analysis were 

carried out in MATLAB (version R2018a, The MathWorks Inc., Natick, MA).  

Each tumor was initially cropped into a 128 x 128 pixels patch (corresponding to 

3.5 x 3.5 cm2) to solely focus attention on the suspected lesion and reduce the 

computational cost necessary to process the images. This patch was built in the 

coronal plane encompassing the mass centroid, calculated from the segmentation 

volume. Its dimensions were the result of a size analysis of the masses: actually, all 

the lesions had a size to be completely enclosed within the patch area.  

 

Considering the ML classification tasks and their dependency on the dataset size, the 

dataset available in this study was limited and would not be suitable in a radiomic-

based approach, which adopts a large number of features. Therefore, for each mass, 

a higher number of 128 x 128 pixels patches were collected. Since DBCT is an 

isotropic tomographic imaging modality [39], 9 different views corresponding to the 

9 planes of symmetry of an imaginary cube, built around the centroid of the mass, 

were extracted. These views were the coronal, the sagittal, the axial, and the 6 

diagonals that contain two opposite edges and four vertices (Figure 19). 

 

 

Figure 19. Planes of symmetry of a cube. On the left side, the three planes parallel to a pair of opposite 

faces (i.e. Coronal, Sagittal, Axial) are illustrated in red, while the six diagonal planes containing a pair 

of opposite edges and four vertices are in blue. On the right side, the Cartesian coordinate system 

used to define the rotations to be performed for the different views is shown. Retrieved from [74]. 
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This augmentation process makes it possible to have more patches available starting 

from the same limited dataset and to capture the characteristics of the masses from 

different points of view but with the same spatial resolution. 

It allowed obtaining more robust performance, preventing the overfitting that could 

have resulted if only coronal views had been adopted (see Section 3.4). Indeed, the 

multi-view analysis considered all the directions in which the suspect mass 

develops, without neglecting any traits that it might have on different sides. 

 

 

Figure 20. Examples of image patches generated with the data augmentation process. Each row 

illustrates the 9 different views corresponding to the same breast mass. In particular, the first two 

(A, B) refer to malignant masses, while the last two (C, D) to benign ones. Figure courtesy of Marco 

Caballo and Ioannis Sechopoulos. 

 

From a technical point of view, the original volume that contained all the coronal 

slices was used, and the relative rotations were performed so that it was possible to 

collect the additional 8 patches from the different planes of symmetry (Table 1). 

Each patch was correctly centered and extracted from both the original and the 

annotated volume. A slight image processing was done to the segmentation patches 

to improve the quality of the binary mask (i.e. slight opening, hole filling, and 

removal of small external objects). 
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Table 1. Planes of symmetry and relative rotations generated to obtain all the patches collected from 

each mass of the dataset. The Coronal plane is the reference plane to obtain its orthogonal planes (i.e. 

Sagittal and Axial planes) and 4 diagonal planes (i.e. D1, D3, D4, D6), while the Sagittal plane is the 

reference for the two remaining diagonal planes (i.e. D2, D5). Refer to Figure 19 for the planes’ name 

and the coordinate system. 

Plane of Symmetry Rotation 

Coronal (X-Y plane) - 

Sagittal (Y-Z plane) 90° around the Y-axis of the Coronal plane 

Axial (X-Z plane) 90° around the X-axis of the Coronal plane 

D1 45° around the Y-axis of the Coronal plane 

D2 45° around the X-axis of the Sagittal plane 

D3 45° around the X-axis of the Coronal plane 

D4 135° around the Y-axis of the Coronal plane 

D5 135° around the X-axis of the Sagittal plane 

D6 135° around the X-axis of the Coronal plane 

 

 

The dataset of 74 masses was divided into training, validation, and test set, 

necessary to train, tune, and assess the ML model used for the diagnostic 

classification between benign and malignant tumors. The lesion partition was made 

to stratify these masses. Indeed, all types of tumors are evenly distributed over the 

three different sets, which were homogeneous in terms of the characteristics 

expressed and analyzed in the feature extraction process. 

Two other datasets composed of a higher number of patches than that of only the 

extracted coronal ones were built to study the overfitting problem, which will be 

described in Section 3.4 in more detail: for now, overfitting is defined as the 

excessive fitting of the ML model to the training set used in the learning phase. In 

particular, the first of the two new datasets examined the three fundamental planes 

of the human body (i.e. Coronal, Sagittal, Axial) and included 222 patches, while the 

second considered all the nine previously described views and contained 666 

samples. Following the initial subdivision in training, validation, test set made for 

the first original dataset, the patches of the two new datasets were distributed in the 

three sets so that the ones belonging to the same mass were part of the same set: for 

the sake of clarity, all the patches of a specific mass fell in either the training or the 

validation or the test set.  
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Therefore, although the patches refer to different views of the same mass and have 

no geometric reference that links them to each other (but only the lesion from which 

they are extracted), bias evaluation problems due to the presence of patches of the 

same mass distributed in the three sets were avoided.  

The partition of the masses, and the respective patches, in the three different size 

datasets, as well as their further assignment in the training, validation, and test sets 

are reported in Table 2. 

 

 

Table 2. Overview of the image datasets used in this study. Each of them presents the number of 

benign and malignant patches assigned to the three sets needed for the training, validation, testing 

stages of the ML classification model.  

Dataset Benign Malignant Total 

Coronal Plane 

Training 36 11 47 

Validation 4 2 6 

Test 14 7 21 

Anatomical Planes  

(Coronal, Sagittal, Axial) 

Training 108 33 141 

Validation 12 6 18 

Test 42 21 63 

9 Planes 

Training 324 99 423 

Validation 36 18 54 

Test 126 63 189 
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3.3 Shape and Margin Feature Extraction 

All the radiomic features developed in this thesis are presented in this Section.  

As announced in Section 1.4, the CADx system to be designed adopted only 

descriptors related to the shape and the margin of the breast lesions. Each of the two 

categories is described in a dedicated subsection. Novel and more complex 

descriptors will be provided with an exhaustive description and a mathematical 

definition within the feature group to which they belong. 

 

3.3.1 Shape and Contour Descriptors 

Shape and contour descriptors are the first to be taken into account and include four 

different feature sets, which examine the basic morphological properties, the 

centroid distance function, the region boundary, the spiculae and lobes of the mass, 

respectively. Their purpose is to extract information starting from the binary masks 

that report the manual segmentation of the lesions. A total of 28 shape descriptors 

were developed and are described below. 

 

Basic Morphological Features 

The basic morphological features are all descriptors easy to computational 

implement that can be found in most of the previously proposed radiomic pipelines. 

Each of the following paragraphs provides a brief description of the features in 

question. Although many of them are known as properties of the continuous domain, 

their definition evaluates the discrete domain because images are technically 

matrixes of finite elements (i.e. pixels). 

 

Area is defined as the number of pixels present within the binary segmentation 

mask and measures the surface area of the lesion region. While considering the same 

overall dimensions, the area of regular and spiculated lesions is higher than that of 

irregular shapes, characterized by lobes and concavities. 

 

Perimeter is referred to as the number of pixels that belong to the region boundary, 

which is the set of all those pixels lying between the segmentation mask (one-

indexed pixel) and the unmarked part (zero-indexed pixel). This descriptor is 

returned as the sum of all the distances between the various pixels of the contour 

itself. Under the same dimensions, the perimeter of spiculated lesions is longer than 

that of regular and macro-lobulated ones. 

 

Convex Area is the number of pixels belonging to the smallest convex polygon that 

allows enclosing all the tumor region area. Indeed, all the pixels of the lesion are 

contained within the hull, which is exactly the convex region boundary. 
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Still referring to the convex polygon that surrounds the tumor region, Convex 

Perimeter is the sum of all the distances of the pixels that constitute the hull itself. 

 

Major and Minor Axes are the descriptors related to the pixel-based measurement 

of the major axis and the minor axis of the tumor segmentation mask. In particular, 

they calculate the length (in pixels) of the two axes starting from the ellipse which 

has the same normalized variance of the lesion region. Regular shapes are 

characterized by similar (and even identical) values, while the irregular ones can 

result in values that differ by some pixels. 

 

Eccentricity is calculated starting from the previously mentioned ellipse. It is 

defined as the ratio of the distance between the two ellipse foci and the major axis 

length. Its value ranges between 0 and 1, where the degenerate cases correspond to 

the circle and the line segment, respectively. Therefore, this descriptor makes it 

possible to measure the degree of elongation of the region and how much it differs 

from a perfect circle: indeed, masses with irregular shapes (lobes, protrusions, 

concavities) show higher values than the regular ones. 

 

Equivalent Diameter [75] and Roundness [57] measure the circularity of the 

lesion region and allow to discriminate regular masses from all the others. The 

former returns the diameter of a circle having the same surface area as the lesion 

under analysis and generally gives high value for regular and macro-lobulated 

masses. The latter assumes the maximum value of 1 if the shape is a perfect circle, 

and is typically high for rounded and regular tumors, medium for macro-lobulated 

ones, and low for spiculated ones. They are defined as: 

 

 EqDiam = √4 ∙
Area

π
 (1) 

   

 Roundness =  
4 ∙ π ∙ Area

Perimeter2
 (2) 

 

Solidity [76] is defined as: 
 

 
Area

Convex Area
 (3) 

 

It measures the amount of convexity in the lesion region. It could be defined as an 

evaluation of density, which most characterizes benign lesions, given their typical 

regular shape. Indeed, the convex area is comparable to that of the tumor region in 

case of high circularity, and the value is usually high for regular and rounded masses. 

Irregular and spiculated lesions have a lower value due to the difference between 

their real area and the convex one. 
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Finally, Convexity [77] is defined as: 
 

 
Perimeter

Convex Perimeter
 (4) 

 

It is the other side of Solidity because this descriptor has the same expression but 

with perimeters instead of areas. It numerically provides higher values for 

malignant tumors, characterized by spiculations and irregularities. 

 

Centroid Distance Function (CDF) Features 

The Centroid Distance Function (CDF) is the function that collects all the distances 

of the contour pixels of the lesion from the centroid of the region itself. There are 

different distance metrics, but, in this study, the Euclidean distance was adopted.  

If the coordinates of each pixel are (xi, yi) and of the centroid are (xc, yc), the CDF 

referred to the i-th contour pixel is defined as: 

 

 CDFi  =  √(xi  −  xC)2 + (yi − yC)2 (5) 

 

CDF was calculated starting from the binary segmentation mask available for each 

tumor: it required both the centroid calculation and the identification of all the 

boundary points. Then, it was normalized by the maximal value of it, which also 

constitutes one of the parameters included in the feature set. This function plays a 

critical role in understanding the irregularity of the tumor shape because its profile 

clearly outlines the frequency and magnitude of spiculae, lobes, irregularities.  

Some examples of real tumors belonging to the dataset and the respective extracted 

CDF are shown in Figure 21.  

Taking into consideration these examples, breast masses with regular shape and 

contour were characterized by CDFs with a low-frequency and high-magnitude 

curve. Indeed, beyond the noise due to the discretization of medical images, the CDF 

waves were smooth. Moreover, since most of the contour pixels had the same 

distance from the centroid, the magnitude was high in almost all the pixels, 

presenting only two local minima in correspondence to the two points closest to the 

centroid (shortest radii). Instead, more spiculate masses had, on average, a higher 

frequency and a smaller module because of their indented contour and their less 

regularity in shape. Finally, more lobulated and irregular lesions exhibited waves 

with a high frequency and a considerable reduction in magnitude due to a higher 

number of ups and downs of the curve itself: this is because there were points at a 

higher or lesser distance from the centroid of the region. Therefore, from these 

CDFs, it was possible to evaluate the main morphological characteristics and use 

them as effective biomarkers for tumor diagnosis.  

The proposed radiomics pipeline included 14 CDF-based descriptors, which are 

presented below. 
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Mean (m1) and Standard Deviation (M2, STD) constitute a first analysis of the CDF 

and offer an average interpretation starting from all the contour pixels on which CDF 

was evaluated. In particular, mean took higher and STD lower values for the more 

regular shapes, while mean decreased and STD increased when the mass became 

more irregular. Considering the spiculated lesions, mean and STD fell within the 

range of the two categories previously described because their mean and STD 

slightly decreased and increased, respectively. They are defined as: 

 

 m1 =  
1

N
 ∑[ CDF(i) ] 

N

i=1

 (6) 

 

 M2  = √
1

N
 ∑[ CDF(i) − m1 ]2
N

i=1

 (7) 

 

Max Radius and Min Radius [75] are defined as: 

 

 MaxR = max (CDF) (8) 

 

 MinR = min (CDF) (9) 

 

They identify the maximum and minimum Euclidean distance of the points that 

constitute the edge of the region from the center of mass of the region. 

 

Elongatedness [75] is defined as: 

 

 
Area

(2 · MaxR)2
 (10) 

 

This metric discriminates well the benign masses that are usually regular (high 

values) from the malignant ones that are spiculated and irregular (low values). 

 

Dispersion [75] is defined as: 

 

 
MaxR

Area 
 (11) 

 

It measures the irregularity of the region based on the ratio between the maximum 

radius and the area. Indeed, lesions with a regular shape were characterized by low 

dispersion values, while its values increased if the number of concavities and 

irregularities grew. 
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Shape Index [75] is defined as: 

 

 
Perimeter

2 · MaxR
 (12) 

 

It provides information on the shape starting from the boundary of the region, since 

it derives from the perimeter and maximum radius. Spiculated shapes, like those of 

some malignant lesions, exhibited high values given their extended perimeter, while 

more regular shapes (e.g. round or with large lobes) had low values. 

 

Area Ratio [78] is defined as: 

 

 AR =  
1

m1 ∙ N
 ∑[ CDF(i)  − m1] 

N

i=1

 (13) 

 

Area Ratio (AR) quantifies the percentage of mass that lies outside the circular 

region having the CDF mean as its radius. Therefore, it describes the morphological 

characteristics of the tumor. It assumed small values for the masses that are almost 

circular: their mean value was close to the distance of the various boundary points 

from the centroid. AR value increased as the irregularity incremented, obtaining 

higher values for irregular and macro-lobulated lesions. On the other hand, 

spiculated masses were defined by an AR value included between those of regular 

shapes and those with macro-lobes. 

 

Entropy [78] is the descriptor that expresses the disorder present within a given 

distribution. This study assesses the degree of randomness of the CDF, starting from 

the histogram built with the probabilities that each CDF element was within a 

specific bin defined between a length R and R+ΔR. Indeed, it is possible to evaluate 

the CDF diversity, determining how much the lesion shape under analysis is regular 

or not. Since it is an irregularity criterion, rounded masses had low values, while 

lobulated and spiculated ones were identified by high values. If the probability of 

falling into a given i-th bin is pi, this radiomic descriptor is defined as: 

 

 En =  ∑|𝑝i ∙ log(𝑝i)| 

100

i=1

 (14) 
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F1 Moment [79], F3 Moment [79], F31 Moment [79], and F3k Moment [80] are four 

low-order moments that analyze the irregularities present on the boundary. In 

particular, they are obtained as combinations of the mean and the STD parameters 

based on the CDF. Unlike high-order moments that are quite sensitive to noise, they 

proved to be able to discriminate the shape types present both in the original dataset 

of breast masses and the phantom dataset. These moments can provide an in-depth 

frequency analysis of the CDF, describing the relationships that exist between the 

boundary pixel distances and its elementary parameters, independently of scaling 

and rotation. They assumed lower values for regular shapes, while they became 

higher as the contour irregularity increases. Macro-lobulated lesions showed the 

highest values of these descriptors. They are defined as: 

 

 F1
′ = 

[ M2 ]
1
2

m1
 (15) 

 

 F3
′ = 

[ 
1
N 
∑ [ CDF(i)  −  m1 ]

4 ]
1
4N

i=1

m1
  (16) 

 

 F31 = F3
′ − F1

′  (17) 

 

 F3k = 

1
N 
∑ [ CDF(i)  −  m1 ]

4N
i=1

M2
 (18) 

 

The last descriptor associated with CDF is a parameter calculated starting from the 

CDF Discrete Fourier Transform (DFT): it takes the name of Energy of Fourier 

Coefficients applied to CDF (FDenergy) because it evaluates the energy content of 

the power spectrum. The first step requires the DFT computation of the CDF vector, 

which is already normalized by its maximum value.  

 

 an = 
1

N
 |∑ CDFi ∙ exp (

−j2πni

N
)

N−1

i = 0

| n =  0, 1, … , N − 1 (19) 

 

Subsequently, min-max normalization of the Fourier coefficients is performed to 

make them invariant to scaling. Finally, the first Fourier descriptor corresponding 

to the zero frequency is set to 0 to make the Fourier series even independent of the 

initial boundary pixel position where CDF is extracted. At the end of the process, the 

series of normalized Fourier coefficients takes the following form: 

 

 Cn = {

        0;                                     n = 0 

       2 ∙
an −min(a)

max(a) −min(a)
;       n =  1, 2, … , N/2     

 (20) 
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FDenergy is calculated starting from these coefficients by the following expression, 

which takes into account the two-sided nature of the power spectrum: 

 

 FDenergy  =   ∑ Cn
2

N/2

n = 1

 (21) 

 

The evaluation of the performances was accomplished both on the real masses and 

on the manually generated phantoms. Considering Figure 21 and Figure 22, regular 

and rounded masses hold power spectra concentrated towards the low frequencies 

since the corresponding CDF was smooth and dampened: FDenergy highlighted the 

low global energy content, assuming a low value. Instead, spiculated masses had 

noisier and higher frequency CDF, which was reflected in an extended power 

spectrum across the entire frequency axis. Therefore, their global energy was larger 

because it was contained at more frequencies, and FDenergy gained a high value. 

Finally, macro-lobulated and irregular masses had an intermediate behavior: the 

global energy content was higher than the regular but lower than the spiculated 

ones, which resulted in values that were included in the range defined by the other 

two types of shapes. Moreover, what emerged from the phantom study carried out 

in Figure 22 was that this radiomic descriptor is independent of the rotation and 

size of the masses, an important aspect considering the numerous types of tumors 

that can be identified. 

 

 

Figure 21. Examples of three different breast lesions belonging to the dataset. Each row refers to 

different masses: benign with a regular shape (A), malignant with spiculated contour (B), malignant 

with a macro-lobulated and irregular shape (C). For each of them, from the left to the right, the 
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original image patch, the binary segmentation mask, the Centroid Distance Function (CDF), and the 

CDF power spectrum are shown. Regular profile exhibits smooth and low-frequency CDF: its power 

spectrum shows a peak on the left side of the frequency domain. As the irregularity increases, CDFs 

reveal more rough, noisy, and high-frequency profiles, which are confirmed by the associated power 

spectra: in particular, the spiculated mass has a spectrum distributed along almost the entire 

frequency axis, while the macro-lobulated one has a spectrum with intermediate characteristics 

between the regular and the spiculated ones. 

 

 

Figure 22. Examples of manually simulated phantoms for the validation of the Energy of Fourier 

Coefficients (FDenergy) radiomic descriptor, which is related to the global energy content of the Fourier 

power spectrum obtained from the centroid distance function (CDF). These eight phantoms are 

arranged in pairs to show its scaling invariance. From left to right, there are two regular, two macro-

lobulated and two irregular masses. FDenergy is useful in discriminating  different shapes since it 

assumes different values for the shape types being analyzed: its value increases as the irregularity 

increases and is size-independent. 

 

Region Boundary Descriptor 

This radiomic descriptor directly analyzes the pixels that constitute the lesion 

boundary to assess the frequency energy content associated with it [79]. Unlike 

FDenergy that is calculated on the CDF, this parameter derives from the application of 

the DFT to the boundary pixels. In particular, the first step to obtaining the Region 

Boundary Descriptor (RBD) involved the conversion of the Cartesian coordinates of 

the boundary pixels into their complex form. By identifying with (xi, yi) the 

Cartesian coordinates of a boundary pixel and with zi its complex sequence, the 

expression of each i-th boundary pixel is written as: 

 

 zi  =  xi  +  j ∙ yi (22) 
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The second step is the DFT application to these N complex elements, where N is the 

total number of boundary pixels. The Fourier coefficients are obtained as: 

 

 An = 
1

N
 |∑ 𝑧i ∙ exp (

−j2πni

N
)

N−1

i = 0

| n =  0, 1, … , N − 1 (23) 

 

As done for FDenergy, the first Fourier descriptor corresponding to the zero-frequency 

is set to 0 to make the series independent of changes in the initial position, while the 

other coefficients are normalized with respect to the magnitude of the first non-zero 

frequency coefficient to make the Fourier series size-independent. Therefore, the 

Normalized Fourier Descriptors (NFD) have the following magnitude formulation: 

 

  NFDn =

{
 
 

 
 

 

0;

|
An

A1
⁄ |;

|
An+N

A1
⁄ |; 

 

n = 0 
 

n =  1, 2, … , N/2 
 

n = −1,− 2, … ,−N/2 + 1 

(24) 

 

RBD metric is defined as: 

 

 RBD = 
 ∑  

NFDn
|n|⁄

N/2
n = −N/2+1    

       ∑  NFDn
N/2
n = −N/2+1  

 (25) 

 

The choice to normalize all NFDs by the corresponding n-th frequency was made to 

increase the importance of the low-frequency components and contribute to the 

diagnostic discrimination of benign and malignant masses. Indeed, if the lesion has 

a spiculated and rough contour, RBD will be smaller because most of the energy is 

distributed across the high frequencies and is damped by these frequencies that 

have a large magnitude. Instead, tumors with regular and rounded boundaries have 

the global energy boxed in the low frequencies, which consequently will not tone 

down the contribution of the NFDs because of their small magnitude. 
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Figure 23. Examples of manually simulated phantoms for the validation of the Region Boundary 

Descriptor (RBD), which is related to the frequency energy associated with the Fourier spectrum 

obtained from the coordinates of the boundary pixels. These eight phantoms reconstruct the main 

contour characteristics of typical breast tumors: regular and rounded (1, 2), macro-lobulated (3, 4), 

spiculated and rough (5, 6, 7, 8). What emerges from the results of the study, RBD decreases its value 

when the contour becomes more irregular. The motivation is linked to the mathematical formulation 

of the radiomic descriptor, which provides a division of each Fourier coefficient by the magnitude of 

the respective frequency: it means that masses with a global energy content localized at low 

frequencies (i.e. benign tumors) have higher RBD values. 

 

Spiculae and Lobes Map (SLM) Features 

Spiculae and Lobes Map (SLM) descriptors constitute a set of features developed 

from scratch in this thesis, taking inspiration from the study of Kpalma et al. [81] 

applied in the context of pattern analysis and recognition. They perform an analysis 

of the irregularities of the mass conformation in terms of spiculae, lobes, and 

concavities. The necessary elements for the calculation of these radiomic features 

are the original contour of the lesion and its convex enveloping curve, which outlines 

the smallest convex area containing all the pixels that define the binary 

segmentation mask. These parameters are obtained from the intersection between 

the original contour and the convex enveloping curve, which is iteratively eroded 

using a circular morphological structuring element with a radius that increases as 

the iterations progress. The process stops when there are no further intersections 

between the two curves. Some examples related to the real breast lesions belonging 

to the original dataset are shown in Figure 24. 
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The descriptors initially extracted are the maximum number of intersection points 

between the two curves on a single iteration (SLMintersections), and the maximum 

number of iterations executed before the erosion process interruption (SLMiterations). 

These two features contain information that has not been analyzed so far to evaluate 

the degree of spiculation and the number of inflections present within the lesion. 

The two descriptors proposed in the radiomics pipeline of this study are the result 

of the combination of the previously mentioned parameters, actually extracted from 

the region of interest. In particular, the final metrics are precisely the product 

(SLMproduct) and the ratio (SLMratio) of the two quantities, and are presented below: 

 

 SLMproduct  =  SLMintersections ∙ SLMiterations (26) 

 

 SLMratio  =  
SLMintersections

SLMiterations
 (27) 

 

From the analysis carried out both on the original masses and manually simulated 

phantoms, regular shapes are characterized by a low number of intersections and a 

low number of iterations, which resulted in a small SLMproduct. In contrast, spiculated 

masses have a high number of irregularities and asperities, which came out in a high 

number of intersections but a low number of iterations since they are only on the 

marginal side of the lesion and are not excessively deep. Therefore, SLMproduct and 

SLMratio were both high since the product is linearly dependent on the number of 

intersections, and the ratio had a small number of iterations in its denominator. 

Finally, irregular and lobulated masses have concavities and lobes that are fewer in 

number than the previous group, but they are deeper. Thus, SLMproduct maintained a 

high value because of the number of iterations, while SLMratio dropped due to its 

large denominator.  
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Figure 24. Examples of three real breast lesions from which the SLM features were extracted. Each 

row refers to different masses: benign with a regular shape (A), malignant with spiculated contour 

(B), malignant with a macro-lobulated and irregular shape (C). From the left to the right, the original 

image patch, the binary segmentation mask, and the erosion process of the convex enveloping curve 

performed until there are no further intersections between this curve and the original mass contour, 

are shown. Regular masses exhibit few intersections and iterations, while spiculated and irregular 

ones have a higher number of them. The last two shape groups have different values of intersection 

and iterations due to the characteristics of their irregularities. 

 

For SLM descriptors, a more detailed study was carried out to clarify the justification 

that led to not directly adopt the number of intersections and iterations but to 

determine combinations that are useful to discriminate benign and malignant 

masses based on their most typical and noticeable characteristics. Therefore, their 

diagnostic power was assessed through a phantom-based study. 900 digital mass 

phantoms representing the three groups of regular, irregular, and spiculated breast 

lesions were automatically generated. Each group consisted of 300 elements, 

equally divided into small, medium, and large size to test also the scaling invariance. 

These phantoms were generated from a perfect circular input on which a processed 

random white noise (zero mean, unit STD) was applied: by modulating the noise 

amplitude and varying the size of the moving-average filter kernel, the typical 

characteristics for each of the three groups were simulated: the ranges of the 

parameters related to the colored noise and the smoothing kernel are reported in 

Table 3. The different sizes of the phantom lesions were obtained using an initial 

radius of 25, 50, and 75 pixels for small, medium, and large masses, respectively. 



Chapter 3.  Materials and Methods 

44 

Table 3. Noise amplitude and filter kernel size adopted for the automatic generation of the phantoms 

used in the design, development, validation, and testing phases of the SLM descriptors. The numerical 

values were defined to build phantoms that simulate the typical characteristics of the three groups 

of lesions under analysis (regular, irregular, spiculated). The values chosen for the noise amplitude 

and the filter kernel for the generation of the 900 phantoms (300 for each shape group) were 

randomly extracted within the declared ranges to obtain small differences for each simulated mass.  

 Regular Irregular Spiculated 

Noise amplitude [pixels] 3 – 5 15 – 20 9 – 12 

Filter kernel size [pixels] 90 – 120 30 – 50 3 – 15 

 

 

The results obtained with the two raw parameters (SLMintersections and SLMiterations) 

and the two final ones (SLMproduct and SLMratio) are shown in Figure 25. The former 

contain the same information, distinguishing regular masses from the other two 

groups. The distributions of the three different groups show an overlap of the mean 

values that fall within the STD ranges of the others: indeed, irregular and spiculated 

distributions are substantially overlapped, emphasizing the difficult utility of the 

raw parameters adopted separately. Conversely, the latter hold a relevant position 

because SLMproduct provides clear discrimination between the regular masses and 

the remaining ones, while SLMratio well separates the group of spiculated masses 

from the rest. Although the STD ranges are partially overlapped, the positive aspect 

is that the mean values of the groups to be discriminated through each of the two 

derived parameters (regular with SLMproduct, spiculated with SLMratio) are not 

contained within the STD ranges of the others. Despite the simplicity of their 

mathematical formulation, the two final SLM descriptors, proposed in a completely 

new way and not implemented in any radiomic pipeline, demonstrated during the 

development and validation phases a strong discriminative connotation for the 

identification of benign and malignant breast tumors starting from the 

quantification of spiculae, lobes, and concavities that characterize their shapes. 
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Figure 25. Results (mean, STD) obtained from the analysis of the SLM descriptors applied to the 

automatically generated phantom dataset. On the left (in light blue color), the distributions related 

to the two raw parameters (SLMintersections and SLMiterations) are illustrated. They propose equivalent 

information regarding the differentiation of the three shape groups because only the regular one is 

separated from the others. Moreover, irregular and spiculated groups have a considerable 

overlapping of the STD ranges with the two mean values falling within the range of the other group. 

On the right (in dark blue color), the distributions related to the two derived parameters (SLMproduct 

and SLMratio) are shown. They are the final SLM descriptors because, if used together, are functional 

to the discrimination process since SLMproduct allows the regular masses to be distinguished from the 

others, while SLMratio facilitates the identification of the spiculated ones. Although partially 

overlapped, the mean values of the two groups to be discriminated are always out of the STD ranges 

of the other groups, giving further support to the usefulness of these radiomic descriptors. 
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3.3.2 Margin Descriptors 

Margin descriptors explore the peritumoral compartments of the breast masses 

starting from the acquired gray-scale images and are divided into two feature 

groups, related to the analysis of the distribution of the radial gradient and the gray-

level texture. The region being analyzed is the circular crown whose centerline is 

the contour of the binary segmentation mask. A total of 130 margin features were 

developed, and are explained below.  

 

Margin Radial Gradient Distribution Features 

These descriptors are designed to quantify the sharpness degree of the breast tumor 

margins. What can be observed starting from the gray-scale images is that malignant 

lesion margins are generally blurred and ill-defined due to the intricate micro-

vessels network that typically surrounds these masses for blood supply and cancer 

proliferation. Instead, the benign lesions are commonly characterized by sharp and 

well-defined contours. Therefore, the idea was to define some margin indicators 

that analyze the edge gradient distribution to extract exploitable information for 

understanding the tumor status [82, 83].  

As previously said, the lesion margin was identified as an annular region built on the 

contour of the segmentation mask. Its total thickness was set equal to 10 pixels, 

equally divided between inside and outside the ROI. Thereby, it was possible to 

evaluate the characteristics of the lesion both in its internal area and surroundings, 

developing a set of radiomic biomarkers that provide details about the intensity 

transition across the boundary. The gradient magnitude was calculated by the 

convolution of the image with the Sobel filter, particularly recommended for the 

border identification. Unlike the traditional extraction of texture features, the goal 

is to analyze the edge-gradient distribution within the margin region along the 

radial directions that connect each boundary pixel with the centroid of the lesion. 

Considering to have N contour points, there are N radial edge-gradient profiles from 

which 9 different descriptors are extracted: 8 first-order statistics features (mean, 

STD, maximum, minimum, energy, skewness, kurtosis, entropy) and full-width at 

half-maximum (FWHM). To associate a limited number of measurements with each 

lesion being analyzed, mean and STD are calculated for each distribution associated 

with one of the previously listed descriptors, defining 18 new radiomic metrics to 

be included in the pipeline of this study. 
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The mathematical expressions of the 9 extracted descriptors are presented below. 

 

• Mean, defined as: 

 x̅ =  
1

n
 ∑xi 

n

i=1

 (28) 

 

where xi is one of the 10 pixels which constitutes the radial gradient profile 

contained within the annular region. It returns the profile average intensity. 

 

• STD, defined as: 

 σ =  √
1

n − 1
 ∑(xi  −  x̅)2 

n

i=1

  (29) 

 

It returns an estimation of the variability present within the gradient profile. 

 

• Maximum and Minimum are the largest and smallest values of the radial 

edge-gradient profile, respectively. They represent the extremes of the 

intensity range within all the pixel values fall. 

 

• Energy, defined as: 

 Es =∑|xi|
2 

n

i=1

 (30) 

 

It is the energy associated with the gradient profile, calculated as the sum of 

the square modules of the intensity values. 

 

• Skewness, defined as: 

 s =
 
1
n 
∑ (xi  − x̅)

3  n
i=1

σ3
 

(31) 

 

It provides a measure of the distribution asymmetry of the pixel values 

around their mean.  

  

• Kurtosis, defined as: 

 k =
 
1
n 
∑ (xi  −  x̅)

4  n
i=1

σ4
 

(32) 

 

It quantifies the distancing of the distribution from a normal distribution, 

giving an information related to the shape. 
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• Entropy, defined as: 

 S =  −∑Pi ∙ log10Pi

n

i=1

 (33) 

 

where Pi is the intensity of the i-th pixel belonging to the radial gradient. This 

descriptor gives an average information regarding the profile being analyzed. 

 

• FWHM is defined as the width in pixels that the intensity curve of the 

gradient profile has at the half of the maximum y-value assumed by the 

distribution. It is obtained as the difference between the x-coordinates of the 

points intersected at half the maximum amplitude. 

 

These radiomic features were applied both to the real masses and some phantoms 

to evaluate their quantitative descriptive power in breast tumor discrimination. 

Considering what previously described, the benign margins are expected to be more 

homogeneous, while the malignant ones present a higher inhomogeneity and a 

greater degree of blurring. Figure 26 shows the 9 radial distributions applied to the 

same phantom to evaluate what changes in the presence of different mass sharpness 

degrees, while Figure 27 illustrates the application of two of these radiomic 

descriptors on real breast masses. 

 

 

Figure 26. Phantom study of the nine margin radial gradient distribution features. On the left, the 

gray-scale phantom exhibits different sharpness degrees in its four quadrants: in particular, the 2D 

image-blurring filter was applied once in the upper-right and lower-left, twice in the upper-left, and 

three-times in the lower-right quadrants. On the right, the nine heating maps show the application of 

the nine descriptors to each radial edge-gradient profile of the mass phantom. In order: Mean, STD, 

Max, Min, Energy, Skewness, Kurtosis, Entropy, FWHM. All of them reveal different values depending 

on the blurring level, thus their mean and STD values add further useful information for the 

quantification of biomarkers related to breast tumors. 
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Figure 27. Examples of three real breast lesions from which the margin radial gradient distribution 

features were extracted. Each row refers to a different mass: benign with a regular shape (A), 

malignant with spiculated contour (B), malignant with a macro-lobulated and irregular shape (C). 

From the left to the right, the original image patch, the gradient of the lesion margin, and the heat 

maps of the FWHM and Entropy are shown. Benign masses usually show homogeneous heat maps in 

all the directions in which the radial edge-gradient is analyzed. Instead, malignant masses are 

characterized by inhomogeneous distributions, due to lower margin sharpness degrees and ill-

defined margins. 

 

By taking into account the FWHM descriptor, it results in a higher mean value for 

those masses that have more blurred margins and whose boundary line between 

the internal and external regions is less distinct, as in the case of malignant tumors: 

they yield radial gradient profiles that are a broad peak distribution. Therefore, if 

the lesion has a blurred margin in many orientations, the FWHM mean and STD will 

be higher because the gradient profiles will be different in each direction. For the 

sake of clarity, a small phantom-study on the same shape but with various sharpness 

characteristics is shown in Figure 28. 

 



Chapter 3.  Materials and Methods 

50 

 

Figure 28. Examples of seven gray-scale mass phantoms with the same object but different blurring 

degrees from which the FWHM descriptor was extracted. The phantoms were obtained as follows: 

(1) was generated with random white noise and no filtering, (2) with a Gaussian blurring applied 

once over the whole (1), (3) with a second application of the blurring filter to (2), (4) with a blurring 

filter applied once to the upper-left corner of (1), (5) with a blurring filter applied twice in the upper-

left corner of (1), (6) with a blurring application in the upper-left and lower-right quarters of (1), and 

(7) with a blurring application repeated twice in the upper-left and lower-right regions of (1). As can 

be seen, the heat maps show how sharpness variations lead to different values of the FWHM 

descriptor: the FWHM value becomes higher (yellow color) as the blurring content increases.   

 

Margin Radial Sector Features 

This set of radiomic descriptors analyzes the gray-level texture of the breast mass 

inside the annular region built as described in the previous subsection. Therefore, 

unlike the traditional texture features that are extracted from the entire mass, these 

margin metrics only describe the peritumoral regions to get useful information from 

a part of the lesion that contains many distinctive characteristics about the tumor 

nature [84, 85]. In this study, the circular crown was divided into ten sectors (one 

every 36°), and, from each of them, 14 features were extracted: 8 first-order 

statistics features (the same of the previous feature set) and 6 Haralick texture 

features (Contrast, Correlation, Energy, Homogeneity, Entropy, Symmetry [51]).  

Eight first-order statistics features were calculated starting from the distribution of 

the 14 descriptors extracted from each of the ten sectors, to reduce the amount of 

information associated with each breast mass patch. A total of 112 margin radial 

sector features were implemented within the radiomic pipeline of this study. Some 

examples of the application of these descriptors (Haralick Contrast and First-order 

Energy) on real breast lesions are illustrated in Figure 29: these heat maps provide 

valid evidence of how each of the margin radial sector features can aid in the 

discrimination between benign and malignant mass images. 
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Figure 29. Examples of three real breast lesions from which the margin radial sector features were 

extracted. Each row refers to a different mass: benign with a regular shape (A), malignant with 

spiculated contour (B), malignant with a macro-lobulated and irregular shape (C). From the left to 

the right, the original image patch, the annular region of the mass margin, and the heat maps of the 

Contrast (Haralick) and Energy (First-order statistics) are shown. Benign masses usually show a 

certain homogeneity among the ten sectors, while malignant ones are characterized by sectors 

having significant differences in their characteristics (margin infiltration and ill-defined boundaries). 
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3.4 Machine Learning Analysis 

All the Machine Learning (ML) analyses, methods, and models that were studied and 

implemented in this thesis are reported in this Section. In particular, the first 

subsection provides the ML definition and describes its basic concepts. The second 

subsection focuses on the overfitting problem and the feature selection techniques 

adopted in this study. Finally, the third subsection concerns the process of dataset 

balancing, which is critical for training ML classification models in the case of 

datasets with skewness in class proportion. 

 

3.4.1 Machine Learning Introduction 

ML is a branch of Artificial Intelligence (AI) and consists of algorithms, techniques, 

and methods that can learn a specific task (classification, regression, clustering, 

recommendation) from a set of data without being explicitly pre-programmed in all 

their components. Their performances are kept under analysis to understand if the 

achievement of their objectives is improved based on the knowledge learned, and 

the errors made during the training phase.  

ML learning algorithms can be divided into two categories: supervised and 

unsupervised. In this thesis, a supervised ML algorithm was developed, so only a brief 

analysis concerning this approach is described. 

 

Supervised ML refers to a type of learning that adopts a labeled training dataset, in 

which the training samples already have a tag that defines the group to which they 

belong. Therefore, the learning purpose is to extract patterns and rules that map the 

inputs (e.g. radiomic features) with the known output (e.g. benign vs. malignant), 

and, from it, produce a model that predicts the output of new samples. This approach 

is precisely the opposite of what happens in unsupervised learning, where the 

elements of the training set have no output labels, and, therefore, the training occurs 

by entirely devoting to the algorithm the task of finding possible patterns in the 

input data. Supervised ML involves a training phase, where the model can learn from 

the input characteristics of the training samples (both inputs and labels are 

provided), and a prediction (or validation/testing) phase, where the model predicts 

the label of new elements whose label is unspecified. In the validation and testing 

phases of the ML model, labeled input data are, therefore, only used to evaluate the 

model performance (i.e. such samples were not used during the training phase) and 

to understand if it has a correct behavior in determining the desired output in an 

out-of-sample evaluation. From a mathematical point of view, the training dataset 

in a supervised algorithm is defined as an m x n input matrix, called X, and a m x 1 

output vector, called Y, where m is the number of samples and n the number of input 

features extracted for each element.  
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If x(i) is the input vector that contains all the n features for a given training example, 

and y(i) indicates the output label, the training set (D) can be represented as: 

 

 D =  {(x(i), y(i))}
i=1

m
 (34) 

 

The Y vector can contain discrete or continuous values, resulting in a classification 

or regression problem, respectively. The target variables of this study are binary 

(benign tumor 0, malignant tumor 1), and the goal is to build a breast mass 

classification model. In summary, the samples of the X matrix consist of all the 

patches containing the breast lesions (Sections 3.1 and 3.2), from which the 158 

features were extracted (Section 3.3), and whose output can be benign (0) or 

malignant (1). To evaluate the performance of this ML binary classifier, before being 

included in a real CADx system for breast masses, this model was applied to the 

patches that compose the test set, to estimate its predictive power on a separated 

sample population. 

 

3.4.2 Feature Selection 

One of the most common problems encountered during the development and 

training of an ML model is overfitting [86]. Overfitting takes place when the ML 

model adheres too well to a particular set of data (training set) and is not able to 

generalize on new unseen samples, making incorrect predictions on a test set.  

When overfitting occurs, prediction performance on the training data increase, 

while performance on never seen datasets get worse, and the generalization error 

becomes bigger. The disproportion between the number of samples belonging to the 

dataset and the number of input features is among the main reasons that lead to the 

overfitting problem. Indeed, if the attributes are more than the data samples, there 

is a high possibility of incurring in overfitting because having many features to deal 

with might need to force the building of a complex model that fits the training 

examples well, causing loss of generalization. One of the options to keep this issue 

under control is to reduce the number of features, which can also be very large in a 

radiomic-based approach: this process is called Feature Selection (FS). Likewise, 

overfitting can be prevented without performing any FS techniques if large datasets 

are available. Furthermore, one of the operations performed to avoid overfitting is 

to interrupt the learning process before the model fits the training samples 

excessively. There are many strategies for preventing overfitting, among which the 

early stopping can be mentioned. It involves the splitting of the original dataset in 

the training set and validation set, a set of data usually smaller than the former used 

to block the training when the error made on it starts to increase (Figure 30). Thus, 

this procedure constitutes another way to keep the overfitting problem under 

control, but it was not used in this thesis due to its difficulty in properly identifying 

the stopping iteration where the model overtraining begins. 



Chapter 3.  Materials and Methods 

54 

 

Figure 30. Early Stopping principle. The trend of the generalization error (y-axis) on the training and 

validation sets as the training process progresses (x-axis) is illustrated. There is a point (indicated by 

the blue arrow), where the error on the validation set begins to increase and where, therefore, the 

learning process should be interrupted to avoid overfitting the model on the training samples. 

Retrieved from [87]. 

 

It should not go unaddressed that FS has multiple advantages that concern both the 

overfitting prevention and the improvement of the ML model results [88]. Indeed, 

FS allows selecting the features that are considered most relevant and necessary to 

achieve the final objective, removing those that produce noise or that are 

uninformative, irrelevant, and redundant. The challenge is to identify the minimum 

subset of descriptors that can capture all the valuable information from the training 

set and find which intrinsic structures are present in the data used in the learning 

phase, to propose them when diagnostic conclusions need to be drawn. Therefore, 

FS covers a relevant role in the ML model building process because it ensures that 

only the most descriptive and significant attributes are part of the feature set to 

improve classification accuracy. All the FS methods implemented and tested in this 

study are described below. 

 

Correlation 

The Correlation-based Feature Selection (CFS) method generates the best feature 

subset based on the hypothesis that the selected descriptors are highly correlated 

with the classification goal and not correlated with each other [89]. Indeed, this 

approach is based on the analysis of the linear correlation between quantitative 

variable pairs, using the Pearson’s linear correlation coefficient:  

 

 
ρx,y = 

∑ (xi − x̅
n
i=1 )(yi − y̅)

√∑ (xi − x̅)2
n
i=1  ∑ (yi − y̅)2

n
j=1

  
(35) 
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Where n is the variables’ size, xi and yi are the i-th individual sample of the first and 

second variable, respectively, and x̅ and y̅ are the mean of the two variables. Its 

absolute value can range between 0 and 1, which indicate absence and perfect 

correlation, respectively. The choice of the threshold from which the features are 

considered highly correlated is arbitrary, and, in this study, it was set at both 0.8 and 

0.9 (usually a |ρx,y| above 0.7 is considered a strong correlation). When the linear 

correlation between the two descriptors is higher than the fixed threshold, one of 

the two is removed from the feature set. The higher the established threshold, the 

smaller is the number of discarded features because only the highly correlated 

descriptors are excluded.  

 

To assess the significance level of the calculated correlation, the P-value is also 

considered for testing the no-correlation hypothesis: if the P-value is lower than the 

significance level of 0.05, then the corresponding correlation is statistically 

meaningful and can be evaluated to decide on whether or not to remove the 

descriptor. 

 

Mann-Whitney U-Test 

The Mann-Whitney U-Test is a nonparametric statistical test often used to verify 

whether two independent statistical samples come from the same population or not. 

In this study, the two groups were the set of benign and malignant patches. The goal 

is to understand which features are statistically significant to distinguish the two 

tumor classes, selecting only those descriptors that have a P-value lower than the 

level of significance set at 0.05. Therefore, FS is performed based on the 

discrimination power of each radiomic feature [90]. 

 

Mann-Whitney U-Test & Correlation 

A third FS method adopted in this study is the combination of the two previously 

described methods. The results returned by the Mann-Whitney U-test are used to 

rank the features according to their importance, where the importance estimation 

is the P-value associated with their statistical test: the lower the P-value, the greater 

the importance of the feature. Therefore, after sorting the descriptors in ascending 

order (from the lowest P-value to the highest), the correlation-based method is 

applied. Under these conditions, when two variables are highly linear correlated 

with each other, the least important feature is discarded because it is ranked below 

in the feature hierarchy. The threshold is fixed only equal to 0.90. 
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Decision Tree Criterion (Predictor Importance) 

Decision Tree (DT) is a flowchart-like tree structure that has become a widely-used 

supervised ML algorithm for classification tasks. The characteristic elements of a DT 

are the root, that is the topmost node from which the decision process begins, the 

internal nodes (also called test nodes), where a choice regarding a given variable is 

made, the branches, which constitute the outcome of the test nodes, and the leaves, 

which represent the terminal nodes and hold the class label of the element that is 

inside it. The dominant purpose for which DTs were born is to classify elements, 

after having trained the model with a labeled dataset. DT tends to over-train because 

the tree creation leads to adapt the characteristics of the graph to the elements of 

the training set. One of the approaches used for controlling the overfitting problem 

is to determine a priori the maximum number of leaves or the minimum number of 

training elements that can be present within each leaf: in this study, the minimum 

number of leaf node observations is 3, to avoid leaves made up of 1 or 2 instances. 

At each internal node, a feature is chosen as the best criterion to divide the data 

based on a test that allows obtaining the lowest impurity split. Therefore, it is 

possible to analyze the predictor importance, calculated as the sum of the Mean 

Squared Error (MSE) variations due to splits made by each variable divided by the 

number of internal nodes in which the variables are involved. This information is 

used to select the features that will constitute the final subset used to build the ML 

classification model. In particular, the FS method employed in this study selects all 

the features involved in the DT construction process, whose estimate of predictor 

importance is greater than 0. 

 

Random Forest Criterion (Predictor Importance) 

Random Forest (RF) is an ML supervised method used for classification tasks. It is 

part of the ensemble learning algorithms because it derives from the combination of 

several DTs. Indeed, it builds more DTs and puts them together to get a more stable 

and accurate prediction. In this study, the number of trained trees was equal to 200, 

and the minimum number of samples per leaf was set to 3 (as in the case of Decision 

Tree Criterion above). The goal of training together multiple DTs is to overcome the 

overfitting difficulties that arise when implementing an individual DT and build a 

model that maintains its generalization capabilities. The outputs of all the trained 

DTs are aggregated by majority voting in the classification task. To construct the M 

DT models, the training set is divided into M subset consisting of elements that are 

extracted from the original dataset by performing the Bagging (Bootstrap 

aggregating), a uniform sampling with replacement method. Thus, it reduces the 

variance that characterizes the DT and adds a random contribution to the training 

process. Moreover, the RF method applies a selection of a random subset of features 

for each internal node: instead of considering all the variables for each split, some 

features are randomly chosen, and the best split predictor is selected only between 
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them. Actually, in this study, all the radiomic features were considered at each 

decision split, giving up the variability introduced by this second aspect and only 

adopting the Bagging method for the variance reduction. Another aspect on which 

this thesis focused is the algorithm chosen to select the best split variable at each 

node: Standard CART [91] and Curvature Test [92] were considered. The former is 

the most widely used technique, and selects the best splitting predictor that 

maximizes the gain of the split-criterion (Gini’s diversity index). The latter selects the 

best splitting predictor that minimizes the P-value of the Chi-squared test between 

each predictor and its response.  

The evaluation of the feature importance within the RF construction process 

requires the analysis of the impurity associated with each feature by using the out-

of-bag samples, which are all those elements that are not included in a given training 

subset. As described above, the subset generation involves a random sampling with 

replacement, which means each sample could be extracted several times for the 

same subset. Thus, all those observations that are not part of a given subset are used 

to determine how much each descriptor decreases the degree of impurity in the 

corresponding tree: the more a variable decreases the error at the split node, the 

more the variable is important. In particular, the predictor importance measure is 

calculated for each tree, then averaged over the total RF, and, finally, divided by the 

STD over the whole ensemble algorithm. The implemented FS method leads to the 

final selection of all those radiomic features whose importance exceeds a threshold 

set at both 0.05 and 0.1 (corresponding to the significance levels of 5% and 10%). 

 

3.4.3 Dataset Balancing 

Another way to improve the classification performance of the ML model is to balance 

the number of elements from different classes (benign and malignant in this study) 

that belong to the training set. Indeed, what frequently happens in classification 

problems is to find a high dataset imbalance, especially in the case of healthcare-

related applications where at least one of the classes consists of fewer samples: 

actually, medical imaging datasets present a marked data disproportion between 

the two classes, with a number of positive cases lower than the negative ones. Taking 

into consideration the dataset of this study, the benign to malignant ratio is 3:1 and 

influences the classification performance, both by creating a bias towards the 

majority class of benign lesions and compromising the use of some evaluation 

metrics, which cannot be considered indicative of the comparison between different 

ML models. 

 

There are several techniques for solving the imbalance dataset problem, which, in 

most cases, belong to the two categories of oversampling and undersampling [93]. 

The former is configured as a replication process that wants to increase the number 

of elements of the minority class (malignant in this study), for example by 

generating synthetic data that try to simulate their attributes. The latter is devised 



Chapter 3.  Materials and Methods 

58 

as a process that wants to reduce the number of samples of the majority class 

(benign), randomly eliminating some of the observations to match its size with the 

minority class. These balancing process are only applied to the training sets, used in 

the learning phase of the model. This study implemented the undersampling method. 

In practice, a random selection of a subset of samples of the majority class was 

performed. Indeed, Breast CT voxels are isotropic, and there are no preferential 

views: all nine views from each tumor have the same spatial resolution. Considering 

the three different size datasets, three selection strategies were performed: the 

Coronal Plane training set involved the same number of benign and malignant 

masses, the Anatomical Planes training set was balanced by extracting one patch for 

each benign mass, while the 9 Planes training set observed the extraction of three 

patches for each lesion of the majority class. The final balanced training sets are 

reported in Table 4. 

 
The undersampling balancing process certainly involves a loss of information that 

could cause a less generalization on the test set or new datasets, but, at the same 

time, is useful for the classification both in terms of performance and metrics 

adequate for the comparison of the developed models. In particular, one of the 

commonly used metrics is accuracy, which is not appropriate with imbalanced 

datasets but becomes relevant after the class balancing. A detailed description of the 

measures adopted in this study for the comparison of the different ML models is 

presented in the following section. 

 

 

Table 4. Results of the balancing of the three image training sets, with the number of benign and 

malignant patches assigned to each of them. 

Balanced Training Set Benign Malignant Total 

Coronal Plane 11 11 22 

Anatomical Planes  

(Coronal, Sagittal, Axial) 
36 33 69 

9 Planes 108 99 207 
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3.5 Artificial Neural Network Classification Model 

In the field of supervised learning for classification and regression tasks, one of the 

most successful and widely used algorithms is Artificial Neural Network (ANN), 

simply called Neural Network (NN). Indeed, nowadays, many classification models 

adopt NNs for their flexibility and the results achieved. The first subsection provides 

the NN model representation, describing in detail its architecture (components and 

organization) and its learning mechanism (training function and performance 

analysis), and defining the hyperparameters adopted in this thesis. The second 

subsection focuses on the classification performance metrics used to compare the 

different NN models implemented during the study and the determination of the 

best radiomic-based classification model for the discrimination of benign and 

malignant breast masses imaged with Breast CT. 

 

3.5.1 Model Representation 

NNs are a computational model inspired by the functioning of brain neural 

networks. These systems can learn to perform a task (classification in this study), 

starting from the input data during the learning phase without having to be 

programmed with ad-hoc rules. Therefore, the information contained within the 

training set is used to train the NN, which looks for the underlying patterns between 

the attributes of the input samples and their respective (known) outcome. NN’s 

structure and learning method are described in the following subsections. 

 

Architecture 

The basic unit of an NN is the Artificial Neuron, also called Perceptron, which takes 

the inputs (like the dendrites of the biological correspondent), processes them, and 

transmits an output (like the axon). Indeed, each neuron has an activation function, 

which maps the appropriately weighted inputs to its output (Figure 31). There are 

different types of activation functions, including the Heaviside step function (or unit 

step function), the linear function, and the sigmoid function. Each of them has its 

pros and cons on the stability of the NN, composed of mutually connected neurons. 

The activation function adopted in this study for internal neurons (hidden neurons, 

as will be described below) is the hyperbolic tangent sigmoid function (equation 

36), whose range is [-1,1], while the last output neuron presents the logistic sigmoid 

function (equation 37), whose range is [0,1]. 

 

 TanSig(n) =  
2

( 1 + 𝑒−2∙𝑛 ) 
− 1 (36) 

 

 LogSig(n) =  
1

( 1 + 𝑒−𝑛 ) 
 (37) 
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Figure 31. Representation of an Artificial Neuron (Perceptron). Each input variable (xi) is weighted 

connected to the neuron, and its incoming contribution is summed together with the others. Then, 

the neuron applies the activation function to this sum to obtain the output (y), which is passed to all 

the neurons of the next layer. Retrieved from [94]. 

 

From an architectural point of view, NNs typically consist of three types of layers 

(Figure 32), which can be described as: 
 

• Input, which has the task of receiving data directly from the outside world. 

In our study, the inputs are the values of the features extracted from all the 

patches that compose three sets of training, validation, and testing. 
 

• Output, which provides the NN prediction regarding the input element, 

whether in the training or classification phase. 
 

• Hidden (optional), which stands between the two previously mentioned 

layers and is used to calculate more complex hypotheses than a single unit 

with only input and output. One or more layers are usually included in a NN. 

They are defined as hidden because they are in the middle and can 

communicate only with other neurons (no direct contact with the outside 

world). The number of hidden layers and the number of hidden neurons 

constitute the study’s hyperparameters, where a hyperparameter is defined 

as the parameter tuned before the start of the learning process and analyzed 

based on NN performance to understand which setting has the best results. 

 

Therefore, NN consists of the mutual connection of the neurons that belong to these 

layers. Indeed, each neuron is interconnected to all the neurons of the next layer via 

weights, considering that its output becomes their input. The NNs that present this 

type of architecture are called feedforward because the information propagation 

occurs only forward, without any cycle or loop that can carry information to neurons 

belonging to the same layer. 
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Figure 32. Representation of a typical NN’s architecture. There are an input layer, an output layer, 

and one or more hidden layers. The input layer receives the input data from the outside, the output 

layer provides the NN’s prediction, and the hidden layers connect these two layers and create more 

interconnections between the neurons of the NN. 

 

Learning Mechanism 

Learning is the process performed before using the NN with the testing set or new 

samples to make the model fit for the classification task for which it is designed. The 

learning method widely used in the feedforward NNs is the Backpropagation, a 

minimization algorithm that computes the set of optimal parameters relative to the 

weights of the connections. The goal is to adjust these weights to minimize the error 

that occurs in the prediction of training samples. In particular, this error estimation 

process is performed by iterating in the opposite direction to that of information 

propagation and takes the name of backpropagation (Figure 33). From an operating 

point of view, this learning algorithm efficiently calculates the gradient associated 

with the cost function, trying to minimize it by searching for the best set of weights 

that connect the various NN layers. In this study, the scaled conjugate gradient 

backpropagation was adopted, which proved to be faster but also more sensitive to 

the random initialization of the NN weights than the traditional backpropagation 

algorithm [95]. 

 

The learning process requires a training set because the input elements are those 

used to calculate the error. This process, repeated for all the training set samples, 

can be described in the following steps: 
 

1. Initial feedforward propagation for the output prediction of the sample. 
 

2. Calculation of the classification error, that is simply the difference between 

the result obtained and the real output. In this study, the performance 
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analysis was done using the cross-entropy function, which penalizes the 

predicted outputs far from their target output. 
 

3. Updating simultaneously the NN weights through the Backpropagation 

algorithm to reduce the prediction error. The errors that refer to the hidden 

layers are calculated by multiplying the error corresponding to the next layer 

with the matrix of the weights relative to the connections between the two 

layers, and with the activation function derivative evaluated with the input 

values of the layer being analyzed. Therefore, the process is backward 

because it starts from the last output layer and returns to the input layer. 

 

 

Figure 33. Schematic representation of the Backpropagation learning algorithm. It consists of the 

forward and backward phases. The former starts from the NN inputs and reaches the output 

prediction. The latter begins with the error obtained with the classification of the sample (defined as 

the difference between the prediction and the real outcome) and updates simultaneously the weights 

of the connections between the neurons that belong to the different layers of the NN. 

 

The appropriate training, which allows avoiding the overfitting problem, and the 

design of the best architecture, are the main difficulties in the NN’s implementation. 

In this study, the parameters defined for the learning process are listed below: 
 

• Maximum number of epochs reached during training: 𝟏𝟎𝟎𝟎; 
 

• Minimization goal to be achieved (performance goal): 𝟎; 
 

• Minimum gradient performance (gradient threshold): 𝟏𝐞−𝟔; 
 

• Maximum number of validation failures (the validation set error must 

increase a fixed number of times after the last time it was decreased, to 

interrupt the training process): 𝟔.   
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3.5.2 Classification Performance Metrics 

At the end of the construction of each NN model, it is necessary to evaluate the 

performances obtained through metrics that quantify their effectiveness in the 

classification task. In particular, most of the evaluation metrics are related to the 

Confusion Matrix (CM), which returns a representation of the classification 

performed in terms of correct and incorrect predictions. Indeed, CM is a matrix 

where columns refer to the real classes of the classified samples, while rows contain 

the predictions made by the classifier. Considering a binary classification problem 

(as faced in this study), CM is configured as a 2x2 matrix, where there are four 

different outcomes depending on the real class and the prediction of each instance 

(Figure 34). In particular, each combination can be defined as: 
 

• True Negative (TN), indicating a negative element correctly classified as 

such (e.g. a benign mass predicted as benign). 
 

• True Positive (TP), indicating a positive element correctly classified as such 

(e.g. a malignant mass predicted as malignant). 
 

• False Negative (FN), indicating a positive element incorrectly classified as 

negative. 
 

• False Positive (FP), indicating a negative element incorrectly classified as 

positive. 
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Figure 34. Representation of a Confusion Matrix for a binary classification problem. The columns 

refer to the actual classes, while the rows identify the predicted ones. The four combinations define 

the types of the elements classified correctly (principal diagonal) and incorrectly (antidiagonal). 

 

From the combination of the information extracted from the CM, it is possible to 

calculate a series of performance measures. In this study, the metrics used to 

compare the different predictive NN models are 8 and presented below. 
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Sensitivity, also called Recall or True Positive Rate (TPR), is defined as: 

 

 sensitivity =  
TP

TP + FN
 (38) 

 

It provides an estimate on the elements belonging to the positive class (malignant 

tumors), putting the number of correctly classified positive elements in relation to 

all the samples of this class classified both as positive and negative. 

 

Specificity, also called True Negative Rate (TNR), is defined as: 

 

 specificity =  
TN

TN + FP
 (39) 

 

It analyzes the elements of the negative class (benign tumors) by making the ratio 

between the number of correctly classified negative instances and the whole set of 

the samples of this class. 

 

Accuracy is defined as: 

 

 accuracy =  
TP + TN

TN + TN + FP + FN
 (40) 

 

It defines how accurate the model is, by evaluating the number of times the classifier 

correctly predicts the negative and positive elements. Considering the CM, this 

metric is determined as the sum of the elements that are on the principal diagonal 

divided by the total number of elements classified by the algorithm. 

 

Positive Predictive Value (PPV), also called Precision, is defined as: 

 

 PPV =  precision =  
TP

TP + FP
 (41) 

 

It evaluates the classification capability based on the elements predicted as positive. 

It is measured as the ratio between the number of elements correctly classified as 

positive and the number of elements for which the model gives a positive prediction. 

 

Negative Predictive Value (NPV) is defined as: 

 

 NPV =  
TN

TN + FN
 (42) 
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It is an indicator based on the elements predicted as negative and is measured as the 

ratio between the elements correctly classified as negative and all the elements 

correctly and incorrectly predicted as negative. 

 

F1-Score is defined as: 

 

 F1 score =  
2 ∙ PPV ∙ sensitivity

PPV + sensitivity
 =  

2 ∙ TP

2 ∙ TP + FP + FN
 (43) 

 

It is also a measure of the classifier accuracy and is obtained from the harmonic 

average of sensitivity and PPV. It represents an alternative metric to accuracy. 

 

Area Under Curve (AUC) is defined as the area underneath the Receiver Operating 

Characteristic (ROC) curve and provides a measure of the classifier's performance 

by considering all the possible thresholds set for the classification. Indeed, the 

threshold of 0.5 is the one typically used, but it can range between 0, where all the 

elements are classified as positive, and 1, where all are classified as negative. The 

ROC curve is the graph obtained by taking all the (1-specificity, sensitivity) pairs 

calculated at different decision thresholds (Figure 32). Referring to the description 

of the CM combinations, the ROC curve is drawn by plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR) at several classification thresholds. They 

can be defined as: 

 

 TPR =  sensitivity =  
TP

TP + FN
 (44) 

 

 FPR =  1 − specificity =  
FP

FP + TN
 (45) 

 

The ROC curve is based on elements predicted as positive, which belong to the two 

separate positive (TP and FN) and negative (FP and TN) classes. The goal is to build 

a classifier whose curve is in the upper-left corner, where ideally the maximum 

sensitivity and specificity are achieved. Therefore, AUC is a measure that allows 

understanding how well a classification model predicts, ranging from 0 to 1.  

In particular, if the AUC is around 0.5, then the classifier is not considered reliable 

because it works randomly. If the AUC is 1, then the classifier is perfect and the 

predictions are 100% correct. This metric is threshold-invariant, measuring the 

prediction quality regardless of the decision threshold. However, this aspect is often 

not useful because it can be significant to assess which is the trade-off threshold for 

having specific performance, such as the increase of sensitivity at the expense of 

specificity. It is not the best parameter if an optimization process for choosing the 

best decision threshold is carried out. Moreover, AUC can be evaluated from the 

graph that considers the (sensitivity, PPV) pairs, which is called the Precision-Recall 
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(PR) curve. This curve examines only the TPs (indeed, the TNs do not appear in 

either of the two parameters), and the model is supposed to be good if the PR curve 

is in the upper right corner, where ideally the maximum sensitivity and precision 

are achieved (Figure 35). Although the AUC related to the ROC Curve is the most 

known and used, this PR metric has its relevance, and, like the other AUC, the higher 

the value, the better the model is. To distinguish them, the two AUC values were 

called AUCROC and AUCPR to refer to the one calculated from the ROC and the PR 

curves, respectively.  

 

 

Figure 35. Examples of Receiver Operating Characteristic (ROC) and a Precision-Recall (PR) curves 

of an NN classification model developed in this study. These two curves can be considered relatively 

good because they are in the upper-left and upper-right corners, respectively. Indeed, AUCROC and 

AUCPR are 0.89 and 0.84, respectively. 

 

Actually, these performance metrics are not suitable for being applied at every stage 

of the model-building process. Indeed, some measures cannot be assessed with 

imbalanced datasets because their value does not take this aspect into account. 

Accuracy is one of them since it considers all the elements correctly classified, and 

is not applicable if there is a disproportion between the majority and minority 

classes because it could have a high value even making many errors on the minority 

class. At the same time, some metrics are particularly useful, depending on the goal 

to be achieved. In this study, the purpose is to evaluate the model’s prediction 

capability on the minority class (malignant tumors) compared to the majority class, 

and F1-Score was chosen as the most suitable metric to define the best models in all 

the different development phases, even adopting the initial imbalanced datasets. 

Furthermore, sensitivity cooperated to give an overall view of the NN model analysis. 

Even when the datasets were balanced, F1-Score and sensitivity had more 

importance, as a matter of continuity during the entire study, but also the other 

measures were taken into consideration in defining the classifier performance. 

Referring to the comparison between the various Feature Selection methods, the 

AUCROC and AUCPR were used for a comprehensive evaluation of their performance.   
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4 Results 

In this chapter, all relevant results obtained during the design of the Neural Network 

(NN) classification models are shown. The training, implementation, and evaluation 

processes carried out to determine the best NN model can be divided into three 

different analyses, corresponding to the first three sections of this chapter. 

In particular, the first study (Section 4.1) was conducted by directly evaluating the 

initial dataset without any feature processing or training set modifications. The 

second study (Section 4.2) involved the analysis of the different Feature Selection 

(FS) methods and a comparison between the classification performance before and 

after FS. The third study (Section 4.3) focused on the dataset balancing process to 

understand its classification benefits, evaluating both the context without and with 

FS and making a comparison with the previously developed NN classifiers. 

Finally, Section 4.4 describes the final NN model and a detailed discussion on the 

contribution of the two procedures performed on the datasets in terms of features 

(Feature Selection) and samples (Dataset Balancing). 

At first, all three different size datasets were taken into account to highlight the 

difficulties in adopting limited datasets for the development of classification models 

and, therefore, the relevance of a dataset consisting of a number of elements that is 

higher than the number of features. Subsequently, only the dataset containing the 9 

image patches for each mass (9 Planes) was chosen for the subsequent analyses. 

 

4.1 1st Analysis: Original Dataset 

The first analysis involved the three original and imbalanced image datasets, 

appropriately divided into the three sets of training, validation, and test (Table 2). 

All radiomic descriptors were used, a total of 158 attributes characterizing each 

sample of the datasets. 

The NN architecture study aimed to find the right combination between the number 

of hidden layers and the number of neurons belonging to each of them. Indeed, there 

are no studies on medical image pattern recognition that indicate which are the best 

NN structures to implement, since each classification problem requires the fine 

tuning of the network architecture according to the training set size and 

distribution. Thus, one-, two-, and three-layer NNs with a number of neurons per 

hidden layer ranging between 10 and 200 were implemented (Table 5). The choice 

to have at most 3 hidden layers and 200 neurons per level was made so as to avoid 

to build excessively complex hidden layers that could also have increased in the 

computational cost to train each implemented NN model (and could increase 

overfitting). 
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Table 5. Overview of the different NN architectures that were investigated in this study. The one, two, 

and three hidden layers structures that were implemented are shown in the three columns with the 

number of hidden neurons included. 

Single Layer Double Layer Triple Layer 

10 10 10 10 10 10 

30 30 30 30 30 30 

50 50 50 50 50 50 

70 70 35 70 35 20 

100 100 50 100 50 25 

200 200 100 200 100 50 

 

 

As regards the training process, the process used each training set, internally 

divided into 90% training and 10% validation, while the testing was carried out on 

the validation set of the 9 Planes (9P) dataset, since it consisted of the largest number 

of samples (54 patches). This choice was made not to bias the classifier on the test 

set: indeed, the architecture hyperparameters were tuned starting from the NN 

performance on the validation set and were not changed in the final testing phase. 

Whenever an NN is trained with the approach followed in this thesis, different 

classification results can be obtained due to the random weight initializations and 

division of the training set in training and validation subsets. Consequently, 10 

iterations for each of the 18 NN structures were performed, choosing the best model 

for each dataset based on the highest F1-Score value (Figure 36). 

 

 
 



Chapter 4.  Results 

69 

 
 

 

Figure 36. Validation results of the 18 models built with a different architecture for each of the three 

original datasets (Coronal Plane, Anatomical Planes, 9 Planes). For each structure, the values of 6 

metrics (sensitivity, specificity, PPV, NPV, accuracy, F1-Score) referring to the best of the 10 iterations 

are illustrated. The choice of the best architecture was based on the F1-Score (last bar, in green): in 

particular, the three best NN structures were [70 35 20], [10 10 10] and [100 50 25] for the Coronal 

Plane, Anatomical Planes, and 9 Planes datasets, respectively. 

 

The best structures for each of the three datasets were evaluated on the test set of 

the 9P dataset, since it had the largest number of samples (189 Patches). The CMs 

and the metric values of the three classifiers are shown in Figure 37. The NN model 

with the best F1-Score performance was identified as the "winning” model. In case 

of same F1-Score values, the sensitivity was used to define the best NN model. 
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Figure 37. Performance representation of the best NN models associated with each of the three 

original datasets. The Confusion Matrices (CMs) obtained from the classification of the 9 Planes test 

samples, and the performance indicators are reported for each model. The NN classifier based on the 

9 Planes dataset with a [100 50 25] architecture was the best of this comparison because it had the 

highest F1-Score value (last column of the table, in blue). 

 

As can be seen from the results, the classifier model obtained using the Coronal Plane 

(CP) dataset is overfitted on the training set and is not able to generalize on the new 

test samples, obtaining an F1-Score and a sensitivity of 47 % and 32%, respectively. 

The best NN model of the Anatomical Planes (AP) dataset was better with 54% of F1-

Score and 40% of sensitivity, even if it presents a high ratio between the number of 

attributes and number of samples too. Finally the best NN model of the 9P dataset 

achieved the best performance of F1-Score (62%) and sensitivity (46%), considering 

the higher number of training elements that provided a better representation of the 

breast mass population and exceeded the number of extracted radiomic descriptors 

(the number of features was about 2.5 times lower than the number of 9P training 

samples). Therefore, the 9P model with its [100 50 25] hidden-layer architecture 

was kept and not modified further for this first part of the study. In particular, a new 

training was performed by using both the training and validation set for the training 

phase, and the test set for assessing its generalization performance. This process 

was repeated 100 times because the random initialization of the weights could 

undermine the classification results [Section 3.5]. The classifier among the 100 

developed with the highest F1-Score value was chosen as the final NN model of this 

analysis with the use of original datasets without any data processing. The results 

(CM, metric values, ROC curve, and PR curve) relating to this NN classifier are shown 

in figure 38. 
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Figure 38. Illustration of the characteristics of the best NN classification model starting from the 

original datasets without any data processing (no Feature Selection or Dataset Balancing). This 

model was obtained at the end of the retraining process, where 100 training iterations were 

performed keeping the hyperparameters (number of hidden layers and neurons) fixed. It showed the 

best generalization performances on the 9 Planes test set in terms of F1-Score and sensitivity. 

 

The 9P dataset (as well as the other two smaller datasets) in its initial condition was 

not equally represented by the two tumor groups and showed a notable imbalance 

towards the class of benign lesions (3 to 1 compared to malignant ones), which 

results in the model's abilities to classify correctly these lesions (specificity of 97% 

for the final NN model), as it is biased towards the most frequently represented class 

(i.e. benign). In fact, the results obtained so far in terms of F1-Score and sensitivity 

are not satisfactory, and the goal is to ensure that they can be improved by 

considering some modifications in the number of features or training samples, such 

as the FS application analyzed in the next section. 
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4.2 2nd Analysis: Feature Selection 

The second analysis concerned the application of the 9 FS methods described in 

Subsection 3.4.2. The dataset used is that of the 9 Planes (9P), on which the NN model 

obtained at the end of the first analysis is based (Figure 38). The objective is to 

understand if it is possible to improve classification performance by reducing the 

number of attributes to be considered in the NN training process. Indeed, as 

previously described, FS removes all those variables that prove to be uninformative, 

irrelevant, and redundant for the task to be performed. From an implementation 

point of view, for each FS method, the feature extraction process on the 9P dataset 

was first performed and, subsequently, the training phase was carried out for 100 

iterations, adopting the training and validation sets consisting solely of the features 

considered relevant. The number of features extracted from each FS strategy using 

the initial 9P dataset is shown in Table 6. 

 

 

Table 6. Overview of the different Feature Extraction methods investigated in this study. This table 

shows the number of features extracted from each strategy starting from the original (and 

imbalanced) 9 Planes dataset. 

FS Method # of Features Extracted 

Correlation 0.90 75 

Correlation 0.80 59 

Mann-Whitney U-Test 110 

Mann-Whitney U-Test & Correlation 0.90 80 

Decision Tree 10 

Random Forest (CART & 0.05) 79 

Random Forest (CART & 0.10) 47 

Random Forest (Curvature & 0.05) 101 

Random Forest (Curvature & 0.10) 68 

 

 

Similarly to the first analysis (Section 4.1), the generalization performances of the 

100 models were evaluated on the 9P test set. The model among them with the 

highest F1-Score achieved was chosen to represent the FS method in the comparison 

made with the other ones to understand which is the best. The results relating to the 

different FS techniques based on the performance metrics are shown in Table 7. 
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Table 7. Performance evaluation of the NN models associated with each Feature Selection method. 

All the models had a [100 50 25] architecture, and were trained using the 9P training and validation 

sets. The metrics shown in the table were obtained from the classification of the 9 Planes test samples. 

The NN classifier model built with the 75 features extracted using the Correlation-based (threshold of 

0.90) FS method presented the highest F1-Score value (last column). 

FS Method Sens Spec PPV NPV Acc AUCROC AUCPR F1S 

Correlation 0.90 62% 96% 89% 83% 85% 0.85 0.80 73% 

Correlation 0.80 60% 94% 83% 82% 82% 0.83 0.79 70% 

Mann-Whitney U-Test 56% 98% 95% 82% 84% 0.85 0.80 70% 

Mann-Whitney U-Test 

& Correlation 0.90 
59% 98% 92% 82% 85% 0.85 0.81 72% 

Decision Tree 52% 100% 100% 81% 84% 0.82 0.79 69% 

Random Forest 

(CART & 0.05) 
57% 98% 92% 82% 84% 0.85 0.81 71% 

Random Forest 

(CART & 0.10) 
63% 90% 75% 83% 81% 0.86 0.78 69% 

Random Forest 

(Curvature & 0.05) 
57% 96% 88% 82% 83% 0.86 0.81 69% 

Random Forest 

(Curvature & 0.10) 
59% 98% 95% 83% 85% 0.86 0.81 72% 

 

 

The FS strategy that obtained the highest F1-Score performance starting from the 

initial 9P dataset and with a [100 50 25] NN architecture was the Correlation with 

a threshold of 0.90, which extracted a total of 75 features.  

Actually, by further analyzing the AUC values of the ROC and PR curves, it was 

observed that the performances obtained with different FS methods were all 

comparable, and there were no significant dissimilarities. Both curves were 

analyzed because they give complementary information on imbalanced datasets. 

Indeed, the ROC curve, used as a comparison metric in most research studies, refers 

to sensitivity and specificity, and, therefore, can be affected by skewness in the class 

distribution. Instead, the PR curve evaluates two ratios associated with TPs (i.e. 

sensitivity and precision) and can provide an indication that goes beyond the class 

imbalance [96]. These results that represent this absence of difference between the 

various FS methods are illustrated in Figure 39. 
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Figure 39. Bar chart for comparing all FS methods based on the AUC values of the ROC (AUC_ROC) 

and PR (AUC_PR) curves. It shows that the influence of the choice of the FS strategy on classification 

performance was not significant since AUCs were equivalent between all the FS methods. Indeed, the 

AUCROC values ranged between 0.82 and 0.86, while the AUCPR ones between 0.78 and 0.81. 

 

After choosing the FS method that provided the best performance scores (although 

not significantly different from the other techniques), the NN architecture study was 

done again because the hyperparameters depend on the number of features and 

training samples. In particular, it is plausible that the most proper NN structure for 

the condition with a lower number of attributes (and, thus, a lower ratio between 

features and samples) is smaller and less complex. Therefore, the same investigation 

performed in the first part of the first analysis (described in Section 4.1) was 

repeated starting from the 9P dataset, which consisted of the same number of initial 

samples and only the 75 features extracted using the Correlation-based FS method. 

The NN classification model with the highest F1-Score contained three hidden layers 

of 10 neurons each. Following the same scheme, the model was retrained on the 

training and validation samples using the selected set of hyperparameters, and its 

generalization performances were evaluated on the test set. The results (CM, metric 

values, ROC curve, and PR curve) of the best iteration are shown in Figure 40. 
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Figure 40. Illustration of the characteristics of the best NN classification model starting from the 

original 9 Planes dataset with the application of the Correlation-based (threshold of 0.90) FS method. 

This model was obtained at the end of the retraining stage, where 100 training iterations were 

performed maintaining the same [10 10 10] structure. It exhibited the highest F1-Score value on the 

test set. 

 

At this stage in the study, it is interesting to compare the various winning models 

achieved, deepening all the complete analysis in the last Section of this Chapter.  

In particular, from the comparison between the model before and after the FS, it can 

be noted that there was no significant improvements in F1-Score and sensitivity 

performance (Figure 41). Despite this, given the slight improvement made with the 

Correlation-based FS, the final NN classifier model of this second analysis became 

the best model implemented so far, considering the original 9P dataset imbalanced 

towards the benign class. The next activity to be performed to improve the 

classification performance was, actually, the dataset balancing, which could lead to 

a more evident improvement than that obtained by the application of the FS alone. 

 

 

Figure 41. Performance representation of the best NN models obtained before (PRE) and after 

(POST) the application of the Correlation-based (threshold of 0.90) FS method. The CMs obtained from 

the classification of the 9 Planes test samples, and the performance indicators are reported for each 

model. The NN classifier obtained after the FS was slightly better (higher F1-Score) and was chosen 

as the best model at the end of these first two analysis stages.  
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4.3 3rd Analysis: Dataset Balancing 

The third analysis focused on the evaluation of the impact that dataset balancing 

could have on the classification performance. As reported in Subsection 3.4.3, an 

undersampling method was adopted to reduce the number of benign samples and to 

train the NN models with a similar number of elements representing the two tumor 

classes. Therefore, starting from the three balanced training sets (Table 4) and 

considering all the 158 variables initially extracted, the NN architecture study was 

carried out by implementing the structures defined by the combinations of hidden 

layers and hidden neurons described in Table 5. The characteristics of the learning 

process were the same as those implemented in Section 4.1. Indeed, the training set 

was divided into 90% training and 10% validation for the learning, and the 

validation set was used for the testing in the building process of 18 models for each 

dataset. The best iteration of the 10 performed for each of the 18 structures (highest 

F1-Score) was chosen, and all their performance metrics are shown in Figure 42. 
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Figure 42. Validation results of the 18 models built with a different architecture for each of the three 

balanced datasets (Coronal Plane, Anatomical Planes, 9 Planes). For each structure, the values of 6 

metrics (sensitivity, specificity, PPV, NPV, accuracy, F1-Score) referring to the best of the 10 iterations 

are illustrated. The choice of the best architecture was based on the F1-Score (last bar, in green): in 

particular, the three best NN structures were [10], [70 35 20] and [50 50 50] for the Coronal Plane, 

Anatomical Planes, and 9 Planes datasets, respectively. 

 

The best three NN models built on each of the three image datasets were evaluated 

in their generalization abilities on the 9 Planes test set. The results (CMs and 

performance metrics) are illustrated in Figure 43.  
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Figure 43. Performance representation of the best NN models associated with each of the three 

balanced datasets (without Feature Selection). The Confusion Matrices (CMs) obtained from the 

classification of the 9 Planes test samples, and the performance metrics are reported for each 

classification model. The NN classifier based on the 9 Planes dataset with a [50 50 50] architecture 

had the highest F1-Score value and was chosen as the best model of this comparison. 

 

Even in this analysis, as expected, the best NN classifier was the one obtained 

starting from the largest dataset (9 Planes) with an F1-Score of 70%, against 59% 

and 65% of the Coronal Plane and Anatomical planes datasets, respectively. This 

model contained three hidden layers (50 neurons each) and was selected for the 

second part of the model construction, where, keeping its architecture fixed, it was 

retrained 100 times (the training and validation sets used for training, the test set 

for generalization evaluation and comparison). The best NN classification model 

developed in these 100 iterations was the one that presented the highest F1-Score 

value, and its classification performances (CM, metrics, ROC curve, and PR curve) 

are shown in figure 44. 

 

 

Figure 44. Illustration of the characteristics of the best NN classification model starting from the 

balanced 9 Planes dataset (without Feature Selection). This model was obtained at the end of the 

retraining stage, where 100 training iterations were performed maintaining the same [50 50 50] 

structure. It exhibited the highest F1-Score value on the test set. 
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Putting aside the FS process implemented in the second analysis (Section 4.2), it is 

possible to compare the model just built on the balanced dataset with the model 

obtained from the original and imbalanced dataset (Section 4.1). The comparative 

analysis of their performance is shown in Figure 45. In particular, the current NN 

model with a [50 50 50] architecture proved higher performance both in terms of 

F1-Score (77% compared to 71% of the previous model) and sensitivity (78% 

against 59%). However, this improvement led to a decrease in the classification of 

benign lesions (specificity of 88% compared to 97%), motivated by the fact that the 

new NN classifier was trained considering a similar number of elements belonging 

to the two tumor classes. At the same time, it is interesting to note the appreciable 

improvement in the classification of malignant lesions compared to what was 

achieved by the FS alone, demonstrating the importance of balancing the datasets. 

 

 

Figure 45. Performance representation of the best NN models obtained before (PRE) and after 

(POST) the Dataset Balancing of the 9 Planes dataset (without Feature Selection). The CMs obtained 

from the classification of the 9 Planes test samples, and the performance indicators are reported for 

each model. The NN classifier obtained after the Dataset Balancing showed higher F1-Score and 

sensitivity values, underling the important of having balanced classes for classification tasks. 

 

Similarly to Section 4.2, the 9 FS methods were also applied on the balanced dataset 

to investigate the further improvement brought by FS. This FS process led to the 

selection of different radiomic feature subsets with respect to those previously 

obtained: the number of attributes extracted is shown in Table 8.  
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Table 8. Overview of the different Feature Extraction methods investigated in this study. This table 

shows the number of features extracted from each strategy starting from the balanced 9 Planes 

dataset. 

FS Method # of Features Extracted 

Correlation 0.90 76 

Correlation 0.80 59 

Mann-Whitney U-Test 102 

Mann-Whitney U-Test & Correlation 0.90 81 

Decision Tree 8 

Random Forest (CART & 0.05) 56 

Random Forest (CART & 0.10) 38 

Random Forest (Curvature & 0.05) 80 

Random Forest (Curvature & 0.10) 51 

 

 

Considering the 9P training set with only the features extracted, 100 iterations were 

carried out for each FS method, and their classification abilities were evaluated on 

the 9P test set. The NN models from each FS strategy that showed the highest F1-

Score were compared, and the best results were achieved by the Random Forest 

(Standard CART, threshold of 0.05) method with a total of 56 features extracted. 

Given the intention to understand the FS importance, the AUC values (of ROC and 

PR curves) obtained from the 9 different analyses were put on the same chart, and 

pointed out that, even in this case, the choice of the FS method to be used was not 

critical for the classification performance (Figure 46). 
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Figure 46. Bar chart for comparing all FS methods based on the AUC values of the ROC (AUC_ROC) 

and PR (AUC_PR) curves. Even with balanced datasets, this graph shows that the FS strategy adopted 

was not important for the significant improvement in classification performance since AUCs were 

equivalent between all the FS methods. Indeed, the AUCROC values ranged between 0.88 and 0.92, 

while the AUCPR ones between 0.81 and 0.85. 

 

After the extraction of the most relevant and informative features,  a new study of 

the NN architecture was carried out to understand if the reduction in the number of 

attributes brought with it a reduction in the complexity of the classifier model.  

At the end of this process, the structure with the best performance consisted of two 

hidden layers with 10 neurons each, showing a lower complexity than the  NN model 

before the FS. Keeping the structure fixed, 100 retraining iterations were performed, 

and the best NN model presented generalization performances that reached 79% of 

F1-Score and Sensitivity. All the results of this NN model are reported in Figure 47. 

 

 

Figure 47. Illustration of the characteristics of the best NN classification model starting from the 

balanced 9 Planes dataset with the application of the Random Forest (CART Standard, threshold of 

0.05) FS method. This model was obtained at the end of the retraining stage, where 100 training 

iterations were performed. It exhibited the highest F1-Score value on the test set. 
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To verify what was previously stated regarding the actual importance of the FS, a 

comparison between the best models trained on a balanced training set before and 

after the FS was performed. The results showed a slight improvement achieved in 

terms of F1-Score, sensitivity, and accuracy. In particular, the latter was informative 

in this analysis since the NN models were built on balanced datasets (Figure 48). 

 

 

Figure 48. Performance representation of the best NN models obtained before (PRE) and after 

(POST) the application of the Random Forest (Standard CART, threshold of 0.05) FS method on the 

balanced 9 Planes dataset. The CMs obtained from the classification process, and the performance 

indicators are reported for each model. The NN classifier obtained after the FS was slightly better 

because it showed higher F1-Score, sensitivity, and accuracy. 

 

On the other hand, the comparison between the last developed NN model (Figure 

47) and the model obtained after FS alone (Figure 40)  showed the improvement in 

terms of F1-Score, Sensitivity, Accuracy, AUCROC, and AUCPR due to the better ability 

in the classification of malignant tumors, accepting, however, a slight decrease in 

specificity. The results of this analysis are shown in Figure 49. The higher values of 

these performance metrics obtained thanks to the application of a dataset balancing 

method, underlined the importance of this process in ML classification problems. 

Indeed, classes that are equally represented constitute a key element to avoid 

incurring a bias both in the learning process of the ML model and in the evaluation 

of specific performance metrics not suitable for imbalanced classes. 
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Figure 49. Performance representation of the best NN classification models obtained before (PRE) 

and after (POST) the Dataset Balancing and the Feature Selection. The former model was built on the 

imbalanced 9 Planes dataset using the 75 features extracted with the Correlation-based (threshold of 

0.90) FS method, while the latter model was built on the balanced 9 Planes dataset using the 56 

features extracted with the Random Forest (Standard CART, threshold of 0.05) FS method. The CMs 

obtained from the classification process, and the performance indicators are reported for each model. 

The higher values of the performance metrics (F1-Score, sensitivity, accuracy, AUCROC, AUCPR) of the 

NN model obtained after balancing the training set showed the importance of having a similar 

number of samples of the two classes in classification problems. 
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4.4 Final Neural Network Model and Discussion 

The last NN model comparison described in Section 4.3, and illustrated in Figure 49, 

showed that the model obtained at the end of the whole analysis process, which 

involved Dataset Balancing and FS, was the one with the highest performance metric 

values. Its NN architecture contained two hidden layers of 10 neurons each, and a 

total of 56 relevant and informative features extracted with the Random Forest 

(Standard CART, threshold of 0.05) FS method. In terms of performance metrics, 

sensitivity reached 79%, F1-Score 79%, accuracy 86%, and AUCROC 91%, but, at the 

same time, specificity took a relevant value of 90%. For that reason, it constituted 

the final NN model for the radiomic-based classification of breast tumors of this 

thesis, and all its performances (CM, metric values, ROC curve, and PR curve) are 

shown in Figure 47. 

 

A detailed analysis of the several comparisons made throughout Chapter 4 allows 

drawing some conclusions that concern the two processes investigated to improve 

the classification performances. In this study, Feature Selection (FS) proved to be a 

process that, if carried out independently by other operations, did not make a 

significant addition to improve classification abilities. Indeed, FS was not so critical 

because the image dataset available was already quite good in terms of the high ratio 

between the number of examples and the number of attributes, considering the 9 

patches for each mass. In particular, Figure 41 shows how the contribution of FS 

alone with an imbalanced dataset amounted to 1% for F1-Score and 3% for 

sensitivity. Likewise, Figure 48 underlines how FS contributed 2% for F1-Score and 

1% for sensitivity, even in the presence of balanced datasets. Therefore, these NN 

model comparisons led to the conclusion that the choice of the best FS method to be 

implemented did not prominently influence the classification results, given the 

small contribution provided in the development of the classification model of breast 

masses imaged with Breast CT, at least for the (limited) dataset used in this thesis.  

 

On the other hand, Dataset Balancing had a much more significant impact in 

improving classification performance, especially as regards the malignant tumor 

class. That is related to the importance of having balanced classes with the same 

number of elements, which allows NNs to identify all the characteristics of both 

breast lesion groups and not mainly from the majority one. Figure 45 emphasizes 

the independent contribution of the Dataset Balancing process, with a 6% increase 

in F1-Score and 19% in sensitivity, although accepting a decrease in specificity from 

97% to 88% due to the reduction in the number of benign elements present in the 

training set. Finally, the initially mentioned Figure 49 shows the last model 

comparison that takes into account the cooperation of the two processes, and 

outlines the characteristics of the final NN classification model, which, in addition to 

the improvement already mentioned in terms of sensitivity (79%), accuracy (86%), 

and F1-Score (79%), recovered also in terms of specificity (90%).  
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5 Conclusion 

In this thesis, the goal is to design a Computer-Aided Diagnosis (CADx) system for 

breast tumors classification in Dedicated Breast CT images using shape and margin 

radiomic features and a Neural Network (NN).  

What was developed in terms of descriptors that aim to quantify the morphology 

and the margin properties of breast tumors, proved to be valuable for the 

classification task, emphasizing the importance of analyzing different aspects of 

breast masses rather than only accounting for the traditional and well-known 

texture features. All these newly developed radiomic descriptors evaluate an aspect 

of tumoral masses that had never been taken into consideration with this degree of 

analytical depth and showed how, even if implemented alone, it is possible to 

achieve classification performance of a high level with the Dedicated Breast CT 

modality. Naturally, the classification results achieved, although satisfactory in the 

light of the uniqueness of the implemented descriptors, should be considered 

preliminary, and underline the need for the continuation of the works to effectively 

build a CADx system that can provide a second opinion to the radiologist to make a 

more conscious breast cancer diagnostic decision. 

 

The main limitations of this study mainly concern the small size of the image dataset 

that was used both in the development phase of the radiomic features and in the 

training and testing phases of the NN classification models. It was a set of breast 

lesions that were collected during a clinical trial and proved to be limited, especially 

for Machine Learning (ML) applications, where numerous training samples are 

needed. Indeed, all the performances of this thesis were calculated considering each 

of the 9 patches of the same breast mass as an independent sample. It was done to 

account for the limited dataset size, and, therefore, provide a larger test set for a 

stronger performance assessment. The other aspect that needs to be assessed is 

always related to the dataset but involves the manual annotation that was 

performed by an image analysis scientist under the supervision of a single expert 

radiologist. Considering that most of the radiomic descriptors analyze the lesion 

shape and the irregularities of its contour, the annotation of a single reader could 

potentially bias the feature analysis and in the classification performance. 

 

Therefore, this study is configured as a starting point for future works that can 

consider these observations and results, and support the effectiveness and the 

innovative breadth of the adoption of a radiomic pipeline for classification of benign 

and malignant breast lesions. Actually, these future studies need larger datasets, 

which allow implementing CADx systems on a mass-basis (and not patch-basis). By 

adopting the data augmentation process developed in this thesis, it would be 

interesting to investigate and implement strategies to merge the classification 

outcomes from the 9 patches into a single and per-mass diagnostic prediction. 
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Furthermore, all the breast tumors should be manually segmented by additional 

experienced radiologists so that the performance of the shape, contour, and margin 

descriptors can be less biased towards single-expert annotation. A robustness and 

stability analysis of the proposed radiomic descriptors on different manual 

segmentations constitutes a study of considerable scope because it could determine 

an increased involvement of these features in researches and CADx systems.  

 

Besides, it would be necessary to carry out a study that implements a radiomic 

pipeline that combines both the features developed in this thesis and other types of 

features (e.g. texture-based features), emphasizing the importance of quantifying all 

characteristics of the breast lesions with feature sets that contain more than 

thousands of descriptors. 

From an ML point of view, this study implemented only NN classifiers, but there are 

numerous other supervised algorithms (e.g. Support Vector Machines, Nearest 

Neighbors, Decision Tree, Random Forest) that have been adopted in other research 

studies (Chapter 2), and that might provide further insights in classification 

performance compared to those obtained with this thesis. The evaluation of 

different ML methods for breast tumor classification is something that should be 

explored in future works. Likewise, considering the recent advancements of Deep 

Learning (DL) in many fields of healthcare-related application (including the 

classification of breast lesions), an interesting aspect is the comparison and synergy 

of the pipeline of this study based on hand-crafted radiomic descriptors and the DL-

based one, where it is not necessary to segment any region of interest or perform 

any feature extraction and selection. 

All these potential and prospective works will contribute to the development of an 

automated CADx system, which, starting from Dedicated Breast CT images, could 

predict breast tumors with a higher degree of confidence and accuracy, reducing the 

number of negative and unnecessary biopsies, which, nowadays, constitutes more 

than 70% of the overall biopsies performed [14]. 
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